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Abstract

In this paper, I present a comprehensive analysis of two decision heuristics that permit intransitive prefer-

ences: the lexicographic semiorder model and the similarity model. I also compare these two intransitive

decision heuristics with transitive linear order models and two simple transitive heuristics. For each decision

theory, I use two types of probabilistic specifications: distance-based models (which assume deterministic

preferences and probabilistic response processes), and mixture models (which assume probabilistic prefer-

ences and deterministic response processes). I test 26 such probabilistic models on datasets from three

different experiments using both frequentist and Bayesian order-constrained statistical methods. The fre-

quentist goodness-of-fit tests show that the distance-based models with modal choice and the mixture models

for all of the decision heuristics explain the participants’ data fairly well for all stimulus sets. The frequentist

analysis generates little evidence against transitivity. Model selection using Bayes factors suggests extensive

heterogeneity across participants and stimulus sets.
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Chapter 1

Rationality or Irrationality of
Preferences? A Quantitative Test of
Intransitive Decision Heuristics

1.1 Introduction

To have transitive preferences, for any options x, y, and z, one who prefers x to y and y to z must prefer x

to z. Transitivity of preferences plays an important role in many major contemporary theories of decision-

making under risk or uncertainty, including nearly all normative, prescriptive, and even descriptive theories.

Most theories use an overall utility value for each gamble and assume that a decision maker prefers gambles

with higher utility values; in other words, most theories imply transitivity of preferences. These theories

include expected utility theory (Bernoulli, 1738), prospect theory (Kahneman and Tversky, 1979), cumulative

prospect theory (Tversky and Kahneman, 1992), and decision field theory (Busemeyer and Townsend, 1993).

Transitivity of preferences is a fundamental element of utility, and abandoning it means questioning nearly

all theories that rely on this element. Moreover, transitivity of preferences is important because when a

decision maker’s preferences are not transitive (i.e., intransitive or irrational), he risks becoming a “money

pump” (Bar-Hillel and Margalit, 1988; Block et al., 2012) and losing his entire wealth.

In the past few decades, researchers have provided a great deal of empirical evidence that suggests that

both human and animal decision makers violate transitivity of preferences (see, e.g., Tversky, 1969; Loomes

and Sugden, 1987; Brandstätter et al., 2006; González-Vallejo, 2002). However, these studies contain per-

vasive methodological problems in collecting, modeling, and analyzing empirical data. Some common prob-

lematic approaches are pattern counting, pattern counting with hypothesis testing in which the hypotheses

are wrongly specified, conducting multiple binomial tests, and using between-participant modal choice (see

Section 2 of Guo (2018) for details on these methodological problems). Thus, there is still little evidence

of intransitivity (Regenwetter et al., 2011a; Regenwetter and Davis-Stober, 2012; Davis-Stober et al., 2015).

Transitivity of preferences is central to many prominent theories in psychology and economics, and we have

to be very careful about claiming violations of transitivity of preferences. This paper reviews and tests two

prominent intransitive decision heuristics, and compares these intransitive heuristics to the transitive linear

order model and two simple transitive heuristics to find out if transitivity of preferences is violated and
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which model can best explain participants’ behavior.

The rest of the paper is organized as follows: Section 1.2 describes two intransitive decision heuristics:

lexicographic semiorder models and similarity models; Section 1.3 describes the transitive linear order model

and introduces two simple transitive heuristics; Section 1.4 introduces two kinds of probabilistic specifications

for the algebraic models: distance-based models and mixture models. It also describes the statistical tools;

Section 1.5 describes the five stimulus sets used in this paper: Experiment I in Tversky (1969), Cash I and

Cash II in Regenwetter et al. (2011a), and Session I and Session II in an experiment I conducted in 2012;

Section 1.6 reports the data analysis results and Section 1.7 concludes the paper.

1.2 Intransitive Heuristic Models

In this section, I describe two intransitive heuristics, including the lexicographic semiorder model (Tversky,

1969) and the similarity model (Rubinstein, 1988; Leland, 1994). These two intransitive heuristics are

illustrated using Tversky’s (1969) stimulus set (see Panel A of Table 1.1). Tversky’s stimulus set comprises

five different gambles: a, b, c, d, and e. For example, Gamble a is written as
(
$5, 7

24 ; $0, 1724
)
, which states

that a decision maker has a 7
24 chance of winning $5 and a 17

24 chance of winning nothing. The gambles are

designed such that the expected values increase in the probabilities of winning, whereas they decrease in

the payoffs. The probability of winning of each gamble increases in equal steps
(

1
24

)
, whereas the payoff of

the corresponding gambles decreases in equal steps ($0.25). Employing these gambles, Tversky attempted

to learn whether intransitive preferences could be produced and whether the participants would satisfy a

lexicographic semiorder model.

1.2.1 Lexicographic Semiorder Models

Tversky (1969) defined a lexicographic semiorder model as follows: a semiorder (Luce, 1956) or a just

noticeable difference structure is imposed on a lexicographic ordering. Lexicographic semiorder models

predict transitive and intransitive preferences.

A lexicographic semiorder works as follows. Suppose a decision maker is asked to choose between two

alternatives x and y, where x = (x1, . . . , xn) and y = (y1, . . . , yn). I use x �i y to denote that a decision

maker prefers x to y on attribute i; I use x ≺i y to denote that the decision maker prefers y to x on attribute

i; and I use x ∼i y to denote that the decision maker is indifferent between x and y on attribute i. I write

� for strict preference and ∼ for indifference. According to a lexicographic semiorder model:

1. The decision maker considers gamble attributes sequentially, for example, first payoffs and then proba-
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bilities of winning, or first probabilities of winning and then payoffs. For each attribute i, the decision

maker uses a threshold εi, and εi > 0.

2. The decision maker stops the pairwise comparison decision process between two gambles whenever the

values of the currently considered attribute i differ by more than the threshold εi. He then prefers the

more attractive gamble on that attribute (either x �i y or x ≺i y). Otherwise, the decision maker has

no preference on that attribute (x ∼i y) and proceeds to the next attribute i+ 1.

3. If the decision maker cannot decide after comparing these two gambles for all attributes (i.e., the values

on all attributes do not differ by more than their corresponding thresholds), then he is indifferent

between x and y, that is, x ∼ y.

Consider the ten gamble pairs that comprise all possible pairwise combinations of the five gambles in

Tversky (1969). In Tversky’s study, each gamble was displayed as a wheel of chance in which a shaded area

represented the probability of winning and in which the value of payoff was shown on top of the shaded

area. Because the probabilities were not displayed in the numerical form, it was not possible for decision

makers to calculate the exact expected values. Tversky (1969) predicted that for “adjacent pairs,” that is,

for pairs (a, b), (b, c), (c, d), and (d, e), decision makers would prefer gambles with higher payoffs, because

the probabilities of winning were visually very similar. In other words, the differences in the probabilities

of winning may not have exceeded their thresholds. For the extreme pair, pair (a, e), however, he predicted

that decision makers would prefer the gamble with higher probability of winning, because the difference in

the probabilities would be large enough to exceed the corresponding threshold and the decision maker would

determine his preference before even considering the reward sizes.

An example may serve to further clarify how a lexicographic semiorder model works. Assume that a

decision maker considers, in order, first probabilities of winning and then payoffs for the ten gamble pairs

in Tversky’s stimulus set. Suppose that he uses an identity function for all attribute values, u(x) = x, and

he uses 3.5
24 as the threshold for the probabilities of winning for all pairs. Panel B in Table 1.1 shows the

differences of probabilities of winning in all ten pairs in Tversky (1969). It shows that the decision maker

prefers e to a for pair (a, e) based on the probability of winning, because the probability difference is 4
24 ,

larger than the threshold. For the remaining pairs, he does not have a preference based on the probability

of winning, so he moves on to the next attribute, the payoff. Suppose he uses $0.35 as the threshold for

payoffs. Panel C in Table 1.1 shows the payoff difference in each pair. It shows that for pairs (a, c), (a, d),

(b, d), (b, e), and (c, e), the differences between the payoffs exceed $0.35; therefore, he prefers the gambles

with higher payoffs for those pairs. For adjacent pairs, pairs (a, b), (b, c), (c, d), and (d, e), he still cannot
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make decisions after comparing the values of the two possible attributes; thus, he is indifferent on those

pairs.

In Table 1.1, the table on the left side of Panel D shows one of the decision maker’s binary preference

relations (a preference pattern) for the ten gamble pairs in Tversky (1969)—if he uses a lexicographic

semiorder model, considers the probability of winning before the payoff, uses a probability threshold of 3.5
24 ,

and a payoff threshold of $0.35. The preference pattern for the ten gamble pairs is a ∼ b, a � c, a � d,

a ≺ e, b ∼ c, b � d, b � e, c ∼ d, c � e, and d ∼ e. In particular, a � c, c � e, and e � a forms an

intransitive preference cycle.

For any pair (x, y), the binary choice probability θxy is the probability of choosing x over y. When

a decision maker strictly prefers x to y and performs deterministically, he chooses x over y all the time

(θxy = 1); when a decision maker prefers y to x and choose deterministically, he never chooses x over y

(θxy = 0); when a decision maker is indifferent about x and y, suppose for now, for simplicity, that he

chooses x or y with probability one half (θxy = 1
2 ). The table on the right side of Panel D depicts the binary

choice probabilities of a decision maker whose preference pattern is shown on the left.

The example above uses an identity function u(x) = x for utility. One could posit, alternatively, that

decision makers psychophysically transforms money amount in question via a log transformation (Anderson,

1970); e.g., instead of xi− yi, the difference becomes log(xi)− log(yi) or log xi

yi
; and in this case, a log utility

function u(x) = log(x) is used. In this paper, I consider two kinds of lexicographic semiorder models, one

uses an identity function u(x) = x for utility (represented as LSO-Diff), and the other one uses a log function

u(x) = log(x) for utility (represented as LSO-Ratio).

1.2.2 Similarity Models

Rubinstein (1988) proposed a type of intransitive heuristic model called a similarity model to explain some

phenomena that cannot be explained by expected utility theory. Unlike a lexicographic semiorder model,

which orders gamble attributes lexicographically, a similarity model assumes that the decision maker con-

siders all attributes simultaneously.

Rubinstein (1988) defined two types of similarity, the ε-difference similarity and λ-ratio similarity. Sup-

pose that ε > 0 is the threshold. For any m, n ∈ IR, Rubinstein defined the difference similarity by m ∼ n

if |m− n| ≤ ε, and the ratio similarity by m ∼ n if 1
λ ≤ m/n ≤ λ. In other words, the difference similarity

uses an identity function u(x) = x for the utility of money rewards x, and the ratio similarity uses a log

function u(x) = log(x) for utility. Rubinstein described how a similarity model works for gambles with two

outcomes as follows: Suppose there are two gambles, x = (x1, x2) and y = (y1, y2), where x1, x2, y1, and y2
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are attributes of the gambles, e.g., the payoff or the probability of winning.

Step 1. If both x1 > y1 and x2 > y2 , then x � y. Or, if both x1 < y1 and x2 < y2 , then x ≺ y.

Otherwise, the decision maker proceeds to Step 2.

Step 2. If x2 ∼ y2 and x1 > y1 (and not x1 ∼ y1), then x � y. If x2 > y2 (and not x2 ∼ y2) and x1 ∼ y1,

then x � y. Otherwise, the decision maker moves to Step 3, which is not specified in Rubinstein (1988).

Based on the procedures proposed by Rubinstein (1988), the similarity models I test in the current

paper work as follows: a decision maker picks a threshold for each attribute of a gamble pair and forms a

preference for that attribute. The decision maker derives his final preferences from integrating all preferences

on all attributes. To illustrate, suppose the decision maker considers two gambles x and y, each with two

attributes, Attributes 1 and 2, and proceeds through the following decision making process:

• (x �1 y and x �2 y) or (x �1 y and x ∼2 y) or (x ∼1 y and x �2 y)⇒ x � y,

• (x ≺1 y and x ≺2 y) or (x ≺1 y and x ∼2 y) or (x ∼1 y and x ≺2 y)⇒ x ≺ y,

• (x �1 y and x ≺2 y) or (x ≺1 y and x �2 y) or (x ∼1 y and x ∼2 y)⇒ x ∼ y.

Here I show an example of how a similarity model works using Tversky’s (1969) gambles: suppose a

decision maker uses a similarity model with an identity function, u(x) = x. He uses 3.5
24 as the threshold of

probabilities of winning, and $0.35 as the threshold of payoffs. He forms preferences for the ten gamble pairs

regarding probabilities of winning and payoffs, as shown in the top two tables of Panel E in Table 1.1. When

considering the probabilities of winning, he prefers e over a, and he is indifferent about the remaining pairs.

When considering the payoffs, he is indifferent about the adjacent pairs and prefers the gambles with higher

payoffs for the other pairs. After integrating his preferences on both attributes, the decision maker derives

his final preferences, which are shown in the bottom table of Panel E in Table 1.1. The decision maker is

indifferent about all adjacent pairs and the extreme pair, pair (a, e). Of the remaining pairs, the decision

maker prefers the gambles with higher payoffs. For example, for pair (a, e), the decision maker prefers e to

a (a ≺ e) based on the probabilities of winning and prefers a to e (a � e) based on the payoffs. Thus, after

integrating his preferences across both attributes, the decision maker is indifferent between a and e (a ∼ e).

Here, a � c, c � e, and e ∼ a form intransitive preferences.

In this paper, I consider two types of similarity models, one uses an identity function u(x) = x for utility

(represented as SIM-Diff), and the other one uses a log function u(x) = log(x) for utility (represented as

SIM-Ratio).

For a more detailed review of lexicographic semiorder models and similarity models, see Guo (2018).
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1.3 Transitive Models

1.3.1 Linear Order Models

In this paper, I also test linear order models, which contain all permissible transitive strict linear orders.

The five gambles in Tversky’s experiment generate 5! = 120 linear orders. All of these 120 linear orders

are transitive. The linear order model does not consider gamble specifics and only depends on the number

of gambles under consideration. Regenwetter et al. (2011a,b, 2017) tested linear order models on risky and

intertemporal data, and reported that the linear order model could explain the participants’ behavior very

well.

1.3.2 Two Simple Transitive Heuristics

One simple transitive heuristic, labeled Payoff-only, is that a decision maker prefers the gamble with larger

payoff, regardless of the probabilities of winning. For example, taking Tversky’s gambles, this heuristic

predicts that the decision maker’s preference pattern is: a � b, a � c, a � d, a � e, b � c, b � d, b � e,

c � d, c � e, and d � e (Ranking abcde). One other simple transitive heuristic, labeled Prob-only, is

that a decision maker prefers the gamble with larger probability of winning, regardless of the payoffs. For

Tversky’s gambles, this heuristic predicts that the decision maker’s preference pattern is: a ≺ b, a ≺ c,

a ≺ d, a ≺ e, b ≺ c, b ≺ d, b ≺ e, c ≺ d, c ≺ e, and d ≺ e (Ranking edcba). Both of these preference

patterns, Rankings abcde and edcba, are among the 120 linear orders. Both are also special cases of LSO-Diff,

LSO-Ratio, SIM-Diff, and SIM-Ratio for Tversky’s stimuli.

1.4 Probabilistic Specifications

What do rigorous tests of algebraic decision theories look like? To answer this question, I want to discuss

the relationship between preferences and choices first. Preference is defined as people’s attitude towards a

set of items (Lichtenstein and Slovic, 2006). It is used by many theories in psychology and economics, and it

is a theoretical concept that we cannot directly observe. What we can observe and study in an experimental

paradigm are pairwise choices. As Tversky (1969) mentioned, when a person is faced with the same choice

options repeatedly, he does not always choose the same option. Therefore, one needs to figure out how

variable choices are related to underlying preferences.

To be more specific, transitivity of preferences is an algebraic property, and decision theories are usually

stated in deterministic terms. At the same time, experimental research collects variable choice data. How

6



can one test an algebraic theory using probabilistic data? Luce (1959, 1995, 1997) presented a two-fold

challenge for studying algebraic decision theories. The first part of the challenge is to specify a probabilistic

extension of an algebraic theory, a problem that has been discussed by many scholars (Carbone and Hey,

2000; Harless and Camerer, 1994; Hey, 1995, 2005; Hey and Orme, 1994; Loomes and Sugden, 1995; Starmer,

2000; Tversky, 1969). The second part of the challenge is to test the probabilistic specifications of the theory

with rigorous statistical methods, which was only solved in the past decade with a breakthrough in order-

constrained, likelihood-based inferences (Davis-Stober, 2009; Myung et al., 2005; Silvapulle and Sen, 2005).

In order to perform an appropriate and rigorous test of transitivity of preferences, researchers have to solve

Luce’s challenge. However, very few studies in the existing literature offer convincing solutions.

Regenwetter et al. (2014) provided a general and rigorous quantitative framework for testing theories of

binary choice, which one can use to test transitivity of preferences. To solve the first part of Luce’s challenge,

they presented two kinds of probabilistic specifications of algebraic models to explain choice variability:

a distance-based probabilistic specification models preferences as deterministic and response processes as

probabilistic, and a mixture specification models preferences as probabilistic and response processes as

deterministic. Sections 1.4.1 and 1.4.2 provide details of these two probabilistic specifications. For the

second part of Luce’s challenge, Regenwetter et al. (2014) employed frequentist likelihood-based statistical

inference methods for binary choice data with order-constraints on each choice probability (Iverson and

Falmagne, 1985; Silvapulle and Sen, 2005; Davis-Stober, 2009). Myung et al. (2005) and Klugkist and

Hoijtink (2007) provided Bayesian order-constrained statistical inference techniques. In this paper, I specify

two kinds of probabilistic models for each algebraic theory and test those probabilistic models with both

frequentist and Bayesian order-constrained statistical methods.

1.4.1 Distance-Based Models

A distance-based model, which is also called the error model, assumes that a decision maker has a fixed

preference throughout the experiment. It allows the decision maker to make errors/trembles in a binary

pair with some probability that is bounded by a maximum allowable error rate. Formally, a distance-based

model requires binary choice probabilities to lie within some specified distances of a point hypothesis that

represents a preference state. More precisely, let τ ∈ (0, 0.50] be the upper bound on the error rate for each

probability. For any pair (x, y), the probability of choosing x over y, θxy, is given by
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x � y ⇔ θxy ≥ 1− τ

x ≺ y ⇔ θxy ≤ τ

x ∼ y ⇔ 1−τ
2 ≤ θxy ≤

1+τ
2

When a decision maker prefers x to y, he chooses x over y with probability at least 1−τ . When a decision

maker prefers y to x, he chooses x over y with probability at most τ . As mentioned before, when a decision

maker is indifferent about x and y and chooses without errors, the “true” probability θxy is 1
2 . When this

decision maker chooses with errors and the upper bound on the error rate is τ , the probability of choosing

x over y is bounded by 1−τ
2 and 1+τ

2 . When τ = 0.50, this is also named as modal choice, which assumes

a decision maker has a deterministic preference and allows the decision maker to make errors on each pair

with probability at most 0.50. In other words, when τ = 0.50, it means that the modal choice for each pair

is consistent with the predictions of an algebraic theory (up to sampling variability). When τ = 0.90, the

decision maker chooses the preferred prospect with probability at least 0.90. Consider the example of the

lexicographic semiorder model shown in Panel D of Table 1.1. That lexicographic semiorder model predicts

a ∼ b, a ≺ e, and b � e. The distance-based model with upper bound τ = 0.50 means that a decision maker

chooses a over b with probability ranging from 0.25 to 0.75, a over e with probability at most 0.50, and b

over e with probability at least 0.50. However, a distance-based model with upper bound τ = 0.50 assumes a

decision maker chooses his preferred prospect more often than not and might be too lenient. To compensate

for this, one could place a more restrictive constraint on τ for each binary pair. Still using a ∼ b, a ≺ e, and

b � e as an example, the distance-based model with upper bound τ = 0.10 means that the decision maker

chooses a over b with probability ranging from 0.45 to 0.55, a over e with probability at most 0.10, and b

over e with probability at least 0.90. In this paper, I use three different upper bounds, τ = 0.50, 0.25, and

0.10, on the error rate.

1.4.2 Mixture Models

A mixture model assumes that a decision maker’s preferences are probabilistic. Variations in observed choice

behavior are no longer due to errors but rather to decision makers’ uncertain preferences. A decision maker

might fluctuate in his preferences during the experiment, making a choice based on one of the decision

theory’s predicted preference patterns on each given trial. A mixture model treats parameters of algebraic

theory as random variables with unknown joint distribution; it does not make any distributional assumptions

regarding the joint outcomes of the random variables. Geometrically, a mixture model forms the convex hull

of the point hypotheses that capture the various possible preference states.
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Take LSO-Diff and Tversky’s stimuli (given in Table 1.1, Panel A), for example. There are three different

parameters to consider in the algebraic model:

• The gambles’ attribute order. There are two possible orders:

– first payoff then probability of winning,

– first probability of winning then payoff.

• The threshold for the probability of winning (εprob). There are five possible scenarios for the threshold

regarding the probability of winning (εprob):

– εprob < 1/24 (strict linear order according to the probability of winning),

– εprob ≥ 4/24 (complete indifference according to the probability of winning),

– 1/24 ≤ εprob < 2/24, 2/24 ≤ εprob < 3/24, 3/24 ≤ εprob < 4/24 (i.e., three more semiorders

according to the probability of winning).

• The threshold for the payoff (εpay). There are five possible scenarios for the threshold regarding the

payoff (εpay):

– εpay < .25 (strict linear order according to the payoff),

– εpay ≥ 1 (complete indifference according to the payoff),

– .25 ≤ εpay < .5, .5 ≤ εpay < .75, .75 ≤ εpay < 1 (i.e., three more semiorders according to the

payoff).

As one considers different attribute orders and different values for εprob and εpay, one obtains many

preference patterns. I obtain 21 different preference patterns for Tversky’s gambles (shown in Table 1.2), as

I vary the sequence of attributes and the threshold values. Row 16 in Table 1.2 shows the preference pattern

that is depicted on the left side of Panel D in Table 1.1.

A mixture model treats the three parameters in the lexicographic semiorder model (the attribute orders

and the threshold values) as random variables with any joint distribution whatsoever, hence permitting all

possible probability distributions over the various permissible preference patterns.

As mentioned before, I write � for strict preference and ∼ for indifference. I define LSO as a set

of lexicographic semiorders and P (�LSO) as the probability of lexicographic semiorder �LSO in LSO.

According to the mixture model, for any pair (x, y), the binary choice probability θxy is

θxy =
∑

�LSO∈LSO
in which x�y

P (�LSO) +
1

2

∑
�′

LSO
∈LSO

in which x∼y

P (�′LSO).
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This equation shows that the probability of choosing x over y equals the total probability of those lexico-

graphic semiorders in which x is strictly preferred to y plus half of the probability of those lexicographic

semiorders in which x is indifferent to y.

The mixture LSO-Diff model for Tversky’s gambles can be cast geometrically as the convex hull (poly-

tope) of 21 vertices in a suitably chosen 10-dimensional unit hypercube of binary choice probabilities. Each

vertex encodes the binary choice probabilities when the probability mass is concentrated on a signal lex-

icographic semiorder. I provide a minimal description of the mixture polytope of LSO-Diff for Tversky’s

gambles in terms of its facet-defining equalities and inequalities, via the public-domain software PORTA 1:

Equalities:

θab = θbc = θcd = θde, (1.1)

θac = θbd = θce, (1.2)

θad = θbe. (1.3)

Inequalities:

0 ≤ θae, θbe, θce, θde ≤ 1, (1.4)

0 ≤ θbe + θce − 2θde ≤ 2, (1.5)

0 ≤ θae + θce − 2θde ≤ 2, (1.6)

0 ≤ θae + θbe − 2θde ≤ 2, (1.7)

0 ≤ θae + θbe − 2θce ≤ 2, (1.8)

0 ≤ −θae + 2θbe − 2θce + 2θde ≤ 2. (1.9)

Equalities 1.1 to 1.3 show equal probabilities for certain gamble pairs. For example, Equality 1.1 shows

equal probabilities for adjacent pairs in Tversky’s stimuli. Equalities 1.1 to 1.3 show that this mixture

polytope has four free parameters, θae, θbe, θce, and θde, which are restricted by Inequalities 1.4 to 1.9.

In this case, the mixture model is not full dimensional. It is a 4-dimensional polytope within in a 10-D

space. I cannot test this mixture model with frequentist order-constrained statistical methods because the

frequentist methods only work for full dimensional models. The Bayesian methods, on the other hand, can

handle non full dimensional polytopes, such as the mixture LSO-Diff model described above.

Unlike a lexicographic semiorder model which has three parameters, a similarity model has two param-

1For more information, please see http://comopt.ifi.uni-heidelberg.de/software/PORTA/)
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eters: the threshold for the payoff (εpay) and the threshold for the probability of winning (εprob). Take

SIM-Diff and Tversky’s gambles as an example, as one varies the values for εpay and εprob, the SIM-Diff

model permits 21 preference patterns (not the same 21 patterns as those predicted by the LSO-Diff model).

The mixture SIM-Diff model treats these two parameters (εpay and εprob) in the similarity model as random

variables with any joint distribution whatsoever, hence permitting all possible probability distributions over

these 21 preference patterns. I provide the minimal descriptions of the mixture polytope for each decision

heuristic in the supplemental materials.

1.4.3 Summary of Models

Table 1.3 summarizes all of the models in this paper. The first column lists the model names. For the model

names, I use the word noisy for distance-based models, and the word random for mixture models. The

second column lists the core theory for each model, and the third column gives a label for each core theory.

This paper tests seven core theories, including four intransitive decision heuristics (LSO-Diff, LSO-Ratio,

SIM-Diff, and SIM-Ratio) and three transitive heuristics (LO, Prob-only, and Payoff-only). In addition

to these seven decision heuristics, I also consider a saturated model that is unconstrained that places no

constraints whatsoever on binary choice probabilities. The fourth column describes the utility function for

each intransitive heuristic. The fifth and sixth columns summarize whether preferences and responses are

each deterministic or probabilistic. For each distance-based model, I consider three different upper bounds

on the error rate. Because Prob-only and Payoff-only predict only one preference pattern each, there are no

mixture models for these two heuristics. Altogether I test 26 models in this paper.

1.4.4 Statistical Methods

In the current study, I report results using both frequentist (Davis-Stober, 2009; Iverson and Falmagne, 1985;

Silvapulle and Sen, 2005) and Bayesian (Myung et al., 2005) order-constrained statistical inference methods.

For frequentist tests, the decision models under consideration are null hypotheses, and I report frequentist

goodness-of-fit test results with a significance level of 0.05. For the distance-based models, the predicted

preference pattern with the largest p-value is called a best-fitting preference pattern. For each participant,

the frequentist test finds the best-fitting preference pattern and tests whether the data are compatible with

the constraints on binary choice probabilities.

For Bayesian tests, I compute Bayes factors (BF, Kass and Raftery, 1995) for each model. The Bayes

factor measures the empirical evidence for each decision model while appropriately penalizing the complexity

of the model. The complexity of a model refers to the volume of the parameter space that a decision theory
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occupies relative to the saturated model.

For distance-based models, the order constraints are orthogonal within each model, and the priors on each

dimension are independent and conjugate to the likelihood function. Thus, I can obtain analytical solutions

for the Bayes factors of the distance-based models, compared to the saturated model. For mixture models,

the order constraints are not orthogonal, so I use a Monte Carlo sampling procedure. I use supercomputing

resources to complete the analyses in this paper2.

I use Bayes factors to compare each model to the saturated model and select among models at both

individual and group levels. To interpret the individual level Bayes factor results, I use the rule-of-thumb

cutoffs for “substantial” evidence and “decisive” evidence, according to Jeffreys (1998). I use BFA to

represent the Bayes factor of model A; I use BFB to represent the Bayes factor for model B; and I use

BFAB = BFA

BFB
to represent the Bayes factor for model A over model B. When BFAB > 3.2, it means that

there is “substantial” evidence in favor of model A; when BFAB > 100, it means that there is “decisive”

evidence in favor of model A. I will say that a decision model “fails” if its Bayes factor against the saturated

model is less than 1.0; I will say that a decision model “substantially fits” if its Bayes factor against the

saturated model is larger than 3.2; I will say that a decision model “decisively fits” if its Bayes factor against

the saturated model is higher than 100; I will say that a decision model is “best” (or a “winner”) if its Bayes

factor against the saturated model is higher than 3.2 and it has the highest Bayes factor among the models

under consideration.

For the group level comparison, I use the group Bayes factor (GBF, Stephan et al., 2007) to select among

models. The GBF aggregates likelihoods across participants and is the product of individual-level Bayes

factors. The model with the highest GBF is the one that best accounts for all participants’ data jointly.

1.5 Experiments

In this paper, I analyze datasets from three different studies: Experiment I in Tversky (1969), Cash I and

Cash II in Regenwetter et al. (2011a), and Session I and Session II in an experiment I conducted in 2012.

Experiment I in Tversky (1969). In this experiment, Tversky used five gambles, shown in Table 1.1. Each

gamble was displayed on a card with a wheel of chance in which the black area represented the probability.

The experiment used a 2AFC paradigm. Tversky pre-selected eight participants who made cyclical choices

in a preliminary session. All eight participants then made repeated choices for each gamble pair over five

sessions, four times each session.

2I ran analyses on Pittsburgh Supercomputer Center’s Blacklight, Greenfield, and Bridges supercomputers, as an Extreme
Science and Engineering Discovery Environment project (see also (Towns et al., 2014)). The analyses in this paper used about
140,000 CPU hours on the supercomputer.
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Cash I and Cash II in Regenwetter et al. (2011a). This study replicated the study in Tversky (1969),

except: (a) in the set labeled Cash I, the authors adjusted the amount of payoffs to their current dol-

lar equivalent by adjusting for inflation; (b) in the set labeled Cash II, the authors created a new set of

monetary gambles that each have an expected value equal to $8.80 (see Table 1.4). Participants were 18

undergraduates at the University of Illinois at Urbana-Champaign. Gambles were presented as wheels of

chance on computers, similar to Figure 1.1. Each gamble pair was repeated 20 times, separated by decoys

to minimize memory effects.

Session I and Session II in an experiment I conducted in 2012. This experiment was conducted over two

sessions held on two consecutive days. Session II replicated Session I. In Session I, 67 adults participated; of

these, 54 returned for Session II. The stimulus set had 20 gamble pairs, ten gamble pairs from Cash I and ten

gamble pairs from Cash II in Regenwetter et al. (2011a). Participants made repeated choices (20 times for

each pair per session) over gamble pairs that were presented via computers using a 2AFC paradigm. Each

gamble was displayed as a wheel of chance (see Figure 1.1), with colored areas to represent probabilities and

numbers next to the wheels to represent payoffs. These 20 gamble pairs are only a fraction of all stimuli used

in this experiment. The analysis results of another stimulus set in this experiment were published in Guo

and Regenwetter (2014). From now on, I refer to this experiment from in 2012 as the Guo and Regenwetter

(2014) experiment.

Figure 1.1: A gamble pair displayed in the experiment that I conducted in 2012.
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1.6 Results

1.6.1 Distance-Based Model Results

Tables 1.5, 1.6, and 1.7 summarize the results for the distance-based models using both frequentist and

Bayesian methods (Tables 1 - 16 in the supplemental materials provide individual-level p-values and Bayes

factors for each stimulus set). The first two columns of Tables 1.5, 1.6, and 1.7 display the core theory and

the upper bound τ on the error rate; Columns 3 - 5 and 7 - 8 report the total number of people who are

fit by the distance-based models for Tversky’s data, Cash I, Cash II, Session I, and Session II; Column 6

reports the number of people who are simultaneously fit for Cash I and Cash II; and Column 9 reports the

number of people who are simultaneously fit for Session I and Session II.

Table 1.5 shows that, as expected, for each decision theory, the number of people who are fit is the

highest for the distance-based models with τ = 0.50 and decreases when the upper bound τ on the error rate

decreases. Overall, the distance-based models with τ = 0.50 for LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio,

and LO perform very well and fit the data of almost all participants. Please note that the distance-based

model with τ = 0.50 for LO is also labeled weak stochastic transitivity, which is one of the most influential

probabilistic models used for testing transitivity of preferences in the literature (Tversky, 1969). The results

show that the data of almost all participants in all stimulus sets satisfy weak stochastic transitivity, and

imply very little evidence against transitivity. When τ = 0.10, the distance-based models for LSO-Diff,

LSO-Ratio, SIM-Diff, SIM-Ratio, and LO account for almost none of Tversky’s data and for the data of

about half of the participants in the other stimulus sets. Thus, the number of people who are fit by the

distance-based models decreases a lot when the upper bound τ decreases to 0.10 for all stimulus sets.

The noisy-Payoff-only and noisy-Prob-only models fit the data of fewer participants compared to the

other distance-based models. These two models explain almost none of Tversky’s data. For Cash I, the

noisy-Prob-only models fit at most 13 (out of 18) participants’ data, while the noisy-Payoff-only models fit

at most three (out of 18) participants’ data. For Cash II, Session I, and Session II, the noisy-Payoff-only

and noisy-Prob-only models explain at most half of the participants’ data. This result shows that there are

some participants in all stimulus sets who might take “shortcuts” and form their preferences based on only

one gamble attribute.

For Session I and Session II, the linear order model lives in 20-dimensional space, and it has 14,400 linear

orders. There is a total number of (67 + 54)×14, 400×3 = 5, 227, 200 order-constrained frequentist tests for

the noisy-LO model with three different upper bounds on the error rate for all participants. Computing all

of these tests is computationally expensive. For each participant, instead of computing all frequentist tests, I
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use the following procedure: first, I pre-select the linear orders which substantially fit according to the Bayes

factor analysis; second, I find the best-fitting linear order with the highest p-value among the preselected

linear orders (note that the p-value of the best-fitting vertex is also the highest among all the 14,400 linear

orders); and last, I check if the highest p-value is larger than the significance level of 0.05, and if so, I count

it as a fit. Take the noisy-LO model with τ = 0.50 for Session I as an example, the Bayes factor analysis

shows that the noisy-LO model substantially wins over the saturated model for 67 (out of 67) participants.

Of those 67 participants, the frequentist tests show that this noisy-LO model fits the data of 66 participants.

For Session II, the noisy-LO model with τ = 0.50 fits the data of all 54 participants. Again, these results

show that the data of almost all of the participants in Sessions I and II satisfy weak stochastic transitivity.

When the frequentist tests of the distance-based models show that a participant is best described by a

model with the same set of parameter values in two stimulus sets, I call it a consistent fit. For an intransitive

heuristic, I count the number of people who are consistently fit by a model for two stimulus sets; and for a

transitive heuristic, I count the number of people who are simultaneously fit by the same preference pattern

predicted by a decision heuristic for two stimulus sets. Columns 6 and 9 in Table 1.5 report such results. Take

the noisy-LSO-Diff model with τ = 0.50 for Cash I and Cash II as an example, 18 (out of 18) participants

in Cash I and 18 (out of 18) in Cash II are fit by the noisy-LSO-Diff model with τ = 0.50, but only eight

(out of 18) replicate across Cash I and Cash II. For the four intransitive models and the linear order model,

the number of participants who replicate across Cash I and Cash II is much smaller than the number of

participants who are fit in each set of Cash I and Cash II separately. In other words, when a model fits the

data of some participants in Cash I, the estimated best-fitting parameters of that model need not predict the

data of the same participants in Cash II. This shows that there might be some degree of ‘over-fitting’ for the

distance-based models for LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO for Cash I and Cash II. The

number of participants who replicate across Session I and Session II do not differ much from the number of

participants who are fit in separate sessions. This result shows that the distance-based models for Session

I and Session II do not seem to ‘over-fit’. One interpretation might be that the distance-based models for

Session I and Session II live in 20-dimensional space, and these models are much more parsimonious and are

less likely to ‘over-fit’.

Tables 1.6 and 1.7 shows the Bayes factor analysis results for the distance-based models. Panel A shows

the results with substantial evidence and Panel B shows the results with decisive evidence. The results of

the Bayes factor analyses with substantial evidence for the distance-based models are in alignment with the

results of the corresponding frequentist analyses. When I consider the decisive evidence, the distance-based

models with τ = 0.50 for LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO fit for none of the participants
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in Cash I and Cash II; and the distance-based models with τ = 0.75 or τ = 0.90 for these five heuristics

fit for about half of the participants in Cash I and Cash II. These results might be explained by the fact

that the Bayes factor rewards parsimonious models and penalizes complex models. Thus, the distance-based

model with τ = 0.50 gets penalized for being more complex than the distance-based models with τ = 0.75

or τ = 0.90.

For the Bayes factor analyses, I also count the number of people who are simultaneously fit by the same

model for two stimulus sets. Columns 6 and 9 in Tables 1.6 and 1.7 summarize such results. The number of

fits that replicate across two stimulus sets is similar to the number of fits for separate sets. As I mentioned

earlier, the frequentist analysis shows some evidence of ’over-fitting’ for some distance-based models. In

contrast, the Bayes factor analysis seems to be less forgiving. One interpretation is that the Bayes factor

takes model complexity into account and successfully penalizes the more complex models.

1.6.2 Mixture Model Results

Table 1.8 shows the mixture model analysis results. It is made up of three panels. Each panel lists the

number of permissible preference patterns, the number of inequality constraints, whether a polytope is full

dimensional, the number of people who are successfully fit using frequentist methods, and the number of

people who are substantially (and decisively) fit using Bayes factor methods. Because Prob-only and Payoff-

only predict only one preference pattern each, there are no mixture models for these two heuristics. No

frequentist tests of the random-LSO-Diff and random-SIM-Diff models for Tversky’s set and Cash I are

performed because their polytopes are not full dimensional. I cannot consider decisive evidence for the

random-LO model for Tversky’s set, Cash I and Cash II, because the maximum possible Bayes factor for

that model is less than 100.

Panel A reports the results for Tversky’s set. The frequentist analyses show that the random-LSO-Ratio,

random-SIM-Ratio, and random-LO models all account for the data of more than half of the participants.

The Bayesian analyses show that the mixture models for the four intransitive heuristics substantially fit for

more than half of the participants, whereas the random-LO model only substantially fits for two (out of

eight) participants. It seems that the random-LO model gets penalized by the Bayes factor for being too

complex. The random-LSO-Diff and random-SIM-Diff models fit for the highest number of participants both

substantially (eight out of eight participants) and decisively (three out of eight participants). These results

show that, when using an identity function for utility, the mixture models for the intransitive heuristics fit

for more participants than those with a log function for utility.

Panel B reports the results for Cash I and Cash II in Regenwetter et al. (2011a). The frequentist
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analyses show that the mixture models for LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO perform well

and account for at least half of the participants’ data, except that the random-SIM-Ratio model fits the

data of seven (out of 18) participants for Cash II. The random-LO model fits the data of the highest number

of participants (17 out of 18) for each set of Cash I and Cash II, suggesting very little evidence against

transitivity. The Bayesian analyses show that the random-LO fits 12 participants for each set of Cash I and

Cash II. Again, it seems like that random-LO model is penalized for being too complex.

Panel B also shows the number of participants who are simultaneously fit for both Cash I and Cash II.

The random-LO model accounts for the data of the highest number of participants (17 out of 18) by the

frequentist standard and beats the saturated model substantially for eight participants. The Bayes factor

analyses show that the random-LSO-Diff, random-SIM-Diff, and random-LO models substantially fit for at

least half of the participants for Cash I and Cash II simultaneously. When considering decisive evidence,

the mixture models of all four intransitive heuristics fit for almost none of the participants.

Panel C reports the results for Session I and Session II in the Guo and Regenwetter (2014) experiment.

The frequentist tests and Bayes factor analyses with substantial evidence show that the random-LO model

performs the best and fits the data of almost all participants for each session. These results mean that

almost all participants in Session I and Session II behave consistently with transitivity from the frequentist

test point of view. The Bayes factor analyses with substantial evidence show that all five mixture models

perform well and explain the data of more than half of the participants in each session. The mixture models

for the two similarity heuristics for Cash I and Cash II decisively fit for more participants than the mixture

models for the other three decision heuristics.

Panel C also shows the number of participants who are simultaneously fit by the mixture models for both

sessions. The number of fits that replicate across sessions is similar to the number of fits for each session.

Using the frequentist tests and the Bayes factor analyses with substantial evidence, the random-LO model

simultaneously fits across two sessions for the most participants (51 out of 54 for frequentist test and 48

out of 54 for Bayes factor analysis with substantial evidence). The random-SIM-Diff and random-SIM-ratio

models beat the saturated model decisively for the most participants (28 out of 54) for both Session I and

Session II simultaneously.

Overall, I find a close alignment of results between the frequentist methods and the Bayesian methods,

no matter whether I consider distance-based models or mixture models, although these statistical methods

involve dramatically distinct concepts and computational procedures.
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1.6.3 Model Comparison: Individual Level

I use Bayes factors to compare models. As I discuss in Section 1.4.4, for each participant, a decision model

is “best” (or a “winner”) if its Bayes factor against the saturated model is higher than 3.2 and it has the

highest Bayes factor among a group of models. This section reports the best model at the individual level

for each stimulus set.

Table 1.9 shows the best models for Tversky’s experiment (top panel) and Regenwetter et al.’s experiment

(bottom panel). For each panel, the first column shows the participant ID. The second column shows the core

theory of the best model. The third column shows the stochastic form and the upper bound τ on the error

rate (when applicable). I use “Fixed” to represent the distance-based model and “Random” to represent the

mixture model. This column also reports the upper bound τ on the error rate for the distance-based model.

The fourth column shows the Bayes factor for the best model compared to the saturated model. The fifth

column shows the Bayes factor between the best and second-best models. I refer to LSO-Diff, LSO-Ratio,

SIM-Diff, and SIM-Ratio as “intransitive” theories because they permit intransitive preference patterns (as

well as transitive ones)

For Tversky’s experiment, the core theories of the best models for all eight participants are models that

permit intransitive preferences. Four of the eight best models are lexicographic semiorder models, and four

are similarity models. For Cash I, among the core theories of the best models for all 18 participants, ten are

transitive theories (of which, eight are Prob-only, and two are Payoff-only) and seven are intransitive theories

(of which, six are similarity models, and one is a lexicographic semiorder model). For Cash II, among the

core theories of the best models for all 18 participants, 11 are transitive theories (of which, five are Prob-only;

four, Payoff-only; and two, LO) and seven are intransitive theories (of which, two are similarity models, and

five are lexicographic semiorder models). For Participant 4 in Cash I, no models under consideration win over

the saturated model substantially. For both Cash I and Cash II, four participants are simultaneously best

fit by Prob-only as core theory; two participants, Payoff-only; and one participant, SIM-Ratio. Therefore,

six participants in Regenwetter et al. (2011)’s experiment prefer the gambles with larger reward or prefer

the gambles with larger probability all the time.

Regarding probabilistic specifications, seven out of eight winners are mixture models for Tversky’s sets,

five out of 18 for Cash I, and eight out of 18 for Cash II. The distance-based models win out less often than

the mixture models for Tversky’s set, but more often for Cash I and Cash II. These results suggest that

across different stimulus sets, there are a lot of individual indifferences regarding their choice behavior.

Overall, no core theory is the best across the board. For Tversky’s set, all participants are best fit by the

intransitive heuristics. Almost all participants in Tversky’s experiment seem to employ the mixture model,
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that is, they have variable preferences and make no mistakes when making choices during the experiment.

For Regenwetter et al.’s stimuli, the transitive theories win out the most. Unlike Tversky’s participants, most

of the participants in Regenwetter et al.’s experiment tend to match the distance-based models, according to

which they have deterministic preferences but make errors when making choices during the experiment. The

results show that the participants in Tversky’s experiment behave much differently from the participants

in Regenwetter et al.’s experiment. The participants in Tversky’s experiment were pre-selected for making

cyclical choices in the preliminary sessions. It is not surprising that the intransitive heuristics explain

Tversky’s data well.

Table 1.10 shows the best model for each participant in Session I and Session II. For Session I, among

the 67 winners, 28 are transitive theories (of which, 11 are Prob-only; 16 are Payoff-only; and one is LO)

and 38 are intransitive theories (of which, 29 are similarity models, and nine are lexicographic semiorder

models). For Session II, among the 54 winners, 21 are transitive theories (of which, seven are Prob-only; 11

are Payoff-only; and four are LO) and 32 are intransitive theories (of which, 27 are similarity models, and

five are lexicographic semiorder models). For both Session I and Session II, 10 (out of 54) participants are

simultaneously best fit by transitive theories (of which, six are Payoff-only and four are Prob-only) and 17

by intransitive theories (of which, 16 are similarity models, and one is a lexicographic semiorder model). For

Participant 33, no substantive models beat the saturated model substantially for Session I. Therefore, more

participants in Session I and Session II are best fit by the intransitive theories. The models that best fit the

data of the most participants are the similarity models (with u(x) = x in Session I and with u(x) = log(x)

in Session II).

As for the probabilistic specifications, for Session I, 40 out of 67 participants are best fit by the distance-

based models and 27 by the mixture models; and for Session II, 40 out of 54 participants are best fit by

the distance-based models and 14 by the mixture models. For Session I and Session II, there are more

participants who seem to employ the distance-based models than the mixture models.

It is notable that for all three studies, when the intransitive heuristics are the best models, the probabilis-

tic specifications are often the mixture models. In other words, when a participant employs an intransitive

heuristic, he tends to vary his preferences during the experiment. There is no single core theory or proba-

bilistic specification that is robust across all participants and all stimulus sets.

1.6.4 Model Comparison: Group Level

Table 1.11 reports the results of the model comparison at the group level using the group Bayes factor

(GBF). The first column shows the model name; the second column shows the upper bound τ on the error

19



rate, which is only applicable to the distance-based model; Columns 3 - 7 report the ranking of each model

from the best (highest GBF) to worst (lowest GBF) for each stimulus set. The model with the highest

group Bayes factor is the model that will generalize best to data from a randomly selected participant in

a group for a stimulus set. For both Tversky’s set and Cash I, the random-LSO-Diff and random-SIM-Diff

models are among the top three models. For Cash II, Session I, and Session II, the noisy-SIM-Diff and

noisy-SIM-Ratio models with τ = 0.75 are among the top three models. The noisy-LO models with τ = 0.75

and τ = 0.90 and all noisy-Payoff-only and noisy-Prob-only models perform very badly; because they do not

beat the saturated model for any of the stimulus sets. For a stimulus set, the distance-based Payoff-only

and Prob-only models could best fit for some individual participants, but they could not fit for some other

participants at all. With these huge individual differences, the noisy-Payoff-only and noisy-Prob-only models

do not generate well to data from a randomly selected participant in a group. Overall, the results reveal

that the similarity model and the lexicographic semiorder model are the core theories of the top three most

generalizable models for all five stimulus sets.

1.7 Conclusions and Discussions

Transitivity of preferences is essential for nearly all normative, prescriptive, and descriptive theories of deci-

sion making. Almost any theory that uses utility functions implies transitivity. There are studies reporting

intransitive choice behavior in the literature. However, most of those studies contain pervasive methodolog-

ical problems as explained in Guo (2018). To explain the intransitive choice behavior, several contemporary

theories are developed in the literature. The lexicographic semiorder model and the similarity model are

two examples of those theories permitting intransitive preferences. This paper presents a comprehensive

analysis of the lexicographic semiorder model and the similarity model and compares them to the transitive

linear order model and two simple transitive heuristics. This paper tries to find out if there is much evi-

dence against transitivity and which model can explain human choice behavior better, transitive models or

intransitive models.

In this paper, I employ a rigorous quantitative framework for testing decision theories. I consider two

types of probabilistic specifications of algebraic theories: the distance-based model and the mixture model.

The distance-based model assumes that the decision maker has a deterministic preference and makes errors

when making choices. I use three upper bounds τ on the error rate. The mixture model assumes that

the decision maker has probabilistic preferences and chooses deterministically when making choices. The

mixture model allows any probability distribution whatsoever over preference patterns that are consistent
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with the decision theory or the algebraic structure of interest. When a mixture model is rejected, it means

that there does not exist a probability distribution over those preference patterns that would describe well

the decision maker’s data. All in all, I test 26 different probabilistic models in this paper.

I use both frequentist and Bayesian order-constrained statistical methods. The frequentist order-constrained

method provides a goodness-of-fit test for the probabilistic model from a classical statistical perspective. I

find some evidence of ’over-fitting’ for some distance-based models using the frequentist analysis. The

Bayesian order-constrained method allows me to put all 26 probabilistic models in direct comparison with

one another at both the individual and group levels. Moreover, the Bayes factor measures the empirical

evidence for each model while appropriately penalizing for the complexity of the model. The Bayes factor

analysis is less forgiving than the frequentist methods.

I test all 26 models on the data from three different experiments. The frequentist goodness-of-fit tests

show that the distance-based models for all seven decision heuristics with modal choice well-describe the

participants’ data in all stimulus sets. The mixture model analyses show that all five decision theories (LSO-

Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO) perform well and can explain the data of more than half of

the participants. The Bayesian analysis with substantial evidence provides similar results to the frequentist

analysis.

The model comparison at the individual level shows that for Tversky’s set, the intransitive heuristics

win out for all participants; for Cash I and Cash II, the transitive heuristics win out for most participants;

and for Session I and Session II, the intransitive heuristics win out for most participants. This result shows

heterogeneity across participants and stimulus sets. Moreover, I do not find a single core theory, type of

preference, or type of response process that best explains all participants’ data in all stimulus sets. This

reinforces earlier warnings that one needs to be cautious about a “one-size-fits-all” approach, as pointed out

previously by Davis-Stober et al. (2015), Hey (2005), Loomes et al. (2002), and Regenwetter et al. (2014).

The model comparison at the individual level also shows that Payoff-only and Prob-only are the core

theories of the best models for some participants in Cash I, Cash II, Session I, and Session II. This result

means that there is a small group of participants who simplify the task and prefer the gambles with a higher

payoff or the gambles with a higher probability of winning during the entire experiment. Unlike Cash I, Cash

II, Session I and Session II, all of the best models in Tversky’s experiment are intransitive. This result could

be explained by the fact that all eight participants in Tversky’s experiment were pre-selected for making

cyclical choices in a preliminary session. The model comparison at the group level tells a somewhat different

story: for all five stimulus sets, the similarity model and the lexicographic semiorder model are the core

theories of the top three most generalizable models for all five stimulus sets.
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Looking at the frequentist results, the linear order model explains well almost all participants’ data in

all stimulus sets. The frequentist tests of the random-LO model on Cash I and Cash II replicate the results

in Regenwetter et al. (2011a). Thus, from a classical statistical perspective, I do not find much evidence

against transitivity. However, the linear order model hardly wins out in the Bayesian model comparison.

The results show that even when a participant doesn’t violate transitivity from the frequentist test point of

view, the intransitive heuristics can still give more parsimonious explanations of the participant’s behavior

than the linear order model. The results show that even though the lexicographic semiorder model and

the similarity model allow intransitivity, they are not just models of intransitivity; both transitive and

intransitive preferences can be consistent with these models. This speaks directly to Birnbaum (2011)’s

concern about model mimicry. My analyses show that many participants are fit by both the intransitive

heuristics and the linear order model. One explanation for this finding might be that many preference

patterns predicted by the intransitive heuristics are transitive, and some are linear orders. Regenwetter

et al. (2011b) report that the lexicographic semiorder model can mimic parts of the linear order model, and

both models fit a large proportion of the participants. Future research might use more diagnostic stimuli to

minimize overlap between intransitive decision heuristics and the linear order model.

1.8 Tables
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Table 1.1: Tversky’s (1969) gambles. Panel A shows the probabilities of winning, payoffs, and expected values for
each of the five gambles. Panel B shows the differences in the probabilities of winning among pairs. Panel C shows
the differences of the payoffs among pairs. Panel D shows an example of the binary preference relation predicted by a
lexicographic semiorder model. Panel E shows an example of the binary preference relation predicted by a similarity
model.

Panel A: Tversky’s (1969) gambles

Lottery Prob. of winning Payoff (in $) Expected value (in $)
a 7/24 5.00 1.46
b 8/24 4.75 1.58
c 9/24 4.50 1.69
d 10/24 4.25 1.77
e 11/24 4.00 1.83

Panel B: The probability of winning differences (column-row)

Lottery a b c d e
a - 1/24 2/24 3/24 4/24
b - 1/24 2/24 3/24
c - 1/24 2/24
d - 1/24

Panel C: The payoff differences (row-column)

Lottery a b c d e
a - $.25 $.50 $.75 $1
b - $.25 $.50 $.75
c - $.25 $.50
d - $.25

Panel D: A lexicographic semiorder1

Binary Preference Relation
Lottery a b c d e

a - ∼ � � ≺
b - ∼ � �
c - ∼ �
d - ∼

Binary Choice Probabilities3

Gamble a b c d e
a - 1

2
1 1 0

b - 1
2

1 1

c - 1
2

1

d - 1
2

Panel E: A similarity model2

Preferences by Probability
lottery a b c d e

a - ∼ ∼ ∼ ≺
b - ∼ ∼ ∼
c - ∼ ∼
d - ∼

Preferences by Payoff
lottery a b c d e

a - ∼ � � �
b - ∼ � �
c - ∼ �
d - ∼

Binary Preference Relation
Lottery a b c d e

a - ∼ � � ∼
b - ∼ � �
c - ∼ �
d - ∼

Binary Choice Probabilities
Gamble a b c d e

a - 1
2

1 1 1
2

b - 1
2

1 1

c - 1
2

1

d - 1
2

1. It is the binary preference pattern predicted by a lexicographic semiorder model if a decision maker considers the probabilities
before the payoffs and uses a probability threshold of 3.5

24
and a payoff threshold of $0.35.

2. It is the binary preference pattern predicted by a similarity model if a decision maker uses a probability threshold of 3.5
24

and a payoff threshold of $0.35.
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Table 1.2: The 21 Preference patterns predicted by the LSO-Diff model for Tversky (1969)’s gambles.

(a, b) (a, c) (a, d) (a, e) (b, c) (b, d) (b, e) (c, d) (c, e) (d, e)

1 ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺

2 ≺ ≺ ≺ � ≺ ≺ ≺ ≺ ≺ ≺

3 ≺ ≺ � � ≺ ≺ � ≺ ≺ ≺

4 ≺ � � � ≺ � � ≺ � ≺

5 ∼ ≺ ≺ ≺ ∼ ≺ ≺ ∼ ≺ ∼

6 ∼ ≺ ≺ � ∼ ≺ ≺ ∼ ≺ ∼

7 ∼ ≺ � � ∼ ≺ � ∼ ≺ ∼

8 ∼ ∼ ≺ ≺ ∼ ∼ ≺ ∼ ∼ ∼

9 ∼ ∼ ≺ � ∼ ∼ ≺ ∼ ∼ ∼

10 ∼ ∼ ∼ ≺ ∼ ∼ ∼ ∼ ∼ ∼

11 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

12 ∼ ∼ ∼ � ∼ ∼ ∼ ∼ ∼ ∼

13 ∼ ∼ � ≺ ∼ ∼ � ∼ ∼ ∼

14 ∼ ∼ � � ∼ ∼ � ∼ ∼ ∼

15 ∼ � ≺ ≺ ∼ � ≺ ∼ � ∼

16 ∼ � � ≺ ∼ � � ∼ � ∼

17 ∼ � � � ∼ � � ∼ � ∼

18 � ≺ ≺ ≺ � ≺ ≺ � ≺ �

19 � � ≺ ≺ � � ≺ � � �

20 � � � ≺ � � � � � �

21 � � � � � � � � � �
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Table 1.4: Cash I and Cash II stimuli in Regenwetter et al. (2011a).

Cash I Cash II
Gamble Prob. of Winning Payoff (in $) Gamble Prob. of Winning Payoff (in $)

a 7/24 28 a 0.28 31.43
b 8/24 26.6 b 0.32 27.50
c 9/24 25.2 c 0.36 24.44
d 10/24 23.8 d 0.40 22
e 11/24 22.4 e 0.44 20
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Table 1.8: The results for the mixture models of LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO using
both frequentist and Bayesian methods. Each panel shows the number of permissible predicted patterns,
the number of inequality constraints, whether a polytope is full dimensional, the number of participants who
are successfully fit by the mixture models using frequentist tests (labeled “Freq Fits”), Bayes factor methods
with substantial evidence (labeled “BF Fits (Substantial)”), and Bayes factor methods with decisive evidence
(labeled “BF Fits (Decisive)”). Panel A shows results for Tversky’s set, Panel B shows results for Cash I
and Cash II in Regenwetter et al. (2011a), and Panel C shows results for Sessions I and II in the Guo and
Regenwetter (2014) experiment. The maximum Bayes factor for the random-LO model for Tversky’s set,
Cash I, and Cash II is less than 100, so the Bayes factor analysis with decisive evidence is not applicable.

Panel A: Tversky’s set, 8 participants.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
Number of Patterns 21 111 21 101 120

Number of Constraints 18 24 30 36 40
Full Dimensional? No Yes No Yes Yes

Freq Fits - 5 - 7 6
BF Fits (Substantial) 8 5 8 6 2

BF Fits (Decisive) 3 0 3 1 -

Panel B: Cash I (C1) and Cash II (C2) in Regenwetter et al. (2011a), 18 participants.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Number of Patterns 21 51 111 111 21 51 101 111 120
Number of Constraints 18 39 24 1956 30 37 36 2046 40

Full Dimensional? No Yes Yes Yes No Yes Yes Yes Yes
Freq Fits - 13 9 11 - 13 14 7 17 17

BF Fits (Substantial) 16 11 5 11 17 9 9 12 12 12
BF Fits (Decisive) 10 5 0 1 12 5 3 3 - -

The number of participants who are simultaneously fit in both Cash I and Cash II
Fits Freq - 5 - 5 17

BF Fits (Substantial) 10 4 9 6 8
BF Fits (Decisive) 1 0 1 2 -

Panel C: Session I (S1) and Session II (S2) in the Guo and Regenwetter (2014) experiment, 67 participants in S1 and
54 in S2.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Number of Patterns 135 401 128 339 14400
Number of Constraints 189(201) 32015 59(71) 625 80

Full Dimensional? No Yes No Yes Yes
Freq Fits - - 46 30 - - 30 18 64 54

BF Fits (Substantial) 54 37 47 33 56 47 49 46 62 51
BF Fits (Decisive) 42 24 35 22 49 36 48 35 34 33

The number of participants who are simultaneously fit in both Session I and Session II
Fits Freq - 22 - 9 51

BF Fits (Substantial) 30 27 40 37 48
BF Fits (Decisive) 14 13 28 28 22
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Table 1.11: Ranking of each model from best (highest GBF) to worst (lowest GBF) in each stimulus set.
Rankings in parentheses are worse than the saturated model on the same stimulus set. The first three best
models are marked in boldfaced font.

Model Name τ Tversky Cash I Cash II Session I Session II
noisy-LSO-Diff 0.50 4 12 7 6 10
noisy-LSO-Diff 0.25 11 4 3 3 2
noisy-LSO-Diff 0.10 (18) 6 17 15 6

noisy-LSO-Ratio 0.50 7 14 11 8 12
noisy-LSO-Ratio 0.25 (13) 8 5 4 4
noisy-LSO-Ratio 0.10 (19) 11 (18) 14 8
noisy-SIM-Diff 0.50 3 10 6 5 9
noisy-SIM-Diff 0.25 6 2 1 1 1
noisy-SIM-Diff 0.10 (15) 5 4 11 5

noisy-SIM-Ratio 0.50 5 13 10 7 11
noisy-SIM-Ratio 0.25 9 7 2 2 3
noisy-SIM-Ratio 0.10 (17) 9 8 12 7

noisy-LO 0.50 (14) 15 15 16 17
noisy-LO 0.25 (20) (18) (19) (18) (19)
noisy-LO 0.10 (23) (21) (20) (21) (22)

noisy-Payoff-only 0.50 (16) (23) (22) (19) (20)
noisy-Payoff-only 0.25 (22) (25) (24) (22) (23)
noisy-Payoff-only 0.10 (24) (26) (26) (24) (25)
noisy-Prob-only 0.50 (21) (20) (21) (20) (21)
noisy-Prob-only 0.25 (25) (22) (23) (23) (24)
noisy-Prob-only 0.10 (26) (24) (25) (25) (26)

random-LSO-Diff - 1 3 9 10 16
random-LSO-Ratio - 10 (19) 14 17 (18)
random-SIM-Diff - 2 1 12 9 13

random-SIM-Ratio - 8 17 16 13 14
random-LO - (12) 16 13 (26) 15
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1.9 Supplement Materials

The tables in the Supplement Materials report individual frequentist p-value and Bayes factors in each

stimulus set.

Table 1.12: The frequentist and Bayes factor results for the distance-based models of LO, LSO-Diff, LSO-
Ratio, SIM-Diff, and SIM-Ratio for Tversky (1969) data.

Panel A: The frequentist results.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
τ = τ = τ = τ = τ =

0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10
1

√
? ?

√
? ? 0.28 0.08 ? 0.34 0.08 ? ? ? ?

2
√

0.34 ?
√

0.34 ?
√

0.34 ?
√

0.59 ? 0.13 ? ?
3 0.35 ? ? 0.54 ? ?

√
0.36 ?

√
0.46 ? ? ? ?

4
√

0.08 ?
√

0.08 ? 0.14 0.08 ? 0.28 0.08 ? 0.2 ? ?
5 0.51 0.26 ? 0.51 0.26 ?

√
0.64 ?

√
0.64 ? 0.11 ? ?

6
√

0.14 ?
√

0.14 ? 0.52 0.28 ? 0.52 0.28 ? ? ? ?
7

√
0.36 0.15

√
0.36 0.15

√
0.36 0.15

√
0.75 0.15 0.55 ? ?

8
√

0.77 ?
√

0.77 ?
√

0.77 ?
√

0.77 ?
√

0.09 ?
Fits 8 6 1 8 6 1 8 8 1 8 8 1 5 1 0

Panel B: The Bayes factors.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
τ = τ = τ = τ = τ =

0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10
1 21 0 0 9 0 0 12 5 0 8 2 0 0 0 0
2 18 6 0 7 1 0 23 6 0 32 8 0 0 0 0
3 13 0 0 5 0 0 30 19 0 25 24 0 0 0 0
4 18 9 1 25 2 0 8 9 1 4 2 0 0 0 0
5 15 1 0 5 0 0 46 5 0 33 2 0 0 0 0
6 27 1 0 6 0 0 24 12 0 7 3 0 0 0 0
7 41 27 16 21 5 3 61 28 16 77 49 5 2 0 0
8 45 95 0 23 43 0 54 97 0 29 48 0 7 0 0

Fits 8 4 1 8 2 0 8 8 1 8 4 1 1 0 0
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Table 1.15: The frequentist and Bayes factor results for the distance-based models for the linear order model
with τ = 0.50, 0.25, and 0.10. There are 18 participants (# is the participant id). Rejections at a 0.05
level are marked ?. Perfect fits are checkmarks (

√
). Nonsignificant violations have their p-values listed.

“Consistent Fits” are marked in typewriter.

Panel A: The frequentist results.

τ = 0.50 τ = 0.25 τ = 0.10
Cash I Cash II Cash I Cash II Cash I Cash II

1
√

? ? ? ? ?
2

√ √
0.22

√
? 0.51

3
√ √ √ √ √

0.73

4 ?
√

? ? ? ?
5

√ √ √ √
0.99 0.57

6 0.81 0.44 ? ? ? ?
7

√ √ √
0.06 0.81 ?

8
√ √ √ √

0.95 0.90

9
√ √

? ? ? ?
10

√ √ √ √
0.72 0.30

11
√ √ √ √

0.95
√

12 0.63 0.33 ? ? ? ?
13 0.67

√
? ? ? ?

14
√ √ √ √ √ √

15
√ √

? ? ? ?
16

√
0.28 0.89 ? ? ?

17 0.31
√

? 0.45 ? ?
18

√
0.23 ? ? ? ?

Fits 17 17 9 9 7 7
Panel B: The Bayes factors.

τ = 0.50 τ = 0.25 τ = 0.10
Cash I Cash II Cash I Cash II Cash I Cash II

1 4 0 0 0 0 0
2 8 9 17 3137 0 47165
3 9 9 8250 4176 13308311 47953
4 0 4 0 0 0 0
5 9 9 6982 2544 1479575 551
6 2 1 0 0 0 0
7 9 6 3659 0 2651 0
8 9 9 6798 6573 3183531 1619865
9 3 7 0 0 0 0

10 9 9 4003 4461 18620 56822
11 9 9 6306 7100 1256821 2074207
12 1 3 0 0 0 0
13 3 1 0 0 0 0
14 9 9 8250 8533 13308311 26154900
15 7 5 0 0 0 0
16 8 0 441 0 31 0
17 0 8 0 47 0 0
18 5 0 0 0 0 0

Fits 12 12 9 8 8 7
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Table 1.16: The frequentist results for the distance-based models for LSO-Diff and LSO-Ratio with τ = 0.50,
0.25, and 0.10. There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).
Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (

√
). Nonsignificant violations have their

p-values listed. Nonsignificant violations where Session II replicates Session I are marked in typewriter.

LSO-Diff LSO-Ratio

τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

1
√ √

0.09 0.15 ? ? 0.97
√

? 0.44 ? ?

2
√ √

0.30 0.30 ? ?
√ √

0.30 0.30 ? ?

4
√

0.35 0.11 ? ? ?
√

0.46 0.42 ? ? ?

5 0.79
√

? 0.49 ? ? 0.81
√

? 0.49 ? ?

7
√ √

0.11 0.06 ? ?
√

0.88 0.14 0.07 ? ?

9 0.31
√

?
√

? 0.65
√ √

0.17
√

? 0.65

11
√ √

0.08 0.59 ? 0.12
√ √

0.08 0.59 ? 0.12

12
√

? 0.59 ? ? ?
√

? 0.59 ? ? ?

13
√

0.50 0.28 ? ? ?
√

0.50 0.28 ? ? ?

14
√ √ √ √ √

0.94
√ √ √ √ √

0.94

15 0.85 0.50 ? 0.11 ? ? 0.87
√

? 0.16 ? ?

16
√ √

?
√

? 0.15
√ √

?
√

? 0.15

17 0.57 0.83 ? 0.11 ? ? 0.70
√

0.13 0.96 ? 0.09

18 0.52
√

0.07 0.56 ? 0.34
√ √

0.78 0.93 ? 0.34

19
√ √

0.79 0.52 0.67 0.29
√ √

0.79 0.52 0.67 0.29

20
√ √ √ √ √ √ √ √ √ √ √ √

21 0.71 ? ? ? ? ? 0.59 ? ? ? ? ?

22 0.91 0.90 0.37 0.06 0.08 ? 0.91 0.91 0.37 0.06 0.08 ?

23 0.83 0.68 ? ? ? ? 0.83 0.68 ? ? ? ?

24
√ √ √ √

0.51 0.97
√ √ √ √

0.51 0.97

25 0.70 0.96 0.06 0.29 ? ?
√ √

0.73 0.55 0.21 0.13

26
√ √ √ √ √ √ √ √ √ √ √ √

27
√ √

0.38 0.38 ? ?
√ √

0.38 0.45 ? ?

28
√ √

0.66 0.76 0.67 0.19
√ √

0.66 0.76 0.67 0.19

29 0.71
√

0.16 0.25 ? ? 0.71
√

0.16 0.25 ? ?

30
√ √

0.32 0.60 0.18 0.23
√ √

0.32 0.60 0.18 0.23

31 ? 0.78 ? 0.18 ? ? ? 0.78 ? 0.28 ? ?

32
√ √ √ √

0.94
√ √ √ √ √

0.94
√

33 ? 0.47 ? ? ? ? ? 0.23 ? ? ? ?

34 0.98
√

0.10 0.77 ? 0.62 0.98
√

0.10 0.77 ? 0.62

35
√ √

0.97
√

? 0.09
√ √ √ √

0.36 0.09

36
√ √ √

0.31 0.62 0.12
√ √ √

0.31 0.62 0.12

37
√

0.90
√

0.07 0.98 ?
√

0.90
√

0.07 0.98 ?

38
√ √

0.36 0.17 ? ?
√ √

0.36 0.73 ? ?

39
√

0.81 0.28 0.38 ? 0.26
√

0.81 0.28 0.38 ? 0.26

41 0.55
√

0.09 ? ? ?
√ √

0.57 ? ? ?

42
√ √

? 0.76 ? ?
√ √

0.44 0.93 ? 0.29

43 0.71 0.71 ? 0.13 ? ? 0.71
√

? 0.16 ? ?

Continued on next page
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Table 1.16 – continued from previous page

LSO-Diff LSO-Ratio

τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

44 0.74
√

0.34 0.25 ? ? 0.74
√

0.34 0.77 ? 0.29

46
√ √

0.07
√

? 0.09
√ √

?
√

? 0.09

47
√ √ √

0.26 0.98 ?
√ √ √

0.26 0.98 ?

48
√

0.88 0.36 0.19 ? 0.12
√

0.89 0.36 0.19 ? 0.12

49 0.74
√

? 0.6 ? 0.24 0.74
√

? 0.6 ? 0.24

50 0.84
√

0.16 0.30 ? 0.28
√ √

0.29 0.30 ? 0.28

52
√ √

0.26 0.42 0.22 0.79
√ √

0.26 0.42 0.22 0.79

53
√ √

0.22 0.50 ? 0.15
√ √

0.22 0.50 ? 0.15

55 0.23
√

?
√

?
√

0.23
√

?
√

?
√

56
√ √

0.92 0.79 0.34 0.59
√ √

0.92 0.79 0.34 0.59

58
√ √ √ √

0.90
√ √ √ √ √

0.90
√

59
√ √

0.53 0.52 0.26 0.16
√ √

0.53 0.52 0.26 0.16

61
√ √

0.12 0.8 ? 0.8
√ √

0.66 0.8 ? 0.8

65
√ √

0.6
√

?
√ √ √

0.6
√

?
√

66
√ √ √

0.43
√

0.1
√ √ √

0.89
√

0.28

67
√ √ √ √

0.98 0.99
√ √ √ √

0.98 0.99

3
√

0.16 ? 0.9 0.16 ?

6
√ √

0.85
√ √

0.85

8
√

0.37 ?
√

0.37 ?

10 0.7 0.37 ?
√

0.87 ?

40
√

0.75 0.49
√

0.75 0.49

45
√

0.18 ?
√

0.69 ?

51
√

0.44 0.5
√

0.44 0.5

54
√

0.21 ?
√

0.21 ?

57
√

0.65 0.69
√

0.65 0.69

60
√

0.23 0.75
√

0.23 0.75

62
√

0.09 ?
√

0.09 ?

63
√ √

0.97
√ √

0.97

64 0.99 0.11 ? 0.99 0.11 ?

Fits 65 52 56 48 24 30 65 52 57 48 26 34
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Table 1.17: The frequentist results for the distance-based models for SIM-Diff and SIM-Ratio with τ = 0.50,
0.25, and 0.10. There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).
Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (

√
). Nonsignificant violations have their

p-values listed. Nonsignificant violations where Session II replicates Session I are marked in typewriter.

SIM-Diff SIM-Ratio

τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

1
√ √

0.09 0.15 ? ? 0.97
√

? 0.44 ? ?

2
√ √

0.43 0.30 ? ?
√ √

0.50 0.30 ? ?

4
√

0.38 0.11 ? ? ?
√

0.46 0.42 ? ? ?

5 0.19
√

? 0.49 ? ? 0.19
√

? 0.49 ? ?

7
√ √

0.48 0.22 ? ?
√

0.88 0.48 0.27 ? ?

9
√ √

0.17
√

? 0.65
√ √

0.28
√

? 0.65

11
√ √

0.08 0.59 ? 0.12
√ √

0.08 0.69 ? 0.12

12
√

? 0.59 ? ? ?
√

? 0.59 ? ? ?

13
√

0.50 0.28 ? ? ?
√

0.50 0.28 ? ? ?

14
√ √ √ √ √

0.94
√ √ √ √ √

0.94

15
√

0.50 0.53 0.11 ? ?
√

0.50 0.53 0.16 ? ?

16
√ √

0.17
√

? 0.15
√ √

0.32
√

? 0.15

17 0.57 0.83 ? 0.11 ? ? 0.65
√

0.13 0.8 ? 0.09

18 0.52
√

0.07 0.56 ? 0.34
√ √

0.78 0.93 ? 0.34

19
√ √

0.79 0.52 0.67 0.29
√ √

0.79 0.52 0.67 0.29

20
√ √ √ √ √ √ √ √ √ √ √ √

21 0.21 ? ? ? ? ? 0.18 ? ? ? ? ?

22 0.85 0.90 0.37 0.08 0.08 ?
√

0.90 0.37 0.14 0.08 ?

23
√

0.68 ? ? ? ?
√

0.68 ? ? ? ?

24
√ √ √ √

0.51 0.97
√ √ √ √

0.51 0.97

25 0.70 0.96 0.06 0.29 ? ?
√ √

0.73 0.55 0.21 0.13

26
√ √ √ √ √ √ √ √ √ √ √ √

27
√ √

0.38 0.45 ? ?
√ √

0.38 0.6 ? ?

28
√ √

0.66 0.76 0.67 0.19
√ √

0.66 0.76 0.67 0.19

29 0.80
√

0.16 0.25 ? ?
√ √

0.34 0.27 0.1 ?

30
√ √

0.32 0.60 0.18 0.23
√ √

0.32 0.60 0.18 0.23

31 0.08 0.85 ? 0.13 ? ? 0.06 0.85 ? 0.13 ? ?

32
√ √ √ √

0.94
√ √ √ √ √

0.94
√

33 0.12 0.47 ? ? ? ? 0.13 0.23 ? ? ? ?

34
√ √

0.20 0.77 ? 0.62
√ √

0.20 0.77 ? 0.62

35
√ √

0.97
√

? 0.09
√ √ √ √

0.36 0.09

36
√ √ √

0.31 0.62 0.12
√ √ √

0.31 0.62 0.12

37
√ √ √

0.19 0.98 ?
√ √ √

0.37 0.98 ?

38
√ √

0.36 0.16 ? ?
√ √

0.36 0.68 ? ?

39
√

0.83 0.28 0.38 ? 0.26
√ √

0.29 0.38 ? 0.26

41 0.55
√

0.09 ? ? ?
√ √

0.57 ? ? ?

42
√ √

? 0.76 ? ?
√ √

0.44 0.93 ? 0.29

43 0.71 0.71 ? 0.22 ? ? 0.71 0.71 ? 0.22 ? ?

Continued on next page
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Table 1.17 – continued from previous page

SIM-Diff SIM-Ratio

τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

44 0.53
√

0.34 0.25 ? ? 0.53
√

0.34 0.77 ? 0.29

46
√ √

0.07
√

? 0.09
√ √

?
√

? 0.09

47
√ √ √

0.39 0.98 ?
√ √ √

0.39 0.98 ?

48
√

0.87 0.36 0.19 ? 0.12
√

0.87 0.36 0.19 ? 0.12

49 0.79
√

? 0.6 ? 0.24 0.80
√

? 0.6 ? 0.24

50 0.84
√

0.16 0.30 ? 0.28
√ √

0.29 0.30 ? 0.28

52
√ √

0.26 0.42 0.22 0.79
√ √

0.26 0.42 0.22 0.79

53
√ √

0.40 0.50 ? 0.15
√ √

0.68 0.50 ? 0.15

55 ?
√

?
√

?
√

?
√

?
√

?
√

56
√ √

0.92 0.79 0.34 0.59
√ √

0.93 0.98 0.34 0.59

58
√ √ √ √

0.90
√ √ √ √ √

0.90
√

59
√ √

0.53 0.52 0.26 0.16
√ √

0.53 0.52 0.26 0.16

61
√ √

0.12 0.8 ? 0.8
√ √

0.66 0.8 ? 0.8

65
√ √

0.83
√

?
√ √ √

0.83
√

?
√

66
√ √ √

0.43
√

0.1
√ √ √

0.89
√

0.28

67
√ √ √ √

0.98 0.99
√ √ √ √

0.98 0.99

3
√

0.17 ?
√

0.2 ?

6
√ √

0.85
√ √

0.85

8
√

0.6 ?
√

0.6 ?

10 0.7 0.37 ?
√

0.87 ?

40
√

0.75 0.49
√

0.75 0.49

45
√

0.18 ?
√

0.69 ?

51
√

0.44 0.5
√

0.44 0.5

54
√

0.6 ?
√

0.73 ?

57
√

0.65 0.69
√

0.73 0.69

60
√

0.23 0.75
√

0.23 0.75

62
√

0.13 ?
√

0.13 ?

63
√ √

0.97
√ √

0.97

64 0.88 0.28 ? 0.88 0.19 ?

Fits 66 52 59 48 24 30 66 52 59 48 27 34
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Table 1.18: The frequentist results for the distance-based models for linear order model with τ = 0.50, 0.25,
and 0.10. There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2). Rejections
at a 0.05 level are marked ?. Perfect fits are checkmarks (

√
). Nonsignificant violations have their p-values

listed. Nonsignificant violations where Session II replicates Session I are marked in typewriter. Frequentist
p-values are computed only for vertices whose The Bayes factors are larger than 3.2.

τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2

1
√ √

0.18 0.11

2 0.57
√

4
√ √

0.11

5 0.11 0.36

7
√ √

?

9 ?
√ √

0.65

11
√

0.99 0.08

12
√ √

0.59 0.95 ? ?

13
√ √

0.28 0.31 ? ?

14
√ √ √ √ √

0.94

15 0.55 0.84

16 0.21
√ √

0.15

17
√ √

0.07 0.86 ?

18 0.45
√

?

19 0.88 0.94

20
√ √ √ √ √ √

21 0.95 0.88

22 0.69 0.94

23 0.37 0.85

24
√ √ √ √

0.51 0.97

25
√

0.95 ?

26
√ √ √ √ √ √

27
√ √

0.38

28 0.88
√

29 0.69 0.66

30 0.89 0.97

31
√

0.97

32
√ √ √ √

0.94
√

33 0.15
√

0.76 ?

34 0.27 0.93

35
√ √

0.97
√

? 0.09

36
√ √ √

0.31 0.62 0.12

37
√

0.56
√

0.99

38
√ √

?

39
√

0.96

41 0.67
√

?

42
√ √

? 0.76 ?

43
√

0.97

44 0.39
√

0.07

Continued on next page
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Table 1.18 – continued from previous page

τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2

46
√ √

?
√

0.09

47
√ √ √

0.26 0.98

48
√

0.95

49 0.87 0.97

50
√

0.98

52 0.84
√

53
√

0.82

55
√ √

?
√ √

56 0.97 0.89

58
√ √ √ √

0.90
√

59
√

0.57

61
√

0.95 0.12

65 0.18
√

?
√ √

66
√ √ √

?
√

67
√ √ √ √

0.98 0.99

3
√

6
√ √

0.85

8
√

0.37 ?

10 0.83

40
√

45
√

0.18

51 0.86

54
√

0.21

57 0.98

60 0.99

62 0.19

63
√ √

0.97

64 0.70

Fits 66 54 25 22 13 14
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Table 1.19: The Bayes factors for the distance-based models for LSO-Diff with τ = 0.50, 0.25, and 0.10.
There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

LSO-Diff
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 1610 2831 27 29774 0 905322
2 2198 3274 41 8481 1 1114
4 3127 11 67 0 0 0
5 495 3200 0 5745 0 7
7 3076 1561 560 0 0 0
9 395 7462 0 1760182509 0 38423721779020

11 3480 5878 589 15751 0 17363
12 6224 0 23666734 0 6440 0
13 4980 1964 16545431 85782 98140 324
14 7763 7732 5112328732 3210053087 166566466964153 29422217255642
15 522 1216 43 22 6 0
16 650 7563 1 324675856 0 6827952
17 150 285 56 3287 1 2
18 932 4381 5962 12550819 0 20271587
19 4518 5009 165901 89746 385725 159105
20 7767 7767 7139015495 7260177363 1347595495416320 18891855275831140
21 158 1 0 0 0 0
22 1846 1424 5521 423 3993 125
23 314 193 5 7 0 1
24 7661 7732 2238292336 3319938407 1771801409029 57823651933818
25 2646 1000 48930 37429 1088 276
26 7766 7766 6849450022 6965697447 10455726266521210 14657815947195730
27 5415 2087 1825 39 0 2
28 17584 14845 327136 431368 669816 133171
29 1523 1674 523 165 100 4
30 9457 6456 31533 18926 28538 14300
31 16 1428 0 307 0 1
32 7754 7767 3406191657 7508705001 13449528546369 37128271277524150
33 0 68 0 1146 0 7
34 196 6037 3 336698 0 1036167
35 6875 7469 81406683 91886485 5612044 4917
36 7644 7344 1201461621 38547349 18817761875 2
37 7758 796 4317354679 0 36632280081557 0
38 5886 4902 107 26616 0 3
39 2557 4276 546 43602 130 71135
41 1075 1178 196 44 0 0
42 1271 6687 8469 36030731 606421 38499
43 582 2152 0 944 0 0
44 1664 3652 393 175094 0 10936312
46 3325 7594 2549 186315530 0 9503281
47 7757 3107 4005136235 47 14462004307998 0
48 3295 2176 1079 10328 311 9833
49 1685 7179 1 26922 0 18764
50 1460 4185 11 100547 0 209291
52 3318 11089 41794 1708981 66201 10786236
53 1839 4593 44 11551 4 4706
55 110 7767 68 7636141162 0 520498866316045
56 9403 4948 81867 186621 103874 460692
58 7736 7766 3187567485 6403539275 6957820180480 2707035601786514
59 10716 2925 81304 9590 32406 4615
61 3976 16381 40422 740836 0 2191633
65 5743 7760 379 4977987334 0 358393110785141
66 7765 3736 6143805440 1957413 2100335252104813 682524055
67 7739 7759 4761179599 4894911917 2174229652568243 255649291523146
3 1207 1 0
6 7720 1922363623 241249785900
8 6079 1403979 3

10 929 23 0
40 23582 301759 251198
45 3282 1710 0
51 7506 309349 985662
54 4741 104 0
57 11001 304292 872552
60 6853 473816 1870149
62 4353 59 0
63 7760 4932983840 167656278060078
64 2307 18 0

Fits 66 52 57 49 34 39
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Table 1.20: The Bayes factors for the distance-based models for LSO-Ratio with τ = 0.50, 0.25, and 0.10.
There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

LSO-Ratio
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 367 4235 1 94296 0 385476
2 1081 1516 14 2860 0 375
4 4257 40 1349 0 0 0
5 801 2269 0 2870 0 18
7 3255 418 202 0 0 0
9 2788 2518 17 592610856 0 12935717429928

11 1882 3364 144 5313 0 5846
12 3206 0 8788265 0 2720 0
13 1804 825 5597928 29149 33091 109
14 2823 3651 1729725686 1182856254 56162644326473 12141021059537
15 250 3434 14 115 2 0
16 545 3348 0 112796422 0 2454094
17 1677 9012 5549 11670516 92 1150137
18 10095 9917 1010190 18481880 15 9628327
19 1818 2000 55852 30215 129858 53564
20 2665 2665 2405132964 2445951209 4537241111735642 6360729308037096
21 10 2 0 0 0 0
22 913 717 1859 142 1344 42
23 132 87 2 2 0 0
24 2786 2798 757312753 1123253730 597413478031 19496850457761
25 3269 3262 3281898 286263 237655 226145
26 2621 2621 2306044072 2345181767 3520021336981464 4934695455148333
27 3709 1748 1371 20 0 1
28 7105 7448 110205 161231 225499 44835
29 1433 937 176 65 34 1
30 3872 2665 10610 6372 9608 4814
31 7 864 0 220 0 0
32 2617 2621 1146782344 2527999270 4527913821222 1249959149376280
33 0 7 0 0 0 0
34 93 2334 1 113353 0 348834
35 6215 3230 148831040 31751180 1686321050 1696
36 3412 2991 417461995 13291239 6768849571 1
37 2619 582 1453549216 0 12332611336333 0
38 3444 3138 99 371586 0 4
39 2674 2724 211 14673 44 23948
41 3866 5734 38737 33748 1 0
42 5566 6912 402375 96578909 1118401 89322090
43 319 1290 0 578 0 0
44 1602 6865 361 4625889 0 198418867
46 1299 4346 358 71167527 0 9783316
47 2666 1954 1349333874 22 4869236375834 0
48 3599 857 383 3477 105 3310
49 1248 2942 0 9065 0 6317
50 3183 2084 29 33853 0 70460
52 1121 4489 14070 575347 22287 3631276
53 1402 1594 15 3889 1 1584
55 40 2621 22 2570903942 0 1.752309756973707e+16
56 3553 1725 27562 62828 34970 155096
58 3593 2665 1174137566 2157351166 2870367432697 911436203603761
59 5341 1119 32054 3229 10910 1554
61 6010 7358 1051610 249589 1 737832
65 3007 2619 141 1675967932 0 120656505852415
66 2664 14100 2069845899 26929803 707165273061241 1291442707
67 2655 2619 1604039738 1647998447 732044898268241 86066805723560
3 814 0 0
6 3109 662768293 82814940101
8 2597 485114 1

10 4912 345 0
40 10271 101925 84568
45 5634 226423 0
51 2573 104145 331831
54 2198 38 0
57 4961 102447 293752
60 2843 159515 629601
62 2622 29 0
63 3117 1700705396 57552047888802
64 997 6 0

Fits 66 52 56 47 34 39
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Table 1.21: The Bayes factors for the distance-based models for SIM-Diff with τ = 0.50, 0.25, and 0.10.
There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

SIM-Diff
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 1096 2886 24 31385 0 954836
2 5305 5497 183 9104 1 1175
4 4901 23 80 0 0 0
5 1 1484 0 5896 0 7
7 9488 2627 25726 13 0 0
9 1577 8020 2312 1857773071 0 40529023106031

11 7381 18191 1390 21642 0 18313
12 9211 0 27321874 0 8326 0
13 6274 2112 17870580 90538 105541 342
14 8207 8312 5392188638 3388031065 175676256409322 31034311070190
15 4736 1240 18906 31 10 0
16 3704 8571 45 344137688 0 7212466
17 166 301 59 3467 1 2
18 973 3769 6288 13229642 0 21380272
19 12963 8349 181353 95420 406820 167806
20 8211 8211 7529820866 7657615137 14212976728830790 19925081392276660
21 3 0 0 0 0 0
22 4709 5170 5840 888 4211 132
23 2139 1300 6 10 0 1
24 8099 8174 2360821369 3501678999 1868704094092 60986120968964
25 1468 1048 39920 39478 1145 291
26 8210 8210 7224403696 7347014755 11027566844762140 15459475605581420
27 7665 8894 2106 80 0 2
28 32618 24099 354071 456942 706447 140454
29 2368 3439 553 184 106 4
30 27734 9550 36603 20054 30099 15082
31 8 1233 0 194 0 1
32 9744 8211 3678941408 7919747714 14463800575590 39158876476553460
33 1 34 0 105 0 1
34 5490 11590 18 364900 0 1092834
35 7268 7898 85863060 96916574 5918976 5186
36 8081 9514 1267232222 41657522 19846935703 2
37 8202 6761 4553696146 6 38635758734288 0
38 4204 2513 113 14709 0 3
39 7320 9669 624 46166 137 75025
41 1247 1341 208 47 0 0
42 1330 7070 8931 38003140 639587 40605
43 1571 2603 4 3753 0 0
44 873 3818 416 184795 0 11535531
46 3567 8024 2970 196514844 0 10023031
47 8340 7327 4227196753 296 15254402361779 0
48 7730 3531 1187 10922 328 10371
49 3782 16395 2 30771 0 19791
50 3121 6080 15 106290 0 220737
52 7031 14513 48056 1802480 69822 11376108
53 15401 6670 274 12973 4 4964
55 0 8211 0 8054160005 0 54896579105191460
56 17614 9365 89000 196855 109555 485887
58 8768 8210 3378637755 6754082832 7349648130325 2855087756594834
59 17480 3482 89026 10115 34179 4867
61 4273 28822 42663 799464 0 2311491
65 11873 8795 7086 5276379569 0 378575931581731
66 8346 3790 6484439107 2064487 2215416207012147 719852399
67 8182 8203 5021816844 5162869957 2293141788374076 269631164705841
3 3102 1 0
6 8749 2037594606 254835708870
8 11385 17127535 8444

10 1484 35 0
40 36536 320827 264935
45 3745 1812 0
51 12559 326321 1039566
54 13441 16432 0
57 20159 321863 920270
60 17681 514000 1972426
62 4447 207 0
63 8204 5203026198 176825671102010
64 5378 322 0

Fits 64 52 60 51 35 38
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Table 1.22: The Bayes factors for the distance-based models for SIM-Ratio with τ = 0.50, 0.25, and 0.10.
There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

SIM-Ratio
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 345 4042 1 94759 0 387410
2 3715 6847 168 3099 0 377
4 6648 113 1525 0 0 0
5 1 1095 0 2816 0 18
7 7781 815 8767 20 0 0
9 2444 2579 3208 596008212 0 13001842628587

11 3921 23178 324 91650 0 5877
12 4512 0 9667695 0 3351 0
13 2166 844 5761500 29317 33910 110
14 2844 3730 1738486079 1189637765 56444381681181 12203084019224
15 8958 1533 9451 162 13 0
16 5615 3613 94 113926627 0 2470201
17 576 4392 5418 5540871 92 1155327
18 4715 7493 1006865 18564433 15 9676626
19 13412 11500 58794 31837 130509 53835
20 2685 2684 2417314119 2458339009 4560001977408838 6392637617746312
21 1 0 0 0 0 0
22 5930 8314 1947 867 1351 42
23 2338 922 5 3 0 0
24 2807 2818 761148276 1128942577 600410375835 19594655522657
25 1941 2867 2551704 287554 238298 227281
26 2640 2640 2317723297 2357059209 3537679364161072 4959450130796080
27 5067 8261 1508 63 0 1
28 23140 19973 142827 164813 227500 45108
29 5410 3773 1619 103 185 1
30 18331 11930 13958 10435 9693 4859
31 3 689 0 65 0 0
32 3133 2640 1180272984 2540802612 4640034339692 125622951268380
33 0 7 0 0 0 0
34 6219 14697 12 155713 0 351946
35 5875 3251 149565687 31911995 1694780397 1704
36 3434 3698 419576273 13687158 6802805198 1
37 2638 8408 1460910933 16 12394477325624 0
38 2954 1680 104 192952 0 4
39 8223 10615 369 15389 44 24069
41 3183 4505 38815 34063 1 0
42 4042 6535 402940 97054942 1124012 89770170
43 874 992 1 1641 0 0
44 899 5751 365 4650583 0 199433150
46 1348 4355 397 71527941 0 9832393
47 2731 4342 1357070063 130 4894127134158 0
48 11320 3304 588 3604 105 3327
49 3259 12451 1 12013 0 6351
50 5370 4604 42 34601 0 70813
52 7994 12289 17113 588063 22408 3649506
53 29799 2861 1157 4227 2 1592
55 0 2641 0 2583924580 0 1.761100139290613e+16
56 15838 8990 122698 84947 49709 156479
58 3870 2685 1185902077 2168277318 2889206071463 916008381927407
59 13226 1890 34926 3248 10971 1561
61 5044 30267 1049212 272045 1 741563
65 6767 2828 3616 1692760927 0 121448392043037
66 2728 10273 2081712038 27049856 710780182278217 1297921170
67 2675 2638 1612163581 1656344924 735717168255501 86498555945857
3 2002 1 0
6 3356 669409143 83358466592
8 4645 5640120 2773

10 3350 540 0
40 24754 108954 85026
45 5284 228560 0
51 8971 114550 333622
54 7912 19653 0
57 23891 229564 306883
60 17585 170211 632782
62 2552 96 0
63 3138 1709318855 57840755144812
64 3297 69 0

Fits 62 52 58 50 36 39
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Table 1.23: The Bayes factors for the distance-based models for the linear order model with τ = 0.50, 0.25,
and 0.10. There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

LO
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 58 72 1 15 0 0
2 2 3 0 0 0 0
4 64 15 0 0 0 0
5 0 0 0 0 0 0
7 34 30 0 0 0 0
9 0 70 0 16501711 0 360222391678

11 53 2 3 0 0 0
12 72 66 223317 209489 59 1728
13 73 72 167805 34451 929 0
14 73 73 47928082 30094254 1561560627789 275833286772
15 0 9 0 0 0 0
16 0 72 0 3043846 0 64012
17 35 69 0 39507 0 0
18 12 35 0 0 0 0
19 0 1 0 0 0 0
20 73 73 66928270 68064163 126337077695290 177111143210931
21 4 6 0 0 0 0
22 0 3 0 0 0 0
23 0 1 0 0 0 0
24 73 73 20984051 31124429 16610638202 542096736880
25 63 24 0 0 0 0
26 73 73 64213594 65303414 98022433748644 137417024504971
27 68 14 13 0 0 0
28 1 1 0 0 0 0
29 0 0 0 0 0 0
30 2 1 0 0 0 0
31 40 5 0 0 0 0
32 73 73 31933047 70394109 126089330122 348077543226816
33 0 72 0 37438 0 9
34 0 1 0 0 0 0
35 73 72 763574 861440 52544 46
36 73 69 11263735 361381 176416517 0
37 73 4 40475201 0 343427625765 0
38 41 59 0 0 0 0
39 12 1 0 0 0 0
41 10 54 0 0 0 0
42 64 73 1 337936 0 354
43 11 3 0 0 0 0
44 0 64 0 3 0 0
46 43 73 0 1746305 0 86812
47 73 29 37548153 0 135581290387 0
48 10 1 0 0 0 0
49 12 3 0 0 0 0
50 24 1 0 0 0 0
52 0 1 0 0 0 0
53 6 1 0 0 0 0
55 42 73 0 71588823 0 487967687171330
56 1 1 0 0 0 0
58 73 73 29883451 60033181 65229564192 25378458766751
59 2 0 0 0 0 0
61 69 1 383 0 0 0
65 11 73 0 46668632 0 3359935413611
66 73 54 57598176 0 19690642988484 0
67 73 73 44636067 45889800 20383402992845 2396712108029
3 17 0 0
6 73 18022163 2261716743
8 46 13076 0

10 1 0 0
40 5 0 0
45 61 17 0
51 0 0 0
54 36 1 0
57 1 0 0
60 1 0 0
62 4 0 0
63 73 46246724 1571777606813
64 3 0 0

Fits 45 36 20 20 16 16
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Table 1.24: The frequentist and Bayes factor results for the mixture models for Tversky (1969) data.

Panel A: The frequentist results for the mixture models.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO

1
√

0.68 0.14 0.40 0.34
2 0.28 0.13 0.36 0.22 0.63
3 0.62 0.31 0.06 0.14 ?
4 0.91 0.44 ? 0.10 0.30
5 0.70 ? 0.81 0.73 0.20
6 0.45 ? 0.47 ? ?
7 0.20 0.10 0.20 0.10

√

8 0.67 ? 0.67 0.22
√

Fits 8 5 7 7 6

Panel B: The Bayes factors for the mixture models.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
1 1119 11 333 6 0
2 7 6 19 43 3
3 27 53 14 22 0
4 60 42 21 1 1
5 588 2 1042 20 2
6 25 0 8 0 0
7 18 23 57 395 16
8 226 3 706 48 18

Fits 8 5 8 6 2
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Table 1.25: The frequentist and Bayes factor results for the mixture models for Cash I and Cash II from
Regenwetter et al. (2011a.)

Panel A: The frequentist results for the mixture models.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO

Cash I Cash II Cash I Cash II Cash I Cash II Cash I Cash II Cash I Cash II

1 0.09 0.86 ? 0.64 0.09 0.21 0.11 ?
√

0.30
2 ? 0.77 ? 0.26 ? 0.53 ? 0.13

√ √

3
√

0.85 0.93 0.48
√

0.64 0.89 0.19
√ √

4 ? ? ? ? ? ? ? ? 0.10 0.76
5

√
0.32 ? 0.08

√
0.32 0.08 ?

√ √

6 0.50 0.39 ? 0.21 0.50 0.12 0.15 ? 0.64 0.38
7

√
? 0.53 ?

√
? 0.53 ?

√ √

8
√

0.22 0.51 ?
√

0.19 0.51 ?
√ √

9 0.16
√

?
√

0.16 0.31 ? 0.09
√ √

10
√

0.31
√

0.24
√

0.14 0.98 0.24
√

0.54
11

√
0.11 0.71 ?

√
0.10 0.61 ?

√
0.58

12 0.17 ? ? ? 0.17 ? 0.07 ?
√ √

13 0.19 0.41 ?
√

0.19 0.64 0.07 0.50
√ √

14
√ √

0.92
√ √ √

0.92
√ √ √

15 0.54 ? 0.41 ? 0.54 ? 0.41 ?
√ √

16 0.08 ? ? ? 0.08 ? ? ? ? ?
17 0.11 0.43 0.09 0.23 0.11 0.17 0.09 ? 0.17

√

18 0.64 0.60 0.79
√

0.64 0.74 0.88 0.36
√

0.45

Fits 16 13 9 11 16 13 14 7 17 17

Panel B: The Bayes factors for the mixture model analysis.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
Cash I Cash II Cash I Cash II Cash I Cash II Cash I Cash II Cash I Cash II

1 62 220 0 26 168 1 4 1 13 0
2 9 62 0 8 29 477 0 26 13 28
3 712711 3 0 12 1963269 1 18 15 1 11
4 0 0 0 0 0 0 0 0 0 4
5 15073 7 0 5 35234 8 1 13 3 10
6 57 243 0 12 106 219 0 20 5 4
7 7077 0 1 0 17366 0 17 0 8 15
8 83525 1 0 1 242219 0 3 4 2 5
9 2 1843 0 75 7 1255 0 43 9 20

10 6330 1 47 13 18985 2 733 142 10 2
11 84610 3 0 1 245758 1 14 6 5 2
12 9 1 0 2 16 0 0 0 4 8
13 11 138 0 93 30 510 1 356 13 13
14 707556 0 18 0 1916996 20 97 11 1 0
15 336 163 34 3 1053 4 280 0 19 17
16 315 7 0 0 966 0 1 0 0 0
17 7 69 4 9 22 117 35 8 1 13
18 135 21 98 130 415 30 449 166 19 3

Fits 16 11 5 11 17 9 9 12 12 12
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Table 1.27: The frequentist analysis results for the mixture models for the 2012 experiment data. There are
67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

1 0.23 0.07 ? 0.07 ? 0.06 ? ?
√ √

2 0.53 0.10 ? ? 0.43 0.12 ? ?
√ √

4 0.91 ? 0.40 ? 0.63 ? ? ?
√ √

5 0.58 0.37 0.14 0.09 ? 0.09 ? ? ? 0.32

7 0.47 0.33 0.49 0.17 0.38 ? 0.38 ? 0.27
√

9 ? 0.07 ? ? ? ? ? ? ? 0.26

11 0.46 0.44 0.21 0.76 0.24 0.44 ? 0.73
√ √

12 0.34 ? 0.11 ? 0.18 ? ? ? 0.99 0.97

13 ? ? ? ? ? ? ? ? 0.74 0.70

14 0.63 0.24 0.41 0.82 0.78 0.38 0.21 0.73
√

0.69

15 0.37 0.07 0.23 0.28 0.51 ? 0.19 ? 0.68 0.32

16 0.13 0.37 0.20 0.09 0.16 0.48 0.09 ? 0.12
√

17 ? ? 0.22 0.13 ? ? ? ?
√ √

18 ? 0.20 0.15 0.30 ? 0.22 ? 0.09 0.37
√

19 0.62 0.28 0.13 ? 0.55 0.15 0.13 ?
√ √

20 0.93 0.40 0.93 0.17 0.91 0.34 0.65 0.19 0.78
√

21 ? ? ? ? ? ? ? ? 0.69
√

22 0.35 0.26 0.12 ? 0.37 0.32 0.09 0.06
√ √

23 ? ? ? ? ? ? ? ? 0.38
√

24 0.32 ? 0.14 ? 0.38 ? ? ?
√ √

25 0.26 ? 0.40 ? 0.16 ? ? ?
√ √

26 0.30 0.29 0.21 0.19 0.44 0.16 0.06 ?
√

0.99

27 0.64 0.52 0.28 0.08 0.74 0.50 0.21 ?
√ √

28 0.69 0.49 0.67 0.64 0.78 0.57 0.60 0.40
√ √

29 0.06 0.08 0.21 ? 0.08 0.08 0.09 ?
√

0.13

30 0.60 0.12 0.36 0.07 0.63 0.12 0.17 ?
√ √

31 ? 0.19 ? 0.11 ? ? ? ?
√ √

32 0.20 0.91 ? 0.41 0.27 0.92 ? ? 0.57
√

33 ? ? ? ? ? ? ? ? 0.15
√

34 0.19 0.29 ? 0.15 0.19 0.36 ? 0.11 0.29
√

35 ? 0.84 0.06 ? 0.19 0.51 ? ?
√ √

36 0.16 0.92 0.06 0.83 0.09 0.95 ? 0.74
√

0.36

37 0.10 0.58 ? 0.38 0.06 0.49 ? 0.23
√ √

38 0.38 0.84 0.28 0.22 0.12 0.30 0.13 0.07
√ √

39 0.17 0.24 0.12 0.13 0.17 0.43 0.06 0.08
√ √

41 ? ? 0.06 0.14 ? ? ? ? 0.39
√

42 0.10 ? 0.11 0.11 0.09 ? ? ?
√ √

43 0.29 0.09 0.07 ? 0.26 0.09 0.07 ? 0.57
√

44 0.49 0.08 0.08 ? 0.28 0.13 ? ? 0.15
√

46 0.69 0.41 0.18 0.49 0.39 0.29 0.06 0.48
√ √

47 0.18 0.39 0.19 0.32 0.27 0.39 0.07 0.26
√ √

Continued on next page
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Table 1.27 – continued from previous page

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

48 0.09 0.14 0.11 ? 0.10 0.17 0.06 ?
√ √

49 0.10 0.35 0.09 ? 0.10 0.37 ? ? ?
√

50 0.10 0.21 0.18 ? 0.12 0.26 0.11 ?
√ √

52 ? 0.20 ? 0.21 ? 0.23 ? 0.07
√ √

53 0.72 ? 0.81 ? 0.78 ? 0.65 ?
√

0.29

55 ?
√

? 0.67 ?
√

? 0.37 0.17
√

56 0.28 0.09 0.26 ? 0.35 0.18 0.21 ?
√ √

58 0.20 ? 0.10 ? 0.12 0.07 ? ? 0.74 0.91

59 0.66 ? 0.17 ? 0.57 ? 0.08 ?
√

0.39

61 0.28 0.45 0.24 0.56 0.12 0.43 0.21 0.55
√ √

65 0.72 0.32 0.81 ? 0.61 0.29 0.78 ? 0.40 0.67

66 0.30 0.69 ? 0.88 0.57 0.91 ? 0.88 0.32
√

67 0.26 0.26 0.20 0.29 0.13 0.19 ? 0.07
√ √

3 0.11 0.16 0.14 0.08
√

?

6 ? ? ? ?
√

?

8 0.12 ? ? ? 0.69 ?

10 ? 0.24 ? 0.14 0.32 ?

40 0.34 0.19 0.34 0.36
√

?

45 ? ? ? ?
√

?

51 0.28 ? 0.45 ?
√

?

54 0.23 ? 0.15 ? 0.73 ?

57 0.69 0.43 0.66 0.40
√

?

60 0.66 0.12 0.45 0.08
√

?

62 ? ? ? ? 0.41 ?

63 0.06 ? 0.25 ?
√

?

64 0.46 0.44 0.58 0.16
√

?

Fits 51 40 46 30 49 37 30 18 64 54
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Chapter 2

Parsimonious Testing

of Transitive or Intransitive Preferences:

Reply to Birnbaum (2011)1

Michel Regenwetter, University of Illinois at Urbana-Champaign, USA
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Clintin P. Davis-Stober, University of Missouri, USA
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1The analysis results for the random-LSO-Ratio model for Tversky (1969)’s set and Cash I and Cash II in Regenwetter et al.
(2011a) are reported in the published paper, under Section “Alternative Intransitive Models.” Copyright c©2011 American
Psychological Association. Reproduced with permission. The official citation that should be used in referencing this material
is Regenwetter, M., Dana, J., Davis-Stober, C. P., and Guo, Y. (2011b). Parsimonious testing of transitive or intransitive
preferences: Reply to Birnbaum (2011). Psychological Review, 119(2):408-416. This article may not exactly replicate the
authoritative document published in the APA journal. It is not the copy of record. No further reproduction or distribution is
permitted without written permission from the American Psychological Association.
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Abstract

Birnbaum (2011) raises important challenges to testing transitivity. We summarize why an approach based

on counting response patterns does not solve these challenges. Foremost, we show why parsimonious tests

of transitivity require at least five choice alternatives. While Regenwetter et al.’s approach still achieves

high power with modest sample sizes for five alternatives, pattern-counting approaches face the difficulty of

combinatoric explosion in permissible response patterns. Even for fewer than five alternatives, if the choice of

how to “block” individual responses into response patterns is slightly mistaken then intransitive preferences

can mimic transitive ones. Meanwhile, statistical tests on proportions of response patterns rely on similar

“independent and identically distributed” (iid) sampling assumptions as tests based on response proportions.

For example, the hypothetical data of Birnbaum (2011, Tables 2 and 3) hinge on the assumption that response

patterns are properly blocked, as well as sampled independently and with a stationary distribution. We test

an intransitive lexicographic semiorder model on Tversky’s (1969) and Regenwetter et al.’s (2011) data and,

consistent with Birnbaum’s (2011) concern, we find evidence for model mimicry in some cases.
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Regenwetter, Dana, and Davis-Stober (2011), henceforth RDDS, investigated transitivity of preferences

through powerful and parsimonious quantitative tests. Regenwetter et al. (2010, 2011) made extensive

efforts to spell out and eliminate unnecessary and, in many cases, unwanted assumptions in the literature.

To protect against serious aggregation paradoxes that create the false appearance of intransitivity, they

moved from aggregation across people to individual choice data. By collecting repeated choices from the

same individual, they avoided the assumption, implicit in single observations, that preferences are fixed.

These repeated choices were interspersed with rich and similar looking distractors to keep respondents from

recognizing choice alternatives, in an effort to approximate iid sampling.

Birnbaum (2011) describes an alternative quantitative approach to testing transitivity on within-subject

data. He agrees with RDDS’s substantive conclusion that evidence for intransitivity is lacking and also

with their criticism of weak stochastic transitivity. He argues, however, that RDDS do not go far enough

in criticizing past approaches, particularly because they analyze proportions of binary responses. He con-

trasts their approach with that of Birnbaum and Gutierrez (2007), who, instead, analyze proportions of

binary response patterns. A response pattern is the series of responses that a respondent makes across a

complete repetition of all unique gamble pairs. Using a hypothetical example, Birnbaum shows how the

RDDS approach could conclude that choices are transitive when in fact the decision maker has intransitive

preferences, a phenomenon we call model mimicry. His example shows how analyzing patterns, as Birnbaum

and Gutierrez (2007) do, could diagnose this true intransitivity, because their approach identifies a prefer-

ence distribution while RDDS do not. Birnbaum’s comment also questions the untested RDDS assumption

that a respondent’s choices form iid draws from a probability distribution over preference orders, finding

it “empirically doubtful” that responses to the same gamble pair or to related gamble pairs by the same

respondent are statistically independent.

Our reply focusses on a small number of key points. We start and end with the central question: How

can we test transitivity of preferences in a parsimonious and statistically powerful fashion?

The importance of considering at least five choice alternatives.

If one is going to draw conclusions from failing to reject transitivity, as both Birnbaum (2011) and RDDS

do, it is crucial that transitivity be a strong hypothesis that we would expect to overturn if untrue. Looking

at Birnbaum’s Table 2, one can see that with 3 gambles, there are 8 possible response patterns. Six of these

8 patterns (75%) are transitive. We can frame this problem in terms of the RDDS approach by imagining

a cube (see Regenwetter et al., 2010, for a visualization) in which one’s probability of choosing A over B,

from 0 to 1, is one dimension, and the probabilities of choosing B over C and A over C, from 0 to 1, are the

other two dimensions. Inside this unit cube, 67% of the space satisfies the triangle inequalities that RDDS
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use to test transitivity. Retaining transitivity with three gambles is is not very informative because most

conceivable data sets will support transitivity.

On the other hand, if one uses 5 gambles, as RDDS did, there are 10 unique gamble pairs and 210 =

1,024 possible response patterns. Of these, only 120 patterns (12%) are transitive. In terms of the RDDS

tests, the 10 binomial choice probabilities create a 10-dimensional unit hypercube, inside of which only 5% of

the space satisfies the triangle inequalities (see Regenwetter et al., 2010). Thus, in either approach, moving

from 3 gambles to 5 gambles transforms transitivity from an almost meaninglessly lax hypothesis to a strong

hypothesis with serious potential for rejection. For this reason, it is crucial that any approach that retains

transitivity be able to do so with at least 5 choice alternatives.

Because there are 1,024 possible response patterns for 5 gambles, combinatoric explosion will pose a

formidable problem for any pattern counting approach. Consider again Birnbaum’s (2011) Table 2. The

example data use 200 repetitions so that there are 25 observations for each of the 8 possible response patterns.

To obtain an average of 25 observations per pattern with 5 gambles, one would now need 1,024 patterns times

10 decisions (there are 10 gamble pairs per pattern) times 25 observations per pattern = 256,000 decisions in

this hypothetical experiment, not including any filler choices between blocks. The RDDS approach estimates

10 binomials for the 10 unique gamble pairs, and thus requires only 250 decisions for an experiment with a

comparable number of 25 observations per cell. A similar combinatoric explosion occurs when respondents are

allowed to express indifference, because then there are even many more permissible patterns (see Table 2.1).

Since a strong test of transitivity requires 5 gambles, the RDDS approach has a major advantage over

pattern counting approaches in that it scales comfortably to that many choice alternatives. It does so,

however, because it makes certain iid sampling assumptions that Birnbaum (2011) questions, especially

because these assumptions are not tested. If pattern counting will prove difficult in parsimonious testing

environments, does it at least free us of such assumptions? To answer this question, let us explicate what

each approach assumes.

What does each approach assume about iid sampling?

Consider Table 2 of Birnbaum (2011). Model 1 tests the iid assumptions of RDDS on hypothetical data.

The table summarizes information about 200 observed response patterns, with each pattern consisting of

three decisions, for a total of 600 decisions. Since we could assign a 0 or 1 to each item (as Birnbaum does

for patters of three in his Table 2) and since all sequences of 600 responses are allowable, there are 2600

degrees of freedom in the data, representing all possible temporal series of responses in the experiment.

Birnbaum’s chi squared test, his Eq. (3), for Model 1 has 4 degrees of freedom. RDDS’s goodness-of-fit

test would assume 3 degrees of freedom for these data. How do both approaches reduce the degrees of
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freedom so dramatically?

Birnbaum’s test in Table 2 uses a blocking assumption that classifies decisions as response patterns using

the temporal sequencing of the data: Responses to the 3 unique choice pairs constitute a block and the

response made on the first replicate of a choice, e.g., between A and B, cannot be swapped with the response

made on the second replicate. The chi-squared test does not, however, consider the temporal sequence in

which the 200 patterns were observed, but simply counts how often each of the 8 kinds of patterns occur,

reducing the data to 7 degrees of freedom (the number is 7 because once 7 pattern frequencies are observed,

the 8th is determined since we know the total number of patterns observed). The chi squared test, then,

assumes that these 200 response patterns are iid draws from a distribution over 8 binary relations. The 3

choice probabilities in Model 1 (the probabilities of choosing A over B, B over C, and A over C) are free

parameters consuming 3 more degrees of freedom, leaving 7-3 = 4 degrees of freedom in the chi squared test.

For brevity we skip similar calculations for other tests in Birnbaum’s (2011) Tables 2 and 3.

RDDS differ in that they do not preserve any temporal information about the sequence of these decisions.

They assume that the 600 individual responses are iid draws from a probability distribution over preference

rankings. The 3 binomial probabilities of choosing A over B, B over C, and A over C are the only things

to be estimated and hence, RDDS reduce the data complexity from 2600 to 3 degrees of freedom. RDDS’s

iid assumption is stronger than the one used in Birnbaum’s Table 2 because iid sampling of 600 responses

implies iid sampling of 200 response patterns, but not vice versa.

Birnbaum’s Model 1 uses the assumptions of blocking and iid sampling of patterns to show how one

would test and reject iid sampling of preferences underlying individual decisions. If applied to real data, this

would imply a significant rejection of RDDS’s iid assumption, but it would not evaluate the blocking and

iid pattern assumptions that it uses. Our Table 2.1 summarizes these and other insights. Pattern counting

approaches like Birnbaum’s (2011), then, necessarily require their own iid assumption. We are unsure how

these assumptions would be tested and Birnbaum (2011) does not appear to provide suggestions.

If pattern counting approaches also involve untested iid, as well as blocking, assumptions, do they at

least free us from model mimicry because they actually identify preference states? This is the question we

consider next.

Does analyzing response patterns solve the problem of model mimicry?

While RDDS estimate binary choice probabilities and test transitivity, they do not estimate the unique

distribution of preferences that their model assumes exists. Birnbaum (2011) gives a hypothetical mixture of

intransitive states that RDDS would falsely diagnose as supporting transitivity, while an analysis of response

patterns detects intransitivity.
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What if the data are incorrectly blocked? Much like Birnbaum’s (2011) thought experiment showed

potential model mimicry in the RDDS approach, we give a simple example using 3 choice alternatives

where pattern counting is vulnerable to model mimicry. Imagine a decision maker had only intransitive

true preferences, which with three gambles means either: a � b, b � c, c � a coded by Birnbaum (2011)

as 001, or its reverse, b � a, c � b, a � c coded as 110. This decision maker is presented the following

sequence of paired comparisons: (a, b)1, (b, c)2, (a, c)3, (a, b)4, (b, c)5, (a, c)6, (a, b)7, (b, c)8, (a, c)9, where the

subscript denotes the trial number. According to the blocking assumption, this decision maker remains in a

fixed preference state throughout each complete replication of all unique choice pairs, i.e., the trial intervals

1-3, 4-6, and 7-9. But imagine that the blocking assumption is slightly incorrect in that the first block is

shortened by one single trial. Thus, the decision maker is in a fixed preference state, say, 001 for trials 1-2

and 6-8, but 110 for trials 3-5, and 9. The sequence of 9 responses, 000111000, when blocked, will appear as

the follows:

Block 1: trials 1-3 = 000, i.e., a � b, b � c, and a � c.

Block 2: trials 4-6 = 111, i.e., b � a, c � b, and c � a.

Block 3: trials 7-9 = 000, i.e., a � b, b � c, and a � c.

An analysis of response patterns would mistakenly conclude that this decision maker is transitive and

makes no errors. Hence, an intransitive process would have mimicked a transitive one. The problem is not

attributable to the simplicity of this example. For five gambles there are 1,024 possible patterns. If prefer-

ences switch at times other than between blocks, then the real preference patterns may be unrecoverable. If

the decision maker’s true preference states do not last equally long, nearly any response pattern (transitive

or not) is mathematically possible, even if the decision maker expresses her true preference with no error and

has only a few true preference states. Birnbaum (2011, p. 7 in page proofs) raised the possibility of a pattern

counting approach in which the blocks and their lengths are estimated from the data. Such an approach,

however, would introduce a great deal of model complexity, as each change in true preference is a parameter

to estimate and each additional observation provides one more possible transition between preference states.

Birnbaum (2011) has hit upon an important problem in model mimicry that we agree warrants investi-

gation. But pattern counting approaches do not solve the problem. The choice of how to block data into

patterns always creates the possibility of model mimicry. Detecting and accommodating violations of the

blocking assumption seems to us a major challenge. Within the approach of RDDS, we now show how one

can test for specific intransitive processes to try to identify model mimicry.

Alternative intransitive models.

We ask whether certain alternative models may provide an alternative account for Tversky’s (1969) and
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RDDS’s data on five choice alternatives. We formalize Tversky’s (1969) idea of lexicographic semiorders.

We focus on one probabilistic heuristic model for choices among two outcome cash gambles with one nonzero

positive outcome and one zero outcome, such as RDDS’s Cash I and Cash II gambles and Tversky’s (1969)

gambles (see Table 2.2).

Attribute Order. The decision maker sequentially considers the attributes: With some unknown

probability, she first considers the chance of winning, otherwise payoff.

Threshold of discrimination. Each attribute has a threshold. If two gambles differ by a factor

greater than the threshold on the attribute under consideration, then the decision maker (DM) chooses the

option that is ‘better’ on that attribute. Otherwise, he moves to the next attribute. We allow the two

thresholds to be random variables with any joint distribution whatsoever, hence permitting many preference

states.

Indifference. If the DM has considered both attributes without a conclusion, then we assume, for

simplicity, that he chooses either alternative with probability one half.

Table 2.2 shows Tversky’s (1969) gambles and the ratios for each attribute. If the DM always considers

payoff before chance, with fixed payoff and chance thresholds of 1.18 and 1.2, then, writing � for strict

preference and ∼ for indifference, she has the preferences on the left of Panel 3 (from top). Notice the

intransitive cycle a � e, e � c, c � a. The right side of Panel 3 shows the choice probabilities for a DM with

just that one preference.

For brevity, we only sketch the model and its test. The lexicographic semiorder given in Panel 3 of

Table 2.2 is but one of 111 such preferences one can derive for Tversky’s gambles as one varies the sequence

of attributes and the threshold values. Likewise, for RDDS’s Cash I and Cash II gambles, there are similar

collections of 111 distinct lexicographic semiorders. The model states that the probability of choosing i over

j equals the probability that she currently strictly prefers i to j plus 1
2 times the probability that she is

indifferent between i and j. This mixture model is similar to that of RDDS, with two main differences:

1) Instead of 120 linear orders, we consider 111 lexicographic semiorders. 2) This model does not force

“complete” preferences, rather it permits indifference among choice alternatives.

Just as the linear ordering model translates geometrically into a convex polytope, so do these lexicographic

semiorder models translate into polytopes. We leave a formal discussion for elsewhere. Table 2.2 summarizes

a number of interesting findings. For Tversky’s data, we found the model to be rejected for three out of

eight participants, whereas we found it rejected in nine out of 18 participants in RDDS’s Cash I replication

of Tversky (1969) and in seven out of the same 18 in Cash II. This speaks directly to Birnbaum’s (2011)

concern about model mimicry: Several participants are fit by both the linear ordering model and the
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lexicographic semiorder model. Is there an explanation for this finding? It is important to realize that many

lexicographic semiorders are transitive, and some are linear orders. We therefore determined the collection

of binomial distributions that form the overlap between the linear ordering model and the lexicographic

semiorder model and tested those intersections, too. We rejected that overlapping model on only three out

of eight participants for Tversky’s data and on only nine out of 18 participants for Cash I as well as only six

out of 18 participants for Cash II. Hence, we agree with Birnbaum’s concern about model mimicry: Parts

of the lexicographic semiorder model can mimic parts of the linear order model, and, indeed, both models

fit a large proportion of the participants.

If we give positive probability only to the 104 intransitive cases among the 111 lexicographic semiorders,

then we reject the model on 15 out of 18 participants in both Cash I and Cash II. Incidentally, the priority

heuristic (Brandstätter et al., 2006) is one of the 104 intransitive preference states in this model for each

gamble set. We thus reject a broad generalization of that intransitive heuristic in which the order of the

“reasons” and the thresholds may, but need not, vary on 15 out of 18 participants. This analysis also

addresses Birnbaum’s (2011) concern about the stationarity component of RDDS’s iid sampling assumption.

If the binomial probabilities change over time but always satisfy a given mixture model, then the average

binary choice probabilities will also satisfy that model because mixture models form convex polytopes. Hence,

we expect that a false fit of the linear order model caused by nonstationary probabilities in the lexicographic

semiorder model requires that the latter model also fit. For a pattern-counting approach, protection against

violations of its stationarity assumptions appears to us more complex, due to the complicated interplay among

blocking, iid sampling, many degrees of freedom, and limitations in the amount of data one individual can

provide.

How can we achieve parsimonious testing of transitivity?

Tables 2.1 and 2.2 summarize our findings. Both Birnbaum Birnbaum (2011) and Regenwetter et

al. (2010, 2011) deliberately eliminate common, and often undesirable, assumptions in the literature. Both

make related iid sampling assumptions to reduce the complexity inherent in a binary sequence of hundreds

or thousands of decisions in an experiment, so as to achieve statistical testability. Birnbaum also makes

blocking and independent error assumptions that RDDS do not make. RDDS could enlarge their polytopes

to allow additional errors. Such extensions would reduce the parsimony of their test, making transitivity

easier to fit.

Much of Regenwetter et al. (2010, 2011) aims at classifying and dissecting the implicit or explicit as-

sumptions made in various approaches and developing parsimonious quantitative tests. Since every test

makes some assumptions, testing these assumptions is valuable. Even more valuable is to use assumptions
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that need to hold only approximately for the substantive conclusions to be valid. We have provided some

evidence that RDDS’s conclusions are somewhat robust to possible violations of stationarity. More work is

needed to evaluate the robustness of either approach to violations of all their respective assumptions, such

as the independent sampling assumption in each approach. Another avenue to enhance parsimonious test-

ing is methodological innovation. Sophisticated statistical methods may help pattern counting approaches

overcome some of the formidable challenges posed by combinatoric explosion. Within the RDDS approach,

where limits on mathematical knowledge pose a greater obstacle than attainable sample size, novel efforts

are under way to test polytopes without having to fully characterize their mathematical properties.

Acknowledgments: M. Regenwetter is supported by DRMS Award No. SES #08-20009 of the Na-

tional Science Foundation. Any opinions expressed in this publication are those of the authors and do not

necessarily reflect the views of universities or the funding agency.
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Table 2.1: Communalities (centered) and differences (split) betweeen Birnbaum’s (2011) and Regenwetter et
al.’s (2010, 2011) approaches to testing transitivity of preferences, as well as key strengths and weaknesses.
Birnbaum (1984) used similar calculations to count patterns.

Birnbaum (2011) (Regenwetter et al., 2010, 2011)

Uses blocking assumptions in order to Does not make blocking assumptions.
group observed binary responses into patterns.

For the hypothetical data of Birnbaum’s Tables 2 & 3:
Reduces 2600 degrees of freedom in an observed ordered sequence of 600 binary data to

7 degrees of freedom 3 degrees of freedom

for 2(3
2) = 8 pattern proportions, for

(
3
2

)
= 3 binary choice proportions,

by assuming that by assuming that
the observed ordered sequence of 200 patterns the observed ordered sequence of 600 responses

originates form iid sampling originates from iid sampling
of 200 binary relations with no indifference. of 600 strict linear orders.

Can identify a unique preference distribution Cannot identify a unique preference distribution
from pattern frequencies. from response frequencies.

Tests transitivity under assumption that
the decision makers are never indifferent between any two prospects.

(Tests “strict linear orders.”)

Can be extended to a more direct test of transitivity (“strict weak orders”)
by permitting additional “no preference” response category (“ternary choice”)

at cost of combinatoric explosion: without combinatoric explosion:

3 prospects: 3(3
2) − 1 = 26 degrees of freedom, 3 prospects:

(
3
2

)
× 2 = 6 degrees of freedom,

5 prospects: 3(5
2) − 1 = 59, 049 degrees of freedom. 5 prospects:

(
5
2

)
× 2 = 20 degrees of freedom.

An experiment with 5 choice prospects and 20 observations per empirical cell corresponds to

20×
(
5
2

)
× 2(5

2) = 204, 800 binary choices or 20×
(
5
2

)
= 200 binary choices or

20×
(
5
2

)
× 3(5

2) = 11, 809, 800 ternary choices, 20×
(
5
2

)
= 200 ternary choices,

plus fillers between blocks. plus distractors between choices.

Assumes each observed pattern is Does not assume errors, but could enlarge
composed of a preference relation their model (the “polytope”) to accommodate

and independent errors. interdependent errors, with risk of overfitting.

Can fall victim to model mimicry.

Avoids aggregation across individuals.

Avoids descriptive modal choice analysis.

Uses quantitative goodness-of-fit methodology.

Does not assume that preferences are induced by independent random utilities.

Concludes overall that:
Existing evidence for intransitivity of preferences is not compelling.
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Table 2.2: Tversky’s (1969) gambles. From top to bottom, the first panel shows the chance of winning
and payoff value for each of the five gambles. The second panel shows the chance ratios (left), and the
payoff ratios (right) as decimals. The third panel provides one of the 111 lexicographic semiorders one
can obtain this way (left) and the choice probabilities of a DM who has only that one single preference.
The bottom panel shows the result of testing the lexicographic semiorder mixture model on Tversky’s 8
participants and on RDDS’s 18 participants for Cash I and Cash II (with α = 0.05). The last column of that
panel shows the number of simultaneous inequality constraints tested. PH denotes the Priority Heuristic.
RDDS = Regenwetter, Dana, & Davis-Stober (2011).

Gamble Chance of winning Payoff
a 7/24 $5.00
b 8/24 $4.75
c 9/24 $4.50
d 10/24 $4.25
e 11/24 $4.00

Chance Ratios (column/row) Payoff Ratios (row/column)
Gamble b c d e Gamble b c d e

a 1.143 1.286 1.429 1.571 a 1.053 1.111 1.176 1.250
b - 1.125 1.250 1.375 b - 1.056 1.118 1.188
c - 1.111 1.222 c - 1.059 1.125
d - 1.100 d - 1.063

DM with fixed thresholds (payoff: 1.18; chance: 1.2),
who considers payoff before chance of winning
(Comparing row gambles to column gambles)
Binary Preference Choice probabilitiy

Gamble b c d e Gamble b c d e
a ∼ ≺ ≺ � a 1

2 0 0 1
b - ∼ ≺ � b - 1

2 0 1
c - ∼ ≺ c - 1

2 0
d - ∼ d - 1

2

Data Number of distinct Number of Number of
Set lexicographic semiorders Rejections Constraints

Tversky 111 (incl. PH) 3 of 8 participants 24
Cash I 111 (incl. PH) 9 of 18 participants 24
Cash II 111 (incl. PH) 7 of 18 participants 1956
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