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ABSTRACT 

 

In the obesity-prone environment in which we live, no avenue for potentially health-

promoting intervention should be ignored. One such avenue that has gained recent attention is 

the modulation of the gastrointestinal microbiota. Microbiota interventions have come into the 

spotlight because of the proposed relationships between the microbial community’s composition, 

function, and human health. One of the most common strategies for modulating the microbial 

community for potential health benefit is by dietary modifications, although antibiotics, 

microbial transplant, probiotics, and even exercise can also impact the gastrointestinal 

microbiome. With the emergence of evidence that timing of eating can impact health, it follows 

that the connection of eating behaviors to the gastrointestinal microbiota should be explored 

further. The objective of this research was to assess the links between circadian rhythms, timing 

of eating, and the human gastrointestinal microbiota. To accomplish this goal, a thorough review 

of the current literature was first conducted. Second, a cross-section of healthy, adult subjects 

was examined to determine the relative abundances of bacterial genera and concentrations of 

bacterial metabolites in fecal samples collected throughout the day. These variables were 

additionally assessed in relation to the subjects’ eating habits, including eating frequency, 

consumption of energy earlier in the day, and overnight fast duration. This study found strong 

evidence in the existing literature for the impact of circadian rhythms and eating behaviors on the 

gastrointestinal microbiota and health. Additionally, this work presents the results of a large, 

cross-sectional clinical study which found an association between time of day, microbiota 

composition and function, and eating behaviors. The results presented herein propose that this 

connection not only exists, but also could hold relevance for human health, with application to 

health-promoting interventions. 
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CHAPTER 1: COMPLEX INTERACTIONS OF CIRCADIAN RHYTHMS, EATING 

BEHAVIORS, AND THE GASTROINTESTINAL MICROBIOTA AND THEIR 

POTENTIAL IMPACT ON HEALTH1 

ABSTRACT 

Human health is intricately intertwined with the composition and function of the trillions of 

microorganisms that make up the gastrointestinal (GI) microbiome. The GI microbiome is 

essentially a microbial organ providing metabolic, immunologic, and protective functions for the 

host. Habitual diet, changes in macronutrient composition, and consumption of nondigestible 

dietary fibers have all been shown to impact the human GI microbiome. Intriguingly, the impact 

of diet on the microbiome may not only be related to what we eat but also to when we eat. 

Emerging preclinical research suggests that gut microbes experience diurnal rhythms, and the 

health effects of eating patterns, such as time-restricted feeding and meal frequency, may be 

related to the GI microbiome. Herein, we review the complex connections between circadian 

rhythms, eating behaviors, the GI microbiome, and health, and point to the need for additional 

translational research in this area.  

 

 

 

 

 

1. The final, definitive version of this paper has been published in Nutrition Reviews, 75, 9, 

September 2017 by Oxford University Press on behalf of the International Life Sciences 

Institute. Open Access article. © 2017 The Authors. Kaczmarek JL, Thompson SV, Holscher 

HD. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal 

microbiota and their potential impact on health. Nutr Rev. 2017;75(9):673-682. 

doi:10.1093/nutrit/nux036.  
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INTRODUCTION 

The impact of diet on the gastrointestinal (GI) microbial community composition and 

function and human health is a rapidly evolving research domain. Exploring this area is essential 

in the present day as the cost and prevalence of chronic diseases continue to rise to staggering 

figures while standard, efficacious treatments such as dietary and physical activity modifications 

are infrequently prescribed and even less frequently followed (Milani & Lavie, 2015). The 

trillions of microbes that make up the GI microbiome form a microbial organ with a collective 

gene set 150 times larger than the human genome, providing metabolic, immunologic and 

protective functions for the host (Qin et al., 2010). In addition to contributing to immunological 

development and metabolic function, the GI microbiome also influences nervous system 

development and function (Mu, Yang, & Zhu, 2016). Furthermore, the composition and function 

of the GI microbiome has been shown to be linked to a growing list of metabolic diseases 

including obesity, diabetes, and cardiovascular disease (Albenberg & Wu, 2014; De Vos & De 

Vos, 2012).   

Diet is an important mediator of the human GI microbiota —habitual intake (Wu et al., 

2011), rapid changes in dietary fat and fiber composition (David et al., 2014), and consumption 

of dietary fibers (H. D. Holscher, Bauer, et al., 2015; H. D. Holscher, Caporaso, et al., 2015; 

Hannah D. Holscher, 2017), and other nondigestible food components have all been shown to 

impact both the composition and function of these resident microbes (Albenberg & Wu, 2014; 

Sonnenburg & Bäckhed, 2016). Intriguingly, the impact of diet on the microbiome may not only 

be related to what we eat but also to when we eat. Host-symbiont bidirectional communication 

occurs via signaling along the gut-microbiota-brain axis by a variety of bacterial metabolites 
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which have been shown to impact centrally mediated feeding behaviors such as appetite (Frost et 

al., 2014; Perry et al., 2016; Sandhu et al., 2017).  

Increasingly, preclinical research has demonstrated that the bacteria in the GI tract vary 

over the course of a day, exhibiting diurnal rhythms in relative taxa abundances, proximity to the 

colonic epithelium, and metabolism (Thaiss, Levy, et al., 2016; Zarrinpar, Chaix, Yooseph, & 

Panda, 2014). Time of eating is considered a potential modulator of circadian rhythms in both 

bacterial abundance and function (R.M. Voigt, Forsyth, Green, Engen, & Keshavarzian, 2016). 

Furthermore, the gut microbiome appears to have a reciprocal relationship with the human 

body’s circadian clock and eating patterns (Figure 1.1). Emerging research suggests that some of 

the observed health effects related to eating patterns, such as time-restricted feeding (TRF) and 

meal frequency, may also be related to the GI microbiome. Herein, we review preclinical and 

clinical research on circadian misalignment, eating behaviors, and the GI microbiome.  

 

CIRCADIAN RHYTHMS 

Most of the life on earth experiences a daily 24-hour light/dark cycle created by the 

earth’s rotation in relation to the sun, and as a result, perform a 24-hour cycle of feeding and 

fasting (Hastings, Reddy, & Maywood, 2003). Circadian rhythms are cycles of gene expression, 

metabolism, and behaviors created by the internal clock that governs a multitude of metabolic 

functions such as hepatic lipid metabolism, cardiovascular function, obesity regulation, and 

glucose homeostasis (Bass & Takahashi, 2010; Huang, Ramsey, Marcheva, & Bass, 2011). 

Circadian rhythms are regulated in humans in two ways: 1) by light via the suprachiasmatic 

nucleus in the brain, and 2) by clock proteins present in nearly every cell that provide a 

transcriptional rhythm based on a 24-hour day (Zarrinpar, Chaix, & Panda, 2016). The 
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suprachiasmatic nucleus also regulates the circadian release of digestive peptides including 

vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP) (Zarrinpar et al., 

2016). Almost all human cells have circadian regulatory genes, including Clock, Bmal1, RORα, 

Cry, Per, and Rev-erbα (Zarrinpar et al., 2016). In mice, 45% of transcripts have 24-hour 

oscillations (Zarrinpar et al., 2016). The homeostatic sleep/wake cycles of the central nervous 

system, combined with pituitary gland activity, exert significant influences on the endocrine 

system (Zarrinpar et al., 2016).  

 

Health Implications of Misaligned Circadian Rhythms 

The natural state of most life on earth is to spend one phase of a 24-hour day (either light 

or dark) in an active and feeding state, and the other in a resting and fasting state (Hastings et al., 

2003). Humans naturally spend the light phase in the active and feed state, while resting and 

fasting primarily occur during the dark phase. However, with the development of artificial light, 

humans have deviated from the original pattern of eating only during the light window of the 

day. Furthermore, individuals who work night shifts experience an almost complete reversal of 

food intake, with intake occurring primarily during the night, and rest and fasting occurring 

during daylight hours. Dietary intake that is misaligned to the natural rhythms of the circadian 

clock has been shown to negatively impact human health. Specifically, disruptions to the normal 

sleep/wake cycle in relation to the night/day cycle of the earth, as seen in shift work, are 

associated with a 40-60% increased risk for obesity and metabolic syndrome (Karlsson, 

Knutsson, & Lindahl, 2001; F. Wang et al., 2014). 

 Misaligned circadian rhythms refer to the disruption of the normal schedule of feeding 

and fasting. Circadian rhythms can be misaligned through environmental conditions such as shift 
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work or jet lag, or in the case of preclinical research, the creation of knockout models through 

genetic manipulation of relevant genes. The importance of cellular clock mechanisms to health 

has been demonstrated in knockout mice, whereby Bmal1 knockout mice and Rev-erbα and Rev-

erbβ double knockout mice display dysmetabolism in glucose and lipid homeostasis, respectively 

(Zarrinpar et al., 2016). Manipulation of environmental conditions such as restricting the food 

access of wild-type mice to only the light phase (when mice are normally not active or eating) 

has been shown to result in a 23% increase in weight gain and an 8% higher body fat percentage 

compared to mice who had access to food during their normal active phase (Arble, Bass, 

Laposky, Vitaterna, & Turek, 2009). Thaiss et al. reported that circadian-disrupted mice fed a 

high-fat diet had 17% greater body weight compared to non-disrupted mice on a similar diet 

(Thaiss et al., 2014). Antibiotic-treated mice were resistant to these detrimental metabolic 

changes, suggesting the connection between misaligned rhythms and the microbiome (Thaiss et 

al., 2014). 

Adding dim light to an animal’s habitual dark phase has also been shown to disrupt 

circadian rhythms, and thus metabolism. Mice housed in dim light conditions have been shown 

to increase energy consumption during the light phase to 55% of total intake, compared to 36% 

in mice kept in standard light/dark phase conditions. Body mass and insulin resistance were also 

greater in both dim light and constant light situations when compared to standard light/dark, 

despite the use of isocaloric diets and matched physical activity levels (Fonken et al., 2010). 

Chronic sleep fragmentation, a model of obstructive sleep apnea, also affects both the murine 

microbiome and health (Poroyko et al., 2016). Poroyko et al. demonstrated that mice exposed to 

chronic sleep fragmentation by tactile stimulation every two minutes during the sleep phase 

showed increased food intake and decreased colonic barrier function, and that transplantation of 
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the Firmicutes-enriched microbiome of these animals into germ-free animals resulted in 

enhanced inflammatory response and insulin resistance in the recipient animals (Poroyko et al., 

2016). Recent work has also examined sleep restriction in both mice and a small group of 

humans (S. L. Zhang et al., 2017). Following five days of restricting sleep to four hours per 

night, the authors found minor changes in the murine microbiota, but no changes among humans 

(n=11). They concluded that, while weight and behavioral alertness were impacted in humans, 

the microbiota was resistant to sleep restriction-induced change. However, the small sample size 

of human participants, and the acute nature of the study may have not been adequately powered 

to detect changes in the highly individualistic human microbiota (Faul, Erdfelder, Lang, & 

Buchner, 2007). 

 Results from preclinical circadian rhythm misalignment studies are further supported by 

clinical studies that reveal associations between specific single-nucleotide polymorphisms 

(SNPs) in the Clock gene and risk for metabolic syndrome (Scott, Carter, & Grant, 2008). There 

are three known polymorphisms of this gene, relatively equally distributed throughout the 

population, and haplotype is significantly associated with presence of metabolic syndrome (Scott 

et al., 2008). The functional role of these SNPs has not yet been elucidated (Zarrinpar et al., 

2016). Furthermore, it has also been demonstrated in shift workers, both observationally and in a 

laboratory setting, that working at times other than daylight hours negatively impacts health 

outcomes, including a 66% elevated risk of obesity and 57% elevated risk of metabolic 

syndrome (F. Wang et al., 2014). Shift workers also have been shown to have 12-16% reduced 

energy expenditure (McHill et al., 2014), and they are more likely to experience dyslipidemia, 

including elevated blood triglycerides and reduced high-density lipoprotein cholesterol (Karlsson 

et al., 2001). In one experiment, human participants experiencing out-of-phase treatment through 
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a 12-hour reversal from their habitual schedule had 17% lower leptin concentrations compared to 

their values under circadian alignment. Furthermore, insulin, glucose, and mean arterial pressure 

were 22%, 6%, and 3% higher, respectively, under misalignment than under alignment (Scheer, 

Hilton, Mantzoros, & Shea, 2009). A summary of clinical findings of misaligned circadian 

rhythms can be found in Table 1.1 (McHill et al., 2014; Scheer et al., 2009; Thaiss et al., 2014; 

F. Wang et al., 2014; Zarrinpar et al., 2016; S. L. Zhang et al., 2017).  

 

Impact of Misaligned Circadian Rhythms and Diet on the Microbiota 

 There is increasing evidence for a connection between the microbiota, diet, circadian 

rhythms, and internal clock mechanisms (Figure 1.2). One method to explore interactions 

between these factors is to provide continuous intravenous nutritional support, which eliminates 

effects of feeding time or even intestinal presence of food on the GI microbiome. Interestingly, 

mice given continuous parenteral nutrition have been shown to have significant changes in 

microbial community structure, but the microbiota did not completely lose diurnal variation 

(Leone et al., 2015). Specifically, while beta diversity, a measure of dissimilarity, or distance, 

between samples, clustered by treatment when comparing enteral to parenteral nutrition, within 

each treatment group samples clustered by time of day. Additionally, relative abundances of 

different phyla varied between treatments, with Verrucomicrobia dramatically blooming at the 

expense of the Firmicutes in the parenteral group. Bacteroidetes also had a cyclical abundance 

pattern over the course of the day, increasing during the light phase and decreasing during the 

dark, changes that were independent of the study treatment provided.  

Research has also been conducted to investigate interactions of environmental circadian 

rhythm disruption and diet on the GI microbiome in murine models (Robin M. Voigt et al., 
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2014). Continuous circadian rhythm disruption was induced by reversing the 12-hour light-dark 

cycle every week for 12 weeks in mice receiving chow or high-fat/high-sugar diet. Mice in the 

misalignment group experienced intestinal hyperpermeability and disrupted circadian gene 

expression in intestinal cells. Cycle shifting resulted in significant weight gain in mice 

consuming chow, but there were no significant changes in GI microbial composition in these 

animals. There were, however, significant differences in microbial community composition 

between high-fat shifted and high-fat non-shifted groups. The high-fat shifted mice had 

decreased alpha diversity, a measure of the number of different microbial species (richness) 

within a sample and their relative abundances (evenness), and a higher ratio of 

Firmicutes/Bacteriodetes compared to the other high-fat diet mice who were not exposed to a 

light/dark cycle shift. This specific microbial ratio has been associated with obesity or ill health 

in both rodent models and humans (Robin M. Voigt et al., 2014). These results suggest that it 

may be a combination of both a high-fat diet and circadian disruption that drives microbial 

dysbiosis in mice. 

A "jet lag" model has also been utilized to explore the effects of shorter (e.g. ≤ 12 hours) 

circadian cycle disruptions. In one study, mice exposed to an 8-hour time light shift every three 

days for four weeks experienced a loss of rhythmicity in oscillating GI bacterial taxa (Thaiss et 

al., 2014). Microbiome community composition was impacted after four weeks of this jet lag 

model intervention, and dysbiosis was even more pronounced by 16 weeks. Fecal transplant of 

jet-lagged mouse microbiome into germ-free mice resulted in weight gain and glucose 

intolerance in the recipient animals (Thaiss et al., 2014). 

 Interestingly, there is evidence of bacteria containing clock genes (Kondo, 2007) and 

regulating the behavior of their host in a circadian manner (Heath-Heckman et al., 2013). For 
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example, Enterobacter aerogenes is purported to contain an endogenous circadian clock that 

synchronizes with the human host through melatonin secreted into the GI tract (Paulose, Wright, 

Patel, & Cassone, 2016). In mice, reprogramming of the hepatic circadian clock following a 

high-fat diet intervention has been attributed to microbiota-driven induction and activation of the 

transcription factor PPARγ (M. Murakami et al., 2016), and both liver and intestinal circadian 

genes are affected by unconjugated bile acids, known products of microbial metabolism 

(Govindarajan et al., 2016). The absence of a microbiota, both in germ-free and antibiotic-

induced murine models, has been shown to alter intestinal epithelial cell transcription of nuclear 

receptors and clock components such as Rev-erbα, RORα, Bmal1, Cry1, Per1, and Per2 

(Mukherji, Kobiita, Ye, & Chambon, 2013). Additionally, these microbiota-deficient mice have 

decreased insulin levels and elevated blood glucose, triglycerides, and free fatty acid 

concentrations, as a result of intestinal corticosterone overproduction (Mukherji et al., 2013). 

Circadian regulation within ileal and colonic epithelial cells was found to be completely 

disrupted in animals without a microbiota (Mukherji et al., 2013). The researchers theorized that 

cues are released from the microbiota in a continuous fashion, but toll-like receptors translate 

this information into rhythmic signals (Mukherji et al., 2013). Conversely, Leone et al. asserted 

that circadian shifts in bacterial composition result in corresponding shifts in concentration of 

bacterial metabolites such as butyrate, which peaked during fasting, and hydrogen sulfide, which 

peaked during feeding (Leone et al., 2015). Fecal butyrate was shown to cycle in mice on a 

standard, not high-fat, diet. Hydrogen sulfide exhibited cyclical behavior in the ceca of mice on a 

high-fat, but not normal, diet.  It has been previously demonstrated in vitro that these metabolites 

can directly impact the cycling of hepatic clock genes Per2 and Bmal1 (Leone et al., 2015). 

Taken together, the negative consequences observed following circadian disruption may be 
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related to inflammatory processes, due to alterations in intestinal barrier function, increased 

abundances of proinflammatory bacteria, and etiologies of circadian-disruption-related diseases 

(R.M. Voigt et al., 2016). 

There is emerging evidence that the circadian clock impacts eating time among humans 

(Thaiss et al., 2014). It has also been established that habitual diet and dietary alterations affect 

the GI microbial composition (Albenberg & Wu, 2014). Given these relationships, it is purported 

that changes to the clock and/or feeding time may impact the human gut microbiome. However, 

to date, there is only preliminary data on time-shift-induced microbiota dysbiosis in humans. It 

has been demonstrated in two subjects that jet lag induced by flying ahead eight time zones 

resulted in significant changes in microbial abundances, including a higher relative abundance of 

Firmicutes (Thaiss et al., 2014). Observed microbial changes in these jet-lagged individuals 

resolved within two weeks after landing (Thaiss et al., 2014). Fecal transplant from jet-lagged 

human subjects into germ-free mice resulted in weight gain that was 37% greater and peak blood 

glucose concentrations that were 35% higher during an oral glucose challenge compared to mice 

who received samples from the same individuals taken before jet lag occurred (Thaiss et al., 

2014). Although the sample size is small in this study, the similarities to results from animal 

trials are promising. 

 

TIME-RESTRICTED FEEDING 

TRF is defined as a specific window of time during which a person or animal can 

consume as much food as desired, followed by a subsequent period where food access is denied 

(Chaix, Zarrinpar, Miu, & Panda, 2014). A common theory for the observed benefits of TRF is 

that it mimics natural eating patterns based on circadian rhythms, the way human ancestors ate 
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before artificial lighting and high-energy foods became available 24 hours a day (Fonken et al., 

2010; Zarrinpar et al., 2016). TRF results in food being consumed during the light phase when 

the body is in the active state, and not consumed during the dark phase when the body is ready to 

rest and repair. Thus the body receives the energy it needs when it is metabolically expecting and 

prepared for it. There is evidence to suggest that there are protective effects on weight, blood 

lipids, and glucose homeostasis associated with eating only within a specific window of the day, 

e.g. TRF (Gill & Panda, 2015; Rothschild, Hoddy, Jambazian, & Varady, 2014). 

 

Health Implications of Time-Restricted Feeding 

Much of the research on TRF has been conducted in animal models, commonly through 

the use of diet-induced-obesity rodent models involving a high-fat diet intervention. When mice 

are given ad libitum access to normal chow, intake occurs almost entirely during the dark phase, 

and the mice consume an adequate amount of energy for their needs and maintain normal body 

weight (Friedman & Halaas, 1998; Kohsaka et al., 2007). However, when mice are given ad 

libitum access to high-fat chow, the tendency to eat only during the dark phase disappears 

(Hatori et al., 2012; Kohsaka et al., 2007; Zarrinpar et al., 2014). Contrary to their natural 

rhythm, the mice eat around the clock, which results in obesity and metabolic dysfunction. 

Introducing TRF in the context of a high-fat diet has been shown to reverse many detrimental 

metabolic consequences (Chaix et al., 2014; Hatori et al., 2012). Mice provided 8-hour access to 

a high-fat diet, for example, were protected against obesity, hyperinsulinemia, hepatic steatosis, 

and inflammation, despite consuming an equivalent number of calories from identical diets as the 

animals in the 24-hour access treatment arm (Hatori et al., 2012). TRF has also been linked to 

26-62% lower fat mass, 60% lower postprandial glucose concentrations, and a 93% reduction in 
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insulin resistance in mice undergoing a six month TRF intervention compared to an ad libitum 

fed control (Chaix et al., 2014). 

 In humans, TRF has been shown to result in modest weight reductions of 1-3% in 

individuals that consistently consumed food only during a 10-12h feeding window, small to 

moderate (5-31%) improvements in plasma lipid measures (LDL, HDL, TG, and total 

cholesterol) when intake is restricted to 7-8h and 10-12h windows, and improved insulin 

sensitivity and fasting blood glucose concentrations across interventions ranging from 4 to 10-

12h intake windows (Rothschild et al., 2014). Recently, a study in healthy, overweight adults 

demonstrated that decreasing eating window from approximately 14 hours per day to between 10 

and 11 hours for a 16-week period resulted in an average weight loss of 3.27 kg (Gill & Panda, 

2015). Clinical studies of TRF are summarized in Table 1.2 (Gill & Panda, 2015; Rothschild et 

al., 2014; Thaiss et al., 2014). 

 

Impact of Time-Restricted Feeding on the Microbiota 

 In addition to the connection between food consumption and bacterial abundances, 

restricting the time of food access has also been shown to affect the GI microbial community 

structure in mice. In healthy mice fed a standard chow diet ad libitum, 17% of bacterial 

operational taxonomic units (OTUs) showed cyclical behavior, with 20-83% of bacterial 

sequences at a single point in time belonging to cyclical OTUs (Zarrinpar et al., 2014). Cyclical 

behavior among bacteria may be a result of microbial adaptation to the availability of food in the 

intestine at different points in the day (Thaiss et al., 2014). Firmicutes were found to peak during 

the normal murine feeding phase (e.g. dark), and Bacteroidetes peaked during the normal fasting 

phase (e.g. light) (Zarrinpar et al., 2014). Interestingly, a reduced Bacteroidetes/Firmicutes ratio 
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is associated with increased body weight and obesity in rodent models and among humans. Fecal 

transplants in gnotobiotic mice suggest that these perturbations increase energy harvest and 

weight gain (De Vos & De Vos, 2012). Another major phylum that displayed cyclical behavior 

was Verrucomicrobia, which followed the same pattern as Bacteroidetes of peaking in relative 

abundance during the fasting phase. Interestingly, this phylum contains the species Akkermansia 

muciniphila, which has been associated with positive health outcomes such as improved glucose 

homeostasis and decreased inflammation (Dao et al., 2016; Schneeberger et al., 2015; Shin et al., 

2014). 

 Preclinical research demonstrates that feeding pattern alterations also disrupt the cyclical 

nature of OTUs. Mice fed a high-fat diet ad libitum alter their daytime fast/nighttime feed 

behaviors (Hatori et al., 2012; Kohsaka et al., 2007; Zarrinpar et al., 2014). Alongside this eating 

pattern degradation, these mice lose much of their normal OTU cycling (Zarrinpar et al., 2014). 

While TRF of a high-fat diet may be beneficial metabolically, it did not completely restore OTU 

cycling (Zarrinpar et al., 2014). This is of note as others have reported that microbiome 

alterations can persist for longer than dietary interventions and even longer than the metabolic 

consequences of dysbiosis (Thaiss, Itav, et al., 2016). TRF did, however, decrease the relative 

abundances of several presumed obesogenic microbes such as Lactobacillus and Lactococcus 

species, and increase the abundances of presumed obesity-protective bacteria such as 

Oscillibacter and other Ruminococcaceae species (Zarrinpar et al., 2014).  

Mice lacking a circadian clock, through knockout of the Per1 and Per2 genes, given ad 

libitum food access eat irregularly and have lower alpha diversity (Thaiss et al., 2014). These 

circadian clock-absent mice also showed a distinct microbial community and lacked microbial 

cycling. When placed on a TRF regime, in either the light or dark phase, the cycling of the 
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microbiota was restored. Several bacteria, including Bacteroides and Lactobacillus reuteri, 

showed cycling in these Per1, Per2 deficient animals under TRF, but the time of peaks and 

troughs was reversed in animals under TRF in the dark phase compared to TRF in the light 

phase. This further confirms the impact of feeding times on GI microbial composition within 

murine models. 

To the best of our knowledge, there are no published studies on the effect of TRF on the 

human GI microbiota. Given the preclinical findings related to relationships between the 

microbiota and TRF, it is probable that TRF interventions in humans would impact the 

microbiota. However, additional TRF research is needed to determine if this behavioral 

modification impacts the human GI microbiome and overall health.  

 

Health Implications of Eating Frequency   

 

 There is some observational evidence that differences in eating frequency are linked to 

varying health effects in human subjects (Table 1.3) (Chen, Wang, & Cheskin, 2016; Jenkins et 

al., 1989; Kant, 2014; Mekary, Giovannucci, Willett, van Dam, & Hu, 2012; Metzner, 

Lamphiear, Wheeler, & Larkin, 1977; Raynor, Goff, Poole, & Chen, 2015). Results from a study 

of nearly 2000 adults revealed an inverse relationship between adiposity and number of eating 

occasions after controlling for energy intake per kilogram of ideal body weight (Metzner et al., 

1977). Furthermore, analyses of the 1988-1992 NHANES III cohort followed through 2006 

revealed a lower hazard ratio (0.68) for cardiovascular disease-related mortality for those eating 

greater than 6 meals per day compared to eating four times per day (Chen et al., 2016). This 

association was stronger for those consuming greater than 2,500 calories per day. Another large 

epidemiological study (n=29,206) reported that men who skipped breakfast had a 21% higher 
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risk of diabetes, and men who ate one to two meals per day had a 25% higher risk compared to 

those that consumed three meals per day (Mekary et al., 2012). 

 Intervention trials focused on the impact of eating occasions on metabolic health are 

lacking. One small crossover study (n=7) investigated serum markers of metabolic health 

following two isocaloric interventions: 1) a snacking pattern consisting of 17 small meals eaten 

1-hour apart and 2) a three meal pattern (Jenkins et al., 1989). The researchers reported that 

participants in the snacking pattern had 8-15% reductions in total cholesterol, LDL, 

apolipoprotein B, and serum insulin concentrations compared to the three meal pattern. A 

potential confounding aspect of this study was that the eating time window differed between the 

two treatments—during the three-meal condition, participants consumed their treatments during 

an 11-hour window while the hourly snacking pattern involved a 17-hour eating window. As 

discussed earlier, restricting food intake to a smaller time interval is associated with 

improvements in metabolic health. Intriguingly, the snacking pattern improved metabolic health 

despite the longer eating duration. 

 Raynor et al. conducted a systematic review of human and animal studies on eating 

frequency and weight status and concluded that the relationship between eating frequency and 

weight is unclear (Raynor et al., 2015). Over 60% of the studies reviewed found no effect of 

eating frequency on consumption/intake, body weight, or BMI. Inconsistent findings related to 

eating frequency and body weight may be due to reporting bias. It has been suggested that 

underreporting of food and eating occasions in adults with overweight and obesity may result in 

an erroneous connection between fewer meals and higher weight (Bellisle, McDevitt, & Prentice, 

1997; Kant, 2014). A review by Kant of four prospective cohort studies and 12 controlled trials 

of eating frequency and body weight revealed mixed results among the cohort studies with one 
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reporting a benefit, two reporting a detriment, and one showing no effect; the majority of the 

randomized controlled trials found no relationship between eating frequency and weight loss. 

Only one study reported a significant difference (loss of 0.6kg) in subjects consuming one meal 

per day over eight weeks compared to three meals per day over eight weeks (gain of 0.8kg) 

(Kant, 2014). 

The connection between the number of eating occasions and health is not fully 

understood. Although beneficial clinical results have been reported in the areas of adiposity, 

insulin, blood lipids, and risk of diabetes and cardiovascular-related death, effects on weight 

status are less clear. Plausible mechanisms underlying the inverse relationships between more 

frequent eating occasions and lower glucose, insulin, total cholesterol, and LDL cholesterol 

concentrations include a lower glycemic load as food is spread throughout the day, slower 

stomach emptying from smaller meals leading to a lower need for insulin, decreased insulin 

leading to decreased stimulation of enzymes for cholesterol synthesis, and increased LDL 

receptors because of the lower circulating cholesterol (Palmer, Capra, & Baines, 2009). 

 

Impact of Eating Frequency on the Microbiota 

 Although there is considerable research on eating frequency and health, the impact of 

eating frequency on the GI microbiome has only recently been explored. In horses, the cecal 

microbiota is impacted by feeding frequency, with higher frequency being associated with 

increased relative abundance of the genus YRC22 and decreased relative abundances of 

Prevotella, Lactobacillus, Streptococcus, Coprococcus, and Phascolarctobacterium (Venable et 

al., 2017). Additional research is necessary to determine if changes in eating patterns affect taxa 

associated with glucose response, lipid metabolism, and adiposity in humans. 



17 

 

 Independent of eating frequency, certain bacterial taxa are associated with improved 

glucose, lipids, and adiposity. For example, Akkermansia muciniphila, a mucin-degrading 

intestinal bacterium has been associated with improved glucose homeostasis (Shin et al., 2014), 

and inversely correlated with inflammation in animal models (Schneeberger et al., 2015). In 

humans, an increased abundance of Akkermansia was found to inversely relate to fasting 

glucose, waist-to-hip ratio, and subcutaneous adipocyte diameter (Dao et al., 2016). 

 

LIMITATIONS 

This review is limited by the novelty of the field it explores. Recent advances in 

microbiome investigation technologies have only lately made this research possible. 

Additionally, performing circadian rhythm or food timing interventions on humans can be 

challenging. Self-reported behaviors are subject to bias and error, and in-house experiments are 

costly and difficult to execute. Furthermore, human studies involving eating pattern alterations, 

e.g. time-restricted feeding, must be carefully monitored to assess and control energy intake 

because humans generally decrease energy intake when given a reduced eating window, while 

animals will not.  

Limitations of rodent models in microbiota research include the anatomy of the GI tract 

as well as coprophagy. Rodents are cecal fermenters, meaning most of the bacterial fermentation 

takes place in the cecum. In humans, most bacterial fermentation occurs in the large intestine. 

Additionally, the distribution of goblet (mucin-producing) cells is consistent throughout the 

human colon but decreases along the length of the mouse colon, which could affect the 

distribution of mucin-degrading bacteria (Nguyen et al., 2015). Furthermore, rodents and mice 

practice coprophagy, or consuming their fecal material as well as fecal material of other animals. 
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Lastly, rodent studies frequently examine the bacterial content of the cecum, in addition to fecal 

samples, while human studies employ fecal samples to characterize the microbiota.   

In addition to differences in physiology, the use of undefined animal diets limits 

comparisons among rodent studies as well as translation to clinical populations. Chow varies in 

composition and sources of nutrients due to price and availability of ingredients while refined 

diets, such as the AIN diets, have defined nutrient composition. The high-fat diets utilized in 

animal research are infrequently representative of the proportion and composition of fat in 

human populations. High-fat chow typically contains up to 60% of total energy from fat with 

24% of total energy from saturated fat. Alternatively, NHANES data from 2009-2012 show a 

mean intake of 33% total energy from fat and 10.6% of total energy from saturated fat among 

men and women over 20 years old (National Center for Health Statistics, 2016). 

Despite these limitations, the murine model is still a powerful tool in microbiota research. 

Mice have a different core microbiome than humans, but many of the species are similar and in 

relatively similar abundances. Interventions also tend to show similar shifts in the microbiota of 

both mice and humans for many conditions, although it may take longer for diet to affect shifts in 

humans than in mice (Nguyen et al., 2015). Colonization of germ-free mice with fecal 

transplants from humans overcomes some of these challenges, but the cross-talk between host 

and symbiont is not identical. Overall, the mouse is a valuable model allowing isolation of 

variables that would be impossible in humans. While bearing in mind the drawbacks to the 

translation of results, we can still draw helpful conclusions from these studies. 

 

FUTURE DIRECTIONS AND CONCLUSIONS 
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Disrupted circadian rhythm research suggests a reciprocal relationship between the 

microbiome and the internal clock. Animal evidence supporting the detrimental health effects of 

disrupting the normal circadian rhythm is robust (Arble et al., 2009; Thaiss et al., 2014; 

Zarrinpar et al., 2016). Human evidence is preliminary but promising. In both models, the 

microbiome has been suggested as a potential mediator between circadian misalignment and 

negative health consequences. Further work is needed with interventions rather than 

observational studies to establish a causal link between misaligned rhythms and the microbiome, 

investigating not only microbial composition but also the functional capacity of the microbiome 

and/or metabolomics. 

 Results from TRF studies indicate that restricting the time of food access may be 

protective against weight gain, insulin resistance, and dyslipidemia (Chaix et al., 2014; Hatori et 

al., 2012). These results also indicate that there is a connection between the microbiome and 

metabolic health as results demonstrate an absence of diet-induced obesity in germ-free mice and 

a lack of microbial cycling in mice without an internal clock. To date, evidence from human 

studies has not been robust, including small sample sizes and methodological limitations inherent 

to human subjects research, such as the inability to conduct germ-free experimentation.   

 There is extensive research on the connection between eating frequency and health, but 

almost no published research on the connection between eating frequency and the microbiome. 

Additional adequately-powered, well-controlled randomized trials investigating the impact of 

eating frequencies on the GI microbiome as a primary outcome are necessary to translate pre-

clinical research findings to human populations. In general, additional well-designed, 

randomized controlled trials of eating behaviors such as circadian rhythm alignment, TRF, and 

eating frequency with the microbiome as a primary outcome will vastly increase our knowledge 
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and strengthen the evidence for using “when we eat” as a novel intervention to prevent or treat 

disease through GI microbiota manipulation.  
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TABLES AND FIGURES 

 

Figure 1.1: Connections between the internal clock, eating patterns, the microbiome, and health. 
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Table 1.1: Summary of Human Studies of Misaligned Circadian Rhythms 

 

Relationship Reference 

SNPs of Clock gene →  ↑ or ↓ risk of metabolic syndrome Zarrinpar et al. (2016)  

Shift work →  ↑ risk of obesity and metabolic syndrome Wang et al. (2014)  

Shift work → ↓ daily energy expenditure  McHill et al. (2014)  

Shift work →     ↓  leptin 

Scheer et al. (2009)  

                           ↑ insulin 

                           ↑ glucose 

                           ↑ mean arterial pressure 

Sleep restriction → ↑ BMI, ↓ alertness, no change in microbiota Zhang et al. (2017)  

Jet lag → ↑  relative abundance of Firmicutes →  ↑ weight gain 

and blood glucose in mice receiving transplants from these 

humans 

Thaiss et al. (2014)  
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Figure 1.2: Integration of circadian homeostasis with eating patterns and the microbiota 
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Table 1.2: Summary of Human Studies of Time-Restricted Feeding 

 

Relationship Reference 

4 hr feeding window →  ↑ insulin sensitivity Rothschild et al. (2014)  

7-8 hr feeding window →        ↑ insulin sensitivity 

Rothschild et al. (2014)  

                                                  ↑ HDL cholesterol 

                                                  ↓ LDL cholesterol 

                                                  ↓ triglycerides 

                                                  ↓ total cholesterol 

10-12 hr feeding window  →        ↓  weight 

Rothschild et al. (2014)  

                                                       ↑ insulin sensitivity 

                                                       ↑ HDL cholesterol 

                                                       ↓ LDL cholesterol 

                                                       ↓ triglycerides 

                                                       ↓ total cholesterol          

10-11 hr window vs. 14 hr window → ↓ weight Gill et al. (2015)  

Human microbiome displays cyclical behavior, likely as a result 

of feeding times 
Thaiss et al. (2014)  
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Table 1.3: Summary of Human Studies of Eating Frequency 

 

Relationship Reference 

↑ eating frequency  →  ↓ adiposity Metzner et al. (1977)  

> 6 meals/day vs. 4 meals/day  →  ↓  CVD mortality Chen et al. (2016)  

No breakfast  → ↑ Type 2 Diabetes Mellitus risk Mekary et al. (2012)  

1-2 meals/day vs. 3 meals/day  → ↑  Type 2 Diabetes 

Mellitus risk 
Mekary et al. (2012)  

17 meals/day vs. 3 meals/day  →          ↓  total cholesterol 

Jenkins et al. (1989)  
                                                               ↓  LDL cholesterol 

                                                               ↓  apolipoprotein B 

                                                               ↓  insulin 

1 meal/day vs. 3 meals/day  → ↑  weight loss Kant (2014)  

Vast majority of weight maintenance research →  no 

relationship Raynor et al. (2015)  
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CHAPTER 2: TIME OF DAY AND EATING BEHAVIORS ARE ASSOCIATED WITH 

THE COMPOSITION AND FUNCTION OF THE HUMAN GASTROINTESTINAL 

MICROBIOTA2 

ABSTRACT 

Background: Preclinical research has demonstrated that the gastrointestinal (GI) microbiota 

exhibits circadian rhythms and that timing of food consumption can impact the composition and 

function of gut microbes. However, there is a dearth of knowledge on these relationships in 

humans.   

Objective: We aimed to determine if human GI microbes and bacterial metabolites were 

associated with time of day or behavioral factors, including eating frequency, percent of energy 

consumed early in the day, and overnight fast duration.  

Design: We analyzed 77 fecal samples collected from 28 healthy adult men and women. Fecal 

DNA was extracted and sequenced to determine the relative abundances of bacterial operational 

taxonomic units (OTUs). Gas chromatography mass spectroscopy was utilized to assess short-

chain fatty acid concentrations. Eating frequency, percentage of energy consumed before 2 pm, 

and overnight fast duration were determined from dietary records. Data were analyzed by linear 

mixed models or generalized linear mixed models, which controlled for fiber intake, sex, age, 

BMI, and repeated sampling within each participant. Each OTU and metabolite was tested as the 

outcome in a separate model. 

 

2. The final, definitive version of this paper has been published in the American Journal of 

Clinical Nutrition, 106, 5, November 2017 by the American Society for Nutrition. Free Access 

article. © 2017 The American Society for Nutrition. Kaczmarek JL, Musaad SMA, Holscher 

HD. Time of day and eating behaviors are associated with the composition and function of the 

human gastrointestinal microbiota. Amer J Clin Nutr. 2017;106(5):1220-1231. 

doi:10.3945/ajcn.117.156380. 
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Results: Acetate, propionate, and butyrate concentrations decreased throughout the day 

(P=0.006, 0.04, 0.002, respectively). Thirty-five percent of bacterial OTUs were associated with 

time. Additionally, relationships were observed between gut microbes and eating behaviors 

including eating frequency, early energy consumption, and overnight fast duration.  

Conclusions: These results indicate that the human GI microbiota composition and function 

varies throughout the day, which may be related to the circadian biology of the human body, the 

microbial community itself, or human eating behaviors. Behavioral factors, including timing of 

eating and overnight fast duration, were also predictive of bacterial abundances. Longitudinal 

intervention studies are needed to determine causality of these biological and behavioral 

relationships.  

 

INTRODUCTION 

The composition and function of the human gastrointestinal (GI) microbiota is 

increasingly linked to metabolic health (Albenberg & Wu, 2014; De Vos & De Vos, 2012), and 

there is keen interest in developing evidence-based strategies to modulate the GI microbiota for 

health benefit. Clinical research findings indicate that diet and consumption of fibers and 

prebiotics impact the gut microbiota (David et al., 2014; Hannah D. Holscher, 2017; Wu et al., 

2011). Intriguingly, preclinical research suggests that GI microbes are influenced by circadian 

rhythms (Kaczmarek, Thompson, & Holscher, 2017; Kondo, 2007; Paulose et al., 2016). 

Circadian rhythms are cycles of gene expression, metabolism, and behaviors created by an 

internal clock to maximize an organism’s metabolic efficiency (Rutter, Reick, & McKnight, 

2002). The underlying transcriptional/translational feedback loops will proceed without 
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environmental input (e.g., pure biology), but they can also be affected by environmental factors 

such as light and food. 

Cyclical variations in GI bacteria are likely related to both biological circadian factors, as 

shown in the absence of enteral feeding (Leone et al., 2015), and to eating behaviors that result in 

cyclical abundance of food in the intestines (Thaiss et al., 2014; Zarrinpar et al., 2014). 

Furthermore, there may be compounding effects of diet and circadian rhythms on the GI 

microbiota, gut barrier function, and health (Robin M. Voigt et al., 2014, 2016). However, at 

present, much of the literature is based on preclinical findings. Indeed, there is a dearth of 

knowledge on these relationships in humans.  

Robust circadian rhythms can be developed by aligning phase and duration of feeding 

and fasting patterns with the environmental light-dark cycle. This entrainment means that 

peripheral clocks, which are affected by the presence of food, and the central clock, which is 

affected by the presence of light, are in sync. Importantly, synchronized circadian rhythms are 

associated with human health (Gill & Panda, 2015; F. Wang et al., 2014). Behavioral patterns, 

such as time-restricted feeding, and eating frequency may also have health benefits in humans—

time restricted feeding positively affects body weight, blood lipids, and glucose homeostasis 

(Gill & Panda, 2015; Rothschild et al., 2014), and greater eating frequency may be associated 

with improvements in metabolic health, although conflicting evidence exists (Chen et al., 2016; 

Jenkins et al., 1989; Metzner et al., 1977). Consuming a larger proportion of energy early in the 

day compliments human circadian rhythms; for example, glucose tolerance and diet-induced 

thermogenesis are higher in the morning than evening (Jarrett, Baker, Keen, & Oakley, 1972; 

Romon, Edme, Boulenguez, Lescroart, & Frimat, 1993). 
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The aim of this study was to examine two closely intertwined elements: time, as it relates 

to biological circadian rhythms, and behavior, as it relates to time of eating, on the human GI 

microbiota composition and function. Given the rhythmic nature of the GI microbiota in 

preclinical studies, we hypothesized that human GI microbial abundances and metabolites vary 

throughout the day and are impacted by behavioral patterns of eating timing. 

 

SUBJECTS AND METHODS 

Participants 

The study described herein was a secondary analysis of samples and data collected from 

the control period (0 g supplemental fiber) of a previously completed trial of agave inulin 

consumption in healthy adults (n=28; females = 14) (H. D. Holscher, Bauer, et al., 2015). The 

inclusion criteria for the primary study were that participants 1) be between the ages of 20 and 40 

years; 2) have BMI > 18.5 kg/m2  and < 29.5 kg/m2; 3) have no current or historical metabolic or 

GI diseases; 4) avoid medications known to affect GI function; 5) had not taken antibiotics for at 

least the past 8 weeks; 6) limit alcohol consumption to < 2 servings/d (e.g., < 28 g ethanol/d); 7) 

avoid taking prebiotics or probiotics; 8) consume a moderate fiber diet, consistent with US 

average of 12-19 g/d; 9) maintain consistent vitamin/mineral supplementation as at baseline; 10) 

maintain current level of physical activity; 11) record detailed dietary and stool information 

daily; and 12) meet with study personnel weekly. Female participants were excluded if they had 

menstrual cycles < 27 d or > 29 d in length, or if they were pregnant or lactating. Before study 

initiation, all participants voluntarily signed a written informed consent as approved by the 

University of Illinois Institutional Review Board. This study was conducted from January 2013 

to May 2013 and was registered with Clinicaltrials.gov as NCT01925560.   
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Fecal samples 

In the primary study protocol, participants consumed 0, 5.0, or 7.5 g agave inulin/d in a 

randomized order for 21 d  with 7-d washouts between periods. They provided up to three fecal 

samples, each within 15 min of defecation, during days 16–20 of each of the three periods 

(maximum 9 total samples per participant). Herein, the fecal samples from the 0 g supplemental 

fiber control period (maximum 3 total fecal samples per participant) were utilized for this 

secondary analysis, which included 77 total fecal samples from 28 study participants. Additional 

analyses were conducted on the data from all three treatment periods (0, 5.0, or 7.5 g agave 

inulin/d) to determine if there was an interaction of time and fiber treatment on the composition 

and function of the gut microbiota; those results are available as Appendix A: Supplemental 

Tables. Fecal samples were transported to the laboratory with Commode Specimen Collection 

Systems (Sage Products, Cary, IL) on ice packs within coolers. Upon arrival, time of defecation 

was confirmed to be less than 15 minutes from delivery to the laboratory, and the time that the 

sample arrived for processing was recorded by a laboratory technician. Samples were manually 

homogenized, a pH measurement was taken (Denver Instrument, Bohemia, NY), and then 

samples were aliquoted for individual assays.  

Short-chain fatty acids 

The fecal aliquot for SCFAs (acetate, propionate, butyrate) was immediately acidified 

with 2N-HCl (10% wt:vol) and frozen at −20°C until analysis. A separate aliquot was utilized for 

dry matter measurement according to the methods of the Association of Official Analytical 

Chemists (1984) (Association of Official Analytical Chemists, 1984). Fecal SCFA 

concentrations were analyzed by gas chromatography mass spectroscopy as previously described 

and normalized on a dry matter basis (Vester Boler et al., 2011).  



31 

 

Microbial analysis 

The samples for microbial analysis were flash-frozen in liquid nitrogen and stored at 

−80°C until analysis. Fecal bacterial DNA was extracted according to the manufacturer’s 

instructions by using the PowerLyzer PowerSoil DNA Isolation Kit (MO BIO Laboratories, Inc., 

Carlsbad, CA). After extraction, the V4 region of the 16S bacterial rRNA gene was amplified 

using a Fluidigm Access Array system prior to high-throughput sequencing on an Illumina 

HiSeq. Sequencing was performed at the W. M.  Keck Center for Biotechnology at the 

University of Illinois. High-quality (quality value > 25) data derived from the sequencing process 

were analyzed with QIIME 1.8.0 and 1.9.1 (Caporaso et al., 2010). Briefly, sequences were 

clustered into operational taxonomic units (OTUs) by using closed-reference OTU picking 

against the Greengenes 13_8 reference OTU database (97% similarity threshold). After quality 

filtering, alpha and beta diversity were calculated at an even sampling depth of 63,467 sequences 

per sample (Bokulich et al., 2012; Lozupone, Lladser, Knights, Stombaugh, & Knight, 2011).  

Dietary data 

Study participants were educated on dietary recording methods by a registered dietitian 

prior to study initiation. Dietary intake was recorded in a 7-day diet record during the study, and 

participants met with dietetic interns weekly to review their dietary records and clarify 

ambiguities. Dietary record data were entered and analyzed using Nutrition Data Systems for 

Research software, 2015 edition (University of Minnesota, Minneapolis, MN). The number of 

eating occasions on the day before fecal sample collection was calculated by counting every food 

or beverage event reported by the participants in the 24 hour calendar day that contained at least 

50 kcal (K. Murakami & Livingstone, 2015). Overnight fast duration was calculated as the time 

from the last kilocalorie consumption the previous night to the time of the first kilocalorie 
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consumption on the day of sample collection. Water and other non-caloric beverages were not 

considered as breaking the fast, but occasions of low energy (<50 kcal) consumption that would 

not be counted in the eating occasions calculation were considered here. Early energy 

consumption was calculated as the percent of total kilocalories consumed at or before 14:00 on 

the day before fecal sample collection. The time of 14:00 was chosen because it encompassed 

what would be considered “lunch” by almost all of the participants. 

Statistics 

Statistical analysis was performed in SAS 9.4 (SAS Institute, Inc., Cary, NC). A 

probability of P < 0.05 was accepted as statistically significant and was not adjusted for multiple 

testing since this is a preliminary study (Bender & Lange, 2001). In order to be as comprehensive 

as possible, genus-level OTUs that were present in at least 50% of the fecal samples were 

analyzed. Although the majority of preclinical literature in this field utilizes the JTK_cycle 

algorithm to detect cyclical features (Hughes, Hogenesch, & Kornacker, 2010), design 

differences between this clinical study and the preclinical studies necessitated different statistical 

methods. Firstly, these samples were only collected during the waking hours, and thus use of an 

algorithm that is designed for 24-hour data collection would not provide robust results. Secondly, 

the human GI microbiota has been shown to be impacted by age (Yatsunenko et al., 2012), sex 

(Dominianni et al., 2015), BMI (Turnbaugh et al., 2006, 2009), and dietary fiber intake (Hannah 

D. Holscher, 2017). This warranted statistical control of these variables within the models to 

allow for detection of associations beyond these variables. Before utilizing the statistical 

modeling described below, the methodology was confirmed to successfully replicate the majority 

of the findings from a preclinical circadian study of the murine cecal microbiota (Zarrinpar et al., 

2014). 
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 Mixed modeling was utilized to model normally (PROC MIXED) and non-normally 

(PROC GLIMMIX) distributed outcomes including person as a repeated effect. Each bacterial 

abundance and bacterial metabolite (SCFA) outcome was tested separately. SCFAs and bacterial 

genera distributions were examined in order to specify the best fitting model. Model fit was 

assessed using the ratio of the Chi-Square to its degrees of freedom. This ratio was used to assess 

residual variability that is not explained by the model (Schabenberger, 2005). Values <2 were 

deemed to indicate appropriate model fit (Hooper, Coughlan, & Mullen, 2008).  

Three statistical models were utilized for data analysis. The first model was designed to 

examine the association of sample time (considered as a biological factor) with bacterial OTU 

relative abundances and SCFA concentrations. This model controlled for sex, age, BMI, and 

total dietary fiber per 1000 kcal and considered the within-subject correlation. The second model 

examined behavioral factors including eating frequency, overnight fast duration, and percent 

energy consumed before 14:00, while controlling for the same covariates as model one and 

accounting for the within-subject correlation. The third, full model included the biological 

variable (time) and the behavioral variables (eating frequency, overnight fast, and percent energy 

before 14:00) together as well as the covariates (sex, age, BMI, and fiber) and the within-subject 

correlation, to determine which factors contributed most strongly to existing relationships, and 

whether the inclusion of these factors in the same model would strengthen or weaken these 

relationships. 

For the results presented, the estimate (beta coefficient) is the percent change in the 

predicted value of the outcome variable for each one-unit change in the predictor variable, if all 

the other predictors remain constant. It is important to note when interpreting these estimates that 

“one unit” is defined differently for each predictor. One unit of time or overnight fast duration is 
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one hour. One unit of eating frequency is one eating occasion. For energy consumption prior to 

14:00, one unit is 1% of energy.  

RESULTS 

Fecal samples were collected between 7:32 A.M. and 10:00 P.M., with a mean time of 

11:36 A.M. Additional descriptive data on the participant characteristics and the distributions of 

behavioral variables are presented in Table 2.1. In model 1, the biological model, there were 

significant relationships between time of day and relative abundance of bacteria, as well as time 

of day and bacterial metabolites (Table 2.2). Acetate, propionate, and butyrate concentrations 

decreased with clock time, e.g. the concentrations of these bacterial fermentative end products 

decreased throughout the day (Figure 2.1). Among microbes, the relative abundances of 

Roseburia, Veillonella, Haemophilus, and an unspecified genus within the S24-7 family 

decreased with clock time. Alternatively, the relative abundances of Adlercreutzia, Eggerthella, 

Anaerotruncus, Oscillospira, Ruminococcus, Holdemania, Desulfovibrio, Escherichia, and an 

unspecified genus within the Enterobacteriaceae family increased with clock time. Significant 

results are also presented in Figure 2.2. Collectively, the genera that were associated with time 

represent 24% of the OTUs examined for a total of 7% of the bacterial community composition.  

In the behavioral model (Table 2.3), the relative abundance of Coprobacillus increased 

with greater eating frequency. The relative abundances of Actinomyces, Eggerthella, 

Anaerotruncus, Dialister, Veillonella, and unspecified genera within the Barnesiellaceae and 

Ruminococcaceae families decreased with greater eating frequency. Oscillospira, Megamonas, 

Coprobacillus, Holdemania, and an unspecified genus within the Erysipelotrichaceae family had 

higher relative abundance as a greater percentage of daily energy was consumed prior to 14:00. 

Alternatively, Turicibacter, Coprococcus, Lachnospira, Roseburia, Veillonella, and 
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Haemophilus had lower relative abundance as a greater percentage of energy was consumed 

prior to 14:00. Turicibacter decreased with longer overnight fast duration. There were no 

significant behavioral relationships observed with SCFAs in this model.  

In the full model, which included both time and behavioral factors, most of the results 

from the preceding models remained, and new relationships emerged (Table 2.4). Specifically, 

new associations included an increase in the relative abundances of Bifidobacterium, 

Butyricimonas, Sutterella, Bilophila, and an unspecified genus within the Rikenellaceae family 

with clock time, and a reduction of the relative abundances of Collinsella, Streptococcus, and 

Eubacterium with clock time. Roseburia (P=0.17), the unspecified genus within S24-7 (P=0.07), 

and the unspecified Enterobacteriaceae genus (P=0.16) were no longer significantly related to 

clock time when eating behaviors were included in the model. Overall, in this full model, 35% of 

OTUs, or 12% of the total bacterial community composition, were associated with time. 

Behavioral relationships were similar in the full model. All eating frequency relationships 

remained significant except the unspecified Barnesiellaceae genus, which had decreased with 

higher eating frequency in the behavioral model, only tended (P=0.05) to be related to eating 

frequency when time was included in the model. All early energy consumption relationships 

remained except that the positive relationship between Roseburia and greater energy consumed 

before 14:00 became a trend (P=0.06) when time was included in the model. New relationships 

emerged with overnight fast duration when time was also included in the model, whereby the 

relative abundance of Coprococcus increased with longer overnight fast duration, while 

Holdemania decreased with longer overnight fast duration. Finally, propionate was present at 

higher concentrations with longer overnight fast duration. 

 



36 

 

DISCUSSION 

The relationships between the human GI microbiota and health and disease make it a 

promising target for lifestyle interventions. In parallel, research has demonstrated the importance 

of circadian rhythms to normal metabolic homeostasis (Hastings et al., 2003), and the presence 

of these rhythms in the bacterial community of the murine GI tract (Kaczmarek et al., 2017; 

Zarrinpar et al., 2014). Herein, we report for the first time a connection between time, eating 

behaviors, and human GI microbiota composition and function. 

Our data reveal that the bacterial fermentative end-products, acetate, propionate, and 

butyrate, decrease over the course of the day. Butyrate and propionate have previously been 

shown to behave rhythmically in murine models (Leone et al., 2015). In our study, butyrate 

concentrations decreased by 2-6 µmol/g per hour, which represents a 5-12% decrease per hour. 

Leone et al. reported changes of 58 µmol/g per hour, which represents a change of 22% per hour 

in the ceca of mice. The larger effect in mice compared to humans may be related to sample 

collection and analysis methods. For example, the murine study utilized cecal contents 

immediately harvested from euthanized mice, while our study utilized fecal samples collected 

from humans within 15 minutes of passing and concentrations were reported on a dry matter 

basis.  

We also report that certain members of the human GI microbiota changed with time. 

Eggerthella, Anaerotruncus, and Desulfovibrio have the largest positive estimates, increasing by 

more than 20% of their relative abundances every hour throughout the day. However, these are 

low abundance bacteria, together constituting less than 1% of the microbiota community. The 

two most abundant genera associated with time were Roseburia and Ruminococcus, which 

represent 2% and 3% of the bacterial community in our participants, respectively. Changes in 
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microbial abundances and metabolites are likely related. We reported a relationship between 

Desulfovibrio and time. Although Desulfovibrio has not previously been shown to cycle, 

hydrogen sulfide, a metabolite produced by Desulfovibrio, displayed cyclical fluctuations in 

mice (Leone et al., 2015). In addition, we report that Roseburia and Eubacterium decreased 

throughout the day. Both genera produce butyrate (Louis & Flint, 2009), and our results likewise 

revealed that butyrate concentration decreased throughout the day.  

In one murine study, 17% of OTUs were cyclical, with 20-83% of reads at any one time 

belonging to OTUs that cycled (Zarrinpar et al., 2014). Genera found to cycle in murine models, 

which were also present at detectable levels in the human participants in our study, include 

Bacteroides (Liang, Bushman, & FitzGerald, 2015; Thaiss et al., 2014), Lactococcus (Leone et 

al., 2015; Zarrinpar et al., 2014), Lactobacillus (Thaiss et al., 2014; Zarrinpar et al., 2014), 

Oscillospira (Leone et al., 2015; Liang et al., 2015), Ruminococcus (Leone et al., 2015), S24-7 

(Liang et al., 2015), Turicibacter (Liang et al., 2015), Sutterella (Liang et al., 2015), 

Akkermansia (Zarrinpar et al., 2014), and Bifidobacterium (Zarrinpar et al., 2014). Additionally, 

total bacterial load, number of mucosal-associated bacteria, and Firmicutes peak during feeding, 

while the other major phyla – Actinobacteria, Bacteroidetes, Proteobacteria and Verrucomicrobia 

– peak during fasting in murine models (Liang et al., 2015; Thaiss, Levy, et al., 2016; Zarrinpar 

et al., 2014). In the only human microbiota-focused circadian study to date, which included two 

individuals, oscillations were found in 10% of OTUs, including Parabacteroides, Lachnospira, 

and Bulleida (Thaiss et al., 2014). Herein, we reported that up to 12% of sequences in the human 

GI microbiota belong to an OTU that was associated with time. Of these, Bifidobacterium, S24-

7, Oscillospira, Ruminococcus, and Sutterella replicated preclinical findings (Leone et al., 2015; 

Liang et al., 2015; Zarrinpar et al., 2014). Similar to previous clinical findings, we reported that 
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Lachnospira tended (P=0.07) to be associated with time and was related to early energy 

consumption in our full model, which suggests that both biological and behavioral factors 

influence the cyclical behaviors of this microbe in the human GI tract. Parabacteroides and 

Bulleida were present in < 50% of participants, and thus were not assessed in the current study. 

Thus, our results that human GI bacteria fluctuate in abundance throughout the day are supported 

by changes in metabolite concentrations throughout the day, preclinical findings (Leone et al., 

2015; Liang et al., 2015; Zarrinpar et al., 2014), and the results reported in a small (n=2) human 

study (Thaiss et al., 2014). 

Associations between time and bacterial abundances may be related to specific bacterial 

traits, such as bile resistance. For example, Oscillospira and Bilophila, which increased 

throughout the day in our cohort, are bile tolerant, and thus may have a competitive advantage 

during waking hours, when more bile is secreted due to food ingestion (Devkota et al., 2012; 

Konikoff & Gophna, 2016). Alternatively, oscillations may be related to factors independent of 

the presence of food in the GI tract—the murine microbiota has shown circadian variation even 

when parenteral nutrition is the only source of nutrition (Leone et al., 2015). Other factors 

independent of food intake could include hormonal signals from the host. For example, 

Enterobacter aerogenes is impacted by melatonin, a circadian hormone (Paulose et al., 2016).  

Few studies exist on behavioral elements of eating timing and the GI microbiota—one 

study in horses reported that increased meal frequency was associated with increased relative 

abundance of the genus YRC22, within the family Paraprevotellaceae, and decreased relative 

abundances of Prevotella, Lactobacillus, Streptococcus, Coprococcus, and 

Phascolarctobacterium (Venable et al., 2017). Although we also reported associations with 

eating frequency amongst phylogenetically diverse microbes, none of the microbes that were 
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associated with feeding frequency in equine cecum were the same as those in the human GI tract. 

With regard to overnight fast duration, we reported that propionate concentrations and 

Coprococcus, a microbe that produces propionate (Reichardt et al., 2014), increased with 

increasing overnight fast duration. Contrary to previous literature, Akkermansia and overnight 

fast duration were not related (Remely et al., 2015; Sonoyama et al., 2009). Two possible 

explanations for this discrepancy include, 1) as a mucosa-associated genus, Akkermansia 

measurements in stool (humans) may vary from that in the cecum (murine) (Reunanen et al., 

2015; Vandeputte et al., 2016), and 2) the type and/or amount of fiber in the diet of the study 

participants may have been adequate to keep the abundance of Akkermansia stable throughout 

the study (Desai et al., 2016).  

This study was limited by the fact that it was secondary data analysis and relied on self-

report dietary records for behavioral factors. Intervention studies that modify biological and 

behavioral factors and assess the GI microbiota as a primary outcome are necessary to determine 

causality. As with any observational study, we must also consider the possibility that the 

directionality of the associations is reversed. For example, microbes may signal via the gut-brain 

axis and influence appetite in a way that drives certain eating behaviors, rather than the behaviors 

themselves impacting the microbial composition. Indeed, microbial metabolites have been shown 

to impact hyperphagia in rodents (Frost et al., 2014; Perry et al., 2016), and propionate reduced 

appetite in overweight adults (Chambers et al., 2015). Furthermore, our data cover half of the 

circadian cycle, specifically the awake/feeding phase. Assessments over a 24-hour period are 

needed to establish that human GI microbes and metabolites that increase during the day 

demonstrate circadian rhythms, e.g. correspondingly decreasing at night.  
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Despite some limitations, the study has several strengths. It is the first of its kind to 

examine the biological and behavioral influences of time on the human GI microbiota, and many 

of our findings replicate and extend those reported in preclinical studies. We utilized a robust 

statistical model that controlled for many of the factors known to be associated with the GI 

microbiota (e.g. age (Yatsunenko et al., 2012), BMI (Turnbaugh et al., 2006), sex (Dominianni et 

al., 2015), and dietary fiber intake (Hannah D. Holscher, 2017).) Through the use of models that 

independently assessed biology and behavior, followed by a combination of both time and 

behavioral factors, we are able to discern how the variables may be interrelated. Interestingly, 

several bacteria associated with time were also affected by timing of eating, underscoring the 

potential relevance of how eating behavior may modulate circadian variation in the human GI 

microbiome. 

The relationships reported between the human gut microbiota and time of day highlights 

several important points in the expanding area of microbiome research. Firstly, associations 

between time and human GI microbiota are modest compared to preclinical studies. However, as 

these relationships may be of relevance, time of defecation should be recorded, and considered as 

a potential covariate in analyses. Although this study did not examine health outcomes, the 

connections between the GI microbiota and host health are too well documented to ignore. Thus, 

circadian variation within the microbiome, and the potential for eating behaviors to modify this 

variation, should be further studied as an avenue for health interventions. Future directions 

include the need for adequately powered, randomized controlled trials of timing interventions 

with the GI microbiota as a primary outcome. These trials should employ interventions of 

various eating window lengths, and with varying eating frequencies, preferably with participants 

serving as their own controls to minimize inter-individual variation.   
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TABLES AND FIGURES 

Table 2.1: Descriptive Characteristics of Sample 

 

1 n = 28 participants (14 women) and 77 fecal samples. 
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Table 2.2: Associations of Metabolite Concentrations and Bacterial Operational Taxonomic Unit 

Relative Abundances with Time1 
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Table 2.2 (continued) 1 

 
1 Results of linear mixed-model analysis were adjusted for repeated sampling, age, BMI, sex, and 

normalized total fiber intake. Estimates represent the percentage change in the predicted value of 

the outcome variable for each 1-unit change in time (hours) if all of the other predictors remain 

constant. This analysis represents a linear relation between microbes or metabolites and time 

during the awake/feeding phase of the circadian cycle. A negative estimate indicates that the 

highest values were seen earlier and decreased throughout the day. A positive estimate indicates 

that the values increased throughout the day and were highest later. *Significant (P <0.05). OTU, 

operational taxonomic unit. 

 



45 

 

 

 
 

 

Figure 2.1: Associations of short-chain fatty acids with time in the biological model. Results of 

linear mixed model analysis adjusted for age, BMI, sex, normalized total fiber intake, and 

repeated sampling. Estimate represents the percent change in the predicted value of the outcome 

variable for each one-unit change in time (hours), if all the other predictors remain constant. 

Black box indicates the estimate; gray area indicates the 95% confidence interval. A negative 

estimate indicates that the highest concentrations were seen earlier, and decreased throughout the 

day. * <0.05, ** <0.01; BMI, body mass index. 
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Figure 2.2: Associations of bacterial operational taxonomic units with time in the biological model. Results of linear mixed model 

analysis adjusted for age, BMI, sex, normalized total fiber intake, and repeated sampling. Estimate represents the percent change in the 

predicted value of the outcome variable for each one-unit change in time (hours), if all the other predictors remain constant. Black box 

indicates the estimate; gray area indicates the 95% confidence interval. A negative estimate indicates that the highest relative 

abundances of the bacteria were seen earlier, and decreased throughout the day. A positive estimate indicates that the relative 

abundances of the respective bacteria increased throughout the day, and were highest later. A) OTUs that significantly decreased 

throughout the day. B) OTUs that significantly increased throughout the day. * <0.05, ** <0.01; BMI, body mass index; OTU, 

operational taxonomic unit.  
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Table 2.3: Associations of Metabolite Concentrations and Bacterial Operational Taxonomic Unit Relative Abundances with 

Behavioral Patterns1 
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Table 2.3 (continued) 

 
1 Results of linear mixed-model analysis were adjusted for repeated sampling, age, BMI, sex, and normalized total fiber intake. 

Estimates represent the percentage of change in the predicted value of the outcome variable for each 1-unit change in the predictor 

variable if all of the other predictors remain constant. One unit of eating frequency is 1 eating occasion. One unit of energy 

consumption is 1% of daily energy intake. One unit of overnight-fast duration is 1 h. This analysis represents a linear relationship 

between microbes or metabolites and behaviors during the awake/feeding phase of the circadian cycle. A negative estimate indicates 

an inverse relationship between the outcome and the predictor (e.g., relative abundance of the bacterium was higher when eating 

frequency was lower). A positive estimate indicates a positive relationship between the outcome and predictor (e.g., relative 

abundance of the bacterium was higher when eating frequency was higher). *Significant (P <0.05). OTU, operational taxonomic unit. 
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Table 2.4: Associations of Metabolite Concentrations and Bacterial Operational Taxonomic Unit Relative Abundances with Time and 

Behavioral Patterns in the Full Model1 
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Table 2.4 (continued)1 

 
1 Results of linear mixed-model analysis were adjusted for repeated sampling, age, BMI, sex, and normalized total fiber intake. 

Estimates represent the percentage change in the predicted value of the outcome variable for each 1-unit change in the predictor 

variable if all the other predictors remain constant. One unit of eating frequency is 1 eating occasion. One unit of energy consumption 

is 1% of daily energy intake. One unit of time or overnight-fast duration is 1 h. This analysis represents a linear relationship between 

microbes or metabolites and time or behaviors during the awake/feeding phase of the circadian cycle. A negative estimate for time 

indicates that the highest values were seen earlier and decreased throughout the day. A positive estimate for time indicates that the 

values increased throughout the day and were highest later. A negative estimate for eating behaviors indicates an inverse relationship 

between the outcome and the predictor (e.g., relative abundance of the bacterium was higher when eating frequency was lower). A 

positive estimate for eating behaviors indicates a positive relationship between the outcome and predictor (e.g., relative abundance of 

the bacterium was higher when eating frequency was higher). *Significant (P <0.05). OTU, operational taxonomic unit. 
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CHAPTER 3: GENERAL DISCUSSION AND CONCLUSIONS 

 In summary, the circadian regulatory system of the human body, the timing of eating, and 

the gastrointestinal microbiota form a network of complex relationships with potential relevance 

for human health that is worthy of further exploration. This work has reviewed and summarized 

the current literature on these connections and presented new, observational research on the link 

between time of day and eating behaviors and the human gastrointestinal microbiota, identifying 

the potential circadian rhythmicity within the microbiota and the modulation of this rhythmicity 

by the timing of eating. 

 Since the writing of the works presented herein, several new research studies have been 

published, shedding further light on this topic area. The aim of this section is to update this work 

in the context of this new literature.  

 Work by Wang et al. published in Science in September 2017 identifies a mechanism by 

which the microbiota regulates fat storage in the body via the circadian transcription factor 

NFIL3 (Y. Wang et al., 2017). This factor oscillates diurnally in intestinal epithelial cells, and 

the amplitude of these oscillations is determined by signals from the intestinal microbiota, 

specifically, microbial-induced repression of REV-ERBα via STAT3. NFIL3, in turn, controls 

expression of a circadian metabolic program and regulates lipid absorption and export in 

intestinal epithelial cells. Their work indicated that the presence of both NFIL3 expression and a 

microbiota were necessary for high-fat diet-induced body fat accumulation, highlighting the 

central role this gene plays in the coordination of these systems (Y. Wang et al., 2017). They also 

described the pathway by which microbial signals interact with the circadian system and identify 

Gram-negative, flagellated species (such as Salmonella and E. coli) as being the microbiota 

community members capable of this selective activation. 
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 A recent epidemiological study investigated the timing of eating and weight maintenance 

(Kahleova, Lloren, Mashchak, Hill, & Fraser, 2017). The Adventist Health Study 2 reported a 

relationship between meal frequency and timing and changes in BMI over a 7-year period in a 

sample of over 50,000 healthy adults (Age [Mean ± SD]: 58 ± 13, BMI: 27 ± 5). The researchers 

found that five eating behaviors were associated with a reduction in BMI per year: eating 1-2 

meals/day rather than 3, abstaining from snacking, having a longer overnight fast, not skipping 

breakfast, and consuming breakfast or lunch as the largest meal rather than dinner. These results 

on early energy consumption and longer overnight fast are in agreement with previous research 

on timing of eating and health. Results regarding eating frequency add to a body of literature 

which is not yet at a consensus. While strong evidence, this study does have the limitation of 

only considering weight as an outcome, rather than other metabolic markers. Interestingly, their 

conclusion presents practical advice, recommending consumption of breakfast and lunch 5-6 

hours apart, followed by an 18-19 hour overnight fast. 

 In February 2017, the American Heart Association (AHA) released evidence-based 

guidelines for meal timing and frequency to prevent heart disease (St-Onge et al., 2017). This 

work was a thorough review of available epidemiological and clinical intervention evidence. 

Findings included (1) breakfast consumption may be beneficial, (2) evidence is mixed regarding 

eating frequency, and more, longer-term trials with increased power are needed. Increasing 

eating frequency may not be effective at decreasing weight or improving cardiometabolic profile, 

but some epidemiological evidence indicates that  increased eating frequency may be protective 

for cardiovascular health and prevention of diabetes mellitus, (3) intermittent fasting regimens 

may be beneficial for weight loss, lowering triglyceride concentrations, and lowering blood 

pressure, although the blood pressure effect may depend on weight loss, and, (4) although 
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clinical interventions are limited, consuming more energy later in the day may be detrimental to 

cardiovascular health.  

The AHA additionally proposed definitions to be used in research on meal timing and 

frequency. They propose that studies of meal frequency focus on “eating occasions” rather than 

meals versus snacks, and that, based on the best predictability of variance in total energy intake, 

eating occasions be defined as containing at least 50 kcal and be separated by at least 15 minutes. 

This is also the definition utilized in this thesis. This report found that meal patterns have 

become increasingly more varied in recent years, and that the prevalence of meal skipping and 

snacking have increased. The authors proposed that an intentional approach to eating be adopted, 

requiring eating at regular, planned intervals to distributed total energy intake throughout the day 

to maintain a more healthful cardiometabolic profile. Interestingly, our laboratory has also 

established that regularity or variability in eating frequency is also associated with the human 

gastrointestinal microbiota (Benishay, Kaczmarek, & Holscher, 2017).  

Finally, a publication by Collado et al. (2018) directly examined circadian rhythms in the 

salivary microbiota and the impact of meal timing on these rhythms via a randomized, crossover 

study. The authors reported significant diurnal rhythms in both diversity and bacterial relative 

abundance in the human salivary microbiota (Collado et al., 2018). Additionally, timing of meal 

consumption (early versus late) shifted these rhythms. They also collected one fecal sample per 

participant at the end of each week-long eating condition but did not report significant 

differences in the fecal microbiota. This may be due to small sample size (n=10). Also, the time 

of fecal sample collection was not reported and may have introduced additional variability to the 

data. The authors concluded that this intervention on eating behavior not only impacted the 
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bacterial community of the oral cavity but could also be relevant to inflammation and health. 

This study provides novel and encouraging support to the theory described in this thesis.  

 Clearly, the body of evidence in the area of circadian rhythms, meal timing, and the 

human gastrointestinal microbiota continues to grow. More research is needed to better 

understand the complexities of this system. Specifically, further studies of the kind by Collado et 

al. (2018) that employ a human sample and a meal timing intervention are needed to establish 

causality and strengthen a body of literature that is currently built largely on preclinical trials and 

clinical observational studies. Crossover studies are especially valuable because of the highly 

individualistic nature of the human gastrointestinal microbiota. Many clinical studies of meal 

timing such as manipulations of the length of the eating window or number of eating occasions 

in a day have been performed, but few with the gastrointestinal microbiota as a primary outcome. 

The best future studies will include these interventions with both health markers (weight, blood 

lipids, glucose tolerance) and microbial measures (bacterial abundance and metabolite 

concentrations) as primary outcomes to obtain a complete picture of this complex system.  

In addition to clinical feeding trials, an integrated system of this kind requires specialized 

models to tease apart relationships. This is especially important considering the evidence that 

animals dependent on parenteral nutrition still show circadian rhythms in the gastrointestinal 

microbial community (Leone et al., 2015). The gastrointestinal tract and brain are in constant 

bidirectional communication via the gut-brain axis which includes nervous, immune, and 

neuroendocrine pathways (Sandhu et al., 2017). Is one – or several – of these pathways 

responsible for the cyclical behavior of bacteria in the intestine? Studies utilizing rodent models 

with a severed vagus nerve may begin to answer parts of this question. Additionally, 
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supplementation of melatonin could demonstrate hormonal sensitivity if circadian rhythms 

within the microbial community could be shifted by an intervention of this kind.  

Utilizing a clinical sleep lab with controlled lighting would also add critical information 

to our knowledge base, taking advantage of the dependence of the master pacemaker, the 

suprachiasmatic nucleus, on the presence of light. Could bacterial rhythms be shifted by changes 

in lighting conditions without changing the timing of presence of food, indicating changes in 

neuronal, hormonal, or gene transcriptional signals? In animal models, lighting conditions have 

been shown to disrupt the circadian clock, timing of food intake, and other metabolic signals 

(Fonken et al., 2010), and in humans similar metabolic disturbances have been observed with 

simulated nightshift work (McHill et al., 2014). It would be helpful to measure short-term 

metabolic outcomes such as energy expenditure, satiety hormone levels, and glucose tolerance in 

conjunction with bacterial outcomes, metabolites, and intestinal gene transcription in both 

clinical and preclinical experiments of this kind. 

Probiotics would also be an interesting intervention to further explore these relationships. 

If cycling bacteria are consistently confirmed in the human microbiota, can these bacteria be 

delivered to the gastrointestinal tract to improve circadian rhythms of gastrointestinal tract for 

health benefit? Also, does differing the timing of delivery of current probiotics alter their 

efficacy?  

As improving health outcomes is the long-term goal of this research, determining 

causality between the microbial community and health outcomes is of paramount importance. 

This causation is best established by fecal transplantation into germ-free animals. In addition to 

allowing for isolation of a bacterial community, animal models show signs of chronic diseases in 

a matter of weeks or months, rather than years as is the case with humans. Germ-free pigs 
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especially may improve our understanding with regard to circadian relationships to the immune 

system and intestinal development, gene expression, and health, as their anatomy is more similar 

to humans than rodent models (Q. Zhang, Widmer, & Tzipori, 2013).  

This is only a brief summary of suggestions for future directions, and much work remains 

to be done. In the future, we hope to be able to concisely present these findings as an evidence-

based approach to preventing or treating chronic disease and improving human health. 
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APPENDIX A: SUPPLEMENTAL TABLES 

The supplementary file SupplementalTables.pdf includes Tables A.1-A.7.  

 

These results represent analyses of an expanded data set from the original clinical study. 

In the primary study protocol, participants consumed 0, 5.0, or 7.5 g agave inulin/d in a 

randomized order for 21 d with 7-d washouts between periods. They provided up to three fecal 

samples during days 16–20 of each of the three periods (maximum 9 total samples per 

participant). All of the fecal samples from the 0 g supplemental fiber (e.g. control) and 7.5 g 

agave inulin periods, as well as a selection of the 5 g agave inulin period samples, were 

sequenced for use in analyses presented in the online supplementary material resulting in 189 

total samples from 29 study participants (females = 15 (52%)).  

 

These supplemental tables present results of linear mixed model analysis adjusted for 

repeated sampling, age, BMI, sex, and normalized total fiber intake, including supplemental 

treatment fiber. The estimate represents the percent change in the predicted value of the outcome 

variable for each one-unit change in the predictor variable, if all the other predictors remain 

constant. One unit of eating frequency is one eating occasion. One unit of energy consumption is 

1% of daily energy intake. One unit of time or overnight fast duration is one hour. This analysis 

represents a linear relationship between microbes or metabolites and time or behaviors during the 

light/feeding phase of the circadian cycle. A negative estimate for time indicates that the highest 

values were seen earlier, and decreased throughout the day. A positive estimate for time indicates 

that the values increased throughout the day, and were highest later. A negative estimate for 

eating behaviors indicates an inverse relationship between the outcome and the predictor (e.g. 

relative abundance of the bacterium was higher when eating frequency was lower). A positive 

estimate for eating behaviors indicates a positive relationship between the outcome and predictor 

(e.g. relative abundance of the bacterium was higher when eating frequency was higher). The 

“Treatment Fiber” effect in Tables A.4-A.6 is a classification variable with values of 0, 5 or 7.5 

in the regression model. Table A.7 also includes a “Treatment Fiber x Time” interaction factor in 

the regression model. A significant Treatment x Time interaction indicates that the effect of fiber 

treatment varies by time of day, so the effect of fiber treatment alone cannot be considered 

without accounting for time of day. 

 


