
c© 2018 Surya Bakshi

PRIVACY PRESERVING OUTSOURCING OF STATE CHANNEL
ARBITRATION IN MICRORAIDEN

BY

SURYA BAKSHI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Assistant Professor Andrew Miller

ABSTRACT

Decentralized blockchain-based cryptocurrencies like Ethereum and Bitcoin

offer a new way to hold and transact money. However, storage requirements

for every node and difficulty in transaction confirmation make them difficult

to match traditional payment processors. A proposed solution to scalability

is the use of payment channels that allow mutually distrustful parties to

create and authorize payments between one another off-line. Not only does

this allow payments to be processed quickly, but it also reduces transaction

volume in the underlying blockchain.

An unsolved problem with off-chain payment channels is that participants

in the channel must be on-line and alert to channel events all the time. If

any participant in the channel goes off-line for any reason (power outage,

process crashes, cost too high) that party stands to lose money if other

parties attempt to reverse payments. In an ideal world, a solution would

involve a third party that can process payments on behalf of each party, but

it requires trust establishment.

In this work, we present a protocol that solves the monitoring problem

called Pisa. Pisa allows channel participants to appoint distrusted third par-

ties to watch their channel and handle finalization on their behalf without

revealing any linkable state information. We also propose a fair exchange

protocol that ensures that payment for appointment of a third party guar-

antees a penalty if the third party cheats. Further, we implement Pisa on

top of an existing Ethereum payment channel framework, µ-Raiden, and we

demonstrate its additional overhead to channel operation.

ii

To Satoshi, for always being Craig Wright.

iii

ACKNOWLEDGMENTS

I’d like to acknowledge my advisor, Andrew Miller TBUH, for helping me

explore the field of cryptocurrencies and discover the kind of research that I

really enjoy doing. I would also like to acknowledge a close friend, Philip Da-

ian DBUH, for initially sparking an interest in cryptocurrencies, introducing

me to my current advisor and for playing an integral part in my academic

interest and growth. Of course, none of this would be possible without the

1109 group, including but not limited to: Philip Daian, Bharagava Manja,

Will Schellhorn, Kai Demler, Matt Skrzypczyk. Without their continuous

support and fostering of a fast-paced learning environment throughout my

education, I might never have even considered pursuing graduate study.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 4
2.1 The Blockchain . 4
2.2 Payment Channels . 7

CHAPTER 3 PROTOCOL . 12
3.1 Overview . 13
3.2 Goals . 14
3.3 Assumptions . 15
3.4 Payment Channel Modifications 17
3.5 Monitor Contract . 17

CHAPTER 4 IMPLEMENTATION 24
4.1 Background on µ-Raiden . 24
4.2 Modifications . 29
4.3 Modifications to µ-Raiden Off-Chain 31
4.4 Customer and Monitor Setup 31
4.5 Cost of Pisa . 32

CHAPTER 5 CONCLUSION AND DISCUSSION 37

APPENDIX A MONITOR’S SMART CONTRACT 39

REFERENCES . 46

v

CHAPTER 1

INTRODUCTION

Decentralized cryptocurrencies like Bitcoin and Ethereum have risen to promi-

nence in recent years due to the promise of their underlying technology: the

blockchain. At a high level, the blockchain is a consensus protocol where

nodes in the network compete to finalize and order transactions in a con-

sistent and tamper-resistant public ledger [1]. The protocol rewards users

for taking part in the computationally intensive leader election with newly

minted coins and transaction fees. All transactions that are finalized by the

leader are replicated and verified by every node in the network.

Although this form of network-wide replication provides stronger security

guarantees for finalized transactions, it is a significant bottleneck for transac-

tion throughput. With rising transaction volumes, the requirements to store

and verify computation for every transaction may shrink the number of nodes

actually capable of performing the task. To prevent requirements exceeding

the available resources in the network, this trade-off has resulted in cryp-

tocurrencies with low throughput compared to modern payment processors.

For example, Visa, at peak capacity, can handle up to 47,000 transaction per

second [2] (real usage hovers around 4,000 tps, even at peak usage). When

compared to Bitcoin’s 7 transactions per second [3, 4] it is clear that decen-

tralized blockchains are still very far away from handling modern transaction

requirements. Many solutions have been proposed which radically redesign

the blockchain consensus mechanisms [5, 6, 7].

This trade-off has also been a point of contention in the cryptocurrency

community [3, 8]. Some proposed solutions from one side want to increase

the block size allowing more transactions to be finalized per block, but they

sacrifice the requirements of nodes to store and verify larger blocks. Bitcoin

has stagnated, in this respect, with few layer 1 changes1 aimed at increasing

transaction throughput. Ethereum, however, has a higher network through-

1Layer 1 protocols deal directly with the functioning of the blockchain.

1

put, but at the cost of the inability of some peers to verify transactions in

real-time. For example, fast sync modes were introduced for those nodes

unable to process all transactions in real-time. This has led many to turn to

layer 2 solutions.2

This thesis focuses on the scaling approach of off-chain payment channels in

which mutually distrusting parties can authorize payments among themselves

by locally executing the state transitions of a payment smart contract. In a

payment channel, the blockchain is no longer used to validate and authorize

payments, but, instead, it is used only to open and close payment channels

[9, 10]. They are very promising scalability solutions as they can easily

be implemented on top of existing blockchains like Ethereum and Bitcoin,

and there are actually companies putting considerable effort behind building

them [11, 9, 12]. One such company, Raiden, is trying to launch an Ethereum

payment channel network and recently launched µ-Raiden [13], a lite version

of Raiden that implements one-way payment channels for paywalled content.

The drawback of payment channels, though, is that channel participants are

required to always be on-line and alert to counter-parties trying to finalize

their channels on an expired state. When off-line, finalization of an older

state is tantamount to an irreversible theft of money.

A proposed solution to this problem is for participants to appoint a third

party to intervene on their behalf when a channel is being finalized. As of

today, this idea has been discussed in its application to Raiden and Bitcoin’s

Lightning Network [9] (LN), however, only LN has created proposals for a

monitoring protocol. The proposal in LN requires the third party to store the

hash of every previous state so that the channel can settle on the most recent

state and expired states can be revoked if published. This approach has a few

drawbacks: the design of LN requires the monitor’s storage per channel to

scale linearly with the number of payments, the monitor is only compensated

if the final state is disputed, and inactivity by the monitor is not penalized.

Ethereum’s main payment channel proposal, Raiden, currently does not have

any solution to the monitoring problem.

This work presents a new protocol for third-party monitoring of payment

channels in Ethereum called Pisa. The protocol allows channel participants

to appoint one or more monitors every time a new state is authorized. Pisa

2Layer 2 solutions do not modify the blockchain architecture but only interact with it.

2

also ensures that monitors do not stay on-line and use storage just to watch

a channel whose final state is never disputed by paying them in a one-way

payment channel every time a new state is outsourced. Furthermore, only

the hash of the most recent authorized state is provided to the monitor to

preserve the privacy of the channel and ensure a constant storage requirement

per channel. Finally, monitors and their customers exchange payments for

receipts that can be used to penalize the monitor for not correctly responding

to channel finalization.

The rest of the thesis is organized as follows:

• Chapter 2 introduces the key concepts critical in understanding the blockchain’s

consensus mechanism and the cost of on-chain transactions. It also introduces

payment channels at a more detailed level, setting up the rest of the thesis’

discussion of Pisa.

• Chapter 3 describes the monitoring protocol at a high level in the context of

generalized payments channels. In this chapter the specifics of the monitor’s

contract are described along with the protocol between the monitor and cus-

tomer that facilitates fair exchange and the penalties for incorrect behavior.

• Chapter 4 describes an implementation of Pisa in µ-Raiden, a uni-directional

payment channel framework currently deployed in Ethereum. The additional

costs involved in running Pisa are presented and compared with µ-Raiden.

3

CHAPTER 2

BACKGROUND

This chapter explains the necessary background information needed to un-

derstand the remainder of this work. Section 2.1 begins by explaining the

blockchain, the mechanisms that provide security and the concept of pseudony-

mous accounts. It goes on to explain how transactions are created, validated

and update the state of the blockchain. Finally, Section 2.2 describes gener-

alized payment channels and their impact on scalability in cryptocurrencies.

2.1 The Blockchain

A blockchain is a distributed network that maintains a globally consistent

log of transactions (Figure 2.1). The transactions are created by accounts on

the network and modify the blockchain’s global state. Peers in the network

compete to win rounds of a leader election protocol and finalize transactions

by adding them to the current blockchain. In the scope of cryptocurrencies,

the leaders that are elected are called miners. In each round, miners com-

pete to complete a heavy computational task for election as leader of that

round. Once elected, the miner finalizes transactions by collating them into

a block and appending the block onto the current blockchain. The new block

references the previous block and incorporates its hash into the computation

work that was performed. Not only does a large computation act as a deter-

rent to creating blocks that violate the rules of the network, but it makes it

difficult to revert transactions in old blocks as they are linked to every sub-

sequent block–requiring all subsequent blocks to be changed. All nodes in

the network then validate the block and append it to their local copy of the

blockchain. Although expensive, replication of the blockchain on all nodes

ensures that a malicious majority is needed in order to subvert the rules on

consensus. The changes made by the new transactions are applied and the

4

states of the relevant accounts are updated, hence updating the global state

of the blockchain. The remainder of this section will focus on the blockchain

as it is implemented in Ethereum.

Accounts. There are two types of accounts in Ethereum: externally owned

accounts and contract accounts. Externally owned accounts are controlled

by ECDSA private keys. Contract accounts are controlled by the contract

code that is associated with them. Externally owned accounts do not have

associated code, and can send messages to any other account by creating

and signing a transaction. Contract accounts, on the other hand, will only

execute their code when triggered to do so by a incoming message. The

triggered code is then allowed to read and write from its persistent storage,

create new messages or even new contracts (but never transactions).

Transactions. Transactions are signed data packets that store a message

that is sent from an external account to any other account on the network.

A transactions contains:

1. The recipient of the message.

2. A signature by the sender.

3. The amount of Ether being transferred.

4. Optional, arbitrary data.

5. A GASLIMIT value that limits the maximum number of computational

steps allowed by execution of the transaction.

6. A GASPRICE value that specifies the amount of Ether to be payed per

computational unit used during execution.

The first few fields enable currency transfers and are common to all cryp-

tocurrencies. The data field is optional but serves a special purpose in

Ethereum. When a transaction sends a message to an external account,

the data field does not serve a default purpose; it can be any arbitrary data

the sender wishes to include. When a transaction sends a message to a con-

tract account, the data field is read by the contract and used to determine

what code to execute. Specifically, the data field is parsed to determine the

function being called and its input arguments.

5

Figure 2.1: Representation of a blockchain showing the transactions in a
block and the contents of the transaction.

The last two fields have to do with a new feature in Ethereum called gas.

At a high level gas is used to limit the execution of smart contract code when

it is triggered and its state changes are finalized. Limiting the units of gas

allowed in a particular transaction’s execution ensures that nodes verifying

them have a hard upper bound on the amount of computation they need to

do. The gas price is used to compensate miners for the work expended in

executing a contract and including it in the next block. Blocks also enforce a

limit on the total amount of computation allowed in all transactions within

them.

Although gas is an effective method for ensuring nodes are not consumed by

large computations, it also makes block space a valuable and costly resource.

As a consequence, block space is very limited and transactions must fight to

be included in a block as soon as possible. Transactions that pay a higher

gas price to miners will obviously be preferred and confirmed more quickly.

This poses a big problem for scalability as it can drive transaction fees up as

more users, and more transactions, enter the network. Similarly, scalability

faces further price increases with recent proposals to commoditize resources

on the Ethereum network like transaction relaying.

Clearly, with larger adoption and more transactions, Ethereum fees may

increase to a point where small value transfers may not be reasonable any-

more. This is especially true for the purchase of cheap physical goods made in

person, where small value transfers need to be confirmed quickly. Therefore,

off-chain payment solutions solve this problem by allowing arbitrarily small

payment to be made to another user without requiring frequent interaction

with the blockchain.

6

1 event ExampleLog(string _arbitrary_data);

2
3 function foo() {

4 ExampleLog("This is event will be logged.");

5 }

Figure 2.2: When the function foo is executed an ExampleLog event is
created. The event can relay arbitrary information about the execution to
any party watching this contract for events.

The final feature of Ethereum that is relevant to this work is events. In

Ethereum, a smart contract can generate logs be emitting events that are

recorded in the blockchain. An event can be invoked at any time during

contract execution and include any arbitrary data. An example of an event is

shown in Figure 2.2. When an event is created by a contract, it is recorded in

the same block as the transaction that generated it and can be easily queried

for with Ethereum clients. A common practice in developing applications

with a smart contract back-end is to use events external inputs like a user

depositing money. For example a payment channel can use events to indicate

when users deposit funds and being an off-line channel.

2.2 Payment Channels

The protocol described in this work relies on a construction of payment

channels based on the generalized state channels described by Miller et al.

[14]. The construction allows an arbitrary number of parties, p1, ..., pn to

authorize and send payments between themselves without the need to publish

transactions to the blockchain. The only blockchain interaction required is

to create channels and settle their final state.

A payment channel is defined by its participants, their current balances,

a state flag, and a monotonically increasing state counter. A state flag is

always one of three values: {⊥, OK, DISPUTE}. In order, they represent an

uninitialized channel, a channel operating off-chain, and a channel handling

a settlement of its final state on-chain. Despite potential confusion, the set-

tlement stage is referred to by the DISPUTE flag because any participant can

dispute the proposed final state during this time. The timers and variables

associated with this period all have the “settle” subscript to indicated that the

7

channel is settled after this stage.

2.2.1 Channel Creation

To initialize a channel, the contract creator must specify the amount of time,

δsettle, after a dispute is raised, that the participants have to challenge the

latest proposed final state. Participants indicate agreement with the param-

eter by giving the contract some initial amount of Ether and a signature.

Once all participants have provided a signature and an Ether deposit, the

channel’s state flag moves from ⊥ to OK, the state counter initializes to 0, and

all participants begin handling payments off-chain. u The initial deposits are

recorded on-chain and comprise the first state of the channel. All subsequent

off-chain state updates must build on top of it. In the rest of this section,

the “state” of the channel is defined as the most recent authorizes set of

participants’ balances.

2.2.2 Payments

After initialization of the channel, the initial state of the channel is just the

deposit of each of the participants. From there, the integrity of the channel

relies on the participants collectively signing new states and revoking the

old ones, creating arbitrary payments between them. The state counter is

ascribed to every new state to ensure a global agreement on the chronology

of all previous states from S1 to an arbitrary Si.

A payment from one participant to another can be initiated by any party.

Figure 2.3 demonstrates a participant, Mike, proposing a payment from him-

self to Bob. To propose a new state Mike must first define what the updated

balances of the new state will look like. Then to propose the new state S ′
i+1

he creates a signature:

σM = SignMike(S
′
i′ , i

′) (2.1)

and sends it to Alice, Sarah and Bob. Each of them verifies that Mike has

a sufficient balance to pay Bob 1 coin, checks the validity of his signature

and asserts that i′ = i + 1. If the proposed payment is accepted, they agree

to it by creating a similar signature with their keys and broadcasting it to

everyone else. The proposal is committed as the new state when every party

8

Figure 2.3: Mike proposes a new state to the other participants indicating
that he wants to pay Bob 1 coin. The participants may choose to reject it,
but they approve it by signing off on it. Once all participants sign it, it
becomes the new state of the channel.

receives and verifies the signatures from everyone else. The flexibility of this

generalized payment channel also allows Mike to propose an update where

by he debits Bob’s accounts and pays himself. One can imagine a case where

Mike is able to automate payments from Bob’s account in return for some

good or service.

When a participant initiates a new state, a local timeout is initialized to

wait for responses from the rest of the channel. If no new state authoriza-

tion is seen by the initiator within the local timeout, the protocol resorts to

settling on-chain so that his money is no longer locked in a channel where

his payments are not being authorized.

2.2.3 Settlement

Any party can attempt to stop the payment channel and settle its final

balance on the blockchain. The first step in finalizing a payment channel

is calling the setstate (Figure 2.4) contract function with the last channel

state, the new state counter, and the channel participants’ signatures. In the

example in Figure 2.3, if Alice wants to finalize the channel she must submit:

Si, i, σAlice, σSarah, σMike, σBob (2.2)

9

function setstate((state′, i), σP):
discard if i ≤ stateRound
if Sig.Verify(P , (state′, i′, this.ID),ΣP)
set stateRound := i′

set state := state′

EventEvidence(stateRound, state)

Figure 2.4: Pseudo-code for the setstate function in a payment channel.
Only more recent states with a larger counter than the current stateRound
will be accepted. The state and counter value must also be signed by all
channel participants. The signature also include the address of the payment
channel contract, this.ID, for replay protection.

where σk = Signk(Si, i). This allows the contract to verify that Si was au-

thorized by all parties before accepting it. The second step is for Alice to

call triggerdispute (Figure 2.5) which initiates a settlement period.

When the settlement period is initiated, the channel’s state flag transitions

from OK to DISPUTE and it establishes a deadline tsettle := CurTime()+δsettle.

Each party is notified by the contract of the triggered settlement period and

the computed tsettle deadline before which any participant can dispute the

final state of the channel. If the state Si submitted by the settlement initiator

is not the latest authorized state in the channel, then finalization of that state

will mean that somebody will not get the coins they have previously been

paid. Once finalized, the state of the channel can no longer be changed,

so participants need to be active in detecting and responding to settlement

attempts on expired states.

In order to dispute the proposed final state, any participant may provide

the contract with a different state Si′ , i
′ and the corresponding signatures

from all participants. The contract will assert that any new state being

submitted has a counter such that i′ = i+ 1. This ensures that the contract

will only accept states newer than the ones already committed by others.

If the contract can validate that the new state, Si′ , was authorized by all

participants, it then becomes the new temporary final state. Disputes can

be raised indefinitely until the tsettle has passed at which point the latest state

to be submitted is considered final. Once the settlement period has ended

and the final state of the channel is determined, any participant may call

resolve (Figure 2.6) to claim their final balance of coins.

10

function triggerdispute(statei, ri, σk):
discard if flag 6= OK
discard if state 6= ε
set flag := DISPUTE
set tstart := CurTime()
set tsettle := tstart + ∆settle

EventDispute(tsettle)

Figure 2.5: Once a state is set, this function begins the process of closing
the channel. All participants are notified of the dispute and can respond
with their newest state by calling setstate.

function resolve():
discard if CurTime() ≤ tsettle
if flag = DISPUTE
set flag := OK
send state balances to P
EventResolve(stateRound)

Figure 2.6: Resolve function called after the dispute period ends. Sends
each participant his or her final balance encoded in state.

11

CHAPTER 3

PROTOCOL

Off-chain payment channels presented in Section 2.2 greatly reduce the cost

of paying individuals using cryptocurrencies by removing the need to finalize

every payment on the blockchain. Not only does this reduce the fees paid per

payment, but it also reduces transaction bloat in the underlying blockchain

network. This means the network can support more users, making many

small-valued payments to each other without substantial increase in block

space demand. There is a downside to this approach, however, that has lead

to a lack of adoption or deployment of such systems in the wild. Payment

channels require participants to always be on-line and active in the channel.

This means being alert and responding to channel closes/disputes when other

participants publish old authorized states. A user, though, can go off-line for

extended periods of time for a variety of reasons: power outages, computer

failures, connectivity issues, etc. Therefore, a party that is at risk of going

off-line stands to lose money by using a payment channel. At least with on-

chain transactions, there is no need to stay on-line once they are created as

the rules of the network will ensure they are correctly executed and published.

Example. Assume Alice and Bob open a payment channel with each other

where either of them can craft payments to each other. The channel starts

with a deposit of $10 from each of them. Over the course of multiple rounds,

both propose state updates which pay the other party some amount of money.

When Bob’s process crashes and is no longer active in the channel, Alice is

also unable to advance the state further–effectively locking her money in the

channel indefinitely. Therefore, Alice will attempt to close the channel and

reclaim the remainder of her funds. If she notices that Bob is not on-line, she

can submit an older state to the chain and reverse some of her payments. If

Bob does not come back on-line before the settlement deadline has passed,

Alice has successfully settled the channel in a state where she has taken some

of Bob’s money.

12

In an ideal world, a solution to this problem would be an intermediary that

processes all off-line payment on their behalf. This third party would always

be on-line and watch the state to ensure it closes correctly. This section

outlines a protocol called Pisa, that allows channel participants to appoint

third parties to monitor channels on their behalf to relax their liveness re-

quirements.

3.1 Overview

Pisa enables participants in the payment channel to appoint one or more

monitors to watch their channel for disputes. Participants interact with the

monitor’s contract which implements a one-way channel with a large deposit,

cM , and additional functionality to watch other channels. A customer com-

municates with the monitor and passes along the hash of the current state

and a payment for every new appointment.

Any participant in the channel can appoint a monitor to respond with

evidence in the case of settlement. The appointment of a monitor, however,

is for a single state only. If the monitor is appointed for the current state,

Si, it acts correctly only if it submits evidence of the state Si. Therefore,

participants who want continuous monitoring of their channel must appoint

a monitor for every new authorized state. To appoint a monitor, a customer

provides the monitor with the hash of the current state, H(Si, ri),
1 the round

number i, signatures, σP such that

σi = Sign(H(Si, ri), i) (3.1)

and payment for watching the channel. In return, the monitor gives the

customer a signed receipt for the appointment specifying the round being

watched and the period of the appointment. The receipt serves as proof that

the customer can provide in the future to penalize the monitor for not acting

correctly during channel settlement.

When a channel close is requested, the monitor can act in one of two ways.

The monitor can respond with the latest hashed state that it was appointed

for along with the correct signatures. If it does responds with the latest

1ri is a random blinding factor that makes discovering pre-images more difficult.

13

appointed state, no other party will be able to finalize an older state. This

ensures the channel closes at least in the customer’s latest outsourced state.

The monitor can choose to collude with the other participants in the channel

by not submitting the correct state during a dispute. An older state may

favor the other participants of the channel, and a bribe can be paid to the

monitor to act maliciously. However, a customer can come back on-line and

submit the monitor’s signed receipt as proof of appointment and claim its

large deposit.

The amount of the monitor’s deposit is crucial to the security of the pro-

tocol. Customers should only appoint monitors whose large deposit is large

enough such that the other participants could not pay the monitor enough

from an older state to make it profitable for the monitor to cheat.

3.2 Goals

This section presents the goals of Pisa such that the privacy of every inter-

mediate channel state Si is not revealed to the monitor and that fairness is

preserved for both customer and monitor.

3.2.1 State Privacy

In Pisa the monitor should not learn anything about the actual state of the

channel at any time except finalization. The monitor receives only the hash

of the current authorized state, H(Si, ri). Although the payments themselves

are hidden, the necessity of revealing the state’s round number does not hide

when the payments were made.

3.2.2 Fairness

When a monitor accepts an appointment for a particular state in a channel,

it is always paid for it by the customer. The monitor also provides a receipt

to the customer indicating the terms of the appointment and its duration.

However, Pisa must ensure that neither party can cheat in the exchange of

payment for receipt. This requires Pisa to accomplish two goals:

14

• Fair Exchange In the generalized case, a fair exchange is a protocol where

two mutually distributing parties can exchange digital goods in a way that

guarantees: both parties receive the other good or neither of them do. When

a customer and a monitor are exchanging a receipt for a payment, Pisa must

ensure that the two goods are exchanged fairly. This ensures that the monitor

cannot accept payments without providing evidence of the appointment, and

that the customer cannot obtain a valid receipt without paying for it.

• Non-frameability When the monitor has acted correctly, a customer should

not be able to provide a receipt to frame the monitor for wrongdoing.

3.2.3 Monitor Cost

An ideal protocol for third-party monitoring minimizes the storage require-

ments for the monitor. Therefore, a goal of Pisa is to limit the monitor’s

resource requirement to be O(1). Pisa should also ensure that the moni-

tor is rewarded for storage updates for every new appointment. To further

reduce the operating cost, all payments between the customer and monitor

are handled by an off-chain uni-directional payment channel; this ensures a

continuous revenue stream for the monitor.

3.3 Assumptions

This section outlines the assumption made by the protocol on the capabilities

and behavior of the channel participants, the customer and the monitor.

3.3.1 Channel Participants

The participants of this channel are assumed to act rationally. Each par-

ticipant’s decision strategy will choose the action that gives that party the

greatest final balance in the payment channel. In a payment channel, each

party will always attempt to finalize the channel on a state that gives that

party the highest payoff, even if it is not the latest one. In the simpler case of

uni-directional payment channels the receiver of the payments will necessar-

ily publish the latest agreed upon state as it will always pay that participant

15

the most. Naturally, the client will always prefer to finalize on an earlier

state.

The channel participants are assumed not to collude with the monitor in

order to reveal the pre-image of any state. If participants reveal the state, the

monitor can eavesdrop on the channel with ease. However, the participants

may collude with the monitor to settle their channel on an older state. If

the other participants can profit from paying the monitor more than the

monitor’s large deposit, they will always attempt to do so. Finally, it is

assumed that any party that is off-line for more than the length of a dispute

settlement period will have appointed at least one monitor to respond to

disputes.

3.3.2 Customer and Monitor

Any channel participant that appoints a monitor to watch a channel is called

a customer of that monitor. Customers are also rational and will try to

maximize their payoff in their protocol with the monitor. This means that, if

possible, the customer will always try to reverse the payments to the monitor

or craft evidence against the monitor if feasible.

The monitor is assumed to be a rational and curious actor. Rationality

implies monitors will watch a channel appointed to them only if they have

been appropriately paid to store state information and will correctly respond

to closures if they cannot profit from cheating. For example, if the channel

participants offer bribes greater than the monitor’s contract deposit then the

monitor will choose to collude with them to the close channel in an incorrect

state. Curiosity implies that the monitor will attempt to extract the state

information from information provided by the customer if computationally

feasible.

3.3.3 Contracts

Pisa does not take into account edge cases on the blockchain where the out-

come of contract execution may be reverted or altered due to hard forks,

transaction reorganization, or any other blockchain failures. Therefore, con-

tracts are assumed to be honest third parties with immutable code that al-

16

ways executes correctly. For the monitor contract, specifically, it is assumed

that the contract can look up disputes in the channel that it is watching and

extract the relevant information.

3.4 Payment Channel Modifications

This section focuses on the changes made to the generalized payment channel

contract in Section 2.2. The new payment channel supports participants

authorizing the hash of state, H(Si, ri), instead of just Si.

The first modification to the payment channel construction supports re-

porting the authorized state hash of the current state through the setstate

function (Figure 3.1). To preserve the state’s privacy on-chain, each partici-

pant exchanges signatures for H(Si, ri) where ri is a blinding nonce. Without

the nonce, it would be computationally feasible for the monitor to brute force

the pre-image of the state since the starting balances of each party are known

at channel creation time. The round number, in this case, is not hidden so

that the contract is able to order the hashed states it sees and only accept

more recent rounds. Furthermore, the state, Si, and the nonce, ri, are only

revealed to the monitor when the channel is being finalized and the final

state must be revealed for the contract to pay out to its participants.

function setstate((hstate, i), σP):
Discard if flag 6= DISPUTE
discard if i ≤ stateRound
if Sig.Verify(P , (hstate, i), σP)
set stateRound := i
set hstate := hstate
EventEvidence(stateRound, hstate)

Figure 3.1: Modified setstate function that accepts the blinded hash of the
current state instead of the state itself.

3.5 Monitor Contract

This section provides an overview of the monitor contract which allows cus-

tomers to appoint the monitor for a specific state. It implements a one-way

17

Monitor contract

flag := ⊥
ID,monitor := ∅
∆settle,∆withdraw, twithdraw := 0
deposit, profit := 0

function setup(M, deposit, σM,∆withdraw,∆settle,):

if Sig.Verify(M, deposit, σM)
set M := M, deposit := deposit
set ∆withdraw := ∆withdraw, ∆settle := ∆settle, flag := OK

EventSetup()

function deposit(Pk, cdeposit, Sig):

discard if flag 6= OK
discard if ID[].flag = DISPUTE
if Sig.Verify(, cdeposit, σPk

)
if ID[].flag = CLOSED
set ID[].flag := OK

set ID[].deposit += cdeposit
EventDeposit(, cdeposit)

Figure 3.2: This first part of the monitor contract is where the contract
parameters are set up by the monitor. It also specified a deposit to which
a customer can deposit coins to be used in the payment channel. A
customer must deposit coins before the monitor can be appointed to watch
any channel.

payment channel for the customer to pay the monitor per appointment, and

it also allows the customer to forfeit the monitor’s deposit if it acts incor-

rectly. In the following, each part of the monitor contract is accompanied by

a snippet of pseudo-code.

The monitor’s contract has four state flags: {⊥, OKAY, CHEATED, CLOSED}.
The contract state starts in state ⊥ to indicate that it is uninitialized. Once

the monitor has submitted a large deposit, cM , to the contract and sets

∆settle,∆withdraw using the setup function (Figure 3.2), the contract transi-

tions from ⊥→ OK. Customers can now open payment channels with the

monitor by depositing money through the deposit function.

Monitor’s Payment Channel. The monitor contract stores a list of all

18

of the payment channels that customers have opened, indexed by unique

identifiers. A customer’s payment channel can be in one of four flag states:

⊥, OK, DISPUTE, CLOSED. In order to transition a channel from ⊥→ OK, or

from CLOSED → OK the customer must deposit money into the channel via

the deposit function (Figure 3.2). As this is a one-way payment channel,

the monitor can choose to unilaterally close any channel it has open at any

time. The contract does not allow a settlement period in this case as the

monitor will always submit the most recent authorized state. The customer

can request a payment channel be closed as well, but will always have to

wait until the monitor is given enough time to dispute the final state of the

channel.

Fair Exchange. Once the channel is open, the customer can pay the mon-

itor for every new hashed state, H(Si, ri), it wants the monitor to publish

on its behalf. In return for the payment and the hashed state, the monitor

creates and signs a receipt as proof of appointment. The receipt and payment

are exchanged using the fair exchange protocol illustrated in Figure 3.3.

To initiate the fair exchange, the customer sends the current state hash,

the current round number, the amount of the payment (c) and an expire

time (texpire). The customer must also sign all of these parameters as well

as the channel participants’ signatures on the state hash. The monitor can

check the state hash that is sent along with the signatures and round number.

If satisfied with the payment and the validity of the signatures, the monitor

issues a receipt to the customer containing the state hash, round number, the

length of the appointment (CurTime() + ∆settle), and a conditional transfer

hash hi. In order for the receipt to be ratified, the monitor must reveal the

pre-image of hi, si as it needs to be provided for the customer to request

recourse in the future. The customer creates a signed conditional transfer

that pays the monitor if the pre-image of hi is revealed. The monitor can

choose to reveal the pre-image to the customer off-line once it receives the

conditional payment. If the monitor does not reveal the pre-image to the

customer, the customer raises a dispute through the triggerdispute function

(Figure 3.4), moving the contract flag from OK to DISPUTE. To claim the

conditional payment, the monitor can reveal the pre-image by forcing an

on-chain update to the channel by called setstate. Calling this function

completes the conditional payment and sets a dispute settlement period,

but it also reveals the pre-image of hi–validating the customer’s receipt. Of

19

Participant Monitor MonitorCon
σPk
← Sign(skPk

, c)

deposit(Pk, c, σk)
−−−→

EventDeposit(Pk, c)

(hstatei, i, chan), σP , c, texpire−−−−−−−−−−−−−−−−−−−−−−−−→
b← VerifyAppointment(σP , chan,i,hstatei, c, texpire)
if b=0 return 0
si ← R, hi ← H(si)
tstart ← CurTime(), texpire ← tstart + ∆settle

σM ← Sign(skM, (tstart, texpire, chan, hi)
receipt← (σM, tstart, texpire, chan, i, hi)

receipt←−−−−−−−−−−−−−−−−−−−−−
b← VerifyReceipt(receipt)
if b=0 return 0
σPk
← Sign(skPk

, (receipt.hi, c, ID))
pay← (σPk

, receipt.hi, c)

pay−−−−−−−−−−→
b← VerifyPayment(pay, receipt.c, receipt.hi)
if b=0 return 0

In the rest of this figure: We present three protocol outcomes which occur depending on the Monitor’s response.
Outcome 1: Monitor accepts payment within a timely manner

si←−−−−−−−−−−−−−−−−−−−−−−−
b← hstatei = H(si)
if b=0 return 0

Outcome 2: Monitor does not reveal si privately to the Participant, but redeems on-chain
LocalTimeout()
σPk
← Sign(skPk

, close)
triggerdispute(Pk, σPk

)
−−→

EventDispute(tsettle)

σM ← Sign(skM, pay)

setstate(pay, si, σPk
, σM)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
EventEvidence(Pk, pay)

Outcome 3: Monitor does not reveal si privately to Participant and the Monitor does not redeem the conditional transfer
LocalTimeout()
σPk
← Sign(skPk

, close)
triggerdispute(Pk, σPk

)
−−→

EventDispute(tsettle)

Wait(CurTime() + ∆settle)
resolve(Pk)

−−→
EventResolve(Pk)

Figure 3.3: A fair exchange protocol that ensures the monitor is paid upon
validating the customer’s receipt. If the monitor redeems the conditional
payment in any way, the pre-image is always revealed and the receipt
always becomes valid.

20

Monitor contract (continued)

function setstate(state, si, Sig.σM):

discard if flag = CHEATED
discard if state.k 6= ID[Pk].k
discard if state.payout > ID[Pk].deposit
if state.conditional transfer = TRUE
discard if state.hash 6= H(si).

if Sig.Verify(monitor, state, σmonitor)
∧ Sig.Verify(, state, σsender)
set profit += state.payout
send ID[Pk].deposit− state.payout coins to sender
set ID[] := [0, 0,CLOSED, ID[sender].k + 1]
EventEvidence(, statei)

function triggerdispute(, σPk
):

if ID[].flag = OK ∧ Sig.Verify(sender, close, σsender)
set ID[].flag := DISPUTE
set ID[].tsettle := CurTime() + ∆settle

EventDispute(, ID[sender].tsettle)

function resolve(Pk):

if flag = CHEATED ∨
(ID[Pk].tsettle ≤ CurTime() ∧ ID[Pk].flag = DISPUTE)
send ID[].deposit coins to C
set ID[] := [0, 0,CLOSED, ID[Pk].k + 1]
EventResolve()

Figure 3.4: This part of the monitor contract implements the payment
channel functionality like the generalized payment channels in Section 2.2.
The setstate function here differs slightly to force the monitor to reveal
the pre-image from a conditional transfer. resolve allows the customer to
forfeit the monitor’s deposit.

21

course, the monitor can also choose not to claim the payment and let the

settlement period expire. After expiration the customer can call resolve to

retrieve his deposit and close the channel.

The fair exchange protocol specified shows that for all the cases where

the monitor accepts the conditional payment from the customer, the receipt

that was provided becomes valid. There is no way for the monitor to be

paid for a new appointment without creating a valid receipt. Similarly, once

the conditional payment is signed and sent to the monitor, the customer has

already obtained a signed receipt and cannot reverse the payment if it is

redeemed by the monitor. Hence, the exchange is only valid if both parties

get what they want: a receipt for a payment. Otherwise, neither is valid.

Recourse. If the monitor gets paid during the fair exchange, the pre-

image of hi is always revealed and the receipt validated. When a customer’s

channel triggers a dispute within the period of the appointment, the monitor

is obligated to respond with the correct hashed state. If the monitor does not

respond, the customer can submit the signed receipt along with the pre-image

of the conditional payment to the recourse (Figure 3.5) function to forfeit

the monitor’s deposit. When recourse is called, the monitor’s contract

checks the closing state and closing time of the outsourced channel against

the receipt to determine whether the monitor acted correctly. If not, the

monitor’s deposit is forfeited and the contract state transitions to CHEATED.

At this point the customer can call resolve to claim its remaining deposit

and close the channel.

Closing the Channel. Finally, the monitor can also stop monitoring and

prevent new customers from starting new channels. If the contract is in the

OK state, the monitor can call stopmonitoring (Figure 3.5) which tran-

sitions the contract from OK → CLOSED. A withdrawal period is also set

(twithdraw = CurTime() + ∆withdraw), after which the monitor can reclaim the

contract deposit, cM . Despite being closed, however, the monitor is still ob-

ligated to respect outstanding customers’ valid receipts. An important note

on this protocol is that the appointment period, texpire, should always be less

than twithdraw. Otherwise, the monitor can reclaim the deposit, cM , before a

customer’s receipt expires. The monitor would no longer have to respect the

receipt as there is no deposit to forfeit. Prudence is required on the part of

the customer to ensure that the monitor is not paid for a receipt that will

allow this to happen.

22

Monitor contract (continued)

function stopmonitoring(σM):

if Sig.Verify(M, stop, σM)
set flag := CLOSED
set twithdraw := CurTime() + ∆withdraw

EventClose(twithdraw)

function withdraw(σM):

discard if flag = CHEATED
if Sig.Verify(M,withdraw, σM)
if ID.length = 0 ∧ CurTime() > twithdraw ∧ flag = CLOSED
set profit += deposit, deposit := 0

send profit to M
set profit := 0
EventWithdraw()

function recourse(receipt, si, σM):

discard if flag = CHEATED
discard if receipt.hi 6= H(si)
set chan := lookup(receipt.chan)
if Sig.Verify(M, receipt, σM)
for k in chan.disputes.length
if chan.disputes[k].start > signedreceipt.start
∧ signedreceipt.expire > chan.disputes[k].end
∧ signedreceipt.i ≥ chan.disputes[k].stateRound
set flag := CHEATED
EventForfeit()

Figure 3.5: This final part of the monitor contract, allows the customer to
take action against a monitor by submitting the receipt received during fair
exchange. The stopmonitoring allows the monitor to unilaterally close
the channel because it will always close on the latest state.

23

CHAPTER 4

IMPLEMENTATION

In this work, we implemented Pisa as an add-on to an existing payment

channel system called µ-Raiden [13]. Although there exist other payment

channel systems such as the Lightning Network [9] or Raiden [11], µ-Raiden

remains the only one that has been deployed on the Ethereum main network

at the time this work began. This chapter starts by providing background

on how µ-Raiden works out-of-the box. Next, the modifications made to

the existing channel management contract and the new monitor contract

implementation are described (the actual smart contract code can be found

in Figure A.1). The final section describes the overhead incurred by the

added fault tolerance provided by Pisa.

4.1 Background on µ-Raiden

This section describes how µ-Raiden implements a payment channel and the

different steps involved in local state authorization and on-chain settlement.

The next section builds off this background to describe the modifications

required to implement Pisa.

µ-Raiden implements an off-chain payment channel framework that facili-

tates frequent micropayments of ERC20 [15] tokens between clients and ser-

vice providers. Some of the use cases for this framework include pay-per-use

services where automatic microtransactions act as a replacement for obtru-

sive advertising and subscription walls [13]. For this reason, it only supports

uni-directional payment channels where many clients open channels with one

server.

Basic Deployment. A server wanting to accept micropayments first needs

to create and deploy a special ERC20 token contract through which channel

deposits are made. The server also deploys a contract to manage its payment

24

channels called RaidenMicroTransferChannels. This contract stores a list

of the server’s open channels and notifies it when on-chain channel events

occur. The server continuously listens for contract events or http connections

to begin accepting payments and serving content.

4.1.1 Channel Creation

Before requesting paywalled content, the customer must first obtain the un-

derlying token that the channel manager contract uses. In the default setting,

the server requires a client to spend at least 100 finney1 to mint 50 tokens for

itself. A client requesting an “expensive”2 resource creates a GET request to

the server for the endpoint it wants. If a channel with the server does not al-

ready exist, it notifies the client to initialize a channel by transferring tokens

to the contract’s address. This triggers the channel contracts token fallback

procedure which then calls createChannel. Both the server and client wait

until a confirmed ChannelCreated event is detected before proceeding with

off-chain payments.

When the channel is created, the contract creates a unique identifying key

for the channel:

1 // Create unique identifier from sender , receiver and current

block number

2 bytes32 key = getKey(_sender_address , _receiver_address ,

open_block_number);

The contract indexes the channels data with key and stores the channel

creation block and the initial deposit. When the ChannelCreated event is

detected by the server, it creates a local copy of the channel in its database

and responds to the client’s GET request indicating that it is ready to accept

an off-chain payment.

4.1.2 Making a Payment

To pay the server for a resource the client creates an update to the current

state called a balance message proof. The balance message proof encodes the

details of the channel such as the sender address, receiver address and open

11 finney = 0.001 Ether.
2Expensive means that the resource requires a micropayment to access it.

25

1 bytes32 balance_message_hash = keccak256(

2 keccak256(

3 ’string message_id ’,

4 ’address receiver ’,

5 ’uint32 block_created ’,

6 ’uint192 balance ’,

7 ’address contract ’

8),

9 keccak256(

10 ’Sender balance proof signature ’,

11 _receiver_address ,

12 _open_block_number ,

13 _balance ,

14 _address(this)

15)

16);

Figure 4.1: Solidity code used to re-create the keccak256 hash of the
balance message with the receiver address, the creation block number, the
newest balance of the channel and the address of the channel manager
contract.

block number. Additionally, for every new state the message also encodes

the new balance of the channel. The balance message proof is created by

the client with the balance field incremented by the value of the payment.

The client signs the message and sends it to the server for verification. The

precise encoding of the balance message is shown in Figure 4.1.

The implementation deviates from the generalized protocol described in

Chapter 3 omitted the state counter. This is because the payment channels

in µ-Raiden are uni-directional. Therefore, the balance field in the state is a

monotonically increasing value, and is treated as a proxy for the state counter.

For example, when settled on-chain, the contract can always distinguish the

chronology of two states by looking at their balances. Another consequence

of this kind of channel is that the server will always close the channel with

the latest balance message that pays it the most. So, the contract allows the

server to unilaterally close a payment channel at any time with the latest

state.

If the server accepts the balance message, it responds to the client with

the resource that it requested. If the message is not valid for any reason,

the server will notify the client to try again. For example, the server can

notify the client of lacking token funds to back the payment and to resolve

26

it before attempting another payment. The channel can proceed in this way

indefinitely until either party attempts to close the channel and settle the

final balance on-chain.

4.1.3 Settling On-Chain

At some point in the life of a µ-Raiden payment channel, one of the par-

ties will attempt to close the channel and withdraw its own funds. If the

server requests the channel be closed, the contract fast tracks the request

and immediately closes the channel as mentioned in Section 4.1.2. When

a client finishes its session with the server, it can do one of two things: 1.

it can leave the existing channel open for reuse at a later time, 2. it can

attempt to close the channel and claim its funds. In the former case, the

client simply disconnects from the server, and the server maintains the chan-

nels in its database. In the latter case, the client submits a close request

through the uncooperativeClose function. The function allows the client

to specify any desired balance to close on even if it is not the correct final

balance. Hence, it can do so without submitting a signed balance message.

The contract then creates and stores a closing request for the channel in

question and creates a settlement period in which the server can respond

with a newer state: tsettle = CurTime() + ∆settle. Finally, the contract emits a

ChannelCloseRequested event which identifies the channel, the settlement

timeout and the requested closing balance.

A requested closing balance less than the actual latest balance will prompt

the server to submit proof of a larger balance. As mentioned before, the server

can unilaterally settle channels. Therefore, the server calls cooperativeClose

(the function is show in Figure 4.2) with the latest balance message signed

by the client along with a closing signature. The closing signature is a signed

message from the server that indicates an intent to close the channel. If the

balance message is signed by the client and the closing message is signed by

the receiver, the contract accepts them and settles the channel. The contract

then deletes the channel and closing request and tranfers the appropriate

amount of tokens to each party’s account.

27

1 function cooperativeClose(

2 address _receiver_address ,

3 uint32 _open_block_number ,

4 uint192 _balance ,

5 bytes _balance_msg_sig ,

6 bytes _closing_sig)

7 external

8 {

9 // Derive sender address from signed balance proof

10 address sender = extractBalanceProofSignature(

11 _receiver_address ,

12 _open_block_number ,

13 _balance ,

14 _balance_msg_sig

15);

16
17 // Derive receiver address from closing signature

18 address receiver = extractClosingSignature(

19 sender ,

20 _open_block_number ,

21 _balance ,

22 _closing_sig

23);

24 require(receiver == _receiver_address);

25
26 // Both signatures have been verified and the channel

can be settled.

27 settleChannel(sender , receiver , _open_block_number ,

_balance);

28 }

Figure 4.2: Sample code of the cooperative close mechanism in µ-Raiden.
The closing request and balance message are checked for correct
signatures before the channel is settled, i.e. correct balances are transferred
to each party and the channel is deleted.

28

4.2 Modifications

The main goal of the Pisa is to provide fault tolerance for a specific payment

channel failure mode without incurring substantial overhead cost Pisa de-

ployment. Hence, the modifications made to µ-Raiden are minimal, and the

on-chain costs incurred by Pisa are compared to the loss incurred by failure.

This section outlines the changes and new features added to µ-Raiden in

order to implement the protocol described in Chapter 3. The implementation

reflect the capabilities of the monitor to interact with the server’s contract

and submit evidence for the channels that it is watching. It also implements

a new time period in which the monitors of a channel can submit their evi-

dence. Finally, the monitor’s contract is created to facilitate a uni-directional

channel between customers and the monitor, and allow customers to request

recourse if the monitor misbehaves.

For the remainder of this section, the protocol will refer to the monitor’s

smart contract code (Figure A.1) and other snippets from the code.

Changes to µ-Raiden Contract. The first change made to the channel

contract is the addition of a new timer for monitor submission. When a

channel close is requested instead of a single tsettle deadline, two deadlines

are created:

tmonitor = CurTime() + ∆monitor (4.1)

tsettle = tmonitor + ∆settle (4.2)

The first deadline is only relevant to the server in that it has to wait until

the deadline has passed to proceed with closing the channel. The contract

also provides a mechanism for the monitor to submit evidence when a channel

close (Figure 4.3) is requested and for his contract to request channel closing

information. In all three of these modifications there is no overhead cost

incurred by a server deploying Pisa in both normal operation and in the case

of failure as they are only relevant to the monitor.

Monitor Contract The monitor contract closely resembles the pseudo-code

algorithm described in Section 3.5. A copy of the actual smart contract is

shown in Listing A.1 in Appendix A, and will be referred to often in the rest

of the chapter.

29

1 function monitorEvidence(

2 address receiver , uint32 open_block_number ,

3 bytes32 balance_msg_hash , bytes balance_msg_sig)

4 external view

5 {

6 // ’s’ is correct iff it produces a valid channel key

7 address s = ECVerify.ecverify(balance_msg_hash ,

balance_msg_sig);

8 bytes32 key = getKey(s, receiver , open_block_number);

9
10 // Make sure this channel and its closing_request exist

11 require(channels[key]. open_block_number > 0);

12 require(closing_requests[key]. settle_block_number > 0);

13
14 // Make sure the monitor responds when he is allowed to

15 require(closing_requests[key]. monitor_block_number >

block.number);

16
17 // Set the monitor ’s submitted evidence

18 closing_requests[key]. evidence = balance_msg_hash;

19 closing_requests[key]. evidence_sig = balance_msg_sig;

20
21 emit MonitorInterference(s, open_block_number ,

balance_msg_sig);

22 }

Figure 4.3: The monitorEvidence function that records the monitor’s
submitted state hash.

30

4.3 Modifications to µ-Raiden Off-Chain

Client-Server Communication. The client-server communication remains

largely unchanged as Pisa is mainly concerned with the customer-monitor

communication. The first step in implementing the monitoring protocol is

establishing a seed for the blinding terms used in the state hashes. How-

ever, for the purposes of this implementation, a secret sharing scheme was

not implemented, but there exist protocols that facilitate public randomness

generation between a group of people [16]. The client and server in this case

are assumed to have already agreed upon a seed beforehand that will be

used for the duration of the channel. Since the purpose of the implemen-

tation is to demonstrate overhead cost, the actual randomness used in the

implementation is irrelevent as long as it does not affect the on-chain cost.

Server-Monitor Communication. Unlike communication between the server

and client, the server-monitor communication is handled by Python’s multi-

processing module. This module implements a high-level API for handling

sockets. The monitor deploys a listener that constantly listens for new socket

connections from a customer. The server, on the other hand, only attempts

to connect to the monitor once. From then on, only the monitor is triggered

by server messages and never vice versa.

4.4 Customer and Monitor Setup

When the server starts up, it first establishes a connection with the monitor.

The monitor sends its contract’s address and its own Ethereum address so the

potential customer can verify its parameters. Figure 4.4 shows the customer’s

communication with the monitor and its contract before the connection is

finalized. This step requires prudence on the part of the customer to assure

that the settlement and withdrawal timers are set such that the monitor can

not claim the deposit until all disputes are settled.

The remainder of the implementation exactly follows the protocol proposed

in Chapter 3. Therefore, the remainder of this chapter compares the gas and

storage costs of Pisa during channel faults and during misbehavior by the

monitor.

31

Customer Monitor MonitorCon
START CONNECTION−−−−−−−−−−−−−−−−−−−−−→

Monitor address←−−−−−−−−−−−−−−−−−−
Contract address←−−−−−−−−−−−−−−−−−−

b = ∆withdraw >> ∆settle ∆settle,∆withdraw←−−
Outcome 1: b = 0

REJECT−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
END CONNECTION

Outcome 2: b = 1
contract.deposit(c)

−−−→
EventDeposit(sender, c)

CONNECTION FINALIZED

Figure 4.4: The initial communication between the monitor and potential
customer. The customer rejects this monitor contract if its parameters are
not suitable.

4.5 Cost of Pisa

It is important that the cost of implementing Pisa on top of the uni-directional

channel framework does not dissuade participants from using it. Not only will

it impact deployment of Pisa, but transaction costs might influence parties in

the protocol to deviate from the specification. It is important to measure the

on-chain costs in different scenarios and ensure the failure conditions do not

significantly impact the participants. Unless otherwise specified, the costs

represented by Tables 4.1, 4.2 and 4.3 are in units of Ether. When a dollar

amount is presented, it is based on the exchange rate of $402.35 per Ether

as reported by EtherScan on Tuesday April 3, 2018 [17]. All operations de-

scribed below including contract delpoyment take place on the Rinkeby test

network.

Contract Deployment. The first cost incurred by the server is the deploy-

ment of its contracts augmented with the modifications described in Sec-

tion 4.2. The RaidenMicroTransferChannels contract was augmented with

functionality for the monitor to submit hashed states, and for the monitor’s

contract to extract closing information for recourse. The exact cost of de-

ploying the contract is shown in Table 4.1. This cost is incurred once as

the server will deploy and operate only one copy of this contract. For this

reason, the small increase in deployment cost is not very important as cost

per-channel with many clients will quickly dominate it.

32

The monitor’s cost in deploying his contract in Table 4.1 is a little more

than one-third the cost of the server’s contract even though they both support

uni-directional channels. This large difference in the cost can be explained

by two facts. First, the server’s contract allows for senders to create one-way

channels to any address. This means that the same contract can be used by

many different server operators. Therefore, in order to access a particular

channel the contract needs to index the list of channels with the hash of the

sender, receiver and open block number of the channel. Furthermore, the

ability to have multiple channels open from the same sender increases the

complexity of balance and closing proofs that the contract must verify.

Client-Server In µ-Raiden, the client-server protocol is modified the least.

Described in Section 4.2, it is only modified to support blinded nonces in the

balance message proofs. The balance message encoding in Figure 4.1 now

includes the blinded nonce as part of the message hash. This additional,

but marginal, cost is incurred by the server when it closes a channel by

submitting the client’s balance proof. The additional work in including the

blinded nonce is reflected in the row corresponding to cooperativeClose in

Table 4.2. However, the nonce accounts for only a small part of the difference

in cost. The other comes into play during channel settlement.

Monitor Equivocates The fair exchange of the receipt for the customer’s

payment is critical to ensuring the fairness property described in Section 3.2.

In the case where none of the parties in the protocol equivocate, the fair

exchange of the monitor’s receipt for the customer’s conditional payment

only incurs payment for appointment. All additional steps required by Pisa

are performed off-line for every new state that is outsourced.

The customer, however, incurs additional overhead if the monitor equivo-

cates and does not reveal the pre-image during the exchange. If the monitor

tries to close the channel by not revealing the pre-image, the customer must

create an on-chain transaction, calling triggerDispute, attempting to close

the channel with the monitor. However, despite the small cost in trigger-

ing a dispute (Table 4.3 function triggerDispute), failure in fair exchange

can still complete a new appointment if the monitor responds to the dispute

by calling setstate and redeeming the latest conditional payment on-chain.

This reveals the pre-image and makes the latest signed receipt valid. If the

monitor does not redeems the payment, the customer resolves the channel

once its settlement period had passed. The customer may choose not to re-

33

solve the channel as the remaining funds are less than the cost of retrieving

them. Therefore, at worst, the customer can expect to lose the cost of one

transaction in closing the channel with the monitor. Examining the gas cost

in Table 4.3, even in the case of monitor equivocation the gas cost of channel

resolution is very low while monitor appointment and subsequent recourse is

still guaranteed. Furthermore, the added cost of closing a payment channel is

not a deterrent to its use, as evidenced by actual payment channel adoption

and usage.

Client Settlement Up to this point, the overhead cost to the customer has

been discussed in the context of isolated protocol failures in Pisa. This sec-

tion describes the overhead in the failure condition that Pisa is designed to

protect against: an off-line party being cheated by the counter-party. When

the server goes off-line for any period of time, it is assumed that at least

one monitor was assigned to watch the channel on the server’s behalf. This

means that prior to going off-line, the server engaged in one or more fair

exchanges to outsource the latest state of the channel to a monitor. In the

worst case, as described in the previous paragraph, the monitor equivocates

and the fair exchange is completed on-chain–yielding minimal overhead to

the server. Once off-line, the customer suffers no additional on-chain penal-

ties in closing the channel as the monitor disputes incorrect channel closes

on the server’s behalf, and the client calls uncooperativeClose with any

desired balance. The contract emits a ChannelCloseRequested event with

the appropriate deadline and closing balance information for monitors and

channel participants. The monitor responds by submitting the latest hashed

state as evidence to the channel such that the channel closes on the latest

hashed state given by the customer. After the state closes and the customer

comes back on-line, the customer only needs to settle his payment channel

to reclaim his funds and send the remainder to the client. If the monitor

cheats and does not adhere to the signed receipt, then the customer can call

recourse in the monitor’s contract. Recourse is a particularly expensive

computation as it invokes another contract and verifies a signature, however,

the larger cost (Table 4.3 row “recourse”) is compensated for by the large

deposit the customer claims from the monitor’s contract.

It is evident from the discussion of the overhead cost of Pisa that in the

best case where no parties equivocate, the customer’s only added cost comes

from creating a channel with the monitor and paying for the appointments.

34

Table 4.1: A comparison of the cost involved in deploying the contracts for
µ-Raiden and for Pisa. The price represented here is 1 Ether = $402.36
[17]. There is only a marginal increase in the cost of deployment.

µ-Raiden Pisa

Contract Server Server Monitor

CustomToken 0.00326 0.00326 -
RaidenMicroTransferChannels 0.00770 0.00890 -
MonitorContract - - 0.00468

Ether 0.01096 0.01216 0.00468
Cost $4.4099 $4.8927 $1.8830

Table 4.2: The gas costs involved in Pisa when no parties deviate from the
protocol. The monitor reveals the pre-image on-line so no interaction with
the monitor contract is required.

µ-Raiden Pisa

Phase Server Client Server Monitor Client

Channel Creation
deposit - - 0.00135 - -
createChannel - 0.00178 - - 0.00178

Fair Exchange
triggerDispute - - Pre-image is
setstate - - revealed off-line.

Uncoop Close
uncooperativeClose - 0.00107 - - 0.00120
cooperativeClose 0.00112 - 0.00123 - -

Monitor Evidence monitorEvidence - - - 0.00355 -

Total 0.00112 0.00285 0.00258 0.00355 0.00289

This overhead is advantageous as the customer is safeguarding a large channel

balance from the client attempting the cheat. The amount that is paid is

left to an agreement between the customer and monitor where the customer

will only agree on a price that minimized his expected loss from channel

disputes. In the worse case, the fair exchange between customer and monitor

fails, and the customer must settle his channel with the monitor through an

on-chain transaction. This added overhead, however, still guarantees that the

customer’s channel will at least close on a state that was paid to outsource.

Even upon failure of the monitor, all of the customer’s described overhead

costs are compensated for by the monitor’s forfeited deposit.

35

Table 4.3: The first subtotal represents the case where the monitor does not
reveal the pre-image in the conditional payment off-line, but does attempt
to redeem the payment on-chain. This makes the signed receipt valid for
recourse. The second subtotal replaces the fair exchange in the first one
with the case where the monitor does not reveal the pre-image, and does
not redeem the payment on-chain. The final row shows the cost to the
customer of requesting recourse from the monitor’s contract. The recourse
costs are not calculated into a sub total.

Phase Pisa

Server Monitor Client

Channel Creation
deposit 0.00135 - -
createChannel - - 0.00178

Fair Exchange
triggerDipsute 0.00105 - -
setstate - 0.00131 -

Uncoop Close
uncooperativeClose - - 0.00120
cooperativeClose 0.00123 - -

Monitor Evidence monitorEvidence - 0.00355 -

Sub Total 0.00363 0.00486 0.00289

Fair Exchange triggerDispute 0.00105 - -
No Payment resolve 0.00083 - -

Sub Total 0.00446 0.00355 0.00289

Monitor Cheats
recourse 0.00131 - -
resolve 0.00083 - -

36

CHAPTER 5

CONCLUSION AND DISCUSSION

Decentralized cryptocurrencies currently face large hurdles in scaling their

transaction throughput to match modern payment processors. Payment

channels are a promising solution that off-loads the work of creating, au-

thorizing and validating payments between individuals to a local protocol

that is executed off-chain by channel participants. Raiden is an experimental

proposal for payment channels and payment channel networks on Ethereum,

however, it does not have any solution to the liveness requirement of channel

participants. The construction of Pisa presented in this thesis removes the

requirement by allowing users to appoint third parties to monitor payment

channels on their behalf while preserving the privacy of every intermediate

state and ensuring a constant storage requirement. Third parties store the

hash of the most recent outsourced state and respond to channel closes re-

quests with the most recent state on behalf of their customers. Futhermore,

under the assumption of rational and curious actors, the protocol also intro-

duces a novel fair exchange protocol where customers receive signed receipts

of appointment which guarantee compensation in case of a cheating monitor.

The practicality of the protocol is also demonstrated by our implementa-

tion of Pisa in µ-Raiden, a framework for unidirectional payment channels.

The implementation demonstrates the minimal changes that are required to

deploy Pisa and the little added on-chain cost to the customer. In the worst-

case scenario where a monitor equivocates during the outsouring protocol,

the added cost to the customer is only two on-chain transactions that handle

closing of a payment channel. Even under equivocation, however, the fair

exchange protocol guarantees that monitor’s are still obligated to respond

to according to any previously exchanged receipt and that the customer is

guarantees compensation by the monitor’s large deposit. Pisa solves a fun-

damental problem with current payment channels in ethereum and its con-

struction and implementation in this thesis demonstrates its strong fairness

37

guarantees and low operating cost.

38

APPENDIX A

MONITOR’S SMART CONTRACT

Listing A.1: This is the monitor’s smart contract written on Solidity. It

manages all payment channels to customers and can check for customer

recourse.

1 contract StateGuardian {

2 event CustomerDeposit(

3 address indexed _sender_address ,

4 uint indexed _sender_deposit

5);

6 event Dispute(

7 address indexed _customer_address ,

8 uint32 indexed _open_block_number ,

9 address indexed _sender_address ,

10 uint32 _channel_settle

11);

12 event Resolve(

13 address indexed _sender_address

14);

15 event Evidence(

16 address indexed _customer_address ,

17 address indexed _sender_address ,

18 uint32 indexed _pre_image ,

19 uint32 _open_block_number

20);

21 event Close(

22 uint32 _t_withdraw

23);

24 event Withdraw ();

25 event RecourseResult(

26 bytes32 indexed _evidence ,

27 bytes32 _receipt_hash ,

28 bool indexed _cheated

29);

30

39

31 enum Flags { OK , DISPUTE , CLOSED , CHEATED }

32

33 struct channel {

34 uint deposit;

35 uint32 t_settle;

36 Flags flag;

37 uint payout;

38 RaidenMicroTransferChannels caddr;

39 }

40

41 Flags flag;

42 uint public profit;

43 uint32 public delta_settle;

44 uint32 public delta_withdraw;

45 uint32 t_withdraw;

46 uint public num_customers;

47 uint public guardian_deposit;

48 address public monitor = msg.sender;

49

50 mapping (address => channel) public ID;

51

52 function setup(uint32 _delta_withdraw , uint32

_delta_settle)

53 payable external

54 {

55 require(msg.sender == monitor);

56 guardian_deposit = msg.value;

57 delta_settle = _delta_settle;

58 delta_withdraw = _delta_withdraw;

59 t_withdraw = 0;

60 flag = Flags.OK;

61 }

62 function deposit(address caddr)

63 payable external

64 {

65 require(msg.value > 0);

66 require(flag == Flags.OK);

67 require(ID[msg.sender].flag != Flags.DISPUTE);

68

69 if (ID[msg.sender].flag == Flags.CLOSED) {

70 num_customers += 1;

71 ID[msg.sender].flag = Flags.OK;

72 }

40

73 ID[msg.sender]. deposit += msg.value;

74 ID[msg.sender]. caddr = RaidenMicroTransferChannels(

caddr);

75 num_customers += 1;

76 CustomerDeposit(msg.sender , msg.value);

77 }

78 function extract_state_signature(

79 address _sender , uint32 _open_block_number ,

80 uint32 _payout , bool _cond_transfer ,

81 bytes32 _hash , bytes _signature)

82 internal view

83 returns (address)

84 {

85 bytes32 message_hash = keccak256(

86 keccak256(

87 ’address sender ’,

88 ’uint32 open block number ’,

89 ’uint32 payout ’,

90 ’bool cond_transfer ’,

91 ’bytes32 hash’

92),

93 keccak256(

94 _sender ,

95 _open_block_number ,

96 _payout ,

97 _cond_transfer ,

98 _hash

99)

100);

101 address signer = ECVerify.ecverify(message_hash ,

_signature);

102 return signer;

103 }

104 function setstate(

105 address _sender , uint32 _open_block_number ,

106 uint32 _payout , bool _cond_transfer ,

107 bytes32 _hash , uint32 _pre_image ,

108 bytes _customer_sig , address _customer)

109 view external

110 {

111 require(msg.sender == monitor);

112 require(flag != Flags.CHEATED);

113 require(_payout != ID[_customer]. payout);

41

114 require(_payout <= ID[_customer]. deposit);

115 require(keccak256(_pre_image) == _hash);

116

117 address customer_signer = extract_state_signature(

118 _sender ,

119 _open_block_number ,

120 _payout ,

121 _cond_transfer ,

122 _hash ,

123 _customer_sig

124);

125 require(customer_signer == _customer);

126 profit += _payout;

127 _customer.transfer(ID[_customer]. deposit - _payout);

128

129 ID[_customer]. deposit = 0;

130 ID[_customer]. t_settle = 0;

131 ID[_customer].flag = Flags.CLOSED;

132 ID[_customer]. payout = 0;

133 num_customers -= 1;

134

135 Evidence(_customer , _sender , _pre_image ,

_open_block_number);

136 }

137 function triggerdispute(address _sender , uint32

_open_block_number)

138 external

139 {

140 if (ID[msg.sender].flag == Flags.OK) {

141 ID[msg.sender].flag = Flags.DISPUTE;

142 ID[msg.sender]. t_settle = uint32(block.number +

delta_settle);

143 Dispute(msg.sender , _open_block_number , _sender ,

ID[msg.sender]. t_settle);

144 }

145 }

146 function resolve ()

147 external

148 {

149 if (flag == Flags.CHEATED ||

150 (ID[msg.sender]. t_settle < block.number &&

151 ID[msg.sender].flag == Flags.DISPUTE))

152 {

42

153 msg.sender.transfer(ID[msg.sender]. deposit);

154 ID[msg.sender]. t_settle = 0;

155 ID[msg.sender]. deposit = 0;

156 ID[msg.sender].flag = Flags.CLOSED;

157 ID[msg.sender]. payout = 0;

158 num_customers -= 1;

159 Resolve(msg.sender);

160 }

161 }

162

163 function stopmonitoring ()

164 external

165 {

166 require(msg.sender == monitor);

167 flag = Flags.CLOSED;

168 t_withdraw = uint32(block.number + delta_withdraw);

169 Close(t_withdraw);

170 }

171 function withdraw ()

172 external

173 {

174 require(flag != Flags.CHEATED);

175 require(msg.sender == monitor);

176

177 if (num_customers == 0 &&

178 block.number > t_withdraw &&

179 flag == Flags.CLOSED)

180 {

181 profit += guardian_deposit;

182 guardian_deposit = 0;

183 msg.sender.transfer(profit);

184 profit = 0;

185

186 Withdraw ();

187 }

188 }

189 function extractreceiptsignature(

190 address receiver , address sender ,

191 uint32 open_block_number , uint32 t_start ,

192 uint32 t_expire , bytes32 image ,

193 bytes32 balance_message_hash , bytes monitor_sig)

194 returns(address)

195 {

43

196 bytes32 receipt_hash = keccak256(

197 keccak256(

198 ’address customer ’,

199 ’address sender ’,

200 ’uint32 block created ’,

201 ’uint32 start time’,

202 ’uint32 expire time’,

203 ’bytes32 image’,

204 ’bytes32 evidence ’

205),

206 keccak256(

207 msg.sender ,

208 sender ,

209 open_block_number ,

210 t_start ,

211 t_expire ,

212 image ,

213 balance_message_hash

214)

215);

216

217 address signer = ECVerify.ecverify(receipt_hash ,

monitor_sig);

218 return signer;

219 }

220 function recourse(

221 address sender , uint32 open_block_number ,

222 bytes32 image , uint32 t_start ,

223 uint32 t_expire , bytes32 balance_message_hash ,

224 bytes monitor_sig , uint32 pre_image)

225 external

226 {

227 require(flag != Flags.CHEATED);

228 require(keccak256(pre_image) == image);

229

230 address signer = extractreceiptsignature(

231 msg.sender ,

232 sender ,

233 open_block_number ,

234 t_start ,

235 t_expire ,

236 image ,

237 balance_message_hash ,

44

238 monitor_sig

239);

240 require(signer == monitor);

241 uint32 block_number;

242 bytes32 evidence;

243

244 (block_number , evidence) = ID[msg.sender].caddr.

getClosingInfo(sender , msg.sender ,

open_block_number);

245

246 if (

247 open_block_number <= t_start &&

248 block_number < t_expire &&

249 evidence != balance_message_hash)

250 {

251 flag = Flags.CHEATED;

252 RecourseResult(evidence , balance_message_hash ,

true);

253 } else {

254 RecourseResult(evidence , balance_message_hash ,

false);

255 }

256 }

257 }

45

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] Visa, “Visa stress test.” [Online]. Avail-
able: https://www.visa.com/blogarchives/us/2013/10/10/
stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/
index.html

[3] “Block size limit controversy,” 2018. [Online]. Available: https:
//en.bitcoin.it/wiki/Block size limit controversy

[4] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized
blockchains,” in International Conference on Financial Cryptography
and Data Security. Springer, 2016, pp. 106–125.

[5] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford, “Enhancing Bitcoin security and performance with strong con-
sistency via collective signing,” in USENIX Security Symposium, 2016.

[6] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, and P. Sax-
ena, “SCP: A computationally-scalable Byzantine consensus protocol
for blockchains,” in CCS, 2016.

[7] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the per-
missionless model,” Cryptology ePrint Archive, Report 2016/917, 2016,
http://eprint.iacr.org/2016/917.

[8] G. Caffyn, “What is the Bitcoin block size debate and why does it
matter?” Aug. 2015. [Online]. Available: https://www.coindesk.com/
what-is-the-bitcoin-block-size-debate-and-why-does-it-matter/

[9] J. Poon and T. Dryja, “The Bitcoin lightning network:scalable off-chain
instant payments.” [Online]. Available: https://lightning.network/
lightning-network-paper.pdf

[10] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with Bitcoin duplex micropayment channels,” in Symposium on Self-
Stabilizing Systems. Springer, 2015, pp. 3–18.

46

[11] “The raiden network.” [Online]. Available: https://raiden.network/

[12] “Truebit: A scalable verification solution for blockchains.” [Online].
Available: https://truebit.io/

[13] “Micro-raiden: A payment channel framework for fast and free off-chain
erc20 token transfers.” [Online]. Available: https://raiden.network/
micro.html

[14] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry, “Sprites: Payment
channels that go faster than lightning,” CoRR, vol. abs/1702.05812,
2017. [Online]. Available: http://arxiv.org/abs/1702.05812

[15] E. Foundation, “Erc20 token standard,” https://theethereum.wiki/w/
index.php/ERC20 Token Standard.

[16] I. Cascudo and B. David, “Scrape: Scalable randomness attested by
public entities,” in International Conference on Applied Cryptography
and Network Security. Springer, 2017, pp. 537–556.

[17] “Etherscan.” [Online]. Available: https://etherscan.io

47

