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ABSTRACT

This thesis considers the stabilization of discrete time switched systems using average output

variance as the performance criterion, incorporating actuator saturation constraints into this

optimal synthesis. Necessary and sufficient conditions are presented for the existence of a

stabilizing static state feedback controller subject to saturation constraints, together with a

constructive method to find this controller. These are presented as semi-definite optimization

problems.
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CHAPTER 1

INTRODUCTION

This thesis considers satisfying a desired performance metric subject to the uniform sta-

bilization of discrete-time switched linear systems with input constraints. These systems

contain many discrete-time subsystems with a rule that governs the switching between the

different subsystems or modes [1]. The mode at any given time is chosen independently and

can be represented by a non-deterministic signal [2]. The study of these types of systems

is prevalent in both research and industry to represent and investigate the properties of a

large class of plants. These plants are modeled as switched systems and can be thought of as

simplified continuous hybrid models governed by discrete events [3]. Switched systems have

applications in control of mechanical systems, automotive systems, air traffic control, com-

munications networks, modeling bio-chemical reaction, networks control, and many other

diverse areas [1].

Work in stabilizing switched systems using receding horizon control has been published

in [3], [4], [5]. These methods solve for the optimal control action over a future window

subject to input constraints, implement only the first step, allow the system to move forward,

then recalculate the optimal control action. This type of model predictive control (MPC) is

heuristic for it offers no guarantees of performance metric or stabilization. It is assumed that

for a horizon long enough the system is stable, but the solution is not exact. Further work

has been done to expand MPC for linear switched systems to give exact conditions to satisfy

a specified performance metric and guarantee stabilization of the system [6]. However, this

exact solution does not allow for the inclusion of saturation constraints into the controller

design.

A lot of work has also been done in the field of input constraint for non-switched systems.

Many articles consider the min-max approach, where the performance criterion used is min-

imized over the worst-case disturbance realization accounting for saturation constraints [7],

[8], [9]. Although this approach can be used for a wide variety of systems, it does not produce

an exact solution, is often computationally demanding, and the resulting control laws can be

extremely conservative. Further work included the stochastic properties of the disturbance

to get less conservative control laws [10], [7].
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The work presented in this thesis expands the work on MPC for linear switched systems

satisfying a desired performance metric subject to stabilization in [6] by adding conditions

for saturation constraints in the form of a semi definite program. The system considered in

this thesis is a linear switched system that relies on a finite number of past parameters and

has knowledge of a finite future horizon. The performance metric considered is the average

output variance over a finite forward window. The stability of switched linear systems with a

full state feedback controller is considered in [6], [11]. This thesis will limit the controller type

to a static state feedback controller for simplification and provide conditions in the form of

linear matrix inequalities for stability and performance incorporating saturation constraints.

This thesis is organized in the following way. Chapter 2 presents mathematical equations

and identities necessary for the understanding of further concepts in this thesis. Addition-

ally, the chapter covers using linear matrix inequalities to provide sufficient conditions for the

existence of a controller subject to input constraints, and includes a section on the stability

of autonomous switched linear time varying systems. Chapter 3 introduces the performance

criterion used to judge the performance of switched systems and applies the stability re-

sults from chapter 2. The results are then extended to the closed loop case using a static

state feedback controller with knowledge of a finite horizon of future modes. Finally, in-

put constraints are added as sufficient linear matrix inequalities to the closed loop system.

Conclusions and suggestions for future work are outlined in chapter 4.

2



CHAPTER 2

BACKGROUND MATERIAL

This chapter presents background material necessary for the understanding of the concepts

presented in this thesis. The first sections will detail well-known mathematical identities.

Next, a sufficient linear matrix inequality will be presented to guarantee that input con-

straints on a system are met. The final section will detail basic knowledge on the stability

of autonomous discrete-time linear switched systems.

Throughout the sections of this thesis, the following notation will be used uniformly. For

any matrix X ∈ Rn×m, where R is the set of real numbers, X∗ is the Hermitian conjugate

of X. The set of complex numbers is denoted by C. A Hermitian matrix is any matrix X

that satisfies X = X∗ and will be denoted as X ∈ Hn. A Hermitian matrix X, is positive

definite if it satisfies x∗Xx � 0 for all x 6= 0, this is denoted by X � 0. The trace of X is

represented by Tr{X}. For any vector x ∈ Rn, the norm ‖x‖ denotes the Euclidean norm

‖x‖ =
√
x∗x. For any Hermitian matrix X � 0, the corresponding norm is ‖y‖X =

√
y∗Xy.

The space `2(Rn) represents sequences x = (x0, x1, x2, ...) where each xk ∈ Rn and

∞∑
k=0

‖xk‖2 <∞

2.1 Mathematical Analysis

A Linear Matrix Inequality (LMI) is a matrix inequality that has the following form

F (x) := F0 + x1F1 + x2F2 + ...+ xnFn � 0
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where F0, F1, ..., Fn ∈ H and xi ∈ R. Multiple LMIs F0(x), F1(x)..., Fn(x) � 0 can be

expressed as a single LMI of the form
F0 0 . . . 0

0 F1

...
. . .

...

0 . . . Fn

 � 0

Since this expression always holds for any set of LMIs, no distinction will be made between

a set of LMIs and a single LMI in the subsequent sections. However, it is worth noting that

for computational purposes, there can be a significant difference.

Proposition 2.1 Consider a partitioned matrix given by

X =

[
X11 X12

X∗12 X22

]
where X11, X12 and X22 are matrices and X11, X12 are self-adjoint. Then the following

statements are equivalent:

X � 0 (2.1 a)

X22 � 0 and X11 −X12X
−1
22 X

∗
12 � 0 (2.1 b)

X11 � 0 and X22 −X∗21X−111 X12 � 0 (2.1 c)

Proof: Since multiple LMIs can be expressed as a single LMI, equation (2.1 b) can be

written as [
X11 −X12X

−1
22 X

∗
12 0

0 X22

]
� 0

Now multiplying from the left by [
I X12X

−1
22

0 I

]
� 0

and from the right by its adjoint, gives the equation[
I X12X

−1
22

0 I

][
X11 −X12X

−1
22 X

∗
12 0

0 X22

][
I 0

X−122 X
∗
12 I

]
� 0
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Multiplying through gives equation (2.1 a) as desired.[
X11 X12

X∗12 X22

]
� 0

The proof from equation (2.1 c) to equation (2.1 a) follows a similar procedure using[
X11 0

0 X22 −X∗21X−111 X12

]
� 0

Multiplying from the left by [
I 0

X∗12X
−1
11 I

]
� 0

and from the right by the adjoint gives the desired result.

This is the well-known Schur compliment formula. The same proof can be found in [12],

[13].

2.2 Analysis of Input Constraints Using LMI

This section details a method to include input constraints on systems in the form of a linear

matrix inequality (LMI). The system considered is a linear time-varying (LTV) system

xt+1 = Atxt +Btut (2.2)

zt = Cxt

where ut ∈ Rnu is the control input, xt ∈ Rnx is the state of the plant, and zt ∈ Rny is the

plant output at time t.

In the following lemma, it is assumed that Xt is in the gramian at time t, so the system

subject to the constraint always lies in the set of reachable states.

Now desired limits on the control signal will be expressed as sufficient LMI constraints.

The basic idea presented below can be found for continuous time systems in [14], and the

discrete time version using the same notation is presented in [13]. For clarity, the proof is

included below.
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Lemma 2.3 The input constraint

‖ut‖ ≤ umax (2.3)

can be represented by the equivalent LMI constraint[
u2maxI Q

Q∗ X

]
� 0 (2.4)

Proof: First, start with the desired constraint on the input u. Squaring both sides of the

equation gives

‖ut‖2 ≤ u2max

This can be represented as the equivalent equation

max
i≥0
‖ut‖2 ≤ u2max

Assuming the system has a static state feedback controller with ut = Fxt and F = QX−1

gives

max
i≥0
‖QX−1xt‖2 ≤ u2max

Now, change the set such that

max
‖v‖≤1
‖QX−

1
2v‖2 ≤ u2max

The induced matrix norm removes the maximization and leaves

‖QX−
1
2‖2 ≤ u2max

Applying a well-known result from spectral theory gives

QX−1Q∗ � u2maxI

Then using the Schur compliment formula, the above inequality becomes[
u2maxI Q

Q∗ X

]
� 0

which is an LMI that is linear in both X and Q.
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This LMI represents a sufficient constraint that guarantees the control input constraints

will be satisfied.

2.3 Switched Systems

Switched systems are prolific in modern control contexts. The type of switched system

considered in this thesis exhibit non-deterministic switching between nodes. The stability

of the following systems have been analyzed in [6], [11] and the proofs have been included

here for completeness. For a time-valued sequence, θ(t), θ(a:b) will be used to denote the

sequence (θ(a), ..., θ(b)). [N ] will be used to denote the set of indicies {1, ..., N}. The system

has finitely many such modes, each of which possesses a state space model. This can be

represented by the system

xt+1 = Aθ(t)xt +Bθ(t)wt (2.5)

zt = Cθ(t)xt +Dθ(t)wt

where each θ(t) : Z+ → [N ] represents the current value at time t of an admissible switching

sequence between modes (N). The allowable switching paths are determined by an adjacency

matrix Q ∈ {0, 1}N×N where the switching dynamics are controlled by an automaton. When

discussing LTV systems, it is often useful to utilize operator notation. The unilateral shift

operator, Z, is defined so that for any sequence x = (x0, x1, x2, ...),

Zx = (0, x0, x1, ...)

Additionally, any bounded operator Q : `2(Rn) → `2(Rm) is called block diagonal if a se-

quence of operators Qk : Rn → Rm such that if y = Qx then yk = Qkxk, for k ∈ {0, 1, 2, ...}.
Block diagonal operator Q has the form

Q =


Q0 0 . . .

0 Q1

...
. . .


Using block diagonal operators to solve LTV systems is covered in [15] and [6].

The discussion of stability for switched linear systems without any performance measure

is presented to provide results needed for future sections. The autonomous system is repre-

sented by

xt+1 = Atxt (2.6)
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where A(t) ∈ Rn×n for all t ≥ 0. In this section, A(t) is assumed to be uniformly bounded.

The equivalent system written in operator notation using the shift operator, Z, is represented

by

x = ZAx (2.7)

Definition 2.4 An LTV system is uniformly exponentially stable if there exist constants

c ≥ 1 and λ ∈ (0, 1) such that for all k ≥ 0

‖(ZA)k‖ ≤ cλk (2.8)

Lemma 2.5 An LTV system is uniformly exponentially stable if and only if there exists

a matrix X � 0 such that

(ZA)X(ZA)∗ −X ≺ 0 (2.9)

where X is a block diagonal matrix

Proof: This lemma is the operator version of the well-known discrete time Lyapunov equa-

tion. A full proof using operator notation can be found in [15].

Lemma 2.6 If X is a solution to the discrete time Lyapunov equation and there exist

positive constants α, β, γ such that

αI � X � βI

(ZA)X(ZA)∗ −X � −γI (2.10)

Then the system is uniformly exponentially stable and the constants c, λ are given by

c =

√
β

α
; λ =

√
1− γ

β

Proof: Using the inequality above gives

‖(ZA)x‖2X − ‖x‖2X ≤ −γ‖x‖2

The norm ‖x‖X is bounded by

α‖x‖2 ≤ ‖x‖2X ≤ β‖x‖2
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Using the upper bound shows that γ < β and results in

‖(ZA)x‖2X ≤ (1− γ

β
)‖x‖2X

Using the submultiplicative property of the norm

‖(ZA)k‖2X ≤ (1− γ

β
)k

Again, using the bounds on X gives

‖(ZA)kx‖2 ≤ β

α
(1− γ

β
)k‖x‖2

Taking the square root and rearranging the terms gives

‖(ZA)kx‖
‖x‖

≤
√
β

α

(√
1− γ

β

)k
which is the desired result.

Expanding the stability results above to switched systems requires looking at a solution to

the discrete time Lyupanov equation that is dependent on a finite number of past parameters.

Lemma 2.7 Suppose the system is uniformly exponentially stable, and that the solution

X � 0 is a block diagonal matrix whose blocks depend only on finitely many past parameters.

Proof: Suppose c and λ are constants such that the system is uniformly exponentially stable.

Pick M so that cλM < 1. Now let

X(M) =
M−1∑
k=0

(ZA)k[(ZA)∗]k (2.11)

It is clear from this definition that XM is positive definite. Substituting XM for X in

equation (2.9) gives

(ZA)X(M)(ZA)∗ −X(M)

= (ZA)M [(ZA)∗]M − I

� −(1− c2λ2M)I
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Therefore, X(M) satisfies equation (2.9). The individual blocks X
(M)
k are of the form

X
(M)
k = I +

k−1∑
s=max{0,k−M}

(As · ... · Ak+1)(As · ... · Ak+1)
∗

From this form it is shown that X(M) depends on at most M past parameters as desired.

For the last part of the discussion on autonomous switched linear systems, the stability of

the following system will be considered

xt+1 = Aθ(t)xt (2.12)

Definition 2.8 A switched linear system is uniformly exponentially stable if there exists

constants c ≥ 1 and λ ∈ (0, 1) so that the system is uniformly exponentially using Definition

2.4 for every admissible switching sequence θ = (θ(1), θ(1), ...).

The parameters of the system depend only on the current mode. The following function

φ : [N ]L+H+1 → [N ] will be used to represent this dependence.

φ(θ(t−L:t+H)) = θ(t), φ((i−L, ..., i0, ..., iH)) = i0 (2.13)

where L is the controller memory, and H is the controller horizon.

Lemma 2.9 For H ≥ 0 and L ≥ 0, the switched system above is uniformly exponentially

stable if and only if for all admissible i−L:H and φ as defined in equation (2.13) there exists

M ≥ 0 and matrices Xj � 0 for j ∈ [N ]L+M+H such that

A∗φ(i(−L:H))
Xi(−L−M+1:H)

Aφ(i(−L:H)) −Xi(−L−M+1:H−1)
≺ 0 (2.14)

Proof: Suppose there exists an M and a set of matrices Xj that satisfy equation (2.14).

There are finitely many inequalities, so there exist positive constants α, β so that

αI � Xj � βI

A∗φ(θ(−L:H))
Xi(−L−M+1:H)

Aφ(θ(−L:H)) −Xi(−L−M+1:H−1)
� −αI (2.15)

Let θ(t) be an admissible switching sequence. Now, pick modes ψ−L−M , ..., ψ−1 so that

the resulting switching sequence (ψ−L−M , ..., ψ−1, θ(0)) is admissible. Define θ(−L −M) =

ψ−L−M , ..., θ(−1) = ψ−1 which ensures that θ(t) is defined for t ≥ −L−M . Finally, construct
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the block diagonal operator X with Xt = Xθt−L:t+H
and the block diagonal operator (Aθ)t =

Aφ(θ(t−L:t+H)). Substituting these two block diagonal operators into the equations yields

αI � X � βI

(ZAθ)
∗X(ZAθ)−X � −αI (2.16)

Using Lemma 2.5, the above system is exponentially stable and by Lemma 2.6, the bounds

on the function rely on constants α and β instead of the switching sequence, proving uniform

exponential stability.
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CHAPTER 3

PERFORMANCE OF SWITCHED LINEAR
SYSTEMS WITH INPUT CONSTRAINTS

This chapter provides average output variance as a performance criterion for discrete time

switched linear systems. Both the open loop and closed loop configurations will be consid-

ered. The system has knowledge of a finite horizon of future switching modes. Previous work

has been completed using the same performance to study the stability of these systems using

a full state feedback controller. The controller has access to finitely many future modes but

the input is unconstrained. The results presented extend the previous work to add sufficient

LMI input constraints to the controlled system.

This chapter is broken into sections that cover the following topics. First, discrete time

switched systems are examined using average output variance in the open loop case. Con-

ditions for stability are quantified and sufficient conditions to guarantee performance are

presented. The second section extends the first section to the closed loop case considering a

static state feedback controller, K, that has knowledge of finitely many future modes. This

section also provides sufficient conditions for stability and performance objectives as LMI

constraints. The final section gives input constraints to switched systems and applies those

constraints to the closed loop switched system. Again, sufficiency conditions are presented

as LMI constraints.

3.1 Windowed Output Regulation for Open Loop Systems

In this section, the performance criterion of the system utilized is the average output variance

over a finite window. A full analysis of this type of performance measure for switched systems

can be found in [6]. The system considered is

xt+1 = Atxt +Btwt (3.1)

zt = Ctxt +Dtwt
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where At ∈ Rn×n, Bt ∈ Rn×m, Ct ∈ Rl×n, Dt ∈ Rl×m for t > 0. For simplicity, the feed-

through matrix, Dt, is assumed to be zero in this thesis. The parameters of the system

are assumed to be bounded uniformly and can be expressed in the operator notation seen in

chapter 2. In this section, the disturbance input, wt is an independent, identically distributed

(i.i.d.) sequence satisfying

E[wt] = 0 (3.2)

E[wtw
∗
s ] =

{
I for t = s

0 for t 6= s

For all s, t ≥ 0. Assuming the length of the finite window is T ≥ 0, the system performance

is quantified as follows.

Definition 3.1 The LTV system above satisfies the T-step uniform performance level γ

if for γ > 0, input wt defined above, and initial state x0 = 0, the system output zt satisfies

1

T + 1

t+T∑
s=0

E[‖zs‖2] ≤ γ2 (3.3)

for all t ≥ 0.

Using operator notation, a discrete time LTV system is uniformly exponentially stable if

there exists a unique solution, X0 � 0 that satisfies the Lyapunov equation

(ZA)X0(ZA)∗ −X0 + (ZB)(ZB)∗ = 0 (3.4)

where X0 is a block diagonal matrix.

The structure of X0 is given by

(X0)t =
t∑

s=0

Φt+1,s+1BsB
∗
sΦ
∗
t+1,s+1 (3.5)

where Φt,s is defined as

Φt,s =

{
I for t = s

At−1 · ... · As for t ≥ s
(3.6)

Remark 3.2 Let X � 0 be a block diagonal operator satisfying

(ZA)X(ZA)∗ −X + (ZB)(ZB)∗ � 0 (3.7)
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From the definition of X0 in equation (3.4) it is clear that for any X satisfying equation

(3.7), X � X0.

Proposition 3.3 Using the LTV system defined in equation (3.1) and the definition of

wt given in equation (3.2) yields

E[‖zt‖2] = Tr{CX0C
∗} (3.8)

Proof: Begin by considering

ztz
∗
t = Ctxtx

∗
tC
∗
t

Substitute in the definition of xt from equation (3.1) in operator notation to get

ztz
∗
t = Ct(I − ZA)−1(ZB)wtw

∗
t (ZB)∗(I − ZA)∗C∗t

Taking the trace of both sides gives

Tr{ztz∗t} = Tr{Ct(I− ZA)−1(ZB)wtw
∗
t (ZB)∗(I− ZA)∗C∗t}

Now, take the expected value of each side and using the definition of E[wtw
∗
s ] in equation

(3.2) leaves

E[‖zt‖2] = Tr{Ct(I− ZA)−1(ZB)(ZB)∗(I− ZA)∗C∗t}

Finally substituting in X0 completes the proof.

Definition 3.4 Define a windowed trace for a block diagonal operator as

Tr(t,T){X} =
1

T + 1

t+T∑
s=t

Tr{Xt} (3.9)

Using equations (3.3) and (3.9), it is clear that the T-step uniform performance level can

be written as

Tr(t,T){CX0C
∗} < γ2 (3.10)

for t ≥ 0.

Theorem 3.5 The LTV system described in equation (3.1) is uniformly exponentially

stable and satisfies T-step uniform performance level γ if and only if there exists a block

diagonal operator X � 0 with blocks dependent on a finite number of past parameters so

that

(ZA)X(ZA)∗ −X + (ZB)(ZB)∗ � 0 (3.11)
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Tr(t,T){CXC∗} < γ2 (3.12)

Proof: Examining the forward direction, assume a solution to equations (3.11) and (3.12)

exists. By observation, it is clear that equation (3.11) is a stricter inequality than equation

(2.8). Therefore, any X satisfying equation (3.11) also satisfies equation (2.8). Then, using

Lemma 2.5, the system is uniformly exponentially stable.

Now, construct X0 by solving equation (3.7) to obtain the following equation for the T-step

performance

Tr(t,T){CX0C
∗} < γ2

Combining Remark 3.2 and using the fact that the windowed trace preserves order (if X � Y ,

then Tr(t,T){X} ≥ Tr(t,T){Y}) yields

Tr(t,T){CXC∗} < γ2

Finally, using Proposition 3.3 shows that the system satisfies performance level γ.

Now looking at the reverse direction, define a constant ε ≥ 0 and look at the sequence

X(ε,M+1) = (ZA)X(ε,M)(ZA)∗ + (ZB)(ZB)∗ + εI (3.13)

The starting term of the sequence is X(ε,0) = εI. Each individual block of operator X
(ε,M)
t

depends on at most M past parameters. Note that for any t ≥ 0 the blocks X
(ε,M)
t = X

(ε,M+1)
t

for all M ≥ t. Defining X(ε) be the weak limit of the blocks in this sequence,

X(ε) = (ZA)X(ε)(ZA)∗ + (ZB)(ZB)∗ + εI (3.14)

then for M ≥ 0,

εI � X(ε,M) � X(ε,M+1) � X(ε)

Let
∼
X be the solution to the Lyapunov equation

(ZA)
∼
X(ZA)∗ −

∼
X = −I

Using the boundedness of X0 and
∼
X, there exists a constant β > 0 so that X(ε) � βI.

Therefore,

Tr(t,T){CX(ε)C∗} = Tr(t,T){CX0C
∗}+ εTr(t,T){C

∼
XC∗}

Since operators
∼
X and C are uniformly bounded, Tr(t,T){C

∼
XC∗} is also bounded. Therefore

choosing ε arbitrarily small will allow εTr(t,T){C
∼
XC∗} to also be arbitrarily small. Since the
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system satisfies T-step performance level γ,

Tr(t,T){CX0C
∗} < γ2

Choosing ε small enough gives

Tr(t,T){CX(ε)C∗} < γ2

Using the uniform exponential stability defined in equation (2.10) and Definition 2.4, there

exists constants c and λ. Choose M so that

c2λ2M <
α

(β − α)
(3.15)

Then starting with the equation

(ZA)X(ε,M)(ZA)∗ −X(ε,M)

and using the relationship in equation (3.13) gives

= (ZA)[X(ε,M) −X(ε,M−1)](ZA)∗ − εI

Now, iterating and noticing that at each iteration, −εI and εI cancel leaves

= (ZA)M [X(ε,1) −X(ε,0)]((ZA)∗)M − εI

Accounting for the bounds in equation (3.15) yields

� (c2λ2M)(β − α)I − εI

Finally, using the fact that X(ε,M+1) � X(ε) gives

Tr(t,T){CX(ε,M)C∗} < γ2 (3.16)

which gives the desired result.

Use the results for the LTV system, it is now possible to extend these derived formulas to

the switched case.

Theorem 3.6 The system described in equation (3.1) is uniformly exponentially stable

and satisfies the T-step performance level γ if and only if for H ≥ 0 and L ≥ 0 there exists an
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integer M ≥ 0 and matrices Xj � 0 for j ∈ [N ]L+M+H so that for all admissible, i(−L−M :H)

and î(−L−M :H+T )

Aφ(i(−L:H))Xi(−L−M :H)
A∗φ(i(−L:H))

−Xi(−L−M+1:H−1)

+Bφ(i(−L:H))B
∗
φ(i(−L:H))

≺ 0
(3.17)

Tr(t,T){Cφ(̂i(t−L:t+H))
Xî(t−L−M:t+H−1))

C∗
φ(̂i(t−L:t+H))

} < γ2 (3.18)

Proof: The proof follows the same format as the proof from Lemma 2.9 and including the

conditions used in Theorem 3.5.

This result concludes the section on windowed output regulation for an uncontrolled

switched system. Now, the same performance measure will be used to analyze the closed

loop system.

3.2 Windowed Output Regulation for Closed Loop Systems

Sufficient conditions for a uniformly stabilizing controller for a switched linear system are

now examined. The state feedback arrangement considered in this section is shown in figure

3.1. Where the system in question is the same as equation (3.1) where, for simplification,

Dθ(t) is assumed to be zero. This results in the following state space equations

xt+1 = Aθ(t)xt +Bθ(t)wt (3.19)

zt+1 = Cθ(t)xt (3.20)

where wt is defined as in the previous section. This system is connected via state feedback

of the form

wt = Kθ(t)xt (3.21)

For the purpose of this thesis, the controller K is assumed to be static with K = F .

Using the definition of controller K and the open loop system, the closed loop equations

are as follows

xt+1 = (Aθ(t) −B2,θ(t)Fθ(t))xt +B1,θ(t)wt (3.22)

zt = C1,θ(t)xt (3.23)

Uniform exponential stability of the closed loop system is the same as equation (2.8) for

the open loop LTV system.
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Figure 3.1: Closed Loop State Feedback Arrangement [12]

18



Theorem 3.7 For H ≥ 0 and L ≥ 0 the closed loop system outlined in equations (3.22)

and (3.23) is uniformly exponentially stable and satisfies T-step performance measure γ if and

only if there exists an integer M ≥ 0 and a collection a matrices Xj � 0 for j ∈ [N ]L+M+H

such that for all admissible i(−L−M :H) and î(−L−M :H+T )

(Aφ(i(−L:H)) +B2,φ(i(−L:H))Fφ(i(−L:H)))Xi(−L−M :H)
(Aφ(i(−L:H)) +B2,φ(i(−L:H))Fφ(i(−L:H)))

∗

−Xi(−L−M+1:H−1)
−B1,φ(i(−L:H))B

∗
1,φ(i(−L:H))

≺ 0
(3.24)

Tr(t,T){C1,φ(̂i(t−L:t+H))
Xî(t−L−M:t+H))

C∗
1,φ(̂i(t−L:t+H))

} < γ2 (3.25)

Proof: The proof follows from the proof in Theorem 3.6 using the closed loop system.

Using the controller relationship

Fi(−L:H) = Qi(−L−M :H)X
−1
i(−L−M :H)

the Lyapunov equation in equation (3.24) becomes

(Aφ(i(−L:H)) +B2,φ(i(−L:H))Qi(−L−M :H)X
−1
i(−L−M :H))Xi(−L−M :H)

(Aφ(i(−L:H)) +B2,φ(i(−L:H))Qi(−L−M :H)X
−1
i(−L−M :H))

∗

−Xi(−L−M+1:H−1)
−B1,φ(i(−L:H))B

∗
1,φ(i(−L:H))

≺ 0

which is clearly not linear in X and requires manipulation in order to be expressed as an

LMI. Multiplying through and rearranging the terms gives

−(Aφ(i(−L:H))Xi(−L−M :H)
A∗φ(i(−L:H))

+B2,φ(i(−L:H))Qi(−L−M :H)A
∗
φ(i(−L:H))

+Aφ(i(−L:H))Q
∗
i(−L−M :H)B2,φ(i(−L:H)) −Xi(−L−M+1:H−1)

+B1,φ(i(−L:H))B
∗
1,φ(i(−L:H))

)

−(B2,φ(i(−L:H))Qi(−L−M :H))X
−1
i(−L−M :H)

(B2,φ(i(−L:H))Qi(−L−M :H))
∗ � 0

Taking the Schur compliment gives[
V (X,Q) (B2,φ(i(−L:H))Qi(−L−M :H))

∗

(B2,φ(i(−L:H))Qi(−L−M :H)) Xi(−L−M :H)

]
� 0

V (X,Q) = −Aφ(i(−L:H))Xi(−L−M :H)A
∗
φ(i(−L:H))

−B2,φ(i(−L:H))Qi(−L−M :H)A
∗
φ(i(−L:H))

−Aφ(i(−L:H))Q
∗
i(−L−M :H)B

∗
2,φ(i(−L:H))

+Xi(−L−M+1:H−1) −B1,φ(i(−L:H))B
∗
1,φ(i(−L:H))
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which is clearly linear in both X and Q. Therefore, Theorem 3.7 can be represented using

LMI constraints.

Theorem 3.8 For H ≥ 0 and L ≥ 0 the closed loop system outlined above is uniformly

exponentially stable and satisfies T-step performance measure γ if and only if there exists

an integer M ≥ 0 and a collection of matrices Xj � 0 for j ∈ [N ]L+M+H such that for all

admissible i(−L−M :H) and î(−L−M :H+T )

Fi(−L:H) = Qi(−L−M :H)X
−1
i(−L−M :H) (3.26)[

V (X,Q) (B2,φ(i(−L:H))Qi(−L−M :H))
∗

(B2,φ(i(−L:H))Qi(−L−M :H)) Xi(−L−M :H)

]
� 0 (3.27)

V (X,Q) = −Aφ(i(−L:H))Xi(−L−M :H)A
∗
φ(i(−L:H))

−B2,φ(i(−L:H))Qi(−L−M :H)A
∗
φ(i(−L:H))

−Aφ(i(−L:H))Q
∗
i(−L−M :H)B

∗
2,φ(i(−L:H))

+Xi(−L−M+1:H−1) −B1,φ(i(−L:H))B
∗
1,φ(i(−L:H))

Tr(t,T){C1,φ(̂i(t−L:t+H))
Xî(t−L−M:t+H))

C∗
1,φ(̂i(t−L:t+H))

} < γ2 (3.28)

Proof: The proof follows exactly from the proof of Theorem 3.7 and the substitutions out-

lined above.

3.3 Reachable Ellipsoid of the Controllability Gramian

The feasibility for the saturation constraints presented in Section 2.2 will now be proved for

the LTV case and extended to the switched case. The following analysis for the linear case

is found in [12]. There exists a block diagonal X0 � 0, which satisfies equation (3.4). The

structure of (X0)t is as stated in equation (3.5).

Proposition 3.9 Given X0 � 0, the following are equivalent.

(a) the matrix (Ψc)t+1(Ψc)
∗
t+1 = (X0)t is nonsingular

(b) for any (x0)t+1 ∈ Cn the input uopt = (Ψc)
∗
t+1(X0)

−1
t (x0)t+1 is an element of minimum

norm in the set {ut ∈ `2(−∞, 0], (Ψc)t+1ut = (x0)t+1}

Proof: First, the expression for (Ψc)t+1 is given by

(Ψc)t+1 = Φt,sBs (3.29)

where Φt,s is as defined in equation (3.6). It is therefore clear from equations (3.29) and
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(3.5) that

(X0)t = (Ψc)t+1(Ψc)
∗
t+1

which is defined as the controllability gramian. Using the definition for uopt above and

multiplying from the right by (Ψc)t+1 gives the equation

(Ψc)t+1uopt = (Ψc)t+1(Ψc)
∗
t+1(X0)

−1
t (x0)t+1

Simplifying gives

(x0)t+1 = (Ψc)t+1uopt (3.30)

which shows that ut = uopt belongs to the allowable set of inputs. Now, it must be shown

that for any ut in this set, ‖ut‖ ≥ ‖uopt‖. Define the operator

P = (Ψc)
∗
t+1(X0)

−1
t (Ψc)t+1

which is an orthogonal projection satisfying P = P 2 = P ∗. Using this identity gives

‖ut‖ = ‖Put‖2 + ‖(I − P )ut‖2 ≥ ‖Put‖2 (3.31)

for any ut ∈ `2(−∞, 0]. Let ut satisfy (x0)t+1 = (Ψc)t+1ut.

Put = (Ψc)
∗
t+1(X0)

−1
t (Ψc)t+1ut = (Ψc)

∗
t+1(X0)

−1
t (x0)t+1 = uopt

Using the relationship in equation (3.31) leaves

‖ut‖2 ≥ ‖uopt‖2

as desired.

Proposition 3.9 shows that the optimal way to reach any state (x0)t+1 is given by uopt =

(Ψc)
∗
t+1(X0)

−1
t (x0)t+1. Now, the final reachable states defined in equation (3.30) that can be

reached with an input of unit norm are presented.

Proposition 3.10 The following sets are equivalent

{(Ψc)t+1ut : ut ∈ `2(−∞, 0) and ‖ut‖ ≤ 1} (3.32 a)

(X0)
1
2
t (xc)t+1 : (xc)t+1 ∈ C and |(xc)t+1| ≤ 1} (3.32 b)

Proof: To prove that the set in equation (3.32 a) is contained in the set of equation (3.32
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b), choose any ut with ‖ut‖ ≤ 1. Let

(xc)t+1 = (X0)
1
2
t (Ψc)t+1ut

Notice that the norm of (xc)t+1 is given by

|(xc)t+1|2 = 〈(X0)
1
2
t (Ψc)t+1ut, (X0)

1
2
t (Ψc)t+1ut〉

= 〈ut, (Ψc)
∗
t+1(X0)

−1
t (Ψc)t+1ut〉

Substituting in the projection operator, P gives

〈ut, Put〉 = ‖Put‖2

Using equation (3.31) shows

‖Put‖2 ≤ ‖ut‖2 ≤ 1

Proving that (Ψc)t+1ut = (X0)
1
2
t (xc)t+1 is in the set in equation (3.32 b). Looking now at

the reverse direction, let (xc)t+1 be a vector such that |(xc)t+1| ≤ 1. Choose the input of

minimum norm that satisfies (Ψc)t+1ut = (X0)
1
2
t (xc)t+1. The input is uopt and its norm is

given by

‖uopt‖2 = ((X0)
1
2
t (xc)t+1)

∗(X0)
−1
t ((X0)

1
2
t (xc)t+1) = |(xc)t+1| ≤ 1

This shows that (X0)
1
2
t (xc)t+1 is in the set defined in equation (3.32 a), completing the

proof.

Proposition 3.10 showed that all states reachable with input ut satisfying ‖ut‖ ≤ 1 are

given by equation (3.32 b). Geometrically, define the controllability ellipsoid as

Ec = {(X0)
1
2
t (xc)t+1 : (xc)t+1 ∈ Cn and |(xc)t+1| ≤ 1} (3.33)

which defines the boundary of the set of reachable states. Now let X � 0 be a block diagonal

matrix satisfying equation (3.37). Notice that for any X satisfying equation (3.37) and any

X0 satisfying equation (3.34), X � X0. Therefore define the ellipsoid

E = {(X)
1
2
t (xc)t+1 : (xc)t+1 ∈ Cn and |(xc)t+1| ≤ 1} (3.34)

It is clear that any E satisfying equation (3.34) contains Ec satisfying equation (3.33). There-

fore using X to define input constrains guarantees that the resulting solution is feasible. It

is now possible to extend the LTV result to the switched case.
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Proposition 3.11 Suppose there exist matrices Xj � 0 and (Xc)j � 0 for j ∈ [N ]L+M+H

and for all admissible i(−L−M :H) and î(−L−M :H+T ). Let Xj be the solution to equation (3.15),

and (Xc)j be the solution to

Aφ(i(−L:H))(Xc)i(−L−M :H)
A∗φ(i(−L:H))

− (Xc)i(−L−M+1:H−1)
+Bφ(i(−L:H))B

∗
φ(i(−L:H))

= 0

Then the ellipsoid defined by

E = {X
1
2
i(−L−M :H)

(xc)t+1 : (xc)t+1 ∈ Cn and |(xc)t+1| ≤ 1} (3.35)

contains the reachable states defined by the controllability ellipsoid E where

E = {(Xc)
1
2
i(−L−M :H)

(xc)t+1 : (xc)t+1 ∈ Cn and |(xc)t+1| ≤ 1} (3.36)

Proof: The proof follows the same format as the proofs from Proposition 3.9 and Proposition

3.10 where Xj and (Xc)j are block diagonal matrices for every admissible switching sequence

θ.

3.4 Input Constrained Windowed Output Regulation

Now, the sufficient LMI conditions in equation (2.3) will be examined for linear switched

systems. Xj is the solution to equation (3.15), and the ellipsoid defined by equation (3.35)

contains the set of all reachable states.

Lemma 3.12 The input constraint

‖ut‖ ≤ umax (3.37)

can be represented by the equivalent LMI constraint u2maxI Qi(−L−M :H)

Q∗i(−L−M :H) Xi(−L−M :H)

 � 0 (3.38)

Proof: First, start with the desired constraint on the input u. Squaring both sides of the

equation gives

‖ut‖2 ≤ u2max
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This can be represented as the equivalent equation

max
i≥0
‖ut‖2 ≤ u2max

Assuming the system has a static state feedback controller with ut = Fθ(t)xt and Fi(−L:H) =

Qi(−L−M :H)X
−1
i(−L−M :H) gives

max
i≥0
‖Qi(−L−M :H)X

−1
i(−L−M :H)xt‖

2 ≤ u2max

Now, change the set such that

max
‖v‖≤1
‖Qi(−L−M :H)X

− 1
2

i(−L−M :H)v‖
2 ≤ u2max

The induced matrix norm removes the maximization and leaves

‖Qi(−L−M :H)X
− 1

2

i(−L−M :H)‖
2 ≤ u2max

Applying a well-known result from spectral theory gives

Qi(−L−M :H)X
−1
i(−L−M :H)Q

∗
i(−L−M :H) � u2maxI

Then using the Schur compliment formula on the above inequality becomes u2maxI Qi(−L−M :H)

Q∗i(−L−M :H) Xi(−L−M :H)

 � 0

which is an LMI representing a sufficient condition for constraining the input of a switched

system.

Theorem 3.13 There exists a path-dependent controller with H ≥ 0 and T ≥ 0 such

that the system given in equations (3.22) and (3.23) is uniformly exponentially stable and

satisfies the T-step uniform performance level γ if and only if there exists a collection of

matrices Xj � 0 for j ∈ [N ] such that for all admissible paths i(−L : H) and î(−L : H + T )

Fi(−L:H) = Qi(−L−M :H)X
−1
i(−L−M :H)[

V (X,Q) (B2,φ(i(−L:H))Qi(−L−M :H))
∗

(B2,φ(i(−L:H))Qi(−L−M :H)) Xi(−L−M :H)

]
� 0 (3.39)
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V (X,Q) = −Aφ(i(−L:H))Xi(−L−M :H)A
∗
φ(i(−L:H))

−B2,φ(i(−L:H))Qi(−L−M :H)A
∗
φ(i(−L:H))

−Aφ(i(−L:H))Q
∗
i(−L−M :H)B

∗
2,φ(i(−L:H))

+Xi(−L−M+1:H−1) −B1,φ(i(−L:H))B
∗
1,φ(i(−L:H))

Tr(t,T)(C1,̂i(t−L:t+H)Xî(t−L−M:t+H)C1,̂i(t−L:t+H)) > γ2 (3.40) u2maxI Qi(−L−M :H)

Q∗i(−L−M :H) Xi(−L−M :H)

 � 0 (3.41)

Proof: The proof follows directly from the proof of Theorem 3.8 adding the input constraint

from Lemma 3.12.

Remark 3.14 The solution for Kθ(t) is dependent on the controller in equation (3.26).

Notice that the switching modes of matrices X and Q depend on a path of past parameters

of length −L−M . Therefore, −L−M represents the minimum number of past parameters

necessary for the controller. Although controllers reliant on shorter paths may exist, this

theorem does not guarantee their existence.
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CHAPTER 4

CONCLUSIONS

This thesis considered satisfying a performance metric subject to stabilization of discrete-

time switched linear systems with a dependence on a finite number of past parameters and

a finite future horizon. The performance metric considered for the closed loop system was

the average output variance over a finite forward window using a random process as the

disturbance input. Conditions for the existence of a static state feedback controller subject

to saturation constraints were quantified using linear matrix inequalities. The main result of

this thesis is Theorem 3.13 which states that a static state feedback controller exists if and

only if the semi-definite program can be solved.

Some potential future work includes expanding the controller type to a full state feedback

controller subject to saturation constraints. Additionally, the simplifying condition that

the feed-through matrix D = 0 could be relaxed and the results presented here could be

expanded to cover a wider array of systems.
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