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Abstract

This thesis is motivated by the W -operators introduced by Mironov et al. [18]. We prove

that the W -operators are generalizations of the cut-and-join operator studied by Goulden

and Jackson [11]. We give a new description of the structure of W -operators, using the

combinations of symmetric groups. As an application, we prove new formulas about gen-

erating functions of connected Hurwitz numbers and give topological recursion formulas for

d-Hurwitz numbers.
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Chapter 1

Introduction

1.1 Background

1.1.1 W-Operator

The cut-and-join operator ∆ was introduced by Goulden [11]. It is an infinite sum of differ-

ential operators in variables pi, i ≥ 1. It plays an important role in calculating the simple

Hurwitz numbers [18].

In 2008, Mironov et al. [29][30] constructed W -operators W ([d]), where d is a positive

integer. They are differential operators acting on the space C[[Xij]]i,j≥1 of formal series in

variables Xij (i, j ≥ 0), where Xij are coordinate functions on the infinite matrix. A subring

of C[[Xij]]i,j≥1 is C[p1, p2, ...], where pk = Tr(Xk) and X = (Xij)i,j≥1. A direct calculation

shows that W ([2]) is the cut-and-join operator ∆ on the ring C[p1, p2, ...]. Mironov et al.

proved an equation for the generating function of disconnected Hurwitz numbers as an

application of W -operators [29], [30]. We will briefly discuss their results in the next section

about Hurwitz number.

1.1.2 Hurwitz Number

The Hurwitz enumeration problem aims at classifying all n-fold coverings X → S2 (or

X → CP 1), i.e. with k branch points {z1, ..., zk}. One obtains many different problems by

imposing conditions on the coverings. The number of solutions of the given type is called

the Hurwitz number of that type. For instance, if we want X to be a connected space, we

deal with the connected Hurwitz problem and connected Hurwitz numbers. Otherwise, if

X can be disconnected, we deal with the disconnected Hurwitz problem and disconnected

Hurwitz number. Generally, Hurwitz numbers are collected in generating functions and the

relation between disconnected and connected generating functions of the Hurwitz numbers
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with a specific type is given by

eH
con

= Hdis,

where Hcon is the generating function for connected Hurwitz numbers and Hdis for the

disconnected Hurwitz numbers for the specific type. In Chapter 3, Section 2 discusses the

generating function of disconnected d-Hurwitz numbers (or d-Frobenius numbers) and the

other sections deal with the generating functions of connected Hurwitz numbers.

Given such a covering X → S2, each branch point zi corresponds to a permutation σi in

Sn. Denote by λi the partition corresponding to σi. The number of all connected n-coverings

with k ordered branch points zi, 1 ≤ i ≤ k, each of which corresponds to a permutation of

type λi, 1 ≤ i ≤ k, is finite. This number is denoted by Covn(λ1, ..., λk). Equivalently,

Covn(λ1, ..., λk) is the number of k-tuples (σ1, ..., σk) ∈ Skn satisfying the following conditions

[1], [26],

(1) σi is of type λi,

(2) σ1...σk = 1,

(3) The group generated by the elements {σ1, ..., σk} is transitive on the set {1, ..., n}.

There are many different types of Hurwitz numbers well-studied by different mathemati-

cians. In 1891, Hurwitz first studied the branched covers of the sphere by an n-sheeted

Riemann surface [22]. Hurwitz proposed a formula for the minimal simple Hurwitz number

(see Definition 3.3.1) without a proof. Simple means that all but one λi are transpositions

and minimal means that the genus of the covering space X is zero. In 1997, Goulden and

Jackson confirmed Hurwitz’s formula by calculating this number in a combinatorics way [12].

In 2000, four mathematicians, Ekedahl, Lando, Shapiro and Vainshtein, proved the ELSV

formula for the simple Hurwitz number using the Hodge integral [5],[6], which is a more

general formula working for covering spaces with genus g ≥ 0. This formula gives an inter-

pretation of the Hurwitz number in algebraic geometry. When g = 0, ELSV formula gives

the Hurwitz’s formula for minimal simple Hurwitz number. At the same time, Okounkov

and R. Pandharipande used the branch morphism for the stable maps [7] and localization

formula [10] to give another proof of the ELSV formula [33]. All of the above results are

about the connected Hurwitz number, which means that the covering space X is connected.

Later on, Okounkov proved that the generating function of double Hurwitz number satisfies

the Toda equation [31]. In 2005, Goulden, Jackson and Vakil studied the geometry of the
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double Hurwitz number [15]. The double Hurwitz numbers counts the coverings where all

but two of the permutations σi are transpositions. In 2006, Okounkov and Pandharipande

constructed the Gromov-Witten/Hurwitz correspondence [32], which is a bridge connecting

the representation theory (shifted Boson-Fermion correspondence) with algebraic geometry

(Gromov-Witten invariants). In their work, they focus on the disconnected Hurwitz number,

because there is a natural correspondence between the disconnected Hurwitz number and

the representation theory of permutation groups. Later on, Cavalieri, Johnson, Markwig

studied the wall-crossings for double Hurwitz number in 2011 [2]. Shadrin, Spitz and Zvonk-

ine studied the r-spin Hurwitz number. Roughly speaking, they wanted to use the r-spin

Gromov-Witten invariants to calculate the r-spin Hurwitz number, which is still a conjecture

[37]. In 2016, Harnad wrote an overview about the weighted Hurwitz number and used mKP

and 2D Toda lattice τ -functions to study the generating functions of the weighted Hurwitz

number [21].

Now we will give a brief review about the generating functions of the simple Hurwitz

number.

Given α a partition of n, in this paper, the simple Hurwitz number is defined as

hk(α) = Covn(1n−22, ..., 1n−22, α).

It is the number of (k + 1)-tuples (σ1, ..., σk, σ
−1) ∈ Sk+1

n satisfying the following conditions

(1) σi are transpositions (or of type 1n−22), where 1 ≤ i ≤ k, and σ−1 is of type α,

(2) σ1...σk = σ,

(3) the group generated by {σ1, ..., σk} is transitive on the set {1, ..., n}.

Simple means that all but one permutation are transpositions. Compared with the classi-

cal simple Hurwitz number [11], [18], Covn(1n−22, ..., 1n−22, α) counts all possible k-tuples

(σ1, ..., σk, σ
−1) where σ is of type α while the classical Hurwitz number counts all k-tuples

(σ1, ..., σk, σ
−1) with an arbitrary but fixed permutation σ of type α. In this paper, we call

hk(α) = Covn(1n−22, ..., 1n−22, α) the simple Hurwitz number.

The generating function H for simple Hurwitz numbers is

H(u, p) = H(u, p1, p2, ...) =
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

hk(α)
uk

k!
pα ,
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where pα = pα1 ...pαl , α = (α1, α2, ..., αl). This generating function satisfies the following

equation [14], [16]

∂H

∂u
=

1

2

∑
i,j≥1

(
(i+ j)pipj

∂H

∂pi+j
+ ijpi+j

∂2H

∂pi∂pj
+ ijpi+j

∂H

∂pi

∂H

∂pj

)
. (1.1.1)

We will discuss this equation in detail later and we prove a more general theorem (Theorem

3.4.3) from which Equation (1.1.1) follows (see Section 3.4).

Now we introduce another parameter y to the generating function H(u, p) for the genus

g. By Riemann-Hurwitz formula, the genus g is uniquely determined by the degree n, the

number of transpositions k and the length l(α) of partition α,

g =
k − n− l(α)

2
+ 1.

Define H(u, p)(y) as

H(u, p)(y) =
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

hk(α)
uk

k!
pαy

g .

We rewrite H(u, p)(y) as

H(u, p)(y) =
∑
g

Hg(u, p)yg,

where Hg(u, p) =
∑

n≥1
1
n!

∑∞
k=1

∑
α`n h

g
k(α)u

k

k!
pα. Here hgk(α) is the Hurwitz number of

coverings with genus g, which is a finite number.

Clearly, H(u, p)(y) also satisfies (1.1.1) and we take the coefficient of yg on both sides of

(1.1.1), we have

∂Hg

∂u
=

1

2

∑
i,j≥1

(i+ j)pipj
∂Hg

∂pi+j
+ ijpi+j

∂2Hg−1

∂pi∂pj
+

∑
g1+g2=g

ijpi+j
∂Hg1

∂pi

∂Hg2

∂pj
. (1.1.2)

Goulden and Jackson use formula (1.1.1) and (1.1.2) to calculate the Hurwitz number hgk(α)

for lower genus g = 0, 1, 2 [18], [13], [14], .
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Equation (1.1.1) comes from the idea of cut-and-join operator ∆ [11]

∆ =
1

2

∑
i≥1

∑
j≥1

(ijpi+j
∂2

∂pi∂pj
+ (i+ j)pipj

∂

∂pi+j
),

which satisfies the following formula

Φ(K(1n−22)g) = ∆Φ(g). (1.1.3)

where g is any element in the permutation group Sn, K(1n−22) is the central element of CSn
corresponding to the partition (1n−22) and Φ is a linear map from the group ring CSn to the

polynomial ring C[p1, p2, ...]. Precise definitions can be found in Section 2.9.

1.2 Outline of the Paper and Statement of results

1.2.1 W-Operator

In Section 2.1, we give the definition of the W -operator W ([n]). Section 2.2 aims at intro-

ducing the main tools, permutations and quivers, to prove Theorem 2.3.1. In Section 2.3,

we give the proof of the structure Theorem 2.3.1 of W ([n]).

Theorem. 2.3.1 W ([n]) is a well-defined operator on C[p1, p2, ...] and it can be written as

the sum of n! summations, each of which corresponds to a unique quiver Q̂β or equivalently

a unique permutation β ∈ Sn.

The summation corresponding to permutation β is denoted by FSβ and we call it the

free summation. (See Definition 2.3.2.) The first part of the theorem, that W ([n]) is a well-

defined operator on C[p1, p2, ...], is a basic property and the second part shows that there is

a relation between the permutation group and the W -operators. This theorem gives a new

way of studying the W -operator W ([d]). This theorem was first proved in paper [38].

In Section 2.4, we study some combinatorics properties of the summations. We define

the degree of summations in W ([n]). The degree of the summation FSβ is the sum of its

polynomial part’s degree and the order of its differential part. For example, consider the

following summation

FS(1) =
∑
i=1

ipi
∂

∂pi
,

5



where (1) is the unique permutation in S1. The degree of this summation is 2. The degree

of different summations in W ([n]) can be different. Given a positive integer n, we find that

the degree for free summations FSα can only be n+ 1, n− 1, ..., where α ∈ Sn. (See Remark

2.4.3.) An ordinary summation (OS) is a summation with maximal degree n + 1 in W ([n])

and an (r, s)-type OS is an OS summation such that its polynomial part degree is r and its

order of differential part is s, which means r + s = n+ 1. At the end of Section 2.4, we ask

the following question.

Question. 2.4.4 Given a positive integer n, how many summations in W ([n]) are of degree

n + 1? Equivalently, what is the number of permutations in Sn such that the degree of the

corresponding summation is n+ 1?

In Section 2.5 and 2.6., we prove that this problem is equivalent to a special perfect

paring problem in combinatorics (Theorem 2.5.10 and 2.6.4). We figure out this number in

Section 2.8 (Theorem 2.8.2).

Theorem. 2.8.2 The number of (r, n− r + 1)-type OS in W ([n]) is the Narayana number:

|OS(n, r)| = 1

n+ 1

(
n+ 1

r

)(
n− 1

r − 1

)
.

The number of all summations with degree n+ 1 in W ([n]) is the Catalan number

n∑
r≥1

1

n+ 1

(
n+ 1

r

)(
n− 1

r − 1

)
=

1

n+ 1

(
2n

n

)
.

In Section 2.7, we construct the dual non-crossing sequence. (See Construction 2.7.1.)

We use this construction to prove the following corollary the number of (r, s)-type OS equals

to the number of (s, r)-type OS.

Corollary. 2.7.3 Given two positive integers n, r, we have

|OS(n, r)| = |OS(n, n− r + 1)|.

In Section 2.9, we prove the following formula about the W -operator W ([d]), which

plays an important rule in studying the generating function of Hurwitz number. It is a

generalization of the cut-and-join formula (1.1.3).

6



Theorem. 2.9.1 For any g ∈ CSn,

Φ(K(1n−dd)g) = W ([d])Φ(g), (1.2.1)

where K(1n−dd) is the central element in CSn corresponding to the partition (1n−dd).

In the theorem, the map Φ : CSn → C[p1, p2, ...] is a linear map defined as follows

Φ(g) = pλ,

where g is a permutation in Sn of type λ = (λ1, ..., λm) and pλ = pλ1 ...pλm . This theorem

was first proved in the paper [39].

In Section 2.10, we give another, equivalent, construction of W ([d]) based on the formula

we studied in Theorem 2.9.1.

1.2.2 Hurwitz Number

In section 3.1, we review some well-known theorems and properties about simple Hurwitz

number based on the cut-and-join operator. In section 3.2, we define the d-Frobenius number

f
[d]
k (α) and d-Hurwitz number h

[d]
k (α) (see Definition 3.2.6). The idea is to replace the trans-

positions used to define the simple Hurwitz numbers by d-cycles, d ≥ 2. The d-Frobenius

number is the disconnected d-Hurwitz number and the d-Hurwitz number is the connected

Hurwitz number. We also define the generating function F [d] for the d-Frobenius number

and give another proof of the following theorem, which is first proved in [29].

Theorem. 3.2.7 F [d] is the unique formal series solution in u to the differential equation

∂F [d]

∂u
= W ([d])F [d]

with initial condition

F [d](0, p) = ep1 .

In the following sections, all Hurwitz numbers we consider are connected.

In section 3.3, we consider the minimal d-Hurwitz number hd(α), which is the number

of coverings X with genus zero, and its generating function H̃min
d (z, u, p1, p2, ...). We give

7



another proof of the following formula, as an application of the W -operator. The following

theorem is first proved by Goulden and Jackson [16].

Theorem. 3.3.6

∂H̃min
d

∂u
= H̃W ([d])(H̃min

d ),

where H̃W ([d]) is defined in Construction 3.3.3.

In section 3.4, we go back to the d-Hurwitz number h
[d]
k (α) (see Definition 3.2.6), which is

number of all possible coverings f : X → S2 such that the genus of X is greater or equal to

zero and all but one permutations of the branch points are d-cycles. Its generating function

is denoted by H [d](u, p). We prove the following theorem about H [d](u, p) [40].

Theorem. 3.4.3

∂H [d]

∂u
= Ŵ ([d])H [d].

In the above theorem, Ŵ ([d]) is a differential operator related to W ([d]). In fact, we use

the entire section (section 3.4) to construct this operator Ŵ ([d]) from W ([d]). When d = 2,

Theorem 3.4.3 gives Equation (1.1.1) with H [2] = H.

In section 3.5, we consider the topological recursion of the d-Hurwitz number. Similar to

Formula (1.1.2) for the generating function of the simple Hurwitz number, we introduce an-

other parameter y to H [d](u, p) for the genus g and define the generating function H [d],g(u, p)

for genus g coverings. We have the following topological recursion formula for d-Hurwitz

number [40].

Corollary. 3.5.2

∂H [d],g

∂u
=
∑
β∈Sd

dD(FSβ)∑
i=1

∑
g1+...+gi=

g−dD(FSβ)+i

F̂Sβ,i(H
[d],g1 , ..., H [d],gi).

where F̂Sβ,i is a ”differential operator” in variables pi defined in Section 3.4 and dD(FSβ)

is the differential degree of FSβ, dP (FSβ) is the polynomial degree of FSβ introduced in

Section 2.4.

8



Some examples of these operators F̂Sβ,i are as follows.

F̂S(12),1(H [2],g) =
1

2

∑
i,j≥1

(i+ j)pipj
∂H [2],g

∂pi+j
,

F̂ S(1)(2),1(H [2],g−1) =
1

2

∑
i,j≥1

ijpi+j
∂2H [2],g−1

∂pi∂pj
,

F̂ S(1)(2),2(H [2],g1 , H [2],g2) =
1

2

∑
i,j≥1

ijpi+j
∂H [2],g1

∂pi

∂H [2],g2

∂pj
.

When d = 2, Corollary 3.5.2 gives Equation (1.1.2) (H [2],g = Hg).

9



Chapter 2

W -Operator

W -operators were originally defined in Mironov, Morozov and Natanzon’s paper [30]. The

W -operator was used for studying the Hurwitz number (possibly disconnected) [30] [29]. This

chapter is based on our papers about the W -operators W ([n]) [38] [39]. We use permutation

groups and quivers to study the structure of the W -operators W ([n]).

2.1 Definition of W -Operator

The goal of this section is to give the definition of the W -operator W ([n]).

Definition 2.1.1. A variable matrix X is an infinite matrix with variable Xab in the (a, b)-

entry, i.e. X := (Xab)a≥1,b≥1.

Definition 2.1.2. Given k ≥ 1, pk is the trace of Xk, i.e. pk = tr(Xk). pk is a power series

in C[[Xab]]a,b≥1. C[p1, p2, ...] is a polynomial ring with infinitely many variables pk.

Remark 2.1.3. If X is a special variable matrix with Xab = 0, when a 6= b, then pk is

exactly the power sum symmetric function
∑∞

i=1X
k
ii.

Definition 2.1.4. The operator matrix D is the infinite matrix with Dab in the (a, b)-entry,

where Dab =
∞∑
c=1

Xac
∂

∂Xbc
.

In the rest of the paper, we prefer to write Dab = Xac
∂

∂Xbc
with the summation over c

implied.

Lemma 2.1.5. Let F (p) be any polynomial (or formal power series) in C[p1, p2, ...] (or

C[[p1, p2, ...]]. We have

DabF (p) =
∞∑
k=1

k(Xk)ab
∂F (p)

∂pk
. (2.1.1)

10



For k ≥ 0, we have

Dcd(X
k)ab =

k−1∑
j=0

(Xj)ad(X
k−j)cb. (2.1.2)

In particular, we have

∞∑
kj=1

Dan+1an(Xkj)aiaj =
∞∑
kj=1

kj−1∑
kn=0

(Xkn)aian(Xkj−kn)an+1aj

=
∞∑
kj=1

∞∑
kn=1

(Xkn)aian(Xkj)an+1aj .

Proof. We only give the proof for Equation (2.1.1). The proof of the other formulas are

similar. Details can be found in [29], [38].

We want to calculate Dabpk, k ≥ 1. Note that ∂
∂Xbc

(Xa1a2Xa2a3 ...Xana1) is nontrivial if

and only if there is some i such that Xaiai−1
= Xbc. In this case, b = ai, c = ai−1. We have

Dabpk = Xac
∂

∂Xbc

Xk

= Xac
∂

∂Xbc

∑
a1,...,ak

∏(
Xa1akXakak−1

...Xa2a1

)
=
∑

a1,...,ak

k−1∑
i=0

Xa1ak ...Xai+1bXac...Xaka1

= k(Xk)ab.

Equation 2.1.1 holds for all monomials pk, k ≥ 1. So, the equation also holds for all

polynomial (or formal power series) F (p).

Definition 2.1.6. The normal ordered product of Dab and Dcd is

: DabDcd := Xae1Xce2

∂

∂Xbe1

∂

∂Xde2

(again with the summation over e1, e2 implied).

11



Lemma 2.1.7. We consider Dab acting on pi = tr(X i). Then, we have

: Dan+2an+1Dan+1an : =
∑
k,j≥1

((k + j)(Xj)an+1an+1(X
k)an+2an

∂

∂pk+j

)

+
∑
k,j≥1

(kj(Xk)an+1an(Xj)an+2an+1

∂2

∂pk∂pj
).

Proof. See [29], [38].

Remark 2.1.8. The formula of normal ordered product : Dan+2an+1Dan+1an : in Lemma 2.1.7

comes from the calculation of Dan+2an+1Dan+1an. By calculation, we have

Dan+2an+1Dan+1an =
∑

k≥1,j≥0

((k + j)(Xj)an+1an+1(X
k)an+2an

∂

∂pk+j

)

+
∑
k,j≥1

(kj(Xk)an+1an(Xj)an+2an+1

∂2

∂pk∂pj
).

The subscript j in the first summation
∑

k≥1,j≥0

(k + j)(Xj)an+1an+1(X
k)an+2an

∂
∂pk+j

) goes from

0 to infinity. If we calculate the normal ordered product : Dan+2an+1Dan+1an :, the ”zero” term

does not appear, which gives the formula in Lemma 2.1.7. In fact, the zero term comes from

[ ∂
∂Xan+1e1

, Xan+1e2 ], since

Dan+2an+1Dan+1an−1 =

: Dan+2an+1Dan+1an−1 : +Xan+2e1 [
∂

∂Xan+1e1

, Xan+1e2 ]
∂

∂Xane2

.

The reader can use the same method to calculate the normal product : Dan+2an+1 ...Da2a1 :

from the product Dan+2an+1 ...Da2a1. Compared with the product Dan+2an+1 ...Da2a1, the normal

product : Dan+2an+1 ...Da2a1 : has no ”zero term”. More precisely, all subscripts go from one

to infinity.

Definition 2.1.9. For any positive integer n, we define the W -operator W ([n]) as

W ([n]) :=
1

n
: tr(Dn) :=

1

n

∑
a1,...,an≥1

: Da1anDanan−1 ...Da2a1 : .

12



Notation 2.1.10. We prefer to us the following notation for the normal ordered product

D(a1,...,ad) :=: Da1anDanan−1 ...Da2a1 : .

The W -operators W ([n]) have many interesting properties in combinatorics and repre-

sentations of permutation groups. In this chapter, we will show how W ([n]) relates to the

permutation groups. In the next chapter, we will give some applications of W ([n]) to the

Hurwitz number.

2.2 Quiver and Permutation Group

In this section, we give some constructions on quivers and permutations (Constructions 2.2.5

and 2.2.8). These constructions are our main tools to prove the structure theorem (Theorem

2.3.1) in Section 2.3.

We begin with the quiver. A quiver is a directed graph. So, as usual, a quiver Q =

(V,A, s, t) is a quadruple, where V is the set of vertices, A is the set of arrows, s and t are

two maps A → V . If a ∈ A, s(a) is the source of this arrow and t(a) is the target. We

assume V and A to be finite sets. If B is a subset of A, VB = {s(a), t(a), a ∈ B}, then we

call (VB, B, s
′, t′) the subquiver of Q, where s′ = s|B, t′ = t|B. A quiver Q = (V,A, s, t)

is connected if the underlying undirected graph of Q is connected. A connected quiver

Q = (V,A, s, t) is a loop, if for any vertex v ∈ V , there is a unique arrow a ∈ A such that

s(a) = v and a unique arrow b ∈ A such that t(b) = v. A chain is obtained by omitting a

single arrow in a loop. FQ is the set of all quivers with finitely many vertices and finitely

many arrows.

Definition 2.2.1. Let Φn : Sn → FQ be the map such that Φn(α) = Qα, where

Qα = {Vα = {1, ..., n}, Aα = {i→ α(i), 1 ≤ i ≤ n}, sα, tα}.

Qα consists of disjoint loops which represent disjoint cycles of α.

Since the source map and target map is well-defined for any arrow in any quiver, we will

use the same symbols s, t for the source and targets maps in any quiver from now on.

Remark 2.2.2. Every permutation can be written as the product of disjoint cycles. For

example, (123)(45) ∈ S6. But, in this paper, we prefer to write it as (123)(45)(6), which

includes the fixed integer 6 as ”1-cycle”.
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Given α ∈ Sn, Qα is the corresponding quiver. We define a new vertex set V̂α =

{1, ..., n, n + 1}. There is a unique arrow a in Qα such that s(a) = 1. We substitute

this arrow by a new one â, where s(â) = n + 1 and t(â) = t(a). Denote by Âα the new set

of arrows.

Definition 2.2.3. Denote by Q̂α the new quiver,

Q̂α = (V̂α, Âα, s, t).

Example 2.2.4. Take α = (123) ∈ S3, then Qα is

Qα : 1 2 3 .

Q̂α is

Q̂α : 4 3 2 1 .

Clearly, Qα is a loop and Q̂α is a chain.

In general, Q̂α consists of a chain and possibly a number of loops. Clearly, we can

construct Qα uniquely from Q̂α.

We will consider how to construct Q̂α from Q̂β, where α ∈ Sn and β ∈ Sn+1. Given any

permutation α ∈ Sn and β ∈ Sn+1, compared with Q̂β, Q̂α has two properties

• For any α ∈ Sn, there is no arrow a ∈ Âα such that t(a) = n+ 1.

• n+ 2 /∈ V̂α.

Hence, if we want to construct from Q̂β, β ∈ Sn+1, a quiver Q̂α for some α ∈ Sn, we have to

delete the vertex n+ 2 from V̂β and delete one arrow from Âβ. Here is the construction.

Construction 2.2.5. Given β ∈ Sn+1, we take the arrows a, b ∈ Âβ such that

s(a) = n+ 2, t(b) = n+ 1.

We also assume that

s(b) = j, t(a) = i.

14



• If a and b are the same arrow which means j = n + 2, i = n + 1, we delete this arrow

from Âβ and delete n+ 2 from V̂β.

• If a 6= b, we delete these two arrows a, b from Âβ and add a new arrow c such that

s(c) = j, t(c) = i. Also, we delete the vertex n+ 2 from V̂β.

Denote by Q̂′β the new quiver we construct from Q̂β in this way.

Example 2.2.6. In the first example, we consider β = (321). The quiver Q̂β is

Q̂β : 4 3 2 1 .

In this case, the arrow a, b are the same 4 → 3. Then, we delete this arrow and the vertex

4. We get the following quiver Q̂′(321)

Q̂′(321) : 3 2 1 ,

which corresponds to the quiver Q̂(21).

The second example is β = (3)(21) with Q̂(3)(21)

Q̂(3)(21) : 4 2 1 3 .

Now a is 4→ 2 and b is 3→ 3. By Construction 2.2.5, we get the following quiver Q̂′(3)(21)

Q̂′(3)(21) : 3 2 1 ,

which corresponds to the same quiver Q̂(21).

The third example is β = (3)(2)(1), the identity permutation in S3. By the same argu-

ment, we find Q̂′(3)(2)(1) = Q̂(2)(1).

The fact that for all β ∈ S3, Q̂′β in this example is of the form Q̂α for α some permutation

in Sn is no accident. In fact, we have the following more general statement.

Lemma 2.2.7. Given any permutation β ∈ Sn+1, there is a permutation α ∈ Sn such that

Q̂α = Q̂′β.
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Proof. Let β = β1β2...βk be the product of disjoint cycles of β. We prove this lemma in the

following three cases.

Case 0 n+ 1 and 1 are in different cycles of β.

We assume that β1 = (i ... 1), the cycle contains 1 and β1(1) = i, and β2 =

(j n + 1 ...), the cycle contains n + 1 and β2(j) = n + 1. So, the loops in Qβ

correspond to β1 and β2 are

Qβ1β2 : 1 i · · · , j n+ 1 · · · .

So, in Q̂β, they are

Q̂β1β2 : n+ 2 i · · · 1 , j n+ 1 · · · .

By the Construction 2.2.5, we get

Q̂′β1β2 = Q̂α12 : n+ 1 · · · j i · · · 1 .

Clearly, this corresponds to a cycle α12 in Sn by replacing n + 1 by 1. Hence, α =

α12β3...βk is the element in Sn satisfying Q̂α = Q̂′β.

Case 1 n+ 1 and 1 are in the same cycle and β(1) = n+ 1.

Say β = β1β2...βk, where β1 = (n+ 1 ... 1). The quiver in Q̂β corresponds to β1 is

Q̂β1 : n+ 2 n+ 1 · · · 1 .

By the Construction 2.2.5, we get

Q̂α1 : n+ 1 · · · 1 .

Clearly, this corresponds to a cycle α1 in Sn by replacing n+ 1 by 1. So, α = α1β2...βk

is the element in Sn satisfying Q̂α = Q̂′β.
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Case 2 n+ 1 and 1 are in the same cycle and β(1) = i, i 6= n+ 1.

Assume β = β1β2...βk, where β1 = (i ... j (n + 1) ... 1) (j and i can be the

same number). The quiver in Q̂β corresponding to β1 is

Q̂β1 : n+ 2 i · · · j n+ 1 · · · 1 .

Hence, by the construction above, we get two cycles

Q̂′β1 = Q̂α1α2 : j i · · · , n+ 1 · · · 1 .

Clearly, replacing n + 1 by 1, they correspond to two disjoint cycles α1, α2 in Sn. So,

α = α1α2β2...βk is the element in Sn satisfying Q̂α = Q̂′β.

In conclusion, for any β ∈ Sn+1, there is an element α ∈ Sn such that Q̂α = Q̂′β.

Next we want to go in the opposite direction. For each α ∈ Sn, we want to find all

β ∈ Sn+1 such that Q̂′β = Q̂α. Given a fixed permutation α ∈ Sn, there turns out to be n+ 1

choices of β in Sn+1.

Given any quiver Q̂α, α ∈ Sn, if we want to construct a new quiver Q̂β representing an

element β ∈ Sn+1, we should add the vertex n+ 2 into V̂α and add arrows a1, a2 in Âα such

that

s(a1) = n+ 2, t(a2) = n+ 1,

where a1, a2 can be the same arrow. Here is the construction.

Construction 2.2.8. Given any α ∈ Sn, we write α as the product of disjoint cycles α =

α1α2...αk. We assume 1 ∈ α1. So, the corresponding subquiver for α1 in Q̂α is the chain as

following

Q̂α1 : n+ 1 · · · 1 .

• Case 0

We extend the quiver for α1 directly

Q̂β1 : n+ 2 n+ 1 · · · 1 .
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Clearly, this subquiver represents a well-defined cycle β1. In this way, we construct a

permutation β ∈ Sn+1, where β = β1α2...αk. In this case, a1, a2 are the same arrow

a1 = a2 : n+ 2 n+ 1 .

Next we consider the general case. Roughly speaking, the idea is cutting an arrow in Q̂α and

reconnect the chain and loops in Q̂α. There are n choices of arrows in Q̂α. We first choose

an arbitrary arrow a : i→ j in Q̂α.

• Case 1, a ∈ Q̂α1

In this case, Q̂α1 is

Q̂α1 : n+ 1 · · · i j · · · 1 .

First, cut the arrow i→ j, we get

n+ 1 · · · i , j · · · 1 .

Then, we add the following two arrows

a1 : n+ 2 j a2 : i n+ 1 .

Finally, we get the following quiver,

Q̂β1β2 : n+ 2 j · · · 1 , i n+ 1 · · · .

They represent two disjoint cycles in Sn+1 by replacing n + 2 by 1. Call them β1 and

β2. So, β = β1β2α2...αk is the permutation in Sn+1 constructed by cutting the arrow a.

• Case 2, a /∈ Q̂α1

Without loss of generality, we can assume a ∈ Q̂α2. The corresponding quiver for α1

and α2 are

Q̂α1α2 : n+ 1 · · · 1 , i j · · · .
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Similar to Case 1, we cut the arrow i→ j and we get

n+ 1 · · · 1 , j · · · i .

Then, we add the following two arrows

a1 : n+ 2 j a2 : i n+ 1 .

Finally, we get the chain

Q̂β1 : n+ 2 j · · · i n+ 1 · · · 1 .

It represents a cycle in Sn+1 by replacing n+2 by 1 and denote by β1. So, β = β1α3...αk

is a permutation in Sn+1.

In all cases, we have Q̂′β = Q̂α. In the quiver Q̂α, there are n arrows. Hence, we can

construct n quivers or permutations from Case 1,2. In conclusion, there are n+ 1 choices

of β ∈ Sn+1 such that Q̂′β = Q̂α. It is easy to see that β constructed in this way are distinct.

The three cases in Construction 2.2.8 corresponds to the cases in Lemma 2.2.7.

Construction 2.2.5, Lemma 2.2.7 and Construction 2.2.8 imply the following theorem.

Theorem 2.2.9. For any α ∈ Sn, we can construct n + 1 distinct permutations β in Sn+1

such that Q̂′β = Q̂α. In fact, if we do it for all α ∈ Sn, we will get (n + 1)! elements, which

are exactly all permutations in the group Sn+1.

Remark 2.2.10. We can summarize the above construction as following. Given any positive

integer n, there is a map

Ψn : Sn+1 → Sn

such that Ψn(β) = α, when Q̂′β = Q̂α. Lemma 2.2.7 says that Ψn is well defined and the

theorem, Theorem 2.2.9, says that the preimage Ψ−1
n (α) consists of n + 1 distinct elements

β. So, Ψn is a n+ 1 to 1 map.

We define the following notation [α, j], which will be used in the next section.

Definition 2.2.11. Let α be a permutation in Sn. Denote by [α, j] the permutation con-

structed from α, where j is an integer, 0 ≤ j ≤ n. [α, 0] corresponds to the Case 0 in
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Construction 2.2.8 and, if j ≥ 1, [α, j] corresponds to Case 1,2 by cutting the arrow a such

that t(a) = j.

2.3 Structure of W ([n])

In this section, we discuss the structure theorem 2.3.1 of W ([n]). It is based on Construction

2.2.8, which produces from a quiver Q̂α(α ∈ Sn) n + 1 quivers Q̂β(β ∈ Sn+1). In fact,

Construction 2.2.8 comes from the calculation of W ([n]) (see Definition 2.1.9 and Lemma

2.1.7), which gives the basic idea about the structure theorem.

Theorem 2.3.1 (Structure Theorem). W ([n]) is a well-defined operator on C[p1, p2, ...] and

it can be written as the sum of n! summations, each of which corresponds to a unique quiver

Q̂β or equivalently a unique permutation β ∈ Sn.

Proof. We give some examples and ideas about the proof.

To calculate W ([n]), we have to figure out the operator

: Da1anDanan−1 ...Da2a1 :

for any ai ≥ 1, 1 ≤ i ≤ n. By Remark 2.1.8, it is equivalent for us to calculate the product

Da1anDanan−1 ...Da2a1 . Since we want to use induction to calculate this product, we replace

Da1an by Dan+1an . Now let’s calculate the base step and we will explain how we construct

the summation FSβ corresponding to Q̂β, where β ∈ S2. Let n = 1, by Lemma 2.1.5, we

have

Da2a1 =
∞∑
k1=1

k1(Xk1)a2a1
∂

∂pk1
.

We associate this summation to the quiver

Q̂(1) : 2 1 ,

which corresponds to the subscript of (Xk1)a2a1 .

Now we calculate Da3a2Da2a1 ,

Da3a2Da2a1 =
∞∑
k1=1

(
Da3a2(k1(Xk1)a2a1)

) ∂

∂pk1
+

∞∑
k1=1

k1(Xk1)a2a1

(
Da3a2 ◦

∂

∂pk1

)
, (2.3.1)
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By Lemma 2.1.5, we have

Da3a2Da2a1 =
∑

k1≥1,k2≥0

((k1 + k2)(Xk2)a2a2(X
k1)a3a1

∂

∂pk1+k2

)

+
∑

k1,k2≥1

(k1k2(Xk2)a3a2(X
k1)a2a1)

∂2

∂pk1∂pk2
).

We associate the first summation to the quiver Q̂(1)(2)

Q̂(1)(2) : 2 , 3 1 ,

which comes from the subscripts of the polynomial part (Xk2)a2a2(X
k1)a3a1 . Similarly,

the second summation corresponds to the quiver Q̂(12)

Q̂(12) : 3 2 1 .

We know that Da3a2 acting on (Xk1)a2a1 gives the first summation, which corresponds

to Case 1 of cutting the arrow 2 → 1 in Q̂(1) in Construction 2.2.8. The same argument

holds for the second summation, where Da3a2 acts on ∂
∂pk1

and it corresponds to the Case 0

in Construction 2.2.8. By Lemma 2.1.7 and Remark 2.1.8, we know that : Da3a2Da2a1 : and

Da3a2Da2a1 are almost the same and the only difference comes from the term with subscript

j = 0 in the first summation. Hence, we can use quivers to describe the summations of

: Da3a2Da2a1 : in the same way as Da3a2Da2a1 . In conclusion, we find that : Da3a2Da2a1 : can

be written as the sum of two summations, which correspond to quivers Q̂α, α ∈ S2,

: Da3a2Da2a1 : =
∑

k1,k2≥1

((k1 + k2)(Xk2)a2a2(X
k1)a3a1

∂

∂pk+j

)

+
∑

k1,k2≥1

(k1k2(Xk2)a3a2(X
k1)a2a1)

∂2

∂pk1∂pk2
).
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We use the notation FS ′α for the summation corresponding to α ∈ S2. We have

: Da3a2Da2a1 :=
∑
α∈S2

FS ′α.

Comparing with formula (2.3.1), the ranges of integers k1, k2 are the same in : Da3a2Da2a1 :,

i.e. from one to infinity (see Remark 2.1.8). Finally, let a3 = a1 and sum over a1, a2,

∑
a1,a2≥1

: Da1a2Da2a1 : =
∑

a1,a2≥1

∑
k1≥1,k2≥1

((k1 + k2)(Xk2)a2a2(X
k1)a1a1

∂

∂pk1+k2

)

+
∑

a1,a2≥1

∑
k1,k2≥1

(k1k2(Xk2)a1a2(X
k1)a2a1)

∂2

∂pk1∂pk2
).

We find that each summation can be written as some polynomial times a differential operator

in variable pi. We get the following formula

W ([2]) =
1

2

∑
a1,a2≥1

: Da1a2Da2a1 :=
1

2

∑
k1,k2≥1

((k1 + k2)pk1pk2
∂

∂pk1+k2

+ k1k2pk1+k2

∂2

∂pk1∂pk2
).

(2.3.2)

By induction on n, we can assume that : Dan+1an ...Da2a1 : can be written in the following

way

: Dan+1an ...Da2a1 :=
∑
α∈Sn

FS ′α,

where FS ′α is defined as

FS ′α =
∑

k1,...,kn≥1

∏
r∈Âα

(Xkt(r))as(r)at(r)

DFS ′α(k1, ..., kn), (2.3.3)

where Âα is the set of arrows in Q̂α, s is the source map, t is the target map (see Definition

2.2.3) and DFS ′α(k1, ..., kn) is the differential part with constant coefficients depending on ki,

1 ≤ i ≤ n. The differential part DFS ′α(k1, ..., kn) is uniquely determined by the permutation

α and integers ki, 1 ≤ i ≤ n. Let’s take α = (21) as an example, which is one of the
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summations in : Da3a2Da2a1 :,

FS ′(12) =
∑

k1,k2≥1

((Xk2)a3a2(X
k1)a2a1)k1k2

∂2

∂pk1∂pk2
).

(Xk2)a3a2(X
k1)a2a1 is the product of variables described by the arrows and the differential

part is

DFS ′α(k1, ..., kn) = k1k2
∂2

∂pk1∂pk2
.

Now we try to calculate the product Dan+2an+1FS
′
α. By the product rule, we have

Dan+2an+1FS
′
α =∑

r′∈Âα

∑
k1,...,kn≥1

(Dan+2an+1(X
kt(r′))as(r′)at(r′))(

∏
r∈Âα,r 6=r′

(Xkt(r))as(r)at(r))DFS
′
α(k1, ..., kn)

+
∑

k1,...,kn≥1

∏
r∈Âα

(Xkt(r))as(r)at(r)

 (Dan+2an+1 ◦DFS ′α(k1, ..., kn)).

We introduce another notation. If j 6= 0, there is a unique arrow r′ ∈ Âα such that

t(r′) = j. We define the operator Dan+2an+1,j acting on FS ′α as

Dan+2an+1,jFS
′
α :=∑

k1,...,kn≥1

(Dan+2an+1(X
kt(r′))as(r′)at(r′))(

∏
r∈Âα,r 6=r′

(Xkt(r))as(r)at(r))DFS
′
α(k1, ..., kn).

If j = 0, we define Dan+2an+1,0FS
′
α as

Dan+2an+1,0FS
′
α :=

∑
k1,...,kn≥1

∏
r∈Âα

(Xkt(r))as(r)at(r)

 (Dan+2an+1 ◦DFS ′α(k1, ..., kn)).

In terms of the new operators Dan+2an+1,j, we have

Dan+2an+1FS
′
α =

n∑
j=0

Dan+2an+1,jFS
′
α,
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and

: Dan+2an+1FS
′
α :=

n∑
j=0

: Dan+2an+1,jFS
′
α : .

We can define F̃Sβ inductively as

FS ′β =: Dan+2an+1,jFS
′
α :, (2.3.4)

where β = [α, j], 0 ≤ j ≤ n. Recall the following two formulas in Lemma ??

Dan+2an+1 =
∞∑
k=1

k(Xk)an+2an+1

∂

∂pk
,

∞∑
kj=1

Dan+2an+1(X
kj)aiaj =

∞∑
kj=1

∞∑
kn=0

(Xkn)aian+1(X
kj)an+2aj .

With the above two formulas, we leave it for the reader to check that F̃Sβ defined by

Equation (2.3.4) can be written in the same form as F̃Sα in Equation (2.3.3)

FS ′β =
∑

k1,...,kn+1≥1

∏
r∈Âβ

(Xkt(r))as(r)at(r)

DFS ′β(k1, ..., kn, kn+1).

So, by induction, : Dan+2an+1 ...Da2a1 : can be written in the following way

: Dan+2an+1 ...Da2a1 :=
∑
β∈Sn

FS ′β.

Finally, for each FS ′β, replace an+2 by a1 and take the sum over ai, 1 ≤ i ≤ n+ 1. Then,

we will get a summation in variables pi corresponding to FS ′β. W ([n + 1]) can be written

as the sum of (n + 1)! summations, each of which corresponds to a unique permutation in

Sn+1.

Definition 2.3.2. For any permutation β ∈ Sn+1, denote by FSβ the summation corre-

sponding to FS ′β (or β) in the decomposition of W ([n+ 1]).

Remark 2.3.3. Recall that pk is defined as the trace of Xk. If we define the degree of pk

to be one, we claim that the degree of the polynomial part of FSα is exactly the number of
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disjoint cycles of α. We will explain it in the rest of this remark.

Given α ∈ Sn, let α = α1...αl be the product of disjoint cycles. If we fix integers ki,

1 ≤ i ≤ n, the polynomial part of F̃Sα with respect to ki is∏
r∈Âα

(Xkt(r))as(r)at(r)

 .

Now replacing an+1 by a1 and taking the sum over a1, ..., an, we have

∑
a1,...,an≥1

(∏
r∈Aα

(Xkt(r))as(r)at(r)

)
=

l∏
i=1

∑
a1,...,an≥1

 ∏
r∈Aαi

(Xkt(r))as(r)at(r)


=

l∏
i=1

p∑
r∈Aαi

kt(r) .

Hence, the degree of the polynomial part of FS ′α is the number of disjoint cycles of α.

Let’s take α = (21) as an example.

FSα =
∑

k1,k2≥1

pk1+k2

(
k1k2

∂2

∂pk1∂pk2

)
.

The degree of the polynomial part is one, which is the number of disjoint cycles of α.

2.4 Degree of Summations FSα

Consider the polynomial ring C[p1, p2, ...]. In this section, we define the degree of each

variable pi to be one. In the previous section, we have shown that W ([n]) can be written as

the sum of n! summations. Each summation is a formal differential operator. For example,

the summation FS(321) in W ([3])

1

3

∑
i1,i2,i3≥1

(i1i2i3pi1+i2+i3

∂3

∂pi1∂pi2∂pi3
)

is an infinite sum of differential operators i1i2i3pi1+i2+i3
∂3

∂pi1∂pi2∂pi3
, which has coefficients

i1i2i3, polynomial part pi1+i2+i3 and differential part ∂3

∂pi1∂pi2∂pi3
. Now we want to define the

summation’s degree, which depends on its polynomial part and differential part.
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Definition 2.4.1. Given any summation FSα of W ([n]), dP (FSα) is the degree of its poly-

nomial part and dD(FSα) is the order of its derivative part. The degree of the summation

FSα is d(FSα) = dP (FSα) + dD(FSα).

Let’s consider the example W ([3]). There are 6 summations in W ([3]),

W ([3]) =
1

3

∑
i1,i2,i3≥1

(i1i2i3pi1+i2+i3

∂3

∂pi1∂pi2∂pi3
+ FS(321)

+i1(i2 + i3)pi1+i3pi2
∂2

∂pi1∂pi2+i3

+ FS(13)(2)

+i2(i1 + i3)pi1+i2pi3
∂2

∂pi2∂pi1+i3

+ FS(12)(3)

+i3(i1 + i2)pi3+i2pi1
∂2

∂pi3∂pi1+i2

+ FS(1)(23)

+(i1 + i2 + i3)pi1pi2pi3
∂

∂pi1+i2+i3

+ FS(1)(2)(3)

+(i1 + i2 + i3)pi1+i2+i3

∂

∂pi1+i2+i3

) FS(123) .

Five of them have degree 4 and the summation FS(123) is of degree 2. If we go back to W ([2])

(Equation (2.3.2)), all summations are of degree 3. We know that the polynomial degree of

FSα is the number of disjoint cycles of α by Remark 2.3.3.

The following lemma describes the relation between the degree of FSβ and FSα, when

β = [α, i] (see Definition 2.2.11).

Lemma 2.4.2. For any α ∈ Sn,

1. If [β] = [α, 0], we have

dP (FSβ) = dP (FSα), dD(FSβ) = dD(FSα) + 1, d(FSβ) = d(FSα) + 1.

2. If [β] = [α, j] and j is a vertex in the chain of Q̂α, then, we have

dP (FSβ) = dP (FSα) + 1, dD(FSβ) = dD(FSα), d(FSβ) = d(FSα) + 1.

3. If [β] = [α, j] and j is not a vertex in the chain of Q̂α, we have

dP (FSβ) = dP (FSα)− 1, dD(FSβ) = dD(FSα), d(FSβ) = d(FSα)− 1.
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Proof. By the proof of Theorem 2.3.1, Equation (2.1.1) in Lemma 2.1.5 shows that the

differential degree of FS ′β increases by one when [β] = [α, 0]. The third formula in Lemma

2.1.5 implies when j 6= 0, the operator Dan+1an fixes the differential degree. Now we consider

the polynomial degree. If [β] = [α, 0], Case 0 in Construction 2.2.8 tells us that the number

of disjoint cycles of β is the same as that for α. By the proof of Theorem 2.3.1 and Remark

2.3.3, the number of disjoint cycles of α is the polynomial degree of FSα. Hence, in Case

0, we have

dP (FSβ) = dP (FSα).

Case 1 in Construction 2.2.8 corresponds to [β] = [α, j], where j is a vertex in the chain of

Q̂α. β has one more disjoint cycle than α. So, we have

dP (FSβ) = dP (FSα) + 1.

Similarly, in Case 2 in Construction 2.2.8, α has one more disjoint cycle than β. We have

dP (FSβ) = dP (FSα)− 1.

Remark 2.4.3. From the above lemma, the highest degree of summations in W ([n]) is n+ 1

and the other possible degrees are n− 1, n− 3, ... .

Now we have the following question about the number of summations with highest degree.

Question 2.4.4. Given a positive integer n, how many summations in W ([n]) are of degree

n+ 1? More precisely, what is the number of permutations in Sn such that the degree of the

corresponding summation is n+ 1?

In Section 2.5 and 2.6., we prove that this problem is equivalent to a special ”perfect

paring” problem in combinatorics (Theorem 2.5.10 and 2.6.4). We figure out this number in

Section 2.8 (Theorem 2.8.2).

2.5 Ordinary Summations

In this section, we discuss the ordinary summations and prove a necessary and sufficient

condition for the ordinary summations.
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Definition 2.5.1 (Ordinary Summation). Given α ∈ Sn, FSα is an ordinary summation

(OS) of type (r, s), if dP (FSα) = r, dD(FSα) = s and r + s = n+ 1.

Example 2.5.2.

FS(1) =
∑
k1≥1

pk1
∂

∂pk1
.

FS(1) is an OS of type (1, 1).

FS(1)(2) =
1

2

∞∑
k1,k2≥1

pk1pk2
∂

∂pk1+k2

.

So, FS(1)(2) is an OS of type (2, 1).

Next we want to find a necessary and sufficient condition (∗) on permutations α ∈ Sn
such that FSα is an ordinary summation if and only if α satisfies the condition (∗).

Definition 2.5.3 (Condition (∗1)). Let α be a permutation in Sn. Let α = α1...αr be the

decomposition of α into disjoint cycles. We say α satisfies the condition (∗1), if for each

arrow a in the chain of Q̂α, we have t(a) < s(a), and there is only one arrow b in each loop

of Q̂α such that s(b) < t(b).

Remark 2.5.4. The above condition for Q̂α is equivalent to the condition for Qα that there

is only one arrow b in each loop of Qα such that s(b) < t(b). We use the definition in terms

of Q̂α in the proof of Lemma 2.5.5, 2.5.8 and Theorem 2.5.10. We use the definition in

terms of Qα in the proof of Theorem 2.6.4.

Lemma 2.5.5. Given α ∈ Sn, if FSα is an OS, then α satisfies the condition (∗1).

Proof. We prove this lemma by induction on n. For the base step n = 1, Q̂(1) is the only

quiver and FS(1) is an OS. There is only one arrow 2 → 1 in the quiver Q̂(1). Clearly, (1)

satisfies the condition (∗1).

Now we assume that for all α ∈ Sk−1 if FSα is an OS, then α satisfies (∗1). Let β ∈ Sk
and assume [β] = [α, j] in the notation of Definition 2.2.11. FSβ is an OS implies that FSα is

also an OS. Indeed if FSα is not an OS, then d(FSα) < k. By Lemma 2.4.2, d(FSβ) < k+1,

contradicting the fact that β is an OS.

Let α = α1...αr be the decomposition of α into disjoint cycles with 1 ∈ α1. By Lemma

2.4.2, j could be zero or the target of some arrow in the chain of Q̂α. Now we discuss these

two cases.
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1. If j = 0, then β = β1α2...αr, where Q̂β1 is constructed from Q̂α1 by adding another

arrow k + 1→ k. By induction, the statement is true.

2. If j 6= 1, then β is constructed from α by cutting the arrow a : i→ j, which is an arrow

a in the chain of Q̂α. We use the same notation as Case 1 in Construction 2.2.8. Let

β = β1β2α2...αr. The quiver Q̂β1 of the cycle β1 is

Q̂β1 : k + 2 j · · · 1 ,

where j → ...→ 1 is a subquiver of α1. Hence, all arrows in this chain satisfy that the

source is larger than the target. The quiver Q̂β2 is

Q̂β2 : i k + 1 · · · ,

where k+ 1→ ...→ i is a subquiver of α1 by construction. So the only arrow a in the

cycle Q̂β2 satisfying s(a) < t(a) is i→ k + 1. Hence, the statement is true for n = k.

The following condition is another condition of permutation α such that FSα is an or-

dinary summation. Theorem 2.5.10 proves that FSα is an OS if and only if α satisfies the

following condition and the condition (∗1).

Definition 2.5.6 (Condition (∗2)). α is a permutation in Sn. Let α = α1...αr be the

decomposition of α into disjoint cycles. We say α satisfies the condition (∗2), if any two

distinct cycles αi, αj satisfy at least one of the following conditions,

1. pick an arbitrary element m in αi, then we have m > n for any n in αj or m < n for

any n in αj;

2. pick an arbitrary element m in αj, then we have m > n for any n in αi or m < n for

any n in αi.

Remark 2.5.7. This remark will give a brief explanation about the condition (∗2). The two

conditions in Definition 2.5.6 mean that any two cycles are ”ordered” or one is ”contained”

in the other one. If the pair of cycles satisfies both these two conditions, then they are

”ordered”. If the pair only satisfies one of them, then one is contained in the other one.
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For instance, consider the following examples,

τ1 = (123)(45), τ2 = (125)(34), τ3 = (124)(35).

The two disjoint cycles in τ1 satisfies both these two conditions. They are ”ordered”, since

any integer in the second cycle is larger than any integer in the first cycle. The disjoint cycle

αi = (34) in τ2 is contained in αj = (125). They satisfy the second condition in Definition

2.5.6. We prefer to write it as

( 5 ( 4 3 ) 2 1 ).

We will explain this notation in Construction 2.6.1. The last example τ3 does not satisfy the

condition (∗2).

Lemma 2.5.8. If FSα is an OS, then α satisfies the condition (∗2).

Proof. Similar to the proof of Lemma 2.5.5, we prove this lemma by induction on the per-

mutation group Sn. When n = 1, it is clear that the unique permutation (1) in S1 satisfies

the condition (∗2).

Next, we assume that for all α ∈ Sk−1 if FSα is an OS, then α satisfies (∗2). Let

β ∈ Sn and assume [β] = [α, j] in the notation of Definition 2.2.11. Let α = α1...αr be the

decomposition of α into disjoint cycles. We will prove that if FSβ is an OS, then β satisfies

the condition (∗2). Before we give the proof, recall the property that if [β] = [α, j] and FSβ

is an OS, then FSα is also an OS by the proof of Lemma 2.5.5.

If j = 0, then β = β1α2...αr, where Q̂β1 is constructed from Q̂α1 by adding another arrow

k + 1 → k. In other words, we put another element k into the cycle α1 (see Construction

2.2.8). By assumption that any two disjoint cycles of α ∈ Sk−1 satisfy at least one of

the conditions, we only have to check whether the pair (β1, αi) satisfies the condition (∗2),

2 ≤ i ≤ r. Since α1 contains the smallest element 1, so if α1 and αi are ”ordered”, then

any element in α1 is smaller than any element in αi. Since k is the largest element, so the

statement is true for β1 and αi. Now we consider that α1 and αi are not ”ordered”. Since 1

is contained in α1, so αi is ”contained” in α1. Clearly, it still holds for β1 and αi. So, (β1, αi)

satisfies the condition (∗2).

Now let’s consider the case that β is constructed from α by cutting the arrow a : i → j

lying in the chain of α. We use the same notation as Case 1 in Construction 2.2.8. Let

β = β1β2α2...αr. So, we have to check whether the following three types of pairs satisfy the
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condition:

(β1, β2), (β1, αi), (β2, αi),

where 2 ≤ i ≤ r.

• (β1, β2)

Since FSα is OS, so all arrows a in Q̂α1 satisfy t(a) < s(a) by Lemma 2.5.5. Hence,

when cutting the arrow i→ j, any elements in β2 is larger than any elements in β1. It

is true in this case.

• (β1, αi)

By induction, we know that the lemma is true for (α1, αi), 2 ≤ i ≤ r. Since the ele-

ments of β1 is a subset of the elements of α1, so it is true for (β1, αi), 2 ≤ i ≤ r.

• (β2, αi)

If β2 is a single disjoint ”one cycle” (k), the statement is true. If β2 6= (k), assume

the largest element in β2 except k is φ. If φ is smaller than the smallest element in

αi, then any element u except k in β2 u is smaller than any element in αi. Also, k

is larger than any element in αi. Hence, the statement is true in this case. Now let’s

consider the case that φ is larger than the smallest element in αi. By construction, φ

is an element in α1, which contains 1. Hence, φ is larger than any elements in αi by

induction. Similarly, any other elements in β2 is larger or smaller to all elements in αi

by induction. So, the statement is true.

In conclusion, the statement is true when n = k.

Definition 2.5.9 (Condition (∗) and Non-crossing Permutation). Given α ∈ Sn, we say

that α satisfies the condition (∗) if α satisfies the conditions (∗1) and (∗2). We call such a

permutation α non-crossing permutation in this paper.

Theorem 2.5.10. For α ∈ Sn, FSα is OS if and only if α satisfies the condition (∗).

Proof. The ”only if” part is exactly Lemma 2.5.5 and 2.5.8. So, we only have to prove the

”if” part. We prove this theorem by induction on n.
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When n = 1, it is easy to prove, since (1) is the only permutation. We assume that if

α ∈ Sk−1 satisfies the condition (∗), then FSα is an OS. We will prove that if β ∈ Sk satisfies

the condition (∗), then FSβ is an OS. Assume [β] = [α, j] for some α in Sn−1 and some

nonnegative integer j. We claim that j is 0 or in the chain of Q̂α (Claim 1). Also, we claim

that α also satisfies the condition (∗) (Claim 2). Since α satisfies the condition (∗), FSα is

an OS by induction. By Claim 1, j is 0 or in the chain of Q̂α. By Construction 2.2.8 and

Lemma 2.4.2, we know FSβ is an OS. Now we are going to prove these two claims.

Proof of Claim 1:

If not, β is constructed from α by cutting arrow a : i→ j which is not the chain of Q̂α.

Hence, by Case 2 in Construction 2.2.8, we will get a long chain

k + 1 j · · · i k · · · 1 .

In this chain, we have i < k, which contradicts with our assumptions that β satisfies the

condition (*). So, j must be in the chain of Q̂α or j = 0.

Proof of Claim 2:

By Claim 1, we know that j = 0 or j is in the chain of Q̂α. If j = 0, it is easy to prove α

satisfies the condition (∗). We leave it for the reader. Now we assume that j is in the chain

of Q̂α. With the same notation as in Construction 2.2.8, let β = β1β2α2...αr with 1 ∈ β1.

First, we have to check α satisfies the condition (∗1). By the assumption of β, there is

exactly one arrow a in the quiver of αi such that t(a) > s(a), where 2 ≤ i ≤ r. So, we have

to show all arrows a in the chain of Q̂α satisfying t(a) < s(a). We assume that there is an

arrow a in the chain of Q̂α such that s(a) < t(a). If t(a) 6= j, then this arrow will be in

either β1 or β2, which contradicts with the assumption of β. If t(a) = j, then we get β1

Q̂β1 : k + 1 j · · · 1 .

and β2

Q̂β2 : i k · · · .

Since k > j > i, so (β1, β2) does not satisfy the second condition in the condition (*). Hence,

we have t(a) < s(a) for each arrow a in the chain of Q̂α and there is exactly one arrow b in

each loop of Q̂α such that s(b) < t(b).

Now, we are going to prove that α satisfies the condition (∗2). The problem pair is
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(α1, αi), 2 ≤ i ≤ r. By assumption, β1 contains the smallest element 1 and β2 contains the

element k. Hence, by Construction 2.2.8 and Lemma 2.5.8, we know that any element in

β1 is smaller than any element in β2. Since β satisfies condition (∗), so for any cycle αi,

2 ≤ i ≤ r, there are three possible cases

• αi is ”contained” in β1, i.e. if we pick an arbitrary element m in β1, then we have

m > n for any n in αi or m < n for any n in αi;

• αi is ”contained” in β2, i.e. if we pick an arbitrary element m in β2, then we have

m > n for any n in αi or m < n for any n in αi;

• αi is between β1 and β2, i.e. any element in αi is larger than any element in β1 and

smaller than any element in β2.

In the first case, if αi is ”contained” in β1, then any element in β2 is larger than any element

in αi, because the element in β2 is always larger than the element in β1. By the construction

of α1, the condition is true for (α1, αi). The same argument holds for the second case. For

the third case, β1 and β2 are constructed from α1 by cutting the arrow with target j and

add another element k. Hence, αi is ”contained” in α1. Hence, α satisfies the condition (2)

of (*).

2.6 Non-crossing Sequence

In this section, we prove that there is a bijective map between non-crossing sequences and

ordinary summations.

In the previous section, we define the non-crossing permutation (Definition 2.5.9). The

condition (∗) corresponds to the non-crossing partition [36]. In [28], Mingo and Nica define

the non-crosing permutation. The non-crossing permutation in this paper is a little different

from theirs but with similar idea. The following construction about the non-crossing sequence

and Theorem 2.5.10 gave the idea for the definition of a non-crossing permutation (Definition

2.5.9) in this paper.

Construction 2.6.1 (Non-crossing Sequence). Given a positive integer n, we fix a standard

sequence of n integers as follows

n n− 1 ... 2 1 .

We insert r pairs of brackets into this sequence satisfying the following condition (∗∗)
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• any integer is contained in at least one pair of brackets and any pair of brackets contains

at least one integer,

• there can be at most one left bracket and at most one right bracket between two succes-

sive integers.

We call the standard sequence with brackets satisfying (∗∗) a non-crossing sequence.

Now we use some examples to explain these conditions.

Example 2.6.2. We consider the following three examples

(4) 3 2 (1),

(4 3 (2)) (1),

(4 (3) 2) (1).

The first one does not satisfy the first condition, since 3 and 2 are not contained in any pair

of brackets. The second one does not satisfy the second condition, since there are two right

brackets between 2 and 1. The third one satisfies (∗∗).

By the second point of the condition (∗∗), we can only have at most one left (right)

between two successive integers. So, we use the following notation for the non-crossing

sequence

�n4 �n− 14 ... �14 ,

where � is the place for left bracket and 4 is for right bracket. Each � or 4 contains at

most one bracket.

Before we construct the relation between permutations and the non-crossing sequences,

we want to give an order to the r pairs of brackets. We order the r right brackets as follows:

the right most right bracket is )1, the next right most right bracket is )2, etc. The order of

the left brackets is the same as the corresponding right brackets. For example, let’s consider

the following non-crossing sequence with three paris of brackets

( 4 ( 3 ) 2 ) ( 1 ).

We first order the right brackets

( 4 ( 3 )3 2 )2 ( 1 )1.
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The order of the left brackets are the same as its corresponding right brackets. We have

(2 4 (3 3 )3 2 )2 (1 1 )1.

Given two positive integers n, r such that n ≥ r, we define three sets Pmt(n, r), Brk(n, r)

and OS(n, r) as follows.

Definition 2.6.3. Pmt(n, r) is the set of non-crossing permutations in Sn (see Definition

2.5.9) with r disjoint cycles. Brk(n, r) is the set of all non-crossing sequences with r pairs

of brackets (see Construction 2.6.1). OS(n, r) is the set of all ordinary summations of type

(r, n− r + 1) (see Definition 2.5.1).

We want to remind the reader that we always insert brackets into the following sequence

n n− 1 ... 2 1 .

Theorem 2.6.4. Given two positive integers n, r such that n ≥ r, there is a bijective map

φn,r between Brk(n, r) and Pmt(n, r).

Proof. We want to construct a map

φn,r : Brk(n, r)→ Pmt(n, r)

and show that this map is bijective.

First we will construct a permutation α ∈ Sn with r cycles from a non-crossing sequence

in Brk(n, r). Given a non-crossing sequence in Brk(n, r), we start with the r-th pair of

brackets

(r ... )r.

By construction, the integers in this pair of brackets are not contained in any other pair

of brackets, because r is the largest. Define αr as the cycle with integers from this pair of

brackets. Then, we delete this pair of brackets and the enclosed integers. We choose the

next pair of brackets

(r−1 ... )r−1

from the remaining sequence and uses it to define another cycle αr−1. Repeating this process,
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we get a unique permutation α in Sn with disjoint cycles αr, ..., α1. Now we have to prove

that α satisfies the condition (∗) so that the image of φn,r is in Pmt(n, r). In Construction

2.6.1, we first fix the base sequence

n n− 1 ... 2 1 .

So, the quiver of any cycle αr only contains one arrow a such that s(a) > t(a). Hence,

α satisfies the condition (∗1). The condition (∗2) comes from the property of non-crossing

sequence. Consider the following example

(2 (3 )3 )2 (1 )1.

There are only two relations between two pairs of brackets: ”ordered” or ”contained”. (3 )3

is contained in (2 )2 and (2 )2, (1 )1 are ordered. This property is exactly the condition

(∗2). In this way, we see that the image of φn,r is in Pmt(n, r). Clearly, it is injective.

Now we are going to prove the map φn,r is surjective on Pmt(n, r). For the base case

n = 1, the only permutation (1) ∈ S1 corresponds uniquely to the following non-crossing

sequence

(1 1 )1 .

We use induction on n and assume that φk−1,r is surjective for any positive integer r, r ≤ k−1.

We will show that φk,r is surjective for any r. If β ∈ Sk satisfies the condition (∗), we know

that [β] = [α, j] where j is zero or is contained in the chain of Q̂β and α satisfies the condition

(∗) by the proof of Theorem 2.5.10. By induction, α corresponds to a unique sequence with

brackets as following

(m k − 1 ... v + 1 )m(1 v ... 1 )1,

where m is some positive integer, m ≤ r − 1. If m = 1, then v = k − 1.

If j = 0, then α ∈ Pmt(k − 1, r). In Construction 2.2.8, we construct the sequence with

brackets corresponding to β as

(1 k (m k − 1 ... v + 1 )m ... 1 )1.

Here, we add another integer k to the sequence and move the bracket (1 to the left side of k.
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If j 6= 0, then α ∈ Pmt(k − 1, r − 1). In Construction 2.2.8, to construct β, where

β = [α, j], we cut the arrow a : i → j in the chain of Q̂α. First, let’s focus on the first pair

of brackets (1 v ... 1 )1 more precisely,

(s1 k − 1 ... )s1 ... (s2 ... v + 1 )s2 (1 v ... i (s3 ... )s3 j ... 1 )1,

where s1, s2, s3 are the order of the pairs of brackets (if they exist). We construct the following

sequence with bracket, which corresponds to β,

( k (s1+1 k − 1 ... )s1+1 ... (s2+1 ... v + 1 )s2+1 v ... i )

(s3 ... )s3 (1 j ... 1 )1.

This non-crossing sequence has one more pair of brackets (the unlabelled pair of brackets

above) than α, because β has one more disjoint cycle than α by Construction 2.2.8. In fact,

this non-crossing sequence maps to β under the map φk,r. In conclusion, φk,r is surjective.

Combining with the first part of the proof, φk,r is bijective.

The following example will help the reader understand the proof above.

Example 2.6.5. Consider the following non-crossing sequence

(4)(321) .

By the construction of φ4,2 in the proof of Theorem 2.6.4, it corresponds to the element

α = (4)(321) in S4 which satisfies the condition (∗). Q̂α is

Q̂(4)(321) : 5 3 2 1, 4 .

Now, consider the quiver

Q̂(4)(5321) : 6 5 3 2 1, 4 .

Clearly, it is Q̂β1, where [β1] = [α, 0], i.e. β1 = (4)(5321). The corresponding non-crossing
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sequence of β1 is

(5(4)321),

which is the case when j = 0. Next, we consider another quiver

Q̂(5)(4)(321) : 6 3 2 1, 4 , 5 ,

which corresponds to β2, where [β2] = [α, 3]. By calculation, β2 = (5)(4)(321). The corre-

sponding non-crossing sequence is

(5)(4)(321),

which is the case j 6= 0 we discuss above.

Now we want to give some definitions about pairs of brackets.

Definition 2.6.6. Given any non-crossing sequence in Brk(n, r), (i ... )i is of top-level

if this pair of brackets is not contained in any other pair of brackets. (i ... )i is embedded

if (i ... )i is not top-level. (i ... )i is of bottom-level if there is no embedded pair of

brackets in it. Two pairs of brackets are adjacent if there are no positive integers between

these two pairs of brackets.

Example 2.6.7. Let α = (531)(2)(4)(6), then the corresponding non-crossing sequence is

(4 6 )4(1 5 (3 4 )3 3 (2 2 )2 1 )1.

(4 6 )4 is both of bottom-level and top-level. (3 4 )3 and (2 2 )2 are embedded and of

bottom-level. (3 4 )3 and (2 2 )2 are not adjacent, because 3 is between them. Finally,

(1 ... )1 and (4 ... )4 are adjacent.

Remark 2.6.8. Theorem 2.5.10 tells us that there is a bijective map between the non-crossing

permutations and the ordinary summations. Theorem 2.6.4 tells us that there is a bijective

map between the non-crossing permutations and the non-crossing sequences. In Section 2.8,

we calculate the number of non-crossing sequences, which is exactly the answer to Question

2.4.4.
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2.7 Dual Non-crossing Sequence

In Construction 2.6.1, we construct the non-crossing sequence with r pairs of brackets. In

this section, we construct the dual non-crossing sequence and prove that the number of

(r, s)-type OS is the same as the number of (s, r)-type OS.

Construction 2.7.1. Consider the following non-crossing sequence

(i1 )i1 ... (is )is ,

where all pairs of brackets are top-leveled. There may be some embedded brackets in them.

For each integer k in this sequence, there are at most four brackets ”adjacent” to it,

k + 1 4 �k4 � k − 1,

the right bracket of k + 1, the left bracket of k − 1 and the two brackets of k. There are 16
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possibilities in these four positions. The following construction discuss these possibilities.

4�k4� 4�k4�

1 k )(k)(

2 k) )(k)

3 (k (k)(

4 k( )(k(

5 )k )k)(

6 (k) (k)

7 )k( )k(

8 (k( (k(

9 )k) )k)

10 )(k k)(

11 k)( )(k

12 )(k) k)

13 (k)( (k

14 )(k( k(

15 )(k( k(

16 )(k)( k

The second column is all of the possible cases in the original non-crossing sequence, the third

column is what we will get in the dual non-crossing sequence.

Given a non-crossing, we do the operations for all integers in the sequence simultaneously

to get the dual sequence. It is easy to check that all operations are compatible with each other.

We claim that the dual sequence we get is a non-crossing sequence, which we call the dual

non-crossing sequence.

To prove that the dual sequence is a non-crossing sequence under the operations, we only

have to check the dual sequence satisfies the first point of the condition (∗∗) in Construction

2.6.1, i.e. every integer in the dual sequence is contained in some pair of brackets. We leave

it as an exercise for the reader to check.
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From the construction, we see that the operations are dual in the following way

1⇔ 16, 2⇔ 12, 3⇔ 13, 4⇔ 14, 5⇔ 15,

6⇔ 6, 7⇔ 7, 8⇔ 8, 9⇔ 9, 10⇔ 11.

Hence, given a non-crossing sequence, the dual of its dual non-crossing sequence is itself. It

is also easy to check that given any non-crossing sequence in Brk(n, r), its dual non-crossing

sequence is in Brk(n, n− r + 1).

Example 2.7.2. Here is an example of Construction 2.7.1.

Let α = (721)(65)(4)(3) ∈ Pmt(7, 4). The corresponding sequence is

(1 7 (4 6 5 )4 (3 4 )3 (2 3 )2 2 1 )1 .

We see that

7 is of type 8,

6 is of type 3,

5 is of type 11,

4 is of type 16,

3 is of type 12,

2 is of type 5,

1 is of type 2.

So, the dual sequence is

(3 7 (1 6 )1 (2 5 4 3 )2 2 )3 (4 1 )4 ,

which corresponds to the permutation (72)(6)(543)(1).

Now, we are ready to prove the number of (r, s)-type OS in : tr(Dn) : is the same as the

number of (s, r)-type OS in : tr(Dn) :, where r + s− 1 = n.

Corollary 2.7.3. Given two positive integers n, r, we have

|OS(n, r)| = |OS(n, n− r + 1)|.
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Proof. By Theorem 2.5.10, we have

|OS(n, r)| = |Pmt(n, r)|, |OS(n, n− r + 1)| = |Pmt(n, n− r + 1)|.

By Theorem 2.6.4, we know

|Pmt(n, r)| = |Brk(n, r)|, |Pmt(n, n− r + 1)| = |Brk(n, n− r + 1)|.

By Construction 2.7.1, we have

|Brk(n, n− r + 1)| = |Brk(n, r)|.

Hence,

|OS(n, r)| = |OS(n, n− r + 1)|.

2.8 |Brk(n, r)|, Catalan Number and Narayana

Number

In this section, we will calculate |Brk(n, r)|, the number of non-crossing sequences with r

pairs of brackets in a sequence of length n, by using properties of the Catalan numbers and

Narayana numbers. We use this to calculate the number of ordinary summations in the

W -operator W ([n]).

We first review some properties of the Catalan numbers and Narayana numbers [34]. The

Catalan number Cn is

Cn =
1

n+ 1

(
2n

n

)
, n ≥ 0. (2.8.1)

The generating function of Catalan numbers c(x) is

c(x) =
∞∑
n=0

Cnx
n,
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which satisfies the following equation

c(x) = 1 + xc(x)2. (2.8.2)

Clearly, Equation (2.8.2) gives us two solutions for the generating function c(x). But, if we

know the initial value c1, we will get a unique solution. If c1=1, then c(x) is exactly of the

generating function of Catalan numbers Cn.

The Narayana number N(n, r) is

N(n, r) =

 1
n+1

(
n+1
r

)(
n−1
r−1

)
, 0 ≤ r ≤ n

0, otherwise .

The generating function of Narayana numbers is

n(x, y) =
∑
n,r≥0

N(n, r)xnyr. (2.8.3)

The Narayana number N(n, r) satisfies the following condition

n∑
r=1

N(n, r) = Cn,

i.e.

n(x, y) = 1 + n(x, y)2x.

Clearly, we have

c(x) = n(x, 1).

We define a new set B̃rk(n, r), which contains all sequences in Brk(n, r) with only one

top-level pair of brackets. It means that any element in B̃rk(n, r) can be written in the

following form

(1 ... )1,

where (1 ... )1 is the only top-level pair of brackets. Denote by ãrn the number of elements

43



in B̃rk(n, r). Also, we introduce the following notation

arn =

|Brk(n, r)| , 1 ≤ r ≤ n

0 , otherwise.
ãrn =

|B̃rk(n, r)| , 1 ≤ r ≤ n

0 , otherwise.

Lemma 2.8.1. Given any positive integers n, r, n ≥ r ≥ 1, we have ãrn+1 = arn.

Proof. We are going to construct a bijection between B̃rk(n+ 1, r) and Brk(n, r). Take an

element in B̃rk(n + 1, r). It has only one top-level pair of brackets. So, the integer n + 1

does not have right bracket and 1 does not have left bracket. The sequence in B̃rk(n+ 1, r)

can be written in the following two cases

1.

(1 n+ 1 (j1 ... )j1 ... (jk )jk v ... 1 )1 ,

2.

(1 n+ 1 v ... (j1 ... )j1 ... (jk )jk ... 1 )1 ,

where the integer v is the largest integer smaller than n + 1 in the top-level pair of

brackets, i.e., not contained in any embedded brackets. In the second case, v = n.

We construct the sequence in Brk(n, r) as follows

1.

(j1 ... )j1 ... (jk )jk (1 v ... 1 )1 ,

2.

(1 v ... (j1 ... )j1 ... (jk )jk v ... 1 )1 .

Indeed, we get rid of the integer n + 1 and move the bracket (1 to the left side of

the next integer not contained in any other pair of brackets. This gives a well defined

element in Brk(n, r).

Now let’s consider how to construct elements in B̃rk(n+1, r) from elements in Brk(n, r).

In the proof of Theorem 2.6.4, we already gave the construction. Given an element in
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Brk(n, r), we assume it in the following form

(j1 n ... w )j1 ... (1 v ... 1 )1,

where (j1 n ... w )j1 is the leftmost top-leveled pair of brackets. Now we give the

construction as follow

(1 n+ 1 (j1 n ... w )j1 v ... 1 )1.

Indeed, if we consider the element in Brk(n, r) corresponding to the permutation α ∈ Sn,

then the sequence we construct corresponds to the permutation β ∈ Sn+1, where β = [α, 0].

It is easy to check that the above construction gives a one-to-one correspondence between

Brk(n, r) and B̃rk(n+ 1, r). Hence, ãrn+1 = arn.

Theorem 2.8.2. The number of (r, n− r + 1)-type OS in W ([n]) is the Narayana number:

|OS(n, r)| = 1

n+ 1

(
n+ 1

r

)(
n− 1

r − 1

)
.

The number of all summations with degree n+ 1 in W ([n]) is the Catalan number

n∑
r≥1

1

n+ 1

(
n+ 1

r

)(
n− 1

r − 1

)
=

1

n+ 1

(
2n

n

)
.

Proof. Any element in Brk(n, r) can be written as

(i1 )i1 ... (is )is ,

where the pairs of brackets (ij )ij , 1 ≤ j ≤ s, are top-level. By construction, any integer

k, 1 ≤ k ≤ n, is contained in a unique top-level pair of brackets. Of course, (ij )ij can be

considered as a non-crossing sequence with a unique top-level pair of brackets. Let nj and

tj be the number of integers, respectively the number of pairs of brackets in (ij )ij . Hence,

we have

arn =
r∑
s=1

∑
n1+...+ns=n
t1+...+ts=r

ãt1n1
...ãtsns .
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By Lemma 2.8.1, we know ãrn+1 = arn. So, we have

arn =
r∑
s=1

∑
n1+...+ns=n
t1+...+ts=r

at1n1−1...a
ts
ns−1. (2.8.4)

Now we consider the generating function

G(x, y) =
∑
n,r≥0

arnx
nyr.

By (2.8.4), we have

∞∑
s=1

G(x, y)sxs = G(x, y),

⇒ 1

1−G(x, y)x
= G(x, y),

⇒ G(x, y) = 1 +G(x, y)2x,

which is the generating function of Narayana numbers. If we set y = 1, we have

G(x, 1) = 1 +G(x, 1)2x,

which is the generating function for Catalan number Cn. But, the generating function is not

enough to determine the value of arn. We also have to check the initial value a1
1. Clearly,

a1
1 = 1, which equals to the first Catalan number C1. By the property of Catalan number

and Narayama number we stated at the beginning of this section, we have

n∑
r=1

arn =
1

n+ 1

(
2n

n

)
,

arn =
1

n+ 1

(
n+ 1

n+ 1− r

)(
n− 1

r − 1

)
.
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2.9 A Formula about W ([d])

Recall that Φ : CSn → C[p1, p2, ...] is the linear map defined as follows

Φ(g) = pλ,

where g is a permutation in Sn of type λ = (λ1, ..., λm) and pλ = pλ1 ...pλm . The variable pλi
is the trace of the infinite matrix X i. The reader can also take pi as independent variables.

Also, if λ is a partition, Kλ =
∑
σ∈Sn

σ is of typeλ

σ is a central element in the group ring CSn. As a

special example, K(1n−dd) is the sum of all d-cycles in Sn.

In this section, we will prove the following formula about W ([d]). The applications of

W ([d]) to the Hurwitz number in the next chapter are based on this formula.

Theorem 2.9.1. For any g ∈ CSn,

Φ(K(1n−dd)g) = W ([d])Φ(g), (2.9.1)

where K(1n−dd) is the central element in CSn corresponding to the partition (1n−dd).

This theorem was known for d = 2, see [11]. We will use quivers to prove this theorem.

Definitions about quivers can be found in Section 2.2.

Definition 2.9.2. Denote by FQ the set of all quivers (V,A, s, t) with finite vertex set

{1, ..., n} for some positive integer n and finitely many arrows.

Denote by M the set of all monomials with variables Xij, 1 ≤ i, j <∞.

Definition 2.9.3. Let Q = (V,A, s, t) ∈ FQ. We define the map β : FQ → M by β(Q) =

MQ, where MQ =
∏

a∈AXs(a)t(a).

Also, given any monomial M =
∏l

k=1 = Xikjk , we can define the corresponding quiver

QM as QM = (VM , AM , s, t), where VM = {1, ..., n}, n = max{ik, jk, 1 ≤ k ≤ l} and AM =

{ak : ik → jk, 1 ≤ k ≤ l}.

Construction 2.9.4. Given α ∈ Sn, let Qα = Φn(α) be the quiver corresponding to α

(See Definition 2.2.1). Given two vertices a1, a2 ∈ Qα, we construct a new quiver denoted

(D̄a1a2)Qα by replacing the unique arrow a2 → b by a1 → b. So we get a new quiver denoted

by (D̄a1a2)Qα. More generally, if a1, ..., ad are distinct vertices (or integers) of Qα, we replace

the arrows ai → bi with ai−1 → bi simultaneously, 2 ≤ i ≤ k + 1, ak+1 = a1. Denote by
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(
∏d

i=1 D̄aiai+1
)Qα the new quiver. We introduce the notation (similar to Notation 2.1.10) as

follows

D̄(a1,...ad) =
d∏
i=1

D̄aiai+1
,

where (a1, ..., ad) is an n-tuple of positive integers and ad+1 = a1.

Remark 2.9.5. Given a d-tuple of positive integers (a1, ..., ad), the quiver D̄(a1,...,ad)Qα is

obtained by doing the replacement operations simultaneously instead of consecutively, by com-

position of operations. For example, let α = (123) and D̄(1,2,3) = D̄12D̄23D̄31. If we do the

operations simultaneously, the new quiver is

1 3 2 .

But, if we do it as compositions, D̄31Qα is

3 2 , 2 3 , 3 1 .

This quiver has two arrows with source 3. In this case, D̄23 cannot act on this quiver by

Construction 2.9.4. This is the reason why we want to do all the operations simultaneously,

otherwise, we don’t know in general which arrow to replace.

The new quiver D̄a2a1Qα may not be of the form Φn(β), i.e not represent a well defined

element β in the permutation group Sn under this operation. However, we have the following

lemma.

Lemma 2.9.6. Let α ∈ Sn and Qα = Φn(α) is the corresponding quiver. Given d distinct

positive integers a1, ..., ad, then D̄(a1,...,ad)Qα represents a permutation in Sn.

Proof. In the construction, this procedure only changes the source of each arrow and fixes

the target. Therefore, we pick d arrows such that their sources are a1, ..., ad respectively. By

the construction, substitute the source ai by ai+1, where i ≤ d − 1 and a1 by ad, and get a

new quiver (D̄(a1,...,ad))Qα. Clearly, this quiver still represents for an element in Sn, because

each integer k (k ≤ n) appears once as a target and once as a source.

Remark 2.9.7. From the proof of the lemma, we have Qα′ = (D̄(a1,...,ad))Qα, where α′ =

(a1 a2 ... ad)α.
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Now, consider the monomial β(Φn((12...n))) = X12X23...Xn1 which is a term in tr(Xn).

We use the permutation (12...n) to represent this monomial or the quiver

1 2 · · · n .

We use D21 (refer to Definition 2.1.4) acting on this term, then we get

D21X12X23...Xn1 = X22X23...Xn1.

The new term X22X23...Xn1 can be represented by a quiver

2 3 · · · 1 .

In this way, if we use quivers to represent the monomials, then Da1a2 acting on monomials

is the same as D̄a1a2 acting on the corresponding quivers. Hence, if Da1a2 ...Dada1X is a

nonzero monomial, then it can be represented by a permutation by Remark 2.9.7. With the

discussion above, we have the following lemma.

Lemma 2.9.8. Let α ∈ Sn. Qα is the corresponding quiver and Mα is the corresponding

monomial. We have β(D̄Qα) = DMα, where D = D(a1,...,ad) and D̄ = D̄(a1,...,ad), where

(a1, ..., ad) is an d-tuple of positive integers.

Definition 2.9.9. Given a monomial X ∈ C[X11, X12, ..., X22, ...] and a (formal) differential

operator D. If DX 6= 0, then we say D is a non-trivial operator (with respect to X).

In this section, we concentrate on the differential operator D = D(a1,...,an).

Definition 2.9.10. Let T = {ti, 1 ≤ i} be a set of variables, define Mt is the set of all

monomials with variables Xtitj , i, j ≥ 1. Given an infinite sequence of positive integers

a = (a1, a2, ...), define the evaluation map eva : Mt →M,

eva(Xtitj) = Xaiaj .

If Mt is a monomial in Mt, we define Mt(a1, an...) = eva(Mt).
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Similar to 2.1.10, we introduce the following notation,

X(t1,...,tn) =

(
n−1∏
i=1

Xtiti+1

)
Xtnt1 ,

D(t1,...,tn) =:

(
n−1∏
i=1

Dtiti+1

)
Dtnt1 : .

Finally, we define Wt([d]) = 1
d

: Tr((Dtitj)i,j≥1)d :

We are ready to prove Theorem 2.9.1.

Proof of Theorem 2.9.1. Let g ∈ Sn. We can write it in disjoint cycles

g = (c1 ... cλ1)(cλ1+1 ... cλ1+λ2) ... (cn−λm+1 ... cn),

where λ is the partition corresponding to g, λ = (λ1, ..., λm).

W ([d]) is an infinite sum of operators D(b1,...,bd), bi are positive integers, (see Definition

2.1.10) and Φ(g) =
∏m

i=1 pλi is an infinite sum of monomials in the form

M(a1, ..., an) = X(a1,...,aλ1 )...X(an−λm+1,...,an).

Given any monomial M , most of the operators D(b1,...,bd) in W ([d]) will act by zero. Hence,

W ([d])M is a finite sum of monomials. To analyze these monomials, we first consider the

generic case Mt. Then, we go back to M as the evaluation of Mt,

M(a1, ..., an) = eva(Mt),

where a = (a1, ..., an) is an n-tuple of positive integers.

We replace W ([d]) by Wt([d]) (see Definition 2.9.10) and g by ḡ, where

ḡ = (t1 ... tλ1)(tλ1+1 ... tλ1+λ2) ... (tn−λm+1 ... tn).

We consider a special case Mt = X(t1,...,tλ1 )...X(tn−λm+1,...,tn). In this case, we prefer to use the

notation Mgt for Mt. Now we will calculate Wt([d])Mt. By Remark 2.9.7 and Lemma 2.9.8,

let i1, ..., id be distinct integers in {1, ..., n}, we have

D(ti1 ,ti2 ,...,tid )Mgt = Mσtgt ,
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where σt is the d-cycle (ti1 ....tid) ∈ Stn = Aut{t1, ..., tn}. Since D(ti1 ,...,tid )Mgt is nonzero if

and only if ij ∈ {1, ..., n}, 1 ≤ j ≤ d, we have∑
(i1,...,id),

ij∈{1,...,n} and distinct

D(ti1 ,...,tid )Mgt = d
∑

σt d-cycle in S̄n

Mσtgt .

Here we understand there are d d-tuples (i1, ..., id) giving rise to the same d-cycle. Hence,

we have a coefficient at the right side of the above equation. We have the following formula

Wt([d])Mgt =
1

d

∑
(i1,...,id),

ij∈{1,...,n} and distinct

D(ti1 ,...,tid )Mgt

=
1

d

∑
(i1,...,id),

ij∈{1,...,n} and distinct

Mσtgt

=
∑

σt d-cycle in Stn

Mσtgt .

Now we want to show for any d-tuple (a1, ..., ad) (with maybe some ai not distinct), we

have

W ([d])Mgt(a1, ..., an) =
∑

σt d-cycle in Stn

Mσtgt(a1, ..., an). (2.9.2)

We note that for any n-tuple (a1, ..., an), the right hand side of (2.9.2) is always a sum

of 1
d

(
n
d

)
d! monomials, each of which corresponds an unique element in Stn, where Stn =

Aut{t1, ..., tn}. But the left hand side is complicated. We hope that for any n-tuple

(a1, ..., an), the left hand side is a sum of 1
d

(
n
d

)
d! monomials. We can find

(
n
d

)
d! nontriv-

ial operators in W ([d]) with respect to Mgt(a1, ...an). (Recall in the definition of W ([d]), we

have a coefficient 1
d
.) But the left hand side is not easy if the ai are not distinct. Indeed, if

ai are not distinct, there are fewer nontrivial operators D(ai1 ,...,aid ) in W ([d]) with respect to

Mgt(a1, ...an) than that in Wt([d]) with respect to Mgt .

For example, consider

M = X(t1,t2,t3) = Xt1t2Xt2t3Xt3t1 .

There are 6 nontrivial differential operators D(ti1 ,ti2 ,ti3 ) in Wt([3]) with respect to M ,

where (i1, i2, i3) is any 3-tuples such that i1, i2, i3 ∈ {1, 2, 3} and distinct. However, if we

substitute a1 = a2 = 1, a3 = 2, we get only 3 nontrivial operators in W ([3]) with respect to
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X(1,1,2). They are D(1,1,2), D(1,2,1), D(2,1,1). In this case, we have to check whether we can get

enough monomials on the left hand side of the equation.

Before we discuss different cases, we first focus on some basic calculations. The number

of d-cycles in Sn is 1
d

(
n
d

)
d!. Given a monomial Mgt of degree n, the number of non-trivial

operators D(ti1 ,...,tid ) in Wt([d]) corresponding to Mgt is
(
n
d

)
d!. Each differential operator

D(ti1 ,...,tid ) corresponds to a unique d-tuple (ti1 , ..., tid), which corresponds to a unique d-cycle

with integers (ti1 ...tid). But, a d-cycle corresponds to d d-tuples.

Next, we will discuss how W ([d]) acts on Mgt(a1, ..., an) = X(a1,...,an).

Case 1, ai are distinct.

In this case, each ”non-trivial operator” D(ai1 ,...,aid ) corresponds to a unique d-cycle in

S̄n. But this correspondence is not injective, it is an d to 1 correspondence. For example,

: D(a1,a2,a3) :=: D(a2,a3,a1) :=: D(a3,a1,a2) : .

Hence, we get

W ([d])Mgt(a1, ...an) =
∑

σt d-cycle in Sn

Mσtgt(a1, ..., an).

The number of non-trivial operators with respect to Xgt(a1, ...an) in W ([d]) is
(
n
d

)
d!.

Case 2, ai are not all distinct and all Xaiai+1
are distinct.

First, we consider a special case that only two numbers of {ai}1≤i≤n are the same and we

assume that ap = aq. In this case, we consider the operator D(ai1 ,...,aid ).

1. If all aij 6= ap, then each non-trivial differential operator D(ai1 ,...,aid ) with respect to

X(a1,...,an) corresponds to a unique d-tuple in ti, which means it corresponds to a unique

element in the permutation group S̄n. Under this condition, there are
(
n−2
d

)
d! d-tuples

(ai1 , ..., aid) satisfying this condition and each of them corresponds to a unique d-tuple

(ti1 , ..., tid).

2. If only one of {aij}1≤j≤d is ap and we assume aik = ap, then each non-trivial differential

operator D(ai1 ,...,aid ) corresponds to two elements in the permutation group S̄n. Indeed,
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we have

Daik−1
aik
Xa1a2 ...Xana1 = Daik−1

apXa1a2 ...Xana1 =

=

(∑
c≥1

Xaik−1
c

∂

∂Xapc

)
Xa1a2 ...Xana1 =

=

(
Xaik−1

ap+1

∂

∂Xapap+1

+Xaik−1
aq+1

∂

∂Xapaq+1

)
Xa1a2 ...Xana1 .

The last equality holds because only these two terms in Daik−1
ap act non-trivially on

X(a1,...,an) with our assumptions ap = aq.

Compared with (ti1 , ..., tid), the differential operator D(ai1 ,...,aid ) now actually corre-

sponds to two d-tuples. They are

(ti1 , ..., tik−1
, tp, tik+1

, ..., tid),

(ti1 , ..., tik−1
, tq, tik+1

, ..., tid).

In this case, D(ai1 ,...,aid ) corresponds to two different elements in the permutation group

S̄n.

Under this condition, there are 1
2

(
n−2
d−1

)(
2
1

)
d-tuples (ai1 , ..., aid) satisfying this condition

and each of them corresponds to two d-tuples in S̄n.

3. If two of {aij}1≤j≤d are ap and we assume they are ail = aik = ap, then each non-trivial

differential operator D(ai1 ,...,aid ) corresponds to two elements in the permutation group

S̄n. Indeed, we have

: Dail−1
ail
Daik−1

aik
: Xa1a2 ...Xana1 =: Dail−1

apDaik−1
ap : Xa1a2 ...Xana1 .

Since we only care about the non-trivial terms, we have to calculate the differential

operators : Dail−1
apDaik−1

ap : with differential part

∂2

∂Xapap+1∂Xaqaq+1

.
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By definition, we know

Dail−1
ap =

∑
c≥1

Xail−1
c

∂

∂Xapc

,

Daik−1
ap =

∑
d≥1

Xaik−1
d

∂

∂Xapd

.

So, we have

: Dail−1
apDaik−1

ap : Xa1a2 ...Xana1 =

=(
∑
c,d≥1

Xail−1
cXaik−1

d
∂

∂Xapc

∂

∂Xapd

)Xa1a2 ...Xana1 =

=(Xail−1
ap+1Xaik−1

aq+1

∂

∂Xapap+1

∂

∂Xapaq+1

+

+Xail−1
aq+1Xaik−1

ap+1

∂

∂Xapaq+1

∂

∂Xapap+1

)Xa1a2 ...Xana1 .

The last equality holds because all Xaiaj are distinct by the assumption of Case 2.

Hence aq+1 6= ap+1.

Compared with (ti1 , ..., tid), the differential operator D(ai1 ,...,aid ) corresponds to two

d-tuples. They are

(ti1 , ..., tik , ..., til , ..., tid),

(ti1 , ..., til , ..., tik , ..., tid).

Hence,in this case, D(ai1 ,...,aid ) corresponds to two different elements in the permutation

group Stn.

Under this condition, there are 1
2

(
n−2
d−2

)
d! d-tuples (ai1 , ..., aid) satisfying this condition

and each of them corresponds to two d-tuples in Stn.

Hence, in this special case, the number of d-tuples in Stn corresponding to the nontrivial

differential operators with respect to the monomial X(a1,...,an) is(
n− 2

d

)
d! + 2× 1

2

(
n− 2

d− 1

)(
2

1

)
d! + 2× 1

2

(
n− 2

d− 2

)
d! =

(
n

d

)
d!.

54



By the discussion above, each tuple is counted for d times. Hence, in this case, we have

d×W ([d])Mgt(a1, ...an) = d×
∑

σ d-cycle in Stn

Mσtgt(a,..., an).

For the general case of s integers aj1 = aj2 = ... = aj2 but Xaiai+1
all distinct, the same

argument proves what we want. We leave it to the reader to check this.

Case 3, ai are not all distinct, and some Xaiai+1
are the same.

We still consider a special case that only two terms in X(a1,...,an) are the same. We

assume Xapap+1 = Xaqaq+1 , where p 6= q and p + 1, q + 1 means the addition mod n. Under

this condition, we consider some examples. First, we have ap = aq and ap+1 = aq+1 and the

other ai are distinct. Some examples are

X11X11, p = 1, q = 2,

X12X21X12X23X31, p = 1, q = 3.

These are cases we want to study.

Of course, there are other examples. For instance,

X11X11X12X21.

In this example, we have X2
11 and another term X12, which means there are some other ai

such that ai = ap. To solve this type of question, it is a combination of Case 2 and Case

3. We will not discuss it here.

Now, let’s consider the problem that only two terms in X(a1,...,an) are the same

Xapap+1 = Xaqaq+1 , ap = aq, ap+1 = aq+1, p 6= q,

and the other ai are distinct. In this case, we still consider the operator D(ai1 ,...,aid ).

1. If all aij 6= ap, then D(ai1 ,...,aid ) corresponds to a unique element in the permutation

group.

Under this condition, although aij 6= ap, aij could be ap+1. By our assumptions that

only two terms in X(a1,...,an) are the same, hence there are
(
n−2
d

)
d! d-tuples (ai1 , ..., aid)

satisfying this condition and each of them corresponds to a unique d-tuple in Stn by

the conclusion of Case 2.

55



2. Only one integer in {aij}1≤j≤d is ap, say aik = ap.

First, assume all aij are not ap+1. Then, we have

Daik−1
aik
X(a1,...,an) = Daik−1

apXa1a2 ...Xana1 =

=(
∑
c≥1

Xaik−1
c

∂

∂Xapc

)Xa1a2 ...Xana1 =

=(Xaik−1
ap+1

∂

∂Xapap+1

)Xa1a2 ...Xana1 =

=(Xaik−1
ap+1

∂

∂Xapap+1

)X2
apap+1

....

The last equality holds because we have Xapap+1 = Xaqaq+1 . We note there is a square

X2
apap+1

in the monomial X(a1,...,an). Hence, we will get two (same) monomials at last.

Compared with (ti1 , ..., tid), this differential operator D(ai1 ,...,aid ) corresponds to two

d-tuples in Stn. They are

(ti1 , ..., tik−1
, tp, tik+1

, ..., tid),

(ti1 , ..., tik−1
, tq, tik+1

, ..., tid).

Hence, each differential operator in this type corresponds to two different elements in

the permutation group Stn.

Similarly, if some aij are ap+1, then the conclusion follows by the combination of the

above argument and the argument in Case 2. (If it contains both ap and aq, then it

corresponds to 4 permutations.)

We conclude all non-trivial differential operators D(ai1 ,...,aid ) in the case correspond to(
2
1

)(
n−2
d−1

)
d! d-tuples in ti.

3. Two of the integers aij , 1 ≤ j ≤ d are ap and we assume they are ail = aik = ap.
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Similarly, assume all aij are not ap+1. We have

: Dail−1
ail
Daik−1

aik
: Xa1a2 ...Xana1

= : Dail−1
apDaik−1

ap : Xa1a2 ...Xana1

= : Dail−1
apDaik−1

ap : X2
apap+1

...

=(
∑
c,d≥1

Xail−1
cXaik−1

d
∂

∂Xapc

∂

∂Xapd

)X2
apap+1

...

=(Xail−1
ap+1Xaik−1

ap+1

∂2

∂2Xapap+1

)X2
apap+1

....

Note we have a square X2
apap+1

. Hence, we will get two (equal) monomials.

Compared with (ti1 , ..., tid), this differential operator D(ai1 ,...,aid ) corresponds to two

d-tuples. They are

(ti1 , ..., tik , ..., til , ..., tid),

(ti1 , ..., til , ..., tik , ..., tid).

Hence, D(ai1 ,...,aid ) corresponds to two different elements in the permutation group Stn.

Similarly, if some aij are ap+1, then the conclusion follows by the combination of the

above argument and Case 2. (If it contains both ap and aq, then it corresponds to 4

permutations.)

We conclude all non-trivial differential operators D(ai1 ,...,aid ) in the case correspond to(
n−2
d−2

)
d! d-tuples in ti.

By the discussion above, this correspondence is unique. Hence, in this case, we have

d×W ([d])Mgt(a1, ...an) = d×
∑

σ d-cycle in Stn

Mσt(a,..., an).

For the general case that there are k same factors in Xa1a2 ...Xana1 , the same argument

proves what we want. We leave it to the reader to check.

Combining the above three cases, we get the following formula by summing over all

monomials Mgt(a1, ..., an) = X(a1,...,an) of Φ(g),

Φ(K1n−ddg) = W ([d])Φ(g).
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2.10 Another Definition of W ([d])

In this section, we will consider W ([n]) as a differential operator on the ring C[p1, p2, ...] or

C[[p1, p2, ...]] by Theorem 2.3.1.

2.10.1 Definition of ∆d

Consider the cut-and-join operator ∆ [11],

∆ =
1

2

∑
i≥1

∑
j≥1

(ijpi+j
∂2

∂pi∂pj
+ (i+ j)pipj

∂

∂pi+j
). (2.10.1)

We have the following proposition.

Proposition 2.10.1. For any g ∈ CSn,

Φ(K1n−22g) = ∆Φ(g).

Proof. Goulden proves this in [11] Prop 3.1.

Definition 2.10.2. For any permutation δ ∈ Sd, write δ = δ1...δm, which is the decomposi-

tion of δ into disjoint cycles. For a positive integer N ≤ d, say N ∈ δi if δi(N) 6= N . Fix d

positive integers aj, where 1 ≤ j ≤ d. Define p̂δ(a1, ..., ad) to be the monomial

p̂δ(a1, ..., ad) =
m∏
i=1

p∑
j∈δi

aj .

Similarly, define ∂
∂p̂δ

(a1, ..., ad) to be the operator on C[[p1, p2, ...]],

∂

∂p̂δ
(a1, ..., ad) =

m∏
i=1

((
∑
j∈δi

aj)
∂

∂p∑
j∈δi

aj

).

If we fix positive integers d and a1,...,ad, we abbreviate p̂δ(a1, ..., ad) by p̂δ and ∂
∂p̂δ

(a1, ..., ad)

by ∂
∂p̂δ

.
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Example 2.10.3. Let δ = (123)(4) ∈ S4, then we have

p̂δ(a1, ..., a4) = pa1+a2+a3pa4 ,

∂

∂p̂δ
(a1, ..., a4) = (a1 + a2 + a3)a4

∂2

∂pa1+a2+a3∂pa4
.

Remark 2.10.4. Given δ ∈ Sd, we consider p̂δ as a map from Zd>0 to C[p1, p2, ...] and ∂
∂p̂δ

as a map from Zd>0 to C[ ∂
∂p1
, ∂
∂p2
, ...]. Generally, we can introduce variables ti and we write

p̂δ and ∂
∂p̂δ

in the following form similar to Definition 2.10.2,

p̂δ(t1, ..., td) =
m∏
i=1

p∑
j∈δi

tj ,

∂

∂p̂δ
(t1, ..., td) =

m∏
i=1

((
∑
j∈δi

tj)
∂

∂p∑
j∈δi

tj

).

Definition 2.10.5. Consider the d-cycle (d ... 2 1) in Sd. We define the bijective map φd

of Sd as

φd(δ) = (d ... 1)δ, δ ∈ Sd.

If we fix d, we will use φ to represent this map.

Definition 2.10.6. We define the differential operator ∆d on the polynomial ring C[p1, p2, ...]

as

∆d =
1

d

∑
δ∈Sd

∑
a1,...,ad≥1

p̂φ(δ)(a1, ..., ad)
∂

∂p̂δ
(a1, ..., ad).

Remark 2.10.7. The construction depends on the map φd(σ) = (d ... 1)σ, where (d ... 1)

is the d-cycle. Actually, we can take any d-cycle in Sd to substitute (d...1) to define the

map, which will give the same operator ∆d. We will obtain this property in the proof of the

theorem in this section.

Example 2.10.8.

∆2 =
1

2

∑
i≥1

∑
j≥1

(ijpi+j
∂2

∂pi∂pj
+ (i+ j)pipj

∂

∂pi+j
),
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where the first part corresponds to (1)(2) ∈ S2 and the second part corresponds to (12) ∈ S2.

Clearly, ∆2 is the cut-and-join operator ∆ (2.10.1).

∆3 =
1

3

∑
i1,i2,i3≥1

(i1i2i3pi1+i2+i3

∂3

∂pi1∂pi2∂pi3
+ (1)(2)(3)

+i1(i2 + i3)pi1+i3pi2
∂2

∂pi1∂pi2+i3

+ (1)(23)

+i2(i1 + i3)pi1+i2pi3
∂2

∂pi2∂pi1+i3

+ (2)(13)

+i3(i1 + i2)pi3+i2pi1
∂2

∂pi3∂pi1+i2

+ (3)(12)

+(i1 + i2 + i3)pi1pi2pi3
∂

∂pi1+i2+i3

+ (123)

+(i1 + i2 + i3)pi1+i2+i3

∂

∂pi1+i2+i3

) (132).

where the third column is the permutation, which the summation corresponds to.

Definition 2.10.9. Let n and d be positive integers, d ≤ n. Cn,d is the set of all d-cycles in

Sn and C̄n,d is the set of all d-tuples [a1, ..., ad] with positive integers ai such that 1 ≤ ai ≤ n

and ai 6= aj if i 6= j.

Next, we define a map πn,d : C̄n,d → Cn,d such that

πn,d([a1, ..., ad]) = (a1 ... ad).

Clearly, this map is d-to-1.

Given an d-tuple σ̄ ∈ C̄n,d and a permutation g ∈ Sn, we define the action of C̄n,d on Sn

as follows,

σ̄g := πn,d(σ̄)g.

Define CC̄n,d = ⊕[a1,...,ad]∈C̄n,dC[a1, ..., ad] as the vector space with basis the elements of C̄n,d,

define the element K̄1n−dd ∈ CC̄n,d as the sum of all d-tuples in C̄n,d.

In this paper, given positive integers n and d, we abbreviate πn,d by π and consider π as

a linear map from CC̄n.d to CCn,d.

We are going to use K̄1n−dd to show that Φ(K1n−ddg) = ∆dΦ(g).
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2.10.2 Case d = 3

Given σ̄ ∈ C̄n,3 and g ∈ Sn, we will calculate σ̄g and translate it into differential operators

and polynomials.

Construction 2.10.10. Write σ̄ = [j3, j2, j1]. We are going to classify elements g ∈ Sn

according to the occurrence of j1, j2, j3 in the disjoint cycles appearing in g. There are 6

cases with respect to σ̄, one for each permutation of S3,

1. g = (j1...)(j2...)(j3...)... ,

2. g = (j1...)(j2...j3...)... ,

3. g = (j1...j3...)(j2...)... ,

4. g = (j1...j2...)(j3...)... ,

5. g = (j1...j2...j3...)... ,

6. g = (j1...j3...j2...)... .

Clearly, for any element g ∈ Sn, it falls into one and only one case with respect to σ̄.

Now, consider case (4) g = (j1 ... j2 ... )(j3 ... )..., where the red dots represent the digits

after j1 before j2, the blue dots represent the other digits after j2 before j1 (since it is a cycle,

so the last element will go back to j1) and the green points represent the other digits in the

cycle of j3. We use the following steps to calculate σ̄g:

1. Restrict g = (j1 ... j2 ... )(j3 ... )... to the element (j1j2)(j3) by forgetting all digits

except j1,j2,j3 but preserving the cycle structure. (j1j2)(j3) can be considered as an

element in Aut{j1, j2, j3}. Let gσ̄ = (j1j2)(j3).

2. Calculate [j3, j2, j1]gσ̄ = (j1)(j2j3).

3. Insert all numbers forgotten by the restriction into σ̄gσ̄, then we have the consequence,

σ̄g = (j1 ... )(j2 ... j3 ... )...

Actually, this procedure works for all cases.
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Remark 2.10.11. • Let σ̄ = [3, 2, 1] and σ̄′ = [1, 3, 2]. Although π(σ̄) = π(σ̄′) = (132),

gσ̄ and gσ̄′ are not in the same type in general. For instance, assume g = (12)(3).

Consider σ̄ = [3, 2, 1], so that hence gσ̄ = (j1j2)(j3), which is in Case (4). Now,

consider σ̄′ = [132], so that gσ̄′ = (j3j1)(j2), which is in Case (3).

• Given different σ̄1, σ̄2, we can get gσ̄1 = gσ̄2. For example, if g = (321),σ̄1 = [3, 2, 1]

and σ̄2 = [1, 3, 2], then we have gσ̄1 = (321) = (213) = gσ̄2.

Remark 2.10.12. Let g be a permutation in Sn, n ≥ 3. We consider two 3-tuples σ̄ =

[1, 2, 3] and σ̄′ = [j3, j2, j1], j1, j2, j3 ≤ n. Clearly, gσ̄′ ∈ Aut{j3, j2, j1} and gσ̄ ∈ Aut{1, 2, 3}.
But, we want to compare the two permutations in the same permutation group S3 = Aut{1, 2, 3}.
Hence, we have to fix a bijective map between {1, 2, 3} and {j3, j2, j1}. We construct the map

by sending the largest integer in {j3, j2, j1} to 3, smallest one to 1 and the last one to 2. This

map will induce an isomorphism ø : Aut{j3, j2, j1} → Aut{1, 2, 3}. Hence, by an abuse of

notations, gσ̄′ ∈ S3 means ø(gσ̄′) ∈ S3.

Definition 2.10.13 (Reduction Permutation). We say that β is the reduction permu-

tation of (g, σ̄) or β is the reduction permutation of g with respect to σ̄, if gσ̄ = β as

discussed in Construction .

Definition 2.10.14 (Distance). Let σ = (j3 j2 j1) be a 3-cycle in Sn (or a 3-tuple σ̄ =

[j3, j2, j1]) and α = α1...αl be any permutation in Sn, where α1...αl is the unique product of

disjoint cycles. The set for fixed integer i, 1 ≤ i ≤ 3,

{l | αl(ji) is any jk, 1 ≤ k ≤ 3, l ≥ 1}

is nonempty, because αn! is the identity map on the set {1, ..., n}, so αn!(ji) = ji implies that

n! is contained in this set.

We define the ”distance” between ji and the set {j1, ..., j3} with respect to the permutation

α as

dist(ji, α, j1, j2, j3) = min{l | αl(ji) is any jk, 1 ≤ k ≤ 3, l ≥ 1}.

Example 2.10.15. We give some examples about the definition above. Consider Case (5)

in Construction 2.10.10,

σ = (j3 j2 j1), α = (j1...j2...j3...)α2...αl,
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where α1 = (j1...j2...j3...). dist(j3, α, j1, j2, j3) is the ”distance” between j3 and j1 in the cycle

α1, because j1 is the first element in {j1.j2, j3} after j3 under the action of α. Similarly,

dist(j2, α, j1, j2, j3) is the ”distance” between j2 and j3. Clearly,
∑

1≤i≤3 dist(ji, α, j1, j2, j3)

is the length of the cycle α1.

Now, let’s consider Case (1) in Construction 2.10.10. Here,

α = (j1...)(j2...)(j3...)α4...αl.

In this case, dist(ji, α, j1, j2, j3) is the length of the cycle containing ji.

Remark 2.10.16. α, ω are permutations in Sn, where ω is a d-cycles (jd ... j1). Let α′ = ωα.

Then, we have

dist(ji, α, j1, j2, j3) = dist(ji, α
′, j1, j2, j3), 1 ≤ i ≤ d.

This property comes from the calculation in Construction 2.10.10.

Definition 2.10.17. Given any permutation α ∈ Sn, we define the map

Iα,n,3 : C̄n,3 → Z3
>0,

Iα,n,3([j3, j2, j1]) = (i3, i2, i1),

where ik = dist(jk, α, j1, j2, j3), 1 ≤ k ≤ 3.

Definition 2.10.18. Let α be a permutation in Sn and let ik be positive integers, 1 ≤ k ≤ 3.

Let β be a 3-cycle in S3. Define the subset C̄β
n,3(α, i3, i2, i1) of C̄n,3 as

C̄β
n,3(α, i3, i2, i1) = {[j3, j2, j1] | ik = dist(jk, α, j1, j2, j3), 1 ≤ k ≤ 3,

β is the RP of (α, [j3, j2, j1])}.

Remark 2.10.19. Let α be a permutation in Sn. We have

C̄n,3 =
6⋃

β∈S3

⋃
i1,i2,i3≥1

C̄β
n,3(α, i3, i2, i1).

Given any 3-tuple [j3, j2, j1], the ”distance” dist(ji, α, j1, ..., j3) and the type of (α, [j3, j2, j1])

are uniquely determined. Hence, the union above is the disjoint union. Also, there are only

finitely many nonempty sets C̄n,3(α, i3, i2, i1) in the above union.
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Lemma 2.10.20. Let α be a permutation in Sn and let i1, i2, i3 be three positive integers. If

C̄β
n,3(α, i3, i2, i1) is nonempty, we have

Φ(
∑

[j3,j2,j1]∈C̄βn,3(α,i3,i2,i1)

[j3, j2, j1]α) == p̂φ(β)(i1, i2, i3)
∂

∂p̂β
(i1, i2, i3)Φ(α).

Proof. We only give the proof when β = (1)(2)(3),

Φ(
∑

[j3,j2,j1]∈C̄βn,3(α,i3,i2,i1)

[j3, j2, j1]α) = i1i2i3pi1+i2+i3

∂3Φ(α)

∂pi1∂pi2∂pi3
.

The other formulas can be proved similarly.

First, we make some assumptions and define some notations. Let α be a permutation in

Sn and let σ̄ be an element in C̄β
n,3(α, i3, i2, i1). We use the same notations for α and σ̄ as in

Construction 2.10.10, i.e.

α = (j1...)(j2...)(j3...)α4...αl, σ̄ = [j3, j2, j1].

Also, by Definition 2.10.14, we have

ik = dist(jk, α, j1, j2, j3), 1 ≤ k ≤ 3.

We assume the lengths of disjoint cycles αv, 4 ≤ v ≤ l, are not i1, i2, i3.

By simple calculations, we have

α = (j1...)(j2...)(j3...)ρ4...ρl → σ̄α = (j3...j2...j1...)ρ4...ρl

Φ(α) = pi1pi2pi3Φ(ρ4...ρl) → Φ(σ̄α) = pi1+i2+i3Φ(ρ4...ρl) ,

and

pi1+i2+i3

∂3

∂pi1∂pi2∂pi3
Φ(α) = Φ(σ̄α).

Clearly, for any element σ̄′ in C̄β
n,3(α, i3, i2, i1), we have

Φ(σ̄′α) = Φ(σ̄α),
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Hence, the differential operators should be the same, which means

pi1+i2+i3

∂3

∂pi1∂pi2∂pi3
Φ(α) = Φ(σ̄α) = Φ(σ̄′α).

Now we want to find the number of elements in the set C̄β
n,3(α, i3, i2, i1). Since the lengths

of the disjoint cycles ρ4, ..., ρl are not i1, i2, i3, so if we want to get the same differential

operator, we only care about the cycles (j1...), (j2...), (j3...). We take one integer from each

of the three cycles. Say we take j′i from the cycle (ji...). They form a unique element

[j′3, j
′
2, j
′
1] ∈ C̄n,3. Clearly, [j′3, j

′
2, j
′
1] ∈ C̄β

n,3(α, i3, i2, i1). There are i1i2i3 possible choices.

Hence, the number of elements in the set C̄β
n,3(α, i3, i2, i1) is i1i2i3.

The discussion above gives the first formula

Φ(
∑

[j3,j2,j1]∈C̄1
n,3(α,i3,i2,i1)

[j3, j2, j1]α) = i1i2i3pi1+i2+i3

∂3Φ(α)

∂pi1∂pi2∂pi3
.

For the general case that not all lengths of α4, ..., αl are different from i1, i2, i3, the

construction still works. We only consider a special case that the length of α4 equal to

the length of (j1...), which is i1. In this case, the number of elements in C̄β
n,3(α, i3, i2, i1) is

2i1i2i3. Clearly, half of them come from the three cycles (j1...), (j2...), (j3...) and the others

come from α4, (j2...), (j3...). But, the formula in this case is still the same

Φ(
∑

[j3,j2,j1]∈C̄1
n,3(α,i3,i2,i1)

[j3, j2, j1]α) = i1i2i3pi1+i2+i3

∂3Φ(α)

∂pi1∂pi2∂pi3
.

The reason is when we calculate the differential part ∂3Φ(α)
∂pi1∂pi2∂pi3

, the degree of pi1 in the

monomial Φ(α) is 2, so we will have a coefficient 2.

We leave the general case for the reader to check.

Remark 2.10.21. The consequence of Lemma 2.10.20 works for any set C̄β
n,3(α, i3, i2, i1),

which means if C̄β
n,3(α, i3, i2, i1) = ∅, it also works. We only explain the reason for the case

β = (1)(2)(3). If C̄β
n,3(α, i3, i2, i1) = ∅, it means one of i1, i2, i3 is not the length of any

disjoint cycle of α. Hence, we have

∂3Φ(α)

∂pi1∂pi2∂pi3
= 0,
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which implies

0 = Φ(
∑

[j3,j2,j1]∈C̄1
n,3(α,i3,i2,i1)

[j3, j2, j1]α) = i1i2i3pi1+i2+i3

∂3Φ(α)

∂pi1∂pi2∂pi3
= 0.

Now we are ready to prove the theorem.

Theorem 2.10.22. Let g be an element in CSn. We have

3Φ(K31n−3g) = Φ(K̄31n−3g) = 3∆3Φ(g).

Proof. We assume g is a permutation in Sn. Say g = α. By Remark 2.10.19, we have

C̄n,3 =
6⋃

β∈S3

⋃
i1,i2,i3≥1

C̄β
n,3(α, i3, i2, i1).

Then, we get

Φ(K̄31n−3g) = Φ(
6∑

β∈S3

∑
i1,i2,i3≥1

∑
[j3,j2,j1]∈C̄βn,3(α,i3,i2,i1)

[j3, j2, j1]α)

=
∑

i1,i2,i3≥1

(i1i2i3pi1+i2+i3

∂3

∂pi1∂pi2∂pi3

+i1(i2 + i3)pi1+i3pi2
∂2

∂pi1∂pi2+i3

+i2(i1 + i3)pi1+i2pi3
∂2

∂pi2∂pi1+i3

+i3(i1 + i2)pi3+i2pi1
∂2

∂pi3∂pi1+i2

+(i1 + i2 + i3)pi1pi2pi3
∂

∂pi1+i2+i3

+(i1 + i2 + i3)pi1+i2+i3

∂

∂pi1+i2+i3

)Φ(g)

= 3∆3Φ(g),

where the second equality comes from Lemma 2.10.20 and the last equality comes from

Definition 2.10.6 or Example 2.10.8.
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We now give the extended definition of φ (Definition 2.10.5) and construction of ∆d

(Definition 2.10.6) if we choose arbitrary d-cycle.

Definition 2.10.23. Given an d-cycle β in Sd, we define the map φβ : Sd → Sd as

φβ(δ) = βδ, δ ∈ Sd.

Then, we construct ∆β similar to definition 2.10.5, replacing φ by φβ,

∆β =
1

d

∑
δ∈Sd

∑
a1,...,ad≥1

p̂φβ(δ)(a1, ..., ad)
∂

∂p̂δ
(a1, ..., ad).

Remark 2.10.24. From this definition, it is clear ∆(321) = ∆3.

Remark 2.10.25. Recall the formula in Lemma 2.10.20,

i1i2i3Φ([j3, j2, j1]α) = p̂φ((1)(2)(3))(i1, i2, i3)
∂

∂p̂(1)(2)(3)

(i1, i2, i3)Φ(α).

Similarly, we can prove

i1i2i3Φ([j1, j2, j3]α) = p̂φβ((1)(2)(3))(i1, i2, i3)
∂

∂p̂(1)(2)(3)

(i1, i2, i3)Φ(α),

where β = (1 2 3). Actually, the map φβ corresponds to tuple [j1, j2, j3]. We can prove the

other cases similarly.

Corollary 2.10.26. For any 3-cycle β, ∆3 = ∆β as operators on the ring C[p1, p2, ...].

Proof. Let β = (123). We have

∆3Φ(g) =
1

3
Φ(

∑
[j3,j2,j1]∈C̄n,3

[j3, j2, j1]g)

= Φ(K̄31n−3g)

= Φ(
∑

[j1,j2,j3]∈C̄n,3

[j1, j2, j3]g)

= ∆βΦ(g),

where the last equality comes from Remark 2.10.25.

Hence, ∆β = ∆3 as operators on C[p1, p2, ...].
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Remark 2.10.27. The above argument can be extended to ∆d, d ≥ 4, i.e., for any d-cycle

β, ∆β = ∆d. This will be shown in Corollary ??.

2.10.3 General Case

The proof of the general case is very similar to the case d = 3. First, we generalize Con-

struction 2.10.10, Definition 2.10.13 and 2.10.14 to any positive integer d.

Construction 2.10.28 (Reduction Permutation). Let σ̄ = [jd, ..., j1] ∈ C̄n,d. We want

to classify all permutations g ∈ Sn according to the occurrence of j1, ..., jd in the disjoint

cycles appearing in g. There are d! cases, one for each permutation in Sd. Here, Sd is

the permutation group of {j1, ..., jd}. By an abuse the notation, we use the same notation.

Restrict g to a permutation in Sd by forgetting all digits except for j1, ..., jd but preserving

the cycle structure. Denote by gσ̄ the permutation in Sd (similar to the construction of gσ̄ in

Construction 2.10.10). We say that β = gσ̄ is the reduction permutation of (g, σ̄) or β is the

reduction permutation of g with respect to σ̄. Clearly, for any element g ∈ Sn, g falls into

one and only one case with respect to σ̄.

We want to explain the notation τ = gσ̄ ∈ Sd in the above construction.

Remark 2.10.29. Let g be a permutation in Sn, n ≥ d. We consider two d-tuples σ̄ =

[d, d − 1, ..., 2, 1] and σ̄′ = [jd, ..., j1] in C̄n,d. Clearly, gσ̄′ ∈ Aut{jd, ..., j1} and gσ̄ ∈ Sd =

Aut{1, 2, ..., d}. But, we want to compare the two permutations in the same permutation

group S3 = Aut{1, 2..., d}. Recall the construction in Remark 2.10.12. Similarly, we con-

struct the bijective map between {1, ..., d} and {j1, ..., jd} with respect to the order of the

integers, which means small integer maps to the small one and larger integer goes to larger

one. This map induces an isomorphism ø : Aut{jd, ..., j1} → Aut{1, ..., d}. Hence, by an

abuse of notations, gσ̄′ ∈ Sd means ø(gσ̄′) ∈ Sd.

Definition 2.10.30 (Distance). Let σ = (jd ... j1) be a d-cycle in Sn (or a d-tuple σ̄ =

[j3, j2, j1]) and α = α1...αl be any permutation in Sn, where α1...αl is the unique product of

disjoint cycles. We define the ”distance” between ji and the set {j1, ..., jd} with respect to

the permutation α as

dist(ji, α, j1, ..., jd) = min{l | αl(ji) is any jk, 1 ≤ k ≤ d, l ≥ 1}.
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Definition 2.10.31. Given any permutation α ∈ Sn and a positive integer d such that d ≤ n,

we define the map

Iα,n,d : C̄n,d → Z3
>0,

Iα,n,d([jd, ..., j1]) = (id, ..., i1),

where ik = dist(jk, α, j1, ..., jd), 1 ≤ k ≤ d.

Definition 2.10.32. Let α be a permutation in Sn. Let d be a positive integer such that

d ≤ n. ik are positive integers, 1 ≤ k ≤ d. Let β be a permutation in Sd. We define the

subset C̄β
n,d(α, i1, ..., id) of C̄n,d as

C̄β
n,d(α, i1, ..., id) = {[jd, ..., j1] | ik = dist(jk, α, j1, ..., jd), 1 ≤ k ≤ d,

(α, [jd, ..., j1]) is of type β}.

Remark 2.10.33. Let α be a permutation in Sn. We have

C̄n,d =
⋃
β∈Sd

⋃
i1,...,id≥1

C̄β
n,d(α, i1, ..., id).

Given any d-tuple [jd, ..., j1], the ”distance” dist(ji, α, j1, ..., jd) and the type of (α, [jd, ..., j1])

are uniquely determined. Hence, the union above is the disjoint union. Also, there are only

finitely many nonempty sets C̄β
n,d(α, i1, ..., id) in the above union.

Lemma 2.10.34. Let α be an n-cycle in Sn. σ̄ = [jd, ..., j1] is a d-tuple and we assume

σ̄ is an element in C̄β
n,d(α, i1, ..., id) for some β ∈ Sd. Then, the number of all elements in

C̄β
n,d(α, i1, ..., id) is n.

Proof. If we want to use σ̄ to construct some d-tuple [j′d, ..., j
′
1] in C̄β

n,d(α, i1, ..., id), we have

to pick d integers j′i, 1 ≤ i ≤ d, from α and we can assume the integers i1, ..., id imply

dist(jk, α, j1, ..., jd) = dist(j′k, α, j
′
1, ..., j

′
d).

At the same time, we know j1, ..., jd are in the same disjoint cycle and

d∑
k=1

dist(jk, α, j1, ..., jd) =
d∑

k=1

dist(j′k, α, j
′
1, ..., j

′
d) = n.
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Hence, the choice of j′1 will completely determine the d-tuple [j′d, ..., j
′
1]. So, there are n

choices. It is easy to prove they are all of the elements in C̄β
n,d(α, i1, ..., id). We leave it as an

exercise for the reader.

The next lemma is a generalization of Lemma 2.10.20.

Lemma 2.10.35. Let α be a permutation in Sn and let i1, ..., id be d positive integers, where

d ≤ n. Let β be a permutation in Sd. If C̄β
n,d(α, id, ..., i1) is nonempty, we have

Φ(
∑

[jd,...,j1]∈C̄βn,d(α,i1,...,id)

[jd, ..., j1]α) = p̂φd(β)(i1, ..., id)
∂

∂p̂β
(i1, ..., id)Φ(α).

Proof. First, we make some assumptions and recall some notations. α = α1...αl is a per-

mutation in Sn, where α1...αl is the unique decomposition of α in disjoint cycles. Let σ̄ be

a d-tuple in C̄β
n,d(α, i1, ..., id), where σ̄ = [jd, ..., j1]. We assume β = β1...βm, which is the

unique decomposition of β in disjoint cycles. β can be considered as the permutation β′

in Aut{j1, ..., jd} by the isomorphism in Remark 2.10.29, where β′ is the permutation by

forgetting all elements in α except for ji, 1 ≤ i ≤ d, in Construction 2.10.28. By abuse

the notation, we assume the disjoint cycle βi comes from the disjoint cycle αi. Also, by

definition, we have

ik = dist(jk, α, j1, ..., jd), 1 ≤ k ≤ d.

We assume the lengths of disjoint cycles αi, 1 ≤ i ≤ l, are different.

For any d-tuple σ̄′ ∈ C̄β
n,d(α, i1, ..., id), by Definition 2.10.32 and Construction 2.10.28, we

have

1∏m
i=1(
∑

j∈τi ij)
p̂φd(β)(i1, ..., id)

∂

∂p̂β
(i1, ..., id)Φ(α) = Φ(σ̄′α).

We have to prove the number of d-tuples in C̄β
n,d(α, i1, ..., id) is

∏m
i=1(
∑

j∈βi ij).

We go back to the d-tuple σ̄ = [jd, ..., j1] ∈ C̄β
n,d(α, i1, ..., id). If we want to use σ̄ to

construct some d-tuple [j′d, ..., j
′
1] in C̄β

n,d(α, i1, ..., id), all integers j′i, 1 ≤ i ≤ d, should

come from the first m disjoint cycles α1, ..., αm and |βi| of them comes the disjoint cycle αi,

1 ≤ i ≤ m, where |βi| is the length of the cycle βi. Also, we assume the integers i1, ..., id
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imply

dist(jk, α, j1, ..., jd) = dist(j′k, α, j
′
1, ..., j

′
d).

The choice of integers from different disjoint cycles is independent. Hence, by Lemma

2.10.34, the number of all elements in C̄β
n,d(α, i1, ..., id) is

∏m
i=1(|αi|). By Example 2.10.15,

we know

m∏
i=1

(
∑
j∈βi

ij) =
m∏
i=1

(|αi|).

Hence, we have

p̂φd(β)(i1, ..., id)
∂

∂p̂β
(i1, ..., id)Φ(α) =

m∏
i=1

(
∑
j∈βi

ij)Φ(σ̄α)

= Φ(
∑

σ̄∈C̄βn,d(α,i1,...,id)

σ̄α).

Theorem 2.10.36. For any g ∈ CSn,

Φ(K(1n−dd)g) = ∆dΦ(g).

Proof. We assume g is a permutation in Sn. Say g = α. By Remark 2.10.33, we have

C̄n,d =
⋃
β∈Sd

⋃
i1,...,id≥1

C̄β
n,d(α, i1, ..., id).

Then, we get

Φ(K̄(1n−dd)α) = Φ(
∑
β∈Sd

∑
i1,...,id≥1

∑
[jd,...,j1]∈C̄βn,d(α,i1,...,id)

[jd, ..., j1]α)

=
∑

i1,...,id≥1

∑
β∈Sd

p̂φd(β)(i1, ..., id)
∂

∂p̂β
(i1, ..., id)Φ(α)

= d∆dΦ(α),

where the second equality comes from Lemma 2.10.35 and the last equality comes from
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Definition 2.10.6. By Definition 2.10.9, we know the map πn,d : C̄n,d → Cn,d is a d-to-1 map.

So, we have

dΦ(K1n−ddα) = Φ(K̄1n−ddα) = d∆dΦ(α).

Theorem 2.10.37. For any positive integer d, ∆d = W ([d]) as an operator on C[p1, p2, ...].

Proof. By Theorem 2.9.1 and Theorem 2.10.36, it is easy to get this consequence.

Corollary 2.10.38. For any β ∈ Sd, ∆d = ∆β as operators on C[p1, p2, ...].

Proof. Given any monomial
∏k

i=1 pji in C[p1, p2, ...], where j1 ≤ j2 ≤ ... ≤ jk, it corresponds

to the partition (j1, ..., jk). We pick a permutation g of type (j1, ..., jk). Then, we have

∆dΦ(g) =
1

d
Φ(

∑
[jd,...,j1]∈C̄n,d

[jd, ..., j1]g)

=
1

d
Φ(K̄1n−ddg)

= Φ(
∑

[jβ(d),...,jβ(1)]∈C̄n,d

[jβ(d), ..., jβ(1)]g)

= ∆βΦ(g).

Corollary 2.10.39. Let d1, d2 be positive integers. W ([d1]), W ([d2]) commutes as operators

on C[p1, p2, ...], i.e W ([d1])W ([d2]) = W ([d2])W ([d1]).

Proof. We take any monomial
∏k

i=1 pji in the ring C[p1, p2, ...]. We pick a permutation g

corresponding to this monomial. We have

W ([d1])W ([d2])Φ(g)

=Φ(Kd11n−d1Kd21n−d2g)

=Φ(Kd21n−d2Kd11n−d1g)

=W ([d2])W ([d1])Φ(g).

Kd11n−d1 , Kd21n−d2 commutes, because they are central element in CSn. So, W ([d1]),W ([d2])

commutes.
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Chapter 3

Hurwitz Number

3.1 Simple Hurwitz Number

In this section, we give the definition of the Hurwitz number and review some known results

about the simple Hurwitz number.

The Hurwitz enumeration problem aims at classifying all n-fold coverings of S2 (or CP 1)

with k branch points {z1, ..., zk}. Given such a covering, each branch point zi corresponds

to a permutation σi in Sn. Denote by λi the partition corresponding to σi. The number

of all connected n-coverings with k ordered branch points zi, 1 ≤ i ≤ k, each of which

corresponds to a permutation of type λi, 1 ≤ i ≤ k, is finite. This number is denoted by

Covn(λ1, ..., λk). Equivalently, Covn(λ1, ..., λk) is the number of k-tuples (σ1, ..., σk) ∈ Skn

satisfying the following conditions [1], [26],

(1) σi is of type λi,

(2) σ1...σk = 1,

(3) The group generated by the elements {σ1, ..., σk} is transitive on the set {1, ..., n}.

Definition 3.1.1. Given α a partition of n, the simple Hurwitz number is defined as

h
[2]
k (α) = Covn(

k︷ ︸︸ ︷
1n−22, ..., 1n−22, α).

It is the number of (k + 1)-tuples (σ1, ..., σk, σ
−1) ∈ Sk+1

n satisfying the following conditions

(1) σi are transpositions (or of type 1n−22), where 1 ≤ i ≤ k, and σ−1 is of type α,

α = (α1, α2, ..., αl),

(2) σ1...σk = σ,

(3) the group generated by {σ1, ..., σk} is transitive on the set {1, ..., n}.

73



Simple means that all but one permutation are transpositions. The generating function

H [2](u, p) for simple Hurwitz numbers is

H [2](u, p) = H [2](u, p1, p2, ...) =
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

h
[2]
k (α)

uk

k!
pα ,

Proposition 3.1.2. We have the following equation

W ([2])H [2] =
∂H [2]

∂u
.

We will prove this proposition in the next section.

Now we want that the number k of transpositions is minimal with respect to the given

partition α. Denote by µ2(α) the minimal number. Sometimes we also use the notation

µ2(σ) := µ2(α),

where σ is of type α.

Definition 3.1.3. Given positive integers n, k, the minimal simple Hurwitz number h2(α) is

h2(α) := h
[2]

µ2(α)(α).

The minimal number µ2(α) can be computed by the Riemann-Hurwitz formula or by a

combinatorial discussion [19]. It turns out that the minimal simple Hurwitz numbers counts

coverings X → S2, where X is of genus 0.

Lemma 3.1.4. Let α = (α1, ..., αl) be a partition of a positive integer n. Then, we have

µ2(α) = n− 2 + l.

Proof. The proof can be found in [11].

We define two generating functions for the minimal simple Hurwitz numbers as follows

H̃min
2 (z, u, p1, p2, ...) =

∑
n≥1

∑
α`n

h2(α)
zn

n!

uµ
2(α)

µ2(α)!
Φ(α),

Hmin
2 (z, p1, p2, ...) =

∑
n≥1

∑
α`n

h2(α)
zn

n!

1

µ2(α)!
Φ(α).
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In fact, we have

Hmin
2 (z, p1, p2, ...) = H̃min

2 (z, u, p1, p2, ...)|u=1.

In the next section, we will prove the following theorem.

Proposition 3.1.5.

∂H̃min
2

∂u
=

1

2

∑
i,j≥1

(
(i+ j)pipj

∂H̃min
2

∂pi+j
+ ijpi+j

∂H̃min
2

∂pi

∂H̃min
2

∂pj

)
.

Goulden and Jackson proved the above formula in [19]. We will give another proof, by

using the W -operator, in the next section. In fact, we prove a generalization of Proposition

3.1.5 (see Theorem 3.3.6), where transpositions are replaced by d-cycles.

3.2 d-Hurwitz number and d-Frobenius Number

In this section, we review some results about the Hurwitz number and Frobenius number.

Definition 3.2.1. Let G be a subgroup of the permutation group Sn. Ci, 1 ≤ i ≤ k, (not

necessarily distinct) are conjugacy classes of G. Denote by C̃ovG(C1, ..., Ck) the number of

all k-tuples (g1, ..., gk) such that

1. gi ∈ Ci, 1 ≤ i ≤ k,

2. g1...gk = id, the identity element of G.

We call C̃ovG(C1, ..., Ck) the Frobenius number, which is known to be the number of

ramified coverings (not necessarily connected) over P1.

Notation 3.2.2. If G is the permutation group Sn, we prefer to use the notation

C̃ovn(λ1, ..., λk) := C̃ovG(C1, ..., Ck),

where n corresponds to Sn and λi are partitions of n, which represent the conjugacy classes

Ci, 1 ≤ i ≤ k.
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Theorem 3.2.3. We have the Frobenius formula

C̃ovG(C1, ..., Ck) =

∏k
i=1 |Ci|
|G|

∑
χ

∏k
i=1 χ(Ci)

χ(id)k−2
,

where |A| denotes the number of elements in the set A and χ in the sum ranges over all

irreducible complex characters of G.

Proof. Theorem 1.1.12 [26].

Definition 3.2.4. Given k partitions λi of n, denote by Covn(λ1, ..., λk) the number of k-

tuples (σ1, ..., σk) ∈ Skn satisfying the following conditions [1]:

• σi is of type λi for all i,

• σ1...σk = 1,

• the subgroup generated by {σ1, ..., σk} acts transitively on the set {1, ..., n} (transitivity).

We call Covn(λ1, ..., λk) the Hurwitz number, which is known to be the number of con-

nected ramfied covering over P1 with branch points described by λi, 1 ≤ i ≤ n.

Remark 3.2.5. If the group G is Sn, each conjugacy class can be represented uniquely by a

partition of n. In this case, the definition of Hurwitz number has one more condition than

that of Frobenius number, the transitivity condition. Although people can use the Frobenius

formula to calculate Frobenius number, we still do not know a combinatorial formula to

calculate the Hurwitz number.

Now we consider a special type of Hurwitz and Frobenius number, the d-Hurwitz number

and d-Frobenius number.

Definition 3.2.6. Given positive integers d, n and k, where d ≤ n, define the numbers

h
[d]
k (α) and f

[d]
k (α) as follows

h
[d]
k (α) = Covn(

k︷ ︸︸ ︷
1n−dd, ..., 1n−dd, α),

f
[d]
k (α) = C̃ovn(

k︷ ︸︸ ︷
1n−dd, ..., 1n−dd, α),

where α is a partition of n and there are k copies of the partition (1n−dd).
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We define the generating functions for d-Hurwitz number and d-Frobenius number as

follows

H [d](u, p) = H [d](u, p1, p2, ...) =
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

h
[d]
k (α)

uk

k!
Φ(α) ,

F [d](u, p) = F [d](u, p1, p2, ...) =
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

f
[d]
k (α)

uk

k!
Φ(α) ,

where the definition of Φ can be found at the beginning of Section 2.9.

By a combinatorial argument [1], we have

F [d] = eH
[d]

.

An important application of the W -operator is the following differential equation for F [d].

Theorem 3.2.7. F [d] is the unique formal series solution in u to the differential equation

∂F [d]

∂u
= W ([d])F [d]

with initial condition

F [d](0, p) = ep1

The above theorem was first proved by Mironov et. al [18]. Here we give a different proof

as an the application of Theorem 2.9.1.

The rest of this section is devoted to the proof of this theorem.

Notation 3.2.8. Given a positive integer n, let α be a partition of n. We define the set

A[d](α, k) as (k + 1)-tuples (σ1, ..., σk, σ) ∈ Sk+1
n satisfying the two conditions about the

Frobenius number in Definition 3.2.1, i.e.

• σi is of type (1n−dd) for all i and σ is of type α,

• σ1...σk = σ (the monodromy condition).

Also, we define another set

Ã[d](α, k) = {(σ2, ..., σk, σ) | (σσ−1
k ...σ−1

2 , σ2, ..., σk, σ) ∈ A[d](α, k)}.
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Remark 3.2.9. By the definition of h
[d]
k (α), we have

f
[d]
k (α) = |A[d](α, k)| = |Ã[d](α, k)|.

Hence, we can write the generating function F [d](z, p1, p2, ...) as

F [d](z, p) = F [d](z, p1, p2, ...) =
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

|A[d](α, k)|z
k

k!
Φ(α) .

Remark 3.2.10. Consider the generating series F [d](u, p). Given a specific set A[d](α, k),

α ` n, the elements in this set are (k+ 1)-tuples (δ1, ..., δk, σ). The parameter corresponding

to this set is zk

k!
Φ(α), where the exponent of z corresponds to the number of d-cycles k and

Φ(α) corresponds to the permutation σ. We take the sum over all partitions. We get the

set-valued generating function

∑
n≥1

1

n!

∞∑
k=1

∑
α`n

A[d](α, k)
zk

k!
Φ(α) .

Since every set is finite, we can take the cardinality of each set, and we get the generating

function Ĥ [d](u, p).

Similarly, ∂F [d]

∂u
is the generating function for the sets Ã[d](α, k), i.e.

∂F [d]

∂u
=
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

|Ã[d](α, k)| uk−1

(k − 1)!
Φ(α)

=
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

f
[d]
k (α)

uk−1

(k − 1)!
Φ(α) .

Definition 3.2.11. Let k, n, d be three positive integers, where n ≥ d. We define the set

A[d](k, n) as follows

A[d](k, n) =
⋃
α`n

A[d](k, α).

The union is disjoint.
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Lemma 3.2.12. Let k, n, d be three positive integers, where n ≥ d. We have∑
α`n

f
[d]
k (α)Φ(α) =

∑
α′`n

f
[d]
k−1(α)Φ(K1n−ddα

′).

Proof. We consider the sets A[d](k, n) and A[d](k− 1, n). Given any element (σ1, ..., σk, σ) ∈
A[d](k, n), it corresponds to a unique element (σ2, ..., σk, σ

′) ∈ A[d](k−1, n), where σ′ = σ−1
1 σ.

Now given any element (σ2, ..., σk, σ
′) ∈ A[d](k − 1, n) and any d-cycle σ1, we can construct

an element (σ1, ..., σk, σ) ∈ A[d](k, n), where σ = σ1σ
′. Indeed, we can construct different

elements in A[d](k, n) by multiplying different d-cycles σ1. The number of elements we

construct from the element (σ2, ..., σk, σ
′) is 1

d

(
n
d

)
d!, where 1

d

(
n
d

)
d! is the number of d-cycles

in Sn. From the discussion, we can get all elements in A[d](k, n) by adding different d-cycles

to elements in A[d](k − 1, n). Also, we have

|A[d](k, n)| = 1

d

(
n

d

)
d!|A[d](k − 1, n)|.

Recall the definition of A[d](k, n),

A[d](k, n) =
⋃
α`n

A[d](k, α).

Hence, we have the following formula∑
α`n

f
[d]
k (α)Φ(α) =

∑
α′`n

f
[d]
k−1(α′)Φ(K1n−ddα

′).

Proof of Theorem 3.2.7.

∂F [d]

∂z
=
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

zk−1

(k − 1)!
f

[d]
k (α)Φ(α)

=
∑
n≥1

1

n!

∞∑
k=1

∑
α′`n

zk−1

(k − 1)!
f

[d]
k−1(α′)Φ(K1n−ddα

′)

=
∑
n≥1

1

n!

∞∑
k=1

∑
α′`n

zk−1

(k − 1)!
f

[d]
k−1(α′)W ([d])Φ(α′)

= W ([d])F [d],
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where the first equality comes from Remark 3.2.10, the second equality is the consequence

of Lemma 3.2.12 and the last equality comes from Theorem 2.9.1.

3.3 Minimal d-Hurwitz Number

Recall that h
[d]
k (α) is the number of (k+1)-tuples (δ1, ..., δk, σ) in Sk+1

n satisfying the following

conditions (see Definition 3.2.4 and 3.2.6)

• δi is of type (1n−dd) (or a d-cycle), 1 ≤ i ≤ k and σ is of type α,

• δ1...δk = σ,

• the subgroup generated by {δ1, ..., δk} acts transitively on the set {1, ..., n}.

Now we want that the number k of d-cycles is minimal with respect to given partition α

(similar to the minimal simple Hurwitz number, see Definition 3.1.3). Denote by µd(α) the

minimal number. Sometimes we also use the notation

µd(σ) := µd(α),

where σ is of type α.

As we mentioned in the introduction, minimal means that the genus of the covering space

X is zero. If we want to calculate the Hurwitz number with the genus of the covering space

greater than zero, we have a topological recursion formula which allows us to calculate the

higher genus Hurwitz number in terms of lower genus ones. (See Section 3.5.)

Definition 3.3.1. Given positive integers n, k, d, d ≤ n, the minimal d-Hurwitz number

hd(α) is

hd(α) := h
[d]

µd(α)
(α).

We can compute µd(α) in two ways. It can be computed by the Riemann-Hurwitz Formula

or by a combinatorial discussion [19].

Lemma 3.3.2. Let α = (α1, ..., αl) be a partition of a positive integer n. Then, we have

µd(α) =
n− 2 + l

d− 1
.
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Proof. See [19].

We define two generating functions for the minimal d-Hurwitz numbers as follows

H̃min
d (z, u, p1, p2, ...) =

∑
n≥1

∑
α`n

hd(α)
zn

n!

uµ
d(α)

µd(α)!
Φ(α),

Hmin
d (z, p1, p2, ...) =

∑
n≥1

∑
α`n

hd(α)
zn

n!

1

µd(α)!
Φ(α).

In fact,

Hmin
d (z, p1, p2, ...) = H̃min

d (z, u, p1, p2, ...)|u=1.

Before we state the theorem we want to prove in this section, we first define the differential

operator H̃W ([d]).

Construction 3.3.3. Some free summations in W ([d]) contain higher derivatives. For

example, in W ([2]), we have the summation

FS(1)(2) =
1

2

∑
i≥1

∑
j≥1

ijpi+j
∂2

∂pi∂pj
,

which contains second derivatives. If we change the higher derivatives into the product of

first derivatives, we will get a new nonlinear operator. We take FS(1)(2) as an example,

F̃S(1)(2) =
1

2

∑
i≥1

∑
j≥1

(ijpi+j
∂

∂pi
× ∂

∂pj
).

As an operator on the generating function F , it means

F̃S(1)(2)(F ) =
1

2

∑
i≥1

∑
j≥1

(ijpi+j
∂F

∂pi

∂F

∂pj
),

where F ∈ C[[p1, p2, ...]]. More generally, for any permutation β, F̃Sβ is constructed by

replacing all higher derivatives in FSβ by the products of first order derivative operators as

mentioned above, i.e.

F̃Sβ =
1

d

∑
i1,...,id≥1

p̂d̄β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id), (3.3.1)
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where
˜∂

∂p̂β
(i1, ..., id) = (

∑
j∈β1

ij)
∂

∂p∑
j∈β1

ij

× ...× (
∑
j∈βd

ij)
∂

∂p∑
j∈βd

ij

. (3.3.2)

In this paper, we prefer to use the following notation for ˜∂
∂p̂β

(i1, ..., id),

˜∂

∂p̂β
(i1, ..., id) = ×li=1

(
(
∑
j∈βi

ij)
∂

∂p∑
j∈βi

ij

)
. (3.3.3)

Definition 3.3.4.

H̃W ([d]) :=
∑
β∈Sd

d(FSβ)=d+1

F̃Sβ.

Remark 3.3.5. Let σ′ ∈ Sn and let [jd, ..., j1] be a d-tuple of distinct integers smaller than n.

β is the RP of (σ′, [jd, ..., j1]) and iq = dist(jq, σ
′, {j1, j2, ..., jd}) (see Construction 2.10.10

and Definition 2.10.13). Consider the operator FSβ. Clearly, dD(FSβ) is the number of

disjoint cycles of β and dP (FSβ) is the number of disjoint cycles of d̄β. Let σ = (jd...j1)σ′.

Let l, l′ be the number of disjoint cycles of σ, σ′ respectively. We have

l′ = l − dD(FSβ) + dP (FSβ).

The following theorem was first proved by Goulden and Jackson [16]. Here we give

another proof using the W -operators.

Theorem 3.3.6.

∂H̃min
d

∂u
= H̃W ([d])(H̃min

d ).

Goulden and Jackson used graph theory to construct the differential operator H̃W ([d])

[19].

Definition 3.3.7. Let (δ1, ..., δk) be a k-tuple of d-cycles in Sn and σ = δ1...δk. We say

(δ1, ..., δk) is a d-minimal transitive factorization of σ, if (δ1, ..., δk) satisfies the transitivity

condition in Definition 3.2.4 and k = µd(σ).

Since σ is uniquely determined by δ1, ..., δk, sometimes we omit σ and say (δ1, ..., δk) is a

d-minimal transitive factorization.
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To prove Theorem 3.3.6, we have to change Definition 3.3.7 a little bit.

Definition 3.3.8. Let ([δ1], δ2, ..., δk) be a k-tuple, where [δ1] is a d-tuple of distinct integers

smaller than n and δi are d-cycles in Sn, 1 ≤ i ≤ k. δ1 is the corresponding d-cycle of [δ1].

We say ([δ1], δ2, ..., δk) is a d-minimal transitive factorization, if the corresponding k-tuple

(δ1, ..., δk) is a d-minimal transitive factorization.

The d-tuple [δ1] corresponds to a unique d-cycle δ1 and this is a d-to-1 correspondence.

The multiplication of a d-tuple [δ1] and a permutation τ is defined as follows

[δ1]τ = δ1τ,

where δ1 is the corresponding permutation of [δ1].

Now we consider a general k-tuple of permutations (δ1, ..., δk). Let S = {δ1, ..., δk} be

the corresponding set and set σ = δ1...δk. Let G be the subgroup of Sn generated by the

permutations in S. Let X1, ..., Xq be the connected components of X = {1, ..., n} with

respect to the action of G. For each connected component Xi, we define the subset Si of S
as

Si = {δ ∈ S | δ(j) 6= j for some j ∈ Xi}.

Denote by σi the product of the elements in Si multiplied in the same order as in the

tuple (δ1, ..., δk). Clearly, σ = σ1...σq. We say that the set Si corresponds to a transitive

factorization of σi.

For example, consider the following tuple ((12), (34), (45)). The corresponding set is

S = {(12), (34), (45)} and the group generated by S is G = 〈(12), (34), (45)〉. We have

σ = δ1δ2δ3 = (12)(34)(45) = (12)(345).

G is a proper subgroup of S5 acting on the set X = {1, 2, 3, 4, 5}. X has two connected

components X1 = {1, 2} and X2 = {3, 4, 5}. We have S1 = {(12)}, S2 = {(34), (45)} and

σ1 = (12), σ2 = (345), with σ = (12)(345).

Lemma 3.3.9. Let ([δ1], δ2, ..., δk) be a d-minimal transitive factorization of σ and σ′ =

δ2...δk. If β is the RP of (σ′, [δ1]) (see Definition 2.10.13), then X = {1, ..., n} has exactly

dD(FSβ) connected components X ′i, 1 ≤ i ≤ dD(FSβ), with respect to the group generated by

{δ2, ..., δk}. Denote by S ′i the set of δi’s (in S ′ = {δ2, ..., δk}) that move at least one element of
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X ′i. Then, each S ′i corresponds to a minimal transitive factorization of σ′i, 1 ≤ i ≤ dD(FSβ),

where σ′ = σ′1...σ
′
dD(FSβ).

Proof. The lemma follows from Lemma 2.2 in [19], using the interpretation of dD(FSβ) in

Remark 3.3.5.

Lemma 3.3.10. Let ([δ1], δ2, ..., δk) be a d-minimal transitive factorization of σ and σ′ =

δ2...δk. If β is the RP of (σ′, [δ1]), we have

d(FSβ) = d+ 1.

Proof. By Remark 3.3.5, we know that dD(FSβ) is the number of disjoint cycles in β and

dP (FSβ) is the number of disjoint cycles in d̄β. Also, Lemma 3.3.2 tells us the following

formula

µd(σ) =
n+ l − 2

d− 1
.

By Lemma 3.3.9, we know X is the disjoint union of X ′i, 1 ≤ i ≤ dD(FSβ). Let ni be the

cardinality of X ′i. Then,

dD(FSβ)∑
i=1

ni = n.

Also, we have σ′ = σ′1...σ
′
dD(FSβ) and each σ′i is the product of permutations in S ′i in order

(Lemma 3.3.9). The group generated by S ′i acts transitively on X ′i. Let li be the number of

disjoint cycles of σ′i. By Lemma 3.3.2, we have

µd(σ′i) =
ni + li − 2

d− 1
.

By Remark 3.3.5, we have

dD(FSβ)∑
i=1

li = l − dP (FSβ) + dD(FSβ).

Finally, we come to the following equation

µd(σ)− 1 =

dD(FSβ)∑
i=1

µd(σ′i). (3.3.4)

84



This equation holds, because we delete the first d-cycle δ1 (or multiply δ−1
1 to σ) and S ′i

corresponds to a minimal transitive factorization of σ′i by Lemma 3.3.9. Equation (3.3.4)

can be rewritten as

n+ l − 2 = (d− 1) + n+ (l − dP (FSβ) + dD(FSβ))− 2dD(FSβ).

We get

d+ 1 = dP (FSβ) + dD(FSβ) = d(FSβ).

Definition 3.3.11. Given a positive integer n, let α be a partition of n. We define

Ad(α) ={([δ1], δ2, ..., δk, σ) | σ is of type α, (δ1, ..., δk)

is a d-minimal transitive factorization of σ}.

Fixing a permutation β ∈ Sd, we define

Adβ(α) = {([δ1], δ2, ..., δk, σ) ∈ Ad(α) | β is the RP of (σ′, [δ1])},

where σ′ = δ2...δk.

The generating function H̃min
d can be rewritten as

H̃min
d =

∑
n≥1

∑
α`n

|Ad(α)|
d

zn

n!

uµ
d(α)

µd(α)!
Φ(α),

because

hd(α) =
|Ad(α)|

d
.

Also, given a d-tuple of distinct integers [δ1], σ′ corresponds to a unique β as we explained

in Remark 3.3.5. Hence, Adβ(α) are pairwise disjoint, i.e.

Adβ′(α)
⋂
Adβ(α) = ∅, β′ 6= β.
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By Definition 3.3.11, we have a disjoint union⋃
β∈Sd

Adβ(α) = Ad(α).

By Lemma 3.3.10, Adβ(α) is nonempty if and only if d(FSβ) = d + 1. With the discussion

above, we can write the generating function F̃d as following

H̃min
d (u, z, p) =

1

d

∑
n≥1

∑
α`n

∑
β∈Sd,

d(FSβ)=d+1

|Adβ(α)|z
n

n!

uµ
d(α)

µd(α)!
pα,

Given a permutation β ∈ Sd, we define the generating function (F̃d)β as

(H̃min
d )β(u, z, p) =

1

d

∑
n≥1

∑
α`n

|Adβ(α)|z
n

n!

uµ
d(α)

µd(α)!
pα.

Clearly,

H̃min
d =

∑
β∈Sd,

d(FSβ)=d+1

(H̃min
d )β.

Now we have defined two different types of sets, Ad(α) and pairwise disjoint sets Adβ(α),

β ∈ Sd. But that’s not enough to prove Theorem 3.3.6, since |Adβ(α)| is not easily computable.

In this section, we break Adβ(α) into much smaller disjoint computable sets.

We will give a brief description of the sets which will be defined to get our target set

Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)).

• The first set is Bdβ(α′). This set is constructed from Adβ(α), contains k-tuples

(δ2, ..., δk, [δ1]−1σ)

such that ([δ1], δ2, ..., δk, σ) ∈ Adβ(α) (see Definition 3.3.12).

• The second set is Adβ(α, α′, i1, ..., id). We fix d integers i1, ..., id and use elements in

Bdβ(α′) to construct pairwise disjoint subsets

Adβ(α, α′, i1, ..., id)

86



of Adβ(α) such that ⋃
i1,...,id≥1

Adβ(α, α′, i1, ..., id) = Adβ(α).

See Definition 3.3.13 and Remark 3.3.15.

• The last set is Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)). Based on d integers i1, ..., id, we use a

single element (δ2, ..., δk, σ
′) ∈ Bdβ(α′) to construct pairwise disjoint subsets

Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id))

such that ⋃
(i1,...,id)∈Zd>0

Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)) = Adβ(α, α′, i1, ..., id),

(see the proof of Lemma 3.3.19).

The set Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)) is our target set, since its cardinality is computable

(see Lemma 3.3.18).

Definition 3.3.12. Let α′ be a partition of n. Let Bdβ(α′) be the set of k-tuples (δ2, ..., δk, σ
′),

where δi, 2 ≤ i ≤ k, are d-cycles and σ′ = δ2...δk is of type α′, such that there exist a d-tuple

[δ1], a partition α and a permutation σ satisfying ([δ1], δ2, ..., δk, σ) ∈ Adβ(α), i.e.

Bdβ(α′) = {(δ2, ..., δk, σ
′) | σ′ = δ2...δk, σ

′ is of type α′

and ([δ1], δ2, ..., δk, σ) ∈ Adβ(α) for some partition α,

some permutation σ and some d-tuple [δ1]}.

Let (δ2, ..., δk, σ
′) be an element in Bdβ(α′). By Lemma 3.3.9, we have dD(FSβ) connected

components of X = {1, ..., n} with respect to the action of the group {δ2, ..., δk}. Usually,

we say that (δ2, ..., δk, σ
′) has dD(FSβ) connected components. Denote by X1, ..., XdD(FSβ)

the connected components. Let S = {δ2, ..., δk}. Si is the subset of S, which contains all

nontrivial permutation in S on the connected component Xi, and σ′i is the product of all

permutations in Si with respect to their order in the original tuple (δ2, ..., δk). Clearly, we

have σ′ = σ′1...σ
′
dD(FSβ).
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For example, consider n = 8, d = 3 and σ = (1235)(4678), so that α = (4 + 4), where

(4 + 4) is a partition of 8. Clearly, A3((4 + 4)) contains the following tuple

([4, 5, 6], (123), (345), (678), (1235)(4678)︸ ︷︷ ︸
σ

).

Now ((123), (345), (678), (12345)(678)︸ ︷︷ ︸
σ′

) ∈ B3
β((5 + 3)) for some β, where α′ = (5 + 3) is a

partition of 8.

Now we fix d positive integers i1, ..., id.

Definition 3.3.13. Denote by Adβ(α′, i1, ..., id) the set of (k + 1)-tuples

([δ1], δ2, ..., δk, σ),

where [δ1] = [jd, ..., j1], such that ([δ1], δ2, ..., δk, σ) can be obtained from some elemen-

t (δ2, ..., δk, σ
′) ∈ Bdβ(α′) satisfying

σ = [δ1]σ′,

iq = dist(jq, σ
′, {jd, ..., j1}), 1 ≤ q ≤ d.

See Definition 2.10.30 for the definition of distance.

Lemma 3.3.14. Assume Adβ(α′, i1, ..., id) is nonempty. Given any two elements

([δ1], δ2, ..., δk, σ), ([δ̃1], δ̃2, ..., δ̃k, σ̃)

in the set Adβ(α′, i1, ..., id), σ and σ̃ are of the same type, i.e. Φ(σ) = Φ(σ̃).

Proof. Let ([δ1], δ2, ..., δk, σ), ([δ̃1], δ̃2, ..., δ̃k, σ̃) be two elements in Adβ(α′, i1, ..., id). Assume

([δ1], δ2, ..., δk, σ) is constructed from the element (δ2, ..., δk, σ
′) by multiplying a d-tuple [δ1]

and ([δ̃1], δ̃2, ..., δ̃k, σ̃) is constructed from (δ̃2, ..., δ̃k, σ̃
′) by multiplying a d-tuple [δ̃1]. If the

lengths of disjoint cycles are distinct, we have(
p̂(d...1)β(i1, ..., id)

∂

∂p̂β
(i1, ..., id)

)
Φ(σ′) = Φ(σ),(

p̂(d...1)β(i1, ..., id)
∂

∂p̂β
(i1, ..., id)

)
Φ(σ̃′) = Φ(σ̃).
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By Definition 3.3.12 and 3.3.13, we know (δ2, ..., δk, σ
′), (δ̃2, ..., δ̃k, σ̃

′) ∈ Bdβ(α′), i.e. σ′ and σ̃′

both are of type α′. So Φ(σ) = Φ(σ̃), which means σ and σ̃ are of the same type.

The statement is true if the disjoint cycles are not necessarily distinct. We omit the proof

here.

Remark 3.3.15. By Lemma 3.3.14, we know that given any element ([δ1], δ2, ..., δk, σ) in

the set Adβ(α′, i1, ..., id), σ is always of the same type. Denote by α the type of σ. Sometimes

we use the notation Adβ(α, α′, i1, ..., id) to emphasize the type α. Clearly, Adβ(α, α′, i1, ..., id)

is a subset of Adβ(α) and we have a disjoint union⋃
α′`n

⋃
i1,...,id≥1

Adβ(α, α′, i1, ..., id) = Adβ(α).

Let (δ2, ..., δk, σ
′) be an element in Bdβ(α′). Suppose that ([δ1], δ2, ..., δk, σ) is an element

in Adβ(α′, i1, ..., id) constructed from (δ2, ..., δk, σ
′) by adding the d-tuple [δ1] as introduced

in Definition 3.3.13. Clearly, the reduction permutation of σ′ is β with respect to [δ1].

Similarly, the reduction permutation of σ′i is βi, 1 ≤ i ≤ dD(FSβ), where β = β1...βdD(FSβ)

is the decomposition in disjoint cycles.

Let (δ2, ..., δk, σ
′) be an element in Bdβ(α′). We define our target set as follows.

Definition 3.3.16. Define Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)) to be the set containing all el-

ements ([δ1], δ2, ..., δk, σ) in Adβ(α′, i1, ..., id) constructed from (δ2, ..., δk, σ
′) as in Definition

3.3.13.

By the above definition, we have⋃
(δ2,...,δk,σ′)∈Bdβ(α′)

Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)) = Adβ(α′, i1, ..., id),

which is a disjoint union.

Now consider the differential operator (see Definition 2.10.2)

∂

∂p̂β
(i1, ..., id) =

m∏
i=1

(
(
∑
j∈βi

ij)
∂

∂p∑
j∈βi

ij

)
.
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We define a new operator ˜∂
∂p̂β

(i1, ..., id) acting on Φ(σ′) = Φ(σ′1)...Φ(σ′dD(FSβ)) as follows

˜∂

∂p̂β
(i1, ..., id) (Φ(σ′)) =

m∏
i=1

(
(
∑
j∈βi

ij)
∂Φ(σ′i)

∂p∑
j∈βi

ij

)
.

If the disjoint cycles of σ′i are of distinct lengths, 1 ≤ i ≤ dD(FSβ), we have

p̂d̄β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id) (Φ(σ′)) =

(
m∏
i=1

(
∑
j∈βi

ij)

)
Φ(σ).

The operator ˜∂
∂p̂β

(i1, ..., id) is different from ∂
∂p̂β

(i1, ..., id) by changing the higher order

differential operator into the product of first derivatives as we did for F̃Sβ. Recall that

we define F̃Sβ as an operator on generating functions. We consider F̃Sβ as the sum of

p̂d̄β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id) (see Definition 2.10.3), i.e.

F̃Sβ =
1

d

∑
i1,...,id≥1

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id).

Lemma 3.3.17. With the same notation above, we have

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id)(Φ(σ′))

=

 ∑
([δ1],δ2,...,δk,σ)∈Adβ(α′,(δ2,...,δk,σ′),(i1,...,id))

Φ(σ)

 ,

Proof. First, if we cannot find a disjoint cycle with length
∑

j∈βv ij in σ′v for some v, 1 ≤
v ≤ dD(FSβ), it means that Adβ(α′, (δ2, ..., δk, σ

′), (i1, ..., id)) is empty. So, we have ∑
(δ2,...,δk,σ)∈Adβ(α′,(δ2,...,δk,σ′),(i1,...,id))

Φ(σ)

 = 0

Also, ∂Φ(σv)
∂p∑

j∈βv ij
= 0. So, the formula is true in this special case.

Now we assume there is at least one disjoint cycle with length
∑

j∈βv ij in σ′v for all 1 ≤ v ≤
dD(FSβ) and cv is the number of disjoint cycles with length

∑
j∈βv ij in σ′v. By the following
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lemma (Lemma 3.3.18), we know the number of elements in Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id))

is

dD(FSβ)∏
v=1

cv(
∑
j∈βv

ij).

So, we have ∑
(δ2,...,δk,σ,ε)∈Adβ(α′,(δ2,...,δk,σ′),(i1,...,id))

Φ(σ)

 =

dD(FSβ)∏
v=1

cv(
∑
j∈βv

ij)

Φ(σ).

By assumption, we know there are cv disjoint cycles with length
∑

j∈βv ij in σ′v. This means

the degree of p∑
j∈βv ij

in the monomial Φ(σ′v) is cv. So, when we calculate ∂Φ(σ′v)
∂p∑

j∈βv ij
, we will

have a coefficient cv, i.e.

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id)(Φ(σ′)) = (

dD(FSβ)∏
v=1

cv(
∑
j∈βv

ij))Φ(σ).

So, we have

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id)(Φ(σ′))

=

 ∑
([δ1],δ2,...,δk,σ)∈Adβ(α′,(δ2,...,δk,σ′),(i1,...,id))

Φ(σ)

 .

Lemma 3.3.18. With the same notation as in Definition 3.3.16, we have

|Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id))| =

dD(FSβ)∏
v=1

(
cv(
∑
j∈βv

ij)

)
.

Proof. If cv = 0 for some 1 ≤ v ≤ dD(FSβ), then Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)) is empty.

It means

|Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id))| = 0.
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Also,
∏dD(FSβ)

v=1

(
cv(
∑

j∈βv ij)
)

= 0. Hence, the statement is true in this special case.

Now we assume that there is at least one disjoint cycle with length
∑

j∈βv ij in σ′v,

1 ≤ v ≤ dD(FSβ). We first pick disjoint cycle ρ′v with length
∑

j∈βv ij in σv, 1 ≤ v ≤
dD(FSβ). The number of the choices of ρ′v is

∏dD(FSβ)
v=1 cv. Now we fix a choice of the

disjoint cycles ρ′v, we claim that we can construct
∏dD(FSβ)

v=1

∑
j∈βv ij many [δ1] such that

([δ1], δ2, ..., δk, [δ1]σ′) ∈ Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)), which implies

|Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id))| =

dD(FSβ)∏
v=1

(
cv(
∑
j∈βv

ij)

)
.

Now we will prove the claim. If we want to use these disjoint cycles ρ′v to construct the other

d-tuples [δ1] such that β is the RP of σ′ with respect to [δ1], we have to pick |βv| (|βv| is the

length of βv) many integers mj, j ∈ βv, from ρ′v such that ij = dist(mj, σ
′, {md, ...,m1}), 1 ≤

j ≤ d. In fact, any integer k in ρ′v uniquely determines the choices of all integers mj, j ∈ βv.
Let βv = (jv1 ...j

v
|βv |). Let k = mjv1

. mjv2
is uniquely determined by the distance ijv1 in ρ′v.

Similarly, all mj, j ∈ βv, are uniquely determined. Hence, the number of choices of all

possible integers from ρ′v is the length of ρ′v, i.e.
∑

j∈βv ij. Go through all of the disjoint

cycles ρ′v, 1 ≤ v ≤ dD(FSβ). We have
∏dD(FSβ)

v=1

∑
j∈βv ij many choices of [δ1].

Lemma 3.3.19. Let i1, ..., id be d positive integers. We have

∑
(δ2,...,δk,σ′)∈Bdβ(α′)

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id)(Φ(σ′))

=

 ∑
([δ1],δ2,...,δk,σ)∈Adβ(α,α′,i1,...,id)

Φ(σ)

 .

Proof. Given any element (δ2, ..., δk, σ
′) ∈ Bdβ(α′), we have the following formula (Lemma

3.3.17)

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id)(Φ(σ′))

=

 ∑
([δ1],δ2,...,δk,σ)∈Adβ(α′,(δ2,...,δk,σ′),(i1,...,id))

Φ(σ)

 .
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If we sum over all elements in Bdβ(α′), we get the formula in the lemma

∑
(δ2,...,δk,σ′)∈Bdβ(α′)

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id)(Φ(σ′))

=
∑

Adβ(α′,(δ2,...,δk,σ′),(i1,...,id))

∑
([δ1],δ2,...,δk,σ)∈

Ad
β
(α′,(δ2,...,δk,σ′),(i1,...,id))

Φ(σ)

=

 ∑
([δ1],δ2,...,δk,σ)∈Adβ(α′,i1,...,id)

Φ(σ)

 .

The first equality comes from Definition 3.3.13 and 3.3.16. From these two definitions, we

know that an element (δ2, ..., δk, σ
′) in Bdβ(α′) corresponds uniquely to the set

Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)).

So, summing over all elements in the set Bdβ(α′) is equivalent to sum over all possible sets

Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)). The second equality comes from the following disjoint union⋃

(δ2,...,δk,σ′)∈Bdβ(α′)

Adβ(α′, (δ2, ..., δk, σ
′), (i1, ..., id)) = Adβ(α′, i1, ..., id).

Now we are ready to prove the following key lemma.

Lemma 3.3.20.

F̃Sβ(H̃min
d ) =

∂(H̃min
d )β
∂u

.

Proof. We use the same notation as in Lemma 3.3.19. Recall the following formula in Lemma

3.3.10

µd(σ)− 1 =

dD(FSβ)∑
i=1

µd(σ′i).
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By Lemma 3.3.19, we have ∑
(δ2,...,δk,σ′)∈Bdβ(α′)

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id)(Φ(σ′))

 zn

n!

u
∑dD(FSβ)

i=1 µd(σ′i)

(
∑dD(FSβ)

i=1 µd(σ′i))!

=

 ∑
([δ1],δ2,...,δk,σ)∈Adβ(α,α′,i1,...,id)

Φ(σ)

 zn

n!

uµ
d(α)−1

(µd(α)− 1)!
.

Summing over all partition α′ of n (contribute to the generating function) and all positive

integers i1, ..., id (contribute to the operator), we have

∑
α′,

i1,...,id

 ∑
(δ2,...,δk,σ′)∈Bdβ(α′)

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id)(Φ(σ′))

 zn

n!

u
∑dD(FSβ)

i=1 µd(σ′i)

(
∑dD(FSβ)

i=1 µd(σ′i))!

=
∑
α′,α,
i1,...,id

 ∑
([δ1],δ2,...,δk,σ)∈Adβ(α,α′,i1,...,id)

Φ(σ)

 zn

n!

uµ
d(α)−1

(µd(α)− 1)!
.

The left hand of the equation is clear. We want to explain why we also take the sum over

α on the right hand side of the equation. By Lemma 3.3.14, the data {i1, ..., id, β, α′} will

uniquely determine the type α of the set Adβ(α′, i1, ..., id). Hence, if α does not correspond

to these data, we take Adβ(α, α′, i1, ..., id) as an empty set. Hence, we take the sum over all

partitions α and α′ of n.

By Remark 3.3.15, we have⋃
α′`n

⋃
i1,...,id≥1

Adβ(α, α′, i1, ..., id) = Adβ(α).

It means

∑
α′,α

i1,...,id

 ∑
([δ1],δ2,...,δk,σ)∈Adβ(α,α′,i1,...,id)

Φ(σ)

 zn

n!

uµ
d(α)−1

(µd(α)− 1)!

=
∑
n≥1

∑
α`n

|Adβ(α)|z
n

n!

uµ
d(α)−1

(µd(α)− 1)!
Φ(α) = d

∂(H̃min
d )β
∂u

,
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which gives the right hand side of the equation. The left hand side of the equation is exactly

∑
α′,

i1,...,id

 ∑
(δ2,...,δk,σ′)∈Bdβ(α′)

p̂(d...1)β(i1, ..., id)
˜∂

∂p̂β
(i1, ..., id)(Φ(σ′))

 zn

n!

u
∑dD(FSβ)

i=1 µd(σ′i)

(
∑dD(FSβ)

i=1 µd(σ′i))!

= dF̃Sβ(H̃min
d ).

Hence, we have

F̃Sβ(H̃min
d ) =

∂(H̃min
d )β
∂u

.

Theorem 3.3.6 is a direct result of Lemma 3.3.20. Here is the proof.

Proof of Theorem 3.3.6. By Lemma 3.3.20, we have

∂(H̃min
d )β
∂u

= F̃Sβ(H̃min
d ).

Take the sum over β ∈ Sd such that d(FSβ) is of degree d+ 1, we have

∂H̃min
d

∂u
=

∑
β∈Sd,

d(FSβ)=d+1

∂(H̃min
d )β
∂u

=
∑
β∈Sd,

d(FSβ)=d+1

F̃Sβ(H̃min
d ) = H̃W ([d])(H̃min

d ).

Remark 3.3.21. By Theorem 3.3.6, given any minimal transitive factorization

([δ1], δ2, ..., δµ3(α), σ),

it corresponds to a unique permutation β ∈ Sd such that dD(FSβ) = d+1. This type of tran-

sitive factorization gives the construction of the operator F̃Sβ. All transitive factorizations

of this type contribute to the generating function

F̃Sβ(H̃min
d ),
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more precisely,

∂(H̃min
d )β
∂u

= F̃Sβ(H̃min
d ).

With Lemma 3.3.20 and Theorem 3.3.6, we have the following corollary.

Corollary 3.3.22.

1

d− 1

(
z
∂Hmin

d

∂z
+
∑
i≥1

pi
∂Hmin

d

∂pi
− 2Hmin

d

)
= H̃W ([d])(Hmin

d ).

Proof. Theorem 3.3.20 gives us the following equation,

∂H̃min
d

∂u
= H̃W ([d])(H̃min

d ). (3.3.5)

Recall the definition of Hmin
d and H̃min

d (Construction 3.3.3). We know

Hmin
d (z, p1, p2, ...) = H̃min

d (z, u, p1, p2, ...)|u=1.

Let u = 1. The RHS of the equation (3.3.5) is

Right Side = H̃W ([d])(H̃min
d )|u=1 = H̃W ([d])(Hmin

d ).

Now we want to calculate the LHS of (3.3.5) when u = 1. By simple calculations, we have

∂H̃min
d

∂u
=
∑
n≥1

∑
α`n

µd(α)hd(α)
zn

n!

uµ
d(α)−1

µd(α)!
Φ(α),

z
∂Hmin

d

∂z
=
∑
n≥1

∑
α`n

nhd(α)
zn

n!

1

µd(α)!
Φ(α),

∑
i≥1

pi
∂Hmin

d

∂pi
=
∑
n≥1

∑
α`n

l(α)hd(α)
zn

n!

1

µd(α)!
Φ(α).

where l(α) is the length for the partition α. By Lemma 3.3.2, we know

µd(α) =
n+ l(α)− 2

d− 1
.
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Hence, when u = 1, LHS of the equation in Theorem 3.3.6 is

LHS =
∂H̃min

d

∂u
|u=1=

1

d− 1
(z
∂Hmin

d

∂z
+
∑
i≥1

pi
∂Hmin

d

∂pi
− 2Hmin

d ).

Combining LHS and RHS, we prove this corollary.

3.4 Generating Function of d-Hurwitz Number

Recall the d-Hurwitz number h
[d]
k (α) and the d-Frobenius number f

[d]
k (α) (see Definition

3.2.6). The Frobenius number f
[d]
k (α) counts the number of coverings of P1 with k + 1

branch points (not necessarily connected), where k branch points correspond to d-cycles and

the other one corresponds to a cycle of type α. We have an equation in Theorem 3.2.7

satisfied by the generating series for the Frobenius numbers. The Hurwitz number h
[d]
k (α)

counts connected coverings. In this section, we will derive an equation satisfied by the

generating functions

H [d](u, p) =
∑
n≥1

1

n!

∞∑
k=1

∑
α`n

h
[d]
k (α)

uk

k!
Φ(α) .

In the previous section, we discussed the minimal Hurwitz number h[d](α) = h
[d]

µd(α)
(α).

For example, let α be the partition (12) of 2. Then ((12), (12), (1)(2)) is a well-defined

minimal transitive factorization of α contributing to h
[2]
2 (α) = hd(α). In this section, we

discuss all transitive factorizations (not necessarily minimal). For example, the transitive

factorization ((12), (12), (12), (12), (1)(2)) contributes to the 2-Hurwitz number h
[2]
4 (α).

Let ([δ1], δ2, ..., δµd(σ), σ) ∈ Adβ(α) (See Definition 3.3.11). We found in Lemma 3.3.9

that the action of the group generated by {δ2, ..., δµd(σ)} has exactly dD(FSβ) connected

components. This property gave us the idea to construct the operator F̃Sβ (see Construction

3.3.3). We emphasize that the number of connected components is exactly the number of

disjoint cycles of β (or dD(FSβ)) under the ”minimal” condition (see Remark 3.3.5).

Now we are interested in all transitive factorizations δ1...δk = σ, not necessarily minimal.

In this case, if σ′ = [δ1]−1σ, with RP β with respect to [δ1], the number of connected

components of (δ2, ..., δk, σ
′) is between 1 and dD(FSβ).
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For example, let σ = (1342). We have the following two transitive factorizations

σ = (23)(12)(34)(34)(34) = (23)(12)(23)(23)(34).

Clearly, (1)(2) is the RP of σ′ = (12)(34) with respect to [δ1] = [(23)] in both cases. But the

number of connected components is different:

[δ1] σ′ (δ2, δ3, δ4, δ5) # connected components

[2, 3] (12)(34) ((12), (34), (34), (34)) 2,

[2, 3] (12)(34) ((12), (23), (23), (34)) 1.

Let’s take d = 2 and consider the generating function H [2]. Details can be found in [13].

Consider a transitive factorization ([δ1], δ2, ..., δk, σ). β is the RP of σ′ = δ2...δk with respect

to the 2-tuple [δ1]. There are three possible cases.

• β = (12). In this case, (δ2, ..., δk, σ
′) always has one connected component. All transi-

tive factorizations in this case contribute to the generating function

1

2

∑
i,j≥1

(i+ j)pipj
∂H [2]

∂pi+j
.

• β = (1)(2) and (δ2, ..., δk, σ
′) has one connected component. The generating function

constructed from all transitive factorizations in this case is

1

2

∑
i,j≥1

ijpi+j
∂2H [2]

∂pi∂pj
.

• β = (1)(2) and (δ2, ..., δk, σ
′) has two connected components. Similarly, this case

contributes to following the generating function

1

2

∑
i,j≥1

ijpi+j
∂H [2]

∂pi

∂H [2]

∂pj
.

Hence, we have

∂H [2]

∂u
=

1

2

∑
i,j≥1

(
(i+ j)pipj

∂H [2]

∂pi+j
+ ijpi+j

∂2H [2]

∂pi∂pj
+ ijpi+j

∂H [2]

∂pi

∂H [2]

∂pj

)
.
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In fact, the transitive factorization in the second case and third case have the same

RP β = (1)(2), but with different number of connected components. We introduce a new

notation F̂Sβ, β ∈ S2, as follows

F̂S(12) =
1

2

∑
i,j≥1

(i+ j)pipj
∂

∂pi+j
,

F̂ S(1)(2) =
1

2

∑
i,j≥1

ijpi+j

(
∂2

∂pi∂pj
+

∂

∂pi
× ∂

∂pj

)
.

We want to extend this construction to any permutation β ∈ Sd. With the same no-

tation as above, we know the number of connected components of (δ2, ..., δk, σ
′) should be

between 1 and dD(FSβ). Assume that there are i connected components. We break the

set {β1, ..., βdD(FSβ)} into i nonempty disjoint sets. Denote by SParβ,i the set of all possible

cases.

For example, let

β = β1β2β3.

Then, SParβ,2 has three elements

SParβ,2 = { {{β1, β2}, {β3}}, {{β1, β3}, {β2}}, {{β2, β3}, {β1}} }.

Now we return to the general case β = β1...βdD(FSβ) and let Par ∈ SParβ,i. Then, Par

has i elements, Par1,...,Pari. Recall that for i1, ..., id ≥ 1 and β ∈ Sd, we define a polynomial

p̂β(i1, ..., id) and a differential operator ∂
∂p̂β

(i1, ..., id) in Construction 3.3.3. Similarly, we

define the operator FParj(i1, ..., id) as

FParj(i1, ..., id) =
∏

β′∈Parj

(
∑
j∈β′

ij)
∂

∂p̂∑
j∈β′ ij

.

Then, we define the operator F̂Sβ,i,Par as follows

F̂Sβ,i,Par =
1

d

∑
i1,...,id≥1

p̂(d...1)β(i1, ..., id)
(
×ij=1(FParj(i1, ..., id))

)
. (3.4.1)

The operator
(
×ij=1(FParj(i1, ..., id))

)
means that each element in Par corresponds to a

connected component, where ×ij=1 is the ”product” of differential operators from different
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connected components, the same as the product defined in F̃Sβ, and
∏

β′∈Pari
∂

∂p̂β′
is the

composition of differential operator as in Construction 3.3.3. Consider the example

Par = {{(2), (3)}, {(1)}} ∈ SPar(1)(2)(3),2.

For Par1 = {(2), (3)} ∈ Par, we have

FPar1(i1, i2, i3) =
∏

β′∈Par1

∂

∂p̂β′
= i2i3

∂2

∂pi2∂pi3
.

Similarly, Par2 = {(1)} gives

FPar2(i1, i2, i3) =
∏

β′∈Par2

∂

∂p̂β′
= i1

∂

∂pi1
.

Finally, we take the ”product” of these two differential operators

(
×2
j=1(FParj(i1, i2, i3)))

)
= i2i3

∂2

∂pi2∂pi3
× i1

∂

∂pi1
.

Remark 3.4.1. Let β be a permutation in Sd. Clearly, SParβ,1 and SPβ,dD(FSβ) have only

one element. We have the following relations

F̂Sβ,1 = FSβ,

F̂ Sβ,dD(FSβ) = F̃Sβ.

If β has only one disjoint cycle (corresponding to a full length partition), we have

F̂Sβ = F̃Sβ = FSβ.

Given an element Par ∈ SParβ,i, we already defined the operator F̂Sβ,i,Par by Equation

(3.4.1). Define F̂Sβ,i by summing over all elements in SParβ,i, i.e.

F̂Sβ,i =
∑

Par∈SParβ,i

F̂Sβ,i,Par. (3.4.2)
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Similarly, the operator F̂Sβ is the sum of F̂Sβ,i for 1 ≤ i ≤ dD(FSβ), i.e.

F̂Sβ =

dD(FSβ)∑
i=1

F̂Sβ,i. (3.4.3)

Finally, we give the definition of Ŵ ([d]).

Definition 3.4.2. Let d be a positive integer. Define Ŵ ([d]) as the sum of F̂Sβ (Eq. (3.4.3))

over β ∈ Sd, i.e.

Ŵ ([d]) =
∑
β∈Sd

F̂Sβ.

Theorem 3.4.3.

∂H [d]

∂u
= Ŵ ([d])H [d].

Proof. We only give the idea of the proof. Details are similar to the proof of Theorem 3.3.6.

Consider a transitive factorization ([δ1], δ2, ..., δk, σ). β is the RP of σ′ = δ2...δk with respect

to the d-tuple [δ1] and (δ2, ..., δk, σ
′) has i connected components. This gives an element

Par ∈ SParβ,i. In fact, all such transitive factorizations contributes to the generating

function

F̂Sβ,i,Par(H
[d]).

All transitive factorizations ([δ1], δ2, ..., δk, σ) with RP β give the generating function

F̂Sβ(H [d]) =

 ∑
1≤i≤dD(FSβ)

∑
Par∈SParβ,i

F̂Sβ,i,Par

 (H [d]).

By summing over all β ∈ Sd, we have

∂H [d]

∂u
= Ŵ ([d])(H [d]).

Example 3.4.4. We already gave an example d = 2 as above. Here, we give another

example, d = 3.
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1. We begin with the easiest two operators F̂S(123) and F̂S(321). Since (123) and (321)

have only one disjoint cycle, so

F̂S(123) = F̃S(123) = FS(123),

F̂ S(321) = F̃S(321) = FS(321).

2. Now let’s consider the permutations β = (12)(3) or (13)(2) or (23)(1), which have two

disjoint cycles. It is easy to check the following relations

F̂Sβ,1 = FSβ,

F̂ Sβ,2 = F̃Sβ.

Hence, we have

F̂Sβ = F̂Sβ,1 + F̂Sβ,2 = FSβ + F̃Sβ.

3. Finally, let β = (1)(2)(3). The number of connected components can be 1, 2, 3. If we

have only one connected component, SPar(1)(2)(3),1 = {{{(1), (2), (3)}}}, where there is

only one element {{(1), (2), (3)}} in the set SPar(1)(2)(3),1. By calculation, we find

F̂Sβ,1 = FSβ.

If the number of connected components is two, SParβ,2 has three elements

SParβ,2 = {{{(1), (2)}, {(3)}}, {{(1), (3)}, {(2)}}, {{(2), (3)}, {(1)}}}.

We take Par = {{(1), (2)}, {(3)}} as an example as above. We have

F̂S(1)(2)(3),i,Par =
1

3

∑
i1,...,i3≥1

i1i2i3pi1+i2+i3

∂2

∂pi1∂pi2
× ∂

∂pi3
.

The reader can write down the operator F̂S(1)(2)(3),i,Par for the other two elements in

SParβ,2 similarly. Now let’s go to the case that we have three connected components.

In this case,

SPar(1)(2)(3),1 = { {{(1)}, {(2)}, {(3)}} },
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in which the unique element {{(1)}, {(2)}, {(3)}} has three element. By calculation,

we have

F̂S(1)(2)(3),3 = F̃S(1)(2)(3).

With the discussion above, we have

Ŵ ([3]) =
∑
β∈S3

F̂Sβ

= FS(123) + FS(321) +
∑

β∈{(12),(23),(13)}

(FSβ + F̃Sβ)

+ F̃S(1)(2)(3) + FS(1)(2)(3) + F̂S(1)(2)(3),2

= W ([3]) + H̃W ([3])− FS(123) + F̂S(1)(2)(3),2.

3.5 Topological Recursion

In this section, we consider a ramified n-fold covering of P1 by a genus g smooth curve with

k + 1 ramified points, where k of them correspond to d-cycles and the last one corresponds

to a permutation of type α. By Riemann-Hurwitz formula, we have

2g − 2 = n(−2) + ((d− 1)k − l(α) + n).

The number of ramified points corresponding to d-cycles is

k =
n+ l(α) + 2g − 2

d− 1
. (3.5.1)

Denote this number by µd,g(α). We emphasize that, given d, α, n, the genus g and the number

of simple branched points k determine each other uniquely.

We define h[d],g(α) to be the number of (µd,g(α) + 1)-tuples (δ1, ..., δµd,g(α), σ) satisfying

the following conditions

• δi is of type (1n−dd) (or d-cycles), 1 ≤ i ≤ µd,g(α) and σ is of type α,

• δ1...δµd,g(α) = σ,

• the subgroup generated by {δ1, ..., δµd,g(α)} acts transitively on the set {1, ..., n},
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Define the generating function of h[d],g(α) as following

H [d],g(u, p) = H [d],g(u, p1, p2, ...) =
∑
n≥1

1

n!

∑
α`n

h[d],g(α)
uµ

d,g(α)

(µd,g(α))!
Φ(α) .

Clearly,

H [d] =
∞∑
g=1

H [d],g.

We use another parameter y for the genus g and define the generating function as

H [d](y) =
∞∑
g=1

H [d],gyg.

Given a transitive factorization ([δ1], ..., δk, σ) corresponding to a genus g covering, delet-

ing the first d-tuple (or d-cycle), we get a factorization (δ2, ..., δk, σ
′) of σ′ = δ2...δk. We

assume β is the RP (see Definition 2.10.13) of σ′ with respect to [δ1]. If (δ2, ..., δk, σ
′) has

i connected components X1, ..., Xi, each of which corresponds to a transitive factorization

of a permutation σj, 1 ≤ j ≤ i. Assume that the transitive factorization of σj (of type αj)

corresponds to a genus gj covering. We have

kj =
nj + l(αj) + 2gj − 2

d− 1
,

k =
n+ l(α) + 2g − 2

d− 1
,

where kj is the number of permutations in the factorization of σj and nj is the cardinality

of Xj. Based on the following three equations

i∑
j=1

kj = k − 1,
i∑

j=1

nj = n,

i∑
j=1

l(αj)− dD(FSβ) + dP (FSβ) = l(α),

we have

k − 1 =
n+ l(α)− dP (FSβ) + dD(FSβ) +

∑i
j=1(2gj − 2)

d− 1
.
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The above calculation gives us the relation for the genus,

i∑
j=1

gj =
2g − 1− d+ dP (FSβ)− dD(FSβ) + 2i

2
= g − dD(FSβ) + i, (3.5.2)

where the second equality comes from d + 1 = dD(FSβ) + dP (FSβ) by Lemma 3.3.10.

This formula tells us that when we add a d-cycle δ1 to a covering (may not be connected)

corresponding to the factorization (δ2, ..., δk, σ
′), the genus of the corresponding transitive

factorization (δ1, ..., δk, σ) will increase by

dD(FSβ)− i.

With this property, we add the parameter y to the operator F̂Sβ,i as follows

F̂Sβ,i(y) := F̂Sβ,iy
dD(FSβ)−i.

Similar to Definition 3.4.2, we define

Ŵ ([d])(y) =
∑
β∈Sd

dD(FSβ)∑
i=1

F̂Sβ,i(y). (3.5.3)

With the same proof as Theorem 3.4.3, we have the following corollary.

Corollary 3.5.1.

∂H [d](y)

∂u
= Ŵ ([d])(y)H [d](y).

Recall that F̂Sβ,i(H
[d]) is the ”product” of differential operators acting on the same

generating series H [d]. Since the differential part of F̂Sβ,i is defined as the ”product” of i

differential operators, we can define F̂Sβ,i(H
[d],g1 , ..., H [d],gi) as the i differential operators

acting on H [d],g1 , ..., H [d],gi separately. For example,

F̂S(1)(2)(3),i,Par(H
[d],g1 , H [d],g2) =

1

3

∑
i1,...,i3≥1

i1i2i3pi1+i2+i3

∂2H [d],g1

∂pi1∂pi2
× ∂H [d],g2

∂pi3
,

where i = 2 and Par = {{(1), (2)}, {(3)}}.
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Corollary 3.5.2 (Topological Recursion for Connected d-Hurwitz number).

∂H [d],g

∂u
=
∑
β∈Sd

dD(FSβ)∑
i=1

∑
g1+...+gi=

g−dD(FSβ)+i

F̂Sβ,i(H
[d],g1 , ..., H [d],gi).

Proof. We give two proofs for this corollary. For the first one, given a power series f(y) ∈
C[[y]], [yn]f(y) means the coefficient of yn in f(y). Then, this corollary comes from Corollary

3.5.1 by taking the coefficient of yg, i.e.

[yg]
∂H [d](y)

∂u
= [yg]Ŵ ([d])(y)H [d](y). (3.5.4)

The RHS of Eq. (3.5.4) is

[yg]Ŵ ([d])(y)H [d](y) = [yg]
∑
β∈Sd

dD(FSβ)∑
i=1

F̂Sβ,i(y)H [d](y)

= [yg]
∑
β∈Sd

dD(FSβ)∑
i=1

F̂Sβ,i(y)(
∑
g′≥0

H [d],g′yg
′
)

= [yg−dD(FSβ)+i]
∑
β∈Sd

dD(FSβ)∑
i=1

F̂Sβ,i(
∑
g′≥0

H [d],g′yg
′
)

=
∑
β∈Sd

dD(FSβ)∑
i=1

∑
g1+...+gi=

g−dD(FSβ)+i

F̂Sβ,i(H
[d],g1 , ..., H [d],gi).

Now we give another method to prove this formula. Given a transitive factorization

([δ1], ..., δk, σ) corresponding to a genus g covering, delete the first d-tuple (or d-cycle), we

get a factorization (δ2, ..., δk, σ
′) of σ′ = δ2...δk. We assume that β is the RP of σ′ with respect

to [δ1]. If (δ2, ..., δk, σ
′) has i connected components, each of which corresponds to a transitive

factorization of a permutation σj, 1 ≤ j ≤ i. Assume that the transitive factorization of σj

corresponds to a genus gj covering. By Equation (3.5.2), we have

i∑
j=1

gj = g − dD(FSβ) + i.
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All such transitive factorizations ([δ1], ..., δk, σ) contribute to the generating function

dD(FSβ)∑
i=1

∑
g1+...+gi=

g−dD(FSβ)+i

F̂Sβ,i(H
[d],g1 , ..., H [d],gi).

Taking the sum over β, we get the generating function.

Example 3.5.3. Corollary 3.5.2 gives a recursion formula for H [d],g. Let’s consider the

example d = 2. We get the following equation

∂H [2],g

∂u
=

1

2

∑
i,j≥1

((i+ j)pipj
∂H [2],g

∂pi+j
+ ijpi+j

∂2H [2],g−1

∂pi∂pj

+
∑

g1+g2=g

ijpi+j
∂H [2],g1

∂pi

∂H [2],g2

∂pj
).

Taking the coefficient of [y0], i.e. g = 0, we have

∂H [2],0

∂u
=

1

2

∑
i,j≥1

((i+ j)pipj
∂H [2],0

∂pi+j
+ ijpi+j

∂H [2],0

∂pi

∂H [2],0

∂pj
).

This equation is exactly the formula in Theorem 3.3.6 when d = 2.

Taking the coefficient of [y1], i.e. g = 1, we have

∂H [2],1

∂u
=

1

2

∑
i,j≥1

((i+ j)pipj
∂H [2],1

∂pi+j
+ ijpi+j

∂2H [2],0

∂pi∂pj

+
∑

g1+g2=1

ijpi+j
∂H [2],g1

∂pi

∂H [2],g2

∂pj
).

This formula only contains H [2],0 and H [2],1. Hence, if we solve the genus zero case, then we

can plug the solution into this equation and solve for H [2],1. In fact, Goulden and Jackson

use this idea to calculate the genus one covering [13]. Using similar method, they calculate

the genus two and three covering in [14] and make the polytonality conjecture, which was

proved by Torsten Ekedahl, Sergei Lando, Michael Shapiro and Alek Vainshtein [5] [6] by the

ESLV formula.
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Example 3.5.4. In this example, we study the case d = 3. By Corollary 3.5.2, we have

∂H [3],g

∂u
=

1

3

∑
i,j,k≥1

((i+ j + k)pipjpk
∂H [3],g

∂pi+j+k

+ 3i(j + k)pi+jpk
∂2H [2],g−1

∂pi∂pj+k
+ 3

∑
g1+g2=g

i(j + k)pi+jpk
∂2H [2],g1

∂pi

∂2H [2],g2

∂pj+k

+ ijkpi+j+k
∂H [3],g−2

∂pi∂pj∂pk
+

∑
g1+g2=g−1

ijkpi+j+k
∂H [3],g1

∂pi

∂H [3],g2

∂pj∂pk

+
∑

g1+g2+g3=g

ijkpi+j+k
∂H [3],g1

∂pi

∂H [3],g2

∂pj

∂H [3],g3

∂pk

+ (i+ j + k)pi+j+k
∂H [3],g−1

∂pi+j+k
).

Taking g = 0, we have

∂H [3],0

∂u
=

1

3

∑
i,j,k≥1

((i+ j + k)pipjpk
∂H [3],0

∂pi+j+k
+ 3i(j + k)pi+jpk

∂2H [2],0

∂pi

∂2H [2],0

∂pj+k

+ ijkpi+j+k
∂H [3],0

∂pi

∂H [3],0

∂pj

∂H [3],0

∂pk
,

which is exactly the formula proved in Theorem 3.3.6. This formula first appears in Goulden

and Jackson’s paper [19]. But people do not know how to solve this formula and find the

Hurwitz numbers in this case. Taking g = 1, we have

∂H [3],1

∂u
=

1

3

∑
i,j,k≥1

((i+ j + k)pipjpk
∂H [3],1

∂pi+j+k
+ 3i(j + k)pi+jpk

∂2H [2],0

∂pi∂pj+k

+ 3
∑

g1+g2=1

i(j + k)pi+jpk
∂2H [2],g1

∂pi

∂2H [2],g2

∂pj+k
+ ijkpi+j+k

∂H [3],0

∂pi

∂H [3],0

∂pj∂pk

+
∑

g1+g2+g3=1

ijkpi+j+k
∂H [3],g1

∂pi

∂H [3],g2

∂pj

∂H [3],g3

∂pk
+ (i+ j + k)pi+j+k

∂H [3],0

∂pi+j+k
).
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