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Abstract

Modulational or Benjamin-Feir instability is a well known phenomenon of Stokes’ periodic

waves on the water surface. In this dissertation, we study this phenomenon for periodic trav-

eling wave solutions of various shallow water wave models. We study the spectral stability or

instability with respect to long wave length perturbations of small amplitude periodic trav-

eling waves of shallow water wave models like Benjamin-Bona-Mahony and Camassa-Holm

equations. We propose a bi-directional shallow water model which generalizes Whitham

equation to contain the nonlinearities of nonlinear shallow water equations. The analysis

yields a modulational instability index for each model which is solely determined by the

wavenumber of underlying periodic traveling wave. For a fixed wavenumber, the sign of the

index determines modulational instability. We also includes the effects of surface tension in

full-dispersion shallow water models and study its effects on modulational instability.
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Chapter 1

Introduction

A fundamental question in the study of partial differential equations (PDEs) is the stability

of solutions. At its core, a solution of a PDE is deemed stable if it is not “affected” by a “small

disturbance” added to it initially. To make the terms “affected” and “small disturbance”

precise, we work in a suitable function space with a suitable notion of distance. These choices

give rise to different notions of stability. In this dissertation, we will be mainly concerned

with spectral or linear stability.

We study systems which take the form

ut = Lu+N(u), (1.0.1)

where L is some linear operator and N is a nonlinear term depending on u. Here, u can be

a scalar or vector-valued function depending on a spatial variable x ∈ R and a time variable

t ∈ R+. All the systems discussed in this dissertation arise as models for water waves in

shallow water wave theory. Probably, the most famous example of such a system is the

Korteweg-de Vries (KdV) equation,

ut + ux + uxxx + uux = 0.

Here, u typically represents the average horizontal velocity of the fluid. This equation was

first formulated by Boussinesq [Bou77] and later studied by Diederik Korteweg and Gustav

de Vries [KdV95]. A major drawback of the KdV equation is that the linear phase velocity

for the KdV equation,

cKdV(k) = 1− k2

becomes negative for |k| > 1, where k is the wave number; thereby contradicting the assump-

tion of uni-directional propagation. A couple of alternatives to the KdV equation have been

proposed. The Benjamin-Bona-Mahony (BBM) equation or regularized long-wave equation

ut + ux − uxxt + uux = 0,
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was introduced in 1966 by Peregrine [Per66] in the study of undular bores. It was studied by

Benjamin, Bona and Mahony [BBM72] later in 1972 as an improvement of the Korteweg-de

Vries (KdV) equation. The linear phase velocity for the BBM equation,

cBBM(k) =
1

1 + k2
,

is bounded for all k, and unlike KdV, it is a good model even for high wave numbers. An

improvement over the BBM equation is the Camassa-Holm (CH) equation [CH93,CHH94]

ut + ux − uxxt + 3uux = 2uxuxx + uuxxx,

which extend the BBM equation to include higher order nonlinearities. There is an entire

family of the CH equations both for the velocity u and surface displacement η which we

discuss in detail in Chapter 3.

The linear phase velocity for the Euler’s equations describing surface gravity waves is

cww(k) :=

√
tanh k

k
, (1.0.2)

where “ww” in the subscript stands for Water Waves. Note that the linear phase velocities

of the KdV, BBM or CH equations agree with (1.0.2) only for small wave numbers k. It was

Whitham who realized that the full-dispersion of water waves is necessary to observe the

phenomenon of wave breaking and proposed the Whitham equation [Whi74]

ut + cww(|∂x|)ux + uux = 0,

which has same linear phase velocity as in (1.0.2). Here, cww(|∂x|) is a Fourier multiplier

operator given by

̂cww(|∂x|)f(k) = cww(k)f̂(k) =

√
tanh k

k
f̂(k).

The Whitham equation can be thought as a full-dispersion generalization of the KdV equa-

tion as both have same nonlinearity. Likewise, a full-dispersion generalization of the CH

equation can also be defined as

ut + cww(|∂x|)ux + 3uux = 2uxuxx + uuxxx.

In Chapter 3, we introduce another version of full-dispersion generalization of the CH equa-

tion which not only includes full-dispersion of water waves but also improves upon the

nonlinearity of the CH equation.
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All the models we introduced so far only describe uni-directional propagation but Euler’s

equations describing surface gravity waves are bi-directional. The nonlinear shallow water

equations,

ηt + ux + (uη)x = 0,

ut + ηx + uux = 0,

arise from the direct approximation of the Euler’s equations in shallow water regime. Here,

η is the fluid surface displacement. The linear phase velocity for the nonlinear shallow water

equations is constant. The nonlinear shallow water equations can be generalized to include

full-dispersion of water waves in (1.0.2). Two such possible systems are

ηt + ux + (uη)x = 0,

ut + c2
ww(|∂x|)ηx + uux = 0,

(1.0.3)

and
ηt + c2

ww(|∂x|)ux + (uη)x = 0,

ut + ηx + uux = 0,
(1.0.4)

where c2
ww(|∂x|) is the Fourier multiplier operator with symbol c2

ww(k), where cww(k) is defined

in (1.0.2). The system (1.0.3) was proposed in [HJ15a, HT18] while (1.0.4) was proposed

in [MKD15].

We look for periodic traveling wave solutions of these systems. A periodic traveling wave

solution is of the form, abusing notation, u(x, t) = u(x− ct), where u is a periodic function

of its argument. For all speeds c > 0, u ≡ 0, is a solution. To prove the existence of

nontrivial solutions bifurcating from the trivial solution, we use Lyapunov-Schmidt reduction

(see [Nir01, Section 2.7.6], for instance). At some specific values of the speed c, the linearized

operator turns out to be a Fredholm operator. Then the original problem can be written as

an equivalent system of two equations. The first equation can be solved by implicit function

theorem as the linearized operator is invertible on the reduced space. Since the linearized

operator is Fredholm, the second equation is finite-dimensional and can be solved easily. We

carry out the Lyapunov-Schmidt reduction in a suitable Sobolev space and then establish

the smoothness of the solution using some bootstrapping argument. We also calculate small

amplitude expansion of these solutions.

Assume that there is a periodic traveling wave solution, u∗(x, t) = u(x − ct) of (1.0.1).

Formally applying the ansatz u = u∗ + v and expanding the function N in a Taylor series,
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we obtain,

vt = Lv +DN(u∗)v +O(v2),

where D is the derivative operator. When v is small, which corresponds to the original

solution u being near the particular solution u∗, the O(v2) terms are small when compared

with the linear term Lv+DN(u∗)v. Therefore, a reasonable approximation to the equation

ut = Lu+N(u) near the solution u∗ is

vt = Lv +DN(u∗)v =: Lv, (1.0.5)

which is referred to as the linearization of the PDE at the solution u∗. We look for solutions

of the form v(z, t) = eλtv(z) of (1.0.5), which reduces (1.0.5) to a spectral problem:

λv = Lv.

We say that u∗ is spectrally unstable if the L2(R)-spectrum (or L2(R) × L2(R)-spectrum, if

u is vector-valued) of L intersects the open, right half plane of C and it is stable otherwise.

For all the systems in this dissertation, L is symmetric with respect to the reflections about

the real and imaginary axes and therefore, u∗ is spectrally unstable if and only if the L2(R)-

spectrum of L is not contained in the imaginary axis. If the solution is spectrally stable or

unstable then we can hope that in many situations this will imply the same is true (locally)

for the full, nonlinear equation. The goal of this dissertation is to study the spectral stability

or instability of periodic traveling wave solutions of some aforementioned shallow water wave

models. In Chapter 2, we remark that how the spectral instability result obtained for the

BBM equation in this dissertation has been used to obtain a nonlinear instability in [JLL17].

The L2(R)-spectrum of L is continuous since the coefficients of L are periodic. This

makes the spectral stability of periodic traveling waves a delicate issue. The problem is

much simpler if we look at L2(T)-spectrum, in which case the spectrum is discrete and only

consists of eigenvalues. Then the question is: is there a way to connect L2(R)-spectrum

with L2(T)-spectrum? Fortunately, Floquet-Bloch theory comes to the rescue. It follows

(see [Joh13], for a proof) that λ ∈ C belongs to the L2(R)-spectrum of L if and only if

λφ = e−iξzLeiξzφ =: Lξφ (1.0.6)

for some ξ ∈ [−1/2, 1/2) and φ ∈ L2(T). For each ξ ∈ [−1/2, 1/2), the L2(T)-spectrum of

4



Lξ comprises of discrete eigenvalues of finite multiplicities. Moreover

specL2(R)(L) =
⋃

ξ∈[−1/2,1/2)

specL2(T)(Lξ).

In other words, the continuous L2(R)-spectrum of L is parametrized by the family of discrete

L2(T)-spectra of Lξ’s.

If φ ∈ L2(T) is an eigenfunction of Lξ, then from (1.0.6), eiξzφ is an eigenfunction of L.

Note that eiξzφ is 2πn-periodic in z if ξ = 1/n for some n ∈ N. In this dissertation, we

analyze the L2(T)-spectrum of Lξ for |ξ| small that is close to zero. If Lξ has an unstable

eigenvalue that is an eigenvalue λ(ξ) with <(λ(ξ)) > 0 for all |ξ| sufficiently small, then

L is spectrally unstable to perturbations which have large periods or in other words, long

wavelengths. The long wavelength perturbations create small changes or modulations in the

periodic wave and therefore, the resulting instability is called modulational instability.

The modulational instability in periodic water waves was first observed in 1960s by Ben-

jamin and Feir [BF67,BH67] experimentally and theoretically using some formal expansions.

They created uniform trains of periodic waves on the water surface using a wave maker but

the wave train got disintegrated after certain time; see Figure 1.1. During the same time,

independently, Whitham [Whi67] discovered that a periodic wave on the water surface would

be unstable to long wavelength perturbations, namely, the Benjamin-Feir or modulational

instability provided that

kh > 1.363 . . . ,

where k denotes the carrier wave number, and h is the undisturbed water depth. Results in

the support of the Benjamin-Feir instability arrived about the same time, but independently,

by Lighthill [Lig65] and Zakharov [Zak68], among others. For full account of the early history,

see [ZO09]. The theories developed by Benjamin and Feir or Whitham are difficult to justify

in a functional analytic setting. In the 1990s, Bridges and Mielke [BM95] addressed the

corresponding spectral instability in a rigorous manner. But the proof leaves some important

issues open, such as the stability and instability away from the origin in the spectral plane.

The governing equations of the water wave problem are complicated, and they as a rule

prevent a detailed account. One may resort to approximate models to gain insights.

Whitham in [Whi65, Whi67] (see also [Whi74]) developed a formal asymptotic approach

to study the effects of slow modulations in nonlinear dispersive waves. Since then, there has
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Figure 1.1: The Benjamin-Feir’s laboratory experiment

been considerable interest in the mathematical community in rigorously justifying predic-

tions from Whitham’s modulation theory. Recently in [BH14, Joh13, HJ15a, HJ15b, HP16b,

HP16a, HP17, Pan17] (see also [BHJ16]), long wavelength perturbations were carried out

analytically for a class of Hamiltonian systems permitting nonlocal dispersion, for which

Evans function techniques and other ODE methods may not be applicable. Specifically,

modulational instability indices were derived either with the help of variational structure

(see [BH14]) or using asymptotic expansions of the solution (see [Joh13, HJ15a, HJ15b,

HP16b, HP16a, HP17, Pan17]). This dissertation is a collection of works of the author

in [HP16b,HP16a,HP17,Pan17].

In Chapter 2, we work with a general equation with multiplier operator. For a specific

multiplier, this equation reduces to the Benjamin-Bona-Mahony equation. Unfortunately,

there is no other known physical example of this general equation but it makes the exposition

simple. The equations we study in Chapter 3 includes the Camassa-Holm equation and full-

dispersion Camassa-Holm equation. The analysis for both the equations are slightly different

and we only produce the details for the full-dispersion Camassa-Holm equation and only

hit the main points for the Camassa-Holm equation. Chapter 4 is devoted to the study of

modulational instability of small amplitude periodic traveling waves in full-dispersion shallow

water models (1.0.3) and (1.0.4).

The modulational instability changes immensely when the effects of surface tension is

6



added. It has been investigated for the capillary-gravity waves using formal asymptotic ex-

pansions in [Kaw75] and [DR77], for example. These studies show that for large surface

tensions, the modulational instability is similar to gravity waves but for small surface ten-

sions, the wave numbers get partitioned into three intervals of stability and three intervals

of instability. Recently, in [HJ15b], the authors determined the modulational stability and

instability of a sufficiently small and periodic traveling wave of the Whitham equation with

cww(|∂x|) replaced by cww(|∂x|;T ) where

̂cww(|∂x|;T )f(k) =

√
(1 + Tk2)

tanh k

k
f̂(k),

where T is the coefficient of surface tension. The result agrees by and large with those

in [Kaw75,DR77], for instance, from formal asymptotic expansions of the physical problem.

But it fails to predict the limit of “strong surface tension”. In a joint work, the author

studied the effects of surface tension on modulational instability in various aforementioned

shallow water wave models in [HP16a,HP17,Pan17]. In Chapter 5, we present the effects of

surface tension on modulational instability in some shallow water models.

7



Chapter 2

The Benjamin-Bona-Mahony equation

The Benjamin-Bona-Mahony (BBM) equation or regularized long-wave equation

ut − uxxt + ux + (u2)x = 0, (2.0.1)

was introduced in 1966 by Peregrine [Per66] in the study of undular bores. It was studied by

Benjamin, Bona and Mahony [BBM72] later in 1972 as an improvement of the Korteweg-de

Vries (KdV) equation

ut + uxxx + (u2)x = 0

for modeling long surface gravity waves of small amplitude.

In this chapter, we prove the existence of periodic traveling waves of the BBM equation

using Lyapunov-Schmidt reduction method. As a by-product, we also obtain the small am-

plitude asymptotics of periodic traveling waves. Then, we study the stability and instability

of periodic traveling waves in the vicinity of the origin in the spectral plane. We derive

modulational instability index as a function of the wave number of the small underlying

wave. We show that a sufficiently small, periodic traveling wave of the BBM equation is

modulationally unstable to long wavelength perturbations if the wave number is greater than

a critical value much like Benjamin-Feir instability of Stokes’ waves.

2.1 The equation

We do our analysis on a more general equation

ut +M(u+ u2)x = 0. (2.1.1)

Here, M is a Fourier multiplier, defined via its symbol as

M̂f(k) = m(k)f̂(k)

8



and characterizing dispersion in the linear limit. Note that

m(k) = the phase speed and (km(k))′ = the group speed. (2.1.2)

Assumption 2.1.1. We assume that:

(M1) m is real valued and twice continuously differentiable,

(M2) m is even and, without loss of generality, m(0) = 1,

(M3) C1|k|α < m(k) < C2|k|α for |k| � 1 for some α > −1 and C1, C2 > 0,

(M4) m(k) 6= m(nk) for all k > 0 and n = 2, 3, . . . .

In the case of M = (1− ∂2
x)
−1, note that (2.1.1) reduces to the BBM equation.

2.2 Periodic traveling waves

By a traveling wave of (2.1.1) we mean a solution of the form, abusing notation, u(x, t) =

u(x − ct) which progresses at a constant velocity c > 0 without change of form. Then u

satisfies by quadrature that

M(u+ u2)− cu = (1− c)2b

for some b ∈ R. We seek a 2π/k-periodic traveling wave, i.e. k > 0 is the wave number and,

abusing notation, u is a 2π-periodic function of z := kx, satisfying that

Mk(u+ u2)− cu = (1− c)2b. (2.2.1)

Here and elsewhere,

Mke
inz = m(kn)einz for n ∈ Z (2.2.2)

and it is extended by linearity and continuity. Note from (M2) of Assumption 2.1.1 thatMk

maps even functions to even functions. Note from (M3) of Assumption 2.1.1 that

Mk : Hs
2π → Hs−α

2π for all k > 0 for all s > 0

is bounded.

We begin by proving regularity of solutions of (2.2.1).

9



Lemma 2.2.1 (Regularity). If u ∈ H1
2π solves (2.2.1) for some c > 0, k > 0 and b ∈ R and

if |1 + u(z)| > 0 for all z then u ∈ H∞2π.

Proof. In the case of α < 0, indeed, it follows from the Sobolev inequality that

cu =Mk(u+ u2)− (1− c)2b ∈ H1−α
2π .

In the case of α > 0, similarly,

u =
1

1 + u
(cM−1

k u+ (1− c)2b) ∈ H1+α
2π .

The claim then follows from a bootstrapping argument.

Note that, since we are only going to consider small amplitude solutions, the condition

|1 + u(z)| > 0 for all z in Lemma 2.2.1 is redundant. We are now ready to prove existence

of a solution of (2.2.1) in H1
2π which will be in H∞2π by Lemma 2.2.1.

Lemma 2.2.2 (Existence). Under Assumption 2.1.1, for each k > 0 and |b| sufficiently

small, a one-parameter family of 2π/k-periodic traveling waves of (2.1.1) exists and, abusing

notation,

u(x, t) = u(a, b)(k(x− c(k, a, b)t)) =: u(k, a, b)(z)

for |a| sufficiently small; u and c depend analytically on k, a, b, and u is smooth, even and

2π-periodic in z, and c is even in a. Furthermore

u(k, a, b)(z) =b(m(k)− 1) + a cos z (2.2.3)

+
1

2
a2
( 1

m(k)− 1
+

m(2k)

m(k)−m(2k)
cos 2z

)
+O(a(a2 + b)),

c(k, a, b)(z) =m(k) + 2bm(k)(m(k)− 1) (2.2.4)

+ a2m(k)
( 1

m(k)− 1
+

1

2

m(2k)

m(k)−m(2k)

)
+O(a(a2 + b))

as a, b→ 0.

Proof. The proof follows along the same line as the arguments in [Joh13, Appendix A], for

instance. For an arbitrary k > 0, a straightforward calculation reveals that

u0(k, c, b) = b(c− 1) +O(b2)

makes a constant solution of (2.2.1) for all c > 0 and |b| sufficiently small. (Another constant

solution is u = (1− b)(c− 1) +O(b2), which we discard for the sake of near-zero solutions.)
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We are interested in determining at which value of c there bifurcates a family of non-constant

H1
2π-solutions, and hence smooth solutions of (2.2.1) by Lemma 2.2.1. A necessary condition,

it turns out, is that the linearized operator of (2.2.1) about u0 allows a nontrivial kernel.

This is not in general a sufficient condition. But bifurcation does take place if the kernel and

co-kernel is one dimensional. Under (M4) of Assumption 2.1.1, a straightforward calculation

reveals that

ker(Mk(1 + 2u0)− c0) = span{cos z}

in the sector of even functions in H1
2π, provided that

c0(k, b) := m(k)(1 + 2u0) = m(k) + 2bm(k)(m(k)− 1) +O(b2). (2.2.5)

Therefore

u0(k, b) := u0(k, c0, b) = b(m(k)− 1) +O(b2). (2.2.6)

For arbitrary k > 0 and |b| sufficiently small, one may then employ a Lyapunov-Schmidt

reduction and construct a one-parameter family of non-constant, even and smooth solutions

of (2.2.1) near u = u0(k, b) and c = c0(k, b). We may assume that α < 0 in (M3) in

Assumption 2.1.1. Let

F (u; k, c, b) =Mk(u+ u2)− cu− (1− c)2b

and note from (M3) of Assumption 2.1.1 and the Sobolev inequality that F : H1
2π × R+ ×

R+ × R→ H1
2π is well defined. In the case of α > 0 in (M3) of Assumption 2.1.1, let

F (u; k, c, b) = u+ u2 − cM−1
k u− (1− c)2b,

instead, and the proof is nearly identical. Note that

∂uF (u; k, c, b)v = (Mk(1 + 2u)− c)v ∈ L2
2π, v ∈ H1

2π,

and ∂kF (u; k, c, b)δ :=M′
δ(u+u2), δ ∈ R, are continuous, where a straightforward calculation

reveals that

M′
δe
inz = δnm′(kn)einz for n ∈ Z.

Since

∂cF (u; k, c, b) = −u− 2(1− c)b and ∂bF (u; k, c, b) = −(1− c)2

are continuous, we deduce that F : H1
2π ×R+×R+×R→ H1

2π is C1. Recall that u0 and c0,
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in (2.2.6) and (2.2.5), satisfy that

Le±iz =: (Mk(1 + 2u0)− c0)e±iz = 0.

For arbitrary k > 0 and |b| sufficiently small, we seek a non-constant solution u ∈ H1
2π

near u0 of

F (u; k, c, b) = 0 (2.2.7)

for some c near c0. Let

u(z) = u0(k, b) +
1

2
aeiz +

1

2
āe−iz + v(z) and c = c0 + r,

where a ∈ C and v ∈ H1
2π satisfying that∫ π

−π
v(z)e±iz dz = 0,

and r ∈ R. Substituting these into (2.2.7) and using Le±iz = 0, we arrive at that

Lv =: g(a, ā, v, r, b), (2.2.8)

where g is analytic in its argument and g(0, 0, 0, r, b) = 0 for all r, b ∈ R. We define

Π : L2
2π → kerL as

Πf(z) = f̂(1)eiz + f̂(−1)e−iz.

Since Πv = 0, we may write (2.2.8) as

Lv = (I − Π)g(a, ā, v, r, b) and 0 = Πg(a, ā, v, r, b). (2.2.9)

Note that

(L|(I−Π)H1
2π

)−1f(z) =
∑
n 6=±1

f̂(n)

(1 + 2u0)m(kn)− c0

einz.

Consequently, we may rewrite (2.2.9) as

v = L−1(I − Π)g(a, ā, v, r, b) and 0 = Πg(a, ā, v, r, b). (2.2.10)

Clearly (L|(I−Π)H1
2π

)−1 depends analytically on its arguments.

It follows from the implicit function theorem that a unique solution

v = V (a, ā, r, b) ∈ (I − Π)H1
2π
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exists to the former equation in (2.2.10) in the vicinity of (a, ā, r, b) = (0, 0, 0, b), which

depends analytically on its argument. By uniqueness, moreover,

V (0, 0, r, b) = 0 for all r ∈ R and |b| sufficiently small. (2.2.11)

Since (2.2.1) remains invariant under z → z + z0 and z → −z, it follows that

V (a, ā, r, b)(z + z0) = V (aeiz0 , āe−iz0 , r, b) and V (a, ā, r, b)(−z) = V (a, ā, r, b)(z)

(2.2.12)

for any z0 ∈ R. To proceed, we rewrite the latter equation in (2.2.10) as

Πg(a, ā, V (a, ā, r, b), r, b) = 0,

which is solvable provided that

Q±(a, ā, r, b) :=

∫ π

−π

1

2
(aeiz ± āe−iz)g(a, ā, V (a, ā, r, b), r, b) dz = 0.

Taking z0 = −2 arg(a) in (2.2.12) we find that

Q−(ā, a, r, b) = Q−(a, ā, r, b) = −Q−(ā, a, r, b).

Therefore Q−(a, ā, r, b) = 0, which is trivial. Taking z0 = − arg(a) in (2.2.12), similarly,

Q+(a, ā, r, b) = Q+(|a|, |a|, r, b).

Therefore Q+(a, a, r, b) = 0 for any a ∈ R. Since (2.2.11) implies that a−1V (a, a, r, b) is

analytic in a for |a| sufficiently small, we arrive at that

Q+(a, a, r, b) =

∫ π

−π
a(cos z)g(a, ā, V (a, ā, r, b)(z), r, b) dz =: a2(πr +R(a, r, b)),

where R is analytic in its argument, even in a and R(0, 0, b) = ∂rR(0, 0, b) = 0. It then

follows from the implicit function theorem that a unique solution to

πr(a, b) +R(a, r(a, b), b) = 0

exists for |a| sufficiently small, which is real analytic for |a| sufficiently small and even in a.
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To summarize,

(v, r) = (V (a, ā, r, b) and r(|a|, b))

uniquely solve (2.2.10) for |a|, |b| sufficiently small. Consequently,

u(z) = u0 + a cos z + V (a, a, r(|a|, b), b)(z) and c = c0 + r(|a|, b)

solve (2.2.7) for |a|, |b| sufficiently small.

It remains to show (2.2.3) and (2.2.4). Let k > 0 be fixed and suppressed to simplify

the exposition. We assume that b = 0. Since u and c depend analytically on a for |a|, |b|
sufficiently small and since c is even in a, we write that

u(k, a, b)(z) :=u0(k, b) + a cos z + a2u2(z) + a3u3(z) +O(a4)

and

c(k, a, b) :=c0(k, b) + a2c2 +O(a4)

as a→ 0, where u2, u3, . . . are even and 2π-periodic in z. Substituting these into (2.2.1), at

the order of a2, we gather that

Mk(u2(z) + cos2 z)−m(k)u2(z) = 0.

A straightforward calculation then reveals that

u2(z) =
1

2

( 1

m(k)− 1
+
m(2k) cos(2z)

m(k)−m(2k)

)
.

Continuing, at the order of a3,

Mk(u3(z) + 2u2(z) cos z)−m(k)u3(z)− c2 cos z = 0,

whence

c2 = m(k)
( 1

m(k)− 1
+

1

2

m(2k)

m(k)−m(2k)

)
.

This completes the proof.

In the remainder of the chapter we assume that b = 0; loosely speaking, the wave height is

small. A small amplitude, but not necessarily small height, periodic traveling wave of (2.1.1)
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may be studied in like manner. But expressions become quite complicated. Hence we do

not pursue here. Let u = u(k, a, 0) and c = c(k, a, 0) for k > 0 and |a| sufficiently small, be

as in Lemma 2.2.2. We are interested in its stability and instability.

2.3 The spectral problem

Linearizing (2.1.1) about u in the coordinate frame moving at the speed c, we arrive at that

vt + k∂z(Mk(1 + 2u)− c)v = 0.

Seeking a solution of the form v(z, t) = eλktv(z), λ ∈ C and v ∈ L2(R), moreover, we arrive

at that

λv = ∂z(−Mk(1 + 2u) + c)v =: L(k, a)v. (2.3.1)

We employ Floquet theory to study the L2(R)-spectrum of L(k, a). The corresponding Bloch

operators are given by

L(ξ)(k, a) := e−iξzL(k, a)eiξz (2.3.2)

for some ξ ∈ (−1/2, 1/2]. Since

specL2
2π

(L(ξ)) = specL2
2π

(L(−ξ)),

it suffices to take ξ ∈ [0, 1/2].

Notation. In the remainder of the section, k > 0 is fixed and suppressed to simplify the

exposition, unless specified otherwise. Let

Lξ,a = L(ξ)(k, a).

In the case of a = 0, namely the zero solution, a straightforward calculation reveals that

Lξ,0einz = iωn,ξe
inz for all n ∈ Z for all ξ ∈ [0, 1/2], (2.3.3)

where

ωn,ξ = (ξ + n)(m(k)−m(k(ξ + n))). (2.3.4)

We pause to remark that (2.3.3)-(2.3.4) imply that the zero solution of (2.1.1) is spectrally
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stable to square integrable perturbations. Observe that

ω1,0 = ω−1,0 = ω0,0 = 0,

and ωn,0 6= 0 otherwise. As a matter of fact, zero is an L2
2π-eigenvalue of L0,0 with algebraic

and geometric multiplicity three, and

cos z, sin z and 1 (2.3.5)

form a (real-valued) orthogonal basis of the corresponding eigenspace. For ξ small (and

a = 0), furthermore, they form an orthogonal basis of the spectral subspace associated with

eigenvalues iω1,ξ, iω−1,ξ, iω0,ξ of Lξ,0.

For |a| small but ξ = 0, on the other hand, zero is a generalized L2
2π-eigenvalue of L0,a

with algebraic multiplicity three and geometric multiplicity two, and

φ1(z) =:
1

2m(k)(m(k)− 1)
((∂bc)(∂au)− (∂ac)(∂bu))(k, a, 0)(z)

= cos z − 1

2
a

m(2k)

m(k)−m(2k)
+ a

m(2k)

m(k)−m(2k)
cos 2z +O(a2) (2.3.6)

φ2(z) =: −1

a
∂zu(k, a, 0)(z) = sin z + a

m(2k)

m(k)−m(2k)
sin 2z +O(a2) (2.3.7)

φ3(z) =:
1

m(k)− 1
∂bu(k, a, 0)(z) = 1 +O(a2) (2.3.8)

form a basis of the corresponding generalized eigenspace. Indeed, differentiating (2.2.1) with

respect to z, a, b, we find that

L0,a(∂zu) = 0, L0,a(∂au) = (∂ac)(∂zu), L0,a(∂bu) = (∂bc)(∂zu),

respectively, and (2.3.6)-(2.3.8) follows at once; see [HJ15a, Lemma 3.1] for details. In the

case of a = 0, note that (2.3.6)-(2.3.8) reduce to (2.3.5).

2.4 The perturbation analysis

To recapitulate, in the case of ξ small and a = 0, Lξ,0 possesses three purely imaginary

eigenvalues near the origin and functions in (2.3.5) form an orthogonal basis of the associated

spectral subspace. In the case of ξ = 0 and a small, moreover, L0,a possesses three eigenvalues

at the origin and functions in (2.3.6)-(2.3.8) form a bases of the associated eigenspace. In
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order to study how three eigenvalues at the origin vary with ξ and |a| small, we proceed as

in [HJ15a] and compute 3× 3 matrices

Bξ,a =

(
〈Lξ,aφj, φk〉
〈φj, φj〉

)
j,k=1,2,3

and Ia =

(
〈φj, φk〉
〈φj, φj〉

)
j,k=1,2,3

, (2.4.1)

where φj’s, j = 1, 2, 3, are in (2.3.6)-(2.3.8) and 〈 , 〉 = 〈 , 〉L2
2π

is inner product in L2(T).

Note that Bξ,a and Ia, respectively, represent actions of Lξ,a and the identity on the spectral

subspace associated with three eigenvalues at the origin. For ξ and |a| sufficiently small,

eigenvalues of Lξ,a agree in location and multiplicity with the roots of the characteristic

equation det(Bξ,a − λIa) = 0; see [Kat76, Section 4.3.5], for instance, for details.

Using (2.3.1), (2.3.2) and (2.2.3), (2.2.4), we make a Baker-Campbell-Hausdorff expansion

to write that

Lξ,a =L0,0 + iξ[L0,0, z]−
ξ2

2
[[L0,0, z], z]

− 2aMk∂z(cos z)− 2iξa[∂zMk, z] cos z +O(ξ3 + ξ2a+ a2)

=:L− 2aMk∂z(cos z)− 2iξaM1 cos z +O(ξ3 + ξ2a+ a2) (2.4.2)

as ξ, a → 0. Note that M1 = [L0,0, z] and [[L0,0, z], z] are well defined in L2
2π even though z

is not. Note moreover that L = Lξ,0 up to second order for ξ � 1 and M1 is the O(ξ) term

in the asymptotic expansion of Lξ,0 for ξ � 1.

We use (2.3.3) and (2.3.4), or its Taylor expansion (see (M1) of Assumption 2.1.1), to

compute that

Lξ,0e±inz = ±in(m(k)−m(kn))e±inz + iξ(m(k)−m(kn)− km′(kn))e±inz

∓ 1

2
ξ2(2km′(kn) + k2m′′(kn))e±inz +O(ξ3)

as ξ → 0. Therefore we infer that

L1 = iξ(m(k)− 1) and M11 = m(k)− 1.

Similarly,

L

{
cos z

sin z

}
=− iξkm′(k)

{
cos z

sin z

}
± 1

2
ξ2(2km′(k) + k2m′′(k))

{
sin z

cos z

}
,

M1

{
cos z

sin z

}
=− km′(k)

{
cos z

sin z

}
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and

L

{
cos 2z

sin 2z

}
=∓ 2(m(k)−m(2k))

{
sin 2z

cos 2z

}
+ iξ(m(k)−m(2k)− km′(2k))

{
cos 2z

sin 2z

}

± 1

2
ξ2(2km′(2k) + k2m′′(2k))

{
sin 2z

cos 2z

}
,

M1

{
cos 2z

sin 2z

}
=(m(k)−m(2k)− km′(2k))

{
cos 2z

sin 2z

}
.

Substituting (2.3.6)-(2.3.8) into (2.4.2), and using the above and (2.3.3), we make a lengthy

but straightforward calculation to find that

Lξ,aφ1 =− iξkm′(k) cos z

− iξa
(

1 +
m(2k)(m(k)− 1)

2(m(k)−m(2k))

)
− iξa

(
m(2k) + 2km′(2k)− m(2k)(m(k)−m(2k)− 2km′(2k))

m(k)−m(2k)

)
cos 2z

+
1

2
ξ2(2km′(k) + k2m′′(k)) sin z +O(ξ3 + a2)

and

Lξ,aφ2 =− iξkm′(k) sin z

− iξa
(
m(2k) + 2km′(2k)− m(2k)(m(k)−m(2k)− 2km′(2k))

m(k)−m(2k)

)
sin 2z

− 1

2
ξ2(2km′(k) + k2m′′(k)) cos z +O(ξ3 + a2),

Lξ,aφ3 =2am(k) sin z + iξ(m(k)− 1)− 2iξa(m(k) + km′(k)) cos z +O(ξ3 + a2)

as ξ, a → 0. Using the above and (2.3.6)-(2.3.8), we make another lengthy but straightfor-

ward calculation to find that

〈Lξ,aφ1, φ1〉 = 〈Lξ,aφ2, φ2〉 = −1

2
iξkm′(k) +O(ξ3 + a2),

〈Lξ,aφ1, φ2〉 = −〈Lξ,aφ2, φ1〉 =
1

4
ξ2(2km′(k) + k2m′′(k)) +O(ξ3 + a2),

〈Lξ,aφ1, φ3〉 = −iξa
(

1 +
1

2

m(2k)(m(k)− 1)

m(k)−m(2k)

)
+O(ξ3 + a2)
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and

〈Lξ,aφ2, φ3〉 = 0 +O(ξ3 + a2),

〈Lξ,aφ3, φ1〉 = −iξa
(
m(k) + km′(k) +

1

2

m(2k)(m(k)− 1)

m(k)−m(2k)

)
+O(ξ3 + a2),

〈Lξ,aφ3, φ2〉 = am(k) +O(ξ3 + a2),

〈Lξ,aφ3, φ3〉 = iξ(m(k)− 1) +O(ξ3 + a2)

as ξ, a→ 0. Moreover we use (2.3.6)-(2.3.8) to compute that

〈φ1, φ1〉 = 〈φ2, φ2〉 =
1

2
+O(ξ3 + a2),

〈φ1, φ2〉 = 0 +O(ξ3 + a2),

〈φ1, φ3〉 = −a1

2

m(2k)

m(k)−m(2k)
+O(ξ3 + a2),

〈φ2, φ2〉 = 0 +O(ξ3 + a2),

〈φ3, φ3〉 = 1 +O(ξ3 + a2)

as ξ, a→ 0. To summarize, (2.4.1) becomes

Bξ,a = am(k)

0 0 0

0 0 0

0 1 0

 (2.4.3)

+ iξ

−km
′(k) 0 0

0 −km′(k) 0

0 0 m(k)− 1



− iξa


0 0 2 +

m(2k)(m(k)− 1)

m(k)−m(2k)

0 0 0

m(k) + km′(k) +
1

2

m(2k)(m(k)− 1)

m(k)−m(2k)
0 0



+ ξ2(km′(k) + 1
2
k2m′′(k))

 0 1 0

−1 0 0

0 0 0

+O(ξ3 + a2)
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and

Ia = I− a m(2k)

2(m(k)−m(2k))

0 0 2

0 0 0

1 0 0

+O(a2) (2.4.4)

as ξ, a→ 0. Here I denotes the 3× 3 identity matrix.

2.5 The modulational instability index

Now, we are ready to prove the following theorem.

Theorem 2.5.1 (Modulational instability index for (2.1.1)). Under Assumption 2.1.1, a

sufficiently small, 2π/k-periodic traveling wave of (2.1.1) is spectrally unstable to long wave-

length perturbations if

∆(k) :=
i1(k)i2(k)

i3(k)
i4(k) < 0, (2.5.1)

where

i1(k) =(km(k))′′,

i2(k) =((km(k))′)− 1, (2.5.2a)

i3(k) =m(k)−m(2k),

and

i4(k) =2i3(k) +m(2k)i2(k). (2.5.2b)

Otherwise, it is stable to square integrable perturbations in the vicinity of the origin in the

spectral plane.

Proof. We turn the attention to the roots of the characteristic polynomial

det(Bξ,a − λIa) = D3(ξ, a)λ3 + iD2(ξ, a)λ2 +D1(ξ, a)λ+ iD0(ξ, a)

for ξ and |a| sufficiently small, where Bξ,a and Ia are in (2.4.3) and (2.4.4). Details are found

in [HJ15a, Section 3.3]. Hence we merely hit the main points.

Observe that Dj = ξ3−jdj, j = 0, 1, 2, 3, for some real dj’s. We may therefore write that

det(Bξ,a − (−iξ)λIa) = iξ3(d3(ξ, a)λ3 − d2(ξ, a)λ2 − d1(ξ, a)λ+ d0(ξ, a)).
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The underlying, periodic traveling wave of (2.1.1) is then modulationally unstable if det(Bξ,a−
(−iξ)λIa) admits a pair of complex roots, or equivalently, the discriminant of the cubic poly-

nomial

disc(k; ξ, a) := 18d3d2d1d0 + d2
2d

2
1 + 4d3

2d0 + 4d3d
3
1 − 27d2

3d
2
0 < 0

for ξ and |a| sufficiently small, while it is modulationally stable if disc(ξ, a) > 0. Observe

that disc(ξ, a) is even in ξ and a, whereby we write that

disc(k; ξ, a) := disc(k; ξ, 0) + ∆(k)a2 +O(a2(a2 + ξ2))

as ξ, a → 0. It is readily seen from (2.4.3) and (2.4.4) that disc(k; ξ, 0) > 0 for all k > 0.

Specifically, a Mathematica calculation reveals that

disc(k; ξ, 0) =
1

16
ξ2(ki1(k)(ki1(k)ξ − 4i2(k))(ki1(k)ξ + 4i2(k)))2.

Therefore, the sign of ∆(k) determines modulational stability and instability. As a matter

of fact, if ∆(k) < 0 then disc(k; ξ, a) < 0 for ξ sufficiently small, depending on a sufficiently

small but fixed, implying modulational instability, whereas if ∆(k) > 0 then disc(k; ξ, a) > 0

for all k and ξ, |a| sufficiently small, implying modulational stability. Recalling (2.4.3) and

(2.4.4), a Mathematica calculation then reveals that the sign of ∆(k) agrees with that of

(2.5.1). This completes the proof of Theorem 2.5.1.

2.6 Results

We illustrate the results in Theorem 2.5.1 for the BBM equation. Note that

m(k) =
1

1 + k2

satisfies Assumption 2.1.1 and it reduces (2.1.1) to (2.0.1). For an arbitrary k > 0, note

from Lemma 2.2.2 that
u(x, t; k, a) = a cos(k(x− ct)) + a2 1 + k2

6k2
(cos(2k(x− ct))− 3) +O(a3),

c(k, a) =
1

1 + k2
− a2 5

6k2
+O(a4),

(2.6.1)
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for |a| � 1, make a sufficiently small, 2π/k-periodic wave of (2.0.1) traveling at the speed

c(k, a). A straightforward calculation reveals that

i1(k) =
2k(k2 − 3)

(1 + k2)3
> 0

if and only if k >
√

3,

i2(k) = −k
2(3 + k2)

(1 + k2)2
< 0 and i3(k) =

3k2

1 + 5k2 + 4k4
> 0

for all k > 0, where i1, i2, i3 are in (2.5.2a). Moreover,

i4(k) =
k2(3 + 5k2)

(1 + k2)2(1 + 4k2)
> 0

for all k > 0, where i4 is in (2.5.2b). Collectively, ∆(k) < 0 if and only if k >
√

3, where ∆

is in (2.5.1). It then follows from Theorem 2.5.1 that (2.6.1) is modulationally unstable if

k >
√

3 and it is stable in the vicinity of the origin in the spectral plane, otherwise.

Away from the origin in the spectral plane, since the L2
2π-spectrum of Lξ,a associated with

(2.0.1) is symmetric about the imaginary axis, its eigenvalues may leave the imaginary axis,

leading to instability, as ξ and a vary, only through collisions with other purely imaginary

eigenvalues. Recall (2.3.3) and (2.3.4). Since m(k) decreases in k, we deduce that

· · · < ω−3,ξ < ω−2,ξ < 0 < ω1,ξ < ω2,ξ < ω3,ξ < . . .

for each ξ ∈ [0, 1/2]. Moreover it is readily seen that ω0,ξ < 0 and ω−1,ξ > 0 for all ξ ∈ [0, 1/2].

A straightforward calculation reveals that if ω−1,ξ and ωn,ξ collide for some n > 1 an integer

and ξ ∈ [0, 1/2] then n = 1, whence

k =

√
3

1− ξ2
>
√

3.

But the underlying wave is modulationally unstable in the range. Similarly if ω0,ξ and ωn,ξ

collide for some n 6 −2 an integer and ξ ∈ [0, 1/2] then

k =

√
1− n2 + 3nξ − 3ξ2

ξ4 − 2nξ3 + (n2 + 1)ξ2 − nξ
> 2
√

3/5.

For k < 2
√

3/5, therefore, eigenvalue collide only at the origin, which incidentally does not
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lead to instability since ∆(k) > 0. In other words, the underlying wave is spectrally stable.

Below we summarize the conclusion.

Corollary 2.6.1 (Modulational instability and spectral stability for (2.0.1)). A sufficiently

small, 2π/k-periodic traveling wave of (2.0.1) is spectrally unstable to long wavelength per-

turbations if k >
√

3, and it is spectrally stable to square integrable perturbations if 0 < k <

2
√

3/5.

For 2
√

3/5 < k 6
√

3, a Krein signature calculation may be made to determine the

stability and instability. But we do not pursue here.

Corollary 2.6.1 agrees with that in [Joh10], where the author proved that periodic traveling

waves of (2.0.1) of sufficiently large period, or conversely sufficiently small wave number, (but

not necessarily small amplitude) are modulationally stable.

We remark that in [Har08], the author employed a similar method to show that a periodic

traveling wave of (2.0.1) of sufficiently small amplitude near u = c−1, the non-zero constant

solution of (2.2.1) when b = 0, is modulationally stable, for which the wave number k < 1

incidentally.

In [JLL17], authors using the linear modulational instability result in Corollary 2.6.1,

prove a version of nonlinear modulational instability.
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Chapter 3

The Camassa-Holm equation

We determine the stability and instability of sufficiently small periodic traveling waves to

long wavelength perturbations, for a nonlinear dispersive equation which extends a Camassa-

Holm equation to include the full-dispersion of water waves and the Whitham equation to

include nonlinearities of medium amplitude waves. The result qualitatively agrees with

the Benjamin-Feir instability of a Stokes’ wave. We discuss the modulational stability and

instability in the Camassa-Holm equation.

3.1 The equation

In the 1960s, Whitham (see [Whi74], for instance) proposed

ηt + cww(
√
β|∂x|)ηx + (3

√
(1 + αη)− 3)ηx = 0, (3.1.1)

to argue for wave breaking in shallow water. That is, the solution remains bounded but its

slope becomes unbounded in finite time. Here t ∈ R is proportional to elapsed time, and

x ∈ R is the spatial variable in the primary direction of wave propagation; η = η(x, t) is the

fluid surface displacement from the undisturbed depth,

α =
a typical amplitude

the undisturbed fluid depth
and β =

(the undisturbed fluid depth)2

(a typical wavelength)2
.

Moreover, cww(|∂x|) is a Fourier multiplier operator, defined as

̂cww(|∂x|)f(k) =

√
tanh k

k
f̂(k). (3.1.2)

Note that cww(k) means the phase speed in the linear theory of water waves. For small

amplitude waves satisfying α� 1, we may expand the nonlinearity of (3.1.1) up to terms of

order α to arrive at

ηt + cww(
√
β|∂x|)ηx +

3

2
αηηx = 0. (3.1.3)
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For relatively shallow water or, equivalently, relatively long waves satisfying β � 1, we may

expand the right side of (3.1.2) up to terms of order β to find

cww(
√
βk) = 1− 1

6
βk2 +O(β2).

Therefore, for small amplitude and long waves satisfying α = O(β) and β � 1, we arrive at

the famous Korteweg-de Vries equation

ηt + ηx +
1

6
βηxxx +

3

2
αηηx = 0. (3.1.4)

As a matter of fact, for well-prepared initial data, the solutions of the Whitham equation

and the Korteweg-de Vries equation differ from those of the water wave problem merely by

higher order terms over the relevant time scale; see [Lan13], for instance, for details. But

(3.1.3) and (3.1.2) offer improvements over (3.1.4) for short waves. Whitham conjectured

wave breaking for (3.1.3) and (3.1.2). It was recently proved in [Hur17]. In stark contrast,

no solutions of (3.1.4) break.

Moreover, Johnson and Hur [HJ15a] showed that a sufficiently small and 2π/k-periodic

traveling wave of the Whitham equation be spectrally unstable to long wavelength pertur-

bations, provided that k > 1.145 . . . . In other words, (3.1.3) (or (3.1.1)) and (3.1.2) predict

the Benjamin-Feir instability of a Stokes’ wave; see [BF67, BH67, Whi67] and [BM95], for

instance. In contrast, periodic traveling waves of the Korteweg-de Vries equation are all

modulationally stable. By the way, under the assumption that ηt + ηx is small, we may

modify (3.1.4) to arrive at the Benjamin-Bona-Mahony equation

ηt + ηx −
1

6
βηxxt +

3

2
αηηx = 0. (3.1.5)

It agrees with (3.1.4) for long waves but is preferable for short waves. Note that the phase

speed for (3.1.5) is bounded for all frequencies. We show in Chapter 2 that a sufficiently

small and 2π/k periodic traveling wave of (3.1.5) be modulationally unstable if k >
√

3.

Hence the Benjamin-Bona-Mahony equation seems to predict the Benjamin-Feir instability

of a Stokes wave. But the instability mechanism is different from that in the Whitham

equation or the water wave problem; see [HP16b] for details.

As a matter of fact, for medium amplitude and long waves satisfying α = O(
√
β) and

β � 1, the Camassa-Holm equations for the fluid surface displacement

ηt + ηx + β(aηxxx + bηxxt) +
3

2
αηηx −

3

8
α2η2ηx +

3

16
α3η3ηx = −αβ(cηηxxx + dηxηxx) (3.1.6)
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and for the average horizontal velocity

ut + ux + β(auxxx + buxxt) +
3

2
αuux = −αβ(cuuxxx + duxuxx), (3.1.7)

where

0 6 a 6
1

6
, b = a− 1

6
, c =

3

2
a+

1

6
, and d =

9

2
a+

5

24
,

extend the Korteweg-de Vries equation to include higher order nonlinearities, and they ap-

proximate the physical problem; see [Lan13], for instance, for details. In the case of a = 1/12,

(3.1.6) reads

ηt + ηx +
1

12
β(ηxxx − ηxxt) +

3

2
αηηx −

3

8
α2η2ηx +

3

16
α3η3ηx = − 7

24
αβ(ηηxxx + 2ηxηxx),

which is particularly interesting because it predicts wave breaking; see [Lan13] and references

therein. Note that

3αη

1 +
√

1 + αη
=

3

2
αη − 3

8
α2η2 +

3

16
α3η3 +O(α4).

Lannes [Lan13] combined the dispersion relation of water waves and a Camassa-Holm equa-

tion, to propose the full-dispersion Camassa-Holm (FDCH) equation for the fluid surface

displacement

ηt + cww(
√
β|∂x|)ηx +

3αη

1 +
√

1 + αη
ηx = −αβ

( 5

12
ηηxxx +

23

24
ηxηxx

)
, (3.1.8)

where cww(|∂x|) is in (3.1.2). For relatively long waves satisfying β � 1, (3.1.8) and (3.1.2)

agree with (3.1.6), where a = 1/6, up to terms of order β. But, including all the dispersion

of water waves, (3.1.8) and (3.1.2) may offer an improvement over (3.1.6) for short waves.

For small amplitude waves satisfying α� 1, (3.1.8) agrees with (3.1.3) up to terms of order

α. But, including higher order nonlinearities, (3.1.8) may offer an improvement over (3.1.3)

for medium amplitude waves. For the average horizontal velocity, we may combine (3.1.2)

and (3.1.7) to introduce

ut + cww(
√
β|∂x|)ux +

3

2
αuux = −αβ

( 5

12
uuxxx +

23

24
uxuxx

)
. (3.1.9)

We follow along the same line as the arguments in [HJ15a,HJ15b,HP16b] (see also [BHJ16])

and investigate the modulational stability and instability in the FDCH equation. A main

difference lies in that the nonlinearities of (3.1.8) involve higher order derivatives and, hence,

a periodic traveling wave is not a priori smooth. We examine the mapping properties of

26



various operators to construct a smooth solution.

3.2 Periodic traveling waves

We determine periodic traveling waves of the FDCH equation, after normalization of param-

eters,

ηt + cww(|∂x|)ηx +
3η

1 +
√

1 + η
ηx = −

( 5

12
ηηxxx +

23

24
ηxηxx

)
, (3.2.1)

where cww(|∂x|) is in (3.1.2), and we calculate their small amplitude expansion.

By a traveling wave of (3.2.1) and (3.1.2), we mean a solution of the form η(x, t) = η(x−ct)
for some c > 0, the wave speed, where η satisfies by quadrature

(cww(|∂x|)− c− 3)η + 2(1 + η)3/2 − 2 +
5

12
ηηxx +

13

48
η2
x = (1− c)2b

for some b ∈ R. We seek a periodic traveling wave of (3.2.1) and (3.1.2). That is, η is a 2π

periodic function of z := kx for some k > 0, the wave number, and it satisfies

(cww(k|∂z|)− c− 3)η + 2(1 + η)3/2 − 2 +
5

12
k2ηηzz +

13

48
k2η2

z = (1− c)2b. (3.2.2)

Note that

cww(k|∂z|) : Hs(T)→ Hs+1/2(T) (3.2.3)

for any k > 0 and s ∈ R. Note that

cww(k|∂z|)einz = cww(nk)einz for n ∈ Z. (3.2.4)

Note that (3.2.2) remains invariant under

z 7→ z + z0 and z 7→ −z (3.2.5)

for any z0 ∈ R. Hence we may assume that η is even. But (3.2.2) does not possess scaling

invariance. Hence we may not a priori assume that k = 1. Rather, the (in)stability result

herein depends on the carrier wave number. Moreover, (3.2.2) does not possess Galilean

invariance. Hence we may not a priori assume that b = 0. Rather, we exploit the variation

of (3.2.2) in the b variable in the instability proof.

For any integer s > 0, let

F : Hs+2(T)× R+ × R× R+ → Hs(T)
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denote

F (η, c; b, k) = (cww(k|∂z|)− c− 3)η + 2(1 + η)3/2 − 2

+
5

12
k2ηηzz +

13

48
k2η2

z − (1− c)2b. (3.2.6)

It is well defined by (3.2.3) and a Sobolev inequality. We seek a solution η ∈ Hs+2(T), c > 0,

and b ∈ R of

F (η, c; b, k) = 0. (3.2.7)

Since s is arbitrary, η ∈ H∞(T). Note that F is invariant under (3.2.5). Hence we may

assume that η is even.

For any c > 0, b ∈ R, k > 0, note that

Fη(η, c; b, k)ζ =
(
cww(k|∂z|)− c− 3 + 3(1 + η)1/2

+ k2
( 5

12
(ηzz + η∂2

z ) +
13

24
ηz∂z

))
ζ : Hs+2(T)→ Hs(T)

is continuous by (3.2.3) and a Sobolev inequality. Here a subscript means Fréchet differenti-

ation. Moreover, η ∈ Hs+2(T), k > 0, b ∈ R, note that Fc(η; k, c, b) = −η + 2(1− c)b : R→
Hs(T) is continuous. Since Fb(η; k, c, b) = −(1− c)2 and

Fk(η; k, c, b) := c′ww(k|∂z|)η +
5

6
kηηzz +

13

24
kη2

z

are continuous likewise, F depends continuously differentiably on its arguments. Further-

more, since the Fréchet derivatives of F with respect to η, and c, b of all orders > 3 are

zero everywhere by brutal force, and since cww is a real analytic function, F is a real analytic

operator.

For any k > 0, for any c > 0, b ∈ R and |b| sufficiently small, note that

η0(c; b, k) = b(1− c) +O(b2) (3.2.8)

makes a constant solution of (3.2.6)-(3.2.7) and, hence, (3.2.2). It follows from the implicit

function theorem that if non-constant solutions of (3.2.6)-(3.2.7) and, hence, (3.2.2) bifurcate

from η = η0 for some c = c0 then, necessarily,

L0 := Fη(η0, c0; b, k) : Hs+2(T)→ Hs(T),
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where

L0 = cww(k|∂z|)− c0 − 3 + 3(1 + η0)1/2 +
5

12
k2η0∂

2
z , (3.2.9)

is not an isomorphism. Here η0 depends on c0. But we suppress it for simplicity of notation.

A straightforward calculation reveals that L0e
inz = 0, n ∈ Z, if and only if

c0 = cww(nk)− 3 + 3(1 + η0)1/2 − 5

12
k2n2η0. (3.2.10)

For b = 0 and, hence, η0 = 0 by (3.2.8), it simplifies to c0 = cww(nk). Without loss of

generality, we restrict the attention to n = 1. For |b| sufficiently small, (3.2.10) and (3.2.8)

become

c0(b, k) =cww(k) + b
(3

2
− 5

12
k2
)

(1− cww(k)) +O(b2) (3.2.11)

and

η0(b, k) =b(1− cww(k)) +O(b2). (3.2.12)

Since cww(k) > cww(nk) for n = 2, 3, . . . everywhere in R, it is straightforward to verify

that for any k > 0, b ∈ R and |b| sufficiently small, the kernel of L0 : Hs+2(T) → Hs(T)

is two dimensional and spanned by e±iz. Moreover, the co-kernel of L0 is two dimensional.

Therefore, L0 is a Fredholm operator of index zero.

For any k > 0, b ∈ R and |b| sufficiently small, we employ a Lyapunov-Schmidt procedure

to construct non-constant solutions of (3.2.6)-(3.2.7) and, hence, (3.2.2) bifurcating from

η = η0 and c = c0, where η0 and c0 are in (3.2.12) and (3.2.11). Throughout the proof, k,

and b are fixed and suppressed for simplicity of notation.

Recall that F (η0, c0) = 0, where F is in (3.2.6), and L0e
±iz = 0, where L0 is in (3.2.9).

We write that

η(z) = η0 +
1

2
(aeiz + a∗e−iz) + ηr(z) and c = c0 + cr, (3.2.13)

and we require that a ∈ C, ηr ∈ Hk+2(T) be even and

〈ηr, e±iz〉L2(T) = 0, (3.2.14)

and cr ∈ R. Substituting (3.2.13) into (3.2.6)-(3.2.7), we use F (η0, c0) = 0, L0e
±iz = 0, and
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we make an explicit calculation to arrive at

L0ηr =(3(1 + η0)1/2 + cr)
(1

2
(aeiz + a∗e−iz) + ηr

)
− 2
(

1 + η0 +
1

2
(aeiz + a∗e−iz) + ηr

)3/2

− 13

48
k2
( i

2
(aeiz − a∗e−iz) + η′r

)2

− 5

12
k2
(1

2
(aeiz + a∗e−iz) + ηr

)(
− 1

2
(aeiz + a∗e−iz) + η′′r

)
=:g(ηr; a, a

∗, cr). (3.2.15)

Here and elsewhere, the prime means ordinary differentiation. Note that

g : Hs+2(T)× C× C× R→ Hs(T).

Recall that F is a real analytic operator. Hence g depends analytically on its arguments.

Clearly, g(0; 0, 0, cr) = 0 for all cr ∈ R.

Let Π : L2(T)→ kerL0 denote the spectral projection, defined as

Πf(z) = f̂(1)eiz + f̂(−1)e−iz.

Since Πηr = 0 by (3.2.14), we may rewrite (3.2.15) as

L0ηr = (1− Π)g(ηr; a, a
∗, cr) and 0 = Πg(ηr; a, a

∗, cr). (3.2.16)

Moreover, note that L0 is invertible on (1− Π)Hk(T). Specifically,

L0
−1f(z) =

∑
n6=±1

f̂(n)

cww(kn)− cww(k) + 5
12
k2η0(1− n2)

einz.

Hence we may rewrite (3.2.16) as

ηr = L−1
0 (I − Π)g(ηr; a, a

∗, cr) and 0 = Πg(ηr; a, a
∗, cr). (3.2.17)

Note that L−1
0 : (1− Π)Hk(T)→ Hk(T) is bounded. We claim that

L−1
0 : (1− Π)Hk(T)→ Hk+2(T)
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is bounded. As a matter of fact,∣∣∣∣∣ n2f̂(n)

cww(kn)− cww(k) + 5
12
k2η0(1− n2)

∣∣∣∣∣ 6 C|f̂(n)|

for some constant C > 0 for n ∈ Z and |n| sufficiently large. Therefore, for any a, a∗ ∈ C
and cr ∈ R,

L−1
0 (1− Π)g : Hk+2(T)→ Hk+2(T)

is bounded. Note that it depends analytically on its argument. Since g(0; 0, 0, cr) = 0 for

any cr ∈ R, it follows from the implicit function theorem that a unique solution

η2 = ηr(a, a
∗, cr)

exists to the former equation of (3.2.17) near ηr = 0 for a ∈ C and |a| sufficiently small for

any cr ∈ R. Note that η2 depends analytically on its arguments and it satisfies (3.2.14) for

|a| sufficiently small for any cr ∈ R. The uniqueness implies

η2(0, 0, cr) = 0 for any cr ∈ R. (3.2.18)

Moreover, since (3.2.6)-(3.2.7) and, hence, (3.2.17) are invariant under (3.2.5) for any z0 ∈ R,

it follows that

η2(a, a∗, cr)(z + z0) = η2(aeiz0 , a∗e−iz0 , cr) and η2(a, a∗, cr)(−z) = η2(a, a∗, cr)(z)

(3.2.19)

for any z0 ∈ R for any a ∈ C and |a| sufficiently small, and cr ∈ R.

To proceed, we rewrite the latter equation in (3.2.17) as

Πg(η2(a, a∗, cr); a, a
∗, cr) = 0

for a ∈ C and |a| sufficiently small for cr ∈ R. This is solvable, provided that

π±(a, a∗, cr) :=
〈
g(η2(a, a∗, cr); a, a

∗, cr), ae
iz ± a∗e−iz

〉
L2(T)

= 0. (3.2.20)

We use (3.2.19), where z0 = −2 arg(a), and (3.2.20) to show that

π−(a∗, a, cr) = π−(a, a∗, cr) = −π−(a∗, a, cr).
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Hence π−(a, a∗, cr) = 0 holds for any a ∈ C and |a| sufficiently small for any cr ∈ R.

Moreover, we use (3.2.19), where z0 = − arg(a), and (3.2.20) to show that

π+(a, a∗, cr) = π+(|a|, |a|, cr).

Hence it suffices to solve π+(a, a, cr) = 0 for any a, cr ∈ R and |a| sufficiently small.

Substituting (3.2.15) into (3.2.20), where ηr = η2(a, a, cr), we make an explicit calculation

to arrive at

π+(a, a, cr) = a2(πcr + πr(a, cr)),

where

πr(a, cr) =− 2a−1〈(1 + η0 + a cos z + η2(a, a, cr)(z))3/2, cos z〉

− 5

12
k2(〈η′′2(a, a, cr)(z)− η2(a, a, cr)(z), cos2 z〉 − a−1〈η2η

′′
2(a, a, cr)(z), cos z〉)

− 13

48
k2a−1(〈η′2(a, a, cr)(z)2, cos z〉 − 〈η′2(a, a, cr)(z), sin 2z〉),

and 〈· , ·〉 means the L2(T) inner product. We merely pause to remark that πr is well

defined. As a matter of fact, a−1η2 is not singular for a ∈ R and |a| sufficiently small by

(3.2.18). Clearly, πr and, hence, π± depend analytically on its arguments. Since πr(0, 0) =

∂πr/∂cr(0, 0) = 0 by (3.2.18), it follows from the implicit function theorem that a unique

solution

cr = c1(a)

exists to π+(a, a, cr) = 0 and, hence, the latter equation of (3.2.17) near cr = 0 for a ∈ R
and |a| sufficiently small. Clearly, c1 depends analytically on a.

To recapitulate,

ηr = η2(a, a, c1(a)) and cr = c1(a)

uniquely solve (3.2.17) for a ∈ R and |a| sufficiently small, and by virtue of (3.2.13),

η(a)(z) = η0 + a cos z + η2(a, a, c1(a))(z) and c(a) = c0 + c1(a) (3.2.21)

uniquely solve (3.2.6)-(3.2.7) and, hence, (3.2.2) for a ∈ R and |a| sufficiently small. Note

that η is 2π periodic and even in z. Moreover, η ∈ H∞(T).

For a, b ∈ R and |a|, |b| sufficiently small, we write that

η(a; b, k)(z) :=η0(b, k) + a cos z + a2η2(z) + a3η3(z) + · · · (3.2.22)
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and

c(a; b, k) :=c0(b, k) + ac1 + a2c2 + · · · , (3.2.23)

where η2, η3, . . . are 2π periodic, even, and smooth functions of z, and c1, c2, · · · ∈ R.

We claim that c1 = 0. As a matter of fact, note that (3.2.2) and, hence, (3.2.6)-(3.2.7)

remain invariant under z 7→ z + π by (3.2.5). Since ∂η/∂a(0)(z) = cos z, however, η(z) 6=
η(z+ π) must hold. Thus ∂c/∂a(0) = 0. This proves the claim. If 〈ηj−1, ηj〉L2(T) = 0 for any

integer j > 1, in addition, then c2j−1 = 0 for any integer j > 1. Hence c is even in a.

Substituting (3.2.22) and (3.2.23) into (3.2.2), we may calculate the small amplitude ex-

pansion. The proof is very similar to that in Chapter 2. Hence we omit the details.

Below we summarize the conclusion.

Lemma 3.2.1 (Existence of sufficiently small and periodic traveling waves). For any k > 0,

b ∈ R and |b| sufficiently small, a one parameter family of solutions of (3.2.2) exists, denoted

η(a; b, k) and c(a; b, k), for a ∈ R and |a| sufficiently small; η ∈ H∞(T) and it is even in z;

η and c depend analytically on a, and b, k. Moreover,

η(a; b, k)(z) =b(1− cww(k)) + a cos z + a2(h0 + h2 cos 2z) +O(a(a+ b)2), (3.2.24)

c(a; b, k) =cww(k) + b
(3

2
− 5

12
k2
)

(1− cww(k)) + a2c2 +O(a(a+ b)2) (3.2.25)

as a, b→ 0, where

h0 =
(3

8
− 7

96
k2
) 1

cww(k)− 1
, h2 =

(3

8
− 11

32
k2
) 1

cww(k)− cww(2k)
, (3.2.26)

and

c2 =
(3

2
− 5

12
k2
)
h0 +

(3

4
− 1

2
k2
)
h2 −

3

32
. (3.2.27)

3.3 The spectral problem

For k > 0, a, b ∈ R and |a|, |b| sufficiently small, let η = η(a; b, k) and c = c(a; b, k), denote

a sufficiently small and 2π/k periodic traveling wave of (3.2.1) and (3.1.2), whose existence

follows from the previous section. We address its modulational stability and instability.
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Linearizing (3.2.1) about η in the coordinate frame moving at the speed c, we arrive at

ζt + k∂z

(
cww(k|∂z|)− c− 3 + 3(1 + η)1/2 + k2

( 5

12
(η∂2

z + ηzz) +
13

24
ηz∂z

))
ζ = 0,

where cww(k|∂z|) is in (3.1.2). Seeking a solution of the form ζ(z, t) = eλktζ(z), λ ∈ C, we

arrive at

λζ = ∂z

(
− cww(k|∂z|) + c+ 3− 3(1 + η)1/2 − k2

( 5

12
(η∂2

z + ηzz) +
13

24
ηz∂z

))
ζ (3.3.1)

=: L(a; b, k)ζ.

Next, we employ Floquet theory to study the L2(R)-spectrum of L. The corresponding

Bloch operators are given by

λφ = e−iξzL(a; b, k)eiξzφ =: L(ξ)(a; b, k)φ (3.3.2)

for some ξ ∈ (−1/2, 1/2] and φ ∈ L2(T). Note that

specL2(T)(L(ξ)) = (specL2(T)(L(−ξ))).

Hence it suffices to take ξ ∈ [0, 1/2].

For an arbitrary ξ, one must in general study (3.3.2) by means of numerical computation.

But, for ξ > 0 small and for λ in the vicinity of the origin in C, we may take a spectral

perturbation approach in [HJ15a,HJ15b,HP16b], for instance, to address it analytically.

We assume that b = 0. For nonzero b, one may explore in like manner. But the calculation

becomes lengthy and tedious. Hence we do not discuss the details. We use the notation

L(ξ, a) = L(ξ)(a; 0, k). (3.3.3)

For a = 0 — namely, the rest state — a straightforward calculation reveals that

L(ξ, 0)einz = iω(n+ ξ)einz for n ∈ Z and ξ ∈ [0, 1/2], (3.3.4)

where

ω(n+ ξ) = (ξ + n)(cww(k)− cww(k(n+ ξ))). (3.3.5)
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For ξ = 0,

ω(1) = ω(−1) = ω(0) = 0,

and ω(n) 6= 0 otherwise. Hence, zero is an L2(T)-eigenvalue of L(0, 0) with multiplicity

three. Moreover,

cos z, sin z, and 1 (3.3.6)

are the associated eigenfunctions, real valued and orthogonal to each other. For ξ > 0

sufficiently small,

iω(±1 + ξ) and iω(ξ)

are the L2(T)-eigenvalues of L(ξ, 0) in the vicinity of the origin in C, and (3.3.6) are the

associated eigenfunctions.

For a ∈ R and |a| sufficiently small and for ξ = 0, zero is an L2(T)-eigenvalue of L(0, a)

with algebraic multiplicity three and geometric multiplicity two, and

φ1(z) :=
(
ηa −

ca
cb
ηb

)
(a; 0, k)(z) = cos z + ap1 + 2ah2 cos 2z +O(a2),

φ2(z) := −1

a
ηz(a; 0, k)(z) = sin z + 2ah2 sin 2z +O(a2),

φ3(z) :=
1

1− cww(k)
ηb(k, a, 0)(z) = 1 +O(a2)

(3.3.7)

are the associated eigenfunctions, where

p1 = 2h0 −
24c2

18− 5k2
=

1

18− 5k2

(9

4
− 3

16

(3− 2k2)(12− 11k2)

cww(k)− cww(2k)

)
(3.3.8)

and h2 is defined in (3.2.26). The proof is nearly identical to that in Section 2.3, for instance.

Hence we omit the details. For a = 0, note that (3.3.7) becomes (3.3.6).

3.4 The perturbation analysis

Recall that for ξ > 0 sufficiently small and for a = 0, the L2(T)-spectrum of L(ξ, 0) contains

three purely imaginary eigenvalues iω(±1 + ξ) and iω(ξ) in the vicinity of the origin in C,

and (3.3.6) spans the associated eigenspace, which does not depend on ξ. For ξ = 0 for

a ∈ R and |a| sufficiently small, the spectrum of L(0, a) contains three eigenvalues at the

origin, and (3.3.7) spans the associated eigenspace, which depends analytically on a.

For ξ > 0, a ∈ R and ξ, |a| sufficiently small, it follows from perturbation theory (see

[Kat76], for instance, for details) that the L2(T)-spectrum of L(ξ, a) contains three eigenval-
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ues in the vicinity of the origin in C, and (3.3.7) spans the associated eigenspace. Let

L(ξ, a) =

(
〈L(ξ, a)φj, φk〉
〈φj, φj〉

)
j,k=1,2,3

and I(a) =

(
〈φj, φk〉
〈φj, φj〉

)
j,k=1,2,3

, (3.4.1)

where φ1, φ2, φ3 are in (3.3.7). Throughout the subsection, 〈· , ·〉 means the L2(T) inner

product. Note that L represents the action of L on the eigenspace, spanned by φ1, φ2, φ3,

and I is the projection of the identity onto the eigenspace. It follows from perturbation theory

(see [Kat76], for instance for details) that for ξ > 0, a ∈ R and ξ, |a| sufficiently small, the

eigenvalues of L(ξ, a) agree in location and multiplicity with the roots of det(L− λI) up to

terms of order a.

For a ∈ R and |a| sufficiently small, a Baker-Campbell-Hausdorff expansion reveals that

L(ξ, a) = L(0, a) + iξ[L(0, a), z]− 1

2
ξ2[[L(0, a), z], z] +O(ξ3)

as ξ → 0, where [· , ·] means the commutator. We merely pause to remark that [L, z] and

[[L, z], z] are well defined in the periodic setting even though z is not. We use (3.3.1), (3.3.2)

and (3.2.24), (3.2.25) to write

L(ξ, a) =M− a∂z
(3

2
cos z + k2

( 5

12
cos z(∂2

z − 1)− 13

24
sin z∂z

))
(3.4.2)

− iξa
(3

2
cos z + k2

( 5

12
(2∂z cos z∂z + cos z(∂2

z − 1))− 13

24
(sin z∂z + ∂z sin z)

))
+O(ξ3 + ξ2a+ a2)

as ξ, a→ 0, where

M = L(0, 0) + iξ[L(0, 0), z]− 1

2
ξ2[[L(0, 0), z], z]

agrees with L(ξ, 0) up to terms of order ξ2 as ξ → 0. We may then resort to (3.3.4), (3.3.5),

and we make an explicit calculation to find that

L(ξ, 0)einz =in(cww(k)− cww(nk))einz

+ iξ(cww(k)− cww(nk)− kc′ww(nk))einz

− 1

2
ξ2(2kc′ww(nk) + k2c′′ww(nk))einz +O(ξ3)
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as ξ → 0. Therefore, M1 = iξ(cww(k)− 1),

M

{
cos z

sin z

}
=− iξkc′ww(k)

{
cos z

sin z

}
± 1

2
ξ2(2kc′ww(k) + k2c′′ww(k))

{
sin z

cos z

}
,

and

M

{
cos 2z

sin 2z

}
=∓ 2(cww(k)− cww(2k))

{
sin 2z

cos 2z

}

+ iξ(cww(k)− cww(2k)− 2kc′ww(2k))

{
cos 2z

sin 2z

}

± 1

2
ξ2(2kc′ww(2k) + k2c′′ww(2k))

{
sin 2z

cos 2z

}
.

We use (3.4.2), (3.3.7) and the above formula for M, and we make a lengthy but explicit

calculation to find that

Lφ1 =− iξkc′ww(k) cos z

− iξa
(3

4
− 7

48
k2 − p1(cww(k)− 1)

)
+ iξa

(
− 3

4
+

33

16
k2 + 2h2(cww(k)− cww(2k)− 2kc′ww(2k))

)
cos 2z

+
1

2
ξ2(2kc′ww(k) + k2c′′ww(k)) sin z +O(ξ3 + ξ2a+ a2),

Lφ2 =− iξkc′ww(k) sin z

+ iξa
(
− 3

4
+

33

16
k2 + 2h2(cww(k)− cww(2k)− 2kc′ww(2k))

)
sin 2z

− 1

2
ξ2(2kc′ww(k) + k2c′′ww(k)) cos z +O(ξ3 + ξ2a+ a2),

Lφ3 =a
(

3− 5

6
k2
)

sin z + iξ(cww(k)− 1)− iξa
(3

2
− 23

24
k2
)

cos z +O(ξ3 + ξ2a+ a2)

as ξ, a→ 0, where p1 is in (3.3.8) and h2 is in (3.2.26).

To proceed, we take the L2(T)-inner product of the above and (3.3.7), and we make a
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lengthy but explicit calculation to find that

〈Lφ1, φ1〉 = 〈Lφ2, φ2〉 = −1

2
iξkc′ww(k) +O(ξ3 + ξ2a+ a2),

〈Lφ1, φ2〉 = −〈Lφ2, φ1〉 =
1

4
ξ2(2kc′ww(k) + k2c′′ww(k)) +O(ξ3 + ξ2a+ a2),

〈Lφ1, φ3〉 = iξa
(
− 3

4
+

36

48
k2 + p1(cww(k)− 1)

)
+O(ξ3 + ξ2a+ a2),

and

〈Lφ2, φ3〉 = 0 +O(ξ3 + ξ2a+ a2),

〈Lφ3, φ1〉 = iξa
(
− 3

4
+

23

48
k2 + p1(cww(k)− 1)

)
+O(ξ3 + ξ2a+ a2),

〈Lφ3, φ2〉 = a
(3

4
− 5

24
k2
)

+O(ξ3 + ξ2a+ a2),

〈Lφ3, φ3〉 = iξ(cww(k)− 1) +O(ξ3 + ξ2a+ a2)

as ξ, a → 0, where p1 is in (3.3.8). Moreover, we take the L2(T)-inner products of (3.3.7),

and we make an explicit calculation to find that

〈φ1, φ1〉 = 〈φ2, φ2〉 =
1

2
+O(ξ3 + ξ2a+ a2), 〈φ1, φ2〉, 〈φ2, φ3〉 = 0 +O(ξ3 + ξ2a+ a2),

〈φ1, φ3〉 = ap1 +O(ξ3 + ξ2a+ a2), 〈φ3, φ3〉 = 1 +O(ξ3 + ξ2a+ a2)

as ξ, a→ 0, where p1 is in (3.3.8). Together, (3.4.1) becomes

L(ξ, a) = a
(3

4
− 5

24
k2
)0 0 0

0 0 0

0 1 0

 (3.4.3)

+ iξ

−kc
′
ww(k) 0 0

0 −kc′ww(k) 0

0 0 cww(k)− 1



+ iξa

 0 0 −3
4

+ 7
24
k2 + 2p1(cww(k)− 1)

0 0 0

−3
4

+ 23
48
k2 + p1(cww(k)− 1) 0 0



+ ξ2(kc′ww(k) + 1
2
k2c′′ww(k))

 0 1 0

−1 0 0

0 0 0

+O(ξ3 + ξ2a+ a2),
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and

I(a) = I + ap1

0 0 2

0 0 0

1 0 0

+O(a2) (3.4.4)

as ξ, a→ 0, where p1 is in (3.3.8) and I is the 3× 3 identity matrix.

3.5 The modulational instability index

For ξ > 0, a ∈ R and ξ, |a| sufficiently small, we turn the attention to the roots of

det(L − λI)(ξ, a; k) =: p3(ξ, a; k)λ3 + ip2(ξ, a; k)λ2 + p1(ξ, a; k)λ + ip0(ξ, a; k),

where L and I are in (3.4.3) and (3.4.4). Details are similar to Section 2.5. Hence we merely

hit the main points.

Let

q(−iξλ)(ξ, a; k) = (iξ3(q3λ
3 − q2λ

2 − q1λ+ q0)(ξ, a; k),

where pj = ξ3−jqj, j = 0, 1, 2, 3. Note that q0, q1, . . . , q3 are real valued and depend analyt-

ically on ξ, a and k for any ξ > 0 and |a| sufficiently small. Moreover, they are odd in ξ

and even in a. For a ∈ R and |a| sufficiently small, a periodic traveling wave η(a; 0, k) and

c(a; 0, k) of (3.2.1) and (3.1.2) is modulationally unstable, provided that q possesses a pair

of complex roots or, equivalently,

disc(k; ξ, a) := (18q3q2q1q0 + q2
2q

2
1 + 4q3

2q0 + 4q3q
3
1 − 27q2

3q
2
0)(k; ξ, a) < 0

for ξ > 0 and small, and it is modulationally stable if disc(k; ξ, a) > 0. Note that disc(k; ξ, a)

is even in ξ and a. Hence we write that

disc(k; ξ, a) =: disc(k; ξ, 0) + a2∆(k) +O(a2(ξ2 + a2))

as a→ 0 for ξ > 0 and small. We then use (3.4.3) and (3.4.4), and we make a Mathematica

calculation to show that

disc(k; ξ, 0) = k2i21(k)
(
ξi22 +

1

4
ξ3k2i21

)2

(k) > 0

as ξ → 0. Therefore, if ∆(k) < 0 then disc(k; ξ, a) < 0 for ξ > 0 and sufficiently small,

depending on a ∈ R and |a| sufficiently small, implying modulational instability, whereas
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if ∆(k) > 0 then disc(k; ξ, a) > 0 for ξ > 0, a ∈ R and ξ, |a| sufficiently small, implying

modulational stability. We use (3.4.3) and (3.4.4), and we make a Mathematica calculation

to find ∆ explicitly.

Below we summarize the conclusion.

Theorem 3.5.1 (Modulational instability index). A sufficiently small and 2π/k-periodic

traveling wave of (3.2.1) and (3.1.2) is modulationally unstable, provided that

∆(k) :=
i1(k)i2(k)

i3(k)
i4(k) < 0, (3.5.1)

where

i1(k) =(kcww(k))′′,

i2(k) =(kcww(k))′ − 1,

i3(k) =cww(k)− cww(2k),

i4(k) =
(

3i2 − i2i3 + 6i3 −
1

12
k2(57i2 + 34i3) +

1

108
k4(198i2 + 35i3)

)
(k), (3.5.2a)

and cww(k) is in (3.1.2). It is modulationally stable if ∆(k) > 0.

3.6 Results

Since (kcww(k))′ < 1 for any k > 0 and decreases monotonically over the interval (0,∞) by

brutal force, i1(k) < 0 and i2(k) < 0 for any k > 0. Since cww(k) > 0 for any k > 0 and

decreases monotonically over the interval (0,∞), i3(k) > 0 for any k > 0.

We use (3.5.2a) and make an explicit calculation to show that

lim
k→0+

i4(k)

k2
=

9

2
and lim

k→∞
i4(k) = −∞.

Hence ∆(k) > 0 for k > 0 sufficiently small, implying the modulational stability, and it is

negative for k > 0 sufficiently large, implying the modulational instability. The intermediate

value theorem asserts a root of i4. A numerical evaluation of (3.5.2a) reveals a unique root

kc, say, of i4 over the interval (0,∞) such that i4(k) > 0 if 0 < k < kc and it is negative if

kc < k <∞. Upon close inspection (see Figure 3.1), moreover, kc = 1.420 . . . .

We have the following result.

Corollary 3.6.1. A sufficiently small and 2π/k periodic traveling wave of (3.2.1) and (3.1.2)
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Figure 3.1: The graph of i4(k) for k ∈ (0, 1.5).

is modulationally unstable if k > kc, where kc = 1.420 . . . is a unique root of i4 in (3.5.2a)

over the interval (0,∞). It is modulationally stable if 0 < k < kc.

3.7 The Camassa-Holm equation

We may write (3.1.6), in the case of a = 1/12, after normalization of parameters, as

ηt + cCH(|∂x|)
(

2(1 + η)3/2 − 2η +
7

24
ηηxx +

7

48
η2
x

)
x

= 0, (3.7.1)

where
̂cCH(|∂x|)f(k) =

12− k2

12 + k2
f̂(k). (3.7.2)

Note that cCH(k) approximates (3.1.2).

For any k > 0, we may repeat the argument in Section 3.2 to determine sufficiently small

and 2π/k-periodic traveling waves. Specifically, a two parameter family of periodic traveling

waves of (3.7.1) and (3.7.2) exists, denoted

η(a, b; k)(z) where z = k(x− c(a, b; k)t),

for a, b ∈ R and |a|, |b| sufficiently small; η is 2π periodic, even, and smooth in z. Moreover,

η(a, b; k)(z) =b(1− cCH(k)) + a cos z + a2(h0 + h2 cos 2z) +O(a(a2 + b2)),

c(a, b; k) =cCH(k) + b
(3

2
− 7

24
k2
)
cCH(k)(1− cCH(k)) + a2c2 +O(a(a2 + b2))
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as a, b→ 0, where

h0 =
36− 7k2

96(cCH(k)− 1)
, h2 =

(12− 7k2)cCH(2k)

32(cCH(k)− cCH(2k))
,

c2 = cCH(k)
(36− 7k2

24
h0 +

12− 7k2

16
h2 −

3

32

)
.

We then proceed as in Section 3.5, to determine a modulational instability index

∆CH(k) :=
i1(k)i2(k)

i3(k)
i4(k),

where

i1(k) =(kcCH(k))′′,

i2(k) =(kcCH(k))′ − 1,

i3(k) =cCH(k)− cCH(2k),

i4(k) =1296(cCH(2k)i2(k) + 2i3(k))− 432i2(k)i3(k)

− 1512k2cCH(2k)i2(k) + 49k4(9cCH(2k)i2(k)− 2i3(k)).

We omit the details.

A straightforward calculation shows that i2i4
i3

(k) < 0 for any k > 0 while i1(k) changes its

sign from negative to positive across k = 6. Therefore, a sufficiently small and 2π/k periodic

traveling wave of (3.7.1) and (3.7.2) is modulationally unstable if k > 6. For other values of

a in (3.1.6), the result is qualitatively the same. Thus, the Camassa-Holm equation seems

to predict the Benjamin-Feir instability of a Stokes wave. But the mechanism of instability

is same as the BBM equation, whereas it does not take place in the water wave problem.
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Chapter 4

The full-dispersion shallow water equations

The Euler’s equations which describe surface gravity waves are bi-directional. The scalar

or uni-directional shallow water models lack two-wave interactions which is a property of

water waves. In this chapter, we introduce two bi-directional shallow water equations which

generalizes nonlinear shallow water equations to include full-dispersion of water waves. We

prove the existence of periodic traveling waves of both these equations and calculate their

small amplitude asymptotics. We establish that their sufficiently small, periodic wave train

is spectrally unstable to long wavelength perturbations, provided that the wave number is

greater than a critical value, like the Benjamin-Feir instability of a Stokes wave.

4.1 The equation

As Whitham [Whi74] emphasized, “the breaking phenomenon is one of the most intriguing

long-standing problems of water wave theory.” The nonlinear shallow water equations,

ηt + ux + (uη)x = 0,

ut + ηx + uux = 0,
(4.1.1)

approximate the physical problem when the characteristic wavelength is of a larger order than

the undisturbed fluid depth, and they explain wave breaking. That is, the solution remains

bounded, whereas its slope becomes unbounded in finite time. Here t ∈ R is proportional to

elapsed time, and x ∈ R is the spatial variable in the primary direction of wave propagation;

η = η(x, t) represents the surface displacement, and u = u(x, t) is the fluid particle velocity

at the rigid flat bottom. Note that the phase speed for the linear part of (4.1.1) is 1 for

any wave number, whereas the speed of a 2π/k-periodic wave near the rest state of water

(see [Whi74], for instance) is

cww(k) =

√
tanh(k)

k
. (4.1.2)
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This motivates us to propose the full-dispersion shallow water equations,

ηt + ux + (uη)x = 0,

ut + c2
ww(|∂x|)ηx + uux = 0,

(4.1.3)

where cww is in (4.1.2). They combine the dispersion relation of water waves and the nonlinear

shallow water equations, and they extend the Whitham equation to permit bidirectional

propagation. Moreover, proposed in [MKD15] are

ηt + c2
ww(|∂x|)ux + (uη)x = 0,

ut + ηx + uux = 0,
(4.1.4)

as a Boussinesq-Whitham model. We call (4.1.3), full-dispersion shallow water equation -

I (FDSW-I) and (4.1.4), full-dispersion shallow water equation - II (FDSW-II). We provide

the complete analysis for FDSW-I and the analysis for FDSW-II follows along the same lines,

therefore, we only hit the main points in Section 4.7.

4.2 Periodic traveling waves

By a traveling wave of (4.1.3)-(4.1.2), we mean a solution which propagates at a constant

velocity without change of form. That is, η and u are functions of x − ct for some c > 0,

the wave speed. Under the assumption, we will go to a moving coordinate frame, changing

x− ct to x, whereby t will disappear. The result becomes, by quadrature,

− cη + u+ uη = (1− c2)b1,

− cu+ c2
ww(|∂x|)η +

1

2
u2 = (1− c2)b2

for some b1, b2 ∈ R; 1− c2 is for convenience. We seek a periodic traveling wave of (4.1.3)-

(4.1.2). That is, η and u are 2π periodic functions of

z := kx for some k > 0, the wave number,

and they solve

− cη + u+ uη = (1− c2)b1,

− cu+ c2
ww(k|∂z|)η +

1

2
u2 = (1− c2)b2.

(4.2.1)
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Note that

c2
ww(k|∂z|) : Hs(T)→ Hs+1(T) for any k > 0 for any integer s > 0. (4.2.2)

Note that

c2
ww(k|∂z|)einz = c2

ww(nk)einz for n ∈ Z, (4.2.3)

or, equivalently, c2
ww(k|∂z|)(1) = 1,

c2
ww(k|∂z|)(cosnz) = c2

ww(nk) cosnz and c2
ww(k|∂z|)(sinnz) = c2

ww(nk) sinnz.

Note that (4.2.1) remains invariant under

z 7→ z + z0 and z 7→ −z (4.2.4)

for any z0 ∈ R. Hence, in particular, we may assume that η and u are even.

We state an existence result for periodic traveling waves of (4.1.3)-(4.1.2) and their small

amplitude expansion.

Theorem 4.2.1 (Existence of sufficiently small, periodic wave trains). For any k > 0, b1,

b2 ∈ R and |b1|, |b2| sufficiently small, a one parameter family of solutions of (4.2.1) exists,

denoted η(a; k, b1, b2)(z), u(a; k, b1, b2)(z), and c(a; k, b1, b2), for a ∈ R and |a| sufficiently

small; η and u are 2π periodic, even, and smooth in z, and c is even in a; η, u, and c depend

analytically on a, and k, b1, b2. Moreover,

η(a; k, b1, b2)(z) =η0(k, b1, b2) + a cos z + a(b1cww(k) + b2) cos z (4.2.5a)

+ a2(h0 + h2 cos 2z) +O(a(a+ b1 + b2)2),

u(a; k, b1, b2)(z) =u0(k, b1, b2) + acww(k) cos z +
1

2
acww(k)(b1cww(k) + b2) cos z (4.2.5b)

+ a2cww(k)
(
h0 −

1

2
+
(
h2 −

1

2

)
cos 2z

)
+O(a(a+ b1 + b2)2),

and

c(a; k, b1, b2) =c0(k, b1, b2) +
3

4
a2cww(k)(2h0 + h2 − 1) +O(a(a+ b1 + b2)2) (4.2.5c)
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as a, b1, b2 → 0;

η0(k, b1, b2) = b1cww(k) + b2 +O((b1 + b2)2), (4.2.6a)

u0(k, b1, b2) = b1 + b2cww(k) +O((b1 + b2)2), (4.2.6b)

and

c0(k, b1, b2) = cww(k) + b1

(1

2
c2
ww(k) + 1

)
+

3

2
b2cww(k) +O((b1 + b2)2) (4.2.6c)

as b1, b2 → 0, where

h0 =
3

4

c2
ww(k)

c2
ww(k)− 1

and h2 =
3

4

c2
ww(k)

c2
ww(k)− c2

ww(2k)
. (4.2.7)

As a preliminary, we establish the smoothness of solutions of (4.2.1).

Lemma 4.2.2 (Regularity). If η, u ∈ H1(T) solve (4.2.1) for some c > 0, and k > 0, b1,

b2 ∈ R and if c− ‖u‖L∞(T) > ε > 0 for some ε then η, u ∈ H∞(T).

Proof. We differentiate (4.2.1) to arrive at

−cη′ + u′ + uη′ + u′η = 0 and − cu′ + c2
ww(k|∂z|)η′ + uu′ = 0,

whence

η′ =
1 + η

c− u
u′ and u′ =

1

c− u
c2
ww(k|∂z|)η′. (4.2.8)

Here and elsewhere, the prime means ordinary differentiation.

Note that 1
c−u : H1(T)→ H1(T) by hypothesis. Since η′ ∈ L2(T) by hypothesis, it follows

from the latter equation of (4.2.8) and (4.2.2) that u′ ∈ H1(T). It then follows from the

former equation of (4.2.8) and a Sobolev inequality that η′ ∈ H1(T). In other words, η,

u ∈ H2(T). A bootstrap argument completes the proof.

Throughout, we use

u =

(
η

u

)
and v =

(
ζ

v

)
(4.2.9)

whenever it is convenient to do so.

46



Let f : H1(T)×H1(T)× R+ × R+ × R× R→ H1(T)×H1(T) such that

f(u, c; k, b1, b2) =

(
−cη + u+ uη − (1− c2)b1

−cu+ c2
ww(k|∂z|)η + 1

2
u2 − (1− c2)b2

)
. (4.2.10)

It is well defined by (4.2.2) and a Sobolev inequality. We seek a solution u ∈ H1(T)×H1(T),

c > 0, and k > 0, b1, b2 ∈ R of

f(u, c; k, b1, b2) = 0 (4.2.11)

satisfying c − ‖u‖L∞(T) > ε > 0 for some ε and, by virtue of Lemma 4.2.2, a solution

u ∈ H∞(T)×H∞(T) of (4.2.1). Note that f is invariant under (4.2.4) for any z0 ∈ R. Hence

we may assume that u is even.

For any c > 0, and k > 0, b1, b2 ∈ R, note that

∂uf(u, c; k, b1, b2) =

(
u− c 1 + η

c2
ww(k|∂z|) u− c

)
: H1(T)×H1(T)→ H1(T)×H1(T)

is continuous by (4.2.2) and a Sobolev inequality. For any u ∈ H1(T)×H1(T), and k > 0,

b1, b2 ∈ R, moreover,

∂cf(u, c; k, b1, b2) =

(
−η + 2cb1

−u+ 2cb2

)
: R→ H1(T)×H1(T)

is continuous. Here (by abuse of notation) ∂ means Fréchet differentiation. Since

∂kf(u, c; k, b1, b2) =

(
0

1
k
(sech2(k|∂z|)− c2

ww(k|∂z|))

)
,

and

∂b1f(u, c; k, b1, b2) =

(
c2 − 1

0

)
, ∂b2f(u, c; k, b1, b2) =

(
0

c2 − 1

)
are continuous, likewise, f depends continuously differentiably on its arguments. Further-

more, since the Fréchet derivatives of f with respect to u, and c, b1, b2 of all orders > 3 are

zero everywhere by brutal force, and since c2
ww is a real analytic function, f is a real analytic

operator.

For any c > 0 for any k > 0, b1, b2 ∈ R and |b1|, |b2| sufficiently small, note that

η0(c; k, b1, b2) = b1c+ b2 +O((b1 + b2)2),

u0(c; k, b1, b2) = b1 + b2c+O((b1 + b2)2)
(4.2.12)
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make a constant solution of (4.2.10)-(4.2.11) and, hence, (4.2.1). Let u0 =

(
η0

u0

)
(c; k, b1, b2).

It follows from the implicit function theorem that if non-constant solutions of (4.2.10)-

(4.2.11) and, hence, (4.2.1) bifurcate from u = u0 for some c = c0 then, necessarily,

L0 := ∂uf(u0, c0; k, b1, b2) : H1(T)×H1(T)→ H1(T)×H1(T)

is not an isomorphism. Here u0 depends on c0. But we suppress it for simplicity of notation.

Note that

L0u1e
±inz =

(
u0 − c0 1 + η0

c2
ww(k|∂z|) u0 − c0

)
u1e

±inz = 0 for n ∈ Z (4.2.13)

for some nonzero u1 if and only if

(c0 − u0)2 = c2
ww(nk)(1 + η0). (4.2.14)

For b1 = b2 = 0 and, hence, η0 = u0 = 0 by (4.2.12), it simplifies to c0 = ±cww(nk) —

the phase velocity of a 2π/nk periodic wave in the linear theory; ± indicate right and left

propagating waves, respectively. Without loss of generality, here we restrict the attention to

n = 1 and we assume the + sign. For |b1| and |b2| sufficiently small, (4.2.14) becomes

c0 = cww(k) + b1

(1

2
c2
ww(k) + 1

)
+

3

2
b2cww(k) +O((b1 + b2)2).

Substituting it into (4.2.12), we find

η0(k, b1, b2) = b1cww(k) + b2 +O((b1 + b2)2),

u0(k, b1, b2) = b1 + b2cww(k) +O((b1 + b2)2).

They agree with (4.2.6). In the sequel, u0 =

(
η0

u0

)
(k, b1, b2) and c0 = c0(k, b1, b2).

Since cww(k) > cww(nk) for n = 2, 3, . . . pointwise in R (see Figure 4.1), a straightforward

calculation reveals that for any k > 0, b1, b2 ∈ R and |b1|, |b2| sufficiently small, the H1(T)×
H1(T) kernel of L0 = ∂uf(u0, c0; k, b1, b2) is two dimensional and spanned by u1e

±iz for some

nonzero u1 satisfying (4.2.13). Note from (4.2.13) and (4.2.6) that

u1 =

(
1 + η0

c0 − u0

)
=

(
1 + b1cww(k) + b2

cww(k) + 1
2
b1c

2
ww(k) + 1

2
b2cww(k)

)
+O((b1 + b2)2) (4.2.15)

as b1, b2 → 0 up to the multiplication by a constant. This agrees with (4.2.5a) and (4.2.5b)
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1

κ

Figure 4.1: Schematic plot of cww.

at the order of a.

Moreover, a straightforward calculation reveals that for any k > 0, b1, b2 ∈ R and |b1|,
|b2| sufficiently small, the H1(T) × H1(T) co-kernel of L0 is two dimensional and spanned

by u⊥1 e
±iz for some u⊥1 orthogonal to u1. In particular, L0 is a Fredholm operator of index

zero.

For any k > 0, b1, b2 ∈ R and |b1|, |b2| sufficiently small, we turn the attention to non-

constant solutions of (4.2.10)-(4.2.11) and, hence, (4.2.1) bifurcating from u = u0 and c = c0,

where η0, u0, and c0 are in (4.2.6). A Lyapunov-Schmidt procedure is instrumental for the

purpose. Here the proof follows along the same line as in Chapter 2 and 3, but with suitable

modifications to accommodate product spaces. Throughout the subsection, k, and b1, b2 are

fixed and suppressed for simplicity of notation.

Recall f(u0, c0) = 0, where f is in (4.2.10). Recall L0u1e
±iz = 0, where L0 is in (4.2.13)

and u1 is in (4.2.15). We write that

u(z) = u0 +
1

2
u1(aeiz + a∗e−iz) + ur(z) and c = c0 + cr, (4.2.16)

and we require that a ∈ C, ur =

(
ηr

ur

)
∈ H1(T)×H1(T) be even and

〈ur,u1(aeiz + a∗e−iz)〉 =
1

2π

∫ π

−π
((1 + η0)ηr(z)(aeiz + a∗e−iz) (4.2.17)

+ (c0 − u0)ur(z)(aeiz + a∗e−iz)) dz = 0,

and cr ∈ R. Here and elsewhere, the asterisk means complex conjugation; 〈· , ·〉 is the

L2(T)× L2(T)-inner product.

Substituting (4.2.16) into (4.2.10)-(4.2.11), we use f(u0; c0) = 0, and (4.2.13), (4.2.15),
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and we make an explicit calculation to arrive at

L0ur =−

((
1
2
(c0 − u0)(aeiz + a∗e−iz) + ur

) (
1
2
(1 + η0)(aeiz + a∗e−iz) + ηr

)
1
2

(
1
2
(c0 − u0)(aeiz + a∗e−iz) + ur

)2

)
(4.2.18)

+ cr

(
1
2
(1 + η0)(aeiz + a∗e−iz) + ηr

1
2
(c0 − u0)(aeiz + a∗e−iz) + ur

)
=:g(ur; a, a

∗, cr)

up to terms of order cr as cr → 0. Recall that f is a real analytic operator. Hence g depends

analytically on its arguments. Clearly, g(0; 0, 0, cr) = 0 for any cr ∈ R.

Recall that L0 is a Fredholm operator of index zero,

kerL0 = span{u1e
±iz} and co-kerL0 = span{u⊥1 e±iz},

where u1 and u⊥1 are orthogonal to each other. Let Π denote the spectral projection of

L2(T)×L2(T) onto the kernel of L0. Specifically, if v =
∑
n∈Z

(
ζ̂(n)

v̂(n)

)
einz in the Fourier series

then

Πv =〈v,u1e
iz〉u1e

iz + 〈v,u1e
−iz〉u1e

−iz

=((1 + η0)(ζ̂(1)eiz + ζ̂(−1)e−iz) + (c0 − u0)(v̂(1)eiz + v̂(−1)e−iz))u1.

Since Πur = 0 by (4.2.17), we may recast (4.2.18) as

L0ur = (1− Π)g(ur; a, a
∗, cr) and 0 = Πg(ur; a, a

∗, cr). (4.2.19)

Moreover, L0 : (1− Π)(H1(T)×H1(T))→ rangeL0 is invertible. Specifically, if

v =

(
1 + η0

u0 − c0

)
(v+1e

iz + v−1e
−iz) +

∑
n6=±1

(
ζ̂(n)

v̂(n)

)
einz,

for some constants v±1, belongs to the range of L0 by (4.2.13) then

L−1
0 v(z) =

(
0

1

)
(v+1e

iz + v−1e
−iz)

+
∑
n6=±1

1

(u0 − c0)2 − c2
ww(nk)(1 + η0)

(
u0 − c0 −1− η0

−c2
ww(kn) u0 − c0

)(
ζ̂(n)

v̂(n)

)
einz.
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It is well defined since (4.2.14) holds true if and only if n = ±1. Hence we may recast (4.2.19)

as

ur = L−1
0 (1− Π)g(ur; a, a

∗, cr) and 0 = Πg(ur; a, a
∗, cr). (4.2.20)

Clearly, L−1
0 (1− Π)g depends analytically on its arguments. Since g(0; 0, 0, cr) = 0 for any

cr ∈ R, it follows from the implicit function theorem that a unique solution ur = u2(a, a∗, cr)

exists to the former equation of (4.2.20) near ur = 0 for a ∈ C and |a| sufficiently small for

any cr ∈ R. Note that u2 depends analytically on its arguments and it satisfies (4.2.17) for

|a| sufficiently small for any cr ∈ R. The uniqueness implies

u2(0, 0, cr) = 0 for any cr ∈ R. (4.2.21)

Moreover, since (4.2.10)-(4.2.11) and, hence, (4.2.20) are invariant under (4.2.4) for any

z0 ∈ R, it follows that

u2(a, a∗, cr)(z + z0) = u2(aeiz0 , a∗e−iz0 , cr)(z) and u2(a, a∗, cr)(−z) = u2(a, a∗, cr)(z)

(4.2.22)

for any z0 ∈ R for any a ∈ C, |a| sufficiently small, and cr ∈ R.

To proceed, we write the latter equation of (4.2.20) as

Πg(u2(a, a∗, cr); a, a
∗, cr) = 0

for a ∈ C and |a| sufficiently small for any cr ∈ R. This is solvable, provided that

π±(a, a∗, cr) := 〈g(u2(a, a∗, cr); a, a
∗, cr),u1(aeiz ± a∗e−iz)〉 = 0; (4.2.23)

〈· , ·〉 is the L2(T)×L2(T) inner product. We use (4.2.22), where z0 = −2 arg(a), and (4.2.23)

to show that

π−(a∗, a, cr) = π−(a, a∗, cr) = −π−(a∗, a, cr).

Hence π−(a, a∗, cr) = 0 holds true for any a ∈ C and |a| sufficiently small for any cr ∈ R.

Moreover, we use (4.2.22), where z0 = − arg(a), and (4.2.23) to show that

π+(a, a∗, cr) = π+(|a|, |a|, cr).

Hence it suffices to solve π+(a, a, cr) = 0 for a, cr ∈ R and |a| sufficiently small.

Substituting (4.2.18) into (4.2.23), where ur = u2(a, a, cr) =:

(
η2

u2

)
(a, cr), we make an
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explicit calculation to arrive at

π+(a, a, cr) =: a2(cr((1 + η0)2 + (c0 − u0)2) + πr(a, cr))

for a, cr ∈ R and |a| sufficiently small, where

πr(a, cr) =− a2(1 + η0)((c0 − u0)〈cos z η2(a, cr), cos z〉

+ (1 + η0)〈cos z u2(a, cr), cos z〉+ a−1〈(η2u2)(a, cr), cos z〉)

− 1
2
a2(c0 − u0)(2(c0 − u0)〈cos z u2(a, cr), cos z〉+ a−1〈u2

2(a, cr), cos z〉);

〈· , ·〉 means the L2(T) inner product. We merely pause to remark that πr is well defined.

Indeed, a−1η2 and a−1u2 are not singular for a ∈ R and |a| sufficiently small by (4.2.21).

Clearly, πr and, hence, π+ depend analytically on their arguments. Since πr(0, 0) = 0 and

(∂crπr)(0, 0) = 0 by (4.2.21), it follows from the implicit function theorem that a unique

solution cr = c2(a) exists to π+(a, a, cr) = 0 and, hence, the latter equation of (4.2.20) near

cr = 0 for a ∈ R and |a| sufficiently small. Clearly, c2 depends analytically on a.

To summarize,

ur = u2(a, a, c2(a)) and cr = c2(a)

uniquely solve (4.2.18) for a ∈ R and |a| sufficiently small, and by virtue of (4.2.16),

u(a)(z) = u0 + au1 cos z + u2(a, a, c2(a))(z) and c(a) = c0 + c2(a) (4.2.24)

uniquely solve (4.2.10)-(4.2.11) and, hence, (4.2.1) for a ∈ R and |a| sufficiently small. Note

that u2 and, hence, u are 2π periodic and even in z. Since u2 and c2 are near 0 and 0,

Lemma 4.2.2 implies that u is smooth in z. We claim that c is even in a. Indeed, note

that (4.2.1) and, hence, (4.2.10)-(4.2.11) remain invariant under z 7→ z+ π by (4.2.4). Since

(∂au)(0)(z) = u1 cos z, however, u(z) 6= u(z + π) must hold true. Thus (∂ac)(0) = 0. This

proves the claim. Clearly, u and c depend analytically on a ∈ R and |a| sufficiently small.

This completes the existence proof.

It remains to verify (4.2.5). Throughout the subsection, k > 0 is fixed and suppressed for

simplicity of notation; b1, b2 ∈ R and |b1|, |b2| sufficiently small are fixed.

Recall from the existence proof that (4.2.24) depends analytically on a, b1, b2 ∈ R and |a|,
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|b1|, |b2| sufficiently small. We write that

η(a; b1, b2)(z) =η0(b1, b2) + a(1 + η0(b1, b2)) cos z

+ a2η2(z) + a3η3(z) +O(a4 + a2(b1 + b2) + a(b1 + b2)2),

u(a; b1, b2)(z) =u0(b1, b2) + a(c0 − u0)(b1, b2) cos z

+ a2u2(z) + a3u3(z) +O(a4 + a2(b1 + b2) + a(b1 + b2)2),

and

c(a; b1, b2) =c0(b1, b2) + a2c2 +O(a4 + a2(b1 + b2) + a(b1 + b2)2)

as a, b1, b2 → 0, where η0, u0, and c0 are in (4.2.6), and we require that η2, u2, and η3, u3 be

2π periodic, even, and smooth functions of z, and c2 ∈ R. We merely pause to remark that

η2, u2, η3, u3, and c2 do not depend on b1 and b2, whereas η0, u0, and c0 do. In the following

sections, we restrict the attention to periodic traveling waves of (4.1.3)-(4.1.2) for a ∈ R
and |a| sufficiently small for b1 = b2 = 0, and we calculate the spectrum of the associated

linearized operator up to the order of a. (The index formulae would become unwieldy when

terms of order a2 were to be added.) For the purpose, it suffices to calculate solutions

explicitly up to terms of orders a2, and ab1, ab2.

Substituting the above into (4.2.1), we recall that η0, u0, and c0 solve (4.2.1), and we make

an explicit calculation to arrive, at the order of a, at

− c0(1 + η0) cos z + (c0 − u0) cos z = 0,

− c0(c0 − u0) cos z + c2
ww(k|∂z|)(1 + η0) cos z = 0.

This holds true up to terms of orders b1 and b2 by (4.2.3), (4.2.6c), and (4.2.13), (4.2.15).

To proceed, we assume b1 = b2 = 0 and, hence, η0 = u0 = 0 and c0 = cww(k) by (4.2.6).

At the order of a2, we gather

− c0η2 + u2 + c0 cos2 z = 0,

− c0u2 + c2
ww(k|∂z|)η2 + 1

2
c2

0 cos2 z = 0.

We then use (4.2.3), (4.2.6c) and we make an explicit calculation to find

η2(z) = h0 + h2 cos 2z and u2(z) = h0 −
1

2
+
(
h2 −

1

2

)
cos 2z, (4.2.25)
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where h0 and h2 are in (4.2.7). Continuing, at the order of a3, we gather

− c0η3 − c2 cos z + u3 + u2 cos z + c0η2 cos z = 0,

− c0u3 − c2c0 cos z + c2
ww(k|∂z|)η3 + c0u2 cos z = 0.

Taking L2(T)-inner products, we use (4.2.3) and (4.2.25), so that

− c0〈η3, cos z〉 − c2 + 〈u3, cos z〉+ h0 −
1

2
+

1

2

(
h2 −

1

2

)
+ c0

(
h0 +

1

2
h2

)
= 0,

− c0〈u3, cos z〉 − c2c0 + c2
ww(k)〈η3, cos z〉+ c0

(
h0 −

1

2
+

1

2

(
h2 −

1

2

))
= 0.

We then use (4.2.6c) and we make an explicit calculation to find

c2 =
3

4
cww(k)(2h0 + h2 − 1).

This completes the proof.

4.3 The spectral problem

Let η = η(a; k, b1, b2), u = u(a; k, b1, b2), and c = c(a; k, b1, b2), for some a ∈ R and |a|
sufficiently small, k > 0, b1, b2 ∈ R and |b1|, |b2| sufficiently small, denote a 2π/k-periodic

wave train of (4.1.3)-(4.1.2), whose existence follows from Theorem 4.2.1. We address its

stability and instability to “slow modulations”. Throughout the section, we employ the

notation of (4.2.9) whenever it is convenient to do so.

We linearize (4.1.3)-(4.1.2) about u in the coordinate frame moving at the speed c. Recall

that u and c solve (4.2.1) and z = kx. The result becomes

∂tv = k∂z

(
c− u −1− η

−c2
ww(k|∂z|) c− u

)
v.

We seek a solution of the form v(z, t) = eλktv(z), λ ∈ C, to arrive at

λv = ∂z

(
c− u −1− η

−c2
ww(k|∂z|) c− u

)
v =: L(a; k, b1, b2)v, (4.3.1)

where

L : H1(R)×H1(R) ⊂ L2(R)× L2(R)→ L2(R)× L2(R).
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We take a Floquet theory approach to characterize the L2(R)×L2(R)-spectrum of L in a

convenient form. The Bloch operators are given by,

L(ξ) := e−iξz∂z

(
c− u −1− η

−c2
ww(k|∂z|) c− u

)
eiξz (4.3.2)

for ξ ∈ (−1/2, 1/2]. Note that (4.3.2), when ±ξ are taken in pair, remains invariant under

λ 7→ λ∗ and φ 7→ φ∗,

and under

λ 7→ −λ and z 7→ −z.

Hence we may assume ξ ∈ [0, 1/2].

For an arbitrary ξ, one must study (4.3.2) numerically except for few cases — for instance,

completely integrable systems (see [BHJ16], for instance, for references). But, for ξ > 0 small

and for λ in the vicinity of the origin in C, we may take a spectral perturbation approach

in [HJ15a,HP16b], for instance, to address it analytically. This is the subject of investigation

here.

In the remaining of the section, k > 0 is suppressed for simplicity of notation, unless

specified otherwise. We assume b1 = b2 = 0. For nonzero b1 and b2, one may explore in

like manner. But the calculation becomes lengthy and tedious. Hence we do not discuss the

details. We use

L(ξ, a) = L(ξ)(a; k, 0, 0) (4.3.3)

for simplicity of notation.

We begin by discussing the L2(T) × L2(T)-spectra of L(ξ, 0) for ξ ∈ [0, 1/2]. This is the

linearization of (4.1.3)-(4.1.2) about η = u = 0 and c = cww(k) — namely, the rest state —

in the moving coordinate frame.

Note from (4.3.2) and (4.2.6) that

L(ξ, 0) = e−iξz∂z

(
cww(k) −1

−c2
ww(k|∂z|) cww(k)

)
eiξz.
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We use (4.2.3) and make an explicit calculation to show that

L(ξ, 0)e(n+ ξ,±) = iω(n+ ξ,±)e(n+ ξ,±) for n ∈ Z and ξ ∈ [0, 1/2], (4.3.4)

where

ω(n+ξ,±) = (n+ξ)(cww(k)±cww(k(n+ξ))) and e(n+ξ,±)(z) =

(
1

∓cww(k(n+ ξ))

)
einz.

(4.3.5)

Hence for any ξ ∈ [0, 1/2], the spectrum of L(ξ, 0) consists of two families of infinitely many

and purely imaginary eigenvalues, each with finite multiplicity. In particular, the rest state

of (4.1.3)-(4.1.2) is spectrally stable to square integrable perturbations.

The spectrum of the linear operator associated with the water wave problem consists of

iω(n+ξ,±) for n ∈ Z and ξ ∈ [−1/2, 1/2); see [Whi74], for instance, for details. To compare,

the spectrum of the linear operator for the Whitham equation consists of iω(n + ξ,−) for

n ∈ Z and ξ ∈ [−1/2, 1/2); see [HJ15a], for instance, for details. Perhaps, this is because

the Whitham equation merely includes unidirectional propagation. In the following section,

we discuss the effects of bidirectional propagation in (4.1.3)-(4.1.2).

As |a| increases, the eigenvalues in (4.3.4) move around and they may leave the imaginary

axis to lose the spectral stability. Recall that the spectrum of L(±ξ, a) is symmetric with

respect to the reflections in the real and imaginary axes for any ξ ∈ [0, 1/2] for any a ∈ R
and admissible. Hence a necessary condition of the spectral instability is that a pair of

eigenvalues on the imaginary axis collide.

Note that the eigenfunctions in (4.3.4) vary, analytically, with ξ ∈ [0, 1/2]. To compare,

the eigenfunctions of the linear operator for the Whitham equation do not depend on ξ;

see [HJ15a], for instance, for details.

To proceed, for ξ = 0, note from (4.3.5) that

ω(0,+) = ω(0,−) = ω(1,−) = ω(−1,−) = 0.

Since

· · · < ω(−3,−) < ω(−2,−) <0 < ω(2,−) < ω(3,−) < · · ·

and

· · · < ω(−2,+) < ω(−1,+) <0 < ω(1,+) < ω(2,+) < . . .
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by brutal force, zero is an L2(T) × L2(T)-eigenvalue of L(0, 0) with multiplicity four. Note

that

φ1(z) :=
1

2
(e(1,−) + e(−1,−))(z) =

(
1

cww(k)

)
cos z,

φ2(z) :=
1

2i
(e(1,−)− e(−1,−))(z) =

(
1

cww(k)

)
sin z,

φ3(z) :=
1

2
((cww(k) + 2)e(0,+)− (cww(k)− 2)e(0,−))(z) =

(
2

−cww(k)

)
,

φ4(z) :=
1

2
((cww(k)− 2)e(0,+) + (cww(k) + 2)e(0,−))(z) =

(
cww(k)

2

)
(4.3.6)

are the associated eigenfunctions, real valued and orthogonal to each other.

For ξ 6= 0, since ω(n + ξ,+) increases in n + ξ for any n ∈ Z and ξ ∈ (0, 1/2], and since

ω(n+ ξ,−) decreases in n+ ξ if −1/2 < n+ ξ < 1/2 and increases if n+ ξ < −1 or n+ ξ > 1

by brutal force, it follows that

ω(1/2,−) 6 ω(0 + ξ,±), ω(±1 + ξ,−) 6 ω(1/2,+),

and

· · · < ω(−2 + ξ,−) < ω(ξ,−) < 0 < ω(−1 + ξ,−) < ω(1 + ξ,−) < ω(2 + ξ,−) < · · · ,

· · · < ω(−2 + ξ,+) < ω(−1 + ξ,+) < 0 < ω(ξ,+) < ω(1 + ξ,+) < ω(2 + ξ,+) < · · · .

Hence ω(n+ ξ,±) 6= 0 for any n ∈ Z and ξ ∈ (0, 1/2]. But in [HP16a], we observe infinitely

many collisions of purely imaginary eigenvalues of L(ξ, 0) away from the origin. To compare,

no eigenvalues of the linear operator for the Whitham equation (see (1)) collide other than

at the origin; see [HJ15a], for instance.

Continuing, for ξ > 0 and sufficiently small, iω(ξ,±) and iω(±1+ξ,−) are L2(T)×L2(T)-
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eigenvalues of L(ξ, 0) in the vicinity of the origin in C. Moreover, (by abuse of notation)

φ1(z) :=
1

2

√
c2
ww(k) + 1

(
e(1 + ξ,−)

‖e(1 + ξ,−)‖
+

e(−1 + ξ,−)

‖e(−1 + ξ,−)‖

)
(z)

=

(
1

cww(k)

)
cos z + iξ

kc′ww(k)

c2
ww(k) + 1

(
−cww(k)

1

)
sin z + ξ2p2 cos z +O(ξ3),

φ2(z) :=
1

2i

√
c2
ww(k) + 1

(
e(1 + ξ,−)

‖e(1 + ξ,−)‖
− e(−1 + ξ,−)

‖e(−1 + ξ,−)‖

)
(z)

=

(
1

cww(k)

)
sin z − iξ kc′ww(k)

c2
ww(k) + 1

(
−cww(k)

1

)
cos z + ξ2p2 sin z +O(ξ3),

φ3(z) :=
1

2
((cww(k) + 2)e(ξ,+)− (cww(k)− 2)e(ξ,−))(z)

=

(
2

−cww(k)

)
+

1

6
ξ2k2cww(k)

(
0

1

)
+O(ξ3),

φ4(z) :=
1

2
((cww(k)− 2)e(ξ,+) + (cww(k) + 2)e(ξ,−))(z)

=

(
cww(k)

2

)
− 1

3
ξ2k2

(
0

1

)
+O(ξ3)

(4.3.7)

span the associated eigenspace, orthogonal to each other, where ‖ ·‖ =
√
〈· , ·〉L2(T)×L2(T) and

p2 =
1

2

k2

c2
ww(k) + 1

c
′
ww(k)2 2c2

ww(k)− 1

c2
ww(k) + 1

− (cwwc
′′
ww)(k)

−3
(cww(c′ww)2)(k)

c2
ww(k) + 1

+ c′′ww(k)

 . (4.3.8)

For ξ = 0, note that φ1, φ2, φ3, φ4 become (4.3.6). Recall that cww is a real analytic function.

Hence they depend analytically on ξ ∈ [0, 1/2].

Note that φ1 and φ2 vary with ξ > 0 and sufficiently small to the linear order. In the

following subsection, we take this into account and construct an eigenspace for ξ, a 6= 0

and sufficiently small, which varies analytically with ξ and a; see (4.3.10) for details. Con-

sequently, the spectral perturbation calculation in Section 4.4 becomes lengthy and compli-

cated. To compare, the eigenfunctions of the linear operator for the Whitham equation do

not depend on ξ for any a ∈ R and admissible; see [HJ15a], for instance, for details.

Note that φ1 and φ2 are complex valued. For real valued functions, one must take ±ξ in

pair and deal with six functions. But the spectral perturbation calculation in Section 4.4

involves complex valued operators anyway. Hence this is not worth the effort.
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We turn the attention to the L2(T)×L2(T)-spectra of L(ξ, a) in the vicinity of the origin

in C, for ξ ∈ [0, 1/2] for a ∈ R and |a| sufficiently small.

Note from (4.3.2) and (4.2.5) that

L(ξ, a) =e−iξz∂z

(
c− u −1− η

−c2
ww(k|∂z|) c− u

)
eiξz

=e−iξz∂z

((
cww(k) −1

−c2
ww(k|∂z|) cww(k)

)
+ a

(
−cww(k) −1

0 −cww(k)

)
cos z

)
eiξz +O(a2)

as a→ 0, whence

‖L(ξ, a)− L(ξ, 0)‖L2(T)×L2(T)→L2(T)×L2(T) = O(a)

as a → 0 uniformly for ξ ∈ [0, 1/2]. Recall that the L2(T) × L2(T)-spectrum of L(ξ, 0)

contains four purely imaginary eigenvalues iω(ξ,±), iω(±1 + ξ,−) in the vicinity of the

origin in C for ξ > 0 and sufficiently small. Since L(ξ, a) depends analytically on ξ ∈ [0, 1/2]

and a ∈ R admissible, it follows from perturbation theory (see [Kat76, Section 4.3.1], for

instance, for details) that the L2(T) × L2(T)-spectrum of L(ξ, a) contains four eigenvalues,

denoted

λ1(ξ, a), λ2(ξ, a), λ3(ξ, a), λ4(ξ, a),

near the origin for ξ > 0, a ∈ R and ξ, |a| sufficiently small.

Moreover, a straightforward calculation reveals that

|λj(ξ, 0)− λ`(ξ, 0)| > ω0 > 0 for j, ` = 1, 2, 3, 4 and j 6= `

for any ξ > ξ0 > 0 for any ξ0 for some ω0. Hence it follows from perturbation theory that

λ1, λ2, λ3, λ4 remain purely imaginary for any ξ > ξ0 > 0 for any ξ0, for any a ∈ R and |a|
sufficiently small. In particular, a sufficiently small, periodic wave train of (4.1.3)-(4.1.2) is

spectrally stable to “short wavelength perturbations” in the vicinity of the origin in C. For

ξ = 0, on the other hand, we demonstrate that four eigenvalues collide at the origin.

Lemma 4.3.1 (Spectrum of L(0, a)). For a ∈ R and |a| sufficiently small, zero is an

L2(T)×L2(T)-eigenvalue of L(0, a) with algebraic multiplicity four and geometric multiplicity
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three. Moreover, (by abuse of notation)

φ1(z) :=
2

c2
ww(k) + 2

((∂b1c)(∂au)− (∂ac)(∂b1u))(z) (4.3.9a)

=

(
1

cww(k)

)
cos z + a

 −3h2
c2
ww(k)

c2
ww(k) + 2

cww(k)
(

1
2
− 3h2

1

c2
ww(k) + 2

)


+ 2a

(
h2

cww(k)
(
h2 − 1

2

)) cos 2z +O(a2),

φ2(z) :=− 1

a
(∂zu)(z) (4.3.9b)

=

(
1

cww(k)

)
sin z + 2a

(
h2

cww(k)
(
h2 − 1

2

)) sin 2z +O(a2),

where h2 is in (4.2.7), and

φ3(z) :=
2

c2
ww(k)− 1

((∂b1c)(∂b2u)− (∂b2c)(∂b1u))(z) (4.3.9c)

=

(
2

−cww(k)

)
+ a

(
2

cww(k)

)
cos z +O(a2),

φ4(z) :=
1

3

c2
ww(k) + 4

cww(k)

(
(∂b2u) +

c2
ww(k)− 2

c2
ww(k) + 4

φ3,a

)
(z) (4.3.9d)

=

(
cww(k)

2

)
+ a

(
cww(k)
1
2
c2
ww(k)

)
cos z +O(a2),

are the associated eigenfunctions. Specifically,

L(0, a)φk = 0 for k = 1, 2, 3, and L(0, a)φ4 =
1

4
a(c2

ww(k) + 1)φ2.

For a = 0, note that φ1, φ2, φ3, φ4 becomes (4.3.6). Theorem 4.2.1 implies that they

depend analytically on a ∈ R and |a| sufficiently small.

Proof. Exploiting variations of (4.2.1) in the z, and a, b1, b2 variables, the proof is similar

to that of [HJ15a, Lemma 3.1], for instance.

Differentiating (4.2.1) with respect to z and evaluating the result at b1 = b2 = 0, we infer

from (4.3.1) that

L(0, a)(∂zu) = 0.

Hence zero is an eigenvalue of L(0, a) and ∂zu is an associated eigenfunction. We then use
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(4.2.5a) and (4.2.5b) to find (4.7). By the way, this is reminiscent of that (4.2.1) remains

invariant under spatial translations.

Differentiating (4.2.1) with respect to a, and b1, b2, and evaluating at b1 = b2 = 0, we infer

from (4.3.1) that

L(0, a)(∂au) = −(∂ac)(∂zu),

and

L(0, a)(∂b1u) = −(∂b1c)(∂zu), L(0, a)(∂b2u) = −(∂b2c)(∂zu).

Hence

L(0, a)((∂b1c)(∂au)− (∂ac)(∂b1u)) = 0 and L(0, a)((∂b1c)(∂b2u)− (∂b2c)(∂b1u)) = 0.

We then use (4.2.5) and (4.2.6) to find (4.7.5) and (4.3.9c). Note that ∂b2u is a generalized

eigenfunction. We use (4.2.5) and (4.2.6) to find (4.3.9d). This completes the proof.

To recapitulate, for ξ > 0 and sufficiently small for a = 0, the L2(T) × L2(T)-spectrum

of L(ξ, 0) contains four purely imaginary eigenvalues iω(ξ,±), iω(±1 + ξ,−) in the vicinity

of the origin in C, and (4.3.7) spans the associated eigenspace, which depends analytically

on ξ. For ξ = 0 for a ∈ R and |a| sufficiently small, the spectrum of L(0, a) contains four

eigenvalues at the origin, and (4.3.9) makes the associated eigenfunctions, which depends

analytically on a.

For ξ > 0, a ∈ R and ξ, |a| sufficiently small, the L2(T)× L2(T)-spectrum of L(ξ, a) con-

tains four eigenvalues λ1(ξ, a), λ2(ξ, a), λ3(ξ, a), λ4(ξ, a) near the origin, and the associated
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eigenfunctions vary analytically from (4.3.7) and (4.3.9). Let (by abuse of notation)

φ1(ξ, a)(z) =

(
1

cww(k)

)
cos z + iξ

kc′ww(k)

c2
ww(k) + 1

(
−cww(k)

1

)
sin z

+ a

 −3h2
c2
ww(k)

c2
ww(k) + 2

cww(k)
(

1
2
− 3h2

1

c2
ww(k) + 2

)
+ 2a

(
h2

cww(k)
(
h2 − 1

2

)) cos 2z

+ ξ2p2 cos z +O(ξ3 + ξ2a+ a2),

φ2(ξ, a)(z) =

(
1

cww(k)

)
sin z − iξ kc′ww(k)

c2
ww(k) + 1

(
−cww(k)

1

)
cos z

+ 2a

(
h2

cww(k)
(
h2 − 1

2

)) sin 2z + ξ2p2 sin z +O(ξ3 + ξ2a+ a2),

φ3(ξ, a)(z) =

(
2

−cww(k)

)
+ a

(
2

cww(k)

)
cos z +

1

6
ξ2k2cww(k)

(
0

1

)
+O(ξ3 + ξ2a+ a2),

φ4(ξ, a)(z) =

(
cww(k)

2

)
+ a

(
cww(k)
1
2
c2
ww(k)

)
cos z − 1

3
ξ2k2

(
0

1

)
+O(ξ3 + ξ2a+ a2)

(4.3.10)

as ξ, a→ 0, where h2 is in (4.2.7) and p2 is in (4.3.8). For a = 0, note that φ1, φ2, φ3, φ4

become (4.3.7). For ξ = 0, they become (4.3.9). Hence φ1, φ2, φ3, φ4 span the eigenspace

associated with λ1, λ2, λ3, λ4 up to terms of orders ξ2 and a as ξ, a→ 0.

It seems impossible to uniquely determine terms of orders ξa and higher in the eigenfunc-

tion expansion without ad hoc orthogonality conditions. Fortuitously, it turns out that they

do not contribute to the modulational instability. Hence we may neglect them in (4.3.10).

To compare, the eigenfunctions of the linear operator for the Whitham equation, which do

not depend on ξ, extend to a 6= 0; see [HJ15a], for instance, for details. We are able to cal-

culate terms of orders a2 and higher in the eigenfunction expansion. But the index formulae

become unwieldy. Hence we do not use them in the calculation in the following subsection.

4.4 The perturbation analysis

Recall that for ξ > 0, a ∈ R and ξ, |a| sufficiently small, the L2(T) × L2(T)-spectrum of

L(ξ, a) contains four eigenvalues λ1(ξ, a), λ2(ξ, a), λ3(ξ, a), λ4(ξ, a) in the vicinity of the
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origin in C, and (4.3.10) spans the associated eigenspace up to terms of orders ξ2 and a. Let

L(ξ, a) =

(〈L(ξ, a)φj(ξ, a),φ`(ξ, a)〉
〈φj(ξ, a),φj(ξ, a)〉

)
j,`=1,2,3,4

(4.4.1)

and

I(ξ, a) =

( 〈φj(ξ, a),φ`(ξ, a)〉
〈φj(ξ, a),φj(ξ, a)〉

)
j,`=1,2,3,4

, (4.4.2)

where φ1, φ2, φ3, φ4 are in (4.3.10). Throughout the subsection, 〈 , 〉 means the L2(T) ×
L2(T)-inner product. Note that L represents the action of L(ξ, a) on the eigenspace asso-

ciated with λ1, λ2, λ3, λ4, up to the orders of ξ2 and a as ξ, a → 0, after normalization,

and I is the projection of the identity onto the eigenspace. It follows from perturbation

theory (see [Kat76, Section 4.3.5], for instance, for details) that for ξ > 0, a ∈ R and ξ,

|a| sufficiently small, the roots of det(L− λI) coincide with the eigenvalues of L(ξ, a) up to

terms of orders ξ2 and a.

For any a ∈ R and |a| sufficiently small, we make a Baker-Campbell-Hausdorff expansion

to write

L(ξ, a) = L0 + iξL1 −
1

2
ξ2L2 +O(ξ3)

as ξ → 0, where

L0 =L(0, a) = ∂z

(
cww(k) −1

−c2
ww(k|∂z|) cww(k)

)
− a∂z

(
cww(k) 1

0 cww(k)

)
cos z +O(a2),

L1 =[L0, z] =

(
cww(k) −1

−[∂zc
2
ww(k|∂z|), z] cww(k)

)
− a

(
cww(k) 1

0 cww(k)

)
cos z +O(a2),

L2 =[L1, z] =

(
0 0

−[[∂zc
2
ww(k|∂z|), z], z] 0

)
+O(a2)

as a→ 0, and [·, ·] means the commutator. The latter equalities follow from (4.3.1), (4.3.2),

(4.2.5) and that L(ξ, a) depends analytically on ξ near ξ = 0. We merely pause to remark

that L1 and L2 are well defined in the periodic setting even though z is not. Indeed,

[∂zc
2
ww(k|∂z|), z] = c2

ww(k|∂z|) + [c2
ww(k|∂z|), z]∂z and

[c2
ww(k|∂z|), z]einz = ieinz

∑
m6=0

(−1)|m|+1

m
(−c2

ww(kn)− c2
ww(k(n+m)))eimz for n ∈ Z

by brutal force. One may likewise represent [[∂zc
2
ww(k|∂z|), z], z] in the Fourier series. Unfor-

tunately, this is not convenient for an explicit calculation. We instead rearrange the above
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as

L(ξ, a) =L(0, 0) + iξ[L(0, 0), z]− ξ2

2
[[L(0, 0), z], z]

− a∂z

(
cww(k) 1

0 cww(k)

)
cos z − iξa

(
cww(k) 1

0 cww(k)

)
cos z +O(ξ3 + ξ2a+ a2)

= :M− a∂z

(
c(k) 1

0 c(k)

)
cos z − iξa

(
cww(k) 1

0 cww(k)

)
cos z +O(ξ3 + ξ2a+ a2)

(4.4.3)

as ξ, a → 0, and note that M agrees with L(ξ, 0) up to terms of order ξ2 for ξ > 0 and

sufficiently small. We then resort to (4.2.3) and make an explicit calculation to find

L(ξ, 0)

(
ζ

v

)
einz =in

(
cww(k)ζ − v

−c2
ww(kn)ζ + cww(k)v

)
einz

+ iξ

(
cww(k)ζ − v

− (c2
ww(kn) + kn(c2

ww)′(kn)) ζ + cww(k)v

)
einz

− iξ2 kn
(

(c2
ww)′(kn) +

1

2
kn(c2

ww)′′(kn)
)
ζ

(
0

1

)
einz +O(ξ3)

=M

(
ζ

v

)
einz +O(ξ3)

as ξ → 0, for any constants ζ, v and n ∈ Z. For instance, since c2
ww(0) = 1 and (c2

ww)′(0) = 0,

it follows that

M

(
ζ

v

)
= iξ

(
cww(k)ζ − v
cww(k)v − ζ

)
.

One may likewise calculate M

(
ζ

v

){
cosnz

sinnz

}
explicitly up to the order of ξ2. We omit the

details.

We use (4.4.3), (4.3.10), and the above formula for M, and we make a lengthy and
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complicated, but explicit, calculation to show that

Lφ1 =− 2iξ k(cwwc
′
ww)(k)

(
0

1

)
cos z + iξ kc′ww(k)

(
−1

cww(k)

)
cos z

− 1

2
iξa cww(k)

(
2

cww(k)

)
(cos 2z + 1) + iξa

kc′ww(k)

c2
ww(k) + 1

(
c2
ww(k)− 1

−cww(k)

)
cos 2z

− 1

2
iξa cww(k)

6h2
c2
ww(k)− 1

c2
ww(k) + 2

+ 1

−cww(k)


+

1

2
iξ acww(k)

 2

cww(k)
(

1− 12k
(cwwc

′
ww)(2k)

c2
ww(k)− c2

ww(2k)

) cos 2z

+ ξ2 k(2(cwwc
′
ww)(k) + k((c′ww)2 + cwwc

′′
ww)(k))

(
0

1

)
sin z

− ξ2 kcww(k)

 −1

cww(k)
(

1 + 2k
(cwwc

′
ww)(k)

c2
ww(k) + 1

) sin z

+
1

2
ξ2 k2

(
2

(cww(c′ww)2)(k)

c2
ww(k) + 1

− c′′ww(k)
)( −1

cww(k)

)
sin z +O(ξ3 + ξ2a+ a2)

as ξ, a→ 0, where h2 is in (4.2.7). Moreover,

Lφ2 =− 2iξ k(cwwc
′
ww)(k)

(
0

1

)
sin z + iξ kc′ww(k)

(
−1

cww(k)

)
sin z

− 1

2
iξa cww(k)

(
2

cww(k)

)
sin 2z + iξa

kc′ww(k)

c2
ww(k) + 1

(
c2
ww(k)− 1

−cww(k)

)
sin 2z

+
1

2
iξa cww(k)

 2

cww(k)
(

1− 12k
(cwwc

′
ww)(2k)

c2
ww(k)− c2

ww(2k)

) sin 2z

− ξ2 k(2cwwc
′
ww + k((c′ww)2 + cwwc

′′
ww))(k)

(
0

1

)
cos z

+ ξ2 kcww(k)

 −1

cww(k)
(

1 + 2k
(cwwc

′
ww)(k)

c2
ww(k) + 1

) cos z

− 1

2
ξ2 k2

(
2

(cww(c′ww)2)(k)

c2
ww(k) + 1

− c′′ww(k)
)( −1

cww(k)

)
cos z +O(ξ3 + ξ2a+ a2),
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and

Lφ3 =iξ

(
3cww(k)

−c2
ww(k)− 2

)
− 2iξa k(cwwc

′
ww)(k)

(
0

1

)
cos z +O(ξ3 + ξ2a+ a2),

Lφ4 =iξ

(
c2
ww(k)− 2

cww(k)

)
+

1

2
a(c2

ww(k) + 4)

(
1

cww(k)

)
sin z

− 1

2
iξa

(
c2
ww(k) + 4

cww(k)(c2
ww(k) + 4 + 2k(cwwc

′
ww)(k))

)
cos z +O(ξ3 + ξ2a+ a2)

as ξ, a→ 0.

To proceed, we take the L2(T)× L2(T)-inner products of the above and (4.3.10), and we

make a lengthy and complicated, but explicit, calculation to show that

〈Lφ1,φ1〉 =〈Lφ2,φ2〉

=− 1

2
iξ kc′ww(k)(c2

ww(k) + 1) +O(ξ3 + ξ2a+ a2),

〈Lφ1,φ2〉 =− 〈Lφ2,φ1〉

=
1

2
ξ2
(
kc′ww(k) +

1

2
k2c′′ww(k)

)
(c2

ww(k) + 1) +O(ξ3 + ξ2a+ a2),

〈Lφ1,φ3〉 =
2

cww(k)
〈Lφ1,φ4〉

=− 3iξa
(

2h2c(k)
c2
ww(k)− 1

c2
ww(k) + 2

+ cww(k) +
1

6
kc′ww(k)(c2

ww(k) + 2)
)

+O(ξ3 + ξ2a+ a2)

as ξ, a→ 0, where h2 is in (4.2.7). Moreover,

〈Lφ2,φ3〉 =〈Lφ2,φ4〉 = 0 +O(ξ3 + ξ2a+ a2),

〈Lφ3,φ1〉 =− iξa cww(k)
(

6h2
c2
ww(k) + 1

c2
ww(k) + 2

+
1

2
(c2

ww(k) + 2) + 2k(cwwc
′
ww)(k)

)
+O(ξ3 + ξ2a+ a2),

〈Lφ3,φ2〉 =0 +O(ξ3 + ξ2a+ a2),

〈Lφ3,φ3〉 =iξcww(k)(c2
ww(k) + 8) +O(ξ3 + ξ2a+ a2),

〈Lφ3,φ4〉 =〈Lφ4,φ3〉 = iξ(c2
ww(k)− 4) +O(ξ3 + ξ2a+ a2),
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and

〈Lφ4,φ1〉 =− iξa
(1

4
(c4

ww + 3c2
ww)(k) + 1 + 3h2c

2
ww(k)

c2
ww(k)− 1

c2
ww(k) + 2

+
1

2
k(c3

wwc
′
ww)(k)

)
+O(ξ3 + ξ2a+ a2),

〈Lφ4,φ2〉 =
1

4
a(c2

ww(k) + 4)(c2
ww(k) + 1) +O(ξ3 + ξ2a+ a2),

〈Lφ4,φ4〉 =iξc3
ww(k) +O(ξ3 + ξ2a+ a2)

as ξ, a→ 0, where h2 is in (4.2.7).

Continuing, we take the L2(T)×L2(T)-inner products of (4.3.10) and we make an explicit

calculation to show that

〈φ1,φ1〉 =〈φ2,φ2〉 =
1

2
(c2

ww(k) + 1)− 3

4
ξ2k2 c′ww(k)2

c2
ww(k) + 1

+O(ξ3 + ξ2a+ a2),

〈φ1,φ2〉 =〈φ2,φ1〉 = 0 +O(ξ3 + ξ2a+ a2),

〈φ1,φ3〉 =〈φ3,φ1〉 = a
(

1− 3h2
c2
ww(k)

c2
ww(k) + 2

)
+O(ξ3 + ξ2a+ a2),

〈φ1,φ4〉 =〈φ4,φ1〉 =
1

4
a cww(k)(c2

ww(k) + 6− 12h2) +O(ξ3 + ξ2a+ a2)

as ξ, a→ 0, where h2 is in (4.2.7). Moreover,

〈φ2,φ3〉 =〈φ3,φ2〉 = 2〈φ2,φ4〉 = 2〈φ4,φ2〉 =
1

2
iξa

k(cwwc
′
ww)(k)

c2
ww(k) + 1

+O(ξ3 + ξ2a+ a2),

〈φ3,φ3〉 =〈φ4,φ4〉 = c2
ww(k) + 4 +O(ξ3 + ξ2a+ a2),

〈φ3,φ4〉 =〈φ4,φ3〉 = 0 +O(ξ3 + ξ2a+ a2)

as ξ, a→ 0.
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Together, (4.4.1) becomes

L(ξ, a) =
1

4
a(c2

ww(k) + 1)


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0



+ iξ



−kc′ww(k) 0 0 0

0 −kc′ww(k) 0 0

0 0 cww(k)
c2
ww(k) + 8

c2
ww(k) + 4

c2
ww(k)− 4

c2
ww(k) + 4

0 0
c2
ww(k)− 4

c2
ww(k) + 4

c3
ww(k)

c2
ww(k) + 4



+ iξaL


0 0 2 cww(k)

0 0 0 0

0 0 0 0

0 0 0 0

− iξa 1

c2
ww(k) + 4


0 0 0 0

0 0 0 0

L31 0 0 0

L41 0 0 0



+
1

2
ξ2k(2c′ww(k) + kc′′ww(k))


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

+O(ξ3 + ξ2a+ a2)

(4.4.4)

as ξ, a→ 0, where

L =− 3cww(k)

c2
ww(k) + 1

(
2h2

c2
ww(k)− 1

c2
ww(k) + 2

+ 1

)
− 1

2
kc′ww(k)

c2
ww(k) + 2

c2
ww(k) + 1

,

L31 =cww(k)

(
6h2

c2
ww(k) + 1

c2
ww(k) + 2

+
1

2
(c2

ww(k) + 2) + 2k(cwwc
′
ww)(k)

)
,

L41 =
1

4
(c4

ww(k) + 3c2
ww(k) + 4) + 3h2c

2
ww(k)

c2
ww(k)− 1

c2
ww(k) + 2

+
1

2
k(c3

wwc
′
ww)(k),

68



and h2 is in (4.2.7). Moreover, (4.4.2) becomes

I(ξ, a) =I + a
2

c2
ww(k) + 1


0 0 1− 3h2

c2
ww(k)

c2
ww(k) + 2

cww(k)
(

1
4
c2
ww(k) + 3

2
− 3h2

)
0 0 0 0

0 0 0 0

0 0 0 0



+ a
1

c2
ww(k) + 4


0 0 0 0

0 0 0 0

1− 3h2
c2
ww(k)

c2
ww(k) + 2

0 0 0

cww(k)
(

1
4
c2
ww(k) + 3

2
− 3h2

)
0 0 0



− 1

2
iξa

k(cwwc
′
ww)(k)

(c2
ww(k) + 1)2(c2

ww(k) + 4)


0 0 0 0

0 0 2(c2
ww(k) + 4) c2

ww(k) + 4

0 c2
ww(k) + 1 0 0

0 c2
ww(k) + 1 0 0


+O(ξ3 + ξ2a+ a2)

(4.4.5)

as ξ, a→ 0, where I means the 4× 4 identity matrix. Note that the coefficient matrices are

explicit functions of k.

For a = 0, (4.4.4) and (4.4.5) become

L(ξ, 0) =iξ



−kc′ww(k) 0 0 0

0 −kc′ww(k) 0 0

0 0 cww(k)
c2
ww(k) + 8

c2
ww(k) + 4

c2
ww(k)− 4

c2
ww(k) + 4

0 0
c2
ww(k)− 4

c2
ww(k) + 4

cww(k)
c2
ww(k)

c2
ww(k) + 4



+
1

2
ξ2k(2c′ww(k) + kc′′ww(k))


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

+O(ξ3)

and I(ξ, 0) = I as ξ → 0. It is then easy to verify that the roots of det(L−λI)(ξ, 0) coincide

with the eigenvalues iω(±1 + ξ,−) and iω(ξ,±) of L(ξ, 0) up to terms of order ξ2 for ξ > 0

69



and sufficiently small. For ξ = 0, (4.4.4) and (4.4.5) become

L(0, a) =
1

4
a(c2

ww(k) + 1)


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

+O(a2)

and I(0, a) = I+O(a) for a→ 0. This is reminiscent of the Jordan block structure of L(0, a);

see Lemma 4.3.1.

4.5 The modulational instability index

We turn the attention to the roots of

det(L−λI)(ξ)(a; k, 0, 0)

=p4(ξ, a; k)λ4 + ip3(ξ, a; k)λ3 + p2(ξ, a; k)λ2 + ip1(ξ, a; k)λ+ p0(ξ, a; k)

=:p(λ)(ξ, a; k)

(4.5.1)

for ξ > 0, a ∈ R and ξ, |a| sufficiently small for k > 0, where L and I are in (4.4.4) and

(4.4.5). Recall that they coincide with the L2(T) × L2(T)-eigenvalues of L(ξ)(a; k, 0, 0) in

the vicinity of the origin in C up to terms of orders ξ2 and a as ξ, a→ 0.

Note that p0, p1, . . . , p4 depend analytically on ξ, a, and k for any ξ > 0 and |a| sufficiently

small for any k > 0. Recall that the spectrum of L(ξ, a) is symmetric with respect to the

reflection in the imaginary axis for any ξ ∈ [0, 1/2] and a ∈ R admissible for any k > 0.

Hence p0, p1, . . . , p4 are real valued. Recall that

specL(ξ, a) = specL(−ξ, a).

Hence p1 and p3 are even in ξ, whereas p0, p2, p4 are odd. Moreover, the spectrum of L(ξ, a)

remains invariant under a 7→ −a by (4.2.4) for any ξ ∈ [0, 1/2] and a ∈ R admissible for any

k > 0. Hence p0, p1, . . . , p4 are even in a.

For ξ = 0, Lemma 4.3.1 implies that λ = 0 is a root of p(0, a; k) with multiplicity four for

any a ∈ R and |a| sufficiently small for any k > 0. Likewise, ξ = 0 is a root of p(· , a; k)(0)

with multiplicity four. Thus we may define

q(−iξλ)(ξ, a; k) = ξ4(q4(ξ, a; k)λ4 − q3(ξ, a; k)λ3 − q2(ξ, a; k)λ2 + q1(ξ, a; k)λ+ q0(ξ, a; k)),
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where

pj(ξ, a; k) := ξ4−kqj(ξ, a; k) for j = 0, 1, . . . , 4. (4.5.2)

Note that q0, q1, . . . , q4 are real valued and depend analytically on ξ, a, and k for any ξ > 0,

|a| sufficiently small and for any k > 0. Moreover, they are odd in ξ and even in a. For a ∈ R
and |a| sufficiently small for k > 0, by virtue of Section 4.5, a sufficiently small, periodic wave

train η(a; k, 0, 0), u(a; k, 0, 0) and c(a; k, 0, 0) of (4.1.3)-(4.1.2) is modulationally unstable,

provided that q possesses a pair of complex roots for ξ > 0 and small.

Let

∆0 =256q3
4q

3
0 − 192q2

4q3q1q
2
0 − 128q2

4q
2
2q

2
0 + 144q2

4q2q
2
1q0

− 27q2
4q

4
1 + 144q4q

2
3q2q

2
0 − 6q4q

2
3q

2
1q0 − 80q4q3q

2
2q1q0

+ 18q4q3q2q
3
1 + 16q4q

4
2q0 − 4q4q

3
2q

2
1 − 27q4

3q
2
0 + 18q3

3q2q1q0

− 4q3
3q

3
1 − 4q2

3q
3
2q0 + q2

3q
2
2q

2
1,

and

∆1 =− 8q4q2 − 3q2
3,

∆2 =64q3
4q0 − 16q2

4q
2
2 − 16q4q

2
3q2 + 16q2

4q3q1 − 3q4
3.

They classify the nature of the roots of the quartic polynomial q. Specifically, if ∆0 < 0

then the roots of q are distinct, two real and two complex. If ∆0 > 0 and ∆1 > 0 then the

roots are distinct and complex. If ∆0 > 0 and if ∆1 < 0, ∆2 > 0 then the roots of q are

distinct and complex. If ∆0 > 0 and if ∆1 < 0, ∆2 < 0, on the other hand, then the roots

are distinct and real. If ∆0 = 0 then at least two roots are equal; see [HP16b], for instance,

for a complete proof. Note that ∆0 is the discriminant of q.

Note that ∆0, ∆1, ∆2 are even in ξ and a. We may write

∆0(k; ξ, a) =:∆0(k; ξ, 0) + a2∆(k) +O(a2(ξ2 + a2)),

and

∆1(k; ξ, a) =∆1(k; ξ, 0) +O(a2),

∆2(k; ξ, a) =∆2(k; ξ, 0) +O(a2)

as a → 0 for any ξ > 0 and sufficiently small for any k > 0. We then use (4.4.4), (4.4.5),
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(4.5.1), (4.5.2), and we make a Mathematica calculation to show that

∆0(k; ξ, 0) =4ξ2k2(((kcww(k))′)2 − 1)4((kcww(k))′′)2 +O(ξ4) > 0,

and

∆1(k; ξ, 0) =− 4(2 + (cww(k) + kc′ww(k))2) +O(ξ2) < 0,

∆2(k; ξ, 0) =− 16(1 + 2(cww(k) + kc′ww(k))2) +O(ξ2) < 0

as ξ → 0 for any k > 0. Therefore, for a ∈ R, |a| sufficiently small and fixed, if ∆(k) < 0

for some k > 0 then it is possible to find a sufficiently small ξ0 > 0 such that ∆0(k; ξ, a) < 0

and ∆1, ∆2 < 0 for ξ ∈ (0, ξ0). Hence q possesses two real and two complex roots for

ξ ∈ (0, ξ0), implying the modulational instability. We pause to remark that one must take ξ

small enough so that a2∆(k) dominates ∆0(k; ξ, 0) = O(ξ2). That means, the modulational

instability is a nonlinear phenomenon. If ∆ > 0, on the other hand, then ∆0 > 0 and ∆1,

∆2 < 0 for ξ > 0 sufficiently small. Hence the roots of q are real for ξ > 0 sufficiently small.

Hence this implies the spectral stability in the vicinity of the origin in C.

We use (4.4.4), (4.4.5), (4.5.1), (4.5.2), and we make a Mathematica calculation to find

∆ explicitly, whereby we derive a modulational instability index for (4.1.3)-(4.1.2). We

summarize the conclusion.

Theorem 4.5.1 (Modulational instability index). A sufficiently small, 2π/k-periodic wave

train of (4.1.3)-(4.1.2) is modulationally unstable, provided that

∆(k) :=
i1(k)i2(k)

i3(k)
i4(k) < 0, (4.5.3)

where

i1(k) =(kcww(k))′′, (4.5.4a)

i2(k) =((kcww(k))′)2 − 1, (4.5.4b)

i3(k) =c2
ww(k)− c2

ww(2k), (4.5.4c)

and

i4(k) =3c2
ww(k) + 5c4

ww(k)− 2c2
ww(2k)(c2

ww(k) + 2) (4.5.4d)

+ 18kc3
ww(k)c′ww(k) + k2(c′ww)2(k)(5c2

ww(k) + 4c2
ww(2k)).
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It is spectrally stable to square integrable perturbations in the vicinity of the origin in C
otherwise.

4.6 Results

Since (kcww(k))′ < 1 for any k > 0 and decreases monotonically over the interval (0,∞) by

brutal force, i1(k) < 0 and i2(k) < 0 for any k > 0. Since cww(k) > 0 for any k > 0 and

decreases monotonically over the interval (0,∞) (see Figure 4.1), i3(k) > 0 for any k > 0.

Hence the sign of ∆ coincides with that of i4.

We use (4.7.11) and make an explicit calculation to show that

lim
k→0+

i4(k)
√
k

5 = 9 and lim
k→∞

ki4(k) = −3.

Hence ∆(k) > 0 for k > 0 sufficiently small, implying the modulational stability, and it is

negative for k > 0 sufficiently large, implying the spectral stability in the vicinity of the

origin in C. Moreover, the intermediate value theorem asserts a root of i4, which changes

the modulational stability and instability.

0.5 1.0 1.5 2.0
κ

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4.2: The graph of i4(k) for k ∈ (0, 2).

It is difficult to analytically study the sign of i4 further. On the other hand, a numerical

evaluation of (4.7.11) reveals a unique root kc, say, of i4 over the interval (0,∞) (see Fig-

ure 4.2) such that i4(k) > 0 if 0 < k < kc and it is negative if kc < k < ∞. Upon close

inspection (see Figure 4.3), moreover, kc = 1.610 . . . . We summarize the conclusion.

Corollary 4.6.1 (Critical wave number). A sufficiently small, 2π/k-periodic wave train of

(4.1.3)-(4.1.2) is modulationally unstable if k > kc, where kc = 1.610 . . . is a unique root of i4
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1.0

Figure 4.3: The graph of i4(1.61k−1) for k ∈ (0, 2).

in (4.7.11) over the interval (0,∞). It is spectrally stable to square integrable perturbations

in the vicinity of the origin in C if 0 < k < kc.

Corollary 4.6.1 qualitatively states the Benjamin-Feir instability of a Stokes’ wave. For-

tuitously, the critical wave number compares reasonably well with that in [BH67, Whi67]

and [BM95]. The critical wave number for the Whitham equation is 1.146 . . . ; see [HJ15a],

for instance.

We point out that the critical wave number in [BH67,Whi67] and [BM95] was determined

by an approximation of the numerical value of some explicit function of k, which seems diffi-

cult to calculate analytically. Therefore, it is not surprising that the proof of Corollary 4.6.1

ultimately relies on a numerical evaluation of the modulational instability index (4.5.3).

4.7 The full-dispersion shallow water equation-II

We derive a modulational instability index for (4.1.4)-(4.1.2). The details of the proof follow

along Sections 4.2-4.6. We briefly present the main ideas and record relevant expressions.

By a traveling wave of (4.1.4)-(4.1.2), we mean a stationary solution of form (η, u)(x, t) =

(η, u)(x−ct) for some c > 0. Further, we take η and u to be 2π-periodic functions of z = kx.

The result becomes, by quadrature,

− cη + c2
ww(k|∂z|)u+ uη = (1− c2)b1,

− cu+ η +
1

2
u2 = (1− c2)b2,

(4.7.1)

for some b1, b2 ∈ R.
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The existence of a smooth η and u satisfying (4.7.1) follows from a Lyapunov-Schmidt

procedure. The small amplitude expansion of solutions is given as

η(a; k, b1, b2)(z) =η0(k, b1, b2) + acww(k) cos z +
a

2cww(k)
(b1cww(k) + b2) cos z

+ a2
(
cww(k)h0 −

1

4
+
(
cww(k)h2 −

1

4

)
cos 2z

)
+O(a(a+ b1 + b2)2),

u(a; k, b1, b2)(z) =u0(k, b1, b2) + a cos z + a2(h0 + h2 cos 2z) +O(a(a+ b1 + b2)2),

and

c(a; k, b1, b2) =c0(k, b1, b2) +
3

2
a2
(
h0 +

1

2
h2 −

1

8cww(k)

)
+O(a(a+ b1 + b2)2)

as a, b1, b2 → 0;

η0(k, b1, b2) = b1cww(k) + b2 +O((b1 + b2)2),

u0(k, b1, b2) = b1 + b2cww(k) +O((b1 + b2)2),

and

c0(k, b1, b2) = cww(k) +
3

2
b1 +

1

2cww(k)
b2(2c2

ww(k) + 1) +O((b1 + b2)2)

as b1, b2 → 0, where

h0 =
3

4

cww(k)

c2
ww(k)− 1

and h2 =
3

4

cww(k)

c2
ww(k)− c2

ww(2k)
. (4.7.4)

We linearize (4.1.4)-(4.1.2) about η and u in the coordinate frame moving at the speed

c > 0 and seek a solution of the form v(z, t) = eλktv(z), λ ∈ C, to arrive at

λv = ∂z

(
c− u −c2

ww(k|∂z|)− η
−1 c− u

)
v =: L(a; k)v.

Using Floquet theory, the L2(R)× L2(R)-spectrum of L is decomposed into L2(T)× L2(T)

spectra of L(ξ, a)’s for ξ ∈ (−1/2, 1/2] defined by

L(ξ, a)v(ξ) := e−iξzLeiξzv(ξ).

For any ξ ∈ (−1/2, 1/2], the L2(T)× L2(T)-spectrum of L(ξ, a) consists of eigenvalues with
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finite multiplicities. A straightforward calculation shows that zero is an eigenvalue of L(0, 0)

with multiplicity four. For |a| 6= 0, zero continues to be an eigenvalue of L(0, a) with a four-

dimensional generalized eigenspace. For |ξ| and |a| small, we are interested in the eigenvalues

of L(ξ, a) bifurcating from the zero eigenvalue of L(0, a). For this purpose, we extend the

eigenspace for the zero eigenvalue of L(0, a) to construct a four-dimensional eigenspace for

the bifurcating eigenvalues of L(ξ, a), for |ξ| and |a| small. This eigenspace is spanned by

(see Lemma 4.3.1)

φ1(ξ, a)(z) =

(
cww(k)

1

)
cos z + iξ

kc′ww(k)

c2
ww(k) + 1

(
1

−cww(k)

)
sin z

+
a

4cww(k)

(
−cww(k)(1 + 4cww(k)h2)

1− 4cww(k)h2

)

+
a

2

(
4cww(k)h2 − 1

4h2

)
cos 2z + ξ2p2 cos z +O(ξ3 + ξ2a+ a2),

φ2(ξ, a)(z) =

(
cww(k)

1

)
sin z − iξ kc′ww(k)

c2
ww(k) + 1

(
1

−cww(k)

)
cos z

+
a

2

(
4cww(k)h2 − 1

4h2

)
sin 2z + ξ2p2 sin z +O(ξ3 + ξ2a+ a2),

φ3(ξ, a)(z) =

(
2cww(k)

−1

)
+ a

(
1

0

)
cos z − 1

6
ξ2k2cww(k)

(
1

0

)
+O(ξ3 + ξ2a+ a2),

φ4(ξ, a)(z) =

(
1

2cww(k)

)
+

a

2cww(k)

(
1

0

)
cos z − 1

12
ξ2k2

(
1

0

)
+O(ξ3 + ξ2a+ a2)

(4.7.5)

up to orders of ξ2 and a as ξ, a→ 0, where h2 is in (4.7.4) and

p2 =
1

2

k2

c2
ww(k) + 1

 −3
(cww(c′ww)2)(k)

c2
ww(k) + 1

+ c′′ww(k)

c′ww(k)2 2c2
ww(k)− 1

c2
ww(k) + 1

− (cwwc
′′
ww)(k)

 .

For |ξ| and |a| small, the four eigenvalues of L(ξ, a) bifurcating from zero eigenvalue

coincide with the roots of det(L − λI) up to orders of ξ2 and a (see [Kat76, Section 4.3.5],

for instance, for details), where

L(ξ, a) =

(
〈L(ξ, a)φk(ξ, a),φ`(ξ, a)〉
〈φk(ξ, a),φk(ξ, a)〉

)
k,`=1,2,3,4

(4.7.6)

76



and

I(ξ, a) =

(
〈φk(ξ, a),φ`(ξ, a)〉
〈φk(ξ, a),φk(ξ, a)〉

)
k,`=1,2,3,4

, (4.7.7)

where φ1, φ2, φ3, φ4 are in (4.7.5) and 〈 , 〉 means the L2(T) × L2(T)-inner product. This

amounts to the fact that restricted on a four-dimensional eigenspace, L(ξ, a) can be defined

by the 4× 4 matrix L(ξ, a) obtained by calculating its action on the basis {φ1,φ2,φ3,φ4}.
Therefore, the eigenvalues of the resulting matrix are given by the roots of its characteristic

polynomial det(L− λI), where I is the projection of the identity onto the eigenspace.

We omit all the details of the calculation as it is very similar to FDSW-I and report that

(4.7.6) becomes

L(ξ, a) =
1

4
a(c2

ww(k) + 1)


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0



+ iξ


−kc′ww(k) 0 0 0

0 −kc′ww(k) 0 0

0 0 cww(k)4c2ww(k)+5
4c2ww(k)+1

−4c2ww(k)−1
4c2ww(k)+1

0 0 −4c2ww(k)−1
4c2ww(k)+1

cww(k)4c2ww(k)−3
4c2ww(k)+1



+ iξaL


0 0 2cww(k) 1

0 0 0 0

0 0 0 0

0 0 0 0

+ iξa
1

2(4c2
ww(k) + 1)


0 0 0 0

0 0 0 0

L31 0 0 0

L41 0 0 0



+
1

2
ξ2k(2c′ww(k) + kc′′ww(k))


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

+O(ξ3 + ξ2a+ a2)

(4.7.8)

as ξ, a→ 0, where

L =
1

2cww(k)(c2
ww(k) + 1)

(4cww(k)(1− c2
ww(k))h2 − kcww(k)c′ww(k)− 1− 5c2

ww(k)),

L31 =4cww(k)(1− c2
ww(k))h2 − 2− c2

ww(k),

L41 =
1

2cww(k)
(4cww(k)(1− c2

ww(k))h2 − 2(c2
ww(k) + 1)− 4c4

ww(k)),
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and h2 is in (4.7.4). Moreover, (4.7.7) becomes

I(ξ, a) =I + a
4cww(k)(1− 2c2

ww(k))h2 − 1

4cww(k)(c2
ww(k) + 1)(4c2

ww(k) + 1)


0 0 2(4c2

ww(k) + 1) 0

0 0 0 0

c2
ww(k) + 1 0 0 0

0 0 0 0



+ a
1− 6cww(k)h2

2(c2
ww(k) + 1)(4c2

ww(k) + 1)


0 0 0 2(4c2

ww(k) + 1)

0 0 0 0

0 0 0 0

c2
ww(k) + 1 0 0 0


− iξa kc′ww(k)

4cww(k)(c2
ww(k) + 1)2(4c2

ww(k) + 1)
0 0 0 0

0 0 4cww(k)(4c2
ww(k) + 1) 2(4c2

ww(k) + 1)

0 2cww(k)(c2
ww(k) + 1) 0 0

0 c2
ww(k) + 1 0 0


+O(ξ3 + ξ2a+ a2)

(4.7.9)

as ξ, a → 0, where I is the 4 × 4 identity matrix. The analysis of the roots of quartic

polynomial, det(L − λI), in λ can be analyzed using discriminants (see Section 4.5, for

details), and we derive a modulational instability index for (4.1.4) and (4.1.2) given by

∆(k) :=
i1(k)i2(k)

i3(k)
i4(k), (4.7.10)

where

i1(k) =(kcww(k))′′,

i2(k) =((kcww(k))′)2 − 1,

i3(k) =c2
ww(k)− c2

ww(2k),

and

i4(k) =9c2
ww(k)i2(k) + i3(k)(3 + 15c2

ww(k) + 6kcww(k)c′ww(k)− k2(c′ww(k))2). (4.7.11)

Again, a straightforward analysis shows that i1(k) < 0 and i2(k) < 0 for any k > 0
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while i3(k) > 0 for any k > 0. A numerical evaluation of (4.7.11) reveals a unique root

kc = 1.008 . . . of i4 over the interval (0,∞) such that i4(k) > 0 if 0 < k < kc and it is

negative if kc < k < ∞ (see Figures 4.4 and 4.5). Therefore, a sufficiently small 2π/k-

periodic traveling wave of (4.1.4) and (4.1.2) is modulationally unstable if k > kc. It is

modulationally stable if 0 < k < kc.

0.5 1.0 1.5 2.0
κ

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4.4: The graph of i4(k) for k ∈ (0, 2).
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Figure 4.5: The graph of i4(1.008k−1) for k ∈ (0, 2).
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Chapter 5

The Effects of Surface Tension

In this chapter, we consider the effects of surface tension on modulational instability. The

full-dispersion shallow water models can be easily modified to incorporate surface tension.

The existence of periodic traveling waves can be established by Lyapunov-Schmidt procedure

same as in zero surface tension case. The Floquet-Bloch theory and perturbation analysis

can be applied as it is and we derive a modulational instability index. We obtain a stability

diagram for each model in k−k
√
T plane and compare the results with the physical problem

obtained in [DR77] and [Kaw75].

5.1 The equation

The full-dispersion shallow water models can be modified to incorporate surface tension by

replacing cww(k) by cww(k;T ), where,

cww(k;T ) :=

√
(1 + Tk2)

tanh k

k
, (5.1.1)

where T is the coefficient of surface tension. In this chapter, we compare the effects of surface

tension on modulational instability in the Whitham equation (3.1.3), full-dispersion shallow

water equations (4.1.3) and (4.1.4) and full-dispersion Camassa-Holm equation (3.2.1) with

surface tension. The results of this chapter appeared in [Pan17].

Properties of cww(· ;T ): For any T > 0, since

c2
ww(k;T ) = (1 + Tk2)c2

ww(k),

note that c2
ww(· ;T ) is even and real analytic, and c2

ww(0;T ) = 1. Moreover, c2
ww(|∂x|;T ) may

be regarded equivalent to 1+ |∂x| in the L2-Sobolev space setting. In particular, c2
ww(|∂x|;T ) :

Hs+1(R)→ Hs(R) for any s ∈ R.

When T > 1/3, note that cww(· ;T ) increases monotonically and unboundedly away from
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the origin. When 0 < T < 1/3, on the other hand, c′ww(0;T ) = 0, c′′ww(0;T ) < 0 and

cww(k;T ) → ∞ as k → ∞. Hence cww(· ;T ) possesses a unique minimum over the interval

(0,∞); see Figure 5.1.

(a)

1

κ (b)

1

κ

Figure 5.1: Schematic plots of cww(· ;T ) when (a) T > 1/3 and (b) 0 < T < 1/3.

5.2 Periodic traveling waves

Here the existence proof follows along the same line as that in Sections 2.2, 3.2 or 4.2.

Interested reader may look at [HJ15b] for the Whitham equation, [HP16a] and [Pan17] for

the full-dispersion shallow water equations (4.1.3) and (4.1.4) respectively and [HP17] for

the full-dispersion Camassa-Holm equation.

The main difference from the zero surface tension case in the existence proof is the kernel

of the linearized operator. When T > 1/3, since cww(k;T ) < cww(nk;T ) for any n = 2, 3, . . .

pointwise in R (see Figure 5.1a), the kernel and co-kernel of the linearized operator is two

dimensional. Hence, non-constant solutions bifurcate from the constant solution.

When 0 < T < 1/3, on the other hand, for any integer n > 2, it is possible to find

some k such that cww(k;T ) = cww(nk;T ) (see Figure 5.1b). If cww(k;T ) 6= cww(nk;T ) for

any n = 2, 3, . . . then the kernel and co-kernel of the linearized operator is likewise two

dimensional. Hence, non-constant solutions bifurcate from the constant solution. But if

cww(k;T ) = cww(nk;T ) for some integer n > 2, resulting in the resonance of the fundamental

mode and the n-th harmonic, then the kernel is four dimensional.

To proceed, for any T > 0, for any k > 0 satisfying

cww(k;T ) 6= cww(nk;T ), n = 2, 3, . . . , (5.2.1)

we may repeat the Lyapunov-Schmidt procedure as in Sections 2.2, 3.2 and 4.2 to establish

that a one parameter family of solutions exist. If cww(k;T ) = cww(nk;T ) for some integer
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n > 2 for some k > 0 then the proof breaks down.

5.3 The modulational stability index

The modulational instability analysis developed in earlier chapters can be applied as it is.

The modulational instability index is given by

∆(k;T ) :=
i1(k;T )i2(k;T )

i3(k;T )
i4(k;T ), (5.3.1)

where

i1(k;T ) =(kcww(k;T ))′′,

i2(k;T ) =((kcww(k;T ))′)2 − 1 =: i+2 i
−
2 (k;T ),

i3(k;T ) =c2
ww(k;T )− c2

ww(2k;T ) =: i+3 i
−
3 (k;T ),

and

i4(k;T ) =(2i−3 + i−2 )(k;T ), for Whitham,

i4(k;T ) =
(

3i−2 − i−2 i−3 + 6i−3 − 1
12
k2(57i−2 + 34i−3 ) + 1

108
k4(198i−2 + 35i−3 )

)
(k;T ), for FDCH,

i4(k;T ) =3c2
ww(k;T ) + 5c4

ww(k;T )− 2c2
ww(2k;T )(c2

ww(k;T ) + 2) + 18kc3
ww(k;T )c′ww(k;T )

+ k2(c′ww)2(k;T )(5c2
ww(k;T ) + 4c2

ww(2k;T )), for FDSW-I,

i4(k;T ) =9c2
ww(k;T )i2(k;T ) + i3(k;T )(3 + 15c2

ww(k;T ))

+ i3(k;T )(6kcww(k;T )c′ww(k;T )− k2(c′ww(k;T ))2), for FDSW-II.

A sufficiently small, 2π/k-periodic wave train is modulationally unstable, provided that

∆(k;T ) < 0. It is spectrally stable to square integrable perturbations in the vicinity of

the origin in C otherwise. A change in sign of ∆(k;T ) and thus, in stability occurs when

one of the factors ij’s, j = 1, 2, 3, 4 vanishes. Notice that for a fixed T , all these factors

explicitly depend on the wave number k, the phase velocity cww(k;T ), and the group velocity

(kcww(k;T ))′. Therefore, the vanishing of each of the factor is associated with some resonance

in the wave (see [HP16a]). Specifically,

(R1) i1(k;T ) is derivative of the group velocity and therefore, if i1(k;T ) = 0 at some k, the

group velocity achieves an extremum at the wave number k;

(R2) i2(k;T ) is the difference between the group velocity and the phase velocity in the long
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wave limit as k → 0, that is, ±cww(0;T ) = ±1 and therefore, if i2(k;T ) = 0 at some k;

it results in the “resonance of short and long waves;”

(R3) i3(k;T ) is the difference between the phase velocities of the fundamental mode, ±cww(k)

and second harmonic, ±cww(2k;T ) and therefore, i3(k;T ) = 0 at some k implies “second

harmonic resonance;”

(R4) i4(k;T ) is the only factor which captures the nonlinearity, and we expect i4(k;T ) to

vanish when dispersion effects balance the nonlinear effects.

We describe the modulational instability through the diagram, Figure 5.2. In k-k
√
T

plane, four curves are corresponding to each mechanism split the plane into three regions

of stability and three regions of instability. Any fixed T > 0 corresponds to a line passing

through the origin of slope
√
T .

For 0 < T < 1/3, the line crosses all the curves producing three intervals of stable wave

numbers and three intervals of unstable wave numbers. Therefore, for 0 < T < 1/3, all the

four mechanisms (R1) to (R4) contribute towards modulational instability.

On the other hand, for T > 1/3, the line through the origin only crosses the Curve 4

corresponding to i4(k;T ) = 0, see Figure 5.2. In this case, the modulational instability is

caused only by the mechanism (R4) similar to the case T = 0. For every T > 1/3, there

is a critical wave number kc(T ) such that a sufficiently small 2π/k-periodic traveling wave

is modulationally unstable if k > kc(T ). The limit limT→∞ kc(T ) is finite for the physical

problem, FDSW-I and FDCH but infinity for the Whitham and FDSW-II equations. The

result becomes inconclusive for T = 1/3.

The effects of surface tension on modulational instability in all these models along with the

full water wave problem have been compared in Figure 5.2. The diagrams corresponding to

model equations, Figure 5.2a,5.2b,5.2c,5.2d, contain four curves corresponding to each mech-

anism from (R1) to (R4). The diagram corresponding to the physical problem, Figure 5.2e,

has five curves and by a direct comparison with the model equations, it can be deduced that

Curves 2, 3 and 4 are coming from mechanisms (R1), (R2) and (R3) respectively since the

full water wave problem shares dispersion with all these models. Moreover, Curves 1 and 5

of Figure 5.2e can be results of the interaction between dispersion and nonlinearity of the

full water wave problem, like other models.

In Figure 5.2, a fixed T > 0 corresponds to a line passing through the origin. For small

surface tensions, in the physical problem, the wave numbers are divided into three intervals

of stability and three intervals of instability, see Figure 5.2e. All the models agree with the

physical problem for small surface tensions, more precisely, for 0 < T < 1/3.
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The physical problem reveals that for sufficiently large surface tension, the stability changes

to instability only once about a critical wave number much like Benjamin-Feir instability for

T = 0, see Figure 5.2e. In all the models, for T > 1/3, there is a critical wave number

kc(T ) about which the stability changes to instability and therefore, all the models agree

qualitatively with the physical problem. The difference in models arises when we look at

limT→∞ kc(T ). The physical problem suggests that this limit is finite and approximately

equal to 1.121. As we can see from Figure 5.2, limT→∞ kc(T ) diverges for the Whitham

equation and FDSW-II model. In other words, all sufficiently small periodic traveling waves

of the Whitham and FDSW-I model are modulationally stable in the large surface tension

limit, which is unphysical as suggested by the physical problem. On the other hand, for

FDSW-I model, limT→∞ kc(T ) ≈ 1.054. Therefore, in the large surface tension limit, the

FDSW-I model explains the effects of surface tension similar to the physical problem. For

the FDCH equation, limT→∞ kc(T ) ≈ 1.283 and it offers an improvement over the Whitham

equation.

The comparative study suggests that although both FDSW-I and FDSW-II are bi-directional

shallow water models extending nonlinear shallow water equations to include full-dispersion

of water waves, the FDSW-I is a better model as far as modulational instability is concerned.
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(d) FDSW-II
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Figure 5.2: Stability diagram for sufficiently small, periodic wave trains of models
indicated. “S” and “U” denote stable and unstable regions. In Figures 5.2a-5.2d, solid
curves represent roots of the modulational instability index and are labeled according to
their mechanism. Figure 5.2a, 5.2b, 5.2c and 5.2d are adapted
from [HJ15b], [HP17], [HP16a] and [Pan17] respectively. Figure 5.2e is taken from [DR77].
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