
c© 2018 by Nirmal Jayaprasad Nair. All rights reserved.



TRANSPORTED SNAPSHOT MODEL ORDER REDUCTION APPROACH FOR
PARAMETRIC, STEADY-STATE FLUID FLOWS CONTAINING PARAMETER

DEPENDENT SHOCKS

BY

NIRMAL JAYAPRASAD NAIR

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Assistant Professor Maciej Balajewicz



Abstract

In this thesis, a new model order reduction approach is proposed for parametric steady-state nonlinear

fluid flows characterized by shocks and discontinuities whose spatial locations and orientations are strongly

parameter dependent. In this method, solutions in the predictive regime are approximated using a linear

superposition of parameter-dependent basis. The sought after parametric reduced-basis arise from solutions

of linear transport equations. Key to the proposed approach is the observation that the optimal transport

velocities are typically smooth and continuous, despite the solution themselves not being so. As a result, the

transport fields can be accurately expressed using a low-order polynomial expansion. Similar to traditional

projection-based model order reduction approaches, the proposed method is formulated mathematically as a

residual minimization problem for the generalized coordinates. The method is successfully applied to the

reduction of a parametric 1-D flow in a converging-diverging nozzle, a parametric 2-D supersonic flow over a

forward facing step and a parametric 2-D jet diffusion flame in a combustor.
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Chapter 1

Introduction

1.1 Motivation

Computational models of high-dimensional systems arise in a rich variety of engineering and scientific

contexts. Computational Fluid Dynamics (CFD) for example has become an indispensable tool for many

engineering applications across a wide range of industries. Unfortunately, high-fidelity CFD simulations are

often so computationally prohibitive that they cannot be used as often as needed, or used only in special

circumstances rather than routinely. Consequently, the impact of CFD on parametric and time-critical

applications such as design, optimization, and control has not yet been fully realized. Model Order Reduction

(MOR) is a serious contender for bridging this gap.

1.1.1 Existing MOR techniques

MOR is a family of techniques for reducing the computational complexity of large-scale high-fidelity

models by generating low-dimensional, reduced-order models (ROMs). Most existing MOR approaches are

based on projection. In projection-based MOR, the state variables are approximated in a low-dimensional

subspace. In a purely data-driven context, the reduced-order basis (ROB) arise from some factorization of a

snapshot matrix. A solution snapshot matrix is a matrix whose columns contains solutions of the high-fidelity

model sampled at various times or parameters. Two popular approaches for identifying ROBs from snapshots

include the proper orthogonal decomposition (POD) [1, 2] and dynamic mode decomposition (DMD) [3, 4].

The POD modes correspond to the left singular vectors of the snapshot matrix while DMD modes correspond

to the eigenvectors of an empirically identified linear evolution operator acting on the snapshots. In the

reduced-basis method [5, 6], snapshots are generated adaptively based on a greedy approach. It is possible

to improve ROM accuracy by including some information about the dynamics of the system during the

construction of the ROBs. For example, in balanced truncation [7, 8, 9], low combined observability and

controllability measures are used to guide the reduction. Although usually more accurate than POD and

DMD, balanced truncation requires solutions of Lyapunov equations and thus, is usually not tractable for
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large-scale systems. In response, various approximate balanced techniques, including low-rank methods for

Lyapunov equations [10, 11], balanced POD (BPOD) [12, 13], have been developed.

1.1.2 Parametric MOR

For a ROM to be truly useful, it must be capable of generating accurate predictions for parameter values

that are different from those sampled for the purpose of constructing a ROB. Generating ROBs and ROMs

that are robust to parameter variations is an active area of research [14]. The choice of parameter sample

points is critical to any method used to generate the basis. For problems with small number of parameters, a

simple approach like random sampling using the Latin hypercube method is often sufficient [15]. For problems

with large number of parameters, more sophisticated sampling methods are usually required. In the standard

greedy sampling approach [16, 17, 18, 19], the sample points are chosen one-by-one in an adaptive matter.

At every iteration, the goal is to find the parameter value for which the error between the ROM and the

full order model (FOM) is largest. The FOM is sampled at this point and the new information is used to

generate a new reduced-basis.

Another critical issue involves the choice between a global or local basis. Global basis approximates a

solution for any parameter in the parameter space and has been shown to perform adequately for many

applications such as non-linear dynamical systems [20], fluid-structure modeling of an aircraft [21], CFD

based aeroelastic computations [22], turbulent flows [23] and nozzle shape optimization [24]. But particularly

challenging problems often necessitate the use of multiple local reduced basis [25, 26, 27]. In these cases,

several local basis are constructed and linked to particular regions in the parameter or state space. During

the evaluation of the solutions in the predictive regime, either these local basis or the ROM matrices are

interpolated [28, 29] or the appropriate local basis is used depending on where the current high-fidelity

solution lies [30, 31]. The price of this additional flexibility are the switching algorithms required to switch

between the local basis.

1.1.3 Parametric MOR for fluid flows containing parameter dependent shocks

Achieving parametric robustness is particularly challenging when the sought after solutions contain

parameter dependent shocks, sharp gradients or discontinuities. These situations arise in a wide range of

important engineering applications, for example, high-speed fluid flows [32, 33], multi-phase flows with

evolving material interfaces [34], computational finance [35] and structural contact problem with evolving

contact regions [36]. POD modes of flow snapshots containing evolving discontinuities and shocks in parameter

space show slow decay of singular values. Hence, above-mentioned MOR techniques would fail to provide
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accurate predictions for these types of solutions in the predictive regime.

Over the years, a large variety of discontinuity-aware MOR techniques have been developed. In the first

class of such methods, the problem of modeling discontinuities is avoided entirely by exploiting symmetry and

transport reversal properties of certain hyperbolic PDEs [37, 38, 39]. These methods identify a symmetry-

reduced structure or template of the solution from the snapshot matrix which is then subjected to various

transport operations to predict new solutions. A variation of this technique involves linear decomposition of

the solution into global and advection modes governed by optimal mass transfer [40] where the global modes

characterize diffusion whereas advection modes capture transport properties. In L1-dictionary approach [41]

the solution is given by a linear combination of local dictionary elements and L1-norm of the residual is

minimized.

More direct modeling of discontinuities includes basis splitting [42] or decomposing the solution into a

variable separable form consisting of an evolution term to capture moving shocks and a diffusion term to

capture the changing shapes [43]. For unsteady solutions with shocks, accurate low-rank solutions can be

obtained using a Lagrangian framework [44] where both position and state of Lagrangian particle variables

are approximated by their respective ROBs. Other methods avoid the problem of modeling discontinuities

by domain decomposition where direct numerical simulation or reconstruction methods are used in regions

containing the discontinuities [45, 46, 47].

Recently, a new class of parametric MOR based on, but not limited to, snapshot transformation is gaining

popularity. This class of methods involve modification of the snapshot matrix such that the modified snapshots

can be used to construct a low-dimensional subspace. For unsteady problems, the modified snapshots are

evaluated by transformation of the physical domain based on known unsteady transport phenomena [48].

POD analysis of such a modified snapshot matrix would display quick decay of singular values enabling

it to be used along with traditional MOR techniques. In the case of steady flow problems, the transport

phenomena can be identified by training the snapshot data. Interpolation of modified snapshots based on

these transports provides an approximate predictive solution [49].

1.2 Thesis contribution and outline

1.2.1 Contributions

The main aim of this thesis is to present a novel model order reduction approach capable of accurately

predicting steady flow solutions characterized by parameter dependent shocks and discontinuities.

Our proposed approach shares similarities with previous parametric MOR techniques in the literature.
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Similar to Iollo and Lombardi [40], and Welper [49], we approximate the sought after solutions as a

superposition of transformed, precomputed snapshots. However, in contrast to these previous approaches, our

proposed approach is projection-based. One of the potential advantages of projection-based methods is that

they retain the underlying structure of the dynamical system and thus provide, in principle, more robust

predictive capabilities. Finally, similar to Abgrall et al. [41], we minimize the system residual in the `1 norm

which has been shown to be beneficial for problems containing shocks and discontinuities.

1.2.2 Outline

The thesis is organized as follows. In Chapter 2, the problem of interest is defined and traditional

projection-based model order reduction is recapitulated. In Chapter 3, the proposed new approach – hereafter

referred to as transported snapshot model order reduction approach (TSMOR) – is introduced. In Chapter 4,

TSMOR is integrated with a hyper-reduction algorithm. In Chapter 5, the performance of the proposed

method is evaluated on several representative 1D and 2D fluid flow problems. Finally, in Chapter 6, the

contributions of the thesis and prospects for future work are summarized.
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Chapter 2

Traditional model order reduction
techniques

2.1 Full order model

We consider large-scale computational models arising from semi-discretization of hyperbolic or convection-

dominated parabolic PDEs such as the Euler or high-Reynolds-number Navier-Stokes equations:

dw(t;µ)

dt
+ f(w(t;µ), t;µ) = 0 (2.1)

with suitable initial data w(0;µ) = w0(µ) and boundary conditions. Here t ∈ [0, tmax] denotes time,

w(t;µ) ∈ RNw denotes a vector of Nw high dimensional state variables, µ ∈ D ⊂ RNd (where D is a

bounded domain) is a vector of Nd parameters, and f : RNw × [0, tmax]×D → RNw are nonlinear functions

approximating the convective and diffusive fluxes. The steady state equation for this system can be written

as:

R (w(µ);µ) := f(w(µ);µ) = 0 (2.2)

where R(w(µ);µ) is the steady state residual. To obtain steady state solutions, Eq. (2.2) can be solved

directly by an iterative method or a time-stepping method can be used to advance the unsteady Eq. (2.1) to

a steady state solution. We refer to Eq. (2.1) as the full order model (FOM).

2.2 Dimensionality reduction

In traditional projection-based MOR, the state vector w(µ) ∈ RNw is approximated in a trial subspace

as follows

w(µ) ≈ wr(µ) = Ua(µ) (2.3)

where U ∈ RNw×Nk is a matrix whose columns contain the basis of this subspace, Nk � Nw is the reduced

dimension, and a(µ) ∈ RNk denotes the generalized coordinates in this basis. Substituting the approximation

(2.3) into the residual equation (2.2) yields R (Ua(µ);µ) = 0, which represents an overdetermined system of
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Nw equations and Nk unknowns. Consequently, the vector of generalized coordinates is chosen to minimize

the residual

min
a
‖R (Ua(µ);µ)‖p (2.4)

where ‖·‖p is the standard `p-norm. We refer to Eq. (2.4) as the reduced-order model (ROM).

In the case of the `2-norm, the nonlinear system of equations can be solved iteratively using, for example,

the Gauss-Newton method, which can be summarized as for i = 1, . . . , r solve

min
∆a(i)

‖J (i)U∆a(i) +R(Ua(i);µ)‖2 (2.5)

where the superscript (i) designates the i-th iteration, ∆a(i) is the increment of the sought-after solution at

the i-th Gauss-Newton iteration, and r is determined by a convergence criterion.

Eq. (2.5) constitutes a k-dimensional Gauss-Newton ROM of FOM. The normal equations associated

with Eq. (2.5) can be written as

(J (i)U)TJ (i)U∆a(i) = −(J (i)U)TR(Ua(i)) (2.6)

This minimization can be shown to be equivalent to a Petrov–Galerkin projection of the residual equation (2.2)

with test subspace Φ = JU . For nonlinear, non-self adjoining problems, this approach is more robust than a

Galerkin projection Φ = U .

2.3 Computation of basis

In data-driven projection-based MOR, the ROBs are usually constructed offline by collecting solution

snapshots of problem (2.2) for different instances of the parameters µ. Specifically, for each sampled parameter

vector µs, s = 1, · · · , Ns, the computed snapshots are gathered in a matrix M , with M(:,s) := w(µs) where

the notation (:, s) denotes the sth column vector of the matrix. For the sake of brevity, only the POD approach

is considered in this section to motivate the construction of global and local ROBs. The results presented

here however, are general and thus, applicable to most other popular ROB generation strategies.

2.3.1 Global basis

In this approach, the trial basis is global in the sense that a single matrix U is used to approximate the

solution w(µ) in the entire parameter space D. Global POD basis are obtained by evaluating the singular
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value decomposition (SVD) of the snapshot matrix M :

M = UΣV T (2.7)

where U ∈ RNw×Ns and V ∈ RNs×Ns are the left and right singular vectors of M , respectively. Σ ∈ RNs×Ns

is a diagonal matrix containing the singular values of M in descending order. POD basis is then constructed

by choosing the first k columns of U which correspond to the k largest singular values. The POD basis is

optimal in the sense that, for an orthonormal basis of size k, it minimizes the least-squares error between the

original and reconstructed snapshot matrix,

min
U∈RNw×k

‖M −UUTM‖22 (2.8)

The global basis approach provides several benefits, for instance, evaluation of global basis is computa-

tionally straightforward and cheap because it involves only a one-time evaluation of a single matrix U which

can be used to approximate a solution at any new parameter. Unfortunately, this approach is prone to low

robustness toward problems with large parameter variations. Furthermore, the singular values show slow

decay for flow problems containing parameter dependent shocks and discontinuities, limiting the efficient

truncation of POD basis.

2.3.2 Local basis

To mitigate the above-mentioned issues concerning the global basis approach, it is preferable to approximate

the solution w(µ) using a set of local basis [31]. In the offline stage of this approach, Ns snapshots in M are

clustered into Nv groups according to the relative distance between the snapshots. The optimal metric for

measuring this distance is problem specific. It may be based on the values of the states, output of interest

or, more relevant to this thesis, the distance between the parameters associated with the snapshots. For

instance, all the snapshots corresponding to the parameters lying in a parameter sub-domain Di ⊂ D, are

grouped together in a matrix Mi. Then local basis Ui for i = 1, 2, · · · , Nv are generated and assigned to each

sub-domain in the solution space. The local basis are constructed either by computing the singular value

decomposition of Mi,

Mi = UiΣiV
T
i (2.9)

and truncating Ui to the first ki columns [31] or by setting the local basis to be equal to the local snapshot

matrix in the respective sub-domain, i.e. Ui = Mi [41].
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Then, in the online stage, the appropriate sub-domain Di for µ is identified and the associated local basis

Ui are used to approximate the solution.

2.4 Drawbacks of traditional MOR techniques

For a ROM to be useful, it must be capable of providing solutions at parameters µ∗ not sampled during

the offline basis construction phase, µ∗ 6= µs. Although parameter robustness is an active area of research,

it is particularly challenging when the sought after solutions contain discontinuities or sharp gradients

whose spatial orientations are strongly parameter dependent. To illustrate, consider the toy problem of

approximating the function w(x) = H(x), x = [−1, 1] using Nk global basis functions ui(x) = H(x + µi)

where H is the Heaviside function and µi = −0.5 + (i − 1)/(Nk − 1) for i = 1, . . . , Nk. Note that for all

Nk, none of the reduced-basis ui contain a discontinuity coincident with the sought after solution – this is

typical in the type of problems considered in this manuscript. It is straightforward to show that the optimal

prediction of w(x) is simply wr = 1/2(uNk/2 + uNk/2+1). This toy problem demonstrates that: (a) optimal

constructions of solutions characterized by parameter dependent shocks and discontinuities are typically local

and sparse in the sense that only two basis were used for reconstruction, and (b) the optimal construction

using traditional POD modes provides a “staircase” approximation of the true solution.

In summary, neither global nor local reduced-basis can be expected to yield efficient approximations in

the predictive regime of solutions characterized by shocks, discontinuities, and sharp gradients whose physical

locations and orientations are parameter dependent. Unfortunately, these conditions are rarely satisfied in

practice.
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Chapter 3

Transported Snapshot Model Order
Reduction (TSMOR)

3.1 Methodology

In this chapter, we introduce and summarize our new MOR approach for parametric and steady nonlinear

fluid flows characterized by moving shocks, discontinuities and sharp gradients. In this proposed new approach,

solutions at an unsampled parameter µ∗ 6= µs are approximated using a local and parameter-dependent trial

subspace. Thus, if w(µkn) for n = 1, · · · , Nk where µkn ∈ µs is a subset of the solution snapshots computed

offline, the solution at the new parameter is approximated by

w(µ∗) ≈ wr(µ∗) = U(µ∗)a(µ∗) (3.1)

where U(µ∗) ∈ RNw×Nk is a matrix whose columns contain the transported solution snapshots w′(µkn ,µ
∗)

of the corresponding snapshots w(µkn).

A transported snapshot is here defined as a solution of a transport equation. More precisely, if w(µkn)

is the vector of state variables on a computational grid with Cartesian coordinates xi ∈ RNx for i = 1, 2, 3,

then in the Lagrangian frame of reference, the transported solution snapshot is given by:

x′i(µkn ,µ
∗) = xi + σ(∆µ), for i = 1, 2, 3, and n = 1, . . . , Nk (3.2)

where the transport σ(∆µ) ∈ RNx , is a function of the parameter variation ∆µ defined as: ∆µ = (µ∗ −

µkn)�∆µd for n = 1, ..., Nk, where � denotes componentwise division. The reference vector ∆µd ∈ RNd is

used to normalize the magnitudes of the individual parameter variations. In this work, ∆µd is taken to be

the size of the parameter sampling interval. Finally, the sought after transported snapshots w′(µkn ,µ
∗) are

evaluated by interpolating w(µkn) from x′i back to the original Eulerian computational grid xi.

In principle, this new proposed transported snapshot approximation given by Eq. (3.1) can be incorporated
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into a traditional, residual-based framework as follows:

min
σ,a
‖R(U(µ∗)a(µ∗);µ∗)‖p (3.3)

where a(µ∗) are the generalized coordinates and σ(∆µ) are the transport vectors. However clearly, such

a naive implementation cannot be expected to be tractable in practice because the number of variables

scales with the size of the original, high-fidelity FOM. Although techniques like hyper-reduction have been

available for some time, these methods only alleviate the cost of the objective function evaluations, and

not the number of the optimization variables. Additional layers of approximation are therefore required to

efficiently implement the new proposed approach in a residual-based MOR framework.

Our first additional approximation is motivated by the observation that, for a large class of problems, the

optimal transports are smooth functions of the parameter variations. In other words, the transports admit a

low-order, multi-variate polynomial expansion in ∆µ as follows:

σ(∆µ) ≈ σ1(µkn)∆µ1 + σ2(µkn)∆µ2 + . . .+ σNd+1(µkn)∆µ2
1 + σNd+2(µkn)∆µ1∆µ2 + . . . (3.4)

where σj(µkn) for j = 1, . . . , Nl are the coefficients of the polynomial expansion. Eq. (3.4) can also be

expressed in matrix form:

σ(∆µ) = Ψ(µkn)d(∆µ) (3.5)

where the columns of the matrix Ψ(µkn) ∈ RNx×Nl contain the coefficients of polynomial expansion, i.e.

Ψ(µkn)(:,j) = σj(µkn). The vector d(∆µ) ∈ RNl contains the monomials constituting the variables of the

polynomial expansion (3.4) given by:

dj(∆µ) =

Nd∏
i=1

(∆µi)
fj,i for fj,i ∈ Z and j = 1, . . . , Nl (3.6)

Our second, and final additional approximation is motivated by the observation that σ(∆µ) – in addition

to being a smooth function of the parameter variations – is also smooth in space. Indeed, for the toy problem

considered in Sec. 2.4, it can be shown that σj = pj1Nx×1 where each pj is a scalar. As a consequence, we

assume that each coefficient σj(µkn) in Eq. (3.4) admits its own, low-order expansions. More specifically, we

assume that each coefficient σj(µkn) in (3.4) can be approximated using a Fourier series:

σj(µkn) =
∑

p,q,r∈Z
cs(j)p,q,re

ipx1eiqx2eirx3 for j = 1, . . . , Nl (3.7)
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where m is the number of harmonics retained in the expansion and cs := c
s(j)
p,q,r are the coefficients of the

Fourier expansion.

These two additional approximations have the following two important consequences. First, since the

optimal transport is assumed to be a polynomial function of the parameter variations, its coefficients can

be precomputed, offline, once and for all. More specifically, given a snapshot matrix M , the coefficient

σj(µkn) in (3.4) can be identified using a standard least-squares fitting procedure (refer to Sec. 3.2 for more

details). Moreover, because each coefficient is approximated by a low order Fourier series expansion, the

offline fitting procedure only requires the identification of the relatively small number of coefficients of the

Fourier expansion. The second and final important consequence of these two additional assumptions is that

now, the online residual minimization problem is only a function of the generalized coordinates:

min
a
‖R(U(µ∗)a(µ∗);µ∗)‖p (3.8)

and thus, standard hyper-reduction techniques can be applied to alleviate the cost of objective function

evaluations.

In summary, our proposed new approach can be decomposed into the standard offline-online strategy:

1. Offline stage: In this stage, the FOM is sampled in the parameter domain and the solutions are stored

in a snapshot matrix M . The optimal transport matrix Ψ(µkn) containing the coefficients σj(µkn) is

precomputed by solving a least-squares fitting problem.

2. Online stage: In this stage, the solution at a new parameter is approximated by solving the minimization

problem (3.8).

3.2 Precomputation stage

The set of snapshots at sampled parameters µs, s = 1, · · · , Ns are stored in a snapshot matrix M . The

methodology for evaluation of the transport matrix Ψ(µs), s = 1, · · · , Ns for each snapshot is explained in

this section.

The matrix Ψ(µs) containing the coefficients σj(µs) is constructed in such a way that a subset of solution

snapshots w(µvn) for n = 1, · · · , Nv, where µvn ∈ µs, can be represented as the transported snapshot of

w(µs). Here µvn are defined as the training parameters for µs and the corresponding snapshots are called

training snapshots. The procedure for selecting Nv training snapshots from Ns is described in Sec. 3.2.1.

The transported snapshot denoted by w′(µs,µvn) is obtained by transformation of Cartesian coordinates as
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explained in Sec. 3.1:

x′i(µs,µvn) = xi + σ(∆µ), for i = 1, 2, 3, and n = 1, . . . , Nv (3.9)

The transport σ(∆µ) is defined as a function of Ψ(µs) and d(∆µsvn) as described in Eqs. (3.5) and (3.6)

(but with µkn replaced by µs; and ∆µ = (µvn − µs)�∆µd for n = 1, . . . , Nv).

Finally, the coefficients of Fourier expansion of σj(µs) are evaluated by minimizing the least-squares

training error between the transported snapshot w′(µs,µvn) and training snapshot w(µvn):

min
cs

Nv∑
n=1

‖w′(µs,µvn)−w(µvn)‖22 (3.10)

where cs := c
s(l)
p,q,r are the Fourier coefficients as described in Eq. (3.7). The optimization problem (3.10) is

solved Ns times for the coefficients cs to eventually construct the transport matrix Ψ(µs) for s = 1, · · · , Ns

snapshots.

3.2.1 Choice of training snapshots, w(µvn)

For a large class of parametric problems, we assume that the error between the transported snapshot

w′(µs,µvn) and training snapshot w(µvn) for a fixed Ψ(µs) tends to increase as the parameter variation

∆µ increases. Hence Nv training snapshots are chosen which correspond to nearest sampled snapshots to

w(µs) in parameter space. Nearest neighboring snapshots are defined as the snapshots w(µvn) for which

∆µ = ‖∆µ‖2 is minimum.

3.3 Online stage

In this stage, local reduced-basis U(µ∗) at an unsampled parameter µ∗ 6= µs is constructed and generalized

coordinates a(µ∗) are calculated.

For a parameter µ∗ in the predictive regime, local reduced-basis U(µ∗) is constructed by collecting the

transported snapshots of w(µkn) for n = 1, · · · , Nk, where µkn ∈ µs is a subset of snapshot solutions, as

shown in Eq. (3.11). The procedure for selecting w(µkn) is described in Sec. 3.3.1.

U(µ∗) = [w′(µk1 ,µ
∗);w′(µk2 ,µ

∗); · · · ;w′(µkNk
,µ∗)] (3.11)

The transported snapshots w′(µkn ,µ
∗) are calculated by transformation of spatial coordinates based on the
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transports in Eq. (3.5).

Finally, the generalized coordinates are obtained by solving the minimization problem (3.8). Initial guesses

for the generalized coordinates a(µ∗)(0) are provided by assuming that the contribution from each transported

snapshot is inversely proportional to their respective parameter variation ∆µ = ||(µ∗ − µkn)�∆µd||2 and

sum of all such individual contributions equals one. Hence a(µ∗)(0) is given by (3.12):

a(µ∗)(0)
n =

1
∆µ∑Nk

n=1
1

∆µ

(3.12)

3.3.1 Choice of basis

In traditional projection-based MOR applied to smooth elliptic problems, ROM performance is expected

to improve by increasing the number of basis Nk. Unfortunately, this is usually not the case when the solutions

of interest are characterized by strong shocks and discontinuities. For example, Abgrall et al. [41] demonstrate

that optimal reconstructions of such solutions are typically sparse in the generalized coordinates and local

in the parameter space. This property was also demonstrated in the toy problem considered in Sec. 2.4.

Therefore, in this work, we use only a small number of local basis (transported snapshots) corresponding to

nearest sampled snapshots selected from the set of Ns snapshots. Nearest neighboring snapshots are again

defined as the snapshots w(µkn) for which the corresponding parameter variation ∆µ is minimum.

3.4 Choice of norms, `p

In traditional projection-based MOR, the generalized coordinates are usually selected to minimize the

`2-norm of the residual. Although this approach has been demonstrated to work adequately for many

applications, in the case when the FOM is comprised of a system of hyperbolic conservation laws, minimizing

the `1-norm has been shown to be preferable [41]. For our proposed approach, `1 norm for the residual

minimization (3.8) is found to perform better than other choices of norms. Unfortunately, the optimal choice

of norm remains an open problem.

The classical approach to solving `1-norm minimization problems involves recasting the problem as a

linear program or, alternatively, solving iteratively using, for example, Iteratively Reweighted Least Squares

(IRLS) [50, 51]. Methodology for minimizing `1-norm is also explained in [41].
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3.5 Summary of TSMOR

The offline and online stages of the proposed TSMOR approach are summarized in Algorithms 1 and 2,

respectively.

Algorithm 1 TSMOR-offline stage

Input: Steady state snapshots, w(µs) for s = 1, . . . , Ns

Output: Ψ(µs) for s = 1, . . . , Ns

1: for s← 1 to Ns do

2: Determine Nv training snapshots w(µvn) for n = 1, . . . , Nv as mentioned in Sec. 3.2.1

3: Determine ∆µ = (µvn − µs)�∆µd for n = 1, . . . , Nv

4: Define d(∆µ) using Eq. (3.6)

5: Express Ψ(µs) as a Fourier series using Eq. (3.7)

6: Define transports σ(∆µ) using Eq. (3.5)

7: Compute transported snapshots w′(µs,µvn) from Eq. (3.9) in Lagrangian frame of reference

8: Solve training error minimization problem (3.10) for Fourier coefficients cs

9: Evaluate Ψ(µs) using Eq. (3.7)

10: end for

Algorithm 2 TSMOR-online stage

Input: w(µs) and Ψ(µs) for s = 1, . . . , Ns; Unsampled parameter, µ∗

Output: Solution prediction, wr(µ
∗)

1: Determine Nk local snapshots w(µkn) for k = 1, . . . , Nk as mentioned in Sec. 3.3.1

2: Determine ∆µ = (µ∗ − µkn)�∆µd for k = 1, . . . , Nk

3: Define d(∆µ) using Eqs. (3.6)

4: Compute transports σ(∆µ) using Eq. (3.5)

5: Compute transported snapshots w′(µkn ,µ
∗) from Eq. (3.2) in Lagrangian frame of reference

6: Construct local basis U(µ∗) using Eq. (3.11)

7: Solve residual minimization problem (3.8) for a(µ∗)

8: Compute wr(µ
∗) from Eq. (3.1)
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Chapter 4

Hyper-reduction

In the online stage of TSMOR, evaluation of residuals R(U(µ∗)a(µ∗)) in Eq. (3.8) scales with the size of

the FOM, Nw. Hyper-reduction can significantly reduce this computational complexity. A review of the state

of art hyper-reduction techniques, such as DEIM [52], GNAT [53] and ECSW [54] is provided in this chapter.

Furthermore, the methodology to equip the proposed TSMOR approach with hyper-reduction strategies is

outlined.

4.1 Review of hyper-reduction techniques

In hyper-reduction, the residual is evaluated only at a small subset of nw interpolation entries ε ⊂

{1, · · · , Nw}. The interpolation matrix Z ∈ RNw×nw is thus defined as

Z = [eε1 , eε2 , · · · , eεnw
] (4.1)

where eε is the εth canonical unit vector. R(Ua(i)) is then approximated in a low dimensional subspace

UR ∈ RNw×NR

R(Ua(i)) ≈ UR(ZTUR)+ZTR(Ua(i)) (4.2)

Finally, equation (4.2) is projected in a low-dimensional subspace using state basis U . Thus the resulting

minimization problem is independent of the size of FOM, Nw.

Another class of hyper-reduction techniques, for instance ECSW, involves minimization of the weighted

residuals computed only at ε points. Thus, all the computations are performed on these collocation points

and interpolation of the residuals using basis functions is avoided.
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4.2 Hyper-reduction applied to TSMOR

In this work, we adopt a collocation-based hyper-reduction approach similar to ECSW. More specifically,

the residual minimization problem (3.8) in this hyper-reduction framework is written as

min
a
‖ZTR(U(µ∗)a(µ∗);µ∗)‖p (4.3)

Generally, in most CFD problems, the Jacobian matrix is sparse. Hence the computation of the residuals

is dependent only on a few subset of n̂w entries ε̂ ⊂ {1, · · · , Nw}. The corresponding interpolation matrix is

denoted as P . Thus Ua(i) can be replaced by PP TUa(i). But since our proposed approach requires online

computation of parameter dependent basis U(µ∗) for every new prediction, this computation still scales with

the size Nw. To tackle this issue, the local basis, which is essentially a matrix of transported snapshots, are

also calculated only at ε̂ indices. The transported snapshot at collocated points is computed in a Lagrangian

frame of reference where the new particle locations at collocated points are given by:

x̂i(µkn ,µ
∗) = x̂i + σ̂(∆µ), for i = 1, 2, 3, and n = 1, . . . , Nk (4.4)

where σ̂(∆µ) = P Tσ(∆µ) ∈ Rn̂w are the collocated transports and x̂i = P Txi ∈ Rn̂w and x̂i(µkn ,µ
∗) ∈

Rn̂w are the Cartesian coordinates of the original and transported parcels at the collocation points, respectively.

To summarize, equation (4.3) involves computation of ZTR(PP TU(µ∗)a(µ∗)) which necessitates the

computation of R(U(µ∗)a(µ∗)) and U(µ∗) only at ε and ε̂ indices respectively, resulting in a reduction of

computational complexity from Nw to n̂w.

4.3 Identification of collocation points

Various hyper-reduction techniques in literature employ different strategies for identifying the collocation

points or interpolation entries ε. Generally, these approaches are specific to their respective hyper-reduction

procedure. For instance, these algorithms are based on minimization of the error in the interpolated

snapshots [52], greedy approach to minimize error associated with gappy-POD projection of residual [55]

and solving a sparse non-negative least squares (NNLS) problem [54]. In this work, we employ the standard

DEIM algorithm 3 to identify the collocation points.

The standard DEIM algorithm uses basis functionsUR of the nonlinear residual to identify the interpolation

entries ε. In our implementation of the algorithm, UR are the POD basis of the snapshots of residuals. The

snapshots of residuals are collected at each iteration or time-step while solving the FOM Eq. 2.2 during the
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precomputation stage. For boundary value problems, in addition to DEIM indices, it is important to include

inlet/outlet grid points into ε since these boundary conditions contain vital information about dynamics of

the problem. Details about inclusion of these boundary points are explained in Chapter 5 where this topic is

covered for each flow problem. Finally, corresponding interpolation entries ε̂ for computing the residuals can

be related to ε depending on the type of finite-difference/volume/element scheme.

Algorithm 3 DEIM

Input: POD basis of snapshots of Residuals, UR

Output: Interpolation entries ~ε = [ε1, · · · , εnw
]

1: [ , ε1] = max{|UR(:,l)
|}

2: V = [UR(:,l)
], Z = [eε1 ], ~ε = [ε1]

3: for l← 2 to nw do

4: Solve (ZTV )c = P TUR(:,l)

5: r = UR(:,l)
− V c

6: [ , εl] = max{|r|}

7: V ← [V ,UR(:,l)
], Z ← [Z, eεl ], ~ε← [~ε, εl]

8: end for
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Chapter 5

Numerical experiments

In this chapter, TSMOR is applied to the steady Euler equations modeling supersonic flow inside a quasi

1-D nozzle and 2-D flow over a forward facing step and a nonlinear advection-diffusion equation modeling

a jet diffusion flame in a combustor. These problems are chosen because the steady flow solutions contain

shocks or flame fronts whose spatial locations and orientations are parameter dependent. Similar numerical

experiments have been studied by Lucia et al. [45], Mojgani and Balajewicz [44], Zahr et al. [24]; Welper

[56]; and Galbally et al. [57] respectively.

In this chapter, the results generated by the proposed TSMOR approach are compared with traditional

projection-based MOR techniques such as least-squares Petrov-Galerkin (LSPG) methods as described in

Sec. 2.2. Furthermore, comparison is also made with recent parametric MOR techniques such as L1-dictionary

approach [41] where the solution is given by a linear combination of local snapshots or dictionary elements

and L1-norm of the residual is minimized. All results considered in this chapter are predictive, that is, the

predicted solutions all lie in parameter regions not sampled during the offline training phase. The performance

of these MOR techniques are analyzed by computing the relative error between the predicted and full order

model solutions where the error is defined as:

Error(%) =
||w(µ∗)−wr(µ∗)||2

||w(µ∗)||2
× 100 (5.1)

where w(µ∗) and wr(µ
∗) are the FOM and predicted solutions using the above-mentioned MOR methods,

respectively. All the computations were done in Matlab.
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5.1 Quasi 1-D flow in a converging-diverging nozzle

5.1.1 Problem description

The 1-D Euler equations in a quasi 1-D converging-diverging nozzle are considered:

1

A

∂AF

∂x
= Q x ∈ [0, L] (5.2)

where A = A(x) is the area profile and

w(µ) =


ρ

ρu

ρE

 , F =


ρu

ρu2 + p

(ρE + p)u

 , Q =


0

p
A
∂A
∂x

0


with homogeneous Dirichlet boundary conditions ρ(0;µ) = 1, p(0;µ) = 1 and p(L;µ) = 0.7.
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Figure 5.1: Steady density solution ρ for various throat area parameters µ

The boundary conditions are chosen such that a shock is formed in the diverging section of the nozzle.

Length of the nozzle L is 10 units. Area profile of the converging-diverging nozzle is parabolic with equal

inlet and outlet area, A(0) = A(L) = 3, and the throat is located at L/2. For this problem, the throat area

µ = A(L/2) is the parameter of interest. Steady state solutions are obtained by discretizing the corresponding

governing equations in space using a central second-order finite difference scheme on a uniform grid with grid

spacing ∆x = 0.01. A first-order accurate artificial viscosity scheme using ν = ∆x/2 is used to stabilize the

solution. The resulting nonlinear system of algebraic equations is solved in Matlab using the built-in fsolve

algorithm. Fig. 5.1 shows the steady density solutions for different values of throat area µ.
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5.1.2 Implementation of TSMOR

A snapshot matrix M containing 4 snapshots at parameters µs = [0.5, 0.875, 1.25, 1.625] is generated.

Transport matrices for each snapshot Ψ(µs) are computed offline by solving the training error minimiza-

tion (3.10). They are expressed as a Fourier sine series with three modes (m = 3):

Ψ(µs)(:,j) = c
s(j)
0 +

p=m−1∑
p=1

cs(j)p sin
(pπx
L

)
(5.3)

where cs(j) are the coefficients of Fourier expansion. For this simple toy problem, d(∆µ) is given by:

d(∆µ) = ∆µ (5.4)

The interpolation from the transported grid to the original Eulerian grid for calculating the transported

snapshots was performed using interp1 algorithm. The training error minimization (3.10) is solved using

fmincon algorithm where the Eq. (3.10) is subjected to the constraint of no-grid entanglement: Vj > δv

for j = 1, . . . , NV where Vj are the NV element volumes and δv > 0 is the minimal positive volume. For a

structured Cartesian grid, this constraint simplifies to x′i(µkn , µ
∗)j+1 − x′i(µkn , µ∗)j > δv for i = 1, 2, 3 and

j = 1, . . . , Nw − 1.

Fig. 5.2 illustrates the predictive capabilities of several MOR approaches for the parameter µ∗ = 1.0 and

µ∗ = 1.5. The FOM is given by the gray lines while the new proposed TSMOR approach using 2 local basis

corresponding to two nearby snapshots is given by the red lines. The blue lines correspond to the solution

obtained by LSPG method using 4 POD modes of the snapshot matrix M . The green lines correspond to

L1-dictionary approach using 2 local snapshots or dictionary elements. The proposed TSMOR approach

reproduces the solution remarkably well. In contrast, LSPG does not predict the correct shock location while

L1-dictionary solutions are dominated by staircase shock type errors.

Next, the TSMOR approach is equipped with the hyper-reduction strategy mentioned in Sec. 4.2. First,

30 collocation points are obtained by employing the DEIM algorithm. Second, these points are augmented

with inlet and outlet points, i = 1, and i = Nw, respectively. Finally, an additional n̂w ≈ nw × 2 = 64

points ε̂ are included to enable the evaluation of the residuals via the central finite difference scheme.

Figs. 5.3 and 5.4 illustrate the predictive capabilities of hyper-reduced TSMOR (TSMOR+HR) for the

same parameters µ∗ = 1.0 and µ∗ = 1.5, respectively. The hyper-reduced TSMOR solutions are compared

with non-hyper-reduced LSPG and L1-dictionary approaches. As before, excellent agreement with the FOM

solution is demonstrated by hyper-reduced TSMOR.
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(a) Predicted solutions at µ∗ = 1.0
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Figure 5.2: Comparison of predicted solutions using TSMOR, LSPG and L1-dictionary approach with FOM
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Figure 5.3: Comparison of predicted solution at µ∗ = 1.0 using hyper-reduced TSMOR, LSPG and L1-
dictionary approach with FOM
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Figure 5.4: Comparison of predicted solution at µ∗ = 1.5 using hyper-reduced TSMOR, LSPG and L1-
dictionary approach with FOM
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In Fig. 5.5, relative errors between the FOM solutions and predicted solutions using hyper-reduced

TSMOR, LSPG and L1-dictionary approaches are illustrated across the entire parameter range of interest.

For this case, predictions are made at two uniformly distributed parameters in every interval of µs. It can

be observed that the solutions predicted using TSMOR have an average error of only 0.27% as compared

to 7.22% in LSPG and 5.88% in L1-dictionary approach. Thus, for all parameters considered, the TSMOR

approach significantly outperforms LSPG and L1-dictionary methods. Finally, wall-times and speed-ups are

illustrated in Fig. 5.6a and Fig. 5.6b, respectively. TSMOR+HR delivers a speed-up of approximately four

orders of magnitude across the entire parameter range while maintaining a high level of accuracy.
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Figure 5.5: Performance comparison between hyper-reduced TSMOR, LSPG and L1-dictionary approach for
solution predictions at various parameters
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Figure 5.6: Comparison of wall-times and speed-ups associated with FOM and online stage of hyper-reduced
TSMOR for solution predictions at various parameters
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5.2 Supersonic flow over a forward facing step

5.2.1 Problem description

This problem consists of a supersonic flow over a 2-D forward facing step in a wind tunnel setup with walls

on top and bottom as described by [58] and also shown in Fig. 5.7. Length (L) and height (H) of the wind

tunnel are 3 units and 1 unit respectively. The step has a height of 0.2 units and is located at the bottom

wall starting at 0.6 units from the left-end of the tunnel. 2-D Euler equations governing the supersonic flow

over a forward facing step are:

∂F

∂x
+
∂G

∂y
= 0, x ∈ [0, L], y ∈ [0, H], ∀t > 0 (5.5)

where

w(µ) =



ρ

ρu

ρv

ρE


;F =



ρu

ρu2 + p

ρuv

(ρE + p)u


;G =



ρv

ρuv

ρv2 + p

(ρE + p)v


with homogeneous Dirichlet boundary conditions ρ(0, y;µ) = 1.4, p(0, y;µ) = 1, u(0, y;µ) = µ and

v(0, y;µ) = 0; where µ is the inlet supersonic Mach number which is taken to the varying parame-

ter of interest. No penetration solid wall boundary conditions are imposed on the top, bottom and step

wall surfaces. The equations are discretized in space using a second-order, central finite difference scheme

on a uniform Cartesian grid which is divided into 0.48 million grid points with ∆x = ∆y = 0.025. The

solutions are stabilized using a first-order artificial viscosity scheme where the artificial viscosity is set to be

ν = ∆x/0.8. The resulting equations are solved by marching to steady state using a second-order Strong

Stability Preserving (SSP) Runge–Kutta scheme [59]. Figs. 5.7a and 5.7b show the steady state density

contour for inlet Mach number µ = 3.3 and µ = 3.9, respectively, while the corresponding 1-D plots at y = 0.7

are shown in Fig. 5.7c.
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Figure 5.7: Steady state density plots of supersonic flow over a forward facing step
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5.2.2 Implementation of TSMOR

A snapshot matrix M containing 5 snapshots at parameters µs = [3.3, 3.45, 3.6, 3.75, 3.9] is generated.

Transport matrices for each snapshot Ψ(µs) are computed offline by solving the training error minimiza-

tion (3.10). They are expressed as a Fourier sine series with 9 modes each (m = 9):

Ψx(µs)(:,j) = cs(j)x0
+

p=m−1∑
p=1

cs(j)xp
sin
(pπx
L

)
(5.6)

Ψy(µs)(:,j) = cs(j)y0 +

p=m−1∑
p=1

cs(j)yp sin
(pπy
H

)
(5.7)

where cs(l) are the coefficients of Fourier expansion. d(∆µ) is given by:

d(∆µ) =

∆µ

∆µ2

 (5.8)

The interpolation from the transported grid to the original Eulerian grid for calculating the transported

snapshots was performed using interp2 algorithm in Matlab. The training error minimization (3.10) is solved

using the fmincon algorithm subjected to the no-grid entanglement constraint as described in Sec. 5.1.2.

Fig. 5.8 illustrates the predictive capabilities of several MOR approaches for the parameter µ∗ = 3.4. The

FOM solution is shown in Fig. 5.8a while the new proposed TSMOR solution using 2 local basis corresponding

to two nearby snapshots is shown in Fig. 5.8b. Fig. 5.8c corresponds to the solution obtained by LSPG

using 4 POD modes of the snapshot matrix M . Fig. 5.8d corresponds to L1-dictionary approach using 2

local basis or dictionary elements. The proposed TSMOR approach significantly out performs the LSPG and

L1-dictionary MOR approaches.

The predicted density, momentum and energy distributions at various y-locations for the FOM, TSMOR,

LSPG and L1-dictionary approaches are shown in Figs. 5.9- 5.12. As before, the TSMOR approach significantly

outperforms LSPG and L1-dictionary methods.
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Figure 5.8: Comparison of steady state density solutions at µ∗ = 3.4 predicted by TSMOR, LSPG and
L1-dictionary approaches with FOM solution
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Figure 5.9: 1D plots of solutions predicted by FOM, TSMOR, LSPG and L1-dictionary approaches at
y = 0.205
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Figure 5.10: 1D plots of solutions predicted by FOM, TSMOR, LSPG and L1-dictionary approaches at
y = 0.4
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Figure 5.11: 1D plots of solutions predicted by FOM, TSMOR, LSPG and L1-dictionary approaches at
y = 0.7
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Figure 5.12: 1D plots of solutions predicted by FOM, TSMOR, LSPG and L1-dictionary approaches at
y = 0.83
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Finally, the relative solution errors between the FOM solutions and predicted solutions using TSMOR,

LSPG and L1-dictionary approaches across the entire parameter range of interest is given in Fig. 5.13. For

this case, predictions are made at two uniformly distributed parameters in every interval of µs. It can be

observed that the solutions predicted using TSMOR have an average error of only 0.6% as compared to 5.9%

in LSPG and 5.0% in L1-dictionary approach. Thus, for all parameters considered, the TSMOR approach

outperforms LSPG and L1-dictionary.
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Figure 5.13: Performance comparison between TSMOR, LSPG and L1-dictionary approaches for solution
predictions at various parameters
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5.3 Jet diffusion flame in a combustor

5.3.1 Problem description

This problem consists of jets of fuel and oxidizer injected into a combustion chamber as shown in Fig 5.14.

Length (L) and height (H) of the chamber are 18 mm and 9 mm respectively. The width of fuel and oxidizer

inlets are given denoted by Hf and Ho respectively. Inside the chamber, the fuel and oxidizer diffuse to form a

diffusion flame where the combustion reaction is governed by an advection-diffusion type governing equation:

∇ · (Ww(µ))−∇ · (ν∇w(µ)) + f(w(µ)) = 0 x ∈ [0, L], y ∈ [0, H] (5.9)

where the state variable w(µ) represents the concentration of fuel in the chamber, W = Wxî+Wy ĵ is the

velocity field and ν is the diffusion coefficient. The non-linear reaction term f(w(µ)) is of Arrhenius type

given by:

f(w(µ)) = Aw(µ)(c−w(µ))e−E/(d−w(µ)) (5.10)

where c, d, A and E are constants and (c−w(µ)) represents the oxidizer concentration. Dirichlet boundary

condition is prescribed at the inlet:

w(0, y;µ) = 0 y ∈ [0, Ho)

w(0, y;µ) = c y ∈ [Ho, Ho +Hf ]

w(0, y;µ) = 0 y ∈ (Ho +Hf , H]

whereas homogeneous Neumann boundary conditions are prescribed on other boundaries.
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Figure 5.14: Schematic of the combustion chamber
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In this problem, we consider parameter variations in three dimensions where µ = [Wy, ln(A), r] consists

of the velocity field in y-direction Wy, Arrhenius parameter ln(A) and ratio of fuel to oxidizer inlet widths

r = Hf/Ho. Wy, ln(A) and r influence the direction, length and width of the flame, respectively. The values

of the remaining constants are: Wx = 0.17m/s, ν = 5× 10−6m2/s, c = 0.2, d = 0.24 and E = 0.1091. The

equations are discretized in space using a second-order, central finite difference scheme on a uniform Cartesian

grid which is divided into 1 million grid points with ∆x = ∆y = 10−5mm. A fine discretization is chosen to

demonstrate the speedup associated with the hyper-reduction approach. The resulting equations are solved

using Newton’s method until convergence of 10 orders of magnitude. Fig. 5.15 shows the fuel concentration

contours computed at eight different corners of the 3-D parameter space. Clear and distinct flame fronts

having different directions, lengths and widths can be observed in these plots.
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(h) Contour plot at µ = [0.04, 7.6, 1.364]

Figure 5.15: Fuel concentration w(µ) contours computed at eight different corners of the 3-D parameter
space D
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5.3.2 Implementation of TSMOR

A snapshot matrix M containing 48 snapshots is generated on a 4× 4× 3 grid in parameter space D at

parameters Wy × ln(A)× r ≡ [−0.02, 0, 0.02, 0.04]× [7.0, 7.2, 7.4, 7.6]× [0.467, 0.846, 1.364].

Transport matrices for each snapshot Ψ(µs) are computed offline by solving the training error mini-

mization (3.10). Since parameter Wy changes the angle of the flame, a strong coupling between x and y

coordinates is required. As a result, the transport matrices are expressed as a coupled Fourier sine series with

11 modes each:

Ψx(µs)(:,j) = cs(j)x0
sin
(πx

2L

)
+

p=3∑
p=1

[
cs(j)xp

sin
(pπx
L

)
+ cs(j)xp+3

sin
(pπy
H

)]
+

p,q=2∑
p,q=1

cs(j)xt
sin
(pπx
L

)
sin
(qπy
H

)

Ψy(µs)(:,j) = cs(j)y0 sin
(πx

2L

)
+

p=3∑
p=1

[
cs(j)yp sin

(pπx
L

)
+ cs(j)yp+3

sin
(pπy
H

)]
+

p,q=2∑
p,q=1

cs(j)yt sin
(pπx
L

)
sin
(qπy
H

)
(5.11)

where t = 7, . . . , 10. Transport of the boundary nodes can be controlled by fixing selected Fourier coefficients.

For instance, from Fig. 5.15 it can be seen that the x-coordinates at the inlet are stationary, hence they

need not be transformed while computing the transported snapshots. This boundary condition is enforced on

the transport matrix Ψx(x = 0,y;µs)(:,j) = 0 by fixing c
s(j)
xp = 0 for p = 4, 5, 6. For this multi-dimensional

parameter problem, d(∆µ) is given by:

d(∆µ) =



∆µ1

∆µ2

∆µ3

∆µ1∆µ2

∆µ2∆µ3

∆µ3∆µ1

∆µ1∆µ2∆µ3



(5.12)

Transformation of structured Cartesian x and y coordinates based on the transports (5.11) leads to a

non-tensor grid. Hence, interpolation from the non-tensor transported grid to the Eulerian grid must be

performed using the scatteredInterpolant algorithm in Matlab. Unfortunately, this interpolation scheme

is computational prohibitive for large grids. Therefore, during the precomputation stage, the snapshots are

uniformly downsampled by a factor of 25 in x and y coordinates. This yields a coarse computational grid

with approximately 2700 grid points.

Next, the TSMOR approach is equipped with the hyper-reduction strategy mentioned in Sec. 4.2. First,
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70 collocation points are obtained by employing the DEIM algorithm. Second, these points are augmented

with 30 uniformly distributed inlet points. Finally, an additional n̂w ≈ nw × 4 = 400 points ε̂ are included to

enable the evaluation of the residuals via the central finite difference scheme.

µ∗ µ∗1 ≡Wy µ∗2 ≡ ln(A) µ∗3 ≡ r

Case 1 -0.01 7.1 0.643

Case 2 0.005 7.3 1.083

Case 3 0.015 7.35 0.643

Case 4 0.025 7.5 1.083

Table 5.1: Table of four predictive test cases

To demonstrate the performance of the proposed TSMOR approach, solutions are predicted at four

different predictive regimes in the parameter space D and compared with FOM and several other MOR

techniques. Parameters corresponding to these test cases are tabulated in Table. 5.1. Figs. 5.16- 5.19 illustrate

the predictive capabilities of several MOR approaches for these test cases. Contour plots at contour levels

w(µ∗) = 0.018 and w(µ∗) = 0.15 are displayed in these figures. The FOM is given by the gray lines while

the new proposed hyper-reduced TSMOR approach using 8 local basis is given by the red lines. The blue

lines correspond to the solution obtained by LSPG using 48 POD modes of the snapshot matrix M . The

green lines correspond to L1-dictionary approach using 8 local basis or dictionary elements. The proposed

TSMOR approach predicts a solution which accurately matches the FOM solutions in all the four cases. In

contrast, both LSPG and L1-dictionary methods fail to capture the flame-front.

The ROM errors for the various MOR approaches considered are summarized in Table 5.2. Solutions

predicted using TSMOR have an average error of only 2% as compared to 28% in LSPG and 17% in the

L1-dictionary approach. The table also provides the error in the POD-projected solution which is obtained by

projecting the FOM onto 48 POD basis of the snapshot matrix M . The average error for the POD-projected

solution is 8.7%. Thus, TSMOR significantly outperforms LSPG and L1-dictionary approaches and it is 3-4

times better than POD-projected solutions.

Finally, wall-times and speed-ups for the FOM and online stage of hyper-reduced TSMOR are given in

Table. 5.3. TSMOR+HR delivers a speed-up of approximately between 150-300.
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Figure 5.16: Case 1: Comparison of predicted solution at µ∗ = [−0.01, 7.1, 0.644] using hyper-reduced TSMOR,
LSPG and L1-dictionary approach with FOM

Model
TSMOR+HR

(8 local basis)

POD-Projection

(48 global basis)

LSPG

(48 global basis)

L1-dictionary

(8 local basis)

Case 1 1.07 9.12 27.34 15.49

Case 2 2.47 8.43 23.95 18.54

Case 3 1.24 8.72 32.74 18.25

Case 4 2.92 8.32 32.07 17.83

Table 5.2: Comparison of relative error (%) in the predicted solution at µ∗ for four different cases
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(a) Contour plot for w(µ∗) = 0.018
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Figure 5.17: Case 2: Comparison of predicted solution at µ∗ = [0.005, 7.3, 1.083] using hyper-reduced TSMOR,
LSPG and L1-dictionary approach with FOM

Model FOM TSMOR+HR Speed-up

Case 1 150 s 0.43 s 348

Case 2 150 s 0.67 s 223

Case 3 150 s 0.62 s 242

Case 4 150 s 0.94 s 160

Table 5.3: Comparison of wall-times and speed-ups associated with the FOM and online stage of hyper-reduced
TSMOR for the prediction at µ∗ for four different cases

40



0 0.005 0.01 0.015

0

0.002

0.004

0.006

0.008

x

y

FOM
TSMOR+HR
LSPG

L1-dictionary
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Figure 5.18: Case 3: Comparison of predicted solution at µ∗ = [0.015, 7.35, 0.644] using hyper-reduced
TSMOR, LSPG and L1-dictionary approach with FOM
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Figure 5.19: Case 4: Comparison of predicted solution at µ∗ = [0.025, 7.5, 1.083] using hyper-reduced TSMOR,
LSPG and L1-dictionary approach with FOM
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Chapter 6

Conclusions and future work

In this thesis, a transported snapshot model order reduction (TSMOR) method for predicting new

parametrical steady state solutions containing moving shocks and discontinuities is presented. In this method,

the solution is approximated by a linear combination of spatially transported snapshots. The transports

are assumed to be smooth in parameter as well as physical space, and hence approximated as a low-order

polynomial expansion in both these variables. The coefficients of the polynomial expansion are obtained by

training the data in the precomputation stage. The generalized coordinates are derived by solving a residual

minimization problem in the online stage. TSMOR is also integrated with hyper-reduction methods to reduce

the computational complexity. Numerical experiments consist of a 1-D converging-diverging nozzle problem

with throat area as the parameter, supersonic flow over a forward facing step with inlet Mach number as

the parameter and multi-dimensional parametric combustion problem with three parameters influencing the

length, direction and width of the diffusion flame. For all parameters considered, TSMOR is demonstrated to

significantly outperform traditional approaches such as those based on linear compression schemes e.g. LSPG

and more recent local basis approaches such as L1-dictionary. Furthermore, speed-up of two and four orders

of magnitude for the combustion and nozzle problems are achieved, respectively.

The proposed approach is open to multiple extensions for future work. Firstly, TSMOR performance could

be improved by incorporating more sophisticated hyper-reduction strategies such as GNAT, DEIM, or ECSW.

Secondly, an adaptive greedy sampling [16] strategy could be employed to minimizes the prediction error

based on error-estimates. Similar to most current parametric MOR approach, our proposed approach suffers

from the curse of dimensionality for high-dimensional parameter variations. More sophisticated sampling

strategies and alternate low-order expansions will therefore have to be explored. Finally, to validate the

proposed approach further, more realistic three-dimensional and time-dependent high-fidelity models should

be considered.
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