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ABSTRACT 

 

Wheat (Triticum aestivum L.) is a major cereal crop with global importance, responsible 

for providing 20% of human calorie intake, commonly in the form of flour. Maintaining superior 

milling and baking quality while improving disease resistance are key objectives in a breeding 

program. Selection for milling and baking quality is critical for the acceptance of new wheat 

varieties to end users - millers and bakers. Fungal pathogens present a significant biotic threat to 

the quality and quantity of the wheat crop annually. Necrotrophic fungus Parastagonospora 

nodorum (syn. Stagonospora nodorum, Septoria nodorum) is a leading fungal threat to wheat 

production in humid regions. A P. nodorum infection results in leaf blotch and glume blotch in 

wheat and related grass species. The development of varieties possessing resistance to P. 

nodorum infections is essential to minimize the fungal threat. Glume blotch infections result in 

shriveled low weight kernel production, with losses as high as 30 to 50 percent under optimal 

conditions for P. nodorum.  

Genomic selection (GS) offers a promising avenue for the improvement of quantitative 

traits, especially those difficult to improve through traditional breeding methods. GS is a 

statistical genomics tool that combines all molecular marker information for an individual to 

calculate genomic estimated breeding values (GEBVs) that can be used for advancement 

selections. GS models provide more comprehensive estimates of quantitative traits than marker-

assisted selection, as it captures small and large effect loci contributing to the phenotype. The 

implementation of GS models permits the prediction of an individual’s performance even before 

phenotyping has occurred. The utilization of GS models has the potential to accelerate the 

improvement of quantitative traits, including those that are difficult to phenotype, that are 
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measured on an irregular basis,  or those that are not assessed until late stages of development, in 

the breeding of wheat varieties. 

 In this research, genotypic data already available for a panel of soft red winter wheat 

breeding lines representative of the University of Illinois’ breeding program was leveraged by 

collecting phenotypic data on glume blotch resistance and several milling and baking quality 

traits. Glume blotch resistance and milling and baking quality traits are known to be quantitative 

in nature.  The objective was to determine if genomic selection could be used to select for these 

quantitative traits. Glume blotch resistance is often difficult to phenotype, and milling and 

baking quality parameters usually are not evaluated until a breeding line has been assessed 

agronomically for several years. As such these traits are attractive targets for genomic selection.    
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CHAPTER 1: LITERATURE REVIEW 

Wheat  

Wheat (Triticum aestivum L.) is the most widely cultivated crop based on acreage 

globally. In 2014 730 million tons were harvested on 222 million hectares (IWGSC, 2018b). 

While wheat remains the third most cultivated crop in Illinois, total acreage has been in decline 

and has dropped below a tenth of the state corn acreage with 500,000 acres of wheat planted in 

Illinois for the 2017 season (Illinois Wheat Association, 2016; Nafziger, 2009; USDA, 2018b). 

As a globally important crop, wheat is a staple source of protein, vitamins, and minerals and 

supplies 20 percent of human caloric intake annually (Brenchley et al., 2012; IWGSC, 2018b). 

Although many classes of wheat are grown in the United States, each with unique characteristics 

and end uses, the primary class of wheat grown in Illinois is soft red winter wheat (SRWW). 

SRWW is characterized by lower gluten strength and overall protein, low starch damage and low 

water absorption as compared to hard wheat (Cabrera et al., 2015). Flour produced from SRWW 

typically is used to make cookies, pastries, cakes, cereals, biscuits, crackers, flat breads and is 

blended into all-purpose flour (Illinois Wheat Association, 2016).   

Wheat is an allohexaploid with A, B, and D genomes. The diploid AA (Triticum urartu) 

and BB (relative of Aegilops speltoides) genomes first combined. Then, the newly formed 

tetraploid AABB genome species, known as modern durum wheat (Triticum turgidum), 

combined with the diploid DD (Aegilops tauschii) genome, giving rise to the hexaploid 

AABBDD modern wheat (Triticum aestivum L) (IWGSC, 2017). The wheat genome has 

2n=6X=42 chromosomes, with 21 homeologous chromosome pairs and 7 pairs coming from 

each of the 3 progenitor species. Wheat has a total genome size of 17 gigabase pairs (Gb) and 

possesses 110, 000 to 150, 000 genes (IWGSC, 2018a). For comparison, the genome size of rice 
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is 389 megabase (Mb), or 0.389 Gb pairs (International Rice Genome Sequencing Project, 2005), 

and the corn genome is 2,500 Mb or 2.5 Gb pairs (Plant Genome and Systems Biology, 2018).    

Importance of Parastagonospora nodorum glume blotch 

Fungal pathogens are one of the largest threats to the quality and quantity of wheat 

production. Glume blotch is caused by the necrotrophic fungus Parastagonospora nodorum (syn. 

Stagonospora nodorum, Septoria nodorum) and can result in significant agronomic and 

economic losses to the wheat industry (Francki, 2013; Murray and Brennan, 2009). P. nodorum 

was first described in 1845 as a wheat pathogen and can infect all above ground tissues of its 

host plant (Baker, 1978; Ficke et al., 2018). Under optimal conditions for pathogen infection and 

disease progression, glume blotch can result in losses upwards of 30 to 50 percent with the most 

significant losses occurring when leaves and glumes are infected before grain fill, but plants are 

susceptible to P. nodorum at all growth stages (Bertucci et al., 2014; Bostwick et al., 1993; Fried 

and Meister, 1987; Kim et al., 2004; Kleczewski, 2015; Leath et al., 1993; Mehra et al., 2016). In 

1990, a questionnaire based disease survey by Leath et al., (1993), described P. nodorum’s 

presence in Canada, the United States, Mexico, Central America, South America, China, Japan, 

Africa, Russia, Denmark, India, Australia, and New Zealand thereby, illustrating the global 

presence of the disease (Ficke et al., 2018). A 2009 review by Murray and Brennan projected 

current annual economic losses as high as $108 million, and potential cost as high as $230 

million for P. nodorum in Australia alone (Ficke et al., 2018).  

P. nodorum infections can result in leaf blotch and glume blotch. Leaf blotch reduces the 

photosynthetic leaf area, subsequently reducing grain fill. Glume blotch is also known to cause 

yield losses due to shriveled, low weight kernels. The reduction of photosynthetic leaf area has 

been proposed to be the leading factor in reduced yield quantity and quality, as the flag leaf is 
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known to provide much of the energy required for grain filling (Ficke et al., 2018; Krupinsky et 

al., 1973). However, glume blotch infections impact the kernel development as the glumes and 

awns are directly attacked (Ficke et al., 2018). Various studies on the photosynthetically active 

leaf area of the flag leaf and glume tissue after flowering have indicated the heads and flag 

leaves are the largest contributors to grain yield during the grain filling period (Ficke et al., 2018; 

Krupinsky et al., 1973). Glume infections occurring during the grain filling stage reduce the 

plant’s ability to fill out the grain. The light weight shriveled kernels produced reduce the test 

weight and overall crop yield and according to Leath et al. (1993) is the component of yield most 

often affected by P. nodorum. The protection and increased resistance of the glume tissues are 

essential to preserving critical energy for grain filling.  

Disease cycle 

P. nodorum is a necrotrophic fungus with a polycyclic disease cycle in wheat and related 

grass species. After infecting a host plant, a necrotrophic fungus kills the infected tissue and 

feeds from its organic compounds to support the fungal life cycle (Selter et al., 2014). P. 

nodorum has a long latent period (10-20 days), but its ability to infect plants from seedling to 

maturity and to produce secondary inoculum gives rise to the polycyclic infection behavior 

(Mehra et al., 2015; Mehra et al., 2017). The pathogen overwinters on wheat residue and stubble 

for up to three years. Fruiting bodies form on the stubble, producing pycnidiospores. The 

pycnidia are burst open by rainfall and splash onto the tender plant surface, initiating seedling 

infection in the fall. The fungus then colonizes the leaf tissue directly through epidermal tissues 

or through openings such as the stomata (Francki, 2013), producing more pycnidia that burst and 

disperse the spores vertically up the plant. The spores progress up the canopy throughout the 

growing season. Optimal environmental conditions for the pathogen occur in temperate growing 

regions at 18-24 degrees Celsius along with 42-96 hours of high relative humidity (>75%) and 
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rainfall (Francki, 2013; Mehra et al., 2015; Wainshibaum and Lipps, 1991). Leaf blotch 

infections of P. nodorum cause brown lens shaped lesions with yellow halos on the leaves. 

Glume blotch infections of P. nodorum are characterized by brown-purple blotches beginning at 

the spikelet tips and moving inward to the base of the glume. When optimal conditions for the 

pathogen occur at heading and flowering, glume infections are more prevalent. A generalized 

disease cycle for P. nodorum can be found in Figure 1.1.  

In a field experiment carried out by Griffiths and Ao (1976),  the upward dispersal of 

spores was assessed using funnel traps placed 0.5 and 1.0 meter from artificially inoculated 

plants at varying heights from the ground (0, 40, 80, and 120 cm) and at varying angles around 

the plant. Their work demonstrated that the pathogen was able to splash 0.5 meters away from an 

infected source, but was not able to splash 1.0 meter from the source. Spores were only found in 

the traps placed at 0 and 40 cm above the ground, with equal amounts of spores represented in all 

traps at 0 cm regardless of the angle placement, and varying amounts of spores in the 40 cm traps 

depending on the angle placement around the infected source. The effect of angle placement at 

40 cm demonstrates the influence of wind at higher altitudes in respect to spore dispersal.  

Griffiths and Ao (1976) further demonstrated how severe losses can occur given a sufficient 

number of infected plants, even though the spores tend to splash within a 0.5 meter radius. 

P. nodorum management 

Current methods of P. nodorum control include cultural practices, chemical controls, and 

host resistance. Cultural practices include tillage to incorporate debris in order to reduce primary 

inoculum, rotation to non-host crops such as corn, soybean, or vegetables, the avoidance of high 

plant populations, and the avoidance of overhead irrigation that increases the optimal conditions 

for the disease (Ficke et al., 2018; Francki, 2013; Kleczewski, 2015; Mehra et al., 2015; Murray 

and Brennan, 2009).  Von Wechmar (1966) demonstrated that wheat residues buried 6 and 10 
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inches deep in the soil do not produce viable pycnidia after one month. Mehra et al. (2015) 

established correlations between residue coverage and P. nodorum severity with severity leveling 

off above 30 percent residue coverage (Ficke et al., 2018).  

Fungicides are common chemical controls used especially to protect the head and flag 

leaf at the critical times from heading to maturity. Commonly used fungicides include Prosaro, 

Tilt, and Caramba, all of which are demethylation inhibitors (DMI). Prosaro is produced by 

Bayer Crop Science, and the active ingredient is tebuconazole. Tilt is a Syngenta product with 

propiconazole as the active ingredient. Caramba is produced by BASF Ag Products with 

metconazole as the active ingredient. DMI fungicides are upward systemic that inhibit ergosterol 

synthesis in fungi by affecting the cell wall and cell membrane. In regions or seasons with 

especially high disease pressure, chemical controls are also used throughout the season to offer 

increased whole plant protection. Various studies have tried to establish a disease threshold for 

recommended application of chemical controls against P. nodorum (Ficke et al., 2018). The 

threshold for which chemical controls become gainful depends on many factors including yield 

potential, the presence of other diseases, host resistance and wheat prices (Ficke et al., 2018).    

Host resistance is the plant’s natural ability to overcome or withstand the pathogen. The 

planting of wheat varieties with higher levels of host resistance to P. nodorum provide producers 

with an initial defense that may be enough to divert the need for more costly chemical controls or 

more time intensive cultural practices (Francki, 2013).   

Wheat resistance to P. nodorum 

Host resistance has been determined to be mostly quantitative, and no complete 

resistance mechanism is known in wheat (Bostwisk et al., 1993; Eyal et al., 1987; Ficke et al., 

2018; Fried and Mesiter, 1987). Multiple studies have found no correlation between leaf 

resistance and glume resistance against P. nodorum in wheat (Baker, 1978; Bostwick et al., 
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1993; Eyal et al., 1987; Fried and Meister, 1987). This suggests that resistance in leaves and 

glumes are controlled by different genes or differential expression of the same genes (Bostwick 

et al., 1993; Fried and Meister, 1987). Detached leaf assays have been commonly used to assess 

P. nodorum resistance. Detached leaf assays measure the ability of the plant to withstand the leaf 

blotch colonization of P. nodorum. Less progress has been made in the assessment of glume 

blotch resistance. To evaluate glume blotch resistance, the common practices of screening 

seedlings and using detached leaf assays cannot be employed due to the lack of leaf and glume 

resistance correlation. Some studies have shown an increase in host susceptibility at 

physiological maturity (Feekes 10.0 and on) for genotypes displaying resistance at the seedling 

stage (Francki, 2013; Wainshilbaum and Lipps, 1991). Numerous traits may contribute to a 

plant’s ability to withstand P. nodorum infections including “initial infection, limiting lesion 

expansion, reducing sporulation in lesions, insensitivity to necrotrophic effectors, and 

lengthening the latent period” (Ficke et al., 2018).  

Breeding for P. nodorum 

Progress in the development of P. nodorum glume blotch resistant lines has been slow as 

breeders commonly depend on natural epidemics for selection of resistance (Cowger and 

Murphy, 2007; Francki, 2013; Fraser et al., 2003; Krupinsky et al., 1973). The lack of correlation 

between foliar and glume resistance has not only made the development of early screening 

techniques difficult but has subsequently increased the difficulty of breeding for resistance on a 

whole plant level (Ficke et al., 2018; Fried and Meister, 1987). According to Francki (2013), the 

selection for moderately resistant genotypes is possible when the disease is severe, but advances 

have been largely hindered by low disease pressure years. To overcome the inconsistency of 

natural epidemics, Cowger and Murphy (2007) performed a series of field trials to assess the 

efficacy of artificial inoculation methods for cultivar discrimination to glume blotch. The use of 
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artificial inoculations has the potential to accelerate the development of wheat lines resistant to 

P. nodorum glume blotch. According to Cowger and Murphy (2007), the most effective field 

artificial inoculation methods are: applying infected wheat straw between the plots in the late fall 

or early winter and applying a conidia spray in the spring at heading. Cowger and Silva-Rojas 

(2006) showed classification of wheat cultivars with resistance to P. nodorum would greatly 

benefit from natural infections within target growing regions or the use of artificial inoculation 

with a mixture of genetically diverse, but recent, pathogen isolates (Francki, 2013). The reliance 

on natural infection has also been called into question due to the increased risk of 

misclassification of escapes as the result of the absence of optimal disease environments for 

some lines (Francki, 2013).    

Plants being used for glume blotch resistance evaluation must be allowed to reach full 

maturity. Allowing plants to reach full maturity increases the time required for evaluation and 

adds constraints to screening. Winter wheat must be planted to allow for early growth before 

entering into the cold winter period in a natural field setting or in a greenhouse setting with 

vernalization for eight to ten weeks. The cold period is required before winter wheat receives the 

biological signals to allow reproductive growth to begin. After completion of the required cold 

period, winter wheat requires ten more weeks to reach maturity. When completing field trials, 

planning must begin at least six months prior to evaluation. In the greenhouse, four months must 

be allowed for the plants to reach the desired growth stage, resulting in a limited ability to screen 

multiple cycles in a year. The lack of correlation in foliar and glume resistance suggest the 

combining of independent genes controlling the resistance of both would provide the highest 

degree of plant protection (Francki, 2013). In summary, the community agrees upon the need of 

reliable disease evaluations in target regions in a regular manner for continued breeding progress.   
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Milling and baking quality parameters and importance 

 Milling and baking quality parameters assess the acceptability of a wheat variety to end 

users – millers and bakers. For soft wheats, desirable milling and baking quality parameters 

include low to medium protein content, high break flour yield, fine flour granulation, and a high 

degree of kernel softness (Finney, 1990; McKendry et al., 1995). Flour yield is a milling quality 

parameter measuring the percent of flour recovery from an initial sample of grain tempered to 15 

percent moisture (Schuler et al., 1995; USDA, 2018). Flour yield is calculated by dividing the 

combined recovery weight of mids and break flour by the initial tempered grain weight (USDA, 

2018a). Mids are the medium sized flour particles caught above a 94-mesh screen when the 

milled product from the Quadrumat break roll unit is sifted (USDA, 2018a). Break flour consists 

of the finest flour particles that pass through the 94-mesh screen when the milled product is 

sifted. Several factors influence flour yield including grain size, shape, the thickness of the bran 

coat affecting the proportion of endosperm in the kernel, kernel hardness, cell wall thickness, and 

expertise of the miller (Schuler et al., 1995). Flour yield provides the millers with information on 

the potential profitability of the milled product if they purchase the variety from the grain 

elevator.  

 Softness equivalence is both a milling and baking quality parameter. The results of 

softness equivalence affects the way millers and bakers accept a wheat variety. Softness 

equivalence is a measure of break flour (finest flour particle size, passing through a 94-mesh 

screen) as a percentage of total flour (mids and break flour weight) (USDA, 2018a). The softness 

equivalence parameter provides an estimate of grain hardness, and flour particle size to the 

millers, who then market the flour to the bakers for use in specific end products.  
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 Lactic acid solvent retention capacity (SRC) is a baking quality that provides bakers with 

an estimate of flour gluten strength for commercial baking performance (Souza et al., 2012; 

USDA, 2018a). Gluten strength directly impacts the baked products that can be created with the 

milled product. Higher or stronger gluten strength allows the bakers to make products with 

reduced spreading and increased rising, such as breads. Lower or weaker gluten strength (like 

that of soft wheats) allows bakers to make products with increased spread and reduced rising, 

such as cookies, pastries, and crackers. Flour protein concentration and the formation of 

viscoelastic networks are primary elements in the determination of gluten strength (Souza et al., 

2012). In soft wheats, typical values for weak protein or gluten are below 85 percent, and strong 

protein or gluten values are above 110 percent (USDA, 2018a).          

Breeding for milling and baking 

In soft wheat, quality parameters are quantitatively controlled by both major genes and 

genes of small effect with moderate to high heritability (Cabrera et al., 2015; McKendry et al., 

1995; Souza et al., 2012). Numerous QTL analyses have identified important chromosomal 

regions for milling and baking in wheat (Souza et al., 2012). Flour yield, softness equivalence, 

and the results of SRC evaluations display the “highly heritable, repeatable, and reliable” nature 

of milling and baking quality in soft wheat (Souza et al., 2012). Breeders must provide producers 

with agronomically improved varieties while maintaining superior milling and baking quality for 

the end users (Schuler et al., 1995). While selecting for improvement of agronomic traits, such as 

grain yield and disease resistance, wheat breeders have efficiently and simultaneously selected 

toward a quality standard (Souza et al., 2012). Due to large genetic variation for milling and 

baking traits and relatively small genotype-by-environment interaction for most traits, Souza et 

al. (2012) claim improvement selection in soft wheats should be highly effective.  The known 
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high heritability, small genotype-by-environment interactions, and polygenic nature of milling 

and baking traits create the ideal scenario for GS for trait improvement (Heffner et al., 2011; 

Souza et al., 2012). Having the ability to assess milling and baking quality parameters earlier in a 

breeding program than during the traditional  F6 or F7 stage would reduce the cost of evaluating 

additional breeding lines with unfavorable end use quality. Time spent on the development of 

wheat varieties not possessing superior end use quality detracts from potential forward progress. 

The development of GS models for milling and baking quality parameters holds the potential to 

eliminate inferior lines much earlier in the breeding program, when it is still unfeasible to 

perform milling and baking quality assessments due to cost, time constraints, the destructive 

nature of phenotyping, and the lack of sufficient amounts of seed (Heffner et al., 2011).  

Genomic selection 

 GS is a statistical genomics tool first proposed in dairy livestock by Meuwissen et al. 

(2001). GS predicts the phenotypic response of individuals through the estimation of genomic 

estimated breeding values (GEBVs) calculated using genome-wide molecular effects 

(Meuwissen et al., 2001). GS is more effective than marker-assisted selection on quantitative 

traits as it captures small and large effect loci (Bernardo and Yu, 2007; Heffner et al., 2011; 

Huang et al., 2016; Meuwissen et al., 2001). Heffner et al. (2010) found a GEBV accuracy of 0.3 

or greater in winter wheat provides a higher expected genetic gain per year than marker-assisted 

selection, even with relatively low heritability. GS breeding programs can achieve double the 

genetic gain per year experienced in a marker-assisted breeding program, even with moderate 

GEBV accuracies of 0.5 (Heffner et al. 2010). A 2011 study by Heffner et al. for grain quality 

traits in biparental wheat populations provided additional evidence that “genomic selection could 

produce greater genetic gains per unit time and cost than both phenotypic selection and 
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conventional marker-assisted selection in plant breeding” (Heffner et al., 2011). In GS, 

representative, randomly selected training populations containing known phenotypes and 

genotypes are used to train the model, and marker effect estimates are calculated (Heffner et al., 

2009; Heffner et al., 2011; Meuwissen et al., 2001). The marker effect estimates from the 

representative training population are then used to calculate the GEBVs of individuals for which 

only genotypic information is available (Heffner et al., 2009; Heffner et al., 2011). Thus, GS is 

able to estimate the phenotypic performance of individuals before traditional phenotyping has 

occurred. GS can be used to aid in the improvement of quantitative traits with many small effect 

loci as it does not track specific quantitative trait loci (QTL) like other methods such as marker-

assisted selection, but rather works to identify the best individuals in a population (Bernardo, 

2016; Meuwissen et al., 2001). Although GS was first proposed in 2001 by Meuwissen et al. in 

dairy, the first GS study in plants was not published until 2007 by Bernardo and Yu. The first 

plant GS study was based on simulation data in maize, and Bernardo and Yu (2007) concluded 

GS was superior to marker-assisted recurrent selection. Since the first simulation study in plants, 

many studies have been published on the prediction accuracy for quantitative traits in numerous 

species (Bernardo, 2016). The work of Huang et al. (2016) supports the idea of the use of GS for 

improving values for quality and agronomic traits.   
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CHAPTER 2: GENOMIC SELECTION FOR GLUME BLOTCH IN SOFT RED 

WINTER WHEAT 

Abstract 

Glume blotch in wheat, caused by the necrotrophic fungus Parastagonospora nodorum 

(syn. Stagonospora nodorum, Septoria nodorum), is a leading fungal threat to wheat production 

in humid regions. Severe glume blotch infections reduce the quality and quantity of the grain 

through the production of shriveled low weight kernels.  Breeding for resistant varieties offers an 

effective means to reduce the potentially devastating impact of P. nodorum. Genomic selection 

(GS) incorporates all marker information for an individual, regardless of the loci effect, to 

calculate genomic estimated breeding values (GEBVs) and to make advancement selections. 

GEBVs are the summed effects of all the loci and provide more comprehensive estimates of 

quantitative traits than marker-assisted selection. GS models allow for the prediction of breeding 

line performance before phenotyping. When utilized on quantitative traits, such as glume blotch 

resistance in wheat, GS has the potential to accelerate the improvement of wheat varieties with 

increased resistance. In this study, we investigated the potential of assessing the glume blotch 

resistance of germplasm at alternate times, the functionality of establishing and maintaining a 

glume blotch disease nursery, and the development of a GS model for improved resistance to 

glume blotch in the University of Illinois’ breeding program. Results indicate the importance of 

taking disease evaluations at the proper time, a disease nursery for glume blotch can successfully 

be established, and supports the idea of using GS for improvement of quantitative traits, 

including glume blotch resistance.  
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Introduction 

 Glume blotch, caused by the necrotrophic fungus Parastagonospora nodorum (syn. 

Stagonospora nodorum, Septoria nodorum), results in significant agronomic and economic 

losses to wheat, especially in warm, humid environments. As a disease that can result in upwards 

of 30 to 50 percent yield losses under conditions favorable for disease progression, improving 

host resistance is a primary target for reducing its impact (Bertucci et al., 2014; Bostwick et al., 

1993; Fried and Meister, 1987; Kim et al., 2004; Kleczewski, 2015; Mehra et al., 2016). 

Breeders have had limited ability to improve host resistance as evaluations are chiefly taken on 

an opportunistic basis when the disease naturally presents itself (Cowger and Murphy, 2007; 

Francki, 2013; Fraser et al., 2003; Krupinsky et al., 1973). In some areas of the soft red winter 

wheat growing regions of the United States, the disease does not naturally occur every growing 

season, therefore resulting in sporadic and incomplete assessments of the germplasm’s resistance 

to P. nodorum (Cowger and Murphy, 2007). Inoculated nursery methods have been explored to 

allow for more consistent evaluation of germplasm resistance. Cowger and Murphy (2007) 

explored the options of conidia suspensions applied in early winter, conidia suspensions applied 

at boot stage in late spring, and infected straw applied in early winter. Cowger and Murphy 

(2007) found significantly more disease when conidia were applied at boot stage and when straw 

was applied in early winter. The establishment of a successful inoculated nursery could provide a 

breeder with regular evaluation of a program’s germplasm, allowing for continual progress 

toward resistance. Many early studies using various methods to quantify resistance to P. 

nodorum determined resistance to be governed quantitatively with additive effect genes 

(Bostwick et al., 1993; Fried and Meister, 1987).   
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 Genomic selection, first proposed by Meuwissen et al. (2001), could hold the key to 

improving resistance in breeding programs, especially those evaluating traits on an opportunistic 

basis. GS is a molecular breeding tool that uses genome-wide molecular marker effects to predict 

the phenotypic reaction of individuals through estimation of genomic estimated breeding values 

(GEBVs). GS models are trained using known genotypes and phenotypes in a training population 

(Meuwissen et al., 2001). Marker effects that have been calculated from the training population 

are then used to calculate the GEBVs of breeding lines where only genotypes are available 

(Heffner et al., 2009). GS has been found to be especially useful for improving quantitative traits 

characterized by many additive small effect loci (Meuwissen et al., 2001). Advantages for GS 

are larger for traits that are more difficult to improve through traditional breeding methods 

(Goddard and Hayes, 2007). Glume blotch resistance in wheat is a quantitative trait, and 

increasing resistance is a gradual process. The use of GS allows breeders to leverage the 

opportunistic evaluation of data in a manner that allows for more complete assessment of their 

program’s germplasm. Opportunistic evaluations could be used to train GS models, thereby 

enabling the evaluation of breeding lines, even in years without disease through GEBVs. GS 

could also be implemented in a breeding program with a successful P. nodorum inoculated 

nursery. Instead of including all breeding lines in the inoculated nursery, a genetically 

representative subset could be evaluated, GEBVs calculated, and advancements selected 

(Heffner et al., 2009).  

 In this study, we compared ratings taken at alternate times to the “gold standard” peak 

progression rating, evaluated the usefulness of an inoculated irrigated disease nursery to 

accurately assess the resistance of breeding lines, and tested the capability of GS as a breeding 

tool in the University of Illinois’ wheat breeding program to improve resistance to glume blotch.            
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Materials and Methods 

Plant material and field design  

 In this experiment, 379 breeding lines were evaluated for resistance to P. nodorum, 

specifically to the glume blotch phase of infection. The original panel used in the study included 

272 breeding lines selected by Arruda et al. (2015) to represent the genetic diversity of the 

University of Illinois’ wheat breeding program. This panel is referred to as the MAM panel. The 

MAM panel consists of 185 lines from the University of Illinois’ breeding program and 87 lines 

from 17 soft red winter wheat midwestern and eastern US breeding programs. The 272 line 

MAM panel represented the current breeding lines and lines commonly used as parents in the 

program. The arrangement of lines in the MAM panel captured the largest portion of genetic 

diversity in the University of Illinois’ breeding program in a manner that was manageable for 

phenotyping. In addition to the MAM panel, 107 breeding lines chosen for advancement within 

the program for the 2016 season were included in the study. These lines were included to attempt 

to capitalize on collected genomic data within the program.  

 Wheat lines were planted in 1 meter long single rows at two locations for two years. Field 

experiments were grown at the University of Illinois’ Maxwell Research Farm in Savoy, IL and 

at the University of Illinois’ Brownstown Research Station in 2016, with planting dates of 

September 28 and October 2, respectively. In 2017, field experiments were grown at the 

University of Illinois’ Research Farms South in Urbana, IL and Brown Seed Enterprises in 

Neoga, IL, with plating occurring September 23 and October 8, respectively. The 2016 field site 

at the University of Illinois’ Maxwell Research Farm was a Drummer silty clay loam with 0-2 

percent slope, while the 2017 field site at the University of Illinois’ Research Farms South was 

an Elburn silt loam with 0-2 percent slope. In the natural pressure nurseries, different soil types 
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were represented in the experiments. The 2016 University of Illinois’ Brownstown Research 

Station field site was a Cisne silt loam with 0-2 percent slope and the 2017 Brown Seed 

Enterprises’ field site was a Bluford-Darmstadt silt loam with 0-2 percent slope. Each 

experiment was designed as a randomized complete block with two replications. All experiments 

received 0.0448 metric tons of liquid nitrogen per hectare pre-planting and did not receive a 

spring nitrogen application. 

Disease nursery establishment  

The rows grown at the Savoy and Urbana, IL locations were cultivated in a mist irrigated 

disease nursery, while the Brownstown and Neoga, IL locations were cultivated using natural 

growing conditions. In the mist irrigated nurseries, wheat straw was laid between the rows in 

early winter to provide a source of primary inoculum as discussed by Cowger and Murphy 

(2007). The wheat straw was laid between rows on December 17, 2015 and January 28, 2017 for 

the 2016 and 2017 experiments, respectively, and was allowed to naturally settle between rows. 

Pycnidiospore solution was used to inoculate the straw laid between the nursery rows in the early 

spring in an effort to increase the disease pressure. Straw inoculations occurred on April 20, 

2016 using 8 liters of spore suspension and April 18, 2017 with 10 liters of spore suspension. A 

second round of spore solution was used to inoculate the wheat heads between Feekes 10.1 

(heading) and Feekes 10.5 (flowering), to ensure fungal spores reached the glume tissue. The 

straw and the head inoculations were carried out using a CO2 pressurized backpack sprayer using 

40 psi in the solution tank on May 11 and May 16, 2016 and May 5 and May 11, 2017 for the 

two years respectively. Overhead mist irrigation ran three times daily for 30 minutes in 2016 and 

three times daily for 1 hour in 2017 for a period of 72 hours following inoculation of the wheat 

heads to encourage optimal infection. Inoculation of the wheat heads occurred approximately 
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one hour before the evening irrigation cycle at 6 pm. The irrigation ran at 9 am, just as dew was 

drying off, at 1 pm to maintain the humidity during the day, and at 6 pm to maintain moisture 

overnight. The mist irrigation system applied 0.3 centimeters of water per hour. Thus in 2016, 

0.15 centimeters of water was applied three times per day and 0.3 centimeters of water was 

applied three times per day in 2017.  

The two P. nodorum isolates used in the study were collected and isolated by Dr. Carl 

Bradley and his research team. Using the notation from the Bradley lab, the isolates used in this 

study were BF0994 and SN1464. Isolate BF0994 was collected and isolated in 2009 from 

Gallatin County in the southeast part of the state. Isolate SN1464 was collected and isolated in 

2014 from Effingham County in the south-central part of the state. Thus, the two isolates were 

collected within the state’s target wheat region and in different years. The mist irrigated nurseries 

were grown north of the target wheat areas for the state of Illinois resulting in lower natural 

disease pressure in the area. The wheat heads were inoculated to ensure ample disease pressure 

was available for glume infection. The Brownstown and Neoga, IL nurseries were grown within 

the target wheat growing region of the state, leading to higher natural disease pressure. It was 

reasonable to expect enough natural disease pressure for glume infections based on previous 

disease observations made by the small grains breeding program at the target region locations 

(Norman Smith and Frederic Kolb, Personal Communication, 2015).  

Agar plugs containing the P. nodorum isolates, obtained from the -80 degree Celsius 

freezer, were placed on V8 agar plates and allowed to grow and sporulate under white light on a 

12 hour light, 12 hour dark cycle at 20 degrees Celsius. After ample spore production occurred, 

usually between 14 to 18 days, spores were harvested from the V8 agar plates by flooding the 

plate with autoclaved distilled water and scraping the plate with a bent rod to release the spores 
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from the pycnidia, as described by Cowger and Murphy (2007), Bostwick et al. (1993), and 

Wainshilbaum et al. (1991). The water containing the first released spores was allowed to sit on 

the plate for 10 minutes to encourage more spore release before the plate was scraped a second 

time (Bostwick et al., 1993; Cowger and Murphy, 2007). After scraping the plate a second time, 

the water/spore mixture was pipetted up and down several times to ensure the spores were in 

solution. Then, the water and spore solution was pipetted from the plate into a labeled Falcon 

tube. All spore solutions were counted using a hemocytometer and adjusted to 106 spores per mL 

concentration (Cooke and Jones, 1970; Holmes and Colhoun, 1974; Jenkyn and King, 1977; 

Rooney and Hoad, 1989).  

Phenotypic data 

Disease ratings were taken on a 1 to 9 scale, with 1 being resistant or showing no 

symptoms and 9 being susceptible or highly infected. More specifically, breeding lines receiving 

a glume blotch rating of 1 did not display noticeable symptoms of glume blotch, and breeding 

lines receiving a rating of 9 had heads fully displaying glume blotch symptoms with the dark 

purple/brown markings covering all aspects of the glume Disease evaluations were performed by 

visually estimating the average severity of glume blotch infection throughout the row. Average 

severity estimates were performed by one evaluator to maintain consistency and reduce 

variability of potential scaling differences. Ratings were taken 27 and 34 days after Feekes 10.1 

for each plot, wherein the inoculated nursery inoculations occurred between Feekes 10.1 and 

10.5 (Wainshibaum et al., 1991).  To obtain the best phenotypic rating of each line across 

environments, locations, and methods, best linear unbiased predictions (BLUPs) were calculated 

using PROC MIXED SAS version 9.4 (SAS Institute, 2017), according to the equation: 

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝑌𝑖 + 𝐿(𝑖)𝑗 + 𝐵(𝑖𝑗)𝑘 + 𝐺𝑙 + 𝑌𝐺𝑖𝑙 + 𝐿𝐺(𝑖)𝑗𝑙 + 𝜀𝑖𝑗𝑘𝑙 
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where 𝑌𝑖𝑗𝑘𝑙 is the observed phenotype, 𝜇 is the overall grand mean, 𝑌𝑖 is the random effect of the 

ith year, 𝑁𝐼𝐷(0, 𝜎𝑌
2), 𝐿(𝑖)𝑗 is the random effect of the jth location nested in the ith 

year, 𝑁𝐼𝐷(0, 𝜎𝐿
2), 𝐵(𝑖𝑗)𝑘 is the random effect of the kth block nested in the jth location in the ith 

year, 𝑁𝐼𝐷(0, 𝜎𝐵
2),  𝐺𝑙 is the random effect of the lth genotype or wheat line, 𝑁𝐼𝐷(0, 𝜎𝐺

2),  𝑌𝐺𝑖𝑙 is 

the random interaction of the ith year and the lth genotype, 𝑁𝐼𝐷(0, 𝜎𝑌𝐺
2 ),  𝐿𝐺(𝑖)𝑗𝑙 is the random 

interaction of the jth location nested in the ith year and the lth genotype, 𝑁𝐼𝐷(0, 𝜎𝐿𝐺
2 ),  and 𝜀𝑖𝑗𝑘𝑙 

is the random error term, 𝑁𝐼𝐷(0, 𝜎𝑒
2). The overall mean (𝑦̅….) of the peak progression rating was 

calculated using PROC MEANS in SAS 9.4 (SAS Institute, 2017). The overall mean and the 

solution for the lth genotype effect were summed to calculate the BLUP for each genotype in the 

study. The equation for the calculation of BLUPs is below. 

𝐵𝐿𝑈𝑃…𝑙 = 𝑦̅.... + 𝐺𝑙 

Genotypic data 

 The MAM panel of lines used in this study was originally designed by previous Doctoral 

candidate Marcio Arruda for his study on GS for Fusarium head blight in soft red winter wheat. 

Genotypic data on all the wheat lines used in this study were collected by the small grains 

research team using genotyping-by-sequencing (GBS) technology. The procedure used by the 

research team is outlined in Arruda et al. (2015). In brief, DNA was extracted from 5-day old 

leaves, GBS libraries were constructed, sequence data were obtained from a 96-plex Illumina 

HiSeq2000, SNPs were called, and the data were filtered for minor allele frequency. Missing 

data were imputed using the expectation maximization imputation (EMI) method due to its 

shorter computational time, higher accuracies for some traits, and its use in other wheat GS 

studies (Arruda et al., 2015). The genotype files used in this study contain 6,451 SNP markers 

that have been filtered for minor allele frequency and position.  
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Coefficient of variation and correlations 

Coefficient of variation (CV) provides an assessment of data quality gathered within in a 

study. A CV is the ratio of the standard deviation (𝑠) to the mean (𝑦̅), as shown in the equation:  

 

𝐶𝑉 =
𝑠

𝑦̅
∗ 100 

 

Lower CV’s indicate higher quality data, as it indicates more of the variation is coming 

from genetic differences than from non-genetic differences such as human error or field 

placement. Higher CV’s provide a warning that large portions of the variation occurred in non-

genetic factors resulting in reduced ability to assess the differences among lines based on 

genetics. Lower CVs are favorable as it indicates genetic gains can be made. When working with 

disease ratings it is common for CV’s to be between 20 and 30 percent, especially with ratings 

that are visually scored.  

In this study, correlations were used to compare disease ratings taken early (27 days post 

Feekes 10.1), at peak progression (34 days post Feekes 10.1), and kernel quality (post-harvest). 

Correlations were calculated using PROC CORR of SAS version 9.4 (SAS Institute, 2017). The 

correlations assessed the ability of the early and post-harvest ratings to provide the same disease 

resistance information as the peak progression rating. It is known that peak progression ratings 

are ideal but is unknown if ratings at differing time points provide the same conclusions.  

Genomic selection 

PopVar is a statistical package created by Mohammadi et al. (2015) for R software (R 

Core Team, 2016) that predicts “standard statistics and correlated response in plant populations” 

and performs cross-validated GS with several model options (Tiede et al., 2015). In this study, 
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the ridge-regression best linear unbiased prediction (rrBLUP) model was used. Ridge-regression 

best linear unbiased prediction equally shrinks all markers toward zero in an infinitesimal model 

that sets markers as random effects with a common variance (Arruda, et al., 2015).  PopVar 

allows the user to specify the number of folds and iterations to be used in the model creation.   

Training and validation populations 

 A 5-fold cross validation was performed with the data using the PopVar package. The 

training and validation populations are not specified within the program, instead, the number of 

folds and the number of iterations are specified. Based on the number of folds specified, PopVar 

divides the phenotyped individuals. In the case of the 5-fold cross validation, PopVar divided the 

phenotyped lines into 5 groups. PopVar then used 4 of the 5 groups to train the model, reserving 

1 group for validation. After the model was trained and validated based on the randomly 

assigned groups, PopVar randomly reassigned the phenotyped individuals to new groups and 

performed the procedure again. PopVar continued in this manner until the number of specified 

iterations was met. Upon completion of the specified iterations, PopVar assess the ability of the 

model to accurately predict the phenotypes of each validation set across each iteration and 

expressed the average accuracy (r) and a standard deviation (s) in the output file.    

Heritability on a line mean basis  

 Heritability is assessed before creation of GS models. Traits with higher heritability have 

a higher success rate in GS studies, but lower heritable traits can also be improved by GS. 

Heritability on a line mean basis is the proportion of the total plant phenotypic variability 

contributed by the genotype.  This type of heritability is similar to narrow sense heritability 

except it focuses on one line/genotype at a time. The equation for heritability on a line mean 

basis is as follows: 
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ℎ2 =
𝜎𝐺

2

𝜎𝑝̅
2 

Where, ℎ2 = the proportion of variability contributed by the genotype 

  𝜎𝐺
2 = the mean genotypic variance 

 𝜎𝑝̅
2 = the mean phenotypic variance 

Genomic selection prediction accuracies 

 Prediction accuracies were measured by calculating the correlation between the GEBVs 

and PEBVs. PopVar performs this calculation in the background and provides the user with a 

“Results” file expressing model accuracies as r values with standard deviations. It has been 

shown r values greater than 0.3 in winter wheat, result in genetic gains when used in GS models 

(Heffner et al., 2010).  

Results and Discussion 

Phenotypic data 

  Disease ratings across years, locations, disease pressure type, and replications were 

combined using PROC MIXED in SAS 9.4 (SAS Institute, 2017) into one representative number 

referred to as a best linear unbiased prediction or BLUP. Each wheat line in the study possesses a 

unique BLUP indicating the best phenotypic estimate of the line.  

Evaluation of rating time points 

The CV for the three rating time points in the experiment can be found in Table 2.1. In 

disease studies, CVs between 20 and 30 percent are common for rating data. Data with a CV in 

this range are still useful for increasing disease resistance. The early disease rating had a CV of 

23.6 percent, the peak progression rating a CV of 20.0 percent, and the kernel quality post-

harvest rating a CV of 43.7 percent. Based on the CV of the early rating it may be possible to 

take disease ratings a week early to relieve the workload at more peak times in the program. The 
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peak progression ratings provide the best CV at 20.0 percent, but the early rating CV of 23.6 

percent is within the range of acceptable CV values for disease studies. The kernel quality post-

harvest rating CV of 43.7 percent indicates the post-harvest rating is influenced by more by 

environmental variation than the field ratings. The higher CV indicates the larger influence of 

human error in the given ratings. Based on the CVs alone, it is reasonable to conclude post-

harvest ratings taken on the kernel quality of the grain are not as useful as the field ratings.  

 From the data quality assessment of CVs, it appears early ratings may offer an alternative 

to peak progression ratings because the early ratings and peak progression ratings are almost 

equally variable. Knowledge of the disease cycle and progression indicates the most appropriate 

time to take ratings is at peak progression. However, flexibility in regards to when ratings are 

taken could enable breeders to ensure assessments occur each year free from worry of Mother 

Nature’s weather plans. The correlations between the two different rating time points were 

calculated to address this question. The correlations among all three time points are found in 

Table 2.2. Although the early rating CV indicates greater flexibility in rating time, the correlation 

of the early rating to the known peak progression rating is moderate at 0.52. Having only a 50 

percent correlation to the known standard means the early rating is only providing 50 percent of 

the same resistance information. In order to comfortably use another rating in place of the known 

ideal, a correlation of 90 percent or higher would be required. The CV of the post-harvest kernel 

quality data of 43.7 indicated the data were not informative for increasing disease resistance and 

the correlation of 0.41 or 41 percent to the peak progression rating reinforces the idea that post-

harvest rating is not a sufficient substitute. Thus, evaluation at peak progression should not be 

replaced with either proposed evaluation time point. The remaining analyses of the study were 

performed using the peak progression data.       
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Functionality of disease nursery  

 To assess the efficacy of the inoculated irrigated nursery against the natural pressure 

nursery, the covariance parameter estimates, as described in the materials and methods, 

phenotypic data section were investigated. The covariance parameter estimates are listed in 

Table 2.3. To assess the efficacy, the genotype-by-environment interaction has been broken into 

two main interactions, the genotype-by-year and genotype-by-location interactions. The 

examination of the genotype-by-year interaction provided a significant variance component 

estimate of 0.1193 (p-value = 0.0015). This indicates the genotypes changed ranks or that they 

had a different magnitude of response between years. Given that the two field seasons in the 

study, 2016 and 2017, were noticeability different, this is to be expected. The spring of 2016 was 

warm, humid, and rainy at the time of heading, creating optimal conditions for the pathogen. The 

spring of 2017 was cold, humid, and rainy at the time of heading, resulting in inadequate 

conditions for aggressive growth of the pathogen. P. nodorum has reduced infection capability at 

lower temperatures, as observed in 2017. The high significance of the genotype-by-year 

interaction reinforces the major role environmental conditions, such as temperature and 

humidity, play in disease progression.  

 The second interaction in the genotype-by-environment term, genotype-by-location, had 

a variance parameter estimate of 0 and a highly non-significant p-value to the point SAS does not 

provide a number (it’s undefined but approaching 1). The estimate and p-value of the genotype-

by-location interaction indicates the ranks of the genotypes did not change within the same year 

across the two locations. The major influencing element of genotype-by-environment term is the 

given year and the environmental conditions within that year at heading and flowering. The non-

significance of the genotype-by-location interaction suggest a breeder can maintain a nursery at 
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either location and obtain equivalent disease evaluations. In the two years of this study, the 

inoculated irrigated disease nursery performed comparable to the target region natural disease 

pressure nursery. The genotype-by-location interaction showed the high efficacy of the irrigated 

nursery. Assuming that the same disease information can be obtained within the same year at 

either of the locations raises the question about the need for the extra inputs and man power to 

operate the inoculated irrigated nursery. Instead of investing additional resources to establish a P. 

nodorum nursery, disease evaluations could be taken at peak progression on plots already planted 

in the target wheat growing region of Illinois.                

Heritability on a line mean basis 

Heritability on a line mean basis is the proportion of variability contributed by the 

genotype. The variance parameter estimates are found in Table 2.3. The mean phenotypic 

variance (𝜎𝑝̅
2) was calculated as 0.8936, and the genotypic variance (𝜎𝐺

2) was estimated to be 

0.6256. Therefore, heritability on a line mean basis for glume blotch resistance is ℎ^2 =

0.6256/0.8936 = 0.7 or 70 percent. This is a moderate heritability for a trait known to be 

highly quantitative with numerous small effect loci. This suggests GS could be a beneficial tool 

to aid in the improvement of increased glume blotch resistance in wheat.  

Calculation of genomic estimated breeding values 

 PopVar provides a second output file titled Genomic Estimated Breeding Values, often 

shortened to GEBVs. GEBVs are estimated breeding values based on both genomic and 

phenotypic information as opposed to simple BLUPs. The GEBV output file contains the 

model’s best estimate of the phenotypic value of each wheat line based on its sum of genetic 

marker effects as calculated from the training population.  The model was trained on the 

provided phenotypes (phenotypically estimated breeding values or PEBVs) and the 
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accompanying genotypes of the phenotyped lines. GEBVs are the accumulation of all genetic 

effects within each genetically distinct individual which predicts the phenotypic behavior of that 

individual. GS and the calculation of GEBVs allow for prediction of phenotypes that have never 

been collected solely on the genetic marker effects of the line.   

Breeding line comparison 

Glume blotch resistance GEBVs were calculated for the 380 breeding lines evaluated in 

the study. The breeding lines were then ranked from resistant to susceptible based on GEBVs 

and PEBVs. When compared there is an overlap of 19 of 22 lines in the top 5 percent of resistant 

lines in the study. When comparing the top 10 percent 25 lines of 44 are found to overlap. The 

model is performing well enough to identify roughly the same lines based on GEBVs as we 

established by PEBVs in the field. On the opposite end of the scale comparing the bottom 5 

percent of resistant lines, we find 17 of 22 lines overlap from the PEBVs to the GEBVs. 

Expanding to the bottom 10 percent of susceptible lines we find 31 of 46 overlap from the 

PEBVs to the GEBVs. Once again the model identified the least resistant breeding lines in a 

manner that is consistent with the PEBVs being obtained from the field disease evaluations. The 

comparisons of overlap for the top 5 percent, top 10 percent, bottom 5 percent, and bottom 10 

percent can be found in Table 2.4, Table 2.5, Table 2.6, and Table 2.7, respectively.   

Genomic selection prediction accuracies 

 The prediction accuracies and standard deviations were calculated by PopVar, and single 

values were output into a “Results” file. For the 5 runs shown the model accuracies ranged from 

0.467 to 0.480 and the standard deviations ranged from 0.077 to 0.098, with an average accuracy 

and standard deviation of 0.471 and 0.087, respectively. The model accuracies and standard 

deviations can be found in Table 2.8. The prediction accuracies and standard deviations for all 
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runs are consistent, demonstrating the stability of the model no matter which lines are randomly 

assigned to the training and validation populations. In all cases, the prediction accuracies and the 

standard deviations are not in danger of dropping below the 0.3 prediction accuracy mark, which 

is illustrated by the central limit theorem in Figure 2.1. Other disease traits in the University of 

Illinois’ wheat breeding program have been shown to have higher prediction accuracies by 

Arruda et al., 2015, but genetic gains are achievable using GS models with 47 percent 

accuracies. Based on the results reported here GS is an additional tool plant breeders can use to 

improve the resistance of wheat to P. nodorum glume blotch.  
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CHAPTER 3: GENOMIC SELECTION FOR MILLING AND BAKING QUALITY IN 

SOFT RED WINTER WHEAT 

Abstract 

Wheat (Triticum aestivum L.) is a globally important crop providing 20 percent of human 

caloric intake yearly, ordinarily in the form of flour. Milling and baking qualities are primary 

breeding objectives in wheat breeding programs as the end use quality directly impacts the 

acceptance of new wheat varieties. Milling and baking qualities are traditionally assessed at later 

stages in a breeding program. Genomic selection (GS) combines all marker effect information 

for an individual into genomic estimated breeding values (GEBVs) to provide an estimate of the 

individual’s performance before phenotyping. GEBVs are the summed effects of all the loci and 

provide a more comprehensive estimate of quantitative traits than marker-assisted selection. GS 

has the potential to accelerate the improvement of wheat quantitative traits such as milling and 

baking quality parameters. In this study, GS is explored as a method to assess potential milling 

and baking quality earlier in a breeding program to reduce resources used to evaluate 

unfavorable lines, including personnel time, field resources, and program funds. The three 

milling and baking quality parameters, flour yield, softness equivalence, and lactic acid solvent 

retention capacity, were assessed for their use in GS models in the University of Illinois’ 

breeding program. The newly built milling and baking GS models support the idea of using GS 

to accelerate breeding line improvement and variety development.  
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Introduction 

 Milling and baking quality directly impacts the acceptance of new wheat varieties with 

end use consumers. Superior milling and baking quality ensures the functionality of the milled 

product for the millers and bakers purposes. Wheat breeders have a tightrope to walk between 

satisfying end users and providing producers with agronomically improved agronomic varieties 

(Schuler et al., 1995). The assessment of milling and baking quality is laborious, expensive, and 

destructive.  Furthermore, the timing of phenotypic data availability slows selection for milling 

and baking quality, because only one research lab processes the samples for every breeder in the 

eastern soft wheat growing region of the United States (Heffner et al., 2011). Due to the 

constraints of testing milling and baking quality, breeders do not typically assess these qualities 

until the later stages of breeding line evaluation when line numbers have been reduced based on 

various agronomic traits, genotypes are more stable due to increased homozygosity from more 

rounds of self-pollination, and larger seed quantities are obtained (Heffner et al., 2011). By not 

assessing milling and baking characteristics until F6 or F7 in a breeding program there is 

increased potential of expending resources on breeding lines that will not be accepted in the 

market as a result of undesirable qualities. The potential to eliminate breeding lines possessing 

unfavorable milling and baking quality earlier in a breeding program would allow for funds to be 

redirected to developing varieties with acceptable milling and baking quality since resources 

wasted on inferior lines would be reduced.  

Genomic selection (GS) offers an exciting opportunity to successfully re-direct program 

resources to the production of improved wheat varieties. GS is a statistical genomics tool, first 

proposed by Meuwissen et al. (2001) in dairy livestock, that predicts the phenotypic response of 

individuals through the estimation of genomic estimated breeding values (GEBVs) calculated 
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using genome-wide molecular effects (Meuwissen et al., 2001). GS is more effective on 

quantitative traits than marker-assisted selection (MAS) as it captures small effect loci in 

addition to large effect loci (Heffner et al., 2011; Meuwissen et al., 2001). Training populations 

containing known phenotypes and genotypes are used to train GS models, and marker effect 

estimates are calculated from the representative training population (Heffner et al., 2009; Heffner 

et al., 2011; Meuwissen et al., 2001). The newly calculated marker effect estimates for the 

training population are used to calculate the GEBVs of breeding lines for which only genotypic 

information is available (Heffner et al., 2009; Heffner et al., 2011).  

GS has the ability to allow selection before traditional phenotyping has occurred. In the 

past, obtaining genomic information was often more difficult, expensive, and time consuming 

than collecting phenotypic information. Now, the roles have reversed and genomic information is 

readily available while phenotypic information has become the limiting factor. The use of a GS 

model could allow a breeder to gather phenotypic data on fewer breeding lines (that are 

genetically representative of the germplasm in question), use this information to train a GS 

model, and predict the response of other members of the breeding population (Heffner et al., 

2009). This scheme has the potential to save labor, time, and monetary resources. 

In this study, three milling and baking quality parameters were evaluated for their 

potential in GS models as a breeding tool in the University of Illinois’ wheat breeding program. 

Flour yield, softness equivalence, and lactic acid solvent retention capacity are critical milling 

and baking quality parameters for end users. These milling and baking quality characteristics are 

known to be highly heritable and quantitatively inherited (Heffner et al., 2011), making them 

ideal candidates for potential use in GS.      
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Materials and Methods 

Plant material and field design 

 In this experiment, 272 breeding lines were evaluated for milling and baking quality. The 

breeding lines were originally assembled into a panel by Arruda et al. (2015) to represent the 

University of Illinois’ wheat breeding program for his studies on GS and association mapping for 

Fusarium Head Blight. The panel was designed to capture the largest portion of genetic diversity 

in the University of Illinois’ breeding program. The panel referred to as the MAM panel contains 

185 lines from the University of Illinois’ wheat breeding program and 87 lines from 17 soft red 

winter wheat midwestern and eastern US breeding programs. The breeding lines in the MAM 

panel consisted of the current breeding lines in the University of Illinois’ program and lines used 

as parents in the breeding program.  

 Wheat lines were planted in 1 meter long single rows in a randomized complete block 

design. Lines were grown in 2015 and 2016 in field plots at the University of Illinois’ Maxwell 

Research Farm in Savoy, IL. Both experimental fields, 2015 and 2016, were grown in a 

Drummer silty clay loam with 0-2% slopes. The 2015 experiment was planted September 26, 

2014, and the 2016 experiment was planted September 28, 2015. The 2016 experiment was 

grown in a conidia inoculated misted irrigated Parastagonospora nodorum glume blotch disease 

nursery. Each year the experimental plots received 0.0448 metric tons of liquid nitrogen per 

hectare pre-planting and did not receive a spring nitrogen application. The entire 1 meter long 

row of each breeding line was hand harvested, processed through a Wintersteiger stationary 

thresher, and analyzed using the phenotyping protocols described below. 
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Phenotypic data 

 Harvested grain was analyzed by the USDA-ARS Soft Wheat Quality Lab (SWQL) at 

Ohio State University in Wooster, Ohio. Grain samples typically weighed between 100 and 200 

grams, but a few samples had less than 100 grams of grain. Grain samples were extensively 

cleaned to remove diseased damaged kernels before analysis. The Soft Wheat Quality Lab uses a 

modified Quadrumat milling method for grain quality analysis. The moisture content of the grain 

was estimated using a Perten NIR DA7200 whole grain analyzer, and the grain was then 

tempered to 15 percent moisture before milling. During tempering, grain samples were placed in 

glass jars with distilled water, sealed, and tumbled on a chain driven conveyor for approximately 

30 minutes or until all the water was absorbed (USDA, 2018a). After tempering, grain samples 

were kept in the sealed jars at room temperature for a minimum of 24 hours to allow for 

consistent moisture content throughout the kernels (USDA, 2018a).  

Tempered grains were fed through a Quadrumat break roll unit and passed through three 

sets of milling rolls, each allowing smaller particles to pass through to move from grain to flour 

(USDA, 2018a). After milling, the product was sieved on a Great Western sifter box with 

sequential 40- and 94-mesh stainless steel bolting cloth screens. The 40-mesh screen has 471 

micron openings, and the 94-mesh screen has 180 micron openings, used “to separate the milled 

product into three factions: bran, mids, and break flour” (USDA, 2018a). Bran is the largest 

particle size and is collected above the 40-mesh screen, mids are medium particle size and 

harvested above the 94-mesh screen, and break flour passes through the 94-mesh screen (USDA, 

2018a). The calculation of total flour is the weight of the break flour (passed through the 94-

mesh) and the mids (caught by the 94-mesh). The total flour is then used to calculate flour yield 

in the equation: 
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𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑜𝑢𝑟

𝑔𝑟𝑎𝑖𝑛 𝑤𝑒𝑖𝑔ℎ𝑡
 𝑥 100% 

where grain weight is the weight of the tempered, whole grain sample. Higher values for flour 

yield are desirable as it is a direct measure of total recoverable flour from wheat kernels during 

the milling process. Higher flour yields translate to higher volumes of flour produced from the 

same size grain sample.  

 Softness equivalence, the second trait of interest, estimates grain softness and flour 

particle size. Softness equivalence is calculated by the equation: 

𝑏𝑟𝑒𝑎𝑘 𝑓𝑙𝑜𝑢𝑟 

𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑜𝑢𝑟
 𝑥 100% 

where break flour is the weight of the break flour or the milled product passing through the 94-

mesh screen. Total flour is determined as outlined above. Higher values for softness equivalence 

indicate a larger percentage of the total flour yield is break flour or the smallest flour particle size 

which identifies higher quality flour for baking.   

 The third quality trait is lactic acid solvent retention capacity (SRC) which is a measure 

of the “percentage of solvent retained by a flour/solvent slurry after centrifugation and draining” 

(USDA, 2018a; Cabrera et al., 2015). To obtain all fractions used in SRC test the mids are 

passed through the Quadrumat reduction roll unit to produce shorts and reduction flour (USDA, 

2018a). The shorts and reduction flour are separated by an 84-mesh screen (213 micron 

openings) (USDA, 2018a). The break flour, which passed through the 94-mesh screen, and the 

reduction flour are blended into straight grade flour for use in SRC test (USDA, 2018a). The 

lactic acid SRC test is a 1 gram test using the straight grade flour and provides a measure of 

gluten strength with higher lactic acid SRC values indicating greater flour gluten strength, which 

directly influences potential future uses. Higher flour gluten strength results in increased 
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elasticity of the milled product leading to preferential baking uses based on the flours ability to 

stretch. Breads are traditionally baked using hard wheat flour which contains much higher gluten 

content allowing the bread to rise and stretch. Cookies, pastries, and biscuits are traditionally 

baked using soft wheat flour because of its weaker gluten strength resulting in flatter baked 

goods. In soft wheat varieties values below 85 percent indicate weak protein and values above 

110 percent indicate strong protein. Lactic acid SRC is calculated according to the equation: 

((
𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑤𝑒𝑖𝑔ℎ𝑡

𝑓𝑙𝑜𝑢𝑟 𝑤𝑒𝑖𝑔ℎ𝑡
− 1)  𝑥 (

86

100 − 𝑓𝑚𝑜𝑖𝑠𝑡
))  𝑥 100% 

where residue weight is equal to the weight of drained, saturated flour. Flour weight is the weight 

of the dry flour and fmoist is the percent moisture of wheat flour estimated by Unity NIR.  

 The Quadrumat break roll milling unit and its milling process are shown in Figure 3.1. 

The figure is from the USDA-ARS SWQL Materials and Methods 2017, Figure 1 (USDA, 

2018a). To reduce confounding, controlled temperature and humidity was used for milling of all 

samples. The temperature was held at 19-21 degrees Celsius and relative humidity of 58-62 

percent (USDA, 2018a). Prior to milling samples, the mill was allowed to run empty to 

equilibrate the mill temperature to 33± 1.0 degree Celsius (USDA, 2018a).   

The raw data from the milling and baking test were provided to the University of Illinois’ 

research group by the USDA-ARS SWQL, and the data were further analyzed by the small 

grains breeding group. To obtain the best phenotypic value of each breeding line for the three 

quality traits best linear unbiased predictions (BLUPs) were calculated using PROC MIXED in 

SAS version 9.4 (SAS Institute, 2017). BLUPs were used to summarize the quality data of each 

line to obtain unbiased predictions across years and environments. The overall mean (𝑦̅..) of the 

trait of interest and the breeding line difference from the overall mean(𝑔𝑗) were calculated in 

PROC MIXED according to the equation:  
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𝑌𝑖𝑗 = 𝜇 + 𝑌𝑖 + 𝐺𝑗 + 𝜀𝑖𝑗 

where 𝑌𝑖𝑗 is the observed phenotype, 𝜇 is the overall grand mean, 𝑌𝑖 is the random effect of the 

ith year, 𝑁𝐼𝐷(0, 𝜎𝑌
2),  𝐺𝑗 is the random effect of the jth genotype or wheat line, 𝑁𝐼𝐷(0, 𝜎𝐺

2), and 

𝜀𝑖𝑗 is the random error term, 𝑁𝐼𝐷(0, 𝜎𝑒
2). The overall mean and the breeding line difference were 

combined to calculate the BLUP for each genotype. The BLUP calculation equation is below.  

𝐵𝐿𝑈𝑃.𝑗 = 𝑦̅.. + 𝐺𝑗 

Genotypic data 

 The panel of lines used in this study was originally assembled by previous Doctoral 

candidate Marcio Arruda, and the genotypic files were prepared as described by Arruda et al. 

(2015) for his study on GS for Fusarium head blight in wheat. Genotypic data were gathered 

using genotyping-by-sequencing (GBS) technology by the University of Illinois’ small grains 

research team. The genotyping procedure is outlined in Arruda et al. (2015). In brief, DNA was 

extracted from 5-day old leaves, GBS libraries were constructed, sequence data were obtained 

from a 96-plex Illumina HiSeq2000, SNPs were called, and the data were filtered for minor 

allele frequency. Missing data were imputed using the expectation maximization imputation 

(EMI) method due to its shorter computational time, higher accuracies for some traits, and its use 

in other wheat GS studies (Arruda et al., 2015). The genotype files contain 6,451 SNP markers 

that have been filtered for minor allele frequency and position. 

Coefficient of variation 

 Coefficient of variation (CV) is a measure of data quality within a study, commonly used 

by plant breeders to assess the proportion of the data variation from genetic and non-genetic 

sources. A CV is the ratio of the standard deviation (𝑠) to the mean(𝑦̅), as shown in the equation: 

𝐶𝑉 =
𝑠

𝑦̅
 𝑥 100% 
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 Higher quality data are indicated by lower CVs, as it signals more variation is from 

genetic differences than from non-genetic differences such as field placement and human error. 

Higher CVs caution the reduced ability to assess genetic differences among lines due to larger 

variation in non-genetic factors. Lower CVs indicate genetic gains can be made when using the 

data. Milling and baking traits are considered to be stable with high heritability, meaning CV 

values should be less than 10.   

Genomic selection 

 GS models were produced using two platforms for the three milling and baking traits. 

The GS model for flour yield was produced using the PopVar statistical package created by 

Mohammadi et al. (2015) for R software (R Core Team, 2016). To assess flour yield the ridge-

regression best linear unbiased prediction (rrBLUP) model is used. In ridge-regression best linear 

unbiased prediction all markers are equally shrunken towards zero in an infinitesimal model that 

sets all markers as random effects with a common variance (Arruda et al., 2015; Heffner et al., 

2011; Meuwissen et al., 2001). PopVar allows the user to determine the number of folds and 

iterations for the creation of the model.  

 GS models for softness equivalence and lactic acid solvent retention capacity were 

attempted using PopVar; however, PopVar’s usefulness is sometimes limited due to pre-

determined computational seeds and small variances resulting in faulty calculations of GEBVs. 

Instead, the two traits were assessed using rrBLUP (Endelman, 2011; Endelman and Jannik, 

2012) as modified by Dr. Carolyn Butts-Wilmsmeyer and Dr. Alexander Lipka. The code used 

for evaluation of GS for softness equivalence and lactic acid solvent retention capacity (SRC) 

performs model cross validation as a five-fold scheme and calculates genomic estimated 

breeding values (GEBVs) on the full set of genotyped breeding lines. Based on our 
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understanding of PopVar, the modified rrBLUP code is performing in the same manner as 

PopVar except the computational seed is known to differ and a random permutation is used to 

select the lines used in the training and validation data sets during cross-validation. These slight 

computational amendments prohibit the small phenotypic variance of the traits from causing 

cause issues. The user maintains the ability to set the number of folds and desired iterations 

while performing the rrBLUP GS code.         

Training and validation populations 

 A five-fold cross validation was performed on all three traits regardless of the platform 

used to perform GS. In PopVar the training and validation populations are not assigned by the 

researcher, rather the program uses a random number to divide breeding lines into groups based 

on the specified folds. PopVar does not notify the user which breeding lines are being used for 

training and which are being used for validation. In the case of a five-fold cross validation, 

PopVar divides the breeding lines into five groups. PopVar then uses four of the groups to train 

the GS model and reserves one for validation. Once the model is run based on the assigned 

groups, PopVar randomizes the phenotypes individuals again into five new groups and performs 

the procedure over until the desired number of iterations has been met.   

 In the rrBLUP code used to perform GS on softness equivalence and lactic acid SRC, a 

random number permutation assigns breeding lines to five groups, four groups for training and 

one group for validation. The permutation is designed to randomly re-sort the breeding lines 

from 1 to 272, and then they are divided into fifths based on the placement in the permuted order. 

The model is trained on the last four fifths of the newly sorted breeding lines, validated on the 

first fifth and model correlations calculated. Then, the model is trained on the first fifth and last 

three fifths, validated on the second fifth, and model correlations calculated. The model is cross-
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validated in this manner until all fifths have been used as the validation population. The model 

performing in this manner is considered a five-fold cross-validation scheme. The random number 

permutation in the code can be accessed, enabling the training and validation populations to be 

viewed.  

Calculation of genomic estimated breeding values 

 Genomic estimated breeding values (GEBVs) are the summation of the loci effects of 

each individual breeding line. GEBVs are the best estimate of the genetic value for each breeding 

line from the GS model, when the model has been trained using the provided population which 

has been theoretically selected due to its genetic representation of the breeding population in 

question. The training population provides phenotypes (phenotypically estimated breeding values 

or PEBVs) and genotypes for the GS model to learn the values of the genetic effects of the 

population. The validation population also has phenotypes and genotypes, but only genotypes are 

used in the model to predict the phenotypes to confirm the prediction accuracy of the model. 

After running the specified number of iterations PopVar calculates the GEBVs of all the 

breeding lines without regard to their presence in the training or validation populations. The 

GEBVs provided in the output file are calculated by PopVar as an average of the predicted 

GEBVs from all iterations of the GS model. GEBVs allow for phenotypes to be predicted that 

have never been observed based solely on the breeding lines genetic factors (Heffner et al., 2009; 

Heffner et al., 2011).   

 In the rrBLUP code used for GS of softness equivalence and lactic acid SRC, GEBVs 

were run in a separate step of the code than the model validation. In the GEBV calculation all 

breeding lines are considered at the same time in a single iteration of a ridge-regression model. A 

simple ridge-regression model is performed to calculate the GEBVs of all the breeding lines. 
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Ridge-regression provides a summed response for the genetic markers and their loci effects of 

each marker within a breeding line. In ridge-regression markers are treated as random effects 

with a common variance while concurrently estimating marker effects (Arruda et al., 2015; 

Heffner et al., 2011; Meuwissen et al., 2001).  

Genomic selection prediction accuracies  

 Prediction accuracies were measured by calculating the correlation between the GEBVs 

and PEBVs. The correlation of the PEBVs and the GEBVs indicate the ability of the model to 

properly predict how the breeding lines perform and are a measure of model accuracy. After 

PopVar has met the desired iterations specified by the user, PopVar evaluates the ability of the 

model to accurately predict the phenotypes of each validation population in each iteration and 

provides the average correlation (r) and the standard deviation (s) in an output file. In the 

rrBLUP code, the ability of the model to accurately predict the phenotypes of each validation 

population (one-fifth at a time) is assessed at each fold. The correlation of the GEBVs and the 

PEBVs of all five turns are returned from the code and an average correlation (r) is calculated 

with its standard deviation (s).  

Results and Discussion 

Phenotypic data 

 The raw phenotypic values for the milling and baking qualities of interest were collected 

by the USDA-ARS SWQL in Wooster, Ohio and provided to the University of Illinois’ small 

grains breeding program for analysis. The raw phenotypic values for the 2015 seed increase rows 

were received by the small grains program on May 26, 2016, and the raw values for the 2016 

seed submission were received on May 15, 2017. The raw phenotypic values were calculated as 

described above in the materials and methods section.  
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 The raw phenotypic values for each milling and baking quality parameter were combined 

using PROC MIXED in SAS 9.4 (SAS Institute, 2017) across the two years into one 

representative value referred to as a best linear unbiased prediction or BLUP. A unique BLUP 

was calculated for each breeding line and for each of the milling and baking quality parameters. 

Thus, one breeding line possesses three unique BLUPs in this study, one BLUP for flour yield, 

one BLUP for softness equivalence, and one BLUP for lactic acid SRC.  The BLUPs of each 

trait are also considered phenotypic estimated breeding values (PEBVs) and are referred to as 

PEBVs throughout the rest of the chapter.  

Coefficient of variation  

 The CV for the three milling and baking traits can be found in Table 3.1. Milling and 

baking traits are considered to be stable indicating a CV value should be less than 10 in order to 

use the phenotypic data comfortably. In this study, the CVs were calculated for the three milling 

and baking qualities across the two years. The CVs of flour yield, softness equivalence, and 

lactic acid SRC were 1.53, 4.02, and 5.96, respectively. All of the CVs were less than 10 

indicating high quality data with the variation among breeding lines is primarily due to genetic 

differences and not non-genetic differences or human/machine error. The high quality CVs 

indicate the milling and baking traits in question could be ideal candidates for GS. The CVs are 

an indicator of the trait heritability and demonstrate the traits are highly heritable. Heritability 

calculations are often performed to provide an indication of GS’s potential usefulness; however, 

in the case of this study heritability calculations are not appropriate as there is only one 

replication of the data in a single year. Thus, genotype-by-environment interactions cannot be 

assessed.     
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Calculation of genomic estimated breeding values 

 GEBVs were calculated for all breeding lines in the study for the three milling and 

baking traits of interest. The GEBVs for flour yield were calculated using PopVar, while the 

GEBVs for softness equivalence and lactic acid SRC were calculated using the rrBLUP set of 

code. The breeding lines were ranked from high to low response quality for each trait based on 

PEBVs and GEBVs. Breeders are interested in evaluating breeding lines at the top and bottom of 

the distribution of lines; therefore, comparisons of overlap between PEBVs and GEBVs for the 

top ten percent of flour yield, softness equivalence, and lactic acid SRC were made and can be 

found in Table 3.2, Table 3.3, and Table 3.4, respectively. When compared there is an overlap of 

25 of 27 lines in the top ten percent of flour yield with change of rank occurring between the 

PEBVs and the GEBVs. Comparing the PEBVs and GEBVs for softness equivalence and lactic 

acid SRC, the top ten percent of lines are displayed perfect overlap with no change in rank for 

each trait. The phenotypic variability for softness equivalence and lactic acid SRC are being 

highly explained by the genotypic effects, resulting in only slight differences in the PEBV and 

GEBV trait values. The models are performing exceptionally well, identifying all or nearly all of 

the same lines that were identified for their superior quality based on phenotypic data. On the 

other end of the scale, the bottom ten percent of breeding lines for flour yield (Table 3.5), 

softness equivalence (Table 3.6), and lactic acid SRC (Table 3.7) we find 24 of 27 lines overlap, 

27 of 27 lines overlap, and 27 of 27 lines overlap, respectively. In the bottom ten percent of all 

three traits, change in rank does occur to some degree. Comparisons of overlap between the 

bottom ten percent of PEBVs and GEBVs for flour yield, softness equivalence, and lactic acid 

SRC are found in Tables 3.5, 3.6, and 3.7, respectively.   
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Genomic selection prediction accuracies 

After completion of the desired iterations, PopVar assesses the ability of the model to 

accurately predict the phenotypes of the validation set of all iterations and expresses the average 

accuracy (r) and the average standard deviation (s) in the output file. The accuracy of the model 

being expressed is a correlation of the GEBVs of the validation set with the PEBVs of the 

validation set. The correlations of model accuracy from five runs of PopVar based on flour yield 

are shown in Table 3.8. The average correlation from PopVar for flour yield based on five runs 

of the model is 0.547 with an average standard deviation of 0.091. The correlations of the model 

for the five runs range from 0.535 to 0.557, and the standard deviations ranged from 0.080 to 

0.100. There are only small fluctuations in the accuracy and standard deviations demonstrating 

the stability of the model.  

 After completion of the five-fold cross validation, the second set of GS code gauges the 

accuracy of the model through a correlation of the GEBVs and PEBVs of the validation set in 

each fold. This code is calculating accuracies or correlations in the same manner as PopVar. The 

code is different from PopVar as it outputs the five correlation values (r_CV#), one for each fold, 

along with the average correlation (r) and standard deviation (s). By outputting all five 

correlation values the researcher can evaluate if the breeding lines are being broken up into 

representative groups through the random permutation. Table 3.9, Table 3.10, and Table 3.11 

shows the model correlations as a measure of accuracy along with the standard deviation of each 

run for flour yield, softness equivalence, and lactic acid SRC, respectively. Five runs of the 

model were performed for each milling and baking trait. The values of each run and the average 

for each trait are shown. Although flour yield was successfully run through PopVar, it was also 

run through the second set of code. The average model accuracy and standard deviation for flour 
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yield from this set of code are 0.551 and 0.093, with a range of 0.515 to 0.593 for accuracy and a 

range of 0.041 to 0.179 for standard deviation. The model accuracy and standard deviation for 

flour yield coming from the second set of code are consistent with PopVar’s results, 

demonstrating the two platforms are performing similarly. GS for softness equivalence was 

performed using the second set of code, providing an average accuracy of 0.512 with an average 

standard deviation of 0.093. The model correlations for softness equivalence for the five runs 

range from 0.499 to 0.540 with a range of standard deviation from 0.068 to 0.108. GS for lactic 

acid SRC resulted in an average model correlation of 0.594 with an average standard deviation of 

0.066. The model correlation for the five runs of lactic acid SRC range from 0.579 to 0.617 with 

a range of standard deviations from 0.047 to 0.086. The prediction accuracies and standard 

deviations for flour yield, softness equivalence, and lactic acid solvent retention capacity for all 

iterations are consistent, establishing the stability of the model even with random assignment of 

lines to training and validation populations. The prediction accuracies and standard errors are not 

in danger of dropping below the 0.3 prediction mark needed to accomplish gains in winter wheat 

through GS (Heffner et al., 2010). This is illustrated by the central limit theorem in Figure 3.2 for 

flour yield, Figure 3.3 for softness equivalence, and Figure 3.4 for lactic acid SRC. Thus, based 

on these results the use of GS for flour yield, softness equivalence, and lactic acid solvent 

retention capacity is an addition to the breeder’s tool belt for improving milling and baking 

qualities. Use of GS for these quality parameters should allow breeders to select for these traits at 

an earlier stage of variety development.   
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TABLES 

 

 

Table 2.1. Coefficients of variation for the early, peak progression, and post-harvest rating time 

points for disease resistance on the glumes of 380 soft red winter wheat breeding lines. 

 

Early Rating Peak Progression Rating 
Post-Harvest 

Kernel Quality 

23.6 20.0 43.7 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2. Correlations of the three experimental rating time points for glume blotch resistance 

in soft red winter wheat to each other. 

 

 Early Rating 
Peak Progression 

Rating 

Post-Harvest 

Kernel Quality 

Early Rating 1 0.52 0.26 

Peak Progression 

Rating 
 1 0.41 

Post-Harvest 

Kernel Quality 
  1 
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Table 2.3. Variance parameter estimates for P. nodorum glume blotch resistance in soft red 

winter wheat.  

 

Variance Parameter Estimates 

Variance Parameter Estimate P-value 

Year 0.2245 0.2551 

Location(Year) 0.0138 0.3849 

Block(Year-by-Location) 0.03899 0.1012 

Genotype 0.6256 <0.0001** 

Year-by-Genotype 0.1193 0.0015** 

Location-by-Genotype 0 NS 

Error 1.6625 <0.0001** 

 

** Highly significant at alpha 0.05 

NS Highly not significant at alpha 0.05; no value given  
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Table 2.4. Top five percent of soft red winter wheat breeding lines for glume blotch resistance 

based on PEBVs and GEBVs. Breeding line names highlighted in yellow also appear on the 

other side of the table in the top five percent of lines based on PEBVs compared to GEBVs 

 

Breeding line PEBV Breeding line GEBV 

IL13_28511 3.826 IL10_6876 4.450 

MO050921 4.002 IL10_30320 4.548 

IL13_7027 4.002 NY99045_3110 4.605 

Truman 4.002 IL12_26448 4.610 

IL12_26448 4.002 IL10_6855 4.611 

IL06_9607 4.089 KY02C_3005_25 4.626 

KY02C_3005_25 4.089 Truman 4.626 

NY99045_3110 4.089 IL06_9607 4.658 

IL10_30320 4.089 IL476_78S 4.693 

IL10_6876 4.177 IL13_7027 4.713 

IL13_25652 4.352 MO050921 4.730 

IL12_8545 4.352 MO080864 4.732 

IL06_7550 4.352 IL10_29373 4.764 

IL476_78S 4.352 IL13_28511 4.777 

IL06_16639 4.439 IL06_7550 4.804 

IL13_27973 4.439 IL13_20918 4.817 

IL10_32545 4.439 MO011174 4.840 

Bromfield 4.439 IL10_8568 4.849 

IL06_31053 4.439 IL10_6608 4.870 

MO080864 4.439 IL10_19317 4.871 

IL10_6855 4.439   

 

.  
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Table 2.5. Top ten percent PEBVs for soft red winter wheat breeding lines for glume blotch 

resistance compared to the top ten percent GEBVs. Breeding line names highlighted in yellow 

also appear on the other side of the table in the top ten percent of lines based on PEBVs 

compared to GEBVs.  

 

 

Breeding line PEBV Breeding line GEBV 

IL13_28511 3.826 IL10_6876 4.450 

MO050921 4.002 IL10_30320 4.548 

IL13_7027 4.002 NY99045_3110 4.605 

Truman 4.002 IL12_26448 4.610 

IL12_26448 4.002 IL10_6855 4.611 

IL06_9607 4.089 KY02C_3005_25 4.626 

KY02C_3005_25 4.089 Truman 4.626 

NY99045_3110 4.089 IL06_9607 4.658 

IL10_30320 4.089 IL476_78S 4.693 

IL10_6876 4.177 IL13_7027 4.713 

IL13_25652 4.352 MO050921 4.730 

IL12_8545 4.352 MO080864 4.732 

IL06_7550 4.352 IL10_29373 4.764 

IL476_78S 4.352 IL13_28511 4.777 

IL06_16639 4.439 IL06_7550 4.804 

IL13_27973 4.439 IL13_20918 4.817 

IL10_32545 4.439 MO011174 4.840 

Bromfield 4.439 IL10_8568 4.849 

IL06_31053 4.439 IL10_6608 4.870 

MO080864 4.439 IL10_19317 4.871 

IL10_6855 4.439 IL10_29377 4.887 

IL13_20918 4.527 IL14_26726 4.889 

IL10_6608 4.527 IL12_28257 4.891 

IL14_26726 4.527 IL10_6948 4.897 

IL13_29257 4.527 IL12_36166 4.904 

IL10_29373 4.615 IL12_8545 4.907 

IL11_12437 4.615 IL11_12437 4.912 

IL09_17057 4.615 IL11_5676 4.914 

IL06_23571 4.615 IL13_29257 4.920 

IL12_21235 4.615 IL13_6912 4.928 

IL12_21624 4.615 IL06_31053 4.933 

IL11_3466 4.702 Bromfield 4.934 

IL08_8844 4.702 IL10_6912 4.938 

Pio25R47 4.702 IL10_32545 4.948 

IL10_24617 4.702 IL11_3466 4.949 
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Table 2.5. (Con’t) 

 

IL04_10741 4.702 IL13_7045 4.950 

NC8170_45_2 4.702 IL08_8844 4.950 

IL13_18570 4.702 IL09_17057 4.955 

IL07_19062 4.702 IL11_963 4.957 

MD04W249_11_7 4.702 IL13_2156 4.964 

IL369_168R 4.702   

IL10_26814 4.702   

IL01_11445 4.702   

 

  



49 

 

Table 2.6. The bottom five percent PEBVs for soft red winter wheat breeding lines for glume 

resistance compared to the bottom five percent GEBVs. Breeding line names highlighted in 

yellow also appear on the other side of the table in the bottom five percent of lines based on 

PEBVs compared to GEBVs.  

 

 

Breeding line PEBV Breeding line GEBV 

ARS09_228 7.942 ARS09_228 7.163 

IL07_14547 7.679 IL01_16170 6.987 

Clark 7.504 P92829A1_1_1_3_3 6.969 

P92829A1_1_1_3_3 7.329 Clark 6.933 

NE06607 7.329 IL07_14547 6.817 

IL01_16170 7.242 NE06607 6.672 

IL10_28023 7.242 P0128A1_22_22 6.669 

IL11_7978 7.154 IL11_7978 6.656 

P0128A1_22_22 6.979 IL13_4504 6.532 

IL13_4504 6.891 P0179A1_17 6.509 

IL369_22S 6.891 IL10_28023 6.490 

ARGE07_1374_17_8_5 6.891 P981359C1_4 6.391 

IL97_6755 6.804 P03112A1_7_14 6.370 

Rosette 6.804 IL369_22S 6.347 

P0179A1_17 6.716 IL13_6459 6.346 

P981359C1_4 6.716 Patterson 6.333 

IL13_6459 6.716 IL97_6755 6.317 

Patterson 6.716 IL10_14458 6.302 

IL10_7871 6.716 GANC8248_12DH1 6.294 

GANC8248_12DH1 6.629 IL11_15514 6.285 

OK11311F 6.629   

Shirley 6.629   
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Table 2.7. The bottom ten percent of PEBVs for soft red winter wheat breeding lines for glume 

blotch resistance compared to the bottom ten percent of GEBVs. Breeding line names 

highlighted in yellow also appear on the other side of the table in the bottom ten percent of lines 

based on PEBVs compared to GEBVs.  

 

 

Breeding line PEBV Breeding line GEBV 

ARS09_228 7.942 ARS09_228 7.163 

IL07_14547 7.679 IL01_16170 6.987 

Clark 7.504 P92829A1_1_1_3_3 6.969 

P92829A1_1_1_3_3 7.329 Clark 6.933 

NE06607 7.329 IL07_14547 6.817 

IL01_16170 7.242 NE06607 6.672 

IL10_28023 7.242 P0128A1_22_22 6.669 

IL11_7978 7.154 IL11_7978 6.656 

P0128A1_22_22 6.979 IL13_4504 6.532 

IL13_4504 6.891 P0179A1_17 6.509 

IL369_22S 6.891 IL10_28023 6.490 

ARGE07_1374_17_8_5 6.891 P981359C1_4 6.391 

IL97_6755 6.804 P03112A1_7_14 6.370 

Rosette 6.804 IL369_22S 6.347 

P0179A1_17 6.716 IL13_6459 6.346 

P981359C1_4 6.716 Patterson 6.333 

IL13_6459 6.716 IL97_6755 6.317 

Patterson 6.716 IL10_14458 6.302 

IL10_7871 6.716 GANC8248_12DH1 6.294 

GANC8248_12DH1 6.629 IL11_15514 6.285 

OK11311F 6.629 IL476_191S 6.258 

Shirley 6.629 Shirley 6.246 

IL11_8144 6.541 P99840C4_8_3_1_12 6.230 

IL08_32814_4 6.541 Caldwell 6.222 

IL07_6861 6.541 Milton 6.203 

Caldwell 6.541 IL476_11R 6.203 

IL13_23870 6.453 G09418 6.162 

IL13_19346 6.453 IL07_6861 6.161 

IL10_17707 6.453 P0724B1_13 6.158 

IL11_4620 6.453 Freedom 6.151 

IL11_15514 6.453 IL99_26442 6.150 

IL10_14458 6.453 IL11_4620 6.143 

IL13_20375 6.366 P9975RA1_6_3_94 6.124 

IL13_4164 6.366 Excel307 6.121 

IL97_1828 6.366 Sisson 6.115 
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Table 2.7. (Con’t) 

 

IL99_26442 6.366 IL13_19330 6.094 

Freedom 6.366 IL476_256R 6.094 

P99840C4_8_3_1_12 6.366 IL08_32814_4 6.079 

IL10_12079 6.278 KWS013 6.061 

IL13_28906 6.278 LA07178C_44 6.055 

IL13_5222 6.278   

LA07178C_44 6.278   

KWS013 6.278   

IL476_256R 6.278   

IL13_19330 6.278   

Excel307 6.278   
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Table 2.8. Five-fold cross validated genomic selection prediction accuracies and standard 

deviations from five runs of the PopVar model for glume blotch resistance in soft red winter 

wheat. 

 

Iteration Accuracy (r) Standard Deviation (s) 

1 0.468 0.077 

2 0.481 0.082 

3 0.472 0.088 

4 0.467 0.089 

5 0.469 0.098 

Average 0.471 0.087 
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Table 3.1. Coefficients of variation for flour yield, softness equivalence, and lactic acid solvent 

retention capacity of 272 soft red winter wheat breeding lines.  

 

 

Flour Yield Softness Equivalence 
Lactic Acid Solvent 

Retention Capacity 

1.53 4.02 5.96 
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Table 3.2. Top ten percent of soft red winter wheat breeding lines for flour yield based on 

PEBVs and GEBVs. Breeding lines appearing in both the top ten percent for flour yield based on 

PEBVs and GEBVs are highlighted in the same color to allow changes in rank to be easily 

identified. Breeding lines that are not highlighted (remaining white) do not appear in the top ten 

percent on the other side of the table.   

 

 

Breeding line FY_PEBV Breeding line FY_GEBV 

IL08_28833 71.102 IL08_28833 70.317 

IL11_20829 70.301 IL11_20829 69.750 

IL00_8061 69.980 IL00_8641 69.677 

IL00_8641 69.900 IL06_13721 69.535 

IL06_13721 69.780 IL00_8061 69.466 

NE06607 69.780 IL10_19203 69.352 

IL06_7550 69.740 IL06_7550 69.345 

OH08_206_69 69.660 IL10_8568 69.331 

IL10_19203 69.620 IL00_8530 69.310 

IL10_19317 69.580 IL10_19317 69.305 

Excel307 69.539 IL10_33664w 69.283 

IL10_8568 69.499 OH08_206_69 69.260 

IL10_33664w 69.459 NE06607 69.255 

IL00_8530 69.419 IL07_21847 69.214 

IL06_18051 69.419 IL09_18352 69.162 

VA09W_188WS 69.419 IL09_18372 69.140 

IL09_18352 69.379 IL06_18051 69.124 

Milton 69.339 Excel307 69.058 

IL10_33378 69.259 IL10_19464 69.025 

IL09_18372 69.219 IL10_33378 69.019 

IL07_21847 69.179 VA09W_188WS 69.012 

IL10_24617 69.179 IL10_24617 69.009 

IL04_24668 69.139 IL10_35020 68.832 

IL10_19464 69.019 IL04_24668 68.791 

IL08_8844 68.898 IL08_8844 68.788 

IL10_35020 68.858 IL10_7970 68.768 

IL09_11630 68.858 IL10_29377 68.674 
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Table 3.3. Top ten percent of soft red winter wheat breeding line for softness equivalence based 

on PEBVs and GEBVs. Breeding lines appearing in both the top ten percent for softness 

equivalence based on PEBVs and GEBVs are highlighted in the same color to allow changes in 

rank to be easily identified. No changes in rank occurred for softness equivalence between the 

PEBVs and GEBVs. Only slight differences in calculated values are observed.    

 

 

Breeding line SE_PEBV Breeding line SE_GEBV 

OH08_269_58 66.438 OH08_269_58 66.438 

IL04_9942 65.905 IL04_9942 65.905 

IL08_28833 65.417 IL08_28833 65.417 

IL79_002T 64.928 IL79_002T 64.928 

Excel307 64.928 Excel307 64.928 

Caldwell 64.884 Caldwell 64.884 

IL10_34967 64.884 IL10_34967 64.884 

F0065 64.706 F0065 64.706 

Pio25R47 64.484 Pio25R47 64.484 

IL06_7653 64.218 IL06_7653 64.218 

IL06_7550 64.129 IL06_7550 64.129 

IL02_19463B 64.085 IL02_19463B 64.084 

IL08_12206 64.040 IL08_12206 64.040 

IL11_10272 63.952 IL11_10272 63.951 

LCS19227 63.685 LCS19227 63.685 

KY90C_054_39 63.685 KY90C_054_39 63.685 

IL04_8445 63.596 IL04_8445 63.596 

IL10_6948 63.508 IL10_6948 63.507 

IL10_35020 63.374 IL10_35020 63.374 

IL10_23808 63.374 IL10_23808 63.374 

IL10_30364 63.330 IL10_30364 63.330 

IL06_7034 63.152 IL06_7034 63.152 

IL07_16075 62.975 IL07_16075 62.975 

IL09_14063 62.975 IL09_14063 62.974 

IL08_8844 62.886 IL08_8844 62.886 

IL07_7527 62.886 IL07_7527 62.885 

IL10_7970 62.886 IL10_7970 62.885 
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Table 3.4. Top ten percent of soft red winter wheat breeding lines for lactic acid solvent 

retention capacity based on PEBVs and GEBVs. Breeding lines appearing in both the top ten 

percent for lactic acid solvent retention capacity based on PEBVs and GEBVs are highlighted in 

the same color to allow changes in rank to be easily identified. No changes in rank occurred for 

lactic acid solvent retention capacity between the PEBVs and GEBVs. Only slight differences in 

calculated values are observed 

 

 

Breeding line LA_PEBV Breeding line LA_GEBV 

ARGE07_1374_17_8_5 134.644 ARGE07_1374_17_8_5 134.642 

IL10_841 131.145 IL10_841 131.143 

IL10_32864 130.895 IL10_32864 130.893 

IL11_5331 127.021 IL11_5331 127.020 

IL11_7978 126.605 IL11_7978 126.604 

ARS07_1214 126.188 ARS07_1214 126.188 

VA10W_112 126.147 VA10W_112 126.146 

IL11_5425 125.147 IL11_5425 125.146 

IL09_3264 124.980 IL09_3264 124.979 

P981359C1_4 124.731 P981359C1_4 124.730 

GA051477_12ES27 124.689 GA051477_12ES27 124.688 

GANCZ4_12DH21 124.397 GANCZ4_12DH21 124.397 

Roane 124.231 Roane 124.229 

KY05C_1369_13_7_3 123.856 KY05C_1369_13_7_3 123.855 

Bakhsh24 123.856 Bakhsh24 123.855 

NC8170_45_2 123.564 NC8170_45_2 123.564 

OK11311F 123.439 OK11311F 123.438 

NC09_20986 123.398 NC09_20986 123.397 

Milton 123.356 Milton 123.356 

NE06607 123.065 NE06607 123.064 

IL10_825 122.856 IL10_825 122.857 

IL10_6876 122.356 IL10_6876 122.354 

IL10_9246 121.940 IL10_9246 121.939 

IL10_17659 121.940 IL10_17659 121.939 

IL10_6608 121.732 IL10_6608 121.732 

MDNC8248_64 121.690 MDNC8248_64 121.689 

IL00_8641 121.482 IL00_8641 121.481 

 

.    
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Table 3.5. Bottom ten percent of soft red winter wheat breeding lines for flour yield based on 

PEBVs and GEBVs. Breeding lines appearing in both the bottom ten percent for flour yield 

based on PEBVs and GEBVs are highlighted in the same color to allow changes in rank to be 

easily identified. Breeding lines that are not highlighted (remaining white) do not appear in the 

bottom ten percent on the other side of the table.   

 

 

Breeding line FY_PEBV Breeding line FY_GEBV 

IL168_54_2_0_0_0 63.529 IL168_54_2_0_0_0 64.039 

VA11W_FHB75 63.930 VA11W_FHB75 64.413 

Roane 64.411 KY04C_2004_1_1_3 65.003 

IL11_5425 64.651 IL11_5425 65.064 

ARGE07_1374_17_8_5 64.731 Roane 65.120 

KY04C_2004_1_1_3 64.731 Bakhsh24 65.187 

OH904 65.012 OH904 65.244 

Bakhsh24 65.012 ARS07_1214 65.404 

ARS07_1214 65.092 GANCZ4_12DH21 65.592 

GANCZ4_12DH21 65.372 NC08_140 65.637 

P92829A1_1_1_3_3 65.412 NC09_20768 65.693 

NC08_140 65.452 P92829A1_1_1_3_3 65.697 

IL11_2909 65.492 KY02C_3005_25 65.775 

NC09_20768 65.492 GANC8248_12DH1 65.873 

GANC8248_12DH1 65.532 MO081652 65.915 

KY05C_1020_2_19_1 65.613 IL11_2909 65.926 

KY02C_3005_25 65.613 KY05C_1020_2_19_1 65.945 

IL11_30452 65.653 KY05C_1369_13_7_3 65.950 

KY05C_1369_13_7_3 65.693 IL11_110 66.044 

MO081652 65.693 IL11_30452 66.051 

IL11_110 65.733 IL10_34041 66.058 

G09418 65.853 IL10_15225 66.065 

IL11_3678 65.853 IL11_3678 66.067 

IL10_15225 65.853 GA051477_12ES27 66.074 

IL10_34041 65.853 IL11_3466 66.145 

GA051477_12ES27 66.013 VA10W_112 66.180 

Pio25R37 66.053 IL10_14976 66.210 
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Table 3.6. Bottom ten percent of soft red winter wheat breeding lines for softness equivalence 

based on PEBVs and GEBVs. Breeding lines appearing in both the bottom ten percent for 

softness equivalence based on PEBVs and GEBVs are highlighted in the same color to allow 

changes in rank to be easily identified. Breeding lines that are not highlighted (remaining white) 

do not appear in the bottom ten percent on the other side of the table.   

 

 

Breeding line SE_PEBV Breeding line SE_GEBV 

Bakhsh24 38.421 Bakhsh24 38.422 

ARS09_228 38.998 ARS09_228 38.999 

ARS07_1214 43.260 ARS07_1214 43.261 

NE06607 47.257 NE06607 47.257 

IL168_54_2_0_0_0 50.897 IL168_54_2_0_0_0 50.898 

KY97C_0554_03_02 51.253 KY97C_0554_03_02 51.253 

OK11311F 53.650 OK11311F 53.651 

IL02_18228 54.361 IL02_18228 54.362 

IL02_28322 54.538 IL02_28322 54.539 

P03112A1_7_14 54.672 P03112A1_7_14 54.672 

Rosette 54.938 Rosette 54.939 

KY02C_3005_25 55.071 KY02C_3005_25 55.072 

GANCZ4_12DH21 55.160 GANCZ4_12DH21 55.160 

IL97_6755 55.426 IL97_6755 55.427 

IL04_10741 55.737 IL04_10741 55.738 

MDNC8248_64 55.959 MDNC8248_64 55.960 

IL99_26442 56.004 IL99_26442 56.004 

IL11_20829 56.226 NC09_20768 56.226 

NC09_20768 56.226 IL11_20829 56.226 

P0128A1_22_22 56.270 M10_1659 56.270 

M10_1659 56.270 P0128A1_22_22 56.270 

KY02C_3004_04 56.359 KY02C_3004_04 56.359 

IL10_12041 56.403 Madison 56.403 

Madison 56.403 IL10_12041 56.404 

IL10_11050 56.492 Sisson 56.492 

IL07_20743 56.492 IL07_20743 56.492 

Sisson 56.492 IL10_11050 56.492 
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Table 3.7. Bottom ten percent of soft red winter wheat breeding lines for lactic acid solvent 

retention capacity based on PEBVs and GEBVs. Breeding lines appearing in both the bottom ten 

percent for lactic acid solvent retention capacity based on PEBVs and GEBVs are highlighted in 

the same color to allow changes in rank to be easily identified. Breeding lines that are not 

highlighted (remaining white) do not appear in the bottom ten percent on the other side of the 

table.   

 

 

Breeding line LA_PEBV Breeding line LA_GEBV 

KY93C_1238_17_1 82.455 KY93C_1238_17_1 82.456 

P03112A1_7_14 87.411 P03112A1_7_14 87.412 

IL10_5629 89.119 IL10_5629 89.121 

Freedom 90.118 Freedom 90.119 

IL10_5630 90.910 IL10_5630 90.911 

NY99045_3110 91.076 NY99045_3110 91.077 

KY93C_0004_22_1 92.368 KY93C_0004_22_1 92.369 

P05247A1_7_3_120 92.451 P05247A1_7_3_120 92.451 

IL08_32162_2 92.951 IL08_32162_2 92.952 

VA09W_188WS 93.242 VA09W_188WS 93.243 

P0179A1_17 93.617 P0179A1_17 93.618 

IL02_28322 93.659 IL02_28322 93.660 

F0065 93.909 F0065 93.910 

Pio25R35 93.992 Pio25R35 93.993 

IL08_18342_5 94.034 IL08_18342_5 94.034 

IL168_54_2_0_0_0 94.409 IL168_54_2_0_0_0 94.409 

MO080864 95.366 MO080864 95.368 

OH07_263_3 95.783 OH07_263_3 95.784 

IL06_7550 96.283 IL06_7550 96.284 

M03_3616 96.324 M03_3616 96.324 

Excel307 96.449 Excel307 96.451 

P0128A1_22_22 96.783 P0128A1_22_22 96.783 

KY02C_3005_25 97.199 KY02C_3005_25 97.200 

Shirley 97.491 Shirley 97.491 

IL04_9942 97.532 IL04_9942 97.532 

P9975RA1_6_3_94 97.907 P9975RA1_6_3_94 97.908 

IL11_20829 98.199 IL11_20829 98.200 
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Table 3.8. Five-fold cross validation genomic selection prediction accuracies and standard 

deviations from five runs of the PopVar model for flour yield in soft red winter wheat.  

 

 

Iteration  Accuracy (r) Standard Deviation (s) 

1 0.552 0.080 

2 0.557 0.094 

3 0.556 0.091 

4 0.539 0.100 

5 0.535 0.089 

Average 0.547 0.091 
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Table 3.9. Five-fold cross validated genomic selection prediction correlations and standard 

deviations from the rrBLUP genomic selection code for flour yield after five iterations in soft red 

winter wheat.  

 

 

Iteration r_CV1 r_CV2 r_CV3 r_CV4 r_CV5 
r_avg 

(r) 
r_std (s) 

1 0.529 0.498 0.468 0.646 0.722 0.573 0.108 

2 0.566 0.572 0.628 0.553 0.644 0.593 0.041 

3 0.518 0.646 0.563 0.612 0.457 0.559 0.075 

4 0.453 0.506 0.502 0.506 0.621 0.517 0.062 

5 0.315 0.386 0.518 0.773 0.581 0.515 0.179 

Average 0.551 0.093 
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Table 3.10. Five-fold cross validated genomic selection prediction correlations and standard 

deviations from the rrBLUP genomic selection code for softness equivalence after five iterations 

in soft red winter wheat. 

 

 

Iteration r_CV1 r_CV2 r_CV3 r_CV4 r_CV5 
r_avg 

(r) 
r_std (s) 

1 0.541 0.456 0.640 0.401 0.506 0.509 0.090 

2 0.580 0.439 0.637 0.634 0.412 0.540 0.108 

3 0.377 0.478 0.641 0.486 0.514 0.499 0.095 

4 0.596 0.525 0.617 0.436 0.379 0.510 0.102 

5 0.417 0.568 0.560 0.448 0.523 0.503 0.068 

Average 0.512 0.093 
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Table 3.11. Five-fold cross validated genomic selection prediction correlations and standard 

deviations from the rrBLUP genomic selection code for lactic acid solvent retention capacity 

after five iterations in soft red winter wheat. 

 

 

Iteration r_CV1 r_CV2 r_CV3 r_CV4 r_CV5 
r_avg 

(r) 
r_std (s) 

1 0.479 0.654 0.506 0.601 0.671 0.582 0.086 

2 0.621 0.643 0.659 0.624 0.537 0.617 0.047 

3 0.668 0.548 0.621 0.651 0.492 0.596 0.074 

4 0.532 0.509 0.718 0.560 0.576 0.579 0.082 

5 0.558 0.658 0.560 0.616 0.551 0.597 0.044 

Average 0.594 0.066 
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FIGURES 
 

 

 

Figure 1.1. Generalized disease cycle for Parastagonospora nodorum from Sommerhalder et al., 2011. 
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Figure 2.1. The average prediction accuracy of the five runs of the five-fold cross validation genomic selection model in PopVar for 

GEBVs for glume blotch resistance in soft red winter wheat breeding lines. From the central limit theorem, the average accuracy is not 

in danger of crossing below 0.3. It has been said as long as prediction accuracies remain above 0.3 genetic gains can be made through 

genomic selection. The trait of glume blotch resistance does not cross below 0.3 one standard error (orange) out from the average 

accuracy or even two standard errors (cornflower blue) out from the average accuracy. 
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Figure 3.1. Illustration of the Quadrumat break roll milling unit and its milling process. The Quadrumat break roll milling unit is used 

by the Soft Wheat Quality Lab in Wooster, Ohio to test milling and baking qualities of soft wheats for the eastern United States 

growing region. The figure is from the USDA-ARS SWQL Materials and Methods 2017. Figure 1 (USDA, 2018a).  
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Figure 3.2. The average prediction accuracy of the five runs of the five-fold cross validation genomic selection model in PopVar for 

GEBVs for flour yield in soft red winter wheat breeding lines. From the central limit theorem, the average accuracy is not in danger of 

crossing below 0.3. It has been said as long as prediction accuracies remain above 0.3 genetic gains can be made through genomic 

selection. The trait of flour yield does not cross below 0.3 one standard error (orange) out from the average accuracy or even two 

standard errors (cornflower blue) out from the average accuracy.   
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Figure 3.3. The average prediction accuracy of the five runs of the five-fold cross validation rrBLUP genomic selection model for 

GEBVs for softness equivalence in soft red winter wheat breeding lines. From the central limit theorem, the average accuracy is not in 

danger of crossing below 0.3. It has been said as long as prediction accuracies remain above 0.3 genetic gains can be made through 

genomic selection. The trait of flour yield does not cross below 0.3 one standard error (orange) out from the average accuracy or even 

two standard errors (cornflower blue) out from the average accuracy.   
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Figure 3.4. The average prediction accuracy of the five runs of the five-fold cross validation rrBLUP genomic selection model for 

GEBVs for lactic acid solvent retention capacity in soft red winter wheat breeding lines. From the central limit theorem, the average 

accuracy is not in danger of crossing below 0.3. It has been said as long as prediction accuracies remain above 0.3 genetic gains can be 

made through genomic selection. The trait of flour yield does not cross below 0.3 one standard error (orange) out from the average 

accuracy or even two standard errors (cornflower blue) out from the average accuracy.   
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APPENDIX A  

Table A.1. Variance parameter estimates for flour yield, softness equivalence, and lactic acid 

solvent retention capacity in a 272 wheat breeding line panel. Variance parameter estimates 

obtained through PROC MIXED in SAS 9.4. Each parameter was run in a separate RCBD 

model, but are shown side by side. 

 

 

Variance Parameter Estimates 

Variance 

Parameter 

Flour 

Yield 

Estimate 

Flour 

Yield  

P-value 

Softness 

Equivalence 

Estimate 

Softness 

Equivalence 

P-value 

Lactic 

Acid SRC 

Estimate 

Lactic 

Acid SRC 

P-value 

Year 0.864 0.2405 4.996 0.2402 24.888 0.2409 

Genotype  1.715 <0.0001** 12.024 <0.0001** 88.291 <0.0001** 

Residual 0.850 <0.0001** 3.032 <0.0001** 35.395 <0.0001** 

 

**Highly significant at alpha 0.05 
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APPENDIX B  

 

PopVar R code used for the glume blotch resistance (Ch. 2) and milling and baking, flour yield 

trait (Ch. 3) genomic selection models (Mohammadi et al., 2015). Special thanks to Marcio 

Arruda and Allison Krill for slight code modifications to better adapt for the University of 

Illinois’ small grains program.   

 

install.packages("PopVar") 

library(PopVar) 

 

##Prepare/load files for genomic selection   

#SNP genotype file  

geno=read.csv("genotype.csv",strings=F, header = TRUE) 

geno[1:10,1:10] #check to make sure file was entered properly  

 

#your phenotype file, taxa must match with SNP file 

pheno = read.csv("pheno_alltraits.csv", header=TRUE) 

pheno=pheno[order(pheno[,1]),] 

pheno[1:10,1:2] #check to make sure file was entered properly  

 

#make sure taxa match in both pheno and geno files 

table(pheno[,1]==geno[,1]) #make sure line/taxa names are in the same order in both files  

 

names = geno[,1] 

names = as.matrix(names) 

write.csv(names, file="names.csv") #save names  

 

#run one pheno value at a time, name and phenotype 

pheno_trait1  = pheno[,c(1,2)] #first trait is in column 2 with names in first column  

pheno_trait2 = pheno[,c(1,3)] #second trait is in column 3 with names in first column 
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#Run Genomic Selection code from PopVar 

#GEBV values 

GS = x.val(G.in = geno, #reads in your geno file with names removed  

           y.in = pheno_trait1, #reads in your pheno file for desired trait 

           min.maf = 0, #no filtering, we did already did this 

           mkr.cutoff=1, #no filtering 

           entry.cutoff = 1, #no filtering 

           remove.dups = FALSE,  

           impute = "pass",  

           nFold = 5, # number of folds we usually use 5 unless it is a small data set 

           nFold.reps = 10,  

           return.estimates = T, 

           models = c("rrBLUP")) 

#model accuracy  

results = GS$CVs 

model = GS$models.used 

effects = GS$mkr.effects 

beta = GS$betas 

 

effects = as.matrix(effects) 

geno = geno[,-1] 

geno = as.matrix(geno) 

geno=apply(geno[,1:ncol(geno)],2,as.numeric) 

 

#Genomic estimated breeding values  

GEBV = geno%*%effects 

GEBV = GEBV + beta 

GEBV = cbind(names, GEBV) 

 

#this is the output file for GEBV #change the name for each trait  

write.csv(GEBV, file="GEBV_trait1.csv") 

#this is the output file for model accuracy 

write.csv(results, file ="results_trait1.csv")  
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APPENDIX C 

 

rrBLUP R code used for milling and baking, softness equivalence and lactic acid solvent 

retention capacity genomic selection (Endelman, 2011; Endelman and Jannik, 2012). Special 

thank you to Dr. Alex Lipka and Dr. Carrie Butts-Wilmsmeyer for general guidance in writing 

this code. 

 

##Prepare/load files for genomic selection   

#SNP genotype file  

geno=read.csv("genotype.csv",strings=F, header = TRUE) 

geno[1:10,1:10] #check to make sure file was entered properly  

 

#your phenotype file, taxa must match with SNP file 

pheno = read.csv("pheno_alltraits.csv", header=TRUE) 

pheno=pheno[order(pheno[,1]),] 

pheno[1:10,1:2] #check to make sure file was entered properly  

 

#make sure taxa match in both pheno and geno files 

table(pheno[,1]==geno[,1]) #make sure line/taxa names are in the same order in both files  

 

names = geno[,1] 

names = as.matrix(names) 

write.csv(names, file="names.csv") #save names  

 

#run one pheno value at a time, name and phenotype 

pheno_trait1  = pheno[,c(1,2)] #first trait is in column 2 with names in first column  

pheno_trait2 = pheno[,c(1,3)] #second trait is in column 3 with names in first column 

#rrBLUP 

library(rrBLUP) 

library('MASS') 

library(multtest) 

library(gplots) 

library("compiler") 

source("http://zzlab.net/GAPIT/gapit_functions.txt") 
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#Setting Up Random Selection and Number of Folds, Formatting, etc. 

seed.number <- sample(-1000000:1000000,1) 

number.of.folds=5 

sample.size=272 

set.seed(seed.number) 

sequence.sample <- rep(1:sample.size) 

random.sample <- sample(1:sample.size, replace = FALSE) 

increment <- ceiling(length(random.sample)/number.of.folds)  

r.gy <- NULL  

y=pheno_trait1 #phenotype file for desired trait 

GEBV=matrix(NA,nrow=272,ncol=6) 

GEBV[,1]=y$line 

k <- number.of.folds - 1 

G=geno1[,-1] 

 

#Validating Model 

for(i in 0:k){ 

  pred <- random.sample[((increment*i)+1):min(((increment*i)+increment) , sample.size)] 

  train <- random.sample[-(((increment*i)+1):min(((increment*i)+increment) , sample.size))]  

   

  ans <- 

kinship.BLUP(y=as.numeric(y[train,2]),G.train=G[train,],G.pred=G[pred,],K.method="RR") 

   

  r.gy <- c(r.gy, cor(ans$g.pred,as.numeric(y[pred,2]))) 

} 

r.gy <- c(r.gy, mean(r.gy), sd(r.gy)) 

colname.r.gy <- NULL 

for(i in 1:number.of.folds) colname.r.gy <- c(colname.r.gy, paste("r_CV",i,sep = "")) 

r.gy.output <- t(as.matrix(r.gy)) 

colnames(r.gy.output) <- c(colname.r.gy, "r_avg", "r_std") 

r.gy.output #model accuracy output 

 

##write csv for correlations of GEBV and PEBV for accuracy 

write.csv(r.gy.output, file ="model accuracy trait1.csv") 

 

#GEBV calculations  

GEBV.ans=kinship.BLUP(y=y[,2],G.train=G,K.method="RR") 

GEBVs=as.matrix(GEBV.ans$g.train+as.numeric(GEBV.ans$beta)) 

names=as.matrix(y[,1]) 

GEBVs=cbind(names,GEBVs) 

View(GEBVs)  

write.csv(GEBVs, "GEBV_ trait1.csv") #save GEBV file for trait 

 


