
c© 2018 Nicole Chan

DESIGN AND VERIFICATION OF A SAFE AUTONOMOUS
SATELLITE RENDEZVOUS MANEUVER

BY

NICOLE CHAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Associate Professor Sayan Mitra

ABSTRACT

A fundamental maneuver in autonomous space operations is known as ren-

dezvous, where an active spacecraft navigates towards and maneuvers within

close proximity of a free-flying passive spacecraft. Any mistake during au-

tonomous space flight can be extremely costly, yet these systems are difficult

to verify due to limitations of testing spacecraft. In this thesis, we present

a benchmark model formulation for the rendezvous mission, two control so-

lutions to achieve this mission, and a rigorous method to demonstrate that

the resulting system’s behavior remains safe.

The benchmark model provides both a nonlinear description of the space-

craft’s motion and a linearized approximation, and the mission objectives, or

equivalently, our set of safety properties. We present a set of control solutions,

which includes a hybrid, or switched, version of linear quadratic regulator

(LQR)—a fundamental approach in the theory of optimal control for linear

systems. We formulate a novel hybrid controller, dubbed state-dependent

linear quadratic (SDLQ) control, which extends the former controller in a

way that may improve its ability to generate only safe trajectories. With

these choices of dynamical models and controllers, we obtain a collection of

models that are shown to robustly achieve safety properties of interest using

a suite of hybrid verification tools. We utilize several existing tools, each de-

veloped for different classes of hybrid models, and we implement a new tool

called SDVTool which improves upon one of the former tools. We present

experimental results that illustrate the promise (and ongoing challenges) of

this approach; that is, applying a class of simulation-based verification al-

gorithms to our proposed set of benchmark models and safety requirements

to design and rigorously demonstrate safety of the autonomous satellite ma-

neuver. We will demonstrate both successful, safe scenarios and incomplete

or unsafe examples.

ii

To my family, for their unwavering love.

iii

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to my advisor Professor Sayan

Mitra, without whom this work would not have been possible. By supporting

and mentoring me through my time at Illinois, he has provided me with an

incredible opportunity to grow, learn, and explore both within and outside of

research. His patience and passion for pursuing deeper, innovative problems

in technology inspires the leader I strive to become someday. I would like

to thank Dr. Richard Scott Erwin for his mentorship during my time at the

Air Force Research Laboratory’s Space Scholars program, which contributed

greatly to the work presented in this thesis.

I am grateful for my labmates and friends Ritwika Ghosh, Chuchu Fan,

Bolun Qi, Matthew Potok, and most notably, Hussein Sibai, who has spent

countless hours and energy beyond working together to comfort and guide

me through these last few years. I am also thankful for Carol Wisniewski for

her genuine dedication to her students and making CSL a welcoming space.

I am deeply grateful and blessed to have lifelong friends who refuse to let

thousands of miles disrupt their constant support and love: Jenifer Wong,

Kayla Niu, and Wellington Lee; and to have found family in my roommates:

Kelly Zhao and Sarah Garrow. I must also thank Eric Figueroa—who both

inspired and enabled me to pursue this path.

I thank my family in Tucson; they never fail to provide perspective on what

is most valuable in life and what I am incredibly blessed to have: home.

Finally, I would like to acknowledge the generous support of the Air Force

Research Lab and the National Science Foundation.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Thesis Overview . 2
1.3 Related Work . 3
1.4 Organization . 4

CHAPTER 2 SPACECRAFT RENDEZVOUS MODEL 5
2.1 Nonlinear Relative Motion Dynamics 5
2.2 Linear Dynamics . 7
2.3 Constraints and Safety Requirements 8
2.4 Switched Linear Quadratic Regulator 9
2.5 State-Dependent Linear Quadratic Control 13
2.6 Hybrid Models . 14

CHAPTER 3 VERIFICATION APPROACH 18
3.1 Safety Verification Problem 18
3.2 Computing Reachtubes . 21
3.3 Computing Reachsets with Discrepancy Functions 24
3.4 Computing Reachsets using Parsimonious 26

CHAPTER 4 SDVTOOL . 28
4.1 Architecture and Overview . 28
4.2 Input Specification . 29
4.3 Main Verification Routine . 30
4.4 Compute Reachtube Routine 31

CHAPTER 5 EXPERIMENTAL RESULTS 33
5.1 Setup . 33
5.2 Experiments . 36

CHAPTER 6 CONCLUSIONS . 44

REFERENCES . 46

v

LIST OF TABLES

2.1 Constant parameters . 6

5.1 Unsafe properties . 34
5.2 Model configurations and the tools applied 37
5.3 Runtime of safety verification tools 37
5.4 Performance comparison between different controllers 42

vi

LIST OF FIGURES

2.1 Hill’s relative coordinate frame 6
2.2 Projections of the unsafe set from the LOS constraint 9
2.3 Unsafe set from passive collision avoidance constraint 10
2.4 Hybrid system model: Lin-SwLQ 16
2.5 Invariant regions for SwLQ and LOS constraint 16
2.6 Hybrid system model: Lin-SwLQ-Pass 17
2.7 Hybrid system model: Lin-SDLQ 17

4.1 Overview of SDVTool’s structure. 29

5.1 Reachtubes for relative position for the SwLQ model 37
5.2 Reachtubes for Lin-SwLQ-Pass using SDVTool 38
5.3 Approximate safe passive abort transition times for various

initial states . 40
5.4 Reachtube for Lin-SDLQ . 41
5.5 Simulation trace demonstrating possibly unsafe total velocity . 41
5.6 Cumulative fuel consumption between different controllers . . 43

vii

CHAPTER 1

INTRODUCTION

1.1 Motivation

The National Research Council published a report on NASA’s roadmaps for

2011-2021 and listed relative guidance algorithms (or the autonomous con-

trol of spacecraft to perform fundamental maneuvers on-orbit) as one of the

highest-priority technologies for enabling next-generation space missions [1].

The model of an autonomous rendezvous, proximity operations, and docking

(ARPOD) mission presented in [2] captures the essence of relative guidance

problems in a generic, reusable scenario. This scenario and its components

are essential in applications such as on-orbit transportation of personnel [3],

resupply for personnel [4], assembly of space stations [5], and repair and

refueling of spacecraft [6].

In particular, rendezvous refers to navigating a primary spacecraft towards

a secondary free-flying object (which we fix to be a satellite) and maneuver-

ing within close proximity of the target without collision. This presents a

challenging constrained guidance problem. An overview of general state-

of-the-art solutions to this particular problem is given in [7]. While such

approaches have led to some successes, recent examples suggest they are

not fully mature technologies nor guaranteed to behave safely. For example,

NASA’s DART spacecraft was designed to rendezvous with the MUBLCOM

satellite [8]. In 2005, approximately 11 hours into a 24-hour mission, DART’s

propellant supply depleted due to excessive use of thrusters, and it began a

mission abort sequence. In the process it collided with MUBLCOM; it met

only 11 of 27 mission objectives, rendering the loss of a $110 million project.

Several other incidents in [9] highlight the consequences of failures in space

applications and demonstrate the need for more rigorous testing before de-

ployment.

1

Formal verification is a means of providing proofs of safe behavior given

the model of a system. Hybrid models, which capture systems with both

discrete and continuous variables and dynamics, provide an expressive frame-

work for describing complex cyber-physical systems. Verification of hybrid

systems presents a big challenge, but recent advances in this area motivate

and enable its application to the problem of autonomous spacecraft navi-

gation. Although formal verification has played an important role in design

and safety analysis of spacecraft hardware and software (see, for example, [10]

and the references therein), it has not yet been used for model-based design

and system-level verification and validation.

1.2 Thesis Overview

We present a suite of hybrid models for the rendezvous portion of the ARPOD

mission [2] that can serve as benchmarks for verification tools and as building-

blocks for more complex missions. These models include two controllers

we design to achieve rendezvous, as well as mission objectives (or safety

properties) such as physical limitations of the spacecraft, its interaction with

the target, and the concept of passive safety—the ability to maintain both

propulsion-free and collision-free motion in the event of a system failure. We

verify these benchmark problems with a series of hybrid verification tools,

including well-established (C2E2 and SpaceEx) and recently released (DryVR)

tools and one introduced from analyzing the ARPOD model (SDVTool).

These rendezvous mission problems can be configured to any combination

of the following choices:

• nonlinear (NLin) orbital dynamics, or linearized (Lin) dynamics using

the Clohessy-Wiltshire-Hill (CWH) equations [11];

• switched LQR (SwLQ) with state-dependent switching signal, or state-

dependent linear quadratic (SDLQ) control with time-dependent switch-

ing signal;

• passive abort (Pass) or without. The passive abort scheme adds a mode

to the hybrid control strategy, in which the spacecraft will shut off its

thrusters when it detects any system failure, thus motivating the need

to check for passive safety.

2

The set of constraints for the rendezvous mission lends itself naturally

to two partitions of the state-space, each with a different subset of active

constraints. As a consequence, the first controller is chosen to be a switched,

two-mode control scheme with statically computed linear quadratic regulator

(LQR) in each mode. We refer to this as the switched LQR (SwLQ) scheme.

Unlike traditional optimal control solutions, we propose a cost function

with dynamic, state-dependent coefficients. The state-dependent LQ (SDLQ)

scheme extends switched LQR so that the quadratic cost function is period-

ically re-evaluated for new coefficients and solved.

We test the benchmarks with state-of-the-art hybrid verification tools:

C2E2 [12, 13] and SpaceEx [14]. C2E2 can handle nonlinear models, and

both tools are capable of handling linear models containing continuous dy-

namics described by ordinary differential equations (ODEs). The SDLQ con-

figuration does not admit a closed-form control solution, so we additionally

utilize a data-driven tool called DryVR [15]—capable of analyzing black-box

models—to verify SDLQ models.

C2E2 proved to be the more versatile tool in our experiments, yet it did

not perform well particularly for models that include the passive abort mode

(Pass). To address this issue, we apply a different algorithm for comput-

ing reachable states of the system—a necessary component behind each of

these verification tools—and implement this in a new software tool we call

SDVTool.

We successfully show that several of the models do behave safely within the

rendezvous mission constraints, under a set of mission parameters (i.e. time

horizon and initial conditions) that we define. Overall, we believe that our

results and approaches establish the feasibility of system-level verification of

autonomous space operations, and they provide a foundation for the analysis

of more sophisticated maneuvers in the future.

1.3 Related Work

There are few academic works on system-level verification of autonomous

spacecraft. A survey of general verification approaches and how they may

apply to small satellite systems is presented in [16]. Architecture and Anal-

ysis Design Language (AADL) and verification and validation (V&V) over

3

AADL models for satellite systems have been reported in [17].

A feasibility study for applying formal verification of autonomous satellite

maneuvers is presented in [18]. That approach relied on creating rectangu-

lar abstractions (dynamics of the form ẋ ∈ [a, b]) of the satellites dynamics

through hybridization and verification using PHAVer [19] and SpaceEx [14].

The generated abstract models have simple dynamics but hundreds of lo-

cations, and also the analysis is necessarily conservative. In contrast, the

approaches presented in this thesis work directly with the linear (nonlinear)

hybrid dynamics.

The ARPOD challenge [2] has been taken up by several researchers in

proposing a variety of control strategies. A two-stage optimal control strat-

egy is developed in [20], where the first part involves trajectory planning

under a differentially flat system and the second part implements model

predictive control on a linearized model. A supervisor is introduced to ro-

bustly coordinate a family of hybrid controllers in [21]. Safe reachsets (i.e.

ReachAvoid sets) are computed for the ARPOD mission in [22] and used to

solve for minimum fuel and minimum time trajectories.

The results presented in this thesis are directly related to previous works:

the tool SDVTool and SwLQ control solution are first presented in [23], the

SDLQ controller in [24], and a related tool for model predictive control in [25].

1.4 Organization

In Chapter 2, we present the detailed formulation of the various benchmark

autonomous rendezvous missions. An overview of the formal verification

approach used is given in Chapter 3, and its detailed implementation in

SDVTool is presented in Chapter 4. Chapter 5 discusses how the benchmark

models are specified for the software tools and summarizes the resulting safety

guarantees achieved.

4

CHAPTER 2

SPACECRAFT RENDEZVOUS MODEL

In this chapter, we present the detailed hybrid satellite rendezvous mission

models. First we give the orbital dynamics of the spacecraft in Sections 2.1-

2.2. Section 2.3 introduces the mission constraints, and we propose two

controllers designed to achieve the constrained rendezvous mission in Sec-

tions 2.4-2.5. We give an overview of the hybrid automata modeling frame-

work and how our benchmarks are represented as hybrid models in Sec-

tion 2.6.

2.1 Nonlinear Relative Motion Dynamics

The dynamics of the two spacecraft in orbit—the target and the chaser—are

derived from Kepler’s laws. We consider the case for relative motion in space,

where the two spacecraft are restricted to the same orbital plane, resulting

in two-dimensional, planar motion. The so-called Hill’s relative coordinate

frame is used. As shown in Figure 2.1, Hill’s frame is centered on the target

spacecraft, with +î-direction pointing radially outward from the Earth, +k̂-

direction normal from the orbital plane, and +ĵ-direction completing a right-

handed system. We further assume that the target moves on a circular orbit,

and thus, the ĵ-direction aligns with the tangential velocity of the target.

The restriction on the target’s orbit implies that the target-centered frame

rotates with constant angular velocity. We will assume the target is in geo-

stationary equatorial orbit (GEO), with angular velocity n =
√

µ
r3

, where

µ = 3.986 × 1014 m3/s2 and r = 42164 km. The chaser’s position is repre-

sented by the vector ~ρ = x̂i+yĵ, and the acceleration provided by the chaser’s

thrusters is denoted ~u = Fxi + Fyj. Note we will also frequently refer to the

separation distance with the notation: ρ := |~ρ| =
√
x2 + y2. The following

equations are derived using Kepler’s laws and constitute the nonlinear model

5

Earth

Target

Chaserĵ

î

~ρ

rc

Figure 2.1: Hill’s relative coordinate frame. Chaser’s relative position
vector is ~ρ = x̂i + yĵ. (Direction +k̂ out of the page not shown.)

(NLin) of the spacecraft dynamics:

ẍ = n2x+ 2nẏ +
µ

r2
− µ

r3
c

(r + x) +
Fx
mc

,

ÿ = n2y − 2nẋ− µ

r3
c

y +
Fy
mc

,

(2.1)

where rc =
√

(r + x)2 + y2 and mc = 500 kg is the mass of the chaser. The

constant parameters of this set of equations are given in Table 2.1.

Table 2.1: Summary of constant parameters used to describe the
continuous system dynamics in Equations (2.1)-(2.2).

Variable Value
µ 3.986× 1014 m3/s2

r 42164 km
n 7.29× 10−5 s−1

mc 500 kg

The three-dimensional case is also given in [2], where the satellites’ relative

altitude z is considered. In this case, the chaser’s relative position is ~ρ =

x̂i+yĵ+zk̂, external force or input vector ~u = Fxi+Fyj+Fzk, and dynamics

z̈ = −n2z + Fz
mc

. Notice this additional dimension evolves linearly and is

decoupled from the two-dimensional system, so synthesizing a controller for

the three-dimensional problem is a straightforward, independent extension

of solving the two-dimensional control problem. We do not address this

extension in this thesis.

The control and navigation problem for rendezvous is to choose Fx, Fy to

drive the system towards ~x = 0, while adhering to the constraints that are

6

given in Section 2.3. Our solutions given in Sections 2.4-2.5 draw from theory

for linear systems, hence we give a linear approximation in the next section.

We will also observe the system under a passive abort, where rendezvous is

no longer an objective and Fx = Fy = 0. In this case, the control portion is

trivial but safety verification remains a crucial part of our analysis. An abort

sequence is triggered when some system failure is detected. In order to keep

this condition as general as possible, we assume that the event that triggers a

passive abort occurs within some user-specified time interval. However, this

could be customized to be a function of the state or some other parameter

other than time if desired. We note that it is not expected for the system to

satisfy a passive safety property (i.e. collision avoidance in Section 2.3) for

an arbitrary choice of this interval.

2.2 Linear Dynamics

Linearization of Equations (2.1) about the system’s equilibrium point at the

origin results in the Clohessy-Wiltshire-Hill (CWH) equations [11], which

are commonly used to capture the relative motion dynamics of two satellites

within a reasonably close range. These equations for the linear model (Lin)

are:

ẍ = 3n2x+ 2nẏ +
Fx
mc

,

ÿ = −2nẋ+
Fy
mc

.

(2.2)

Let the state vector be denoted by ~x = [x, y, ẋ, ẏ]T . The state-space form

of these linear time-invariant (LTI) equations is:

~̇x = A~x+B~u,

where

A =


0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 −2n 0

 , B =


0 0

0 0
1
mc

0

0 1
mc

 , ~u =

[
Fx

Fy

]
.

7

2.3 Constraints and Safety Requirements

In this section, we enumerate the properties that define a safe and successful

mission as given by [2], and how they are modeled for verification tools.

The tools we use (C2E2, DryVR, and SpaceEx) require these sets of states

be specified by affine inequalities (and more specifically, convex polyhedron).

Bear in mind that the goal of rendezvous is to drive the system to state

~x = 0, but the goal of passive abort is to avoid the region around ~x = 0.

These distinct objectives naturally result in mutually exclusive constraints.

Max thrust The thrusters are physically limited, so we assume that at any

given time, the thrusters cannot provide more than 10N of force in any

single direction. Then the constraint

|Fx|, |Fy| ≤ 10 N

is captured by the following unsafe sets of states:

Fx < −10, −Fx < −10,

Fy < −10, −Fy < −10.

Notice that F{x,y} is not strictly part of the state space (~x), but soon

we shall choose F{x,y} directly as a function of the state ~x. But we

could also introduce an augmented state vector ~̃x =

[
~x

~u

]
. This latter

approach is implemented as discussed in Section 5.1.

LOS cone and approaching velocity When the chaser is in close-range

rendezvous (ρ =
√
x2 + y2 < 100 m), the chaser must remain within

a line-of-sight (LOS) cone (see Figure 2.5), and its total velocity must

remain under 5 cm/s, so
√
ẋ2 + ẏ2 ≤ 5 cm/s. Notice this unsafe set,

{~x :
√
x2 + y2 < 100 ∩

√
ẋ2 + ẏ2 > 0.05},

cannot be captured by affine inequalities exactly. Thus it is approxi-

mated by the intersection of two polytopes using a hexagon in x, y that

circumscribes the circle
√
x2 + y2 = 100 and a hexagon in ẋ, ẏ that

inscribes the circle
√
ẋ2 + ẏ2 = 0.05 (see Figure 2.2). The unsafe set

8

is completely contained in the approximated unsafe set. The detailed

approximation is given in Table 5.1.

Minimum separation distance During a passive abort, the chaser must

avoid collision with the target. The target, in the simplest case, can be

treated as a point mass at the origin, where a small ball or box should

be used to bound this point to account for limitations in numerical

precision. We may also account for the target satellite’s dimensions,

which may range from the order of 1 m to 100 m, so the size of this

bounding box will vary depending on the scenario. For our experiments,

we use a box with a 1 m circumradius (see Figure 2.3 and Table 5.1).

x

y

100m

(a)

ẋ

ẏ

5cm/s

(b)

Figure 2.2: The dashed lines show the polytopic approximation of the
unsafe set of states resulting from the LOS constraint in projections on x, y
in (a) and on ẋ, ẏ in (b).

2.4 Switched Linear Quadratic Regulator

In this section, we construct the first of two controllers proposed to achieve

rendezvous. This is a full-state feedback controller, namely, a linear quadratic

regulator (LQR). LQR is a linear function of the state, of the form ~u = Ki~x,

where i is introduced because we will design a set of LQR solutions. One

of the constraints given in [2] is a maximum time bound on completing the

ARPOD mission. We do not explicitly check for this property because we

are only interested in a subset of the full mission at this time. However, it

9

x

y

1m

Figure 2.3: The unsafe set (shown in x, y-projection) resulting from
collision avoidance constraint when the spacecraft is in a Passive Abort and
not performing Rendezvous.

is clear that we cannot find a reasonable solution using a single LQR control

law as this solution would need to meet the constraint on total velocity, even

beyond the close-range rendezvous portion. In turn, completing the initial

rendezvous at larger separation distances would take an unreasonably long

time. We choose to solve for two LQR control laws: one for rendezvous at

longer ranges and another for the more restrictive close-range. A third trivial

control law in this set is that for the passive abort: Kpassive = 0. We will

refer to the resulting closed-loop system using each control law as a mode,

and the reason will become apparent in Section 2.6.

In general, closed-loop feedback control is desirable because the system

can measure and adjust for errors, and ultimately guarantee liveness (i.e.

eventually the target will be reached). LQR is specifically chosen because

it is constructed by minimizing a quadratic cost function, which we can

choose so as to roughly satisfy our safety constraints. LQR is only directly

applicable to (or guaranteed to be optimal for) linear systems, so we design

the control for the linearized model in (2.2), but we will use the same control

with nonlinear dynamics (2.1) when applying verification tools.

Each constant gain matrix Ki ∈ R2×4, i ∈ {1, 2}, is obtained by solving

two independent infinite-horizon LQR problems, as follows:

min
~u
J̃i,

subject to

~̇x = A~x+B~u,

10

where

J̃i =

∫ ∞
0

(~xTQi~x+ ~uTRi~u)dt, (2.3)

where Q{1,2} and R{1,2} are chosen so as to improve performance (i.e. mini-

mize flight time) when constraints are relaxed (i.e. when ρ ≥ 100 m) and to

restrict the system’s behavior to fit tighter constraints otherwise (i.e. when

the LOS cone and approaching velocity properties are enabled).

To achieve this, we apply a common approach to encoding restrictions on

state and input variables into Qi and Ri called Bryson’s rule [26]. Bryson’s

rule dictates choosing Qi and Ri to be matrices with diagonals such that

qjj = 1
max(x2j)

, j ∈ {1, ..., 4} and rjj = 1
max(u2j)

, j ∈ {1, 2}. Typically these

terms correspond to the expected range of values for each variable, which then

normalizes the cost of errors in each direction. We take these terms to refer to

the largest desired value of each variable, given by the constraints. While the

LQR gains are obtained with our constraints in mind, the resulting controller

does not guarantee these constraints are never violated. This is why formal

verification is still required. This design process is repeated for rendezvous at

long and short ranges, corresponding with relaxed and tightened constraints

respectively.

The solution to the optimization problem of Equation (2.3) is obtained

by solving the continuous algebraic Riccati equation (ARE). Part of the

motivation for relying on a LQR-like framework is that ARE solvers are

well-studied and readily available. Given the controllability of the relative

motion model (2.2) and a restriction of Qi and Ri to symmetric, positive

definite matrices, there exists a guaranteed unique optimal control solution

~u = −Ki~x = −R−1
i BTPi, where Pi is a positive definite solution to the

ARE. The solution is not only optimal with respect to (2.3) but ensures the

closed-loop system is globally asymptotically stable (GAS) about the origin

in each mode. This does not guarantee that the overall system is GAS under

switching.

Given this switched LQR controller (SwLQ), the resulting nonlinear model

11

of the dynamics (or the flow equations for NLin-SwLQ) are:

ẍ =

(
3n2 − ki11

mc

)
x− ki12

mc

y − ki13

mc

ẋ+

(
2n− ki14

mc

)
ẏ,

ÿ = −k
i
21

mc

x− ki22

mc

y −
(

2n+
ki23

mc

)
ẋ− ki24

mc

ẏ,

(2.4)

where

Ki =

[
ki11 ki12 ki13 ki14

ki21 ki22 ki23 ki24

]
.

The flow equations for the Lin-SwLQ configuration can be written more

compactly as:

~̇x = (A−BKi)~x (2.5)

We note that a conventional switched LQR controller would require the

solution of the following finite horizon problem (instead of the J̃i given in

Equation (2.3)):

min
~u

N∑
i=1

∫ ti+1

ti

(~xTQi~x+ ~uTRi~u)dt, (2.6)

where ti denotes switching times with N -total switches (N = 2 for SwLQ).

Thus, an optimal LQR solution would drive the state of the system to the ori-

gin by the specified time horizon TN+1, while minimizing (2.6). The infinite-

horizon formulation in (2.3) is easier to solve, but it loses the guarantee that

the state reaches the origin in finite time. This is acceptable for the ren-

dezvous maneuver as the goal is to drive the spacecraft within closer range,

not to a terminal point. The infinite-horizon LQR result will still drive the

spacecraft towards the origin, which can be observed by formulating invari-

ant sets of states using Lyapunov functions. (It is sufficient to solve for a

quadratic Lyapunov function using the Lyapunov equation for linear systems

and then apply Lyapunov’s first method to prove stability of the nonlinear

system.) At each switching time ti, the invariant set of states at ti is strictly

contained in the invariant set at ti−1. It follows that this switched controller

with i = {1, 2} (and the SDLQ in Section 2.5) is stable in the sense of

12

Lyapunov.

2.5 State-Dependent Linear Quadratic Control

We extend the two-stage, switched LQR from the previous section to N > 2

finitely many switches where the switches are brought about by a time-

dependent switching signal. Additionally, the system dynamics (i.e. equa-

tions (2.4)-(2.5)) are not computed a priori but determined by a function of

the current state; thus, we refer to the new control scheme as state-dependent

linear quadratic (SDLQ) control.

At every switching time (i.e. after every δ interval), the state-feedback law

is computed just as before, solving the LQR problem in Equation (2.3). In

the switched LQ scheme, Q{1,2}, R{1,2} are constant matrices, and K1, K2

are solved offline. Now, the cost coefficients are functions denoted Qi(~x(ti))

and Ri(~x(ti)) and each Ki is computed at time ti.

In the example for this thesis, we choose a constant Ri = Rj = R ∈
R2×2, ∀i, j ∈ {0, 1, ..., N}, and Qi(~x(ti)) defined as follows:

Qi(~x(ti)) = diag

(
1

q2
x

,
1

q2
y

,
1

q2
ẋ

,
1

q2
ẏ

)
,

where qx = 5 (|x(ti)|+ ε)

(
1 +

(|x(ti)|+ ε)2

ρ2

)
,

qy = 5 (|y(ti)|+ ε)

(
1 +

(|y(ti)|+ ε)2

ρ2

)
,

qẋ =
40 (|x(ti)|+ ε)

ρ
,

qẏ =
40 (|y(ti)|+ ε)

ρ
,

(2.7)

for some small ε > 0 to avoid division by zero.

Notice Qi remains symmetric positive definite for all ~x ∈ R4 and R is

also chosen to be symmetric positive definite. Then, as in the switched LQ

control, we are guaranteed to find a stabilizing solution ~u[ti,ti+1) = −Ki~x.

The current choice of (2.7) is motivated by satisfying the LOS constraint

(see Section 2.3), hence it is a function only of x, y and not of relative

velocities ẋ, ẏ. Bryson’s rule can be observed as a starting design choice in

qx, qy in the (|x(ti)| + ε), (|y(ti)| + ε) terms. In other words, the maximum

13

desired values for x, y contract as the chaser moves towards the origin. The

terms (|{x, y}(ti)| + ε)/ρ approximate | cos(θ)| and | sin(θ)|, where θ is the

angular position of the total displacement vector ~ρ. These terms could be

used to enforce the θ restriction in the LOS region more directly.

Although the computation of the controller is different from SwLQ (i.e.

now requires periodic re-computation of Equation (2.3)), the description of

the dynamics for NLin-SDLQ and Lin-SDLQ looks identical to that given

previously in Equations (2.4)-(2.5) for NLin-SwLQ and Lin-SwLQ, just with i

extended to i = 1, 2, ..., N .

2.6 Hybrid Models

In this section, we introduce the notion of a hybrid automaton model and

unify all the parts discussed thus far under this modeling framework.

A hybrid automaton is a tuple 〈V ,ΘH,A, D, T 〉, where:

(a) V = X ∪L is the set of state variables, with the state space taken to be

the valuation val(V). X is the set of continuous variables (val(X) = R4

for our problem), and L is a discrete variable with countable set val(L)

referred to as locations or modes.

(b) ΘH ⊆ val(V) is the set of initial states.

(c) A is a set of transition labels.

(d) D ⊆ val(V)×A×val(V) is the set of transitions—each characterized by

a guard and reset map. These give conditions under which a transition

is enabled and jump dynamics, respectively.

(e) T is a set of trajectories (continuous dynamics) for X or flow equations,

which are described by ODEs in our problem. For each l ∈ val(L),

there is a unique set of trajectories El and an invariant Il ⊆ val(X),

which indicates when the system may evolve according to El. If x ∈
val(X) and x 6∈ Ik, then the system must be in some other mode

l ∈ val(L) 6= k.

In general, trajectories do not have to be described by ODEs but must

satisfy certain properties given in [27]. A transition may be taken as long as

14

its guard is satisfied. When the mode invariant aligns with a guard so that

the transition must be taken as soon as it is enabled, this is called an urgent

transition. Such transitions may preserve determinism. However, it is possi-

ble for multiple transitions to be enabled at a given time, so nondeterminism

can still arise from not knowing which transition is taken.

For the benchmark spacecraft problem, we have X = {x, y, ẋ, ẏ}, and

given Ki, all trajectories in Ei ∈ T are described by Equations (2.4) for

NLin and Equations (2.5) for Lin dynamics. The SwLQ controller lends

val(L) = {Mode1,Mode2}, with respective invariants: I1 = {~x : ρ ≥ 100}
and I2 = {~x : ρ ≤ 100}. For either the passive abort scenario Pass or

the SDLQ controller, we introduce an additional continuous variable so that

X = {x, y, ẋ, ẏ, τ}, where τ is a timer variable with τ̇ = 1. The Pass

scenario introduces an additional mode Passive ∈ val(L), with invariant

IPass = {(~x, τ) : τ ≥ t1}, and incoming transitions with guard t1 ≤ τ ≤ t2.

As previously mentioned, we choose to consider a passive abort nondeter-

ministically within a time interval [t1, t2].

Hybrid models for the Lin-SwLQ, Lin-SwLQ-Pass and Lin-SDLQ configura-

tions are shown in Figures 2.4-2.7. These examples should sufficiently illus-

trate how each of the 8 possible configurations can be formulated as hybrid

models. To summarize Chapter 2, we have presented a set of 8 benchmark

formulations of an autonomous satellite rendezvous mission that result from

choosing NLin or Lin dynamics, SwLQ or SDLQ control, and with or without

Pass. The systematic analysis of such hybrid models is presented next in

Chapter 3.

15

Mode1:

~̇x = (A−BK1)~x

Inv:

ρ ≥ 100

Mode2:

~̇x = (A−BK2)~x

Inv:

ρ ≤ 100

~x0

[ρ ≤ 100]{}

[ρ ≥ 100]{}

Figure 2.4: Hybrid model for spacecraft rendezvous, using the Lin-SwLQ
configuration. The invariants in Mode 1 and Mode 2 are defined exclusively
by the chaser’s position, as shown by corresponding colors in Figure 2.5.
Recall a hybrid automaton is the tuple 〈V ,ΘH,A, D, T 〉. Here, ΘH is
depicted with the arrow labeled by ~x0 ∈ val(X), pointing to initial mode
Mode1 ∈ val(L). The two members of A are not explicitly given here, but
these transitions in D are labeled by guards in “[]” and resets in “{}”.
Notice these transitions are urgent. The trajectories T are specified by the
ODEs and invariants for each mode.

x

y

100m

~ρ

60◦

Figure 2.5: The invariants for Mode 1 and Mode 2 in Figures 2.4-2.6 are
shown in corresponding colors (blue and green). However, they are
approximated using the polytope shown by the dashed lines in the model
inputted to the verification software tools. The LOS region (gridded)
indicates the safe region of operation whenever the chaser is in Mode 2.

16

Mode1:

~̇x = (A−BK1)~x

τ̇ = 1

Inv:

ρ ≥ 100∩τ ≤ t2

Mode2:

~̇x = (A−BK2)~x

τ̇ = 1

Inv:

ρ ≤ 100∩τ ≤ t2

Passive:

~̇x = A~x

τ̇ = 1

Inv:

τ ≥ t1

~x0,τ :=0

[ρ ≤ 100]{}

[ρ ≥ 100]{}

[τ ∈ [t1, t2]]{}

[τ ∈ [t1, t2]]{}

Figure 2.6: Hybrid model for spacecraft rendezvous with passive abort,
using the Lin-SwLQ-Pass configuration. Transitions to Passive occur
nondeterministically within an interval of time.

Mode:

~̇x = (A−BK)~x

τ̇ = 1

Inv:

R5

~x0,τ :=0

[τ==δ]

{τ :=0, K:=update(~x)}

Figure 2.7: Hybrid model for spacecraft rendezvous using the Lin-SDLQ
configuration. The subroutine update(~x) computes the SDLQ solution.

17

CHAPTER 3

VERIFICATION APPROACH

In this chapter, we present the underlying verification algorithm in the soft-

ware tools we use. We introduce the notion of reachability analysis—the

building block to our verification approach—and give an overview of how

each tool differs in this regard.

3.1 Safety Verification Problem

To rigorously demonstrate that a hybrid system (H = 〈V ,ΘH,A, D, T 〉) can

never exhibit unsafe behaviors, we study the reachability problem: Given a

set of initial states ΘH ⊂ val(V) and a set of unsafe states U ⊂ val(V), does

there exist a trajectory from some v ∈ ΘH to some v ∈ U? If so, then we

conclude the system is unsafe. However, in general, the reachability problem

is undecidable [28, 29, 30], so existing approaches typically provide a means

of overapproximating reachsets R ⊂ val(V)—sets of reachable states of the

system—over a bounded time horizon T ∈ R≥0.

3.1.1 Related Works

Several recent works propose simulation-based approaches to computing such

reachsets [31, 32, 33, 34, 12, 13, 15, 35]. The toolbox Breach [31, 36] facili-

tates the use of sensitivity analysis to measure how neighboring trajectories

can evolve comparatively, thereby providing the knowledge to construct ap-

proximate reachsets. These approximations are not guaranteed to be sound

for nonlinear systems, but contraction metrics in [37] provide a means of sen-

sitivity analysis for nonlinear systems. A generalized approach that extends

contraction metrics for nonlinear systems [32] to compute reachsets serves

as a basis for some of the tools we will apply and discuss in Section 3.3.

18

An on-the-fly algorithm to compute this metric for nonlinear systems is pre-

sented in [34] and implemented in the C2E2 software tool [12, 13]; whereas

a data-driven approach is implemented in the DryVR software tool [15]. In

building SDVTool, we use the approach called Parsimonious in [35], which

is a simulation-based method for reachability of linear systems but does not

rely on sensitivity analysis. Instead, the reachable sets of states are formu-

lated by applying the superposition principle—hence the restriction to linear

systems—to a finite number of simulation traces. These tools mentioned

will be used in our experiments in Chapter 5. There are also several works us-

ing simulations to reason about safety properties that do not rely on directly

computing reachsets [38, 39, 40].

3.1.2 Preliminaries

With some abuse of notation, we say a reachset R(ΘH, [t1, t2]) ⊂ val(V) con-

tains all the states that are reachable from ΘH at t = 0 over time interval

[t1, t2]. We will also refer to a reachtube RT , a sequence of compact sets

{(Oi, ti)
N
i=0}, such that R(ΘH, [ti−1, ti]) ⊆ Oi, t0 = 0, and tN = T . Notice

O ⊇ R is an overapproximation of the set of reachable states. We assume

ti − ti−1 = δ is uniform for all i. Intuitively, we can think of the reach-

tube RT as a reachset over T : R(ΘH, [0, T]), or as a collection of reachsets:

∪i(R(ΘH, [ti−1, ti])). Denote a trajectory of the hybrid system as a function

ξ : val(V) × R≥0 → val(V), such that ξ(v0, t) is the state of the system at

time t starting from v0. Furthermore, a simulation trace of a trajectory is

denoted by ψ = {ξ(v0, t) : 0 ≤ t ≤ T}.

3.1.3 Problem Approach

The safety verification problem is solved if:

1. we show that all reachable states are completely disjoint from the set

of unsafe states, i.e. RT ∩ U = ∅ (program returns Safe), or

2. we provide an unsafe counterexample trajectory ξ(v0, t) ∈ U , such that

v0 ∈ ΘH and t ≤ T (returns Unsafe).

19

Since RT is an overapproximation of the true reachable set of states, it is

possible that a solution in this sense does not exist. In other words, a state

v ∈ RT may intersect with U but is not truly reachable so there exists no

trajectory such that ξ(v0, t) = v. Thus, in practice the safety verification

algorithm may terminate with an additional output Unknown.

The high-level verification algorithm is given in Algorithm 1, and a more

detailed version of it (that includes the implementation of line 1) can be

found in Figure 1 of [32]. If the computed reachtube cannot be shown to

be Safe, a finite number of trajectories are randomly generated (up to a

user-defined limit SimBnd). If one of these simulated trajectories provides a

counterexample to safety, an Unsafe result is given. Otherwise, it terminates

with Unknown. The next sections will discuss the approach to achieving

line 1 of Algorithm 1.

Algorithm 1: Safety verification of hybrid automatonH. A Safe result
guarantees no state in U is reachable by H over time horizon T with
initial set of states ΘH or Θ, if optionally specified.

Input: T,U ,H, (Θ)
Output: SafeFlag

1 RT ← computeReachtube(H, T, (Θ))
2 if RT ∩ U 6= ∅ then
3 for j = 1 :SimBnd do
4 ~x0 ← a randomly sampled point in ΘH (or Θ)
5 ψ ← Simulate(~x0, T,H)
6 if ψ ∩ U 6= ∅ then
7 return Unsafe
8 end

9 end
10 return Unknown

11 end
12 return Safe

Proposition 1. Algorithm 1 is sound.

Proof. The proof follows from Proposition 2 in Section 3.2, where we are

given that RT (computed in line 1) contains all reachable states from some

state in ΘH within time T . If Algorithm 1 terminates Safe (line 12), then

RT ∩ U = ∅ must hold, as the if -block (lines 2-11) is skipped. Thus we

conclude that all reachable states are safe. Algorithm 1 only returns Unsafe

20

(line 7) when a trajectory ψ from some initial state in ΘH up to time T

contains an unsafe state. Therefore, ψ itself is a proof of contradiction for

safety.

3.2 Computing Reachtubes

Recall that a hybrid automaton H = 〈V ,ΘH,A, D, T 〉 has state variables

V = X ∪ L, with X the set of continuous variables and L a discrete vari-

able. From here on out, we restrict the definitions given in Section 3.1 to

continuous variables X. In most domains and applications, we are only con-

cerned with studying the state variables ~x ∈ Rn = val(X), so the discrete

mode is decoupled from our safety properties and reachtube computations.

By choosing Θ,U ,R(Θ, [t1, t2]), RT ⊂ Rn and ξ(~x0, t) : Rn × R≥0 → Rn, we

are still able to express all the necessary parts of the problem. (Notice we

introduce initial set Θ ⊂ val(X) to distinguish from ΘH ⊂ val(V) as part of

the tuple for H.) The approaches to reachset computation presented in the

next sections rely on fixed dynamics, or knowledge of the full hybrid state

v ∈ val(V) since l ∈ val(L) gives the dynamics El. So while Θ is sufficient

for specifying the verification problem, the underlying algorithms still require

knowledge of the set ΘH, which is implicitly constructed by Θ as follows:

ΘH =
⋃
~x0∈Θ

{v = (~x0, li) : ~x0 ∈ Ili},

where Ili is the invariant set of states for mode li ∈ val(L).

The overarching algorithm for computing reachtubes in the tools C2E2,

DryVR, and SDVTool is given by Algorithm 2. Given a time horizon T and

an initial set of states Θ ⊂ Rn (where θi ⊆ Θ denotes the subset of states

in mode li), a reachset R(θi, T) is computed using the flow equations of

mode li (or Eli). Then the convex hull of all states reachable by taking an

enabled transition dj from a subset Rj ⊆ R(θ, T) is taken to be (θ′, l′). For

each possible transition, a new reachset R(θ′, T) is computed under the new

mode l′. After all possible transitions within the time bound are accounted

for, the union of the reachsets in each mode forms the reachtube RT .

Notice this algorithm is necessarily conservative. Nondeterministic tran-

sitions result in more reachset subcomputations. Reachset subcomputations

21

Algorithm 2: computeReachtube: Reachtube computation for a hybrid
automaton H.
Input: H, T,Θ
Output: RT

1 RT ← ∅
2 θ1, ..., θk ← Partition Θ such that ΘH =

⋃
i=1:k

(θi, li)

3 Q.push((θ1, l1), ..., (θk, lk))
4 while Q not empty do
5 (θ, l)← Q.pop()
6 R(θ, T)← computeReachset(θ, l, El, T)
7 R(θ, T)← R(θ, T) ∩ invariant Il
8 for each transition dj ∈ D from mode l do
9 if dj is enabled by Rj ⊆ R(θ, T) then

10 (θ′, l′)← state after taking transition dj from Rj

11 Q.push((θ′, l′))

12 end

13 end
14 RT ← RT ∪R(θ, T)

15 end
16 return RT

always cover the full time horizon length T , so this generally includes reach-

sets for t > T since transitions do not occur (if at all) until after some time

has elapsed. Thus the overapproximated regions of a reachtube can blow

up quickly for a number of reasons: large uncertainty in initial set, long

time horizon, nondeterministic transitions, number of transitions, and rep-

resentation of the reachset. This behavior increases the likelihood of overap-

proximated regions intersecting with the unsafe set of states in Algorithm 1,

barring a Safe or Unsafe result. This problem is alleviated in the software

tools by partitioning the initial sets into smaller subsets before computing

the reachtube. In the Pass benchmark models, we further reduce the effects

of nondeterminism by restricting the transition guard to the Passive mode

(see [t1, t2] in Figure 2.6) to a relatively small interval of time.

Proposition 2. Algorithm 2 returns guaranteed overapproxmations of reach-

able states of H from Θ within T time.

Proof sketch. The proof follows from Proposition 3 in Section 3.3, which

guarantees that all reachable states from an initial hybrid state (θ, l) that

can evolve according to the dynamics of mode l (i.e. the ODEs described

22

by El) up to time T are contained in the overapproximated reachset R(θ, T)

computed in line 6.

First notice that the reachtube RT must include all initial states Θ. This

is satisfied because Θ =
⋃
i=1:k

θi from line 2, and each θi is checked in the main

loop, where R(θ, T) ⊇ θ by Proposition 3 in line 6 and because θ∩ Il by line

2 in line 7. The inner for-loop (lines 8-13) does not change R(θ, T), which

is completed contained in RT by line 14. Thus after k iterations of line 14

corresponding to checking each θi, we see that Θ ⊆ RT for any T ≥ 0.

Without loss of generality, assume k = 1. During the first execution of

the while-loop, we have θ = θ1 = Θ and line 6 computes a reachset R(θ, T)

that contains all reachable sets of states from θ under the dynamics of mode

l up to time T by Proposition 3. Line 7 preserves only the valid subset of

R(θ, T)—the continuous states that are possible when the discrete mode is

l, as defined by invariant Il. It is clear that all reachable states from θ with

mode l is still contained in R(θ, T) after line 7. Again, the for-loop does not

affect this reachset, and the reachset R(θ, T) is completely contained in RT

by line 14.

If no transitions can be taken from R(θ, T), the algorithm does not enter

the for-loop (lines 8-13) so nothing is pushed to Q, which is now empty

after line 5. The while-loop terminates and the returned reachtube RT

overapproximates the reachable states of the system H up to time T .

If a transition to mode lj can be taken from R(θ, T), we take Rj to be

the subset of R(θ, T) that intersects with the transition guard. Then for

every v ∈ Rj and v′ is the state after taking transition dj, v
′ ∈ (θ′, lj).

Thus for l′ = lj, we obtain an overapproximation of reachable states imme-

diately after transition dj in (θ′, l′) in line 10. When the for-loop terminates

and all possible transitions have been checked, Q contains a set of {(θ′i, l′i)},
whose union forms a new “initial” set of states corresponding to an overap-

proximation of all reachable states after one transition has been taken. In

fact, checking all the sets currently in Q is equivalent to recursively calling

computeReachtube(H, T, Θ̃), with Θ̃ =
⋃
i

θ′i. The remaining executions of

Algorithm 2 can be re-casted as a series of recursive function calls, and the

last recursive call corresponds to an initial set from which no transitions can

be taken, in which case we have already previously concluded the returned

value of RT is an overapproximation of all reachable states from the input

23

argument Θ for time T . We can invoke an inductive argument to show that

the initial call to computeReachtube, Algorithm 2 itself, satisfies Proposition

2.

The upcoming sections discuss the underlying algorithms for computing

reachsets (line 4 in Algorithm 2). This is the component that the various tools

we consider implement differently. Notice this subroutine computeReachset

takes the dynamics of a single mode l as an input argument. In fact, the over-

approximated reachset it returns assumes the system can evolve according to

only one set of ODEs El, so the hybrid nature of the system is not accounted

for at this step. Hence, the primary purpose of Algorithm 2 is to collect all

reachable states considering all possible sets of continuous dynamics.

3.3 Computing Reachsets with Discrepancy Functions

In this section, we present the simulation-based reachability computation

algorithm that is implemented in two of the tools we test: C2E2 [12, 13] and

DryVR [15]. The discussion in the preceding sections have directly involved

hybrid automaton models, but for the remainder of this chapter, we will only

work with a fixed set of ODEs given by El and no notion of a discrete mode.

A continuous function β : Rn×Rn×R≥0 → R≥0 is a discrepancy function

if, for any pair of states ~x1, ~x2 ∈ Rn and any time t ≥ 0, the following holds:

||ξ(~x1, t)− ξ(~x2, t)|| ≤ β(~x1, ~x2, t), (3.1)

lim
~x1→~x2

β(~x1, ~x2, t) = 0. (3.2)

Given a valid discrepancy function, we can compute R(θ, T) by choosing

a ~x0 ∈ θ to generate a simulation trace ψ over time horizon T . Then the

simulation trace ψ is expanded by β (by way of the Minkowski sum), so that

the result is an overapproximation of the reachset from Θ. This is given in

Algorithm 3.

Proposition 3. Algorithm 3 is sound and relatively complete.

The proof of Proposition 3 is given in Theorem 11 of [32].

24

Algorithm 3: computeReachset : Compute the overapproximation of
reachable states from initial set θ that evolves according to El using a
discrepancy function

Input: θ, T, El, β
Output: R(θ, T)

1 ~x0 ← some point in θ
2 ψ ← Simulate(~x0, T, El)
3 R(θ, T)← ψ ⊕ β
4 return R(θ, T)

Candidate discrepancy functions can be obtained using a global Lipschitz

constant or using a matrix norm for linear systems. However, typically these

approaches give discrepancy functions that blow up exponentially with time

and therefore are not useful for verifying problems with long time horizons.

Approaches for computing tighter discrepancy functions are implemented in

C2E2 and DryVR.

In C2E2, the discrepancy function is computed using an automatic on-the-

fly approach that relies on bounds of the Jacobian matrix of the dynamics

of the continuous components of the hybrid system [13]. In DryVR, the

discrepancy function is computed using PAC learning of linear separators [41]

on simulations of a black-box model of the continuous dynamics [15] .

The algorithm in C2E2 relies on white-box models, where the continuous

dynamics are captured by ODEs. In other words, given a vector of contin-

uous state variables ~x ∈ Rn, its dynamics can be described by ~̇x = f(~x(t)),

where f is Lipschitz and possibly nonlinear. In particular, the discrepancy

function computation in C2E2 evaluates the condition number of J(~x), the

Jacobian matrix of f evaluated at ~x. In the case of ill-conditioned matrices,

such as what we have in the Passive mode (the A-matrix representation of

(2.2)), the overapproximation error blows up. Ill-conditioned systems may

arise from extremely large and small coefficients appearing together in J(~x0),

which may be alleviated to an extent by scaling the state variables. In this

case, linearization of the system resulted in a singular matrix, so scaling is

ineffective. In order to address this problem, we implement an alternative

model-based reachset computation method called Parsimonious in SDVTool,

which is presented next.

25

3.4 Computing Reachsets using Parsimonious

The simulation-based reachability computation algorithm implemented in

SDVTool is named Parsimonious and presented in [42]. Like C2E2, this

algorithm requires a white-box model of the continuous system dynamics.

Moreover, it is restricted to linear ODEs. Then for a continuous state vector

~x ∈ Rn, the flow equations are described by: ~̇x(t) = Ã(t)~x(t).

For an n-dimensional system, n+1 simulations are performed. From these

simulations, special sets called generalized star sets, are generated to rep-

resent the exact reachsets. Generalized star sets can efficiently represent a

variety of data structures, such as convex polyhedra. Part of the motivation

for implementing Parsimonious is to improve the performance and robust-

ness of C2E2, so we choose to restrict our implementation in SDVTool to

hyperrectangles for reachset representation, same as C2E2. Thus, we will

only introduce the notion of a generalized star set for hyperrectangles.

Let the generalized star set be represented by a pair 〈~x0, V 〉, where ~x0 ∈ Rn

is the state at the center of the hyperrectangle and V = {v1, ..., vn} ⊆ Rn is

a standard basis with the vectors scaled to the radius of each dimension of

the hyperrectangle. Then the set defined by 〈~x0, V 〉 is

{~x ∈ Rn | ∃α1, . . . , αn ∈ [−1, 1], ~x = ~x0 +
n∑
i=1

αivi}.

The reachability algorithm will take this representation of the initial set

of states of the system and transform the center state and basis, such that

a subsequent reachset at time ti is represented by the generalized star set

R∗i = 〈~x(ti), Vi〉, with Vi = {vi1, ..., vin}.. These sets are zonotopes but not

necessarily hyperrectangles, so they are further over-approximated with hy-

perrectangles in SDVTool as follows:

Ri = {~x : ~x ≤ ~x(ti) +
n∑
j=1

max(−vij, vij)

and ~x ≥ ~x(ti) +
n∑
j=1

min(−vij, vij)}.

26

Algorithm 4: computeReachset : Compute the overapproximation of
reachable states from initial set θ that evolves according to El using
Parsimonious with hyperrectangles

Input: θ = 〈~x0, V 〉, T, El
Output: R(θ, T)

1 ψ ← Simulate(~x0, T, El)
2 for each vi ∈ V do
3 ψi ← Simulate(~x0 + vi, T, El)
4 ṽi ← ψi − ψ // Note vi ∈ Rn but ṽi ∈ Rn×k, where there are

k-simulation points over T.

5 end

6 Ṽ ← {ṽ1, ..., ṽn}
7 R(θ, T)←

⋃
j=1:k

{~x : ~x ≤ ψj +
∑n

i=1 max(−ṽji , ṽ
j
i) and ~x ≥

ψj +
∑n

i=1 min(−ṽji , ṽ
j
i)} // ψj = ξ(~x0, tj) ∈ ψ and ṽji is the j-th

column of ṽi
8 return R(θ, T)

27

CHAPTER 4

SDVTOOL

In this chapter, we will present the details of the implementation of SDVTool.

The verification algorithm that SDVTool implements is given in Chapter 3

and the component that distinguishes this tool from existing tools is discussed

in Section 3.4.

4.1 Architecture and Overview

SDVTool is implemented in Matlab and requires an additional installation of

the MPT3 toolbox [43]. The user interacts with the tool by providing an

input file that is structured as described in Section 4.2. The implementation

of the verification algorithm presented in Chapter 3 is broken up into three

main components. The first (grey box in Figure 4.1) corresponds to the high-

level procedure given by Algorithm 1. The second (white box in Figure 4.1)

is the compute reachtube method in Algorithm 2. Finally the subroutine

compute reachset is called within that, which is given in Algorithm 4. Notice

in Algorithm 1 that safety is determined by checking the intersection of

reachtube RT with unsafe set U , but in Figure 4.1 safety is checked within

the reachtube computation loop. From Algorithm 2 line 14, it is clear that

RT is constructed from the union of all reachset subcomputations R(θ, T),

so checking the intersection of each R(θ, T) with U is equivalent to checking

RT ∩ U .

Dependence on the MPT3 toolbox is introduced in the current version of

SDVTool and is motivated by the recent development of another verification

tool called CODEV 1, which was introduced to handle a class of hybrid

models that use model predictive control (MPC). The original version of

1https://bitbucket.org/nchan2/codev

28

Model input script

SDVTool

Compute Reachtube

Partition
initial set

Compute
Reachset

Check
safety

Simulate
randomly

Safety result
and reachtube

Safe

Otherwise

UnknownUnsafe
Safe

Figure 4.1: Overview of SDVTool’s structure.

SDVTool can be obtained from this link 2, but we present the more robust,

current version of SDVTool 3 in this thesis.

The Polyhedron-data type provided by MPT3 toolbox is used to repre-

sent the hyperrectangular reachsets computed. In particular, the output of

the program is a flag indicating Safe (safeFlag=1), Unsafe (safeFlag=0),

or otherwise Unknown (safeFlag=-1), and a corresponding Reachtube

reach—a temporally sorted array of Polyhedron-objects—that is empty

if a safe result cannot be obtained. The output reach can be plotted in

Matlab as usual: plot(reach), if the model is 2-dimensional. Otherwise,

the projection method may be used to plot in dimensions i, j as follows:

plot(reach.projection([i,j])).

4.2 Input Specification

In order to fully specify the safety verification problem, we need the hy-

brid model definition and additional parameters for the safety verification

problem. The input file is set up to return a struct with a function handle

flowEq to the plant dynamics (i.e. the dynamics that do not change across

discrete modes); a struct MPCsol (naming inherited from CODEV) that con-

tains the invariant regions and corresponding control laws (i.e. components

2https://tinyurl.com/verifysat
3https://bitbucket.org/nchan2/sdvtool2

29

of the dynamics that change across discrete modes); a set of Polyhedron

objects unsafeStates describing the sets of unsafe states; a Polyhedron

object initStates describing the initial set of states for the verification; and

a struct vPar containing remaining parameters needed for verification (i.e.

time horizon and simulation step size).

We illustrate the input structure usage with the example for Lin-SwLQ

benchmark model. Let us refer to the output of the input file struct as

inPar. The dynamics given by Equations 2.2 are specified in inPar.flowEq,

with an input argument accounting for Fx, Fy. This argument is the ma-

trix inPar.MPCsol.Fi{i}—Ki from Equation 2.5—which corresponds to the

mode given by invariant region defined by Polyhedron inPar.MPCsol.Pn{i}.
Each unsafe set given in Section 2.3 (or its complement) is given as a Poly-

hedron member of the array inPar.unsafeStates.region, with a corre-

sponding flag in inPar.unsafeStates.safe that is set to 0 when the region

is an unsafe set, a subset of U , and to 1 when the region is a safe set. The

remaining components define the verification problem: inPar.initStates

is a Polyhedron representing Θ, inPar.vPar.Thorizon is an array [0, T],

and inPar.vPar.simStep is a fixed simulation step size corresponding with

δ from Section 3.1.

4.3 Main Verification Routine

The main program is verify.m. After parsing the input file, the poly2ball

routine takes the initial set inPar.initStates and set of mode invariants

inPar.MPCsol.Pn and returns subsets of the initial set which correspond to

θi in line 2 of Algorithm 2. We instantiate a Tree object (CTree) within the

verify.m main loop, so as to track the various reachtubes that are generated

for each θi. This implementation using a tree is inherited from CODEV,

where each θi might be further partitioned later in the program execution,

but is admittedly unnecessary for SDVTool where the partitioning only occurs

once. The remainder of this routine follows Algorithm 1 very closely.

30

4.4 Compute Reachtube Routine

The block for computing reachtubes is implemented in computeReach.m.

This routine implements Algorithm 2. Again, a tree data structure is used to

track the recursive reachset computations necessary for constructing the full

reachtube RT . Due to partitioning in the main loop, the input set of initial

states to the computeReach method in the main loop is always constrained to

a single discrete mode. So upon the first execution of line 7 in Algorithm 2,

this reachset R1 := R(θ, T) is considered the root of a Tree labeled RTree.

For each enabled transition, a new reachset is computed (say R2, R3, ...) by

way of adding the subset of initial states resulting from taking the transition

to the queue of sets Q (line 11) that will be passed to computeReachset (line

6) upon some future iteration of the while-loop. These reachsets R2, R3, ...

are the children nodes of root R1. Clearly these reachsets may generate their

own children.

Thus the Tree data structure allows us to keep track of which reachsets

spawned which other reachsets. The pseudocode given in Algorithm 2 uses

a queue in line 4 because the ordering of the reachset computations does not

matter. From the perspective of the underlying Tree, the problem of when to

call computeReachset is equivalent to tree exploration. A depth-first search

(DFS) is currently implemented in computeReach.

We could preserve the most informative model by storing a Polyhedron

representation for each reachset or node of the tree, but this is not space-

efficient so we further overapproximate reachsets by representing the union

of sibling sets with one data structure. Storing an actual union of Polyhe-

dron-objects results in a cell array of Polyhedron, which does not reduce

space; so, the convex hull of sibling sets is taken instead and stored in a

single Polyhedron object—freeing the space the sibling nodes has previ-

ously occupied. This is implemented by the reachUnion member function

of the custom treeNode class. Once all the reachset subcomputations are

completed, the reachtube RT will look like there is only a single (overapprox-

imated, convex) reachset at each level of the tree. The reachtube RT looks

like an array of Polyhedron objects, each corresponding to one of these

nodes of the tree.

The computeReachset method given in Algorithm 4 is implemented in

computePost.m. The only difference is an additional call to checkSafety.m.

31

If this result is unsafe, it is passed all the way back to the main loop (set-

ting line 2 of Algorithm 1), ending the reachset/reachtube computations and

initiating the random search for a counterexample simulation trace.

32

CHAPTER 5

EXPERIMENTAL RESULTS

In Section 5.1, we will discuss the precise parameters used for the rendezvous

mission benchmark models and for the proposed controllers. Then we demon-

strate a variety of software verification tools on a subset of the possible

benchmark model configurations in Section 5.2.

5.1 Setup

5.1.1 Mission Parameters

Our benchmark rendezvous mission is preceded and succeeded by other mis-

sion phases of the ARPOD formulation in [2]. Our choice of initial set of

states and time horizon keeps in line with the full ARPOD scenario. We

choose a time horizon of T = 4 hr and initial set:

Θ = {~x ∈ R4 | ∃α1, . . . , α4 ∈ [−1, 1], ~x = ~x0 + [α1, α2, α3, α4] ∗ ~r,

~x0 = [−900m,−400m, 0m/s, 0m/s]T , ~r = [25m, 25m, 0m/s, 0m/s]T}.

This gives an initial separation distance that is approximately 1000 m (the

transition guard defined in [2] from the preceding mission stage,) and a rea-

sonable relative angle tan−1(y
x
) because the initial position given for the full

ARPOD mission starts at a position along the −ĵ-direction. The transitions

between mission phases do not rely on the relative velocity of the chaser,

so we choose to start the rendezvous phases from a zero relative velocity.

The radius of the hyperrectangle Θ can be interpreted as having bounded

uncertainty in the chaser’s initial position but the chaser’s initial velocity is

precisely fixed. We use experimental data from [2] to set a reasonable time

bound for the rendezvous portion of the total ARPOD mission.

For the Pass mission model configuration, we choose a small interval at

33

[120, 125 min] for the transition guard [t1, t2] in Figure 2.6. We experimen-

tally observe this is an interval that ensures the chaser satellite will transition

to Mode 2 before transitioning to Passive in that particular model (Lin-SwLQ-

Pass).

5.1.2 Unsafe Sets

In Section 2.3, we described the mission constraints and the need to ap-

proximate these with affine inequalities. Table 5.1 gives these precise affine

approximations. Furthermore, they are separated so that the union of each

of these sets describes the unsafe sets of states. Each of these properties are

checked independently of one another in the software tools because most of

the tools only check one convex polytope at a time.

Table 5.1: Description of each unsafe property that results from the mission
constraints presented in Section 2.3.

Property Description Prop. Description
Thrust1 Fx < −10 VEL1 −ẋ < −3
Thrust2 −Fx < −10 VEL2 ẋ < −3
Thrust3 Fy < −10 VEL3 −ẏ < −3
Thrust4 −Fy < −10 VEL4 ẏ < −3

LOS1 x < −100 VEL5 −ẋ− ẏ < −3
√

2

LOS2 x tan (30◦)− y < 0 VEL6 −ẋ+ ẏ < −3
√

2

LOS3 x tan (30◦) + y < 0 VEL7 ẋ− ẏ < −3
√

2

PASS (x + y < 1) ∩ (x− y < 1) ∩
(−x−y < 1)∩ (−x+y < 1)

VEL8 ẋ+ ẏ < −3
√

2

5.1.3 Controller Parameters

In Section 2.4, we presented the framework for constructing the SwLQ con-

troller. Here, we give the particular values of the cost functions from Equa-

tion 2.3 we used in our experiments, with units for x, y in [m], ẋ, ẏ in [m/min],

34

and Fx, Fy in [kg·m/min2]:

Q1 =


1

10002
0 0 0

0 1
8662

0 0

0 0 1
202

0

0 0 0 1
202



Q2 =


1

1002
0 0 0

0 1
1002

0 0

0 0 1
32

0

0 0 0 1
32


R1 = R2 =

[
1

288002
0

0 1
288002

]
.

Using Matlab’s lqr function, the following control law gains are obtained:

K1 =

[
28.83 −0.10 1449.98 −0.005

0.08 33.26 −0.005 1451.50

]

K2 =

[
288.03 −0.13 9614.99 0

0.13 288.0 0 9615.0

]
.

In Section 2.5, we presented the construction of the novel SDLQ controller.

Equation 2.7 gave the parameterized cost function weights in Q. For the

remaining cost function weight R, we choose a constant matrix as follows:

R =

[
1

360002
0

0 1
360002

]
.

Recall a new LQR control law is computed every δ-time (see transition

in Figure 2.7). We choose δ = 0.5 min. This LQR computation is also

completed using Matlab’s lqr function.

5.1.4 Explicit Variables

By our choice of full-state feedback controllers, Fx, Fy (or ~u) become linear

functions of ~x, so there are no explicit variables modeling Fx, Fy in the pro-

posed hybrid benchmark models as observed in Figures 2.4-2.7. In other

words, the following systems describe equivalent behaviors:

35

1. ~̇x = A~x+B~u, ~u = −K~x,

2. ~̇x = (A−BK)~x,

and we have focused on that given in system 2, since we are working with

flow equations or trajectories that are described by ODEs.

Our verification problem involves constraints on ~u. In order to check these

properties in the software tools, the constraints would take the form of affine

inequalities −K~x < c. However, the syntax of C2E2 is limited to 1- or

2-dimensional affine inequalities. Thus we revise the dynamical system de-

scribed by system 1 to be:

~̇x = A~x+B~u,

~̇u = −K~̇x = −KA~x−KB~u.

This is equivalent to the original system 1 given the appropriate ini-

tial conditions. This gives an augmented 6-dimensional state vector ~̃x =

[x, y, ẋ, ẏ, Fx, Fy]. This augmented system is required to verify thrust con-

straints in C2E2. While it is not required in SpaceEx, the 6-dimensional

model may still be used in SpaceEx to obtain reach sets for the Fx, Fy vari-

ables.

5.2 Experiments

In this thesis, we only explore the application of a subset of verification

tools to a subset of the proposed benchmark satellite rendezvous models. In

particular, Table 5.2 describes the possible model configurations and which

tools we have applied to each.

5.2.1 Experiments for the SwLQ Controller

We use the Lin-SwLQ model to compare tool performance between SDVTool,

C2E2, and SpaceEx. First, all the tools returned a Safe result for all the prop-

erties in Table 5.1 except for PASS (corresponding with collision avoidance

during the Passive mode), under the parameters given in Sections 5.1.1 and

5.1.3. Note that C2E2 and SpaceEx re-execute their verification algorithms

36

Table 5.2: Summary of the experimental setups (model configurations and
software tools) tested in this thesis.

Tool SwLQ SwLQ-Pass SDLQ SDLQ-Pass
SDVTool (Lin) X X
SpaceEx (Lin) X X
C2E2 (Lin) X
C2E2 (NLin) X
DryVR (Lin) X
DryVR (NLin)

for each property, whereas SDVTool checks all properties in one execution of

the program. Table 5.3 summarizes the runtimes taken to obtain these re-

sults. The runtime listed for a property, say LOS, is taken to be the average

runtime to check each sub-property, e.g. LOS1, LOS2, and LOS3. The reach-

tubes returned by each tool are plotted for the relative position variables x, y

in Figure 5.1.

Table 5.3: Time (seconds) taken to check each safety property across
different tools. “N/V” indicates that the property was not successfully
checked.

Tool Thrust LOS VEL PASS All
SDVTool 5.5
SpaceEx 6.2 6.4 6.5 6.5
C2E2 85 20 17.8 N/V

(a) (b) (c)

Figure 5.1: Reachable positions for rendezvous using SwLQ without any
transition to Passive as computed by: (a) SDVTool (Lin), (b) SpaceEx (Lin),
and (c) C2E2 (NLin).

37

(a) (b)

(c)

Figure 5.2: Reachsets computed by SDVTool under the Lin-SwLQPass
model for: (a) velocity in Mode 2, (b) thrust, and (c) positions reached
after a transition to Passive during [120,125 min].

The Lin-SwLQ-Pass model is verified to be Safe by both SDVTool and

SpaceEx. The reachtubes look similar so we only include the plots from

SDVTool to show what the reachable states look like in other dimensions in

Figure 5.2.

In C2E2, checking Pass terminates in an Unknown result (due to the state-

space explosion problem mentioned in Section 3.3). However, we successfully

show for both Lin and NLin models without Pass that the remaining safety

properties are achieved. The reachtube for relative position using the NLin

model is given in Figure 5.1c to further demonstrate that the linear model

provides a good approximation of the nonlinear dynamics in this benchmark.

38

Lastly we present an experiment that focuses on evaluating the limitations

of the controller with respective to passive safety. We use SDVTool to run

successive tests on the Lin-SwLQ-Pass model for all the safety properties,

changing only the initial set of states and the transition guard to Passive.

Due to the parameters given by the encompassing ARPOD mission in [2], we

expect our rendezvous mission to start at Mode 1 with a separation distance

around 1000 m and at an angle in the third quadrant of the relative coordinate

frame. We maintain the same assumptions as before that the initial velocities

are zero.

This resulting set of initial states Θ (see the colored arc in Figure 5.3) is

partitioned into smaller sets θ1, θ2, ..., such that ∪iθi = Θ. For each initial

set θi, we run the verification program N times. On the jth run, the Passive

transition guard is set to [t1, t2] = [tj−1, tj] and t0 = 0, tN = 270 min. In

particular we choose 5 min increments so N = 54. The results give us an

idea of how long (within 5 minutes) a rendezvous mission from an initial

state (within the neighborhood of its respective θj) can still safely initiate

a passive abort. Should a failure occur beyond this elapsed time, an active

abort would be necessary (or a different control strategy other than the SwLQ

presented here).

Figure 5.3 depicts the results of this experiment by assigning a color to the

largest value of tj for which the algorithm returns a safe result. For example,

if we look at the initial state [−900,−400, 0, 0] or a small neighborhood of

this point, the color is a deep red indicating that if we perform rendezvous

starting from this initial state, we can successfully rendezvous and abort

the mission at any time before the 270 min bound tested. If we look at a

neighborhood around [−200,−900, 0, 0], the color is a light blue indicating

that we can only guarantee that the rendezvous can safely abort at any time

before 100 min. If a transition to Passive occurs after 100 min, this may

result in a violation of the passive safety property or a rendezvous property

(e.g. max thrust) may be violated after 100 min.

5.2.2 Experiments for the SDLQ Controller

For the SDLQ controller, we do not have an explicit closed-form model de-

scription though we are able to represent it compactly in Figure 2.7. The

39

Figure 5.3: Initial positions (with zero initial velocities) of Lin-SwLQ-Pass
that have been verified by SDVTool to be safe. They are safe for Passive
transition times up to the time shown by the color map.

update function here “rewrites” the model description (the flow equations)

periodically. The tools we have discussed thus far (SDVTool, C2E2, and

SpaceEx) cannot handle models of this nature. However, we presented DryVR

in Section 3.3 and noted that it did not rely on such white-box models, but

could handle black-box models given a simulation artifact—we have imple-

mented the simulation of the hybrid system in Figure 2.7 in Matlab.

Running the simulation artifact for the Lin-SDLQ model through DryVR

provided Safe results (with reachtubes shown in Figure 5.4) for the thrust

and LOS properties, and an Unsafe result for the total velocity (i.e. provided

a counterexample simulation trace shown in Figure 5.5). This unsafe result is

not surprising as the parameterized cost function proposed in Equation (2.7)

was designed to enforce the LOS constraint and not necessarily the velocity

constraint (notice dependence on x, y but not on ẋ, ẏ).

The reachtubes obtained from checking thrust and LOS properties are

plotted along the relative position dimensions and for thrust in each direc-

tion in Figure 5.4. The runtimes for these tests were on the order of hours.

While this is not immediately practical, it establishes the feasibility of the

approach and motivates more careful engineering and parallelization. The

primary source of this long overhead is due to the frequent re-computation of

the SDLQ control law. This slows down a single simulation run and DryVR

requires the generation of multiple simulation traces. In DryVR, the ran-

dom simulation search for counterexamples (lines 3-9 in Algorithm 1) occurs

concurrently within the reachtube computation (line 1), so running the ver-

40

ification program for the total velocity (VEL) constraints completed on the

order of seconds.

(a) (b)

Figure 5.4: (a) Reachable positions (blue) and unsafe positions (red). (b)
Reachable thrusts: Fx (blue) and Fy (green).

Figure 5.5: Simulated trajectory of total velocity starting from a state in Θ
that violates the velocity constraint (red).

We additionally check the correctness of the discrepancy function learned

in DryVR, that is, whether the learned function meets the property of dis-

41

crepancy functions stated in Equations (3.2). For this experiment, we ran-

domly sample the initial states in Θ, generate their simulation traces, and

check whether any pair of these traces provide a counterexample to Equa-

tions (3.2). We do this for 600 samples and find no such counterexamples;

thus, we conclude that the discrepancy function computed by DryVR in this

example holds with high confidence.

Lastly, we perform an experiment to evaluate the performance of the SDLQ

controller (rather than its capability to achieve safety) by running simulations

using SDLQ, SwLQ, and a model predictive controller (MPC) that was used

in the original benchmark formulation paper [2]. Specifically, we use the

realistic performance metric of fuel consumption to compare performance

between controllers. In this case, fuel consumption is taken to be:

J(T) =

∫ T

0

||~u(t)||dt.

These simulations are performed under the same initial conditions and a

terminating condition of achieving ρ = 20 m (which occurs at different times

tf and terminal states ~xtf for each controller). The results are given in

Table 5.4, and a plot of the cumulative fuel expended is in Figure 5.6. MPC

minimizes the closing velocity best without sacrificing too much in completion

time and fuel consumption. The SwLQ achieves the best completion time

but at a high cost in fuel consumption. Finally, SDLQ achieves the best fuel

costs with acceptable increase in completion time but unacceptable ranges

of velocity that violate constraints.

Table 5.4: Comparison of terminal states, completion times, and total fuel
cost.

~xtf tf J(tf)
SDLQ [-19.99, -0.23, 3.52, 0.09] 223.7min 168.6N
SwLQ [-19.09, -5.97, 0.57, 0.18] 166.4min 531.8N
MPC [-19.91, -0.01, 0.003, 0.0] 180.0min 213.0N

42

Figure 5.6: Cumulative fuel consumption for three different controllers
obtained through simulation under same initial state and termination
condition.

43

CHAPTER 6

CONCLUSIONS

In this thesis, we present a set of linear (Lin) and nonlinear (NLin), possibly

nondeterministic (if Pass) benchmark models of an autonomous rendezvous

maneuver for spacecraft with several safety requirements. We designed a

switched LQR (SwLQ) controller and verified its safety across a subset of the

provided models, a variety of initial conditions and parameter ranges, and us-

ing three different software tools (SDVTool, C2E2, and SpaceEx) for bounded

model-checking of hybrid systems. This particular subset of experiments in-

volving the passive abort maneuver (Pass) has shed light on the weakness

of simulation-driven verification in handling ill-conditioned models, and mo-

tivated the development of SDVTool—a tool intended to test an alternative

reachability computation algorithm that could improve the original tool in

question: C2E2.

We also proposed a novel controller, the state-dependent LQ (SDLQ) con-

trol, which is a piecewise continuous state-feedback controller obtained by

periodically recomputing a quadratic optimization problem that implicitly

enforces system constraints. The design framework involves choosing an

appropriate state-based function for the quadratic objective function, and

then verifying that the resulting closed-loop system does not violate safety

constraints. However this model proved to be intractable under these previ-

ously mentioned software verification tools. This provided the opportunity

to demonstrate and highlight the advantages of a more recently developed

data-driven reachability analysis tool, DryVR.

The results provide a foundation for verifying more sophisticated maneu-

vers (including the extended ARPOD mission) in future autonomous space

operations. However, there are still many threads to address before obtain-

ing a fully mature, safe controller for such applications. For example, we

proposed a state feedback controller, but we ought to consider a situation

where full state measurement is not possible, such as is the case for angles-

44

only rendezvous from the full ARPOD problem. Here, a simple bang-bang

controller could be used but would result in unstable behavior similar to

what was observed in the Passive mode in C2E2 (the resulting closed-loop

system gives the same Jacobians which are used to compute discrepancy in

this tool). The autonomous rendezvous problem can easily be made more

challenging and realistic, which then prompts innovation and application of

problems in observability, optimal and robust control, and the like. There is

a concurrent need to address algorithmic verifiability of these sophisticated,

innovative control solutions. C2E2 is one example of the ongoing effort to

cover a large, growing class of nonlinear models, but we have already ob-

served a facet of its limitations with the SDLQ models. It is clear that

DryVR shows much promise in significantly extending the classes of models

that can be automatically verified. It remains to be seen how we can ap-

ply rigorous safety-checking to optimal, constrained control schemes, such

as model predictive control (e.g. if optimization constraints are relaxed).

This safety-checking is especially important in the context of autonomous

spacecraft navigation, as it poses a difficult control problem and its proposed

solutions can become increasingly complex and creative.

45

REFERENCES

[1] NASA Space Technology Roadmaps and Priorities. The National
Academies Press, May 2012.

[2] C. Jewison and R. S. Erwin, “A spacecraft benchmark problem for
hybrid control and estimation,” in 2016 IEEE 55th Conference on
Decision and Control (CDC). IEEE, Dec 2016. [Online]. Available:
https://doi.org/10.1109/cdc.2016.7798765

[3] D. Woffinden and D. Geller, “Navigating the road to autonomous orbital
rendezvous,” Journal of Spacecraft and Rockets, vol. 44, no. 4, pp. 898–
909, 2007.

[4] D. Pinard, S. Reynaud, P. Delpy, and S. E. Strandmoe, “Accurate
and autonomous navigation for the ATV,” Aerospace Science and
Technology, vol. 11, no. 6, pp. 490–498, Sep 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.ast.2007.02.009

[5] D. Zimpfer, P. Kachmar, and S. Tuohy, “Autonomous rendezvous, cap-
ture and in-space assembly: past, present and future,” in Proc. AIAA
Space Exploration Conference, Jan. 2005.

[6] K. Galabova, G. Bounova, O. de Weck, and D. Hastings, “Architecting
a family of space tugs based on orbital transfer mission scenarios,”
in AIAA Space 2003 Conference & Exposition. American Institute of
Aeronautics and Astronautics (AIAA), Sep 2003. [Online]. Available:
http://dx.doi.org/10.2514/6.2003-6368

[7] J. A. Starek, B. Açıkmeşe, I. A. Nesnas, and M. Pavone, Spacecraft Au-
tonomy Challenges for Next-Generation Space Missions. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2016, pp. 1–48.

[8] NASA, “Overview of the dart mishap investigation results,” Tech. Rep.,
2006.

[9] W. E. Wong, V. Debroy, and A. Restrepo, “The role of software in
recent catastrophic accidents,” IEEE Reliability Society 2009 Annual
Technology Report.

46

[10] G. J. Holzmann, “Mars code,” Commun. ACM, vol. 57,
no. 2, pp. 64–73, Feb. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2560217.2560218

[11] “Terminal guidance system for satellite rendezvous,” Journal of the
Aerospace Sciences, vol. 27, no. 9, pp. 653–658, Sep 1960. [Online].
Available: http://dx.doi.org/10.2514/8.8704

[12] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: A
verification tool for stateflow models,” in Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, 2015, pp. 68–82.

[13] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala,
“Automatic reachability analysis for nonlinear hybrid models with
C2E2,” in Computer Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I, 2016. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-
41528-4 29 pp. 531–538.

[14] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable veri-
fication of hybrid systems,” in CAV, 2011, pp. 379–395.

[15] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DRYVR:
data-driven verification and compositional reasoning for automotive
systems,” CoRR, vol. abs/1702.06902, 2017. [Online]. Available:
http://arxiv.org/abs/1702.06902

[16] S. A. Jacklin, “Survey of verification and validation techniques
for small satellite software development,” NASA Ames Re-
search Center, Space Tech Expo, May 2015. [Online]. Available:
http://ntrs.nasa.gov/search.jsp?R=20150010982

[17] M. Bozzano, R. Cavada, A. Cimatti, J.-P. Katoen, V. Y. Nguyen,
T. Noll, and X. Olive, “Formal verification and validation of aadl mod-
els,” Proc. ERTS, 2010.

[18] T. T. Johnson, J. Green, S. Mitra, R. Dudley, and R. S. Erwin,
“Satellite rendezvous and conjunction avoidance: Case studies in
verification of nonlinear hybrid systems,” in FM 2012: Formal
Methods. Springer Nature, 2012, pp. 252–266. [Online]. Available:
https://doi.org/10.1007%2F978-3-642-32759-9 22

47

[19] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems
past HyTech,” in Hybrid Systems: Computation and Con-
trol. Springer Nature, 2005, pp. 258–273. [Online]. Available:
https://doi.org/10.1007%2F978-3-540-31954-2 17

[20] S. S. Farahani, I. Papusha, C. McGhan, and R. M. Murray,
“Constrained autonomous satellite docking via differential flatness
and model predictive control,” in 2016 IEEE 55th Conference on
Decision and Control (CDC). IEEE, Dec 2016. [Online]. Available:
https://doi.org/10.1109/cdc.2016.7798766

[21] B. P. Malladi, R. G. Sanfelice, E. Butcher, and J. Wang, “Robust
hybrid supervisory control for rendezvous and docking of a spacecraft,”
in 2016 IEEE 55th Conference on Decision and Control (CDC).
Institute of Electrical and Electronics Engineers (IEEE), Dec. 2016.
[Online]. Available: https://doi.org/10.1109%2Fcdc.2016.7798769

[22] B. HomChaudhuri, M. Oishi, M. Shubert, M. Baldwin, and R. S. Erwin,
“Computing reach-avoid sets for space vehicle docking under continuous
thrust,” in 2016 IEEE 55th Conference on Decision and Control (CDC).
Institute of Electrical and Electronics Engineers (IEEE), Dec. 2016.
[Online]. Available: https://doi.org/10.1109%2Fcdc.2016.7798767

[23] N. Chan and S. Mitra, “Verifying safety of an autonomous spacecraft
rendezvous mission,” in ARCH17. 4th International Workshop on
Applied Verification of Continuous and Hybrid Systems, ser. EPiC Series
in Computing, G. Frehse and M. Althoff, Eds., vol. 48. EasyChair, 2017.
[Online]. Available: https://easychair.org/publications/paper/S2V pp.
20–32.

[24] N. Chan and S. Mitra, “Verified hybrid lq control for autonomous space-
craft rendezvous,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), Dec 2017, pp. 1427–1432.

[25] N. Chan and S. Mitra, “Codev: Automated model predictive control
design and formal verification,” in Proceedings of the 21st International
Conference on Hybrid Systems: Computation and Control (Part of CPS
Week), ser. HSCC ’18. New York, NY, USA: ACM, 2018. [Online].
Available: http://doi.acm.org/10.1145/3178126.3187003 pp. 281–282.

[26] M. A. Johnson and M. J. Grimble, “Recent trends in linear optimal
quadratic multivariable control system design,” IEE Proceedings D -
Control Theory and Applications, vol. 134, no. 1, pp. 53–71, January
1987.

[27] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory of
Timed I/O Automata (Synthesis Lectures in Computer Science). Mor-
gan & Claypool Publishers, 2006.

48

[28] E. Hainry, “Reachability in linear dynamical systems,” in Proceedings
of the 4th Conference on Computability in Europe: Logic and Theory
of Algorithms, ser. CiE ’08. Berlin, Heidelberg: Springer-Verlag, 2008.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-69407-6 28
pp. 241–250.

[29] G. Lafferriere, G. J. Pappas, and S. Sastry, “O-minimal hybrid systems,”
Mathematics of Control, Signals and Systems, vol. 13, no. 1, pp. 1–21,
Feb 2000. [Online]. Available: https://doi.org/10.1007/PL00009858

[30] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” Journal of Computer and System
Sciences, vol. 57, no. 1, pp. 94 – 124, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000098915811

[31] A. Donzé and O. Maler, “Systematic simulation using sensitivity anal-
ysis,” in Hybrid Systems: Computation and Control, A. Bemporad,
A. Bicchi, and G. Buttazzo, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 174–189.

[32] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of
annotated models from executions,” in Proceedings of the Eleventh
ACM International Conference on Embedded Software, ser. EMSOFT
’13. Piscataway, NJ, USA: IEEE Press, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2555754.2555780 pp. 26:1–26:10.

[33] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic
models for incrementally stable switched systems,” IEEE Transactions
on Automatic Control, vol. 55, no. 1, pp. 116–126, Jan 2010.

[34] C. Fan and S. Mitra, “Bounded verification with on-the-fly
discrepancy computation,” in Automated Technology for Verification
and Analysis - 13th International Symposium, ATVA 2015, Shanghai,
China, October 12-15, 2015, Proceedings, 2015. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-24953-7 32 pp. 446–463.

[35] P. S. Duggirala and M. Viswanathan, Parsimonious, Simulation Based
Verification of Linear Systems. Cham: Springer International Publish-
ing, 2016, pp. 477–494.

[36] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 167–170.

[37] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for
non-linear systems,” Automatica, vol. 34, no. 6, pp. 683–696, June 1998.
[Online]. Available: http://dx.doi.org/10.1016/S0005-1098(98)00019-3

49

[38] A. Kanade, R. Alur, F. Ivančić, S. Ramesh, S. Sankaranarayanan,
and K. C. Shashidhar, “Generating and analyzing symbolic traces of
simulink/stateflow models,” in Computer Aided Verification, A. Bouaj-
jani and O. Maler, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 430–445.

[39] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić, A. Gupta,
and G. J. Pappas, “Monte-carlo techniques for falsification of temporal
properties of non-linear hybrid systems,” in Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and
Control, ser. HSCC ’10. New York, NY, USA: ACM, 2010. [Online].
Available: http://doi.acm.org/10.1145/1755952.1755983 pp. 211–220.

[40] E. M. Clarke and P. Zuliani, “Statistical model checking for cyber-
physical systems,” in Automated Technology for Verification and Anal-
ysis, T. Bultan and P.-A. Hsiung, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 1–12.

[41] M. J. Kearns and U. V. Vazirani, An Introduction to Computational
Learning Theory. MIT press, 1994.

[42] P. S. Duggirala and M. Viswanathan, “Parsimonious, simulation
based verification of linear systems,” in Computer Aided Verification,
S. Chaudhuri and A. Farzan, Eds. Cham: Springer International Pub-
lishing, 2016, pp. 477–494.

[43] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. of the European Control Conference, Zürich,
Switzerland, July 17–19 2013, http://control.ee.ethz.ch/ mpt. pp. 502–
510.

50

