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Abstract

This thesis is comprised of three parts, each dealing with one or more of

the Hermitian, Suzuki, and Ree curves, which are three families of algebraic

curves over finite fields which have pronounced arithmetic and geometric

properties.

In the first part, we use a ray class field construction to produce covers of

each of these three families of curves which meet the Hasse-Weil bound over

suitable base fields. In the Hermitian case, the family of covers constructed

coincide with the family of Giulietti-Korchmáros curves.

In the second part, we study a certain linear series D on the Ree curve

which gives an embedding in P13. We compute the orders of vanishing of

sections of D, and use this to determine the set of Weierstrass points of D.

The third part is a computational project studying the structure of the

3-torsion group scheme of the Jacobian of the smallest Ree curve, which has

genus 3627. This is accomplished by computing the action of the Frobenius

and Verschiebung operators on the de Rham cohomology of the curve. As

a result, we determine the Ekedahl-Oort type and a decomposition for the

Dieudonné module of this curve.
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1 Introduction

This thesis is a compilation of three projects, each dealing with specific fam-

ilies of curves which have many points over finite fields. All the curves stud-

ies are related in some way to one of the three families of Deligne-Lusztig

curves, namely the Hermitian, Suzuki and Ree curves. These curves have

received attention for their extreme arithmetic and geometric properties, in

particular for the size of their automorphism groups and large number of

Fq-rational points relative to their genus. These properties make them in-

teresting mathematically, and useful for creating error-correcting codes with

desirable parameters.

We describe here the general outline of the three parts of the thesis. Since

the topics of Chapters 3-5 are relatively distinct, however, more thorough in-

troductions are included at the beginning of each chapter. Some background

material which is common to all three parts is collected in Chapter 2.

The first project, contained in Chapter 3, deals with covers of the Hermi-

tian, Suzuki, and Ree curves which meet the Hasse-Weil bound. The work

in this chapter was motivated by the desire to better understand a family of

curves constructed by Giulietti and Korchmáros. It is shown in this chapter

that the function field of the Giulietti-Korchmaros curve may be realized as a

ray class field over the function field of the Hermitian curve. Moreover, simi-

lar extensions of function fields of the Suzuki and Ree curves are constructed

and shown to meet the Hasse-Weil bound.

The second two projects involve computing certain geometric invariants

of the Ree curves. The originally intended purpose for the work done in

Chapter 4 was to obtain a characterization the Ree curve as the only smooth

projective curve of its genus defined over Fq with a certain number of Fq-
rational points. This seemed like a natural problem to pursue, as similar

characterizations may be shown to hold for the Hermitian and Suzuki curves

by using the theory of Stöhr and Voloch. This problem seems difficult, but

as a first step in this direction I compute in this chapter the Frobenius orders
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of a certain linear series on the curve. These are the same invariants which

were used to complete the characterization of the Suzuki curve.

The impetus for the work in Chapter 5 was a desire to find an obstruction

for covers of the curves found in Chapter 3 by other curves which are known

to meet the Hasse-Weil bound. In hindsight, however, I believe that it is

more interesting for its own sake than for the intended application. This

chapter details a computation of the structure of the de Rham cohomology

of the smallest Ree curve, which has genus 3627, as a module under the

Frobenius and Verschiebung operators. This is isomorphic to the 3-torsion

group scheme of the Jacobian of the curve. This project was motivated

by similar work done by Malmskog, Pries, and Weir for the Hermitian and

Suzuki curves.
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2 Preliminaries

We will assume familiarity with definitions related to algebraic curves and

their functions fields which may be found, for example, in [Sti2]. In this

chapter, we collect certain facts and results which will be used often in the

following chapters. Any background which is specific to a single chapter may

be found there.

2.1 Curves and zeta functions

Let X be a smooth, geometrically irreducible, projective algebraic curves

defined over a finite field Fq. The zeta function of X over Fq, which is given

by the power series

ZX(t) = exp

(
∞∑
n=1

#X(Fqn)

n
tn

)
,

keeps track of the number of points on X over each finite extension of Fq.
Although not obvious from this definition, the function ZX(t) is a rational

function of the form

ZX(t) =
LX(t)

(1− t)(1− qt)
.

where LX(t) ∈ Z[t] is a polynomial of degree 2g. The numerator

LX(t) = (1− t)(1− qt)ZX(t) =

2g∏
j=1

(1− αjt)

is called the L-polynomial of X. The following theorem is the analogue of

the Riemann hypothesis for curves over finite fields.

Theorem 2.1 (Hasse-Weil Theorem). The reciprocal roots αj of LX(t) sat-

isfy |αj| =
√
q.

Unfolding the definitions of ZX(t) and LX(t) yields the following formula
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for the number of points over various extensions of Fq in terms of the recip-

rocal roots αj.

#X(Fqn) = qn + 1−
2g∑
j=1

αnj (2.1)

In this context, the Hasse-Weil Theorem says that

qn + 1− 2gqn/2 ≤ #X(Fqn) ≤ qn + 1 + 2gqn/2.

This is called the Hasse-Weil bound.

The reciprocal of the L-polynomial ,

t2gL(1/t) =

2g∏
j=1

(t− αj),

is the characteristic polynomial of the Frobenius Frq acting on the Tate mod-

ule T`(Jac(X)) [Mum, page 205], making the roots αj the eigenvalues of this

action.

Theorem 2.2 (Riemann-Roch). Let X be a curve of genus g, and D a

divisor on X, and K a canonical divisor on X. Then

dimL(D)− dimL(K −D) = d+ 1− g.

In particular, if degD > 2g − 2 then dimL(D) = d+ 1− g.

Theorem 2.3 (Hurwitz formula). If f : X → Y is a finite separable mor-

phism of curves, then

2gX − 2 = deg(f) · (2gY − 2) + degR,

where R is the ramification divisor of f .

The ramification divisor R is the same as the different ideal of the ex-

tension of function fields induced by f , which may be calculated in terms of

ramification groups if the extension is Galois [Sti2, chapter 3], [Ser, chapter

4].
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2.2 Hasse-Weil maximal curves

A curve X defined over a finite field Fq is called maximal over Fq, or Fq-
maximal, if it meets the Hasse-Weil upper bound for the number of Fq-
rational points for its genus, that is, if

#X(Fq) = q + 1 + 2gXq
1/2.

Interest in studying these curves was sparked in the 1980s by their application

in the theory of algebraic geometry codes. By (2.1), a curve X is maximal

over Fq if and only if each αj = −√q, so that the L-polynomial of X over

Fq is of the form LX(t) = (1 +
√
qt)2g. In other words, for an Fq-maximal

curve the Frobenius acts as multiplication by −√q on the Fq-rational points

of Jac(X), so that Jac(X)(Fq) ∼= (Z/(√q + 1)Z)2g.

In light of this, the following proposition1 implies that if X is maximal

over Fq and X → Y is a covering, that Y is also maximal over Fq.

Proposition 2.4 ([AP, Prop 5]). If X → Y is a finite morphism between

two reduced absolutely irreducible smooth projective algebraic curves defined

over Fq, then LY (t) divides LX(t) in Z[t].

Therefore, the set of Fq-maximal curves, taken up to isomorphism, form

a partially ordered set induced by coverings between curves. This motivates

the following questions.

• What are the maximal elements of this partially ordered set?

• For fixed q, which g appear as genera of Fq-maximal curves?

The following bound for the genus of a maximal curve follows from (2.1).

Theorem 2.5 ([Iha]). The genus of a curve maximal over Fq is bounded by

g ≤
√
q(
√
q − 1)

2
.

As this bound is attained by the Hermitian curve H = H√q defined by

y
√
q + y = x

√
q+1,

1In the literature this result is often attributed to Serre (see [Lac, Prop 6]), although I
cannot find anywhere where he wrote it down. It is true in much greater generality [Kle,
Prop 1.2.4].

5



the curve H is an example of an Fq-maximal curve which is not covered by

any other Fq-maximal curve.

The following theorem characterizing Fq-maximal curves is often referred

to in the area as the Natural Embedding Theorem.

Theorem 2.6 ([KT]). A smooth geometrically irreducible projective curve is

maximal over Fq if and only if it admits an embedding as a curve of degree
√
q + 1 on a non-degenerate Hermitian variety defined over Fq.

Here Hermitian variety refers to a projective hypersurface defined by the

vanishing of ∑
0≤i,j≤n

aijX
√
q

i Xj,

for some matrix A = [aij] defined over Fq satisfying At = Aα, where α is the

involutive automorphism of Fq sending α 7→ α
√
q.

2.3 Deligne-Lusztig curves

There are three particular families of curves which will be of particular inter-

est in this thesis, namely the Hermitian, Suzuki and Ree curves. These three

families arise as projectivizations of the Deligne-Lusztig varieties associated

to the simple groups of type 2A2,
2B2, and 2G2 [DL]. This is not the main

perspective we will take on these curves however, in favor of dealing concrete

models which were given for them in years following their more abstract ori-

gins [Hen], [HS], [Ped]. For those interested, however, an introduction to

these curves considered as Deligne-Lusztig curves may be found in [Han].

While the Hermitian curves exist in all characteristics, the Suzuki and

Ree curves are defined only in characteristic 2 and 3, respectively. Each has

an optimal number of Fq-rational points for its genus, and becomes maximal

over a suitable extension of the base field. These three families curves have

extremely large automorphism groups, of the size that cannot occur in char-

acteristic zero because of the Hurwitz bound # Aut(G) ≤ 84(g − 1). The

Hermitian and Suzuki curves, along with two specific hyperelliptic curves,

are the only curves of genus g ≥ 2 satisfying # Aut(X) ≥ 8g3. More similar

results may be found in [HKT, chapter 12], [Sti1], [GK1].
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The Hermitian curve H = Hq0 is defined by

yq0 + y = xq0+1,

where q0 is a prime power. The curve Hq0 has genus 1
2
q0(q0 − 1) and q30 + 1

points defined over Fq, where q = q20, so that Hq0 is maximal over Fq. As men-

tioned in the previous section, this is the largest genus that a curve maximal

over Fq may have. The curve Hq0 has automorphism group PGU(3, q0), which

has order q30(q30 + 1)(q − 1) and acts doubly transitively on the Fq-rational

points of Hq0 .

For q = 2q20 an odd power of 2, the Suzuki curve S has an affine model

yq + y = xq0(xq + x).

The curve S has genus q0(q− 1) and q2 + 1 points defined over Fq, which are

permuted doubly transitively by the automorphism group Sz(q), which has

order q2(q2 + 1)(q − 1). The zeta function of S is

ZS(t) =
(1 + 2q0t+ qt2)g

(1− t)(1− qt)
,

from which it may be seen that S becomes maximal over the field Fq4 .
For q = 3q20 an odd power of 3, the Ree curve R has an affine model

yq − y = xq0(xq − x) zq − z = xq0(yq − y).

The curve R has genus 3
2
q0(q−1)(q+q0+1) and q3+1 points defined over Fq,

which are permuted doubly transitively by the automorphism group Ree(q)

of size q3(q3 + 1)(q − 1).

ZR(t) =
(1 + 3q0t+ qt2)q0(q

2−1)(1 + qt2)
1
2
q0(q−1)(q+3q0+1)

(1− t)(1− qt)

from which it follows that the Ree curve becomes maximal over the field Fq6 .
The Ree curve admits a smooth embedding in P13, as has been shown

independently in [Kan1] and [ED]. The embedding in [Kan1] arises from the

description of the curve as a Deligne-Lusztig variety. The embedding in [ED]
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uses the 14 functions 1, x, y, z, w1, w2, . . . , w10, where the wi satisfy

w1 = x3q0+1 − y3q0 w6 = xw3q0
4 − w

3q0
2 − w1z

3q0 + w3x
3q0

w2 = xy3q0 − z3q0 w7 = w2 + xwq03 − zw
q0
1

w3 = xz3q0 − w3q0
1 w8 = w3q0

5 + xw3q0
7 (2.2)

w4 = xwq02 − yw
q0
1 w9 = w4w

q0
2 − yw

q0
6

w5 = ywq03 − zw
q0
1 w10 = zwq06 − w

q0
3 w4.

In [ED], a system of 105 symmetrical equations of degrees 2, q0 + 1, and

3q0 + 1 is determined which cuts out the image of this embedding.
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3 New maximal curves as ray
class fields

For many years it was unknown whether there exists an Fq-maximal curve

which is not covered by the Hermitian curve H√q [Gar], [TVN, Problem

3.4.9]. An example was found by Garcia and Stichtenoth of a curve max-

imal over F272 which is not Galois-covered by H27 [GS]. Around the same

time, an unpublished computation of Rains and Zieve demonstrated that the

smallest Ree curve, which is also maximal over F272 , is not Galois-covered

by H27. A recent paper of Montanucci and Zini verifies the result of this

computation, and in addition proves the analogous result for the smallest

Suzuki curve [MZ]. Whether any of these curves are images of the Hermitian

curve, however, remains unknown.

In 2008, Giulietti and Korchmáros answered the question positively with

their discovery of a new family of curves [GK2]. For q = q20 a prime power,

the Giulietti-Korchmáros curve or GK-curve H̃ = H̃q is maximal over Fq3 ,
but does not admit any covering by the Hermitian curve Hq30

for q0 ≥ 3. To

this point, this is the only family of maximal curves which have been proven

not to be images of the Hermitian curve. The fact that H̃ is not covered by

the Hermitian curve follows from the Hurwitz formula and the Hasse-Weil

bound, which in combination imply that any curve X maximal over Fq which

is covered by the Hermitian curve H√q has genus satsifying

q3/2 + 1

q + 1 + 2gXq1/2
≤
⌊
q − q1/2 − 2

2gX − 2

⌋
.

The GK-curve was discovered while searching for maximal curves with

large automorphism groups, as described in [GK2]. From the Natural Em-

bedding Theorem (Theorem 2.6), they knew that any maximal curve must

lie on a Hermitian variety, and considered a Hermitian surface H ⊂ P3, along

with a Hermitian cone C through a point not lying in H which is stable un-

The results in this chapter appear in the paper [Ska2].
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der a large subgroup of automorphisms of H. The complete intersection of

H and C breaks into several curves which are permuted transitively by the

automorphisms of H, and each of these is isomorphic to a copy of the GK

curve.

In section 3.2 we provide an alternate construction for the GK-curve as

arising as a ray class field. This was inspired by the following theorem of

Lauter, who gave the following uniform description of the Deligne-Lusztig

curves as ray class fields.

Theorem 3.1 ([Lau]). The function fields of the Hermitian, Suzuki, and Ree

curves are isomorphic to the ray class fields of conductor D = k(∞) in which

all places of degree one different from (∞) of Fq(x) split completely, where

k =


pf + 2 if q = p2f

2f + 2 if q = 22f+1

3f + 3 if q = 32f+1.

Rather than arising as a ray class field over Fq(x), the function field of

the GK-curve H̃ lives over a constant field extension of the function field

of a Hermitian curve. Thus, H̃ may be considered as arising via a two-step

ray class field contruction over P1. First, apply the construction of Lauter,

which allows one Fq-rational point to ramify and splits all other Fq-rational

points. Then extend the base field before taking another ray class field in

which the Fq-rational points are allowed to ramify tamely, while all other

points rational over the new base field are caused to split.

This description of H̃ admits a natural analogue in the case of the Suzuki

and Ree curves, which we explore in sections 3.3–3.5. In sections 3.3 and 3.4

we introduce cyclic covers S̃ and R̃ of the Suzuki and Ree curves analogous

to H̃, and show that these are maximal over a suitable base field by providing

explicit embeddings of these curves in Hermitian varieties in P4 and P7. The

results in section 3.5 deal with all three Deligne-Lusztig curves simultane-

ously. For X one of the Hermitian, Suzuki, or Ree curves, we show that X̃

is is a subcover of a ray class field extension Xrcf, and use the maximality of

X̃ to prove that of Xrcf. We then show that the cover Xrcf → X is cyclic of

a prescribed form, which allows use to verify computationally that Xrcf = X̃

for small values of q. We are unable to say whether Xrcf = X̃ in general, but
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we give a bound on the degree of the cover Xrcf → X̃.

3.1 The Deligne-Lusztig Curves

In this section we collect some facts about the Deligne-Lusztig curves in ad-

dition to those in section 2.3 which will be used in this chapter. In particular,

we note that the Hermitian, Suzuki, and Ree curves have exactly two short

orbits under the action of their full automorphism group, each consisting

of all points of certain degrees. These orbits form the sets of points which

ramify and split in the covers discussed in sections 3.2–3.4. The results in

this section should be well known; we include proofs of some statements for

the sake of completeness.

A point of a curve X is fixed by some automorphism of X exactly if

it is ramified in the quotient by the full automorphism group. Thus, the

Riemann-Hurwitz formula may be applied to the cover X → X/Aut(X) to

study these points. For G a finite subgroup of automorphisms of X, this

formula may be written in the form

2g(X)− 2 = #H

2g(X/G)− 2 +
∑

p∈X/G

d(p)

e(p)
deg p

 ,

where d(p) and e(p) are the different exponent and ramification index of p

in X → X/G.

3.1.1 The Hermitian Curve

Let q = q20 be a prime power. The Hermitian curve H = Hq0 has an affine

plane model defined by

yq0 + y = xq0+1.

It has genus q0(q0 − 1)/2 and is maximal over Fq, with #X(Fq) = q3/2 + 1.

Its automorphism group PGU(3, q0) is of size (q3/2 + 1)q3/2(q − 1).

Proposition 3.2 ([GSX]). The Hermitian curve Hq0 has exactly two short

orbits under the action of its full automorphism group. One is non-tame of

size q3/2 + 1, consisting of the Fq-rational points. The other is tame of size
1
3
q3/2(q − 1)(q0 + 1), consisting of all points of degree 3.

11



3.1.2 The Suzuki Curve

For s ≥ 1 and q = 2q20 = 22s+1, the Suzuki curve S/Fq has an affine model

defined by

yq + y = xq0(xq + x)

and has genus q0(q − 1). Its automorphism group Sz(q), which has size

(q2 + 1)q2(q − 1), acts doubly transitively on the q2 + 1 rational points. The

Suzuki curve is maximal over Fq4 .

Proposition 3.3. The Suzuki curve has exactly two short orbits under the

action of its full automorphism group. One is non-tame of size q2+1, consist-

ing of the Fq-rational points. The other is tame of size 1
4
q2(q−1)(q+2q0+1),

consisting of all points of degree 4.

Proof. The automorphism group G = Sz(q) transitive on the q2 + 1 points

of S(Fq) with point stabilizer of order q2(q− 1). Fix a rational point P∞ on

S lying above a point p∞ in S/G ∼= P1. Then

#G∞ = e(P∞|p∞) = q2(q − 1).

Let Gi denote the (lower) ramification groups at P∞. Then from [HKT,

§12.2], we have

#G1 = q2,

#G2 = · · · = #G2q0+1 = q,

#G2q0+2 = 1.

Therefore, the different exponent at p∞ is

d(p∞) = (q2(q − 1)− 1) + (q2 − 1) + 2q0 · (q − 1)

= q3 + 2qq0 − 2q0 − 2.

From the Hurwitz formula, it follows that

∑
p6=p∞

d(p)

e(p)
deg p =

q − 2q0
q − 2q0 + 1

< 1.

Now d(p) ≥ e(p)− 1, with equality if and only if p is tamely ramified. Thus

the inequality above implies that there is exactly one place p of S/G other
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than p∞ which is ramified in S → S/G, and that deg p = 1. Moreover, p is

tamely ramified with e(p) = q − 2q0 + 1.

Let P be a prime of S lying over p. Then the inertia group I = I(P|p) is

cyclic of order q−2q0+1. There is a unique conjugacy class of cyclic subgroups

of this order (I is a Singer subgroup, see [HB, page 190]). The decomposition

group D of P has size (degP)[G : I]. Since NG(I) is the unique maximal

subgroup containing I, D ⊂ NG(I) and degP divides [NG(I) : I] = 4. But

P does not have degree 1 because it is not conjugate to P∞, and S has no

points of degree 2, so degP = 4 and D = NG(I). Thus, the point P has

orbit of size [G : D] = 1
4
q2(q−1)(q+ 2q0 + 1). Since this equal to the number

of points on S of degree 4, these points form a single orbit under the action

of G.

3.1.3 The Ree Curve

For s ≥ 1 and q = 3q20 = 32s+1, the Ree curve R = Rs may be defined by the

affine equations

yq − y = xq0(xq − x),

zq − z = x2q0(xq − x).

The curve R has q3 + 1 points rational over Fq, genus 3
2
q0(q− 1)(q + q0 + 1),

and automorphism group Ree(q) of size (q3 + 1)q3(q − 1). The curve R is

maximal over Fq6 .

Proposition 3.4. The Ree curve has exactly two short orbits under the ac-

tion of its full automorphism group. One is non-tame of size q3+1, consisting

of the Fq-rational points. The other is tame of size 1
6
q3(q−1)(q+1)(q+3q0+1),

consisting of all points of degree 6.

Proof. This can be proved in the same manner as Proposition 3.3. The only

pieces of information needed are the sizes of the ramifications groups at a

rational point of R in R→ R/Aut(R), and a list of the maximal subgroups of

Aut(R). These may be found, for example, in [HP] and [HKT, page 648].
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3.2 The GK-curve

Let q = q20. The function field of the GK-curve H̃ may be defined by the

equations

yq0 + y = xq0+1, tm = xq − x,

where m = q − q0 + 1. The curve H̃ has genus 1
2
q(q + q0 − 1)(q0 − 1) and

is maximal over Fq3 . Let H denote the Hermitian curve yq0 + y = xq0+1.

Then the two equations above describe the curve H̃ as the normalized fiber

product of the cover H → P1
x with a Kummer extension of P1

x of degree m.

The automorphism group of H̃ partitions the set of Fq6-rational points of

H̃ into two orbits Õ1 = H̃(Fq) and Õ2 = H̃(Fq3)\H̃(Fq) [GK2]. The points of

Õ1 are exactly the set of ramification points of the map H̃ → H. These points

are completely ramified, and lie over O1 = H(Fq). The points of Õ2, on the

other hand, lie over O2 = H(Fq3) \H(Fq), and these points split completely

in H̃ → H (see [FG3, page 5]). By Proposition 3.2, the sets O1 and O2

comprise the two short orbits under the action of the automorphism group

of H, together forming the set of points of H fixed by some automorphism.

The abelian cover H̃ → H is tamely ramified at each point ofO1 and every

point of O2 splits completely in H̃. Therefore, the function field K = Fq3(H̃)

is contained in the maximal abelian extension Krcf of Fq3(H) of conductor

m =
∑

P∈O1
P in which each point of O2 splits completely.

The corresponding curve Hrcf is also maximal over Fq3 and the function

field Krcf is of the form K((xq − x)1/mk) for some k ≥ 1, as will be proved in

section 3.5. With this information we are prepared to show that H̃ = Hrcf.

Theorem 3.5. The Giulietti-Korchmáros curve H̃ is equal to Hrcf.

Proof. For r ≥ 1, let the Cr denote the curve defined by

ur = xq − x.

Then Hrcf is the normalized fiber product of H → P1
x and Cmk → P1

x for

some k ≥ 1. Since Hrcf is maximal over Fq3 , so is Cmk. But by the following

lemma, this implies that k = 1.

Lemma 3.6. Let q = q20 be a square, and let r be a multiple of m = q−q0+1

which divides q3/2 + 1 = (q0 + 1)m. Then the curve Cr is maximal over Fq3
if and only if r = m.

14



Proof. The curve Cm is covered by the GK-curve, hence is maximal over Fq3 .
Let r = mk for some k dividing q0 + 1. Then since g(Cr) = 1

2
(r − 1)(q − 1),

Cr is maximal over Fq3 only if

#Cr(Fq3) = q3 + 1 + (r − 1)(q − 1)q3/2.

Let Tr denote the field trace from Fq3 to Fq. Since r divides q3 − 1, the field

Fq3 contains the rth roots of unity. Therefore, each α ∈ F×rq3 has exactly r

rth roots in Fq3 , and the number of solutions of α = βq − β is either q or 0,

depending on whether Tr(α) = 0 or not. Thus, every element of F×rq3 ∩ ker Tr

contributes rq points to Cr(Fq3). Along with the q points corresponding to

u = 0 and the point at infinity, this gives

#Cr(Fq3) = q + 1 + rq ·#(F×rq3 ∩ ker Tr).

Therefore, Cr is maximal over Fq3 if and only if

#(F×rq3 ∩ ker Tr) = (q − 1)(q0 + 1/k). (3.1)

Since the curve Cm is maximal over Fq3 , we have #(F×mq3 ∩ ker Tr) = (q −
1)(q0 + 1). Let α be an element of F×mq3 ∩ ker Tr, so that α(q3−1)/m = 1 and

Tr(α) = 0. Then

0 = α(q3−1)/m−q2 Tr(α)

= α(q3−1)/m−q2(α + αq + αq
2

)

= α(q−1)q0 + α(q−1)(q0+1) + 1,

so there at most (q − 1)(q0 + 1) such α. We conclude that F×mq3 ∩ ker Tr

consists of the roots of the polynomial

f(T ) = T (q−1)(q0+1) + T (q−1)q0 + 1.

We claim that the trace zero elements of F×mq3 are evenly distributed among

the cosets of the multiplicative subgroup W = F×
q30
⊂ F×mq3 of index q0 + 1.
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To see this, first note that the polynomial f(T ) admits the factorization

f(T ) =
∏

ζq0+1=1

(T q−1 + ζT q0−1 + 1).

Fix a generator β of F×mq3 , so that ζ = βq
3/2−1 is a primitive (q0 + 1)th root

of unity. Then we claim that each root of f(T ) lying in the coset β−iW is a

root of fi(T ) = T q−1 + ζ iT q0−1 + 1. For if α ∈ β−iW , then (αβi)q
3
0−1 = 1 and

α(q−1)q0fi(α) = α(q−1)q0(αq−1 + ζ iαq0−1 + 1)

= α(q−1)(q0+1) + β(q30−1)iαq
3
0−1 + α(q−1)q0 = f(α).

It follows that #(Frq3 ∩ ker Tr) = (q − 1)(q0 + 1)/k. Comparing with (3.1),

we see that Cr is maximal only if k = 1.

3.3 Suzuki cover

In this section, we introduce a cover S̃ → S of the Suzuki curve which is

analogous to the GK-curve H̃ → H and show that it is maximal over Fq4 ,
where q = 2q20 = 22s+1, s ≥ 1. Recall that the Suzuki curve S is defined by

the affine equation

yq + y = xq0(xq + x).

Let S̃ be a smooth model of the curve with function field described by

yq + y = xq0(xq + x), tm = xq + x,

where m = q − 2q0 + 1. The curve S̃ may be described as the normalization

of the fiber product of the covers S → P1
x and Cm → P1

x, where Cm is the

curve tm = xq + x.

Let F = Fq(x). The function field Fq(S̃) is the composite of Fq(Cm) =

F (t) and Fq(S) = F (y). Each place of F of degree 1 is ramified in F (t), with

ramification index m, and no other places are ramified. Also, the place ∞
corresponding to 1/x is the only place ramified in F (y), with ramification

index q. Therefore, the only places ramified in F (t, y)/F (y) are the q2 + 1

rational places, and each is tamely ramified with ramification index m. Thus,
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the Hurwitz formula gives

gS̃ = 1 +m(gS − 1) +
1

2
(q2 + 1)(m− 1) =

1

2
(q3 − 2q2 + q).

Theorem 3.7. The curve S̃ is maximal over Fq4.

We prove this by means of the Natural Embedding Theorem of Ko-

rchmáros and Torres (Theorem 2.6). Given an F`2-maximal curve X, there

is a concrete construction described in [KT] for producing an embedding of

X in a Hermitian variety. First take a basis f1, . . . , fm for the linear series

L((` + 1)P0), where P0 is any rational point of X. Then there is a unique

point (z0 : · · · : zm) ∈ PmF`2 (X) satisfying

z`1f1 + · · ·+ z`mfm = 0.

After a linear change of variables, and possibly taking a projection, the func-

tions zi then give desired embedding.

Define functions z = y2q0 + x2q0+1 and w = xy2q0 + z2q0 on S̃. These

satisfy the relations

zq + z = x2q0(xq + x), wq + w = y2q0(xq + x). (3.2)

Moreover, if ∞ denotes the pole of the function x, then

−v∞(x) = qm = q2 − 2qq0 + q,

−v∞(y) = −(1 +
1

2q0
)v∞(x) = q2 − qq0 + q0,

−v∞(z) = −(1 +
1

q0
)v∞(x) = q2 − q + 2q0,

−v∞(w) = −(1 +
1

q0
+

1

q
)v∞(x) = q2 + 1,

−v∞(t) = − q

m
v∞(x) = q2.

Since the semigroup generated by these numbers has genus g(S̃), the

pole orders of these functions generate the Weierstrass semigroup of S̃ at

∞. In particular, the linear series L((q2 + 1)∞) has a basis B of monomials

in 1, x, y, z, w, t. This fact is relevant to the task of finding an equation

for the particular Hermitian variety in which we wish to embed S̃, since
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it allows a search for the functions zi mentioned above to be phrased as a

linear algebra problem over a vector space with basis bq
2k
i bj with bi, bj ∈ B.

Such a computation performed in Magma [BCP] assisted in the discovery of

equation (3.3) below.

Lemma 3.8. Every automorphism of S lifts to an automorphism of S̃ defined

over Fq4.

Proof. The group AutFq(S) is generated by the stabilizer of the point ∞,

which consists of automorphisms ψabc taking

x 7→ ax+ b

y 7→ aq0+1y + bq0x+ c,

for a ∈ F×q and b, c ∈ Fq, along with an involution φ defined by φ(x) = z/w

and φ(y) = y/w, which swaps ∞ with another rational point (see [HS] and

[Hen]). To extend ψ = ψabc to S̃, we need

ψ(t)m = ψ(x)q − ψ(x) = a(xq + x).

Fix a generator α of F×q and an mth root β of α which is contained in

Fq4 since m divides q4 − 1. Then we may take ψ(t) = a1/mt, where a1/m is

chosen consistently with the choice of α and β.

The automorphism φ may be lifted to an automorphism of S̃ by φ(t) =

t/w. Indeed, φ so defined satisfies

φ(t)m = φ(x)q + φ(x) = (z/w)q + z/w.

To verify this, first multiply the desired equality by wq+1 and use (3.2) to

obtain

tmw2q0 = zqw + zwq

= w(zq + z) + z(wq + w)

= wx2q0(xq + x) + zy2q0(xq + x).

Thus the desired equation is equivalent to w2q0 = wx2q0 + zy2q0 , which may

now be verified by using the definitions of z and w.
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Lemma 3.9. The map π = (1 : x : t : z : w) defines a smooth embedding of

the curve S̃ in P4.

Proof. LetX0, . . . , X4 be homogeneous coordinates on P4. We first check that

π(S̃) has no singular points on the affine piece X0 = 1. Here the equations

zq + z = x2q0(xq + x)

wq + w = (x2q0+1 + z)(xq + x)

tm = xq + x

give a matrix of derivatives of rank 3. It remains to check that π(S̃) has no

singular points on the hyperplane X0 = 0. Since the function defining π are

in L((q2 + 1)∞) and

v∞(w) = −(q2 + 1) < v∞(f)

for f ∈ {1, x, z, t}, the only point in π(S̃) ∩ Z(X0) is P∞ := π(∞) = (0 : 0 :

0 : 0 : 1).

Let φ be the automorphism of S̃ mentioned in the previous lemma, which

acts on the image π(S̃) ⊂ P4 via the permutation (04)(13) of homogeneous

coordinates on P4. Since the point P0 = (1 : 0 : 0 : 0 : 0) ∈ π(S̃) is

nonsingular, so is the point φ(P0) = P∞.

Proof of Theorem 3.7. We claim that

wq
2

+ w + zq
2

x+ xq
2

z = tq
2+1, (3.3)

so that the image of the map π = (1 : x : t : z : w) lies on the Hermitian

hypersurface

X0X
q2

4 +Xq2

0 X4 +Xq2

1 X3 +X1X
q2

3 = Xq2+1
2

in P4. By Theorem 2.6 this will complete the proof of the theorem. Writing

f = xq +x for convenience, we use (3.2) to rewrite the terms on the left hand

side of the desired equation as

wq
2

+ w = (y2q0f)q + y2q0f

= (y2q0 + x2qq0+q + xq+2q0)f q + y2q0f
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and

zq
2

x+ xq
2

z = (zq
2

+ z)x+ (xq
2

+ x)z

= ((x2q0f)q + x2q0f)x+ (f q + f)(x2q0+1 + y2q0)

= (x2qq0+1 + x2q0+1 + y2q0)f q + y2q0f.

Adding these gives

(x2qq0+q + xq+2q0 + x2qq0+1 + x2q0+1)f q = f q+2q0+1 = tq
2+1,

and so the claim is proven.

3.4 Ree cover

Fix s ≥ 1, and let q = 3q20 = 32s+1, and recall the definition of the Ree curve

R from section 3.1. In this section, we construct a cover R̃ → R which is

also maximal over Fq6 . Let R̃ be a smooth model of the curve with function

field described by

yq − y = xq0(xq − x)

zq − z = x2q0(xq − x)

tm = xq − x,

where m = q − 3q0 + 1. The curve R̃ may be described as the normalization

of the fiber product of of the covers R→ P1
x and Cm → P1

x, where Cm is the

curve described by the third equation above.

Let F = Fq(x). The function field Fq(R̃) is the composite of Fq(Cm) =

F (t) and Fq(S) = F (y, z). Each place of F of degree 1 is ramified in F (t) with

ramification index m, and no other places are ramified. Also, the place ∞
corresponding to 1/x is the only place ramified in F (y, z), with ramification

index q2. Therefore, the only places ramified in F (t, y, z)/F (y, z) are the

q3 + 1 rational places, and each is tamely ramified with ramification index

m. Thus, the Hurwitz formula gives

gR̃ = 1 +m(gR − 1) +
1

2
(q3 + 1)(m− 1)
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=
1

2
(q4 + 6q3q0 + 2q3 − 2q2 − 6qq0 − 3q + 2).

Theorem 3.10. The curve R̃ is maximal over Fq6.

We proceed as in section 3.3 by embedding R̃ in a Hermitian variety.

We recall the functions wi on the Ree curve introduced in (2.2). From the

appendix of [Ped], these satisfy

wq1 − w1 = x3q0(xq − x) wq4 − w4 = (w2 − xw1)
q0(xq − x)

wq2 − w2 = y3q0(xq − x) wq6 − w6 = w3q0
4 (xq − x) (3.4)

wq3 − w3 = z3q0(xq − x) wq8 − w8 = w3q0
7 (xq − x).

Furthermore, if ∞ denotes the unique pole of x in R̃, then it follows that

−v∞(x) = q3 − 3q2q0 + q2, −v∞(w6) = q3 − q + 3q0,

−v∞(w1) = q3 − 2q2 + 3qq0, −v∞(w8) = q3 + 1,

−v∞(w2) = q3 − q2 + q, −v∞(t) = q3.

−v∞(w3) = q3 − 3qq0 + 2q,

Lemma 3.11. Every automorphism of R lifts to an automorphism of R̃

defined over Fq6.

Proof. We use the concrete description of G = AutFq(R) found in [Ped]. The

group G is generated by the stabilizer G∞ of the point ∞ and an involution

φ which swaps ∞ with another rational point. The stabilizer G∞ consists of

automorphisms ψabcd taking

x 7→ ax+ b

y 7→ aq0+1y + abq0x+ c

z 7→ a2q0+1z − aq0+1bq0y + ab2q0x+ d,

for a ∈ F×q and b, c, d ∈ Fq. To extend ψ = ψabcd to R̃, we need

ψ(t)m = ψ(x)q − ψ(x) = a(xq − x).

Fix a generator α of F×q and an mth root β of α which is contained in Fq6
since m divides q6−1. Then we may take ψ(t) = a1/mt, where a1/m is chosen
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consistently with the choice of α and β.

The involution φ ∈ AutFq(R) mentioned above sends

x 7→ w6/w8, y 7→ w10/w8, z 7→ w9/w8.

We claim that φ extends to R̃ via φ(t) = t/w8. To verify this, we show that

φ(t)m = φ(x)q − φ(x) = (w6/w8)
q − w6/w8.

Upon multiplying through by wq+1
8 , using (3.4), and then dividing by xq−x,

this is seen to be equivalent to

w3q0
8 = w8w

3q0
4 − w6w

3q0
7 .

But this is one of the equations appearing in [ED, Lemma 4.3].

Lemma 3.12. The map π = (1 : x : w1 : w2 : t : w3 : w6 : w8) defines a

smooth embedding of the curve R̃ in P7.

Proof. Let X0, . . . , X7 be homogeneous coordinates on P7. We first check

that π(R̃) has no singular points on the affine piece X0 = 1. Here we have,

from (2.2) and (3.4),

wq1 − w1 = x3q0(xq − x)

wq2 − w2 = (x3q0+1 − w1)(x
q − x)

wq3 − w3 = (x3q0+2 − xw1 − w2)(x
q − x)

wq6 − w6 = (x3q0wq2 − w
q
1x

3q0+1 + wq+1
1 )(xq − x)

wq8 − w8 = (w3q0
2 + x3q0wq3 − x6q0+1wq1 + x3q0wq+1

1 + w2w
q
1)(x

q − x).

These equations, along with tm = xq−x, give a matrix of derivatives of rank 6.

It remains to show that π(R̃) has no singular points lying on the hyperplane

X0 = 0. Since each of the functions defining π are in L((q3 + 1)∞), and

v∞(w8) = −(q3 + 1) < v∞(f)

for f ∈ {1, x, w1, w2, w3, w6, t}, the only point of π(R̃) ∩ Z(X0) is P∞ :=

π(∞) = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1).

Let φ be the involution in AutFq(R̃) defined in the previous lemma, which
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takes x 7→ w6/w8 and t 7→ t/w8. Since the automorphism φ also sends

w1 7→ w3/w8, w2 7→ w2/w8, w3 7→ w1/w8,

w6 7→ x/w8, w8 7→ w8/w8,

it acts on the image π(R̃) ⊂ P7 via the permutation (07)(16)(25) of homoge-

neous coordinates on P7. Since the point P0 = (1 : 0 : 0 : 0 : 0 : 0 : 0) ∈ π(R̃)

is nonsingular, so is the point φ(P0) = P∞.

Proof of Theorem 3.10. We show that

wq
3

8 + w8 + xwq
3

6 + xq
3

w6 + w1w
q3

3 + wq
3

1 w3 + wq
3+1

2 = tq
3+1,

so that the image of the map π = (1 : x : w1 : w2 : t : w3 : w6 : w8) in P7 lies

on the Hermitian hypersurface

X0X
q3

7 +Xq3

0 X7 +X1X
q3

6 +Xq3

1 X6 +X2X
q3

5 +Xq3

2 X5 +Xq3+1
3 = Xq3+1

4 .

The desired result will then follow by Theorem 2.6. Since

tq
3+1 = (xq − x)

q3+1
m = (xq − x)q

2+3qq0+2q+3q0+1,

our verification may be done completely inside of the function field Fq(x, y, z)

of R. Writing f = xq − x for convenience, we use (3.4) to rewrite the terms

on the left hand side of the desired equation as

wq
3

8 + w8 = (w3q0
7 )q

2

f q
2

+ (w3q0
7 )qf q + w3q0

7 f − w8,

xwq
3

6 + xq
3

w6 = (wq
3

6 − w6)x+ (xq
3 − x)w6 − xw6

= ((w3q0
4 )q

2

x+ w6)f
q2

+ ((w3q0
4 )qx+ w6)f

q + (w3q0
4 x+ w6)f − xw6,

w1w
q3

3 + wq
3

1 w3 = (wq
3

3 − w3)w1 + (wq
3

1 − w1)w3 − w1w3

= ((z3q0)q
2

w1 + (x3q0)q
2

w3)f
q2 + ((z3q0)qw1 + (x3q0)qw3)f

q

+ (z3q0w1 + x3q0w3)f − w1w3,

wq
3+1

2 = (wq
3

2 − w2)w2 + w2
2

= (y3q0)q
2

w2f
q2 + (y3q0)qw2f

q + y3q0w2f + w2
2.
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Collecting terms involving common powers of f gives

A−1 + A0f + A1f
q + A2f

q2 ,

where

A−1 = −w8 − xw6 − w1w3 + w2
2

and

Ai = (wq
i

7 )3q0 + (wq
i

4 )3q0x+ (zqi)3q0w1 + (yqi)3q0w2 + (xqi)3q0w3 + w6

for i = 0, 1, 2. We claim that A−1 = A0 = A1 = 0. Indeed, the quadric A−1

and each of the three terms in the expression

A0 = (x3q0w3 − z3q0w1 − w3q0
7 + w3q0

2 )

− (w3q0
4 x+ z3q0w1 − y3q0w2)

− (w3q0
4 x+ w3q0

7 + w3q0
2 − w6)

are among the relations listed in [ED, Lemma 4.3], so A−1 = 0 = A0. Now

using (3.4), we obtain

Aq0 − A1 = (wq4)
3q0(xq − x) + (wq6 − w6)

+ (zq)3q0(wq1 − w1) + (xq)3q0(wq3 − w3) + (yq)3q0(wq2 − w2)

= (wq4 + w4 + zqx+ xqz + yq+1)3q0(xq − x).

Further simplification reveals that

B1 := wq4 + w4 + zqx+ xqz + yq+1 = 0,

and so A1 = 0.

It remains to show that A2 = (xq − x)3qq0+2q+3q0+1. By (3.4),

Aq1 − A2 = (wq
2

4 )3q0(xq − x) + (wq6 − w6)

+ (zq
2

)3q0(wq1 − w1) + (xq
2

)3q0(wq3 − w3) + (yq
2

)3q0(wq2 − w2)

= (wq
2

4 + w4 + zq
2

x+ xq
2

z + yq
2+1)3q0(xq − x).
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Thus it suffices to show that

B2 := wq
2

4 + w4 + zq
2

x+ xq
2

z + yq
2+1 = −(xq − x)q+2q0+1.

To do this, we use (3.4) again, obtaining

Bq
1 −B2 = (wq4 − w4) + zq

2

(xq − x) + xq
2

(zq − z) + yq
2

(yq − y)

= (wq02 − w
q0
1 x

q0 + zq
2

+ xq
2

x2q0 + yq
2

xq0)(xq − x)

=
[
(xy3q0 − z3q0)q0 − (x3q0+1 − y3q0)q0xq0

+zq
2

+ xq
2

x2q0 + yq
2

xq0
]

(xq − x)

=
[
(zq − z)q + (yq − y)qxq0 + (xq − x)qx2q0

]
(xq − x)

= (x2qq0 + xqq0+q0 + x2q0)(xq − x)q+1

= (xq − x)q+2q0+1.

3.5 Ray class fields

In this section, we let X denote one the Deligne-Lusztig curves H, S, or

R, and let d = 3, 4, or 6, respectively. Then #X(Fq) = qd/2 + 1, and X̃ is

maximal over Fqd , and the cover X̃ → X is of degree m = q − bd/2cq0 + 1.

Moreover, each Fq-rational point of X is totally ramified in X̃ and these are

the only points ramified in X̃ → X. The following lemma implies then that

every point of X of degree d splits completely in X̃ over Fqd .

Lemma 3.13. Let X be a curve defined over Fq which is maximal over Fqd,

and let f : Y → X be a tame cover of degree m > 1 defined over Fq. Sup-

pose that f is totally ramified at each Fq-rational point of X and unramified

elsewhere. Then any two of the following conditions implies the third.

(i) Y is maximal over Fqd,

(ii) #X(Fq) = qd/2 + 1,

(iii) #(f−1(P ) ∩ Y (Fqd)) = m for every P ∈ X(Fqd) \X(Fq).

Proof. Let Nr denote the number of Fqr -rational points of X.. From the

Hurwitz genus formula,

2gY − 2 = m(2gX − 2) +N1(m− 1).
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Also, since X is maximal over Fqd we have Nd = qd + 1 + 2gXq
d/2. Then

#Y (Fqd) ≤ qd + 1 + 2gY q
d/2

= qd + 1 + qd/2 [m(2gX − 2) +N1(m− 1) + 2]

= N1 +m(Nd −N1) + qd/2(m− 1)
[
N1 − (qd/2 + 1)

]
,

If Y is maximal over Fqd then equality holds above, and so (ii) is satisfied if

and only if (iii) is. On the other hand, if both (ii) and (iii) hold, then

#Y (Fqd) = N1 +m(Nd −N1) = qd + 1 + 2gY q
d/2,

and Y is maximal over Fqd .

Define the modulus m as the sum of all Fq-rational points of X and let Σ

be the set of the points of X of degree d over Fq. Then there is a curve Xrcf →
X whose function field is the ray class field over K = Fqd(X) of conductor m

in which each place in Σ splits completely. Since K̃ = Fqd(X̃) is an abelian

extension of K satisfying these ramification and splitting conditions, K̃ is

contained in Krcf = Fqd(Xrcf) and the cover Xrcf → X factors through X̃.

P1 ∞ A1(Fq)

X O1

X̃ X̃(Fq)

O2

X̃(Fqd) \ X̃(Fq)

Xrcf

Figure 3.1: Splitting in X̃

Theorem 3.14. The curve Xrcf is maximal over Fqd.

Proof. Write Y = Xrcf. By Lemma 3.13 it suffices to show that Y → X is

totally ramified at each point of X(Fq). Let k be the degree of the cover
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Y → X̃ and write N = #X̃(Fq) = qd/2 + 1. For P ∈ X̃, let eP denote the

ramification index of P in Y . Then

#Y (Fqd) = km#Σ +N − r,

where r is the number of Fq-rational points of X̃ with eP < k. On the other

hand, the Hasse-Weil bound and Riemann-Hurwitz give

#Y (Fqd) ≤ qd + 1 + 2gY q
d/2

= (qd/2 + 1)2 + (2gY − 2)qd/2

= N2 + kqd/2(2gX̃ − 2) + qd/2 deg Diff Y/X̃.

Now

deg Diff Y/X̃ = k
∑

P∈X̃(Fq)

(
1− 1

eP

)
= N(k − 1)−

∑
eP>1

(
k

eP
− 1

)
.

Combining all this with the facts m#Σ = qd/2(q−1)N and 2gX̃−2 = (q−2)N

and doing some rearranging yields

∑
eP>1

(
k

eP
− 1

)
≤ 1 + rq−d/2 ≤ 2 + q−d/2. (3.5)

Since eP divides k, each nonzero summand on the left hand side of (3.5) is at

least 1, so we conclude that eP < k for at most two P ∈ X(Fq). In particular,

if r > 0 then either r = 1 and eP = k/3 for a single P , or r ∈ {1, 2} and

eP ≥ k/2 for all P . But either of these cases gives a contradiction in (3.5).

Corollary 3.15. The cover Xrcf → X is cyclic. In particular, the function

field Krcf is of the form K((xq − x)1/mk) for some k dividing (qd/2 + 1)/m.

Proof. The first statement follows from the fact that any tame abelian ex-

tension L/K which is totally ramified at some place is cyclic. Indeed, if

not then by replacing K with a larger subfield of L we may assume that

Gal(L/K) ∼= (Z/rZ)2 for some r > 1. Then L is a composite of two cyclic

Kummer extensions Ki = K(vi) with vri = fi ∈ K. Since L/K is totally

ramified at some place P , it follows that ai = vP (fi) is invertible mod r for

i = 1, 2 (see [Sti2, Prop 3.7.3]). Choose j so that ja1 ≡ a2 mod r. Then

v = vj1/v2 ∈ L is a root of vr = f j1/f2, and K(v)/K is unramified at P since
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vP (f j1/f2) = ja1 − a2 ≡ 0 mod r.

Let Jm denote the ray class group over K of conductor m. Then Jm fits

into an exact sequence

1→ F×
qd
→ O×m → Jm → J → 1,

where J = Jac(X)(Fqd) and

O×m =
∏
P∈m

(OP/mP )× ∼= (F×
qd

)#X(Fq2 ) ∼= (Z/(qd − 1)Z)q
d/2+1.

Furthermore, we have J ∼= (Z/(qd/2 + 1)Z)2gX since X is maximal over Fqd .

Thus Jm has exponent dividing qd− 1, and so does its quotient Gal(Krcf/K).

From the discussion above, L = K((xq − x)1/(q
d−1)) is the largest abelian

extension of K of exponent dividing qd−1 in which each Fq-rational place of

K is totally ramified. Since Krcf is such an extension, we have K̃ ⊂ Krcf ⊂ L,

and so Krcf is of the form K((xq − x)1/mk) for some k dividing (qd − 1)/m.

This shows that Xrcf covers the curve Cmk given by umk = xq − x. Since

Xrcf is maximal over Fqd , so is Cmk. But a theorem of Garcia and Tazafolian

[GT, Theorem 1.2] implies that a curve of the form ur = xq − x may be

maximal over Fqd only for r dividing qd/2 + 1. Thus k divides (qd/2 + 1)/m,

as desired.

It follows from the proof of Corollary 3.15 that a sufficient condition for

Xrcf to be equal to X̃ is that none of the curves Cr defined by ur = xq − x
are maximal over Fqd for r a proper multiple of m. This is the case when

X = H, as was shown in section 3.2. The analogue of Lemma 3.6 does not

hold in the situation corresponding to Srcf and Rrcf, however. Indeed, in the

Suzuki case qd/2 + 1 = q2 + 1 = (q+ q0 + 1)m, and the curve uq
2+1 = xq +x is

covered by the Hermitian curve uq
2+1 = xq

2
+ x, hence is maximal over Fq4 .

In the Ree case, there are also proper multiplies r of m such that the curve

ur = xq − x is maximal over Fq6 .
In any case, Corollary 3.15 allows one to verify computationally that

Xrcf = X̃ for small values of q by checking that K((xq − x)1/m`) is not

maximal over Fqd for any prime ` dividing (qd/2 + 1)/m. Our computations

in Magma have shown that Srcf = S̃ for q = 22s+1 with 1 ≤ s ≤ 6, and

that Rrcf = R̃ for q = 27. We leave as an open problem the question of
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whether Xrcf = X̃ in general. The following bound on the degree of the cover

Xrcf → X̃ follows from Theorem 3.14.

Corollary 3.16. The degree k of the cover Xrcf → X̃ satisfies

k ≤ qd/2 − 3

q − 2
.

Proof. Since the curve Xrcf is maximal over Fqd its genus is at most qd/2(qd/2−
1)/2 [Iha]. The desired bound follows immediately by combining this with the

Hurwitz formula applied to the cover Xrcf → X̃, and the fact that 2gX̃ − 2 =

(q − 2)(qd/2 + 1).

Remark. This bound is slightly better than the bound k ≤ (qd/2 +1)/m from

Corollary 3.15. When X is the Suzuki or Ree curve, it gives

k ≤ q + 2,

k ≤ q2 + 2q + 4,

respectively. Current results on the genus spectrum of maximal curves may

be used to reduce these bounds by a factor of 3.
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4 The orders of an embedding of
the Ree curve

Let X be a smooth, geometrically irreducible, projective algebraic curve

defined over a finite field Fq of characteristic p, and let

m(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0 ∈ Z[t]

be the square-free part of the characteristic polynomial of the Frobenius

endomorphism Frq on the Jacobian of X. Then for any P, P0 ∈ X with P0

an Fq-rational point, we have the fundamental linear equivalence [HKT]

m(Frq)(P ) = Frnq (P ) + · · ·+ a1 Frq(P ) + a0P ∼ m(1)P0. (4.1)

Thus for m = |m(1)|, the linear series DX := |mP0|, sometimes called the

Frobenius linear series, is independent of the choice of rational point P0.

The linear seriesDX is a useful tool for studying curves with many rational

points, especially in the context of the theory of Stöhr and Voloch, which we

introduce in section 4.1. The series DX has been used extensively to study

Fq-maximal curves, since it is intimately related to the embedding given in

Theorem 2.6. See for example [FGT], [AT], [FG1], [FG2], and has also been

used to study Fq-optimal curves [FT].

The Hermitian, Suzuki, and Ree curves are each characterized among

curves over Fq by their genus, number of rational points, and automorphism

group [HP]. Moreover, it can be shown using Stöhr-Voloch theory applied

to DX that the genus and number of rational points alone are sufficient to

characterize the Hermitian and Suzuki curves [RS], [FT]. Whether this is

also the case for the Ree curve remains an open question—one which was the

initial motivation for the work in the current chapter.

The results in this chapter appear in the paper [Ska1].
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In this chapter, we let X denote the Ree curve

yq − y = xq0(xq − x), zq − z = xq0(yq − y), (4.2)

where q = 3q20 = 32s+1, s ≥ 1, and consider X as a curve over Fq. Recall that

X has genus g = 3
2
q0(q − 1)(q + q0 + 1) and N = q3 + 1 points defined over

Fq. Weil–Serre’s explicit formulas can be used to show that X is Fq-optimal,

and that any curve defined over Fq with this g and N has L-polynomial

LX(t) = (1 + 3q0t+ qt2)q0(q
2−1)(1 + qt2)

1
2
q0(q−1)(q+3q0+1). (4.3)

Since the characteristic polynomial of Frq is t2gLX(1/t), we obtain

m(t) = (t2 + 3q0t+ q)(t2 + q)

= t4 + 3q0t
3 + 2qt2 + 3qq0t+ q2,

and DX = |mP0| with m = m(1) = 1 + 3q0 + 2q + 3qq0 + q2.

There is a subseries D ⊂ DX of projective dimension 13 which is invariant

under Aut(X). In [ED], Duursma and Eid show that D is very ample, giving

a smooth embedding of X in P13. They also find 105 equations describing the

image of this embedding, and use these to compute the Weierstrass semigroup

at a rational point when s = 1. In this case, it follows from their work that

D = DX is a complete linear series. Whether or not D is complete for s ≥ 2

is unknown at present.

In this chapter we determine the order sequence of D, that is, the orders

of vanishing of sections of D at a general point. Equivalently, these are the

intersection multiplicities of hyperplane sections of X embedded in P13 at a

general point. We prove the following theorem.

Theorem 4.1. The orders of D are

0, 1, q0, 2q0, 3q0, q, q + q0, 2q, qq0, qq0 + q0, qq0 + q, 2qq0, 3qq0, q
2.

Since D ⊂ DX , these form a subset of the orders of DX .

As a consequence, we show in Corollary 4.9 that the Weierstrass points

of D consist of the Fq-rational points of X.
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4.1 Weierstrass points and Stöhr-Voloch

theory

The theory of Weierstrass points in characteristic p was developed first by

F.K. Schmidt [Sch]. We briefly give the necessary definitions and results on

the subject following the presentation in the paper of Stöhr and Voloch [SV].

Given a base-point-free linear series D on X of dimension r and degree

d, and P a point of X, the (D, P )-orders consist of the sequence

0 = j0(P ) < j1(P ) < · · · < jr(P ) ≤ d

of integers ji such that there is a hyperplane in D intersecting P with multi-

plicity equal to ji. These are the same for all but finitely many points P ∈ X,

called D-Weierstrass points. The generic values of the ji(P ) are the D-orders

0 = ε0 < ε1 < · · · < εr.

This order sequence may be computed by choosing the εi lexicographically

smallest so that

(Dεi
x f0 : Dεi

x f1 : · · · : Dεi
x fr), i = 1, . . . , r,

are linearly independent in PrFq(X), where f0, f1, . . . , fr is a basis for D, and

the Di
x are Hasse derivatives taken with respect to some fixed separating

variable x.

The Hasse derivatives Di
x are defined on Fq(x) by

Di
xx

j =

(
j

i

)
xj−i,

and extend uniquely to derivations on Fq(X) satisfying the properties

Dk
x(fg) =

∑
i+j=k

(Di
xf)(Dj

xg), Dk
xf

p =

(D
k/p
x f)p if p | k

0 if p - k

for any f, g ∈ Fq(X). In view of this second property, it will be often be

convenient to write D
k/q
x for k/q is a rational number with denominator a

power of p, adopting the convention that D
k/q
x = 0 when k/q is not an integer.
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Furthermore, when the choice of separating variable x is clear from context,

we omit the subscript and write simply Di.

The following “p-adic criterion” for D-orders is quite useful.

Lemma 4.2 ([SV, Corollary 1.9]). If ε is a D-order and
(
ε
µ

)
6≡ 0 mod p, then

µ is also a D-order.

By Lucas’s Theorem, the condition
(
ε
µ

)
6≡ 0 mod p in the lemma is equiv-

alent to saying that the coefficients in the p-adic expansion of ε are greater

than or equal to those in the expansion of µ. When this is the case we write

µ ≤p ε. This defines a partial order on the nonnegative integers.

The (q-)Frobenius orders 0 = ν0 < ν1 < · · · < νr−1 of D form a subse-

quence of the order sequence {εi}, and are defined lexicographically smallest

so that

(f q0 : f q1 : · · · : f qr ),

(Dν0
x f0 : Dν0

x f1 : · · · : Dν0
x fr),

...

(Dνr−1
x f0 : Dνr−1

x f1 : · · · : Dνr−1
x fr)

are linearly independent in PrFq(X). There is exactly one D-order εI which is

omitted by the sequence {νi}. The geometric significance of the index I is

as follows: it is the smallest i ≥ 0 such that, for general P , the image of P

under the Frobenius endomorphism lies in the ith osculating space at P . The

Frobenius orders are closely connected with the Fq-rational points of X, and

are used in Stöhr and Voloch’s proof of the Riemann Hypothesis for curves

over finite fields.

Lemma 4.3 ([SV, page 10]). Let (1 : f1 : · · · : fr) be the morphism associated

to D. Then the Frobenius orders of D which are less than q are the first

several orders of the morphism (f1 − f q1 : · · · : fr − f qr ).

4.2 Derivatives on the Ree Curve

The function field of the Ree curve X is Fq(x, y, z), where y and z satisfy

(4.2). The linear series D we wish to study corresponds to the Fq-vector
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space VD spanned by the 14 functions

B = {1, x, y, z, w1, w2, . . . , w10},

where wi are defined as in (2.2). The functions in B have distinct orders at

the pole P∞ of x, hence are linearly independent. We will use the separating

variable x for computing all Hasse derivatives on the Ree curve.

To compute the orders ofD, we will need to obtain closed form expressions

for the derivatives of the functions f ∈ B. In addition to the relations in (4.2),

the following equations derived by Pedersen will be useful for computing the

derivatives of the wi.

wq1 − w1 = x3q0(xq − x) wq4 − w4 = wq02 (xq − x)− wq01 (yq − y)

wq2 − w2 = y3q0(xq − x) wq5 − w5 = wq03 (yq − y)− wq02 (zq − z)

wq3 − w3 = z3q0(xq − x) wq7 − w7 = wq02 (yq − y)− wq03 (xq − x) (4.4)

wq6 − w6 = w3q0
4 (xq − x) wq9 − w9 = wq02 (wq4 − w4)− wq06 (yq − y)

wq8 − w8 = w3q0
7 (xq − x) wq10 − w10 = wq06 (zq − z)− wq03 (wq4 − w4)

We have separated these equations into groups of similar form. We call the

wi which appear on the left hand side of (4.4) of type 1 and the wi on the

right hand side of type 2.

We give an example to show how the expressions in (4.4) are useful for

computing derivatives. To compute the derivatives of y, we let h = xq0(xq −
x). Since yq−y = h, we may expand y as a series in h whose tail is contained

in the kernel of any of the derivations we wish to apply. To compute Diy for

i < q2, we consider

y = −h− hq + yq
2 ≡ −h− hq mod Fq(X)q

2

,

since Fq(X)q
2

=
⋂q2−1
i=1 kerDi. Then

Diy = −Dih− (Di/qh)q.

In this manner, the derivatives of y are written in terms of derivatives of h,

which can be determined using the basic properties of Hasse derivatives.

Each equation in (4.4) is of a similar form, with each new function written
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in terms of previous ones. Therefore, one may in principle write down any

derivative Dif with f ∈ B as an element of Fq[x, y, z] using this method.

For each f ∈ B, we construct a set Sf containing all indices 0 ≤ i ≤ q2

such that Dif 6= 0, which we refer to as the support of f . We make no claims

that Dif 6= 0 for all i in Sf . By direct calculation as in the example above,

the sets

Sxq−x = {0, 1, q}

Syq−y = {0, 1, q0, q0 + 1, q, q + q0}

Sy = {0, 1, q0, q0 + 1, q, q + q0, qq0, qq0 + q, q2}

Szq−z = {0, 1, q0, q0 + 1, 2q0, 2q0 + 1, q, q + q0, q + 2q0}

Sz = {0, 1, q0, q0 + 1, 2q0, 2q0 + 1, q,

q + q0, q + 2q0, qq0, qq0 + q, 2qq0, 2qq0 + q, q2}

satisfy the desired conditions.

Now we construct Swi
for i = 1, . . . , 10. For n ≥ 1 and A,B ⊂ {0, . . . , q2}

we use the notation

nA = {na : a ∈ A} ∩ [0, q2],

A+B = {a+ b : a ∈ A, b ∈ B} ∩ [0, q2].

Since wq1 − w1 = x3q0(xq − x), we define

Swq
1−w1

= 3q0Sx + Sxq−x

= {0, 3q0}+ {0, 1, q} = {0, 1, 3q0, 3q0 + 1, q, q + 3q0}

and

Sw1 = Swq
1−w1

∪ qSwq
1−w1

= {0, 1, 3q0, 3q0 + 1, q, q + 3q0, 3qq0, 3qq0 + q, q2}.

Similarly, we define Swq
2−w2

= 3q0Sy + Sxq−x and Sw2 = Swq
2−w2

∪ qSwq
2−w2

,

and so on, using the equations in (4.4) as a guide.

Let S denote the union of the Sf with f ∈ B. Since we will use these

sets later, we collect their values in Tables 4.2 and 4.3 at the end of current

chapter. In these tables, an asterisk in row i and column f indicates that i
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is in the set Sf . In particular, Dif = 0 wherever there is a blank entry in

the table. Note in particular that

Sx ⊂ Sw1 ⊂ Sw2 ⊂ Sw3 ⊂ Sw6 = Sw8

and

Sy ⊂ Sz ⊂ Sw4 ⊂ Sw7 ⊂ Sw5 ⊂ Sw9 ⊂ Sw10 .

For s = 1, the indices appearing in the tables are not all distinct, since for

example 3q = qq0. To avoid any complications this may cause, we assume

going forward that s ≥ 2. Computations performed in Magma [BCP] have

verified the statements of all our results for s = 1.

4.3 Computation of Orders

In this section we compute the orders of D.

Theorem 4.1. The orders of D are

0, 1, q0, 2q0, 3q0, q, q + q0, 2q, qq0, qq0 + q0, qq0 + q, 2qq0, 3qq0, q
2.

Since D ⊂ DX , these form a subset of the orders of DX .

Lemma 4.4. The orders of D which are less than q are 0, 1, q0, 2q0, and

3q0.

Proof. That ε0(D) = 0 and ε1(D) = 1 is clear. The rest follows from Lemma

4.3. Indeed, the orders of the morphism

(xq − x : yq − y : zq − z : wq1 − w1 : wq2 − w2 : · · · )

= (1 : xq0 : x2q0 : x3q0 : y3q0 : · · · )

which are less than q are 0, q0, 2q0, and 3q0, so these are the Frobenius

orders of D which are less than q. There is only one order of D which is not

a Frobenius order, and this is ε1(D).

In light of Lemma 3, the fact that ν1(D) = ε2(D) > 1 means that the

matrix (
xq − x yq − y zq − z · · · wq10 − w10

1 D1y D1z · · · D1w10

)
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has rank 1, so that

f q − f = (xq − x)D1f (4.5)

holds for all f ∈ B. Applying the derivatives Dq and Dkq0 for k = 1, 2, 3 to

the previous equation gives the identities

Dkq0f = −(xq − x)Dkq0+1f, k = 1, 2, 3 (4.6)

Dq(f q − f) = D1f + (xq − x)Dq+1f (4.7)

which hold for all f ∈ B. These will be used extensively in what follows.

From (4.1), we have for any P ∈ X a linear equivalence

Fr4(P ) + 3q0 Fr3(P ) + 2q Fr2(P ) + 3qq0 Fr(P ) + q2P ∼ mP∞.

If P 6∈ X(Fq), then the terms on the left hand side involve distinct points

since X has no places of degrees 2, 3, or 4 over Fq. By applying some multiple

of the Frobenius to this equivalence, we obtain each of 1, 3q0, 2q, 3qq0, and q2

as orders of DX , as in [FT, Lemma 3.2]. By the p-adic criterion it follows that

q is also an order of DX . That said, it is not immediately clear that these are

orders of the linear series D. We show now that these are in fact the orders

of the subseries E ⊂ D corresponding to VE = Fq〈1, x, w1, w2, w3, w6, w8〉, and

hence are orders of D.

Theorem 4.5. The orders of E are 0, 1, 3q0, q, 2q, 3qq0, and q2.

For ease of notation we write ` = xq − x in the proof of the next lemma

and throughout the rest of this chapter.

Lemma 4.6. The image in P6 of the map φE = (1 : x : w1 : w2 : w3 : w6 : w8)

lies on the hypersurface ∑
i+j=6

Xq2

i Xj = 0.

Proof. By using (4.4) one finds that

wq
2

8 + w8 = (w3q0
7 )q`q + w3q0

7 `− w8

xwq
2

6 + xq
2

w6 = ((w3q0
4 )qx+ w6)`

q + (w3q0
4 x+ w6)`− xw6

w1w
q2

3 + wq
2

1 w3 = ((z3q0)qw1 + (x3q0)qw3)`
q

+ (z3q0w1 + x3q0w3)`− w1w3
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wq
2+1

2 = (y3q0)qw2`
q + y3q0w2`+ w2

2.

Summing these and collecting terms involving common powers of ` gives an

expression of the form

A−1 + A0`+ A1`
q.

That each Ai = 0 on X may be verified using (2.2) and (4.4), along with

some of the 105 equations found in [ED]. This calculation is carried out

explicitly as a part of the proof of Lemma 3.12.

Lemma 4.7. The largest order of E is q2.

Proof. Because the coefficients ai of m(t) = t4 + 3q0t
3 + 2qt2 + 3qq0t + q2

satisfy a0 ≥ a2 ≥ · · · ≥ a4 and #X(Fq) > q(m − a0) + 1, it follows from

[FGT, Prop 3.4] that the largest order of DX is q2 (our numbering of the

coefficients ai is opposite that found in the reference). Since each order of E
is an order of DX , no order of E is greater than q2. We exhibit a family of

functions gP in VE parameterized by P in X which vanish to order at least

q2 at P .

Write (1, x, w1, w2, w3, w6, w8) = (f0, . . . , f6). Then by Lemma 4.6, the

function

G(P,Q) =
∑
i+j=6

f q
2

i (P )fj(Q)

vanishes on the diagonal of X × X. Choose any P ∈ X r {P∞}. Then

gP = G(P, ·) and hP = G(·, P ) are functions on X which vanish at P , and

gP is in VE . Since

hP =
∑
i+j=6

fj(P )f q
2

i =

(∑
i+j=6

fj(P )1/q
2

fi

)q2

,

the function hP vanishes at P to order at least q2. But

gP − hP =
∑
i+j=6

f q
2

i (P )fj − fj(P )f q
2

i

=
∑
i+j=6

(f q
2

i (P )− f q
2

i )(fj(P ) + fj) + f q
2

i fj − f
q2

i (P )fj(P )

=
∑
i+j=6

(fi(P )− fi)q
2

(fj(P ) + fj)
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also vanishes at P to order at least q2, hence so does gP . Since P was chosen

in an open subset of X, q2 is an order of E .

Remark. The proof of the preceding lemma shows that∑
i+j=6

f q
2

i (P )Xj = 0

is the equation of the osculating hyperplane at P , and that the function

X → Div(X) taking P 7→ div(gP ) assigns to P the corresponding hyperplane

section.

Proof of Theorem 4.5. Let M be the matrix of derivatives [Difj] with i ∈
{0, 1, 3q0+1, q+3q0+1, 2q+3q0+1} and fj ∈ {1, x, w1, w2, w3}. By referring

to Table 4.2 we see that the matrix M is upper triangular. Moreover, one

may check by hand that each diagonal entry is equal to 1. Thus, there are

at least 5 orders ε of E with ε ≤ 2q + 3q0 + 1.

Let IE = {0, 1, 3q0, q, 2q, 3qq0, q2} be the proposed set of orders. The

subset of Sw8 r IE of elements minimal with respect to the partial order ≤3

is

J = {3q0 + 1, q + 1, q + 3q0, 3q, 3qq0 + 1, 3qq0 + 3q0, 3qq0 + q, 6qq0}.

By the p-adic criterion, to prove the theorem it will suffice to show that

no j ∈ J is an order of E . In fact, it will be enough to show that no

j ∈ {3q0 + 1, q + 1, q + 3q0, 3q} is an order. For then we will already know

that the six elements of IE r {3qq0} are orders. Then exactly one of the

remaining elements of J is the seventh and final order of E . But each of the

remaining elements satisfies j ≥3 3qq0, so this final order is 3qq0.

That 3q0 + 1 is not an order follows from (4.6). Let w be one of the

functions w1, w2, w3, w6, w8. Each of these is of the form

w ≡ −h− hq mod Fq(X)q
2

,

where h = f 3q0(xq − x) and f ∈ {x, y, z, w4, w7}. Then Dkw = −Dkh −
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(Dk/qh)q and

Dkh =
∑

3q0i+j=k

(Dif)3q0Dj(xq − x)

= (xq − x)(D
k

3q0 f)3q0 − (D
k−1
3q0 f)3q0 + (D

k−q
3q0 f)3q0 .

We calculate

D3q0+1w = (D1f)3q0

Dq+3q0w = −(D1f)3q0 − `(Dq0+1f)3q0

Dqw = (f q − f)3q0 − `(Dq0f)3q0

D2qw = −(Dq0f)3q0 − `(D2q0f)3q0

Dq+1w = (Dq0f)3q0

D3qw = −(D2q0f)3q0 . (4.8)

Then by using these along with (4.5) and (4.6), one immediately verifies that

`Dq+1w +Dqw = `3q0D3q0+1w

`3q0Dq+3q0w +Dqw = 0

`D3qw = D2qw +Dq+1w,

and so q+1, q+3q0, and 3q are not orders of D. This completes the proof.

Up to this point we have shown that the nine numbers

0, 1, q0, 2q0, 3q0, q, 2q, 3qq0, q
2

are orders of D, and it remains to show that q + q0, qq0, qq0 + q0, qq0 + q,

and 2qq0 are orders.

Proof of Theorem 4.1. Let ID be the list of orders of D proposed in the state-

ment of the theorem. Let M be the 12 by 12 matrix of derivatives [Difj]

with i in

{0, 1, q0 + 1, 2q0 + 1, 3q0 + 1, q + 3q0 + 1, 2q + 3q0 + 1, qq0 + 2q + q0,

qq0 + q + 2q0 + 1, qq0 + 2q + 3q0, qq0 + 3q + 3q0, 2qq0 + 3q0 + 1}
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and fj in {1, x, y, z, w1, w2, w3, w4, w7, w5, w9, w10}. Tables 4.2 and 4.3 assure

that M is upper triangular. Moreover, one may check by hand that each

diagonal entry is equal to 1, except the last, which is x2q. Thus there are

at least 11 orders which are less than 2qq0, and 12 orders which are at most

2qq0 + 3q0 + 1. Since there are 14 orders in total, and we already know that

3qq0 and q2 are among them, to prove the theorem it will be enough to show

that no element of (S r ID) ∩ [0, 2qq0 + 3q0 + 1] is an order.

By the p-adic criterion, it suffices to check elements of this set which are

minimal with respect to ≤3. These elements comprise the set

J = {q0 + 1, 3q0 + 1, q + 1, q + 2q0, q + 3q0, 2q + q0, 3q, qq0 + 1,

qq0 + 2q0, qq0 + 3q0, qq0 + q + q0, qq0 + 2q, 2qq0 + q0}. (4.9)

In fact, it will be enough to demonstrate that each element of Jr{2qq0 +q0}
is not an order, since 2qq0 ≤3 2qq0 + q0.

That q0 + 1 and 3q0 + 1 are not orders follows from Lemma 4.4. To deal

with each remaining ten elements j ∈ J , we give a differential equation

cjD
jf +

∑
i<j

ciD
if = 0, ci ∈ Fq(X)

which is satisfied by all f ∈ B. These are listed in the following lemma, and

proven in the next section. This will complete the proof of the theorem.

Lemma 4.8. The following differential equations are satisfied by each f ∈ B:

(A1) `q0Dq0+1f + `2q0D2q0+1f + `3q0D3q0+1f = Dqf + `Dq+1f

(A2) `q0(Dq+2q0f +D2q0+1)f = Dq+q0f +Dq0+1f

(A3) Dqf + `q0Dq+q0f + `2q0Dq+2q0f + `3q0Dq+3q0f = 0

(A4) `D2q+q0f = Dq0+1f +Dq+q0f

(A5) `D3qf = D2qf +Dq+1f

(A6) `Dqq0+1f +Dqq0f = `q(`q0D2q0+1f −Dq0+1f)

(A7) `2q0Dqq0+2q0f − `q0Dqq0+q0f = `q(Dq0+1f +Dq+q0f)

(A8) `q0Dqq0+q0f + `2q0Dqq0+2q0f + `3q0Dqq0+3q0f = `Dqq0+1f
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(A9) `q+q0+1Dqq0+q+q0f = (`q − `)`q0Dqq0+q0f

(A10) `2q(`Dqq0+2qf −Dqq0+1f) = (`q − `)(`qDqq0+qf +Dqq0f) .

Proof. The fact that x, y, and z satisfy these equations may be verified

without difficulty by hand. If f is of type 1, then by consulting Tables 4.2

and 4.3 we see that the only equations among (A1)–(A10) in which nonzero

derivatives of f appear are (A1), (A3), and (A5), and, keeping in mind that

some of the terms are zero for f of type 1, these are the equations which

were verified in the proof of Theorem 4.5. The proof for functions of type 2

is contained in the next section.

4.4 Verification of Some Differential

Equations

Before proceeding to verify equations (A1)–(A10) for functions of type 2, we

first list a few identities for w of type 1 which will be useful for this task.

For w of type 1, write wq − w = f 3q0(bq − b) as in the proof of Theorem 4.5.

Then D2q+1w = (D2q0f)3q0 , and so by (4.8), we have

`D2q+1w +D2qw +Dq+1w = 0. (4.10)

Also, from the proof of Theorem 4.5 we recall that

Dqw + `Dq+1w = `3q0D3q0+1w, (4.11)

`3q0Dq+3q0w +Dqw = 0. (4.12)

Now let w be of type 2. From (4.4), w may be written in the form

w = t1 − t2, where ti satisfies

tqi − ti = hi = f q0i (bqi − bi),

for some fi ∈ {w1, w2, w3, w6} and bi ∈ {x, y, z, w4}. Thus, if one of the

desired equations holds for all ti of this form, then it also holds for w. This

will be the case for some but not all of the equations we wish to verify.
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Let t, h, f, b be as above. Then

Dkh =
∑

q0i+j=k

(Dif)q0Dj(bq − b)

and

Dit = −Dih− (Di/qh)q.

Taking into account the supports of f and b and using (4.5) and (4.6) to make

simplifications, we compute the derivatives of t which appear in equations

(A1)–(A10).

Dkq0+1t = f q0Dkq0+1b+ (D1f)q0D(k−1)q0+1b, k = 1, 2, 3

Dqt = f q0Dqb+ (D1f)q0`q0Dq(bq) + (D3q0+1f)q0`q0+1D1b

Dq+1t = f q0Dq+1b− (D3q0+1f)q0`q0D1b

Dq+q0t = f q0Dq+q0b− (D1f)q0Dq(bq − b)

+ (D3q0+1f)q0(`q0+1Dq0+1b− `D1b)

Dq+2q0t = f q0Dq+2q0b+ (D1f)q0Dq+q0b

+ (D3q0+1f)q0(`q0+1D2q0+1b− `Dq0+1b)

Dq+3q0t = f q0Dq+3q0b+ (D1f)q0Dq+2q0b− (D3q0+1f)q0`D2q0+1b

D2qt = f q0D2qb+ (D3q0+1f)q0`q0Dq(bq − b)

D2q+q0t = f q0D2q+q0b+ (D1f)q0D2qb

− (D3q0+1f)q0(`q0Dq+q0b+Dq(bq − b))

D3qt = f q0D3qb− (D3q0+1f)q0`q0D2qb

Dqq0t = f q0Dqq0b+ (D1f)q0`q0Dqq0(bq)

− (Dqf)q0`D1b− (Dqf q)q0`qDq(bq)

Dqq0+1t = f q0Dqq0+1b+ (Dqf)q0D1b

Dqq0+q0t = f q0Dqq0+q0b− (D1f)q0Dqq0(bq − b)

− (Dqf)q0`Dq0+1b− (Dq+1f)q0`D1b

Dqq0+2q0t = f q0Dqq0+2q0b+ (D1f)q0Dqq0+q0b

− (Dqf)q0`D2q0+1b− (Dq+1f)q0`Dq0+1b.

Dqq0+3q0t = f q0Dqq0+3q0b− (Dq+1f)q0`D2q0+1b
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Dqq0+qt = f q0Dqq0+qb+ (D1f)q0`q0Dqq0+q(bq)

− (D3q0+1f)q0`q0(Dqq0b−Dqq0(bq))− (Dqf)q0Dq(bq − b)

− (Dq+3q0f)q0`D1b+ (Dqf q)q0Dq(bq)

Dqq0+q+q0t = f q0Dqq0+q+q0b− (D1f)q0Dqq0+q(bq − b)

− (D3q0+1f)q0(`q0Dqq0+q0b+Dqq0(bq − b)) + (Dqf)q0Dq+q0b

− (Dq+1f)q0Dq(bq − b) + (Dq+3q0f)q0Dq0b− (Dq+3q0+1f)q0`D1b

Dqq0+2qt = f q0Dqq0+2qb+ (D3q0+1f)q0`q0Dqq0+q(bq − b)

− (Dqf)q0D2q(bq − b)− (Dq+3q0f)q0Dq(bq − b).

We will also use a few of the values Dib, which are collected in the following

table.

Table 4.1: Select derivatives Dib

i Diy Diz Diw4

1 xq0 x2q0 −x2q0+1 − xq0y − z
q0 + 1 1 −xq0 xq0+1 − y
2q0 + 1 0 1 −xq
q + 1 0 0 −`2q0
q + q0 −1 xq0 `q0+1 − xq0+1 + y
2q 0 0 `2q0

qq0 + 1 0 0 −`q+q0
qq0 + q0 0 0 −`q+1

Now we verify each of the equations (A1)–(A10) in turn. Since each bi

associated with w appears before w in the list

x, y, z, w4, w5, w7, w9, w10,

and since each of (A1)–(A10) has already been verified for x, y, and z, we

may assume by induction that these equations are satisfied by each bi which

appears in the proof.

Proof of (A1). We show that the desired equation holds for all t. Since

D3q0+1b = 0, we have

3∑
k=1

`kq0Dkq0+1t = f q0
3∑

k=1

`kq0Dkq0+1b+ (D1f)q0`q0(D1b+
3∑

k=1

`kq0Dkq0+1b)

= f q0(`Dq+1b+Dqb) + (D1f)q0`q0(D1b+Dqb+ `Dq+1b)
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= f q0(`Dq+1b+Dqb) + (D1f)q0`q0Dq(bq)

= Dqt+ `Dq+1t,

where we used (4.7) in the third line.

Proof of (A2). Let

∆t := `q0(Dq+2q0t+D2q0+1t)− (Dq+q0t+Dq0+1t).

Here it is not the case that ∆t = 0 for all t, so we need to show that ∆t1 = ∆t2

for each w = t1 − t2. The contribution to ∆t of those terms involving f q0 is

zero by our assumption on b. Moreover, by (4.7) the contributed coefficient

of (D1f)q0 is

`q0Dq+q0b+ `q0Dq0+1b+Dq(bq − b)−D1b

= `q0Dq+q0b+ `q0Dq0+1b+ `Dq+1b,

which is zero by Table 4.1. Therefore, the only terms giving a contribution

to ∆t are those involving (D3q0+1f)q0 . The coefficient of (D3q0+1f)q0 in ∆t is

2∑
k=0

`kq0+1Dkq0+1b = `(D1b+Dqb+Dq+1b) = `Dq(bq),

where we have used the fact that D3q0+1b = 0, along with (4.7) and (A1).

With the exception of w = w7 we have f qi − fi = b3q0j (xq − x) for i 6= j, so

that

(D3q0+1fi)
q0 = (D3q0(b3q0j ))q0 = Dq(bqj).

Therefore, for w 6= w7 we have

∆ti = Dq(bqj) · `Dq(bqi ),

and so ∆t1 = ∆t2 as desired. Finally, for w = w7 we check that

Dq(yq) · `Dq(yq) = x2qq0` = Dq(zq) · `Dq(xq).

Proof of (A3). We show that the desired equation holds for all t. Since
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Dq+3q0b = 0, we have

3∑
k=0

`kq0Dq+kq0t = f q0
3∑

k=0

`kq0Dq+kq0b

+ (D1f)q0`q0
3∑

k=0

`kq0Dq+kq0b+ (D3q0+1f)q0 · 0 = 0.

Proof of (A4). We show that the desired equation holds for all t. The con-

tribution of the terms involving f q0 is zero by our assumption on b. By

considering the contribution of terms involving (D1f)q0 and (D3q0+1f)q0 , it

will suffice to show that the equations

Dq(bq − b) +D1b = `D2qb

`q0Dq0b+ `D1b = `q0+1Dq+q0b+ `Dq(bq − b)

hold for b = x, y, z, w4. These may be rewritten using (4.7) as

D2qb+Dq+1b = 0

`q0Dq+q0b+ `Dq+1b+ `q0Dq0+1b = 0,

and these follow from Table 4.1.

Proof of (A5). We show that the desired equation holds for all t. By our

assumption on b, the contribution of all terms involving f q0 is zero. By

comparing the coefficients of (D3q0+1f)q0 and using (4.7), it suffices to show

that

`D2qb = D1b−Dq(bq − b) = −`Dq+1b.

This follows from Table 4.1.

Proof of (A6). Let

∆t = `Dqq0+1t+Dqq0t− `q(`q0D2q0+1t−Dq0+1t).

By our assumption on b, the terms in ∆t involving f q0 sum to zero. Moreover,

the terms involving (Dqf)q0 also give no contribution to ∆t. After some

simplification, the sum of the remaining terms is `q times

(D1f)q0D1b− ((D1f)q0D1b)q − (D1f)q0`q0(Dq0+1b+ (Dq0+1b)q).
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Note that (D1f)q0 = cq, where f q − f = c3q0(xq − x) and c ∈ {x, y, z, w4}.
Thus, ∆t is `q times

cqD1b− (cqD1b)q − cq`q0(Dq0+1b+ (Dq0+1b)q).

That ∆1 = ∆2 may now be checked in each case by using Table 4.1.

Proof of (A7). Let

∆t = `2q0Dqq0+2q0t− `q0Dqq0+q0t− `qDq0+1t− `qDq+q0t.

By our assumption on b, the contribution to ∆t of those terms involving f q0

is zero. The contribution of the terms involving (D1f)q0 is

`2q0Dqq0+q0b+ `q0Dqq0(bq − b) + `qDq(bq − b)− `qD1b

= `2q0Dqq0+q0b+ `q0+1Dqq0+1b+ `q+1Dq+1b.

This is also zero by Table 4.1. Then using (4.11), we may rewrite the sum of

the remaining terms as

∆t = (`3q0D3q0+1f)q0`q0Dq0b

− (`3q0D3q0+1f)q0(`2q0D2q0b+ `q0Dq0b− `D1b)

+ (`Dq+1f)q0(`2q0D2q0b+ `q0Dq0b− `D1b).

As in the proof of (A2), we have

`2q0D2q0b+ `q0Dq0b− `D1b = `Dq(bq).

Furthermore, if c ∈ {x, y, z, w4} with f q−f = c3q0(xq−x), then (D3q0+1f)q0 =

Dq(cq) and (Dq+1f)q0 = (Dq0c)q. Therefore,

∆t = `q0Dq(cq)Dq0b− `Dq(cq)Dq(bq) + `(Dq0c)qDq(bq).

Now Table 4.1 may be used to verify in each case that ∆t1 = ∆t2 .

Proof of (A8). By using (4.11), the terms on the left hand side of the desired
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equation may be written as

`q0Dqq0+q0t = f q0`q0Dqq0+q0b− (D1f)q0`q0Dqq0(bq − b)

− (`3q0D3q0+1f)q0`D1b+ (Dqf)q0(`q0Dq0b+ `D1b)

`2q0Dqq0+2q0t = f q0`2q0Dqq0+2q0b+ (D1f)q0`2q0Dqq0+q0b

+ (`3q0D3q0+1f)q0`q0Dq0b+ (Dqf)q0(`2q0D2q0b− `q0Dq0b)

`3q0Dqq0+3q0t = f q0`3q0Dqq0+3q0b

+ (`3q0D3q0+1f)q0`2q0D2q0b− (Dqf)q0`2q0D2q0b.

By our assumption on b, the contribution of the terms involving f q0 is zero.

The terms involving (Dqf)q0 sum to zero. The sum of the terms involving

(D3q0+1f)q0 is `q times the quantity which was dealt with (A2), so by the

same argument these give no contribution to ∆t1 −∆t2 . It remains only to

show that the terms involving (D1f)q0 sum to zero, i.e., that

`2q0Dqq0+q0b = `q0Dqq0(bq − b) = `q0+1Dqq0+1b.

But this follows from Table 4.1.

Proof of (A9). We show that the desired equation holds for all t. Use (4.11)

and (4.12) to write each side of the desired equation as

`q0Dqq0+q0t = f q0`q0Dqq0+q0b− (D1f)q0`q0Dqq0(bq − b)

− `q(D3q0+1f)q0(bq − b) + (Dqf)q0(`q0Dq0b+ (bq − b))

and

`q+q0Dqq0+q+q0t = f q0`q+q0Dqq0+q+q0b− (D1f)q0`q+q0Dqq0+q(bq − b)

− `q(D3q0+1f)q0(`2q0Dqq0+q0b

+ `q0Dqq0(bq − b) + `qDq(bq − b)− `D1b)

+ (Dqf)q0
(
`q+q0Dq+q0b+ `qDq(bq − b)− `q0Dq0b− `D1b

)
.

By our assumption on b, the contribution of the terms involving f q0 is zero.

After using (4.5) to rewrite the coefficients of (D1f)q0 , `q(D3q0+1f)q0 , and

(Dqf)q0 completely in terms of derivatives of b and doing some simplification,
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it will suffice to show that the equations

Dqq0+1b+ `qDqq0+q+1b = 0

`q+1Dq+1b+ `2q0Dqq0+q0b+ `q0+1Dqq0+1b = 0

`q0Dq0+1b+ `Dq+1b+ `q0Dq+q0b = 0

hold for b = x, y, z, w4. This is easily verified by consulting Table 4.1.

Proof of (A10). We show that the desired equation holds for all t. By using

(4.12) to replace occurrences of Dqq0+3q0f with Dqf , we find that

`qDqq0+qt = f q0`qDqq0+qb− (D1f)q0`q0Dqq0(bq)

+ (D3q0+1f)q0`q+q0Dqq0(bq − b)

− (Dqf)q0(`qDq(bq − b)− `D1b) + (Dqf q)q0`qDq(bq)

`2qDqq0+2qt = f q0`2qDqq0+2qb+ (D3q0+1f)q0`2q+q0Dqq0+q(bq − b)

+ (Dqf)q0(`qDq(bq − b)− `2qD2q(bq − b)).

By our assumption on b, the contribution of the terms involving f q0 is zero.

The terms involving (D1f)q0 and (Dqf q)q0 also give no contribution.

By comparing the coefficients of (D3q0+1f)q0 and (Dqf)q0 and doing some

minor simplification, it will suffice to show that the equations

`q+1Dqq0+q(bq − b) = (`q − `)Dqq0(bq − b)

`D2q(bq − b) +D1b = Dq(bq − b)

hold for b = x, y, z, w4. Each of these is easily verified using (4.5) and Table

4.1.

This completes the proof of Lemma 4.8, and hence of Theorem 4.1.

4.5 Weierstrass points

As a consequence of Theorem 4.1, we determine the Weierstrass points of

D. Recall that the D-Weierstrass points are those P ∈ X satisfying ji(P ) 6=
εi(P ) for some i. These points make up the support of a divisor RD with

degRD = (2g − 2)
∑

εi + (13 + 1)m.
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Since the sequence νi(D) of Frobenius orders differs from ε0, . . . , ε13, [SV,

Cor 2.10] implies that every rational point of X is a D-Weierstrass point. We

claim that in fact SuppRD = X(Fq).

Corollary 4.9. The set of Weierstrass points of D consists of the Fq-rational

points of X.

Proof. By Theorem 4.1, we have

degRD = (2g − 2)
∑

εi + (13 + 1)m = (3qq0 + 9q + 23q0 + 12)N,

and so it will suffice to show that vP (R) = 3qq0+9q+23q0+12 for P ∈ X(Fq).
This will follow from the inequality

vP (RD) ≥
r∑
i=0

(ji(P )− εi). (4.13)

Since the automorphism group acts doubly transitively on the Fq-rational

points of X, it will suffice to show this for the point P0 with x = y = z = 0.

By expanding out the functions in B as power series in x, or by simply using

the equations in 2.2, we find that they vanish at P0 to the orders

j0 = 0, j7 = 1 + 3q0 + 2q,

j1 = 1, j8 = 1 + 2q0 + q + qq0,

j2 = 1 + q0, j9 = 1 + 3q0 + q + qq0,

j3 = 1 + 2q0, j10 = 1 + 3q0 + 2q + qq0,

j4 = 1 + 3q0, j11 = 1 + 3q0 + 2q + 2qq0,

j5 = 1 + 2q0 + q, j12 = 1 + 3q0 + 2q + 3qq0,

j6 = 1 + 3q0 + q, j13 = 1 + 3q0 + 2q + 3qq0 + q2.

Inserting these values into (4.13) completes the proof.

The same argument shows that the E-Weierstrass points are exactly the

Fq-rational points as well. In this case, vP (RE) = 3qq0 + 4q + 12q0 + 5 for

P ∈ X(Fq).
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Table 4.2: The supports Sf for f of type 1.

i x w1 w2 w3 w6 w8

0 ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗ ∗
3q0 ∗ ∗ ∗ ∗ ∗
3q0 + 1 ∗ ∗ ∗ ∗ ∗
q ∗ ∗ ∗ ∗ ∗
q + 1 ∗ ∗ ∗ ∗
q + 3q0 ∗ ∗ ∗ ∗ ∗
q + 3q0 + 1 ∗ ∗ ∗ ∗
2q ∗ ∗ ∗ ∗
2q + 1 ∗ ∗ ∗
2q + 3q0 ∗ ∗ ∗ ∗
2q + 3q0 + 1 ∗ ∗ ∗
3q ∗ ∗ ∗
3q + 3q0 ∗ ∗ ∗
3qq0 ∗ ∗ ∗ ∗ ∗
3qq0 + 1 ∗ ∗ ∗ ∗
3qq0 + 3q0 ∗ ∗
3qq0 + 3q0 + 1 ∗ ∗
3qq0 + q ∗ ∗ ∗ ∗ ∗
3qq0 + q + 1 ∗ ∗ ∗ ∗
3qq0 + q + 3q0 ∗ ∗
3qq0 + q + 3q0 + 1 ∗ ∗
3qq0 + 2q ∗ ∗ ∗ ∗
3qq0 + 2q + 1 ∗ ∗ ∗
3qq0 + 2q + 3q0 ∗ ∗
3qq0 + 2q + 3q0 + 1 ∗ ∗
3qq0 + 3q ∗ ∗ ∗
3qq0 + 3q + 3q0 ∗ ∗
6qq0 ∗ ∗
6qq0 + 1 ∗ ∗
6qq0 + q ∗ ∗
6qq0 + q + 1 ∗ ∗
6qq0 + 2q ∗ ∗
6qq0 + 2q + 1 ∗ ∗
6qq0 + 3q ∗ ∗
q2 ∗ ∗ ∗ ∗ ∗
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5 de Rham cohomology of the
Ree curve

For A a principally polarized abelian variety over an algebraically closed

field k of characteristic p > 0, the p-torsion group scheme A[p] can be under-

stood in terms of the interaction between the Frobenius and Verschiebung

morphisms, into which the multiplication-by-p map [p] = V ◦ F factors. In

particular, the isomorphism type of A[p] is characterized the structure of

the mod p-reduction of the Dieudonné module of A[p] as a k[F, V ]-module.

This information can also be captured in the Ekedahl-Oort type, which is

a combinatorial invariant giving a stratification of the moduli space Ag of

principally polarized abelian varieties [Oor2] [EvdG].

For X a curve over k, there is an isomorphism of k[F, V ]-modules between

the p-torsion group scheme Jac(X)[p] and the de Rham cohomology H1
dR(X)

[Oda], which is a more concrete object. In [PW] and [MPW], de Rham

cohomology is used to study the k[F, V ]-module structure and Ekedahl-Oort

types of the Hermitian and Suzuki curves. In this paper, we begin a similar

analysis of the Ree curve, which is defined in characteristic p = 3.

There are two main difficulties in dealing with the Ree curves which are

not present with the other two families of curves mentioned. The first is

that, unlike for the other two families, no general explicit basis is known for

the space of holomorphic differentials on the Ree curve. The second is sheer

size, which makes it difficult to explore the problem computationally. The

smallest Ree curve has genus 3627 and the second smallest has genus 826551.

Because of this, we content ourselves at present with computing the structure

of H1
dR(X) for the smallest Ree curve. One might hope that familiarity with

the structure of this first example may lead to insight into the general case.

The computations described in this chapter were implemented using the

computer algebra system Magma [BCP]; all of our code is available upon

request.

The results in this chapter have been submitted in a joint paper with Iwan Duursma.
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5.1 Background

5.1.1 The Ree curve

Here recall definition and relevant properties of the Ree curve. For s ≥ 1,

the Ree curve Rs is the smooth projective curve over F3 defined by the affine

equations

yq − y = xq0(xq − x) zq − z = xq0(yq − y), (5.1)

where q0 = 3s and q = 3q20 = 32s+1. The automorphism group of Rs, which

has order (q3 + 1)q3(q − 1) and acts doubly transitively on the Fq-rational

points of Rs, is exceptionally large in comparison to the genus gs = 3
2
q0(q −

1)(q + q0 + 1). The curve Rs has no places of degrees 2, 3, 4, or 5 over Fq,
but over Fq6 it meets the Hasse-Weil upper bound.

By examining the L-polynomial

LRs(t) = (1 + 3q0t+ qt2)q0(q
2−1)(1 + qt2)

1
2
q0(q−1)(q+3q0+1),

it can be seen that the curve Rs is supersingular. Equivalently, the Jacobian

Jac(Rs) is isogenous over the algebraic closure to a product of supersingular

elliptic curves [Oor1, Theorem 4.2], and has no nontrivial 3-torsion points

over F3.

The embedding of Rs in P13 given in [ED] uses the 14 functions in

B = {1, x, y, z, w1, . . . , w10},

where the wi are defined in 2.2. The functions in B are regular away from

the pole P∞ of x, where they have distinct pole orders. The function w8

has divisor div(w8) = m(P0 − P∞) where m = (q + 1)(q + 3q0 + 1) is the

exponent of the group of Fq-rational points of Jac(Rs), and P0 is the point

(x, y, z) = (0, 0, 0).

There are two particular subgroups of automorphisms of Rs which will

prove useful in our computations. The first is the stabilizer of the two points

P0 and P∞. This subgroup is isomorphic to F×q = 〈ζ〉, and acts on the curve

via

φζ(x, y, z) = (ζx, ζq0+1y, ζ2q0+1z).

This action breaks the function field Fq(x, y, z) into isotypic subspaces, that
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is, eigenspaces for the linear transformation induced by φζ . Note that each

of the functions in B is an eigenvector, so that F×q acts diagonally on Rs

embedded in P13.

The second automorphism of interest is an involution τ which inter-

changes the points P0 and P∞. It acts on the function field by

τ(x, y, z) = (w6/w8, w10/w8, w9/w8).

The map τ also acts linearly on the image of Rs in P13. Up to sign, it acts

on the functions in B by permuting them and then dividing by w8 (see [ED,

page 268]).

5.1.2 Dieudonné modules

Let E denote the non-commutative ring k[F, V ] generated by semi-linear op-

erators F and V subject to the relations FV = V F = 0 and Fλ = λpF and

λV = V λp for all λ ∈ k. This is the mod p reduction of the Dieudonné ring,

which has coefficients a ring of Witt vectors instead of k. There is an equiv-

alence of categories between p-torsion group schemes of principally polarized

abelian varieties of dimension g and symmetric E-modules of dimension 2g

over k. We will refer to the E-module corresponding to Jac(X)[p] as the

Dieudonné module of X.

In the following, let N = Jac(X)[p]. Then N is a symmetric BT1 group

scheme over k, as defined in [Oor2]. Let

0 = N0 ⊂ N1 ⊂ · · ·Nr = V (N) ⊂ · · · ⊂ Ns = N,

be the smallest filtration of N stable under the action of V and F−1, called

the canonical filtration. This filtration may be obtained by iteratively refining

by elements F−iV j(N ′) where N ′ runs over terms in the existing filtration.

In other words, it consists of w(N) as w runs over all possible words in V

and F−1.

Let Bi = Ni+1/Ni for i = 0, . . . , s − 1, which we call the blocks of the

canonical filtration. Then for each i, exactly one of V and F−1 is zero on

Bi and the other is an isomorphism of Bi onto another block, which we call

Bπ(i). This defines a permutation π of {0, 1, . . . , s− 1}.
The canonical filtration may be refined to a final filtration of length 2g
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which is again stable under V and F−1. The final type or Ekedahl-Oort type

of N is the sequence ν = [ν1, . . . , νg], where the νi are the dimensions of the

image under V of the terms of dimensions 1 ≤ i ≤ g in a final filtration. The

νi are nondecreasing and satisfy the condition νi+1 ≤ νi + 1, so the final type

breaks into alternating intervals with slope 0 and 1, and is characterized by

the break points νi where either νi−1 = νi 6= νi+1 or νi−1 6= νi = νi+1. The

final type characterizes N up to isomorphism.

5.1.3 de Rham cohomology

It was shown by Oda that there is an isomorphism of E-modules between

the Dieudonné module of Jac(X)[p] and the de Rham cohomology group

H1
dR(X). In the latter setting it is easier to do concrete calculations. In this

section we recall the following description of H1
dR(X) which may be found in

[Oda, chapter 5]. We use the open cover U = {U0, U∞} where Ui = Xr{Pi}.
The space we are interested in studying is

H1
dR(X) ∼= H1

dR(U) = Z1
dR(U)/B1

dR(U),

where the Z1
dR(U) and B1

dR(U) are as follows. The closed de Rham cocycles

in Z1
dR(U) consist of pairs the form (f, (ω0, ω∞)) where f ∈ Γ(U0 ∩ U∞,O)

and ωi ∈ Γ(Ui,Ω
1) satisfy df = ω0 − ω∞. The de Rham coboundaries in

B1
dR(U) are elements of the form (f0 − f∞, (df0, df∞)) with fi ∈ Γ(Ui,O).

There is a short exact sequence of E-modules

0 −→ H0(X,Ω1)
λ−→ H1

dR(X)
γ−→ H1(X,OX) −→ 0,

where the map λ sends ω 7→ (0, ω) = (0, (ω|U0 , ω|U∞)) and γ sends (f, ω) 7→ f .

The Frobenius F and Verschiebung V on H1
dR(X) by F (f, ω) = (fp, 0) and

V (f, ω) = (0, Cω), where C is the Cartier operator on the sheaf Ω1 [Car].

The operator F is p-linear, while the operator V is 1/p-linear. Moreover,

kerF = H0(X,Ω1) = imV .

The Cartier operator C is characterized by the properties that it annihi-

lates exact differentials, preserves logarithmic differentials, and is 1/p-linear.

Locally, the operator C may be defined as follows. Let t be a separating

variable for k(X), so that any differential ω may be written in the form

ω = (fp0 + fp1 t+ · · ·+ fpp−1t
p−1)dt. Then C(ω) = fp−1dt. If ω is regular at P ,
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then C(ω) is also regular at P , so C preserves the space H0(X,Ω1).

In process of our computation, we make a choice of a section ψ of γ. To

do this, for each f in a basis of H1(X,OX) we decompose df as df = ω0−ω∞
where ωi ∈ Γ(Ui,Ω

1), and set ψ(f) = (f, (ω0, ω∞)). Note that in such a

decomposition of df , the ωi are defined only up to a holomorphic differential.

5.2 The Cartier operator on H0

Since the curve Rs is supersingular, it has p-rank zero and the Frobenius

F acts nilpotently on H1(Rs,O). Therefore, by the duality of C and F ,

the Cartier operator is nilpotent on H0(Rs,Ω
1). The goal of this section

is to compute the invariant factors of C for s = 1, 2. As a result, we de-

termine dimension of the kernel of C on H0(Rs,Ω
1) for s = 1, 2. This

is equal to the a-number of Jac(Rs), which is defined as the dimension of

HomFp
(αp, Jac(Rs)[p]), where αp is the kernel of Frobenius on the additive

group Ga [LO, 5.2.8] [FGM+] [DF].

Each element of H0(Rs,Ω
1) is a linear combination of differentials of the

form ω = xiyjzkdx. In our calculations by hand, it will suffice to consider

only the 27 differentials ω with 0 ≤ i, j, k ≤ 2 since C is 1/3-linear. For

convenience, we let T denote the operator T (f) = C(fdx)/dx. From

y = xq0(x− xq) + yq = −wq01 + xq0x

z = x2q0(x− xq) + zq = −(xw1 + w2)
q0 + x2q0x

we obtain the values T (f) for the 9 monomials f = xiyjzk with 0 ≤ i ≤ 2

and 0 ≤ j + k ≤ 1.

(i, j, k) T (xiyjzk)

(0, 0, 0) 0

(1, 0, 0) 0

(2, 0, 0) 1

(0, 1, 0) 0

(1, 1, 0) xq0/3

(2, 1, 0) −wq0/31

(0, 0, 1) 0

(1, 0, 1) x2q0/3

(2, 0, 1) −(xw1 + w2)
q0/3
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Along with the following formula, these may be used to obtain the remaining

18 values of T (xiyjzk) with 0 ≤ i, j, k ≤ 2.

Lemma 5.1. For 0 ≤ i ≤ p− 1,

T (xifg) =
∑

i+j+k=p−1

T (xp−1−jf)T (xp−1−kg)

+
∑

i+j+k=2p−1

xT (xp−1−jf)T (xp−1−kg).

Proof. This is a simple exercise. Write each of f and g in the form
∑
aix

i

with ai ∈ k(X)p, expand, and use the 1/p-linearity of C.

In particular, for p = 3 we have

T (fg) = T (x2f)T (g) + T (xf)T (xg) + T (f)T (x2g)

T (xfg) = T (xf)T (x2g) + T (x2f)T (xg) + xT (f)T (g)

T (x2fg) = T (x2f)T (x2g) + xT (xf)T (g) + xT (f)T (xg).

For a basis for V = H0(Rs,Ω
1) we use a collection of g linearly indepen-

dent differentials ω = fdx, where the f are monomials in the 14 functions of

B satisfying −vP∞(f) ≤ 2g − 2. Since

2g − 2

ordP∞(w8)
= 3q0 − 2 < 3q0 =

⌊
2g − 2

ordP∞(x)

⌋
,

a naive search for linearly independent monomials of this form involves going

through between 33q0−2 and 33q0 terms, which is prohibitively large for s = 2.

In order to reduce the search space for a basis, we use the fact that the image

of Rs in P13 lies on many quadrics. In particular, we have the equations

y2 = w4 + xz z2 = w5 + yw1

w2
4 = xw9 + yw3 w2

5 = zw6 + w1w10

w2
9 = w3w10 + w4w8 w2

10 = w5w8 + w6w9

w2
2 = w8 + xw6 + w1w3 w2

7 = w8 + xw6 + yw10.

In each of these equations, the square of one of the 8 functions w2, w7, y,

z, w4, w5, w9, and w10 appears as one of the monomials with greatest pole
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order at P∞. The first six equations form a cycle

y

w4w9

w10

w5 z

If the square of one of these six variables appears in a monomial, then re-

ducing by the equation involving its square yields two new terms, one for

each neighboring variable, in which the neighbor appears with degree one

greater than before, but the original variable appears with degree two less.

Moreover, the last two equations allow w2
2 and w2

7 to be written in terms of

other variables. This shows that the space of monomials in the functions of

B is spanned by monomials in which each of the 8 functions above appear

with degree at most 1. Using this, the size of the search space for s = 2

becomes at most
8∑
i=0

(
27− i+ 6− 1

6− 1

)
2i ≈ 107.4,

which is within a reasonable range.

Once a basis is found, we perform the linear algebra by evaluating the

functions ω/dx and C(ω)/dx at sufficiently many Fq-rational points. In order

to reduce the size of this computation, the space V may be broken into q− 1

isotypic components Vn under the action of F×q . Let Vn denote the subspace

of V satisfying φ∗ζ(ω) = ζnω. Then since the Cartier operator commutes with

automorphisms, it follows that C(V3n) ⊂ Vn. Indeed, for ω ∈ V3n we have

φ∗ζC(ω) = C(φ∗ζω) = C(ζ3nω) = ζnC(ω).

The components Vn may be described explicitly as follows. Given a multi-

index I = (i, j, k), let ωI denote xiyjzkdx, and write |I| = 1 + i+ (q0 + 1)j +

(2q0 + 1)k. Then φ∗ζωI = ζ |I|ωI , and any ω =
∑

I aIωI in H0(Rs,Ω
1) may be
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decomposed as

ω =
∑

n mod q−1

∑
|I|≡n mod q−1

aIωI =
∑

n mod q−1

ωn.

Note that the terms in each of the defining equations yq − y = xq0(xq − x)

and zq− z = xq0(yq−y) have equal weights modulo q−1 and moreover, that

|I| = 1 + vP0(ωI). It follows that the decomposition into ωn is unique, and

breaks ω into isotypic components.

The dimensions of the Vn may be determined by applying a theorem

of Bouw, which she credits as a special case of a result of Kani [Kan2],

which gives a formula for the dimensions of the isotypic subspaces Wn of

H1(X,OX) under the action of a cyclic group of automorphism in terms of the

ramification data of the induced cover [Bou, Theorem 4.3]. The dimensions

of Vn follow from Serre duality since dimVn = dimWq−1−n.

Consider the cover Rs → Rs/F×q = Y . The points P0 and P∞ are fixed

by every element of F×q , and so they are ramified with index q − 1. Since

1 and 2q0 + 1 are both coprime to q − 1, the only other points fixed by

some element of F×q are the q − 1 points of the form Pβ = (0, β, 0) with

β 6= 0. Since gcd(q − 1, 2q0 + 1) = 2, there are two orbits of these points

each with ramification index 2. From the Hurwitz theorem we conclude that

gY = (3qq0 + q + 3q0 − 1)/2. Inserting this information into the theorem of

Bouw gives the following.

Lemma 5.2. The spaces Vn have dimension

dimVn =

gY n even,

gY + 1 n odd.

Our computations performed in Magma yield the following.

Proposition 5.3. The invariant factor decomposition of H0(R1,Ω
1) under

the action of C is

H0(R1,Ω
1)/C ∼=(k[x]/x)7 ⊕ (k[x]/x2)79 ⊕ (k[x]/x3)139

⊕ (k[x]/x4)49 ⊕ (k[x]/x5)343 ⊕ (k[x]/x6)189.

In particular, the a-number of Jac(R1) is 2
9
g1 = 801.
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Proposition 5.4. The invariant factor decomposition of H0(R2,Ω
1) under

the action of C is

H0(R2,Ω
1)/C ∼=(k[x]/x)7463 ⊕ (k[x]/x2)350 ⊕ (k[x]/x3)25886 ⊕ (k[x]/x4)9147

⊕ (k[x]/x5)24018 ⊕ (k[x]/x6)21952 ⊕ (k[x]/x7)5047

⊕ (k[x]/x8)353229 ⊕ (k[x]/x9)9261 ⊕ (k[x]/x10)5103.

In particular, the a-number of Jac(R2) is 143556.

Remark. It is interesting that the last two factors k[x]/x4s+1 and k[x]/x4s+2

appear with multiplicities 27s−1 · 73 and 27s · 7 for s = 1, 2.

5.3 Computation of F and V

In this section, we describe the setup for our computation of F and V on

H1
dR(R1), which we completed using Magma. For a basis of H1(R1,O) we use

a set of functions {fi} whose pole orders at P∞ realize all g Weierstrass gaps

at P∞. An explicit description of the Weierstrass semigroup is not known for

the Ree curves in general, but for s = 1 it has been determined in [ED]. The

gap functions fi necessarily have poles away from P∞, but it is sufficient to

introduce a pole at a single other point P0, since for a, b ≥ 2g Riemann-Roch

implies that

H1(R1,O) ∼= L(aP0 + bP∞)/(L(aP0) + L(bP∞)).

This allows us to do all our computations inside a space L of the form L =

L(AP0 + BP∞), provided that A and B are large enough that L contains

f 3 and df/dx for all f in our basis. The reasons for these conditions are as

follows:

• To choose a section ψ of γ : H1
dR(R1) → H1(R1,O), we decompose

each dfi/dx as dfi/dx = gi,0 − gi,∞ with gi,j ∈ Γ(Uj,O) to get ψ(fi) =

(fi,gi) = (fi, (gi,0dx, gi,∞dx)).

• To compute F on H1(R1,O), we decompose each f 3
i as

f 3
i =

∑
j

aijfj + hi,0 + hi,∞, hi,j ∈ Γ(Uj,O).
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To compute V |H1(R1,O), we apply the Cartier operator to each gi and

express this in terms of our basis for H0(R1,Ω
1). Furthermore, the coeffi-

cients aij give us the entries of the matrix of F acting on H1(R1,O). Since

(h0, (dh0, 0)) and (h∞, (0, dh∞)) are coboundaries, we obtain the H0(R1,Ω
1)

component of F (ψ(fi)) from

(f 3
i ,0)−

∑
j

aijψ(fj) = −
∑
j

aij(0,gj)− (0, (dhi,0, 0))− (0, (0, dhi,∞)).

Our basis for L is composed of monomials in the functions B∪{w−18 }. The

benefit of dealing with functions of this form is that they are eigenvectors for

the action of φζ and are easy to transform under τ . First we find monomials

in B with pole orders at P∞ covering each residue class modulo m. From

these, we form a basis for H1(R1,O) by dividing by appropriate powers of

w8 to get each nongap as a pole order at P∞. These functions end up living

in L(aP0 + (2g− 1)P∞) where a = 8198 ≈ 2.26g, and the space L we use for

the main computation is L(3aP0 + (6g − 3)P∞). To obtain a basis for L, we

find monomials in B spanning L((6g − 3)P∞) and L(3aP∞) and apply the

involution τ to obtain a basis for L(3aP0).

The space L has dimension 42727, which is too large if we wish to deal

with the functions in L as vectors evaluated at Fq-rational points, of which

there are only q3 + 1 = 19684. Therefore, we break L into q − 1 = 26

isotypical components Ln under the action of F×q , each of dimension about

1640, keeping in mind that f 7→ f 3 sends Ln to L3n and f 7→ df/dx sends Ln

to Li−1. Even after breaking L into isotypical components, however, the Fq-
rational points still do not impose enough independent conditions on the Ln,

so in order to complete the step where we compute ψ and F on H1(R1,O),

we evaluate at carefully chosen Fq6-rational points, and perform the linear

algebra over a field of order q6 = 318.

5.4 Decomposition of the Dieudonné module

The computations in the previous section yield two 2g × 2g matrices with

coefficients in F3 which describe the action of the semilinear operators F and

V on our basis of N = H1
dR(R1). Since these matrices have entries in F3,

each term in the canonical filtration of N is defined over F3.
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Upon computing the canonical filtration for N , we find that it has 75

terms including 0 and N . Let Bi = Ni+1/Ni, i = 0, . . . , 73, be the blocks in

the canonical filtration. Recall from that for each i, either V is zero on Bi

or V gives an isomorphism Bi → Bπ(i). The Ekedahl-Oort type can be read

off of the sizes of the Bi and the permutation π.

Proposition 5.5. The Ekedahl-Oort type ν = [ν1, . . . , νg] of the curve R1

has the following break points:

532, 721, 770, 1302, 1392, 1441, 1490, 2022, 2029, 2078, 2150, 2884, 2891, 3627.

In [Oor2, §9.1], there are explicit instructions that allow one to recon-

struct a finite group scheme N , along with a non-degenerate alternating

pairing on the Dieudonné module of N , given the Ekedahl-Oort type of N .

We are interested, however, in decomposing the Dieudonné module into in-

decomposable factors, which can be obtained by examining the permutation

π of the blocks Bi.

In our case, we find that the blocks Bi are broken into seven orbits under

the permutation π induced by V and F−1. We list the cycles of π in the

table below. Each cycle is associated to a distinct isotypic component of the

Dieudonné module. The dimension of any block in a given orbit is the orbit’s

multiplicity, which corresponds to the multiplicity of the corresponding factor

in the Dieudonné module. If π(i) < i then V : Bi → Bπ(i) is an isomorphism,

and if π(i) > i, then F−1 : Bi → Bπ(i) is an isomorphism. Collecting these

isomorphisms, one obtains a word in V and F−1 associated to each orbit,

which is defined up to a cyclic permutation. For example, the cycle below

containing 3 corresponds to the word w = F−3V 2F−3V 4.

Table 5.1: Cycles of π
cycle mult.

(0, 37, 50, 62, 68, 71, 73, 36, 23, 11, 5, 2) 189
(1, 38, 51, 63, 69, 72, 35, 22, 10, 4) 343
(3, 39, 52, 64, 31, 18, 48, 60, 67, 33, 20, 8) 49
(6, 40, 53, 65, 70, 34, 21, 9, 42, 55, 25, 13) 49
(7, 41, 54, 66, 32, 19) 41
(12, 43, 56, 26, 14, 44, 57, 27, 49, 61, 30, 17, 47, 59, 29, 16, 46, 24) 7
(15, 45, 58, 28) 2
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For a word w in F−1 and V , we denote by E(w) the Dieudonné module

of the corresponding group scheme, as in [Oor2, §9.8]. The structure of E(w)

can be written out simply in terms of generators and relations if desired.

This is explained in [PW, §5.2] in terms of the orbits of π 1.

To see how this works, consider the following example. The orbit of the

block B3, which has corresponding word w = F−3V 2F−3V 4, is depicted in

Figure 5.1. The module E(w) can be written as the quotient of the left

E-module generated by variables X1 and X2 corresponding to the “peak”

blocks B64 and B67 of the orbit by the left ideal of relations corresponding

to the “valley” blocks B3 and B18 of the orbit. Specifically, we have

E(w) = (EX1 + EX2)/E(V 2X1 + F 3X2, V
4X2 + F 3X1),

and this module occurs in H1
dR(X) with multiplicity dimB3 = 49.

B3

B39

B52

B64

B31

B18

B48

B60

B67

B33

B20

B8

B3

Figure 5.1: Orbit of block B3, w = F−3V 2F−3V 4

In summary, we obtain the following decomposition of H1
dR(R1). Consider

the words

w1 = F−3V 2F−3V 4

w′1 = F−4V 3F−2V 3

w2 = F−2V 2F−1V 2F−2V 2F−2V F−2V 2,

which correspond to the cycles in Table 5.4 of containing blocks 3, 6, and 12.

1Although [PW, §5.2] deals with a specific class of curves, the approach works more
generally.
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Theorem 5.6. As an E-module, H1
dR(R1) decomposes as

H1
dR(R1) ∼=

(
E/E(F 2 + V 2)

)2 ⊕ (E(w2))
7

⊕
(
E/E(F 3 + V 3)

)41 ⊕ (E(w1)⊕ E(w′1))
49

⊕
(
E/E(F 5 + V 5)

)343 ⊕ (E/E(F 6 + V 6)
)189

.
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Pure Math., pages 359–386. North-Holland, Amsterdam, 1968.
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[SV] K.-O. Stöhr and J. F. Voloch. Weierstrass points and curves over
finite fields. Proc. London Math. Soc. (3), 52(1):1–19, 1986.
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