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Abstract

This thesis is motivated by the W-operators introduced by Mironov et al. [18]. We prove
that the W-operators are generalizations of the cut-and-join operator studied by Goulden
and Jackson [II]. We give a new description of the structure of W-operators, using the
combinations of symmetric groups. As an application, we prove new formulas about gen-
erating functions of connected Hurwitz numbers and give topological recursion formulas for

d-Hurwitz numbers.
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Chapter 1

Introduction

1.1 Background

1.1.1 W-Operator

The cut-and-join operator A was introduced by Goulden [I1]. It is an infinite sum of differ-
ential operators in variables p;, ¢« > 1. It plays an important role in calculating the simple
Hurwitz numbers [18].

In 2008, Mironov et al. [29][30] constructed W-operators W ([d]), where d is a positive
integer. They are differential operators acting on the space C[[X};]]; ;>1 of formal series in
variables X;; (7, j > 0), where X;; are coordinate functions on the infinite matrix. A subring
of C[[Xy])ij>1 is C[p1, pa, ...], where pr = Tr(X*) and X = (Xj;)ij>1. A direct calculation
shows that W([2]) is the cut-and-join operator A on the ring C[p, ps,...]. Mironov et al.
proved an equation for the generating function of disconnected Hurwitz numbers as an
application of W-operators [29], [30]. We will briefly discuss their results in the next section

about Hurwitz number.

1.1.2 Hurwitz Number

The Hurwitz enumeration problem aims at classifying all n-fold coverings X — S? (or
X — CP'), i.e. with k branch points {2, ..., 2, }. One obtains many different problems by
imposing conditions on the coverings. The number of solutions of the given type is called
the Hurwitz number of that type. For instance, if we want X to be a connected space, we
deal with the connected Hurwitz problem and connected Hurwitz numbers. Otherwise, if
X can be disconnected, we deal with the disconnected Hurwitz problem and disconnected
Hurwitz number. Generally, Hurwitz numbers are collected in generating functions and the

relation between disconnected and connected generating functions of the Hurwitz numbers



with a specific type is given by

Heon _ rrdis
e = H",

where H" is the generating function for connected Hurwitz numbers and H%* for the
disconnected Hurwitz numbers for the specific type. In Chapter 3, Section 2 discusses the
generating function of disconnected d-Hurwitz numbers (or d-Frobenius numbers) and the
other sections deal with the generating functions of connected Hurwitz numbers.

Given such a covering X — S2, each branch point z; corresponds to a permutation o; in
Sp. Denote by \; the partition corresponding to o;. The number of all connected n-coverings
with k ordered branch points z;,1 < i < k, each of which corresponds to a permutation of
type \;, 1 < ¢ < k, is finite. This number is denoted by Cov, (A, ..., \x). Equivalently,
Covy, (A1, ..., Ag) is the number of k-tuples (o7, ..., o) € S¥ satisfying the following conditions
I, 126,

(1) o is of type A;,
(2) 01...05 = 1,
(3) The group generated by the elements {07y, ..., 0%} is transitive on the set {1,...,n}.

There are many different types of Hurwitz numbers well-studied by different mathemati-
cians. In 1891, Hurwitz first studied the branched covers of the sphere by an n-sheeted
Riemann surface [22]. Hurwitz proposed a formula for the minimal simple Hurwitz number
(see Definition without a proof. Simple means that all but one \; are transpositions
and minimal means that the genus of the covering space X is zero. In 1997, Goulden and
Jackson confirmed Hurwitz’s formula by calculating this number in a combinatorics way [12].
In 2000, four mathematicians, Ekedahl, Lando, Shapiro and Vainshtein, proved the ELSV
formula for the simple Hurwitz number using the Hodge integral [5],[6], which is a more
general formula working for covering spaces with genus g > 0. This formula gives an inter-
pretation of the Hurwitz number in algebraic geometry. When g = 0, ELSV formula gives
the Hurwitz’s formula for minimal simple Hurwitz number. At the same time, Okounkov
and R. Pandharipande used the branch morphism for the stable maps [7] and localization
formula [10] to give another proof of the ELSV formula [33]. All of the above results are
about the connected Hurwitz number, which means that the covering space X is connected.
Later on, Okounkov proved that the generating function of double Hurwitz number satisfies
the Toda equation [3I]. In 2005, Goulden, Jackson and Vakil studied the geometry of the
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double Hurwitz number [I5]. The double Hurwitz numbers counts the coverings where all
but two of the permutations o; are transpositions. In 2006, Okounkov and Pandharipande
constructed the Gromov-Witten/Hurwitz correspondence [32], which is a bridge connecting
the representation theory (shifted Boson-Fermion correspondence) with algebraic geometry
(Gromov-Witten invariants). In their work, they focus on the disconnected Hurwitz number,
because there is a natural correspondence between the disconnected Hurwitz number and
the representation theory of permutation groups. Later on, Cavalieri, Johnson, Markwig
studied the wall-crossings for double Hurwitz number in 2011 [2]. Shadrin, Spitz and Zvonk-
ine studied the r-spin Hurwitz number. Roughly speaking, they wanted to use the r-spin
Gromov-Witten invariants to calculate the r-spin Hurwitz number, which is still a conjecture
[37]. In 2016, Harnad wrote an overview about the weighted Hurwitz number and used mKP
and 2D Toda lattice 7-functions to study the generating functions of the weighted Hurwitz
number [21].

Now we will give a brief review about the generating functions of the simple Hurwitz
number.

Given « a partition of n, in this paper, the simple Hurwitz number is defined as
hi(a) = Cov, (1"722,..., 1722, ).

It is the number of (k + 1)-tuples (o1, ..., 04, 0 1) € SEFL satisfying the following conditions
(1) o0; are transpositions (or of type 1"722), where 1 <i < k, and o~ is of type a,
(2) oy...0x =0,
(3) the group generated by {07y, ..., 04} is transitive on the set {1,...,n}.

Simple means that all but one permutation are transpositions. Compared with the classi-
cal simple Hurwitz number [11], [18], Cov, (1"722,...,1"722, ) counts all possible k-tuples
(01, ...,06,07 %) where o is of type a while the classical Hurwitz number counts all k-tuples
(01, ...,06,07 ") with an arbitrary but fixed permutation o of type . In this paper, we call
hi(a) = Cov,, (17722, ..., 1722, o) the simple Hurwitz number.

The generating function H for simple Hurwitz numbers is

k

H,p) = Hlupiopa, ) = 30 50 S hal0) S

n>1 k=1 atn



where p, = Pa,---Pay, @ = (1,9, ...,a;). This generating function satisfies the following
equation [14], [16]

OH 1 OH O?H  O0HOH
—=3 (z+y)pzp]a +Jpz+Ja o +ij+]8 o, (1.1.1)

2
Ou i,j>1 Pit

We will discuss this equation in detail later and we prove a more general theorem (Theorem
from which Equation follows (see Section 3.4).

Now we introduce another parameter y to the generating function H(u,p) for the genus
g. By Riemann-Hurwitz formula, the genus g is uniquely determined by the degree n, the

number of transpositions k and the length I(«) of partition «,

k—n—I(«a)

1.
5 +

g:

Define H(u,p)(y) as

We rewrite H (u,p)(y) as
(y) = H(u,p)y’

where H9(u,p) = 351 21 2onet 2oabn hi(a)%pa. Here hj(«) is the Hurwitz number of
coverings with genus ¢, which is a finite number.

Clearly, H(u,p)(y) also satisfies (1.1.1)) and we take the coefficient of y? on both sides of
[ELI), we have

oHY 1 OHY OPHI! .. OH9 OH%
0 —52( +])pnga 1 ]pz-l—]a O, + Z ljpiﬂ‘a—pi%-

i,j>1 Pij g1+92=g

(1.1.2)

Goulden and Jackson use formula (1.1.1)) and ([1.1.2)) to calculate the Hurwitz number hJ(c)
for lower genus g = 0, 1,2 [18], [13], [14], .




Equation (1.1.1)) comes from the idea of cut-and-join operator A [I1]

1 iy 0? o 0
A=g3 > Z(U}%HM + (i + J)pipj—),

i>1 j>1 apz’+j
which satisfies the following formula
O(K(1n—29)9) = AD(g). (1.1.3)

where g is any element in the permutation group S,, K(j»-29) is the central element of CS,
corresponding to the partition (1"722) and @ is a linear map from the group ring CS,, to the

polynomial ring C[py, ps, ...]. Precise definitions can be found in Section 2.9.

1.2 Outline of the Paper and Statement of results

1.2.1 W-Operator

In Section 2.1, we give the definition of the W-operator W ([n]). Section 2.2 aims at intro-
ducing the main tools, permutations and quivers, to prove Theorem [2.3.1] In Section 2.3,
we give the proof of the structure Theorem of W([n]).

Theorem. W ([n]) is a well-defined operator on Clpy,ps,...] and it can be written as
the sum of n! summations, each of which corresponds to a unique quiver Qg or equivalently

a unique permutation 3 € S,.

The summation corresponding to permutation S is denoted by F'Sz and we call it the
free summation. (See Definition [2.3.2]) The first part of the theorem, that W ([n]) is a well-
defined operator on Clpy, ps, ...], is a basic property and the second part shows that there is
a relation between the permutation group and the W-operators. This theorem gives a new
way of studying the W-operator W ([d]). This theorem was first proved in paper [3§].

In Section 2.4, we study some combinatorics properties of the summations. We define
the degree of summations in W([n]). The degree of the summation F'Ss is the sum of its
polynomial part’s degree and the order of its differential part. For example, consider the

following summation

.0
FSq) = Zwi@_pi’

=1



where (1) is the unique permutation in S;. The degree of this summation is 2. The degree
of different summations in W ([n|) can be different. Given a positive integer n, we find that
the degree for free summations F'S, can only be n+1,n—1,..., where a € S,,. (See Remark
2.4.3.) An ordinary summation (OS) is a summation with maximal degree n + 1 in W([n])
and an (r, s)-type OS is an OS summation such that its polynomial part degree is r and its
order of differential part is s, which means » + s = n + 1. At the end of Section 2.4, we ask

the following question.

Question. Given a positive integer n, how many summations in W ([n]) are of degree
n + 17 Equivalently, what is the number of permutations in S, such that the degree of the

corresponding summation is n + 17

In Section 2.5 and 2.6., we prove that this problem is equivalent to a special perfect

paring problem in combinatorics (Theorem [2.5.10[ and [2.6.4)). We figure out this number in
Section 2.8 (Theorem [2.8.2]).

Theorem. The number of (r,n —r + 1)-type OS in W ([n]) is the Narayana number:

I (n+1\/n-1
0S = — .
|05(n,7) n—l—l( r )(r—l)
The number of all summations with degree n+ 1 in W([n]) is the Catalan number
z”:l n+1\(n—=1\ 1 (2n
“~n+l\ r r—1) n+1\n)’

In Section 2.7, we construct the dual non-crossing sequence. (See Construction [2.7.1})

We use this construction to prove the following corollary the number of (r, s)-type OS equals

to the number of (s, r)-type OS.
Corollary. Given two positive integers n,r, we have
|0S(n,r)| =|0S(n,n—r+1)|.

In Section 2.9, we prove the following formula about the W-operator W([d]), which
plays an important rule in studying the generating function of Hurwitz number. It is a

generalization of the cut-and-join formula (1.1.3)).



Theorem. |2.9.1| For any g € CS,,
(K (1n-aq9) = W([d])2(g), (1.2.1)

where Kn-ag) 1s the central element in CS,, corresponding to the partition (1m~4q).

In the theorem, the map ® : CS,, — Clp, p2, ...] is a linear map defined as follows

D(g) = pa,

where ¢ is a permutation in S, of type A = (A, ..., \;y) and py = py,...pa,,- This theorem
was first proved in the paper [39].

In Section 2.10, we give another, equivalent, construction of W ([d]) based on the formula
we studied in Theorem 2.9.1]

1.2.2 Hurwitz Number

In section 3.1, we review some well-known theorems and properties about simple Hurwitz
number based on the cut-and-join operator. In section 3.2, we define the d-Frobenius number

,gd] (o) and d-Hurwitz number hkd] () (see Definition . The idea is to replace the trans-
positions used to define the simple Hurwitz numbers by d-cycles, d > 2. The d-Frobenius
number is the disconnected d-Hurwitz number and the d-Hurwitz number is the connected
Hurwitz number. We also define the generating function FI¥ for the d-Frobenius number

and give another proof of the following theorem, which is first proved in [29].

Theorem. m Fl9 s the unique formal series solution in u to the differential equation

oFd
= W ([d])F"
= W((d)
with initial condition
F[d]((),p) — P

In the following sections, all Hurwitz numbers we consider are connected.
In section 3.3, we consider the minimal d-Hurwitz number h¢(a), which is the number

of coverings X with genus zero, and its generating function f[g””(z,u,pl,pg, ...). We give



another proof of the following formula, as an application of the W-operator. The following

theorem is first proved by Goulden and Jackson [16].
Theorem.

QH "
ou

= HW ([d)(HJ™),

where [/{\I//V([d]) is defined in Construction .

In section 3.4, we go back to the d-Hurwitz number hLd} (cv) (see Definition , which is
number of all possible coverings f : X — S? such that the genus of X is greater or equal to
zero and all but one permutations of the branch points are d-cycles. Its generating function
is denoted by H(u, p). We prove the following theorem about H% (u, p) [40].

Theorem.

OH
ou

W ([d))H',

In the above theorem, W([d]) is a differential operator related to W ([d]). In fact, we use
the entire section (section 3.4) to construct this operator /W([d]) from W([d]). When d = 2,
Theorem [3.4.3] gives Equation with H?® = H.

In section 3.5, we consider the topological recursion of the d-Hurwitz number. Similar to
Formula for the generating function of the simple Hurwitz number, we introduce an-
other parameter y to H'% (u, p) for the genus g and define the generating function H99(u, p)
for genus g coverings. We have the following topological recursion formula for d-Hurwitz
number [40].

Corollary.

oH .9 dD(FSp) .
ou S D> FSpi(He, L HA,
u BESy =1 g1+ +g;=

g—dD(FSg)+i

where ZETS‘W is a "differential operator” in variables p; defined in Section 3.4 and dD(FSg)
is the differential degree of FSg, dP(FSgs) is the polynomial degree of F'Sg introduced in
Section 2.4.



Some examples of these operators FS 3, are as follows.

— 1 OHPb9
FSazya(H?9) = = (i + j)pipj———
255 Opivj
— 1 O*H ko1
FS H2he—1y — = D ——————
W@, ) =3 > " ijpis pdp

1 N O H 2o 91292
- Z ]pi-f—j apl apj .

When d = 2, Corollary [3.5.2| gives Equation (1.1.2) (H??9 = HY).



Chapter 2

W-Operator

W-operators were originally defined in Mironov, Morozov and Natanzon’s paper [30]. The
W-operator was used for studying the Hurwitz number (possibly disconnected) [30] [29]. This
chapter is based on our papers about the W-operators W ([n]) [38] [39]. We use permutation
groups and quivers to study the structure of the W-operators W ([n]).

2.1 Definition of I-Operator

The goal of this section is to give the definition of the W-operator W ([n]).

Definition 2.1.1. A variable matriz X is an infinite matriz with variable X, in the (a,b)-

entry, i.e. X 1= (Xap)a>1,6>1-

Definition 2.1.2. Given k > 1, py, is the trace of X*, i.e. pp = tr(X*). py is a power series

in C[[Xab)]ap>1- Clp1,p2,...] is a polynomial ring with infinitely many variables py.

Remark 2.1.3. If X is a special variable matrixz with Xo = 0, when a # b, then py is

exactly the power sum symmetric function Y oo XE.

Definition 2. 1 4. The operator matriz D is the infinite matriz with Dy, in the (a,b)-entry,
where Dy, = E XaCaXb

In the rest of the paper, we prefer to write Dy, = X“% with the summation over ¢

implied.

Lemma 2.1.5. Let F(p) be any polynomial (or formal power series) in Clpy,pa,...| (or
Cllp1, p2, ---]]. We have

Dy F(p i k(X Fv) (2.1.1)
k=1

8]%



For k > 0, we have

k—1
Dea(XF)ap =) (X)) a(XF ). (2.1.2)
§=0
In particular, we have
0o kj—1
Z Dan+1an Xk aza] = Z Z an azan(Xk kn)an+1aj
kj=1 kj=1kn=0
- Z Z an “zan(Xk )an+1%
kj=1kp=1

Proof. We only give the proof for Equation (2.1.1). The proof of the other formulas are
similar. Details can be found in [29], [38].
We want to calculate Dgyp, £ > 1. Note that % (Xayay Xagas--Xana,) is nontrivial if

and only if there is some 7 such that X,,,,_, = Xs.. In this case, b = a;,c = a;_1. We have

o
Doppr = Xpo—— X"
bPk 3 Xbc

acaXbc Z H a0k akak 1’ Xa?al)

atye.

E E Xalak a1+1bXac-'-Xaka1

Equation holds for all monomials py, k& > 1. So, the equation also holds for all

polynomial (or formal power series) F'(p). O

Definition 2.1.6. The normal ordered product of Dy, and D.q is

0 0
0 Xpe, 0X ge,

. Dachd = XaelXc

(again with the summation over ey, e5 implied).
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Lemma 2.1.7. We consider Dy, acting on p; = tr(X"). Then, we have

0

' Dayssanii Dapran * = Z((k+j>(Xj)an 1an 1(Xk)an 2an )
+20n+ + = +1@n+ + apk+j
pIICIEC NS
+ (k]<X )an+1an(X])an+2an+1—>'
et Opr0p;
Proof. See [29], [38]. O

Remark 2.1.8. The formula of normal ordered product : Dy, , 4, Da,.1a, = @ Lemma[2.1.7]

comes from the calculation of D D By calculation, we have

An4-20n+1 An410an *

0
fdn apk—i—j
82
an+2an+lz%;;5;;)'

D D

ant1Gn — Z ((k+j)(Xj)an+1an+1(Xk)

k>1,j>0

+ 3 k(X010 (X)

kj=1

)

An4-20n+1

The subscript j in the first summation Y. (k+ j)(Xj)anHanH(Xk)anﬁanﬁ) goes from
J

k>1,j>0
0 to infinity. If we calculate the normal ordered product : D D ., the "zero” term
does not appear, which gives the formula in Lemmal[2.1.7]. In fact, the zero term comes from

An+4+20n+1 An4+10Gn *7

8 .
[—8X%+161 s Xapirea) SinCE
l)an+2an+ll)an+lanfl =
0 0
 Daysanir Danran +Xan+2el[aX aXan+1e2]aX .
Gn+1€1 an €2

The reader can use the same method to calculate the normal product : D Dy, -

D,,a,, the normal

An420n41 """

from the product D, ,a,,,---Dasa, - Compared with the product Dq,  a,,,---
product : Dy, v, ---Dasa, © has no “zero term”. More precisely, all subscripts go from one

to infinity.

Definition 2.1.9. For any positive integer n, we define the W -operator W ([n]) as

1 o1
W(n]) =~ tr(D") =~ > Duya Dayayy-Doe
a,...,an>1

12



Notation 2.1.10. We prefer to us the following notation for the normal ordered product
Day,....an) = DayanDanan_r--Dazay : -

The W-operators W ([n]) have many interesting properties in combinatorics and repre-
sentations of permutation groups. In this chapter, we will show how W ([n]) relates to the
permutation groups. In the next chapter, we will give some applications of W ([n]) to the

Hurwitz number.

2.2 Quiver and Permutation Group

In this section, we give some constructions on quivers and permutations (Constructions
and [2.2.8)). These constructions are our main tools to prove the structure theorem (Theorem
in Section 2.3.

We begin with the quiver. A quiver is a directed graph. So, as usual, a quiver Q) =
(V, A, s,t) is a quadruple, where V' is the set of vertices, A is the set of arrows, s and ¢ are
two maps A — V. If a € A, s(a) is the source of this arrow and ¢(a) is the target. We
assume V' and A to be finite sets. If B is a subset of A, Vg = {s(a),t(a),a € B}, then we
call (Vg, B,s',t') the subquiver of @), where s’ = s|g, ' = t|g. A quiver Q@ = (V, A, s,1)
is connected if the underlying undirected graph of @ is connected. A connected quiver
Q = (V, A, s,t) is a loop, if for any vertex v € V, there is a unique arrow a € A such that
s(a) = v and a unique arrow b € A such that ¢(b) = v. A chain is obtained by omitting a
single arrow in a loop. FQ is the set of all quivers with finitely many vertices and finitely

many arrows.

Definition 2.2.1. Let @, : S, — FQ be the map such that @, () = Q., where
Qo ={Vo={1,...n}, Ay = {i = a(i),1 <i<n}, S, ta}

Q. consists of disjoint loops which represent disjoint cycles of a.

Since the source map and target map is well-defined for any arrow in any quiver, we will

use the same symbols s, for the source and targets maps in any quiver from now on.

Remark 2.2.2. Fvery permutation can be written as the product of disjoint cycles. For
example, (123)(45) € Sg. But, in this paper, we prefer to write it as (123)(45)(6), which

includes the fizved integer 6 as "1-cycle”.

13



Given a € 5,, @, is the corresponding quiver. We define a new vertex set V, =
{1,...,n,n + 1}. There is a unique arrow a in @, such that s(a) = 1. We substitute
this arrow by a new one @, where s(a) = n + 1 and ¢(a) = t(a). Denote by A, the new set

of arrows.

Definition 2.2.3. Denote by Qa the new quiver,

Qa - (VCUACU Sat)‘

Example 2.2.4. Take a = (123) € Ss, then Q, is

Qo: 1 > 2 > 3.

Qa is

Qa: 4 > 3 > 2 > 1.
Clearly, Q. is a loop and Q. is a chain.

In general, Qa consists of a chain and possibly a number of loops. Clearly, we can
construct @), uniquely from Qa.

We will consider how to construct Qa from Qﬁ, where a € §,, and § € S,,11. Given any
permutation o € .S, and 8 € S,, 11, compared with QB, Q. has two properties

e For any a € S,,, there is no arrow a € A, such that t(a) = n + 1.
en+2¢V,.

Hence, if we want to construct from Qﬁ, B € Sni1, a quiver @a for some « € 5, we have to

delete the vertex n + 2 from VB and delete one arrow from flg. Here is the construction.

Construction 2.2.5. Given § € S,,11, we take the arrows a,b € AB such that
s(a)=n+2, tb)=n+1.

We also assume that

14



e [fa and b are the same arrow which means j =n + 2,1 =n + 1, we delete this arrow

from Ag and delete n + 2 from Vj.

o Ifa # b, we delete these two arrows a,b from Aﬁ and add a new arrow c such that
s(c) = 4, t(c) = i. Also, we delete the vertez n + 2 from Vj.

Denote by Q’ﬁ the new quiver we construct from Q[g in this way.
Example 2.2.6. In the first ezample, we consider 5 = (321). The quiver QB 18

~

Qﬁi 4

2\
w
2\
[\
~
—_

In this case, the arrow a,b are the same 4 — 3. Then, we delete this arrow and the vertex

4. We get the following quiver Q’(321)

/ .
(321)

which corresponds to the quiver Q(gl).
The second example is f = (3)(21) with Q(;g)(gl)

Q(?))(Ql) : 4 > 2 > 1 3\[>

Now a is 4 — 2 and b is 3 — 3. By Construction|2.2.5, we get the following quiver Ql(g)(m)

~

Qzyon : 3 > 2 » 1,

which corresponds to the same quiver Q(gl).

The third example is = (3)(2)(1), the identity permutation in Ss. By the same argu-
ment, we find Q’(3)(2)(1) = Q)()-

The fact that for all 5 € 53, Q% in this example is of the form Q, for o some permutation

in .S, is no accident. In fact, we have the following more general statement.
Lemma 2.2.7. Given any permutation 8 € S,y1, there is a permutation o € S, such that
Qa = Q/ﬁ

15



Proof. Let 8 = (8155...0 be the product of disjoint cycles of 5. We prove this lemma in the

following three cases.

Case 0

Case 1

n+ 1 and 1 are in different cycles of 3.

We assume that ; = (¢ ... 1), the cycle contains 1 and fy(1) = 4, and [y =
(j m+1 ..), the cycle contains n + 1 and [2(j) = n + 1. So, the loops in Qg

correspond to B; and 5 are

Qs 0 1 ) > j——n+1

~

So, in Qﬁ, they are

Qppy: n+2 ) > > 1, J——n+l1 > >
By the Construction [2.2.5] we get
Qb = Qarn: nt+1 > > ] >0 > > 1

Clearly, this corresponds to a cycle a2 in S, by replacing n + 1 by 1. Hence, o =
1205... 35, is the element in S, satisfying Qn = QIB

n+ 1 and 1 are in the same cycle and (1) =n + 1.
Say 8 = [15s...0k, where 1 = (n+ 1 ... 1). The quiver in Qﬁ corresponds to f; is

2\
—_

le: n+2——sn+1 JREE

By the Construction [2.2.5 we get

~

Qu,: n+l— i — 1.

Clearly, this corresponds to a cycle a4 in S, by replacing n+1 by 1. So, a = «a15s...0k
is the element in S, satisfying Q. = Q}.

16



Case 2 n+ 1 and 1 are in the same cycle and 5(1) =4, 7 # n + 1.
Assume = (10s...0k, where ; = (i ... j (n+1) .. 1) (j and ¢ can be the

same number). The quiver in Qg corresponding to f; is

lez n+2 ) > > 7 >n+1 > 1.
Hence, by the construction above, we get two cycles
Q’m:QalM: J > 1 > n+1 > > 1.

(Clearly, replacing n 4+ 1 by 1, they correspond to two disjoint cycles ay, as in S,. So,
a = ayanfs... 0k is the element in S, satisfying Qa = Qlﬁ

In conclusion, for any 8 € S,.1, there is an element o € S, such that Qo = QA,B H

Next we want to go in the opposite direction. For each a € S,,, we want to find all
B € S,41 such that Qlﬁ = @a. Given a fixed permutation a € S,,, there turns out to be n+ 1
choices of #in S, 1.

Given any quiver Qa, a € S,, if we want to construct a new quiver QB representing an
element 5 € S, 1, we should add the vertex n + 2 into Va and add arrows ai, as in fla such
that

s(a) =n+2, tlag) =n-+1,

where a1, as can be the same arrow. Here is the construction.

Construction 2.2.8. Given any o € S,,, we write o as the product of disjoint cycles o =
a1g...a. We assume 1 € ay. So, the corresponding subquiver for ay in Qa is the chain as

following

~
~
—_

Qalz n+1
e Case 0

We extend the quiver for oy directly

2\
~
—_

Q615 n+2 ——sn+1

17



Clearly, this subquiver represents a well-defined cycle By. In this way, we construct a

permutation B € S,y1, where B = Bias...ap. In this case, ai,as are the same arrow

a; = as : n+2——n+1.

Next we consider the general case. Roughly speaking, the idea is cutting an arrow in Qa and
reconnect the chain and loops in Qa. There are n choices of arrows in Qa. We first choose
an arbitrary arrow a : i — j in Qa.

e Case 1, a € Qal

In this case, Qq, 1S

Qm: n+1

2\
~
~
~
2\
~
—_

First, cut the arrow i — j, we get

n+1

~
N2
~

<.
~
N2
[a—

Then, we add the following two arrows
a:n+2 ——j as:t —— n+1.

Finally, we get the following quiver,

/_\ |

> 1, 1 —n+1 b

2\
.
<+

Q5152 : n+2

They represent two disjoint cycles in S,y1 by replacing n+ 2 by 1. Call them 31 and

Ba. So, B = P1Bras...a is the permutation in S,.1 constructed by cutting the arrow a.

e Case 2, a ¢ Qal

Without loss of generality, we can assume a € QOQ. The corresponding quiver for o

and oy are

~
~
—_

QQWQ coon+1

18



Similar to Case 1, we cut the arrow 1 — j and we get

n+1 » > 1, J > > 1
Then, we add the following two arrows
a:n+2 ——j as:t ——n+1.
Finally, we get the chain
Qﬁlz n+2 > ] > X »n+1 > 1.

It represents a cycle in S, 11 by replacing n+2 by 1 and denote by B1. So, B = Pras...y

1s a permutation i Spi1.

In all cases, we have Q’B = Qa. In the quiver Qa, there are n arrows. Hence, we can
construct n quivers or permutations from Case 1,2. In conclusion, there are n+ 1 choices
of B € Sny1 such that Q’ﬁ = Qa. It is easy to see that B constructed in this way are distinct.

The three cases in Construction [2.2.8 corresponds to the cases in Lemma [2.2.7]
Construction 2.2.5] Lemma and Construction [2.2.8] imply the following theorem.

Theorem 2.2.9. For any a € S,,, we can construct n + 1 distinct permutations B in Sy11
such that Q/'g = Q.. In fact, if we do it for all @ € Sy, we will get (n+ 1)! elements, which

are exactly all permutations in the group Spi1.

Remark 2.2.10. We can summarize the above construction as following. Given any positive

integer n, there 1s a map

\Ijn : Sn+l — Sn

such that V., () = «, when QA/’B = @a. Lemma [2.2.7 says that V,, is well defined and the
theorem, Theorem says that the preimage V' (a) consists of n + 1 distinct elements
B. So, ¥, isan-+1to1l map.

We define the following notation [« j], which will be used in the next section.

Definition 2.2.11. Let o be a permutation in S,. Denote by |a, j] the permutation con-

structed from o, where j is an integer, 0 < j < n. [«,0] corresponds to the Case 0 in
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C’onstruction and, if j > 1, [«, j| corresponds to Case 1,2 by cutting the arrow a such
that t(a) = j.

2.3 Structure of W (|n))

In this section, we discuss the structure theorem of W([n]). It is based on Construction
2.2.8, which produces from a quiver Qo(er € S,) n + 1 quivers Qz(8 € S,41). In fact,
Construction comes from the calculation of W ([n]) (see Definition and Lemma

2.1.7)), which gives the basic idea about the structure theorem.

Theorem 2.3.1 (Structure Theorem). W ([n]) is a well-defined operator on Clpy, pa, ...| and
it can be written as the sum of n! summations, each of which corresponds to a unique quiver

Qg or equivalently a unique permutation 3 € S,,.

Proof. We give some examples and ideas about the proof.

To calculate W ([n]), we have to figure out the operator
: DavanDavayq--Dasay -

for any a; > 1, 1 <1i < n. By Remark [2.1.8] it is equivalent for us to calculate the product
DgyanDana,_y---Daga,- Since we want to use induction to calculate this product, we replace
Da1an by Dan+1an'
the summation F'Sg corresponding to QQg, where 8 € S;. Let n = 1, by Lemma , we

have

Now let’s calculate the base step and we will explain how we construct

= 0
Dasa, = Z kl(Xkl)a2a1 Wkl
ki=1
We associate this summation to the quiver
Q(l) 2 —— 1 ,

which corresponds to the subscript of (X*1)4,q,.

Now we calculate Dy,q,Daya,

S by 0 N\ ky 0
Dasa2Da2al = Z (Da3a2(k1(X )a2a1)> 8_ + Z k1<X )a2a1 Da3a2 © a_ ’ (231)
k=1 Pky =1 Pk
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By Lemma [2.1.5] we have

0
Dayaz Dasa, = Z ((kl + k2)(Xk2)a2a2 (Xkl)asala—
k1> 1 >0 Pk +k2

> > 52
+ Fiko (X" ) agan (X)) agar ) m——)-
k1k22>1< 1 2( ) 3 2( ) 2 1)51%16]%2)

We associate the first summation to the quiver Q(l)(g)

Q(l)(g) : 2 s 3——1 ,

which comes from the subscripts of the polynomial part (X*2),,.,(X*")4,q,. Similarly,

the second summation corresponds to the quiver Q(m)

2\
[N}
~

—_

Q(12) 3

We know that Dg,,, acting on (X*),,,, gives the first summation, which corresponds
to Case 1 of cutting the arrow 2 — 1 in Q(l) in Construction m The same argument

holds for the second summation, where D,,,, acts on 8}‘1 and it corresponds to the Case 0

in Construction 2.2.§f By Lemma and Remark we know that : Dy, Daye, : and

Dy Daya, are almost the same and the only difference comes from the term with subscript

J = 0 in the first summation. Hence, we can use quivers to describe the summations of
: Dogay Daga, ¢ in the same way as Dg,q, Daya, - In conclusion, we find that : Dg,q, Dy, @ can

be written as the sum of two summations, which correspond to quivers Qa, a € Sy,

0
: DGSGQDa2a1 = Z ((kl + k2)(Xk2)¢12a2<Xk1)

azail a )
Ky ko >1 Pl

82
+ ko (X5 gaay (X gpay ) =——=—).
kl%;( 1h2(X™) g5, (X™) )8pk18pk2)
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We use the notation F'S!, for the summation corresponding to o € Sy. We have

. 2 : /
agag agal . FS

aESy

Comparing with formula (2.3.1)), the ranges of integers ki, ko are the same in : Dyya, Daya, ©

i.e. from one to infinity (see Remark [2.1.8]). Finally, let a3 = a; and sum over a4, as,

Z : DalazDazm - = Z Z kl + k? XkQ)azaz (Xkl) L

ajal
ar.a2>1 a1,a2>1 k> 1 ko>1 -+
82
+ Z Z kle Xk2)a1a2(Xk1)aza1)ap—)

0
ay1,a2>1 k1,ka>1 k1 pk’z

We find that each summation can be written as some polynomial times a differential operator

in variable p;. We get the following formula

1 0 52
: DatayDagay = = k1 + ko) pr,pr, = + k1koDiy +ko
> :Da 3 2 (U kadpri 5= + koo

—).
ay,a22>1 k1,ka>1 pklapk2
(2.3.2)

By induction on n, we can assume that : D Dg,q, : can be written in the following

An+410n **

way
' Dy van---Dagay = E FS,

aESy

where F'S! is defined as

FS,= > T (X%)as 0, | DESL Ry s ), (2.3.3)

Ktk >1 \ e Ay

where A, is the set of arrows in Qa, s is the source map, t is the target map (see Definition
2.2.3) and DF'S! (ki, ..., ky,) is the differential part with constant coefficients depending on k;,
1 <i < n. The differential part DFS!,(ky, ..., k,) is uniquely determined by the permutation

a and integers k;, 1 < i < n. Let’s take @ = (21) as an example, which is one of the
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summations in : DygayDasay o

82

/ _ kg k‘1
FS(19) = Z ((X™) agas (X )azal)klkzm-

k1,k2>1

(X*2) 430 (X¥1) 00, is the product of variables described by the arrows and the differential

part is

82

DFS! (ki, ..., k,) = kikg———.
04( 1 ; ) 1 28pk18pk2

Now we try to calculate the product D FS! .. By the product rule, we have

An420n+1

Dan+2an+1 FS(,)! =
Z Z (Dan+2(1n+l (th('r/) )as(r/)at(r,/))( H (sz(r) )ag(r)at('r) )DFS&(kl, ey kn)
T’EAa k1,.skn>1 TGAQ,T‘#T/

+ Y T )00 | (Panssanss © DESL Ry k)

ki, kn>1 \rcA,

We introduce another notation. If j # 0, there is a unique arrow r’ € A, such that

t(r') = j. We define the operator Dy, ,q,,,,; acting on F'S, as

Dan+2an+lijSéz =
Z (‘D(ln+2an+1 (th(r/))as(rl)(lt(rl))( H (th(r))as(r)at(,,\))DFS;(kl, ey kn)
k1,..kn>1 T‘GAQ,T;&T’

If j =0, we define D, ,q,,,,0FS,, as

D OFS(IX =

An420n41,

Z H (th(r))as(r)at(r) (Dayzanys © DFS] (K1, ..., k).

k1, skn>1 TEAD(

In terms of the new operators D, we have

An420n+41,])

n
!/ ) 12
Dan+2an+1FSa - E :Dan+2an+lz.7FSOc7
Jj=0
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and

n
. /. . . /.
i Da,van i 'S, = E 2 Da,vanir i F'Sy ¢ -

=0
We can define F'S 3 inductively as

FS} = FS. (2.3.4)

an+2an+1 7]

where 8 = [a, j], 0 < j < n. Recall the following two formulas in Lemma ??

ZOO 0
a'n+2an+1 k C’«n+2@n+l a k?

k=1

Dan+2an+1 X alaj X n azan+1 X )an+2ag

kj=1 k;=1kn=0

With the above two formulas, we leave it for the reader to check that F'S 3 defined by
Equation (|2 can be written in the same form as F Sa in Equation ([2.3.3|)

FS/ — Z H (th r ) (1)@t (r) DFS/ﬁ(kl7 ~-‘;kn7kn+1>‘

So, by induction, : Dg, 4, ;---Dasa; : can be written in the following way

: 'Dan+2an+1 CL2CL1 = Z FS,B
BES

Finally, for each F'S}, replace a,.2 by a; and take the sum over a;, 1 <i < n+ 1. Then,
we will get a summation in variables p; corresponding to F'Sj. W([n + 1]) can be written
as the sum of (n + 1)! summations, each of which corresponds to a unique permutation in
Sna1- m

Definition 2.3.2. For any permutation 3 € S,11, denote by F'Sg the summation corre-
sponding to F'Sy (or 3) in the decomposition of W ([n + 1]).

Remark 2.3.3. Recall that py, is defined as the trace of X*. If we define the degree of py

to be one, we claim that the degree of the polynomial part of F'S, is exactly the number of
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disjoint cycles of a. We will explain it in the rest of this remark.
Given o € S, let @ = ay...aq be the product of disjoint cycles. If we fix integers k;,
1 <1 <n, the polynomial part of ﬁS’a with respect to k; is

Fegr
H (X “ ))as(r)at('r)

reAq

Now replacing a,1 by ay and taking the sum over aq, ..., a,, we have

> (o) -IL S (T,

al,...,an>1 \r€Aq =1 ay,...,an>1 rGAai
l
- HPZTGA% Ke(r)
i=1

Hence, the degree of the polynomial part of F'S., is the number of disjoint cycles of a.

Let’s take o = (21) as an example.

0
kik
Z pk1+k2( 1 28pk16pk2)

E1,ka>1

The degree of the polynomial part is one, which is the number of disjoint cycles of a.

2.4 Degree of Summations F'S,

Consider the polynomial ring C[py,ps,...]. In this section, we define the degree of each
variable p; to be one. In the previous section, we have shown that W ([n]) can be written as
the sum of n! summations. Each summation is a formal differential operator. For example,
the summation F'S(32) in W ([3])

5 U02W3Pitist+is A 4
3 izt OpiaOpiaOpis
is an infinite sum of differential operators zlzgzgpiﬁiﬁigap(fw, which has coefficients
11 12 13
... . . . 3
111973, polynomial part p;, 44,+i, and differential part — 9 Now we want to define the

Opi, Opi, Opig
summation’s degree, which depends on its polynomial part and differential part.
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Definition 2.4.1. Given any summation F'S, of W([n]), dP(F'S,) is the degree of its poly-
nomial part and dD(F'S,,) is the order of its derivative part. The degree of the summation
FS, is d(F'Sy) = dP(FS,) + dD(FS,).

Let’s consider the example W ([3]). There are 6 summations in W([3]),

W([3]) = %i17i2§21(i1i22’3pi1+12+¢3m+ F S
+i1(i2 + i3)pi1+i3pi2ﬁzi2+i3+ EFSas)(2)
+ia (i1 + 13)pil+i2pi3ﬁ]jhﬂg+ FS2)3)
+i3(i1 + 12)PistinPiy ﬁ;lm‘f‘ ES(1)(23)
+(41 + 12 + 13) D3, Py Dis ﬁ#’ FSuy2)3)
+ (i1 + i + 13)Diyriptis ﬁm) FS(123) -

Five of them have degree 4 and the summation F'S193) is of degree 2. If we go back to W ([2])
(Equation ([2.3.2))), all summations are of degree 3. We know that the polynomial degree of
F'S,, is the number of disjoint cycles of a by Remark [2.3.3]

The following lemma describes the relation between the degree of F'Ss and F'S,, when

f = [a, 1] (see Definition [2.2.11)).
Lemma 2.4.2. For any a € S,

1. If [B] = |o, 0], we have

dP(FSs) = dP(FS,), dD(FSs) = dD(FS,)+1, d(FSs) = d(FS,)+ 1.
2. If [B] = |, j] and j is a vertex in the chain of Q.. then, we have

dP(FSs) = dP(FS,) + 1, dD(FSs) = dD(FS,), d(FSs) = d(FS,)+ 1.
3. If 8] = [, j] and j is not a vertex in the chain of Qq, we have

dP(FSz) =dP(FS,) —1, dD(FSs)=dD(FS,), d(FSz)=d(FS,)—1.
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Proof. By the proof of Theorem [2.3.1] Equation (2.1.1) in Lemma shows that the
differential degree of F'Sj increases by one when [3] = [«,0]. The third formula in Lemma

implies when j # 0, the operator D,, 4, fixes the differential degree. Now we consider
the polynomial degree. If [3] = [a, 0], Case 0 in Construction [2.2.8|tells us that the number
of disjoint cycles of § is the same as that for a. By the proof of Theorem [2.3.1] and Remark
[2.3.3] the number of disjoint cycles of « is the polynomial degree of F'S,. Hence, in Case

0, we have
dP(FSg) = dP(FS,).

Case 1 in Construction corresponds to [3] = [«, j|, where j is a vertex in the chain of

Qa. /3 has one more disjoint cycle than a. So, we have
dP(FSg) = dP(FS,) + 1.

Similarly, in Case 2 in Construction [2.2.8, a has one more disjoint cycle than 5. We have
dP(FSg) = dP(FS,) — 1.

]

Remark 2.4.3. From the above lemma, the highest degree of summations in W ([n]) is n+1

and the other possible degrees are n —1,n — 3, ... .
Now we have the following question about the number of summations with highest degree.

Question 2.4.4. Given a positive integer n, how many summations in W ([n]) are of degree
n+ 17 More precisely, what is the number of permutations in S, such that the degree of the

corresponding summation is n + 17

In Section 2.5 and 2.6., we prove that this problem is equivalent to a special "perfect

paring” problem in combinatorics (Theorem [2.5.10[ and [2.6.4]). We figure out this number in
Section 2.8 (Theorem [2.8.2]).

2.5 Ordinary Summations

In this section, we discuss the ordinary summations and prove a necessary and sufficient

condition for the ordinary summations.
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Definition 2.5.1 (Ordinary Summation). Given a € S, F'S, is an ordinary summation
(OS) of type (r,s), if dP(FSy) =71, dD(FS,)=s andr+s=mn+ 1.

Example 2.5.2.

0
FS(l) == Zpkla—.

k1 >1 Pky
FSqy is an OS of type (1,1).

0

1 o
FSay@) = 9 Z Pklpkzm-

k1,ka>1

So, FSqy) s an OS of type (2,1).

Next we want to find a necessary and sufficient condition () on permutations o € S,

such that F'S, is an ordinary summation if and only if « satisfies the condition (x).

Definition 2.5.3 (Condition (*;)). Let o be a permutation in S,. Let a = ...« be the
decomposition of « into disjoint cycles. We say « satisfies the condition (x1), if for each
arrow a in the chain of Qn, we have t(a) < s(a), and there is only one arrow b in each loop
of Qu such that s(b) < t(b).

Remark 2.5.4. The above condition for Qa 1s equivalent to the condition for Q). that there
is only one arrow b in each loop of Q, such that s(b) < t(b). We use the definition in terms

of Qq in the proof of Lemma and Theorem |2.5.10, We use the definition in

terms of Q in the proof of Theorem [2.6.4)
Lemma 2.5.5. Given a € S,,, if F'S, is an OS, then « satisfies the condition (x1).

Proof. We prove this lemma by induction on n. For the base step n = 1, Q(l) is the only
quiver and F'S;y is an OS. There is only one arrow 2 — 1 in the quiver Q(l). Clearly, (1)
satisfies the condition (k7).

Now we assume that for all a € Sy_; if F'S, is an OS, then « satisfies (x;). Let 8 € Sy
and assume [3] = [ov, j] in the notation of Definition 2.2.11] FSg is an OS implies that F'S, is
also an OS. Indeed if 'S, is not an OS, then d(FS,) < k. By Lemma[2.4.2] d(FSs) < k+1,
contradicting the fact that 5 is an OS.

Let a = aj...a; be the decomposition of « into disjoint cycles with 1 € ;. By Lemma
, 7 could be zero or the target of some arrow in the chain of Q.. Now we discuss these

two cases.
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1. If 5 = 0, then 8 = Bias...a,., where le is constructed from Qal by adding another

arrow k + 1 — k. By induction, the statement is true.

If j # 1, then (3 is constructed from «a by cutting the arrow a : © — j, which is an arrow
a in the chain of Qa. We use the same notation as Case 1 in Construction [2.2.8 Let
b = B1Psqs...c,.. The quiver le of the cycle (3 is

Q51: k42

~

<
~
~
—_

where 7 — ... — 1 is a subquiver of a;. Hence, all arrows in this chain satisfy that the

source is larger than the target. The quiver Qg2 is
Q By - z—>/k+1l :

where k+1 — ... — i is a subquiver of «; by construction. So the only arrow a in the

cycle Qg, satisfying s(a) < t(a) is i — k + 1. Hence, the statement is true for n = k.

]

The following condition is another condition of permutation « such that F'S, is an or-

dinary summation. Theorem [2.5.10| proves that F'S, is an OS if and only if « satisfies the

following condition and the condition (%1).

Definition 2.5.6 (Condition (x*3)). « is a permutation in S,. Let o = ay...c, be the

decomposition of « into disjoint cycles. We say a satisfies the condition (x3), if any two

distinct cycles oy, o satisfy at least one of the following conditions,

1.

pick an arbitrary element m in oy, then we have m > n for any n in a; or m < n for

any n i oy

pick an arbitrary element m in «;, then we have m > n for any n in oz or m < n for

any n in .

Remark 2.5.7. This remark will give a brief explanation about the condition (x2). The two

conditions in Definition[2.5.6 mean that any two cycles are "ordered” or one is ”contained”

in the other one. If the pair of cycles satisfies both these two conditions, then they are

“ordered”. If the pair only satisfies one of them, then one is contained in the other one.
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For instance, consider the following examples,
7 = (123)(45), 7 = (125)(34), 73 = (124)(35).

The two disjoint cycles in 1 satisfies both these two conditions. They are "ordered”, since
any integer in the second cycle is larger than any integer in the first cycle. The disjoint cycle
a; = (34) in 1o is contained in a; = (125). They satisfy the second condition in Definition

[2.5.0. We prefer to write it as
(5 (43 ) 2 1)

We will explain this notation in Construction|2.6.1. The last example T3 does not satisfy the

condition (*s3).
Lemma 2.5.8. If F'S,, is an OS, then « satisfies the condition ().

Proof. Similar to the proof of Lemma we prove this lemma by induction on the per-
mutation group S,. When n = 1, it is clear that the unique permutation (1) in S; satisfies
the condition (k).

Next, we assume that for all o € Sy if F'S, is an OS, then « satisfies (kq). Let
p € S, and assume [3] = [a, j] in the notation of Definition Let a = a...a; be the
decomposition of « into disjoint cycles. We will prove that if F'Sz is an OS, then 3 satisfies
the condition (%3). Before we give the proof, recall the property that if [5] = [«, j] and F'Ss
is an OS, then F'S, is also an OS by the proof of Lemma [2.5.5

If 5 =0, then 8 = fas...a,., where le is constructed from Qal by adding another arrow
k+1 — k. In other words, we put another element k into the cycle a; (see Construction
2.2.8). By assumption that any two disjoint cycles of a € Sj_; satisfy at least one of
the conditions, we only have to check whether the pair (1, «;) satisfies the condition (),
2 < ¢ < r. Since «; contains the smallest element 1, so if oy and «; are "ordered”, then
any element in «; is smaller than any element in «;. Since k is the largest element, so the
statement is true for 5; and «;. Now we consider that oy and «; are not ”ordered”. Since 1
is contained in oy, so «; is "contained” in ay. Clearly, it still holds for 8; and «;. So, (51, ;)
satisfies the condition (x2).

Now let’s consider the case that § is constructed from « by cutting the arrow a : i — j
lying in the chain of . We use the same notation as Case 1 in Construction 2.2.8 Let
B = B1P2as...a,.. So, we have to check whether the following three types of pairs satisfy the
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condition:

(51a52), (51,041')7 (ﬁQ,Oéi),
where 2 < ¢ <.

® (B, 52)
Since F'S, is 08, so all arrows a in Q,, satisfy t(a) < s(a) by Lemma [2.5.5. Hence,

when cutting the arrow ¢ — 7, any elements in (3, is larger than any elements in ;. It

is true in this case.

o (B1,q4)

By induction, we know that the lemma is true for (o, q;), 2 < @ < r. Since the ele-

ments of f; is a subset of the elements of «ay, so it is true for (1, «;), 2 <i <.

o (B, )
If 3, is a single disjoint “one cycle” (k), the statement is true. If By # (k), assume
the largest element in By except k is ¢. If ¢ is smaller than the smallest element in
«;, then any element u except k in (35 u is smaller than any element in «;. Also, k
is larger than any element in «;. Hence, the statement is true in this case. Now let’s
consider the case that ¢ is larger than the smallest element in o;. By construction, ¢
is an element in aq, which contains 1. Hence, ¢ is larger than any elements in «; by
induction. Similarly, any other elements in 5 is larger or smaller to all elements in «;

by induction. So, the statement is true.
In conclusion, the statement is true when n = k. O]

Definition 2.5.9 (Condition (%) and Non-crossing Permutation). Given o € S,,, we say
that « satisfies the condition (x) if a satisfies the conditions (x1) and (xq). We call such a

permutation o non-crossing permutation in this paper.
Theorem 2.5.10. For a € S, F'S, is OS if and only if « satisfies the condition (x).

Proof. The "only if” part is exactly Lemma [2.5.5] and [2.5.8] So, we only have to prove the

7if” part. We prove this theorem by induction on n.
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When n = 1, it is easy to prove, since (1) is the only permutation. We assume that if
« € Si_1 satisfies the condition (x), then F'S,, is an OS. We will prove that if 3 € Sy, satisfies
the condition (%), then F'Ss is an OS. Assume [#] = [a, j] for some « in S,_; and some
nonnegative integer j. We claim that j is 0 or in the chain of Qa (Claim 1). Also, we claim
that « also satisfies the condition (x) (Claim 2). Since « satisfies the condition (x), F'S,, is
an OS by induction. By Claim 1, j is 0 or in the chain of Qa. By Construction and
Lemma , we know F'Sg is an OS. Now we are going to prove these two claims.

Proof of Claim 1:

If not, § is constructed from « by cutting arrow a : ¢ — j which is not the chain of Q..

Hence, by Case 2 in Construction [2.2.8] we will get a long chain

kE+1 > k

~
~
—_

~

.
<+
~
o~

In this chain, we have ¢ < k, which contradicts with our assumptions that 3 satisfies the
condition (*¥). So, j must be in the chain of Q, or j = 0.

Proof of Claim 2:

By Claim 1, we know that 7 = 0 or j is in the chain of Qa. If j = 0, it is easy to prove «
satisfies the condition (x). We leave it for the reader. Now we assume that j is in the chain
of Q.. With the same notation as in Construction , let B = (1 620s...c, with 1 € [.

First, we have to check « satisfies the condition (%;). By the assumption of /3, there is
exactly one arrow a in the quiver of «; such that ¢(a) > s(a), where 2 < i < r. So, we have
to show all arrows a in the chain of Q, satisfying t(a) < s(a). We assume that there is an
arrow a in the chain of Q, such that s(a) < t(a). If t(a) # j, then this arrow will be in
either 81 or (B2, which contradicts with the assumption of 5. If t(a) = j, then we get (5

Q613 k+1 > g > - > 1
and [
Q52: { > k >

Since k > j > i, so (f1, B2) does not satisfy the second condition in the condition (*). Hence,
we have t(a) < s(a) for each arrow a in the chain of Q, and there is exactly one arrow b in
each loop of Q, such that s(b) < ¢(b).

Now, we are going to prove that « satisfies the condition (). The problem pair is
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(a1, ), 2 <7 < r. By assumption, ; contains the smallest element 1 and /3, contains the
element k. Hence, by Construction [2.2.8] and Lemma [2.5.8 we know that any element in
f1 is smaller than any element in ;. Since [ satisfies condition (%), so for any cycle o,

2 < i < r, there are three possible cases

e «; is "contained” in i, i.e. if we pick an arbitrary element m in (i, then we have

m > n for any n in a; or m < n for any n in «ay;

e «; is "contained” in s, i.e. if we pick an arbitrary element m in [, then we have

m > n for any n in o; or m < n for any n in ay;

e «; is between (5 and (5, i.e. any element in «; is larger than any element in ; and

smaller than any element in fs.

In the first case, if «; is "contained” in 3, then any element in 35 is larger than any element
in «;, because the element in 35 is always larger than the element in 8;. By the construction
of aq, the condition is true for (o, ;). The same argument holds for the second case. For
the third case, $; and (5 are constructed from a; by cutting the arrow with target j and

add another element k. Hence, «; is ”contained” in «y. Hence, « satisfies the condition (2)

of (*). O

2.6 Non-crossing Sequence

In this section, we prove that there is a bijective map between non-crossing sequences and
ordinary summations.

In the previous section, we define the non-crossing permutation (Definition . The
condition (x) corresponds to the non-crossing partition [36]. In [28], Mingo and Nica define
the non-crosing permutation. The non-crossing permutation in this paper is a little different
from theirs but with similar idea. The following construction about the non-crossing sequence
and Theorem gave the idea for the definition of a non-crossing permutation (Definition

2.5.9) in this paper.

Construction 2.6.1 (Non-crossing Sequence). Given a positive integer n, we fiz a standard

sequence of n integers as follows
n n—1 .. 2 1.

We insert r pairs of brackets into this sequence satisfying the following condition (xx)
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e any integer is contained in at least one pair of brackets and any pair of brackets contains

at least one integer,

e there can be at most one left bracket and at most one right bracket between two succes-

sive integers.
We call the standard sequence with brackets satisfying (%) a non-crossing sequence.
Now we use some examples to explain these conditions.

Example 2.6.2. We consider the following three examples

(4 3 (2) )
4 3 2 M)

The first one does not satisfy the first condition, since 3 and 2 are not contained in any pair
of brackets. The second one does not satisfy the second condition, since there are two right

brackets between 2 and 1. The third one satisfies (xx).
By the second point of the condition (%), we can only have at most one left (right)
between two successive integers. So, we use the following notation for the non-crossing

sequence
OnA On—1A ... O1A

where [ is the place for left bracket and A is for right bracket. Each [J or A contains at
most one bracket.

Before we construct the relation between permutations and the non-crossing sequences,
we want to give an order to the r pairs of brackets. We order the r right brackets as follows:
the right most right bracket is )1, the next right most right bracket is )s, etc. The order of
the left brackets is the same as the corresponding right brackets. For example, let’s consider

the following non-crossing sequence with three paris of brackets

We first order the right brackets



The order of the left brackets are the same as its corresponding right brackets. We have

(2 4 (3 3 )3 2 )2 (1 1 ).

Given two positive integers n, r such that n > r, we define three sets Pmt(n,r), Brk(n,r)

and OS(n,r) as follows.

Definition 2.6.3. Pmt(n,r) is the set of non-crossing permutations in S, (see Definition
with r disjoint cycles. Brk(n,r) is the set of all non-crossing sequences with r pairs
of brackets (see Construction . OS(n,r) is the set of all ordinary summations of type

(r,n —r+1) (see Definition .

We want to remind the reader that we always insert brackets into the following sequence
n n—1 .. 2 1.

Theorem 2.6.4. Given two positive integers n,r such that n > r, there is a bijective map
Onr between Brk(n,r) and Pmt(n,r).

Proof. We want to construct a map
Gnyr : Brk(n,r) — Pmt(n,r)

and show that this map is bijective.

First we will construct a permutation o € .S,, with r cycles from a non-crossing sequence
in Brk(n,r). Given a non-crossing sequence in Brk(n,r), we start with the r-th pair of
brackets

(o

By construction, the integers in this pair of brackets are not contained in any other pair
of brackets, because r is the largest. Define ;. as the cycle with integers from this pair of
brackets. Then, we delete this pair of brackets and the enclosed integers. We choose the

next pair of brackets

from the remaining sequence and uses it to define another cycle a,._;. Repeating this process,
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we get a unique permutation « in S, with disjoint cycles «,., ..., ;. Now we have to prove
that « satisfies the condition (*) so that the image of ¢, , is in Pmit(n,r). In Construction

2.6.1] we first fix the base sequence
n n—1 ... 2 1.

So, the quiver of any cycle «, only contains one arrow a such that s(a) > t(a). Hence,
« satisfies the condition (*;). The condition (k) comes from the property of non-crossing

sequence. Consider the following example

There are only two relations between two pairs of brackets: ”ordered” or ”contained”. (3 )3
is contained in (; )y and (3 )9, (1 )1 are ordered. This property is exactly the condition
(*2). In this way, we see that the image of ¢, , is in Pmt(n,r). Clearly, it is injective.

Now we are going to prove the map ¢, , is surjective on Pmt(n,r). For the base case
n = 1, the only permutation (1) € S; corresponds uniquely to the following non-crossing

sequence

i 1 ).

We use induction on n and assume that ¢;_; , is surjective for any positive integer r, r < k—1.
We will show that ¢y, is surjective for any r. If 5 € Sy satisfies the condition (x), we know
that [3] = [a, j] where j is zero or is contained in the chain of Qg and « satisfies the condition
(%) by the proof of Theorem . By induction, a corresponds to a unique sequence with

brackets as following
(n k=1 .. v+1 )G v .. 1 )y,

where m is some positive integer, m <r — 1. If m =1, then v =k — 1.
If j =0, then o € Pmt(k — 1,r). In Construction [2.2.8] we construct the sequence with

brackets corresponding to [ as

Here, we add another integer k to the sequence and move the bracket (; to the left side of k.

36



If j # 0, then @ € Pmt(k — 1,7 — 1). In Construction [2.2.8, to construct /5, where
B = |a, j], we cut the arrow a : ¢ — j in the chain of Q.. First, let’s focus on the first pair

of brackets (; v ... 1 ); more precisely,

(51 k—1 .. )81 (sg .. v+1 )52 (1 v 1 (53 )53 ] V| )1,

where s1, $9, s3 are the order of the pairs of brackets (if they exist). We construct the following

sequence with bracket, which corresponds to [,

( k (81+1 k—1 .. )81+1 (82+1 ..o v+1 >52+1 Voo 1 )
(s - Jss G J o 1 ).

This non-crossing sequence has one more pair of brackets (the unlabelled pair of brackets
above) than «, because  has one more disjoint cycle than « by Construction [2.2.8] In fact,
this non-crossing sequence maps to 8 under the map ¢y ,. In conclusion, ¢y, is surjective.

Combining with the first part of the proof, ¢y, is bijective. m
The following example will help the reader understand the proof above.

Example 2.6.5. Consider the following non-crossing sequence
(4)(321) .

By the construction of ¢4 in the proof of Theorem it corresponds to the element
o = (4)(321) in Sy which satisfies the condition (). Qq is

) 5 3 2 1 D

Q(4)(321) :

~
~
~

Now, consider the quiver

; : 5 3 2 y 1, D

Qa2 © 6

2\
2\
2\

Clearly, it is Qg,, where [81] = [a,0], i.e. B = (4)(5321). The corresponding non-crossing
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sequence of By is
(5(4)321),

which is the case when j = 0. Next, we consider another quiver

) 6 3 2 1 D

Q)(a)321) -

2\
2\
2\

which corresponds to P, where [Ba] = [a, 3]. By calculation, By = (5)(4)(321). The corre-

sponding non-crossing sequence s

(5)(4)(321),

which is the case 7 # 0 we discuss above.

Now we want to give some definitions about pairs of brackets.

Definition 2.6.6. Given any non-crossing sequence in Brk(n,r), (; ... ); is of top-level
if this pair of brackets is not contained in any other pair of brackets. (; ... ); is embedded
if (i ... )i is not top-level. (; ... ); is of bottom-level if there is no embedded pair of

brackets in it. Two pairs of brackets are adjacent if there are no positive integers between

these two pairs of brackets.

Example 2.6.7. Let a = (531)(2)(4)(6), then the corresponding non-crossing sequence is

(4 6 )ai 5 (3 4 )3 3 (2 2 )2 1 )

(4 6 )4 is both of bottom-level and top-level. (3 4 )3 and (2 2 )2 are embedded and of
bottom-level. (3 4 )3 and (2 2 )o are not adjacent, because 3 is between them. Finally,

(1 ... )i and (4 ... )4 are adjacent.

Remark 2.6.8. Theorem|2.5.1() tells us that there is a bijective map between the non-crossing
permutations and the ordinary summations. Theorem tells us that there is a bijective
map between the non-crossing permutations and the non-crossing sequences. In Section 2.8,

we calculate the number of non-crossing sequences, which is exactly the answer to Question

244
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2.7 Dual Non-crossing Sequence

In Construction [2.6.1, we construct the non-crossing sequence with r pairs of brackets. In
this section, we construct the dual non-crossing sequence and prove that the number of

(r, s)-type OS is the same as the number of (s, r)-type OS.

Construction 2.7.1. Consider the following non-crossing sequence

(il )i1 (is )isa

where all pairs of brackets are top-leveled. There may be some embedded brackets in them.

For each integer k in this sequence, there are at most four brackets "adjacent” to it,
E+1 A OkA O k-1,

the right bracket of k + 1, the left bracket of k — 1 and the two brackets of k. There are 16
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possibilities in these four positions. The following construction discuss these possibilities.

AUOEAD AOkAO
1 k )(F)(
2 k) )(F)
3 (K (k)(
4 K )(K(
5 )k )F)(
6 () (k)
7 ) L
8 (k( (k(
9 )k) )k)
10 )(k k)(
11 k)( )(k
12 )(k) k)
13 (k)( (k
14 ) (k( k(
15 ) (k( ko
16 )(k)( k

The second column is all of the possible cases in the original non-crossing sequence, the third
column is what we will get in the dual non-crossing sequence.

Given a non-crossing, we do the operations for all integers in the sequence simultaneously
to get the dual sequence. It is easy to check that all operations are compatible with each other.
We claim that the dual sequence we get is a non-crossing sequence, which we call the dual
NON-CTrossing Sequence.

To prove that the dual sequence is a non-crossing sequence under the operations, we only
have to check the dual sequence satisfies the first point of the condition (xx) in Construction
2.6.1, i.e. every integer in the dual sequence is contained in some pair of brackets. We leave

it as an exercise for the reader to check.
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From the construction, we see that the operations are dual in the following way

1<16,2< 12,3 13,4 14,5 & 15,
66778289910« 11.

Hence, given a non-crossing sequence, the dual of its dual non-crossing sequence is itself. It
is also easy to check that given any non-crossing sequence in Brk(n, ), its dual non-crossing

sequence is in Brk(n,n —r + 1).

Example 2.7.2. Here is an example of Construction |2.7.1,.
Let oo = (721)(65)(4)(3) € Pmit(7,4). The corresponding sequence is

G 7 (65 ) (G 4) (3 ) 21 ).
We see that

7 is of type 8,
6 s of type 3,
5 s of type 11,
4 1s of type 16,
3 is of type 12,
2 1s of type 5,
1 s of type 2.

So, the dual sequence is

67 (6 ) (25 43 )2 2 )3 (1 ),

which corresponds to the permutation (72)(6)(543)(1).

Now, we are ready to prove the number of (r, s)-type OS in : tr(D") : is the same as the

number of (s,r)-type OS in : tr(D™) :, where r + s — 1 = n.

Corollary 2.7.3. Given two positive integers n,r, we have
|0S(n,r)| =|0S(n,n—1r+1)|.
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Proof. By Theorem [2.5.10 we have
|0OS(n,r)| = |Pmt(n,r)|, |0S(n,n—r+1)|=|Pmt(n,n—r+1)|
By Theorem [2.6.4] we know
|Pmt(n,r)| = |Brk(n,r)|, |Pmt(n,n—r+1)| = |Brk(n,n—r+1)|.
By Construction [2.7.1], we have
|Brk(n,n —r+1)| = |Brk(n,r)|.
Hence,

|0S(n, )| =|0S(n,n—1r+1)|.

2.8 |Brk(n,r)|, Catalan Number and Narayana

Number

In this section, we will calculate |Brk(n,r)|, the number of non-crossing sequences with r
pairs of brackets in a sequence of length n, by using properties of the Catalan numbers and
Narayana numbers. We use this to calculate the number of ordinary summations in the
W-operator W ([n]).

We first review some properties of the Catalan numbers and Narayana numbers [34]. The

e
C, (n) . n>0. (2.8.1)

:n+1 n

Catalan number C), is

The generating function of Catalan numbers ¢(z) is

c(x) = i Cpa™,
n=0
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which satisfies the following equation
c(r) =1+ zc(z)?. (2.8.2)

Clearly, Equation ([2.8.2)) gives us two solutions for the generating function c(x). But, if we
know the initial value c;, we will get a unique solution. If ¢;=1, then ¢(x) is exactly of the
generating function of Catalan numbers C,,.

The Narayana number N (n,r) is

N(n, 7,) — nL-i—l(n—rH) (::1)70 S r S n

0, otherwise .

The generating function of Narayana numbers is

n(x,y) = Z N(n,r)z"y". (2.8.3)

n,r>0

The Narayana number N (n,r) satisfies the following condition

Z N(n,r) = C,,
r=1
l.e.
n(a,y) = 1+ nlz,y)%.
Clearly, we have
c(x) =n(x,1).

We define a new set B\ﬁ{;(n, ), which contains all sequences in Brk(n,r) with only one
top-level pair of brackets. It means that any element in Brk(n,r) can be written in the

following form

(1 )1,

where (; ... ) is the only top-level pair of brackets. Denote by a! the number of elements
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in B—ﬁ{;(n, r). Also, we introduce the following notation

Brk(n,r)| ,1<r<n _  [|Brk(n,r)| ,1<r<n

a, = a,n s
0 , otherwise. 0 , otherwise.

Lemma 2.8.1. Given any positive integers n,r, n > r > 1, we have a;, | = aj,.

Proof. We are going to construct a bijection between E\fk(n +1,7) and Brk(n,r). Take an
element in B—ﬁ{:(n + 1,7). It has only one top-level pair of brackets. So, the integer n + 1
does not have right bracket and 1 does not have left bracket. The sequence in éﬁc(n +1,7)

can be written in the following two cases

1.

G n+l G Do G i v 11,

(1 n+1 v .. (jl )jl (jk )jk | )1 s
where the integer v is the largest integer smaller than n 4+ 1 in the top-level pair of
brackets, i.e., not contained in any embedded brackets. In the second case, v = n.
We construct the sequence in Brk(n,r) as follows

1.

Indeed, we get rid of the integer n + 1 and move the bracket (; to the left side of
the next integer not contained in any other pair of brackets. This gives a well defined

element in Brk(n,r).

Now let’s consider how to construct elements in B\T/k(n%— 1,7) from elements in Brk(n,r).

In the proof of Theorem [2.6.4) we already gave the construction. Given an element in
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Brk(n,r), we assume it in the following form

(jl n o ... w )Jl (1 v 1 )1,
where (;, n .. w )j is the leftmost top-leveled pair of brackets. Now we give the
construction as follow
G n+1 (G, n .. w ); v .. 1 ).

Indeed, if we consider the element in Brk(n,r) corresponding to the permutation « € S,,,
then the sequence we construct corresponds to the permutation 5 € S,41, where 8 = [, 0].
It is easy to check that the above construction gives a one-to-one correspondence between
Brk(n,r) and Brk(n + 1,r). Hence, ap ., = ap. O

Theorem 2.8.2. The number of (r,n —r + 1)-type OS in W ([n]) is the Narayana number:

ostnt =5 (") (10)

The number of all summations with degree n+ 1 in W([n]) is the Catalan number

il n+1\(n—-1\ 1 (2n
—~n+l r r—1) n+1\n/)

Proof. Any element in Brk(n,r) can be written as

(il )il (is )is7

where the pairs of brackets (;; );;, 1 < j < s, are top-level. By construction, any integer

k, 1 <k < n, is contained in a unique top-level pair of brackets. Of course, (;, );, can be

ij
considered as a non-crossing sequence with a unique top-level pair of brackets. Let n; and
t; be the number of integers, respectively the number of pairs of brackets in (;, );;. Hence,

we have

r
ro__ ~11 ~ts
Gn = E E am...ans.

s=1

ni+...+tns=n
t1+4..+tszr
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By Lemma [2.8.1, we know a;,; = a;,. So, we have

a;:i > oal gl (2.8.4)

s=1 ni+...+ns=n
t1+...+ts=r

Now we consider the generating function

n,r>0
By (2.8.4), we have
> Glx,y)°a* = G(x,y),
s=1
= ! G(z,y)
=G(z
1—-G(z,y)x 4

= G(r,y) =1+ G(z,y),
which is the generating function of Narayana numbers. If we set y = 1, we have
Gr,1) =1+ Gla, 1),

which is the generating function for Catalan number C,,. But, the generating function is not
enough to determine the value of a’. We also have to check the initial value aj. Clearly,
al = 1, which equals to the first Catalan number C;. By the property of Catalan number

and Narayama number we stated at the beginning of this section, we have

n

1 2n
Yoot =il

r=1

, 1 n+1 n—1
a, = :
" n+l\n+l-r)\r—1

46



2.9 A Formula about W ([d])

Recall that ® : CS,, — C|[py, pa, ...] is the linear map defined as follows

q)(g) =P

where g is a permutation in S, of type A = (A1, ..., \py) and py = py,...pa,,. The variable py,
is the trace of the infinite matrix X*. The reader can also take p; as independent variables.

Also, if A is a partition, K, = > o is a central element in the group ring CS,,. As a

ocESn
o is of type
special example, Kjn-agy is the sum of all d-cycles in S,,.
In this section, we will prove the following formula about W ([d]). The applications of

W ([d]) to the Hurwitz number in the next chapter are based on this formula.

Theorem 2.9.1. For any g € CS,,,
(K an-agg) = W([d]) 2 (9), (2.9.1)

where Kn-ag) is the central element in CS,, corresponding to the partition (17=4d).

This theorem was known for d = 2, see [11]. We will use quivers to prove this theorem.

Definitions about quivers can be found in Section 2.2.

Definition 2.9.2. Denote by FQ the set of all quivers (V, A, s,t) with finite vertex set
{1,...,n} for some positive integer n and finitely many arrows.

Denote by M the set of all monomials with variables X;;, 1 <1,j < oo.

Definition 2.9.3. Let Q = (V, A, s,t) € FQ. We define the map f : FQ — M by 5(Q) =
Mg, where Mg = [[,ca Xs@)t(a)-

Also, given any monomial M = H2:1 = Xijns
Qu as Qu = (Var, Angy s, t), where Vi = {1,...,n},n = max{ig, jr,1 < k <1} and Ay =
{ag 1 ix — jr, 1 < k <1},

we can define the corresponding quiver

Construction 2.9.4. Given o € S, let Qo = ®,(a) be the quiver corresponding to «
(See Definition . Gwen two vertices ay,ay € Qn, we construct a new quiver denoted

Dy, a,)Qa by replacing the unique arrow as — b by a; — b. So we get a new quiver denoted
1a2

by (Dayay)Qa- More generally, if ay, ..., aq are distinct vertices (or integers) of Qa, we replace

the arrows a; — b; with a;_1 — b; simultaneously, 2 < i < k + 1, axy1 = a;. Denote by
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(Hf:1 Dasarir)Qa the new quiver. We introduce the notation (similar to Notation|2.1.10) as

follows

d
D(ah---ad) = H Daiai+17
=1

where (ay, ..., aq) is an n-tuple of positive integers and aqy1 = ay.

Remark 2.9.5. Given a d-tuple of positive integers (a,...,aq), the quiver D(a1 ..... ag)@a 18
obtained by doing the replacement operations simultaneously instead of consecutively, by com-
position of operations. For example, let o = (123) and D(1,273) = D19Dy3D3y. If we do the

operations simultaneously, the new quiver is

This quiver has two arrows with source 3. In this case, Dog cannot act on this quiver by
Construction|2.9.4. This is the reason why we want to do all the operations simultaneously,

otherwise, we don’t know in general which arrow to replace.

The new quiver Dy,,, Q. may not be of the form ®,(3), i.e not represent a well defined
element (3 in the permutation group S,, under this operation. However, we have the following

lemma.

Lemma 2.9.6. Let a € S,, and Q. = ¥, («) is the corresponding quiver. Given d distinct

positive integers ay, ..., aq, then D, . .,)Qa Tepresents a permutation in S,.

Proof. In the construction, this procedure only changes the source of each arrow and fixes
the target. Therefore, we pick d arrows such that their sources are aq, ..., aq respectively. By
the construction, substitute the source a; by a;11, where © < d — 1 and a; by ag4, and get a
new quiver (D(a1,...,a 2))Qa- Clearly, this quiver still represents for an element in S, because

each integer k (k < n) appears once as a target and once as a source. ]

Remark 2.9.7. From the proof of the lemma, we have Qo = (D(%m,ad))Qa, where o/ =

(a1 as ... CLd)O(.
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Now, consider the monomial 5(®,((12...n))) = X12Xos3...X,,1 which is a term in tr(X").

We use the permutation (12...n) to represent this monomial or the quiver

1 > 2 b —— .
We use Dy (refer to Definition [2.1.4)) acting on this term, then we get
D21X12X23...Xn1 — X22X23...Xn1.

The new term X5, X53...X,,; can be represented by a quiver

\2&3—>~-—>1.

In this way, if we use quivers to represent the monomials, then D,,,, acting on monomials
is the same as Dam acting on the corresponding quivers. Hence, if Dg 4,...Dg a, X 1S a
nonzero monomial, then it can be represented by a permutation by Remark [2.9.7, With the

discussion above, we have the following lemma.

Lemma 2.9.8. Let a € S,,. Q, is the corresponding quiver and M, is the corresponding
monomial. We have 3(DQ.) = DM,, where D = Day,...a

(a1, ...,aq) is an d-tuple of positive integers.

)y and D = D(ah,_,,ad), where

d

Definition 2.9.9. Given a monomial X € C[X11, X1, ..., X292, ...] and a (formal) differential
operator D. If DX # 0, then we say D is a non-trivial operator (with respect to X ).

In this section, we concentrate on the differential operator D = Dy, .. a,)-

Definition 2.9.10. Let T' = {t;,1 < i} be a set of variables, define M, is the set of all
monomials with variables Xi.,1,7 > 1. Given an infinite sequence of positive integers

a = (ai,as,...), define the evaluation map ev, : M; — M,
eva(Xtitj) - Xa,-aj-

If My is a monomial in My, we define My(ay, ay,...) = evy(M;).
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Similar to|2.1.10, we introduce the following notation,

n—1
X(t17~--,tn) = (H Xtiti+1> thtu

i=1

n—1
D(tl,..‘,tn) = <H DtitiH) Dtntl c.

i=1
Finally, we define Wy([d]) = % : Tr((Dy, )ij>1)"
We are ready to prove Theorem [2.9.1]

Proof of Theorem [2.9.1. Let g € S,,. We can write it in disjoint cycles

g=(c1 ... cx)(Crr41 - Cryang) oo (Cnmrps1 - Cn)y

where A is the partition corresponding to g, A = (A, ..., Ap)-
W([d]) is an infinite sum of operators Dy, . ;,), b; are positive integers, (see Definition
2.1.10) and ®(g) = [[%, p», is an infinite sum of monomials in the form

M(al,...,an) :X( )...X(

A1,-.,a ¢ anfkm#»lv"'van)'

Given any monomial M, most of the operators Dy, 5, in W([d]) will act by zero. Hence,

77777

W ([d])M is a finite sum of monomials. To analyze these monomials, we first consider the
generic case M;. Then, we go back to M as the evaluation of M,

M(al, ceey an) - €Ua(Mt)7

where a = (ay, ..., a,) is an n-tuple of positive integers.

We replace W ([d]) by Wi([d]) (see Definition [2.9.10)) and g by g, where

g - (t]_ t)\l)(t)\l_;’_]_ t/\1+)\2) (tn_)\m+1 tn>

We consider a special case M; = X(t17---7t/\1)"'X(tn—km-ﬁ-ly---ytn)' In this case, we prefer to use the

notation M,, for M;. Now we will calculate W;([d])M,;. By Remark and Lemma [2.9.8]

let iy, ..., 14 be distinct integers in {1,...,n}, we have

D(tilytigy---ytid)Mgt = Mo'tgtJ
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where o, is the d-cycle (t;,....t;,) € SL = Aut{t,...,t,}. Since Dyt
and only if i; € {1,...,n},1 < j < d, we have

Z D(til,...,tid)Mgt =d Z Matgt-

(i15-%g)s ot d-cycle in S,
ije{l ,,,,, n} and distinct

M,

4 1s nonzero if

Here we understand there are d d-tuples (iy,...,i4) giving rise to the same d-cycle. Hence,

we have a coefficient at the right side of the above equation. We have the following formula

1
Willd)My =5 D Dy Ma

(41 50ees iq)
e{1,..., n} and distinct

- Z Mo,

ot d-cycle in St

Now we want to show for any d-tuple (ay,...,aq) (with maybe some a; not distinct), we

have
W([d)My,(ar,.yan) = D> Mgg(ar, ... a). (2.9.2)
ot d-cycle in S,

We note that for any n-tuple (aq, ..., a,), the right hand side of is always a sum
of é(g)d! monomials, each of which corresponds an unique element in S!, where S! =
Aut{ty,...,t,}. But the left hand side is complicated. We hope that for any n-tuple
(a1, ...,a,), the left hand side is a sum of é(g) d! monomials. We can find (Z) d! nontriv-
ial operators in W ([d]) with respect to My, (ay, ...a,). (Recall in the definition of W ([d]), we
have a coefficient %.) But the left hand side is not easy if the a; are not distinct. Indeed, if
a; are not distinct, there are fewer nontrivial operators D, . q,,) in W([d]) with respect to
My, (aq, ...a,) than that in Wy(|d]) with respect to M,,.

For example, consider

..,aid

M = X(t17t27t3) = ththtththtl-

There are 6 nontrivial differential operators D, . +.) in Wi([3]) with respect to M,

where (i1,19,13) is any 3-tuples such that iq,1s,i3 € {1,2,3} and distinct. However, if we

i9 7ti3

substitute a; = as = 1, a3 = 2, we get only 3 nontrivial operators in W ([3]) with respect to
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X(1,1,2)- They are D119y, D1,2,1), D(2,1,1)- In this case, we have to check whether we can get
enough monomials on the left hand side of the equation.

Before we discuss different cases, we first focus on some basic calculations. The number
of d-cycles in S, is L—li(;”) d!. Given a monomial M, of degree n, the number of non-trivial
operators D
Dy
with integers (¢;,...t;,). But, a d-cycle corresponds to d d-tuples.

Next, we will discuss how W ([d]) acts on My, (a1, ..., a,) = X(a,.....an)-

Case 1, a; are distinct.

t;) in Wi([d]) corresponding to M,, is (7)d!. Each differential operator

til ety

iy ritiy) corresponds to a unique d-tuple (¢;,, ..., t;,), which corresponds to a unique d-cycle

In this case, each "non-trivial operator” Dy, .05 corresponds to a unique d-cycle in

S,,. But this correspondence is not injective, it is an d to 1 correspondence. For example,

: D(a1,az,a3) = D(QQ,GS,al) = D(as,alm) D

Hence, we get

W([d])M,,(aq,...an) = Z Mgy, g, (a1, ..., ay).

ot d-cycle in Sy,

The number of non-trivial operators with respect to Xy, (a1, ...a,) in W([d]) is (})d!.
Case 2, a; are not all distinct and all X, , are distinct.
First, we consider a special case that only two numbers of {a;}1<;<, are the same and we

assume that a, = a,. In this case, we consider the operator D, . 4, )
i1 Qig

L. If all a;; # a,, then each non-trivial differential operator D(ail,_”aid) with respect to
X(ay,....an) corresponds to a unique d-tuple in ¢;, which means it corresponds to a unique
element in the permutation group S,. Under this condition, there are (”;2) d! d-tuples

(@, ..., a;,) satisfying this condition and each of them corresponds to a unique d-tuple
(tiyyoestiy).

2. If only one of {a;, }1<j<q is a, and we assume a;, = a,, then each non-trivial differential

operator D(ai1 i) corresponds to two elements in the permutation group S,. Indeed,
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we have

Xajag-Xapay =D Xojag-Xapa, =

iy, 1 Qi Qg1 ap
0
- ZXaik—ﬂ:aX Xa1a2"'Xana1 -
e>1 apc
9 %)
= (Xaik—lap+1 00X — + Xaik—laq+1a)(— Xalag---Xana1~
aplp+1 apaq+1

The last equality holds because only these two terms in Dy,

_a, act non-trivially on

X(ay,....an) With our assumptions a, = aj.

Compared with (Z;,...,t;,), the differential operator D a;,) now actually corre-

@ip5enes

sponds to two d-tuples. They are

(tiy, s i oy tigys e tiy),
(ti,, S FHNTE 2 A o tiy)

In this case, D,

Sh.

Qi eonstiy) corresponds to two different elements in the permutation group

n—2
d—1

and each of them corresponds to two d-tuples in S,,.

Under this condition, there are %( ) (f) d-tuples (a;,, ..., a;,) satisfying this condition

3. If two of {a;, }1<j<q are a, and we assume they are a;, = a;, = a,, then each non-trivial

differential operator D¢ Laiy) corresponds to two elements in the permutation group

ail goo

S,. Indeed, we have

t Xayag--Xapa, = t Xayag--Xapa -

iy g Fip 7 Qig g Qi Gip_1Ap~~ Qig_ 4 Ap

Since we only care about the non-trivial terms, we have to calculate the differential

operators : Da’ilflapDaikflap : with differential part

82
0X,

Aqaq+1

0X,

aplp+1
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By definition, we know

0
Daizﬂal’ - Z XaiquaX—’

c>1 ap¢
0
Daik—lap - ZXaik—1daX d.
d>1 ap

So, we have

f Xayag-Xapa, =
0 0

aililap aikilap

(3" Xu, X, ) Xarag e Xanay =
i1 ¢ iy d aiaz---<*anay
P 0X,y 0X 40
(X 0 0
—\DNa;, a ai, .a
i ot 8‘)(az>ap+1 aX“paq+1
0 0
+Xail Gg+1<3 4y 4 Apt1 )Xa1a2"'Xana1'
- - 8)(apa<1+1 aX‘lpap+1

The last equality holds because all X,,,; are distinct by the assumption of Case 2.

Hence ag+1 # api1.

Compared with (t;,...,t;,), the differential operator D a;,) corresponds to two

Qiqyeeey

d-tuples. They are

(Tiyy s igs ooos tiys wos tiy)s
(Tiyseos biys eoer Ligs woes L)

Hence,in this case, D(y,,..q;,) corresponds to two different elements in the permutation

ig)

group S?.

Under this condition, there are %(Z:S) d! d-tuples (a,, ..., a;,) satisfying this condition

and each of them corresponds to two d-tuples in St.

Hence, in this special case, the number of d-tuples in S’ corresponding to the nontrivial

differential operators with respect to the monomial X(,, . 4,) i8
n—2 1/n—2)\/2 1/n—2 n
l4+2 % = '4+2 % = I = l.
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By the discussion above, each tuple is counted for d times. Hence, in this case, we have

dx W([(d))Mg, (a1, .an) =dx Y My (a...,a).

o d-cycle in S},

For the general case of s integers aj, = a;, = ... = a;, but X,,,,,, all distinct, the same
argument proves what we want. We leave it to the reader to check this.

Case 3, a; are not all distinct, and some X,,,,, , are the same.

Qj+1
We still consider a special case that only two terms in X, . 4,) are the same. We
= X,

assume X, GqGqi1?

where p # g and p + 1, ¢ + 1 means the addition mod n. Under

Apap+1

this condition, we consider some examples. First, we have a, = a, and a,; = a441 and the

other a; are distinct. Some examples are

X11X117p = 17q = 27
X120 X901 X190 X93X31,p = 1,0 = 3.

These are cases we want to study.

Of course, there are other examples. For instance,
X11X11 X12X01.

In this example, we have X7 and another term X5, which means there are some other a;
such that a; = a,. To solve this type of question, it is a combination of Case 2 and Case

3. We will not discuss it here.

n

Now, let’s consider the problem that only two terms in X(,, . 4,) are the same

Xapap_H = Xaqaq+17 Qp = Qg, Ap41 = Qg4+1, P 7£ q,
and the other a; are distinct. In this case, we still consider the operator D(ail,.n,aid)'

1. If all a;; # ap, then D, 4, ) corresponds to a unique element in the permutation
group.
Under this condition, although a;; # a,, a;; could be a,,1. By our assumptions that
only two terms in X(,, . 4,) are the same, hence there are (”;2) d! d-tuples (aj,, ..., ai,)
satisfying this condition and each of them corresponds to a unique d-tuple in S’ by

the conclusion of Case 2.
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2. Only one integer in {a;, }1<j<a is ay, say a;, = a,.

First, assume all a;; are not a,,;. Then, we have

aik_laikX(ah...,an) = Da,-k_laanlag---Xanal =

0
:<Z Xai,cflcaX—)Xawz---Xana:l =

c>1
:(Xai api1 0 )
Pt aX@pazH—l
~ _)x
aikilapﬁ»l aXa “ a,pap+1-...
pUp+1

Xoray - KXaya, =

=X

X(fpapH in the monomial X(,, . ..). Hence, we will get two (same) monomials at last.

The last equality holds because we have X, We note there is a square

pdp+1 AqQq+1*

Compared with (¢

iy s tiy), this differential operator D(q,,,...a;,) corresponds to two

d-tuples in S’. They are

(ti;, v b5ty ti s e tiy),
(tiy, v bi by Ly o tiy).

Hence, each differential operator in this type corresponds to two different elements in

the permutation group S%.

Similarly, if some a;; are a,,1, then the conclusion follows by the combination of the
above argument and the argument in Case 2. (If it contains both a, and a,, then it

corresponds to 4 permutations.)
We conclude all non-trivial differential operators D(ail,...,aid) in the case correspond to

() (i) s n

3. Two of the integers a;;,1 < j < d are a, and we assume they are a;, = a;, = a,.
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Similarly, assume all a;; are not a,,;. We have

: D D s XajasXana

@iy g Qi 7 Qi g Qi

o Xavar X
. . 2
= Du. ayDa 0y X,

Gip_q Op k—1 apap+1°"°

= Dail_lapDai

0 0
= Xoy o Xa, da=—— X2
( Z -1 Zk_ldaXapc aXapd) ApAp41

c,d>1
82
=(X, X X2
i1 Gp+17 " Qg 1 Ap+1 52 ApQp41 """
Xy

Note we have a square X7 , . Hence, we will get two (equal) monomials.

Compared with (t;,,...,%;,), this differential operator D a;,) corresponds to two

Qi 5eeey

d-tuples. They are

(Tiyseos bigs woos tigs wos tiy)s
(Fiyyeerbiyy ooy by ooy Tiy).

Hence, D(ail,.‘.,aid) corresponds to two different elements in the permutation group S.

Similarly, if some a;; are a,,1, then the conclusion follows by the combination of the
above argument and Case 2. (If it contains both a, and a,, then it corresponds to 4

permutations.)

We conclude all non-trivial differential operators D(ail,...,aid) in the case correspond to
(Z:g)d! d-tuples in t;.

By the discussion above, this correspondence is unique. Hence, in this case, we have

dx W([d)Mg,(a1,..an) =d x Y M(a,..a).

o d-cycle in St

For the general case that there are k same factors in X, 4,...X4,4,, the same argument
proves what we want. We leave it to the reader to check.
Combining the above three cases, we get the following formula by summing over all

monomials My, (a1, ..., an) = X(a;,...an) of (g),

O(Kyn-tqg) = W([d])®(g).
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2.10 Another Definition of W ([d])

In this section, we will consider W ([n]) as a differential operator on the ring C[py, po,...] or
Cl[p1, p2, ---]] by Theorem m

2.10.1 Definition of Ay

Consider the cut-and-join operator A [I1],

ZZ mea I, (Z+])pzpyaa ). (2.10.1)

i>1 j>1 Di+j

We have the following proposition.

Proposition 2.10.1. For any g € CS,,,
(K yn-299) = AP(g).

Proof. Goulden proves this in [I1] Prop 3.1. O

Definition 2.10.2. For any permutation 6 € Sy, write § = dy...0,,, which is the decomposi-
tion of 0 into disjoint cycles. For a positive integer N < d, say N € &; if 0;(N) # N. Fix d

positive integers a;, where 1 < j < d. Define ps(ay, ..., aq) to be the monomial

p a’17"'7 szje(; a;:*

Similarly, deﬁne (al, ., aq) to be the operator on C[[py, pa, -..|],

0 ——(a,..aq) = [J(O_ aj)aL).

8p6 i=1  j€Eb; pZ]’E(Si aj

If we fix positive integers d and ay,...,aq, we abbreviate ps(ay, ..., aq) by ps and 8%6(@1, ey Gg)

o)
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Example 2.10.3. Let 6 = (123)(4) € Sy, then we have

p5(a17 D) CL4) = Pai+az+azPay>

82
—\ay,...,a4) = a; + ag + as)ay .
apé( ) ( ) apa1+a2+agapa4

Remark 2.10.4. Given § € Sd, we consider ps as a map from 72 to Clp1,pa,...] and 6%;

as a map from 74 to C[apl, B3 ...]. Generally, we can introduce variables t; and we write

ps and a—ﬁé i the following form similar to Definition

tl,..., sz]€§ tis
i(t H Zt
aﬁé 17...,

i=1  jes; pz]es

Definition 2.10.5. Consider the d-cycle (d ... 2 1) in Sy. We define the bijective map ¢q
of Sq as

¢a(6) =(d ... 1)s, €S,

If we fix d, we will use ¢ to represent this map.

Definition 2.10.6. We define the differential operator Aq on the polynomial ring Clpy, pa, ...]

as

! . 9
- C_ZZ Z p¢(5)(a17"';ad)aﬁé(al,...,a,d).

0S4 a1,...,aq>1

Remark 2.10.7. The construction depends on the map ¢q(c) = (d ... 1)o, where (d ... 1)
is the d-cycle. Actually, we can take any d-cycle in Sy to substitute (d...1) to define the
map, which will give the same operator Ay. We will obtain this property in the proof of the

theorem in this section.

Example 2.10.8.

0
Z Z pl+] a a (2 + j>plpj a )

i>1 j>1 Di+j
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where the first part corresponds to (1)(2) € Sy and the second part corresponds to (12) € Ss.
Clearly, Aq is the cut-and-join operator A (2.10.1)).

1 ok
Ay = - 10203Diy+is+is 3 A 1)(2)(3
3 3 ' Z (2122Z3p 1+22+ Bapilapbapig + ( )( )( )
11,012,131
o 0?
Fi1(i2 + i3)Pi +isDis Bpr O (1)(23)
71 12+13
o 0?
+ig (i1 + 93)Diy +isDis W+ (2)(13)
12 11+13
o 0?
+i3(i1 + i2)Pis+inDiy W+ (3)(12)
13 11+12
o 0
+(i1 + iz + 93)Piy Pia i 8p—+ (123)
i1+1i2+13
o 0
(i1 + iz + 93)Diy iy tis ﬁ> (132).
11T1%27T13

where the third column is the permutation, which the summation corresponds to.

Definition 2.10.9. Let n and d be positive integers, d < n. C,, 4 is the set of all d-cycles in
S, and C’md is the set of all d-tuples |ay, ..., aq] with positive integers a; such that 1 < a; <n
and a; # a; if i # j.

Next, we define a map m, 4 : C’n’d — Cp.q such that

Tna([ar, ..., aq)) = (a1 ... ag).

Clearly, this map s d-to-1.
Given an d-tuple ¢ € C’md and a permutation g € S, we define the action of C’n,d on S,

as follows,
g = Tna(0)g.

Define CC,, 4 = @[ah,_,ad]ecn’d@[al, ...,aq) as the vector space with basis the elements of Ch,. 4,
define the element Kynaqg € CC,, 4 as the sum of all d-tuples in C,, 4.
In this paper, given positive integers n and d, we abbreviate m, 4 by m and consider m as

a linear map from CC,, 4 to CCh 4.

We are going to use Kin-aq to show that ®(Kin-aq9) = Ag®(g).
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2.10.2 Case d=3

Given ¢ € C’n,g and g € 5, we will calculate ¢ and translate it into differential operators

and polynomials.

Construction 2.10.10. Write 6 = [j3, j2,j1]. We are going to classify elements g € S,
according to the occurrence of ji,ja, j3 in the disjoint cycles appearing in g. There are 6

cases with respect to &, one for each permutation of S3,

2. g = (j1.) G )on

Clearly, for any element g € S, it falls into one and only one case with respect to &.
Now, consider case (4) g = (jiummjommm) (jsmmm)-.., where the red dots represent the digits
after ji before js, the blue dots represent the other digits after jo before ji (since it is a cycle,
so the last element will go back to ji) and the green points represent the other digits in the
cycle of j3. We use the following steps to calculate Gg:

1. Restrict g = (jiummjommm)(Jsmm)... to the element (j1j2)(js) by forgetting all digits

except 71,792,753 but preserving the cycle structure. (7172)(j3) can be considered as an
Pt J1,]2,]3 p g ) J1J2)\J3

element in Aut{j1, j2,j3}. Let g5 = (j1J2)(J3)-
2. Calculate []5;]5;]1]96 = (j1>(j2j3)'

3. Insert all numbers forgotten by the restriction into 6gs, then we have the consequence,
09 = (Jimmm) (jommm)mm) -

Actually, this procedure works for all cases.
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Remark 2.10.11. e Let 5 = [3,2,1] and o’ = [1,3,2]. Although w(5) = m(o’) = (132),
g5 and g; are not in the same type in general. For instance, assume g = (12)(3).
Consider ¢ = [3,2,1], so that hence g5 = (j1j2)(js), which is in Case (4). Now,
consider o' = [132], so that g; = (jsj1)(j2), which is in Case (3).

o Given different 01, 02, we can get gz, = gs,. For example, if g = (321),01 = [3,2,1]
and 69 = [1,3,2], then we have g, = (321) = (213) = g5,.

Remark 2.10.12. Let g be a permutation in S,, n > 3. We consider two 3-tuples ¢ =
[1,2,3] and &' = [j3, j2, j1], J1, 72, J3 < n. Clearly, g5 € Aut{js, j2,j1} and g € Aut{l1,2,3}.
But, we want to compare the two permutations in the same permutation group Ss = Aut{1,2,3}.
Hence, we have to fix a bijective map between {1,2,3} and {js, jo, j1}. We construct the map
by sending the largest integer in {js, j2, j1} to 3, smallest one to 1 and the last one to 2. This
map will induce an isomorphism ¢ : Aut{js, jo, 71} — Aut{1,2,3}. Hence, by an abuse of
notations, gz € Sz means ¢(gs) € Ss.

Definition 2.10.13 (Reduction Permutation). We say that § is the reduction permu-
tation of (g,5) or B is the reduction permutation of g with respect to 7, if g = (3 as

discussed in Construction .

Definition 2.10.14 (Distance). Let o = (js j2 j1) be a 3-cycle in S, (or a 3-tuple 6 =
[73, J2, J1]) and o = ay...cq be any permutation in S, where aq...qq is the unique product of

disjoint cycles. The set for fized integer i, 1 <1 < 3,
{l| a'(j;) is any jr, 1 <k <3,1>1}

is nonempty, because o™ is the identity map on the set {1,...,n}, so a™(j;) = j; implies that

n! is contained in this set.

We define the "distance” between j; and the set {j1, ..., j3} with respect to the permutation

o as
dist(js, v, j1, ja, j3) = min{l | &/ (j;) is any je, 1 < k < 3,1 > 1}.

Example 2.10.15. We give some examples about the definition above. Consider Case (5)
in Construction [2.10.10

o= (jsJ2 j1), = (ji-Ja-Ja..)a2...0u,
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where oy = (Jy...Ja...J3...). dist(j3, a, J1, Ja, J3) is the "distance” between j3 and j; in the cycle
aq, because jy is the first element in {j1.72,73} after js under the action of o. Similarly,
dist(j2, v, J1, Ja, j3) is the “distance” between jo and js. Clearly, Y ...5 dist(ji, o, j1, j2, J3)
1s the length of the cycle a;. o

Now, let’s consider Case (1) in Construction[2.10.1(, Here,

o = (]1)(j2)(]3)a4041

In this case, dist(j;, «, j1, Ja, J3) is the length of the cycle containing j;.
Remark 2.10.16. o, w are permutations in S,, where w is a d-cycles (jq ... j1). Let o' = wa.
Then, we have

diSt(ji7a7j1aj27j3) = diSt(jiaalvjth)j?))a 1 S 1 S d.

This property comes from the calculation in Construction [2.10.10,

Definition 2.10.17. Given any permutation o € S, we define the map

s 3
-[a,n,3 . On,3 — Z>07

]oz,n,3<[j3aj27j1]> - <i3a 7:27 il))

where i, = dist(jx, @, j1, J2, J3), 1 < k < 3.

Definition 2.10.18. Let a be a permutation in S, and let iy be positive integers, 1 < k < 3.
Let B be a 3-cycle in S3. Define the subset 6_’573(a,i3,i2,2'1) of Cp3 as

Crslevis,ia,in) = {[a, o ] | in = dist(ju, @ jr, oo Ja) L S k <3,
B is the RP of («, [j3, j2, j1]) }-

Remark 2.10.19. Let a be a permutation in S,,. We have
6
Cns = U U Cg,z(aai3,i2,i1).
BES3 i1,i2,i3>1

Given any 3-tuple [ja, ja. 1), the “distance” dist(ji, @, ju. ..., js) and the type of (a, [ja, jo. j1])
are uniquely determined. Hence, the union above is the disjoint union. Also, there are only

finitely many nonempty sets C,, 3(cv, i3, i9,41) in the above union.
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Lemma 2.10.20. Let o be a permutation in S,, and let i1,1i2,13 be three positive integers. If

Cg,g(%%ﬂmh) is nonempty, we have

( Z s, 2, J1)a) == Po3) (i1, 12, 23)8]33 (i1, 12, 13) P ().

[j37j2,j1]€ég,3(a,i3,i2,i1)
Proof. We only give the proof when 5 = (1)(2)(3),

Gty
B D) = gy o

[j3,52.51]€Ch 5 (auis iz ,in)

The other formulas can be proved similarly.
First, we make some assumptions and define some notations. Let o be a permutation in

Sy, and let & be an element in 053(04, i3,12,11). We use the same notations for @ and & as in

Construction [2.10.10] i.e.
a = (ji...)(J2-- ) (J-- ) cu, @ = [f3, Jo, Jul-
Also, by Definition [2.10.14] we have
i, = dist(j, @, j1, J2, J3), 1<k <3.

We assume the lengths of disjoint cycles a,, 4 < v <[, are not iy, iz, i3.

By simple calculations, we have

o = (]1)(]2)(]3)p4,05 — oa = (]3]2]1)P4Pl
®(a) = pi, PiPis P (pa--.p1) — D(FQ) = Piy4igsris®(pap1)
and
83
iy tigtis P = d(ga).
Piq4in+is 8]9@1 ang apld (Oé) (O'O{)

Clearly, for any element ¢’ in C'S’g(a, i3,12,11), we have
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Hence, the differential operators should be the same, which means

83
Diy+is+is ap.
i1

m@(a) = ®(oa) = (d'a).

Now we want to find the number of elements in the set 6’573(04, i3,12,%1). Since the lengths
of the disjoint cycles py, ..., p; are not iq,14s,43, so if we want to get the same differential
operator, we only care about the cycles (j;...), (j2...), (J3...). We take one integer from each
of the three cycles. Say we take j! from the cycle (j;...). They form a unique element
(74,35, 1] € Crns. Clearly, [4, 75, 71] € 6_’573(04,2'3,2'2,2'1). There are iyi9i3 possible choices.
Hence, the number of elements in the set C_’f.ig(oz, ig,19,11) 18 i11213.

The discussion above gives the first formula

O Z s, j2, Ja]e) = i1i2i3pi1+iz+z'3M-
[73,72,51]€C}, 3(v,i3,82,i1) Opis OpiaOpig

For the general case that not all lengths of ay,...,q; are different from 41,179,173, the
construction still works. We only consider a special case that the length of a4 equal to
the length of (j;...), which is 4;. In this case, the number of elements in 6_’5’3(a,i3,i2,z’1) is
2iyi9i3. Clearly, half of them come from the three cycles (ji...), (j2...), (j3...) and the others
come from ay, (jo...), (j3...). But, the formula in this case is still the same

. o 0*0()
P( Z [J3: J2s Jil@) = i1023pi; +is+i m

[73,72,31]€CY, 5(evis,iz,i1)

The reason is when we calculate the differential part ﬂ%, the degree of p;, in the
11 12 3
monomial ®(«) is 2, so we will have a coefficient 2.
We leave the general case for the reader to check. O]

Remark 2.10.21. The consequence of Lemma |2.10.2() works for any set 6_'5’3(%2'3,1'2,1'1),
which means if (75,3(04, i3,19,11) = ), it also works. We only explain the reason for the case
g = (1)(2)(3). If 6_’573(04,@,@'2,2'1) = 0, it means one of iy,1is,13 s not the length of any

disjoint cycle of a. Hence, we have

Po(a)

I
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which 1mplies

o o 0(a
0= ®( > 3, G2, 1le0) = iviniaPisio i op; .
11

4 Op;,Opiy,
[73,72,51]€C}, 3(v,i3,02,i1) s

Now we are ready to prove the theorem.

Theorem 2.10.22. Let g be an element in CS,,. We have
30 (K3in-3g) = (I)<K31"—39) = 3A39(g).

Proof. We assume g is a permutation in S,,. Say ¢ = a. By Remark [2.10.19 we have

6
Cn,3:U U Clr 5l i3, iz, i)

BES3 i1,i2,i3>1

Then, we get

O(Kynsg) =Y. Y > (3, g2, a]r)

BESs 112,821 [j3 jo j1]€CE 4 (avis in.in)

83
= z : <i1i2i3pi1+i2+i3—
11,82,i3>1 ap'blapmap’u

692
+i1(ig + 23)pi1+i3pi2W
11 12+13

82
+ia (i1 + i3)p¢1+¢2p¢3W
12 8211 +13
+i3(i1 + 12)Pis+inPiy Opr 0P s
i3 i1+io

o 0
+(i1 + dg + 3)Piy Dir Dis EI
11+12+13
o 0
+(i1 + 42 + 13)Diy +in+is O )®(9)
11+i2+13

= 3A3%(g),

where the second equality comes from Lemma [2.10.20] and the last equality comes from

Definition [2.10.6{ or Example [2.10.8].
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We now give the extended definition of ¢ (Definition [2.10.5)) and construction of Ay
(Definition [2.10.6)) if we choose arbitrary d-cycle.

Definition 2.10.23. Given an d-cycle 8 in Sy, we define the map ¢g : Sq — Sq as
¢p(0) = B6, 6 €Sy

Then, we construct Ag similar to definition replacing ¢ by ¢g,

1 . 0
Aﬁ = E Z Z p¢5(5)(a17 -'-aad)aﬁ(s (ah “"ad)'

0ES g at,..., ag>1

Remark 2.10.24. From this definition, it is clear Azg) = As.

Remark 2.10.25. Recall the formula in Lemma |2.10.20

11203 ®([J3, j2, J1le) = Po(y 1)) (i1, 12, 83) 57 (i1, 12, 13) P ().
P(1)(2)(3)
Similarly, we can prove
212223(5([]1,]27]3]@) = p¢5((1)(2)(3))(21, 2, 23)8]5(1)(2)(3) (217 12, 33)@(5)4)’

where = (1 2 3). Actually, the map ¢z corresponds to tuple [j1, j2, j3]. We can prove the

other cases similarly.
Corollary 2.10.26. For any 3-cycle B, As = Ag as operators on the ring Clpy, pa, ...].

Proof. Let 8 = (123). We have

As®(g) :%QD( Z 73, J2, j1]9)

[j3.2,51]€Cn,3

= O(Ks1n-39)
= &( Z [J1, J2, 3l9)

[j17j2aj3}€én,3

= AsP(g),

where the last equality comes from Remark [2.10.25|
Hence, Ag = A3 as operators on C[py, pa, ...]. ]
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Remark 2.10.27. The above argument can be extended to Ay, d > 4, i.e., for any d-cycle
B, Ag = Ay. This will be shown in Corollary ?7?.

2.10.3 General Case

The proof of the general case is very similar to the case d = 3. First, we generalize Con-
struction [2.10.10], Definition [2.10.13] and [2.10.14] to any positive integer d.

Construction 2.10.28 (Reduction Permutation). Let ¢ = [jg,...,J1] € Cna. We want
to classify all permutations g € S, according to the occurrence of ji,...,jq in the disjoint
cycles appearing in g. There are d! cases, one for each permutation in Sy. Here, Sy is
the permutation group of {ji,...,ja}. By an abuse the notation, we use the same notation.
Restrict g to a permutation in Sy by forgetting all digits except for ji, ..., ja but preserving
the cycle structure. Denote by g5 the permutation in Sy (similar to the construction of gz in
Construction . We say that = g5 is the reduction permutation of (g,a) or [ is the
reduction permutation of g with respect to . Clearly, for any element g € S,,, g falls into

one and only one case with respect to &.
We want to explain the notation 7 = g5 € S; in the above construction.

Remark 2.10.29. Let g be a permutation in S,, n > d. We consider two d-tuples ¢ =
[d,d —1,...,2,1] and &' = [ja, ..., j1] in Cha. Clearly, gor € Aut{ja,...,j1} and g € Sq =
Aut{1,2,...,d}. But, we want to compare the two permutations in the same permutation
group Sz = Aut{l,2....,d}. Recall the construction in Remark . Similarly, we con-
struct the bijective map between {1,...,d} and {j1, ..., ja} with respect to the order of the
integers, which means small integer maps to the small one and larger integer goes to larger
one. This map induces an isomorphism o : Aut{jq,...,71} — Aut{l,...,d}. Hence, by an

abuse of notations, gz € Sq means ¢(gs) € Sq.

Definition 2.10.30 (Distance). Let 0 = (jg ... j1) be a d-cycle in S, (or a d-tuple ¢ =
[73, J2, 1] ) and o = ay...qq be any permutation in S, where oy...qq is the unique product of
disjoint cycles. We define the “distance” between j; and the set {ji, ..., ja} with respect to

the permutation o as

dist(ji, a, j1, ..., ja) = min{l | &' (4;) is any jp, 1 < k < d,1 > 1}.
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Definition 2.10.31. Given any permutation o € S,, and a positive integer d such that d < n,
we define the map
Ia,n,d : C_171,d — Z?;[b

[a,n,d([jda 7]1}) = (ida "'>i1)7
where iy, = dist(jr, @, j1, .-, Ja), 1 < k <d.

Definition 2.10.32. Let o be a permutation in S,. Let d be a positive integer such that
d < n. i are positive integers, 1 < k < d. Let § be a permutation in Sq. We define the

subset C_f’d(oé,’h, wyia) of Cna as

(Jj’d(a,z‘l, coviq) = {Uas s 1) | i = dist(jp, o, 41, oy ja), 1 < k < d,
(OZ, [jd7 7]1]) 18 Of type ﬁ}

Remark 2.10.33. Let a be a permutation in S,. We have

Coa=J | Clulonir,...ia).

BESG i1,..uyig>1

Given any d-tuple [jq, ..., j1], the “distance” dist(j;, a, j1, ..., ja) and the type of («, [ja, ---, J1])
are uniquely determined. Hence, the union above is the disjoint union. Also, there are only

finitely many nonempty sets Cfd(a, i1, -..,1q) 1n the above union.

Lemma 2.10.34. Let « be an n-cycle in S,. & = [jg,...,J1] s a d-tuple and we assume
o is an element in C_'f’d(a,il, oy iq) for some B € Sy. Then, the number of all elements in

C’gd(a, 1y ey ig) 1S M.

Proof. 1f we want to use & to construct some d-tuple [j/, ..., 71| in C’fd(a, i1, .0y 1q), We have

to pick d integers ji, 1 <i < d, from « and we can assume the integers iy, ..., i imply
dist(Ji, Q J1y ey Ja) = dist(Jr, @, 1, ey Jiy)-

At the same time, we know ji, ..., j4 are in the same disjoint cycle and

d d
ZdiSt(jkaaujla "'7jd) = ZdZSt(]I/mani? 7]21) =n.
k=1 k=1
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Hence, the choice of jj will completely determine the d-tuple [j},...,71]. So, there are n
choices. It is easy to prove they are all of the elements in C’f Jlair, . i), We leave it as an

exercise for the reader. O
The next lemma is a generalization of Lemma [2.10.20]

Lemma 2.10.35. Let a be a permutation in S, and let iy, ...,14 be d positive integers, where

d <mn. Let B be a permutation in Sy. If C‘f’d(a, i, ..., 11) 18 nonempty, we have

. . . . L0 . )
O( Z [Jds -5 1)) = Pou(8) (i1, s zd)aﬁﬁ (11, -y 10) P ().

[jdr~~7j1]€é§d(a:il7-~~7id)

Proof. First, we make some assumptions and recall some notations. a = «a;...qq is a per-
mutation in S,,, where «;...q; is the unique decomposition of « in disjoint cycles. Let o be
a d-tuple in C’id(a,il, .y iq), where & = [jg, ..., j1]. We assume 8 = (..., which is the
unique decomposition of # in disjoint cycles. [ can be considered as the permutation [’
in Aut{ji,...,ja} by the isomorphism in Remark [2.10.29] where ' is the permutation by
forgetting all elements in a except for j;, 1 < ¢ < d, in Construction [2.10.28] By abuse
the notation, we assume the disjoint cycle §; comes from the disjoint cycle «;. Also, by

definition, we have
ik:dist(jk,a,jl,...,jd)7 1 S kgd

We assume the lengths of disjoint cycles «;, 1 < i <[, are different.
For any d-tuple ¢’ € C_'f’d(oz, i1, -.-,14), by Definition [2.10.32and Construction [2.10.28] we

have

1 0
— —p Wy ey bq) =11, .oy ig) () = ®(c' ).
H <Zjenz')p¢d(ﬁ)( 1 d)apg( 1 d) ( ) ( )

=1 J

We have to prove the number of d-tuples in C_ﬁd(oz: i1y s ia) 18 TT2 (D2 e, 25)-

We go back to the d-tuple ¢ = [jg, ..., j1] € C’gd(a,@'l,...,id). If we want to use & to
construct some d-tuple [ji,...,71] in Cf’d(&,il,...,id), all integers j/, 1 < i < d, should
come from the first m disjoint cycles o, ..., a,, and |5;| of them comes the disjoint cycle «y,

1 < i < m, where |§;] is the length of the cycle 5;. Also, we assume the integers iy, ..., 4
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imply
d’ist(jm Oé,jl, ...,jd) = dZSt(j,lc, Cl/,ji, ,jél)

The choice of integers from different disjoint cycles is independent. Hence, by Lemma
2.10.34} the number of all elements in C’gd(a,il, voda) 1s T[1%, (Jeu]). By Example [2.10.15]

we know

IO i) = TTxeD.
i=1 jeB i=1
Hence, we have
R : 0 : - N
Pou(8) (115 -5 1a) 55 (11, .y iq) P () = H(Z i;)P(o)
i=1 jepB;

Theorem 2.10.36. For any g € CS,,,
(I)(K(lnfdd)g) = Adq)(g>

Proof. We assume g is a permutation in S,,. Say ¢ = a. By Remark [2.10.33] we have

Cha = U U glay iy, . ig).

BESq i1,...,ta>1

Then, we get

(K (1n-ag)x Z Z Z [Jdy -5 J1] )

peSa i, tazl [, jl]ecf,d(ayil ~~~~~ iq)

L 0 ,

Z Zpaﬁd(ﬁ)(@lw--a ) 711,y 1) ()

il 7777 ileﬁESd
:dAd(I)(Oé),

where the second equality comes from Lemma [2.10.35] and the last equality comes from
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Definition [2.10.6| By Definition [2.10.9, we know the map 7, 4 : C_’n’d — Cp.q 1s a d-to-1 map.
So, we have

AP (Kin-aga) = ®(Kin-aga) = dA;®(a).

O
Theorem 2.10.37. For any positive integer d, Ay = W ([d]) as an operator on Clpy, pa, ...].
Proof. By Theorem and Theorem [2.10.30], it is easy to get this consequence. O
Corollary 2.10.38. For any B € S4, Ag = Ag as operators on Clpy, pa, ...].

Proof. Given any monomial Hlepji in C[py, po, ...], where j; < jo < ... < jg, it corresponds
to the partition (ji, ..., jx). We pick a permutation g of type (ji, ..., jx). Then, we have

Ag®(g) —é@( > g ilg)

Udye-»71]€ECn.a
1
= E®<K1"*dd9>
= O( > sy, -+ Js)l9)

lis(a)s-+ia1)l€Cn.a

= Ap®(g).

]

Corollary 2.10.39. Let dy,ds be positive integers. W ([d1]), W ([ds]) commutes as operators
on Clpy, pa, .|, i.e W([di])W ([da]) = W ([d])W ([d1])-

Proof. We take any monomial Hlepji in the ring C[py, pa,...]. We pick a permutation g
corresponding to this monomial. We have

W ([ )W ([d2]) @ (g)
=P (Ky,1n-a1 Kgyin-a:9)
=P (K 1n-as Kgy1n-1 9)
=W ([d])W ([da])@(g)-

Ky 1n-ar, K g, n-a, commutes, because they are central element in CS,,. So, W ([d1]), W ([d2])

commutes. O
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Chapter 3

Hurwitz Number

3.1 Simple Hurwitz Number

In this section, we give the definition of the Hurwitz number and review some known results
about the simple Hurwitz number.

The Hurwitz enumeration problem aims at classifying all n-fold coverings of S? (or CP?!)
with k& branch points {z1, ..., zx}. Given such a covering, each branch point z; corresponds
to a permutation o; in S,,. Denote by A; the partition corresponding to ¢;. The number
of all connected n-coverings with k£ ordered branch points z;,1 < ¢ < k, each of which
corresponds to a permutation of type \;;1 < ¢ < k, is finite. This number is denoted by
Covy, (A1, ...; Ax). Equivalently, Cov, (A, ..., \) is the number of k-tuples (o4, ...,03) € S¥
satisfying the following conditions [1], [26],

(1) o is of type A;,

(2) o1...0, = 1,

(3) The group generated by the elements {07y, ..., 0%} is transitive on the set {1,...,n}.
Definition 3.1.1. Given « a partition of n, the simple Hurwitz number is defined as

k
AN

h?(a) = Cov,(1"22,....1" 22, a).

It is the number of (k + 1)-tuples (o4, ...,0n, 07 1) € S**1 satisfying the following conditions

1

o; are transpositions (or of type 1"°2), where 1 < 1 < k, and o0~ is of type «,
1 t 1) f t 122 h 1 <i <k d s of t

o = (Ozl,(lfg, ...,Oél),
(2) o1...0, =0,
(8) the group generated by {01, ...,01} is transitive on the set {1,...,n}.
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Simple means that all but one permutation are transpositions. The generating function

HP(u, p) for simple Hurwitz numbers is

o0

1 ut
H[Q](u’p) = H[2]<U,p17p27 ) = Z Ezzhfua)ﬁpa ’

n>1 k=1 atn
Proposition 3.1.2. We have the following equation

2
o _ OH®P

W([2))H S

We will prove this proposition in the next section.
Now we want that the number k of transpositions is minimal with respect to the given

partition . Denote by p?(«) the minimal number. Sometimes we also use the notation

where o is of type a.

Definition 3.1.3. Given positive integers n, k, the minimal simple Hurwitz number h*() is
2
h%(a) := hLQ](a)(oz).

The minimal number p?(a) can be computed by the Riemann-Hurwitz formula or by a
combinatorial discussion [19]. It turns out that the minimal simple Hurwitz numbers counts

coverings X — S2%, where X is of genus 0.

Lemma 3.1.4. Let a = (o, ..., ;) be a partition of a positive integer n. Then, we have
pAa) =n—24+1.

Proof. The proof can be found in [L1]. O

We define two generating functions for the minimal simple Hurwitz numbers as follows

rTmin 2" U#Q(a)
H (2w, propas ) = ) W) 2o )
n>1 akn s :
min " 1
HQ (zvphpZa"') :ZZhQ(a)ﬁMQ(a)'é(Oé)
n>1 akn
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In fact, we have

H;mn(zaplap% ) = H;nin(zau7p17p27 '“)‘uzl-
In the next section, we will prove the following theorem.

Proposition 3.1.5.

Z_’_.] plpj a i + ]pl"r] ap 8p
Di J 7 J

3,7>1

Goulden and Jackson proved the above formula in [19]. We will give another proof, by
using the W-operator, in the next section. In fact, we prove a generalization of Proposition
3.1.5| (see Theorem [3.3.6)), where transpositions are replaced by d-cycles.

3.2 d-Hurwitz number and d-Frobenius Number

In this section, we review some results about the Hurwitz number and Frobenius number.

Definition 3.2.1. Let G be a subgroup of the permutation group S,. C;, 1 < i <k, (not
necessarily distinct) are conjugacy classes of G. Denote by (/3\(;/@(01, ..., Ck) the number of

all k-tuples (g1, ..., gx) such that
1. glECl,léZSk',
2. g1...g1 = id, the identity element of G.

We call é\()?/G(Cl, ..., C) the Frobenius number, which is known to be the number of

ramified coverings (not necessarily connected) over P;.

Notation 3.2.2. If G is the permutation group S,, we prefer to use the notation
(fja;n(/\l, ceny )\k) = 6\0:70(01, ceny Ck),

where n corresponds to S, and \; are partitions of n, which represent the conjugacy classes
i, 1<i<k.
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Theorem 3.2.3. We have the Frobenius formula

~ _ zl|C| Hz 1 x(C
Covg(Ch, ..., Cr) = Tl Z dez,

where |A| denotes the number of elements in the set A and x in the sum ranges over all
irreducible complex characters of G.

Proof. Theorem 1.1.12 [26]. O

Definition 3.2.4. Given k partitions \; of n, denote by Cov,(\, ..., \y) the number of k-
tuples (o4, ..., 0) € S¥ satisfying the following conditions [1]:

e 0, is of type \; for all i,
® 01...0p = 1,
e the subgroup generated by {01, ..., o} acts transitively on the set {1,...,n} (transitivity).

We call Cov,, (Mg, ..., A\x) the Hurwitz number, which is known to be the number of con-

nected ramfied covering over P; with branch points described by A;, 1 <17 < n.

Remark 3.2.5. If the group G is S,, each conjugacy class can be represented uniquely by a
partition of n. In this case, the definition of Hurwitz number has one more condition than
that of Frobenius number, the transitivity condition. Although people can use the Frobenius
formula to calculate Frobenius number, we still do not know a combinatorial formula to

calculate the Hurwitz number.

Now we consider a special type of Hurwitz and Frobenius number, the d-Hurwitz number

and d-Frobenius number.

Definition 3.2.6. Given positive integers d, n and k, where d < n, define the numbers
hLd](a) and f,gd](a) as follows
k

hLd](a) = Covn(in’dd, 177 ),

k

() = Cov, (1", ..., 1", a),

where « is a partition of n and there are k copies of the partition (1"~4d).
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We define the generating functions for d-Hurwitz number and d-Frobenius number as

follows

1 & uk
H[d](u,p) = H[d](u,pl,pQ, ) = ZE Zzh]&d}(a)yq)(a) :

n>1 k=1 aln

Fld(u,p) = F(u, py, ps,...) = Z ZZ [d] (a),

n>1 " k=1 atn

where the definition of ® can be found at the beginning of Section 2.9.

By a combinatorial argument [I], we have

Fld =
An important application of the W-operator is the following differential equation for F.

Theorem 3.2.7. F'¥4 is the unique formal series solution in u to the differential equation

o F!d
= W ([d])F
—— = W(ld)
with initial condition
F1(0,p) = e

The above theorem was first proved by Mironov et. al [I8]. Here we give a different proof
as an the application of Theorem [2.9.1]

The rest of this section is devoted to the proof of this theorem.

Notation 3.2.8. Given a positive integer n, let a be a partition of n. We define the set
Ad(a, k) as (k + 1)-tuples (o1, ...,01,0) € S¥1 satisfying the two conditions about the

Frobenius number in Definition |3.2.1], i.e.
e 0, is of type (1"=%d) for all i and o is of type
® 0.0 = 0 (the monodromy condition,).

Also, we define another set

Ao, k) = {(09, ..., 0%, 0) | (0o 05 Y, 09y oy 00, 0) € AD () ).
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Remark 3.2.9. By the definition of h,[cd} (), we have
y .
a) = 1A (@, k)] = | A a, k).

Hence, we can write the generating function F19(z, pi,pa,...) as

1 2
Filzp) = F(zp1pa, ) = 30— > [A 0 k)| 59 (a) -

n>1 k=1 atn

Remark 3.2.10. Consider the generating series FI%(u,p). Given a specific set A% (a, k),
a - n, the elements in this set are (k + 1)-tuples (d1, ..., 0, o). The parameter corresponding
to this set is 2—?@(04), where the exponent of z corresponds to the number of d-cycles k and
®(av) corresponds to the permutation o. We take the sum over all partitions. We get the

set-valued gemerating function

Z ZE}Wakm(y

n>1 k=1 atn

Since every set is finite, we can take the cardinality of each set, and we get the generating
function HA (u, p).
Similarly, —L is the generating function for the sets A[d](a k), i

[d]
Ty ZZMak WU

n>1 " k=1 atn

IS Il

n>1 " k=1 abn

(a) :

Definition 3.2.11. Let k,n,d be three positive integers, where n > d. We define the set
Ald(k n) as follows

= J Ak, ).

The union s disjoint.
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Lemma 3.2.12. Let k,n,d be three positive integers, where n > d. We have

S A @D() = 3 AT (@)B(K - agel).

akFn a’tn

Proof. We consider the sets Al (k,n) and Al (k —1,n). Given any element (o4, ..., 0%,0) €
Al (k. n), it corresponds to a unique element (o5, ..., 0%, 0') € A (k—1,n), where o’ = o7 ‘0.
Now given any element (s, ..., 0%, 0') € A4 (k — 1,n) and any d-cycle oy, we can construct
an element (o4, ...,0%,0) € Al¥(k,n), where 0 = 0,0’. Indeed, we can construct different
elements in A(k,n) by multiplying different d-cycles ;. The number of elements we
construct from the element (o, ..., 0%, 0") is l( )d where Cll( )d! is the number of d-cycles
in S,. From the discussion, we can get all elements in A4 (k, n) by adding different d-cycles

to elements in A (k — 1,n). Also, we have

(Z)cuLAWuk-l,nn.

= J Ak, ).

atn

| A (k,n)| =

SHN

Recall the definition of Al(k,n),

Hence, we have the following formula

ka[;d}( ka (@) (K yn-ag0).

akFn a'tn
m
Proof of Theorem |3.2.7.
8f7kﬂ 1 — Zk1 [d]
D DD Gl (2@
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where the first equality comes from Remark [3.2.10 the second equality is the consequence
of Lemma [3.2.12] and the last equality comes from Theorem [2.9.1] O

3.3 Minimal d-Hurwitz Number

Recall that hgﬂ () is the number of (k+1)-tuples (41, ..., O, o) in S satisfying the following
conditions (see Definition [3.2.4 and [3.2.6))

e §; is of type (1"7%d) (or a d-cycle), 1 <i < k and o is of type a,
® 01...0, =0,
e the subgroup generated by {d1,...,0,} acts transitively on the set {1,...,n}.

Now we want that the number k of d-cycles is minimal with respect to given partition «
(similar to the minimal simple Hurwitz number, see Definition [3.1.3]). Denote by u¢(c) the

minimal number. Sometimes we also use the notation

pi(o) = p(a),

where o is of type a.

As we mentioned in the introduction, minimal means that the genus of the covering space
X is zero. If we want to calculate the Hurwitz number with the genus of the covering space
greater than zero, we have a topological recursion formula which allows us to calculate the

higher genus Hurwitz number in terms of lower genus ones. (See Section 3.5.)

Definition 3.3.1. Given positive integers n,k,d, d < n, the minimal d-Hurwitz number
hi(a) is

h(a) == hi, ().

We can compute p4(a) in two ways. It can be computed by the Riemann-Hurwitz Formula
or by a combinatorial discussion [19].

Lemma 3.3.2. Let o = (o, ..., ) be a partition of a positive integer n. Then, we have

n—2+1

pia) = ——

80



Proof. See [19]. O

We define two generating functions for the minimal d-Hurwitz numbers as follows

uud(a)
Hmln(27u7p17p27"' ZZhd )'q)(a)ﬂ
n>1 akn )
1
HT™ (2, p1,pay...) = ZZhd )'@(oz).
n>1 atn ’

In fact,

Hcrlnin(zaplap27 ) = Hgﬂ'n(z, U, P1, P2, ---)‘u:l'

Before we state the theorem we want to prove in this section, we first define the differential

operator HW ([d]).

Construction 3.3.3. Some free summations in W([d]) contain higher derivatives. For

example, in W([2]), we have the summation

1)(2) = ZZ ]pz+]a 8

i>1 j>1

which contains second derivatives. If we change the higher derivatives into the product of

first derivatives, we will get a new nonlinear operator. We take F'S(y@) as an example,

Pf;:g(l ZZ ]pz—wa aa )

i>1 j>1

As an operator on the generating function F, it means

OF OF
FSq ZZ (jPiviz—5 )
i>1 j>1 Opi 9p; J
where F € C[[p1,pa,...]]. More generally, for any permutation [3, FA@[g is constructed by

replacing all higher derivatives in F'Sg by the products of first order derivative operators as

mentioned above, i.e.

—_—

—~ 1 . L0 . .
FSﬁ = E Z pj@(lb "'7Zd)%(ll7 "'7Zd)7 (331)

i1 yemig>1 B



where
Ps j€B P s, s €8y PYjcp, i

—_—

In this paper, we prefer to use the following notation for %(il, b)),

o l 0
a_ﬁﬁ(zb o dd) = X <(Z Zj)a—> : (3.3.3)

Definition 3.3.4.

HW(d) = > FSs.
aF g e

Remark 3.3.5. Let o’ € S,, and let [jq, ..., j1] be a d-tuple of distinct integers smaller than n.

B is the RP of (¢',[ja, ..., J1]) and i, = dist(jy, o', {j1, j2, .., Ja}) (see Construction |2.10.10
and Definition |2.10.15). Consider the operator F'Sz. Clearly, dD(F'Sg) is the number of
disjoint cycles of 8 and dP(FSps) is the number of disjoint cycles of df. Let o = (jg...71)0".

Let 1,1 be the number of disjoint cycles of o,0’ respectively. We have
I'=1—dD(FSg) + dP(FSp).

The following theorem was first proved by Goulden and Jackson [16]. Here we give
another proof using the W-operators.
Theorem 3.3.6.

OH™
ou

= HW ([d))(H}™).

Goulden and Jackson used graph theory to construct the differential operator HW ([4)
[19].

Definition 3.3.7. Let (01,...,0x) be a k-tuple of d-cycles in S, and 0 = §1...0,. We say
(01, ..., 0) is a d-minimal transitive factorization of o, if (61, ...,0k) satisfies the transitivity

condition in Definition and k = pd(o).

Since o is uniquely determined by 4y, ..., d;, sometimes we omit o and say (d1, ..., dx) is a

d-minimal transitive factorization.
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To prove Theorem |3.3.6, we have to change Definition [3.3.7] a little bit.

Definition 3.3.8. Let ([1], b2, ..., 6k) be a k-tuple, where [01] is a d-tuple of distinct integers
smaller than n and §; are d-cycles in S,, 1 < i < k. &1 is the corresponding d-cycle of [61].
We say ([01], 02, ..., 0x) s a d-minimal transitive factorization, if the corresponding k-tuple

(01, ..., 0x) is a d-minimal transitive factorization.

The d-tuple [6;] corresponds to a unique d-cycle ¢; and this is a d-to-1 correspondence.

The multiplication of a d-tuple [§;] and a permutation 7 is defined as follows
[01]7 = dur,

where d; is the corresponding permutation of [d;].

Now we consider a general k-tuple of permutations (01, ...,0;). Let & = {d1,..., 0} be
the corresponding set and set ¢ = §;...05. Let G be the subgroup of S,, generated by the
permutations in S. Let Xj,..., X, be the connected components of X = {1,...,n} with
respect to the action of G. For each connected component X;, we define the subset S; of &

as
S;i={0€S8|0(j)#j for some j € X;}.

Denote by o; the product of the elements in S; multiplied in the same order as in the
tuple (01, ...,0;). Clearly, 0 = oy...0,. We say that the set S; corresponds to a transitive
factorization of o;.

For example, consider the following tuple ((12),(34),(45)). The corresponding set is
S =1{(12),(34), (45)} and the group generated by S is G = ((12), (34), (45)). We have

o = 816,05 = (12)(34)(45) = (12)(345).

G is a proper subgroup of S; acting on the set X = {1,2,3,4,5}. X has two connected
components X; = {1,2} and X, = {3,4,5}. We have §; = {(12)}, S; = {(34), (45)} and
o1 = (12), 09 = (345), with o = (12)(345).

Lemma 3.3.9. Let ([01],02,...,0k) be a d-minimal transitive factorization of o and o' =

8a...0k. If B is the RP of (¢',[d1]) (see Definition |2.10.13), then X = {1,...,n} has ezactly
dD(FSg) connected components X[, 1 < i < dD(FSg), with respect to the group generated by

{62, ..., 0, }. Denote by S! the set of §;’s (in S = {02, ..., 0 } ) that move at least one element of
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X]. Then, each S; corresponds to a minimal transitive factorization of o}, 1 <i < dD(FSp),

! / /
where o' = O1--Oap(Fs,)-

Proof. The lemma follows from Lemma 2.2 in [19], using the interpretation of dD(F'Sg) in
Remark [3.3.5] O

Lemma 3.3.10. Let ([01],02,...,0x) be a d-minimal transitive factorization of o and o' =
02...0k. If B is the RP of (0',[01]), we have

d(FSﬁ) =d+ 1.

Proof. By Remark [3.3.5] we know that dD(F'Sg) is the number of disjoint cycles in § and
dP(FSps) is the number of disjoint cycles in dB. Also, Lemma tells us the following

formula

By Lemma we know X is the disjoint union of X/, 1 < i < dD(FSs). Let n; be the
cardinality of X/. Then,

dD(FSp)

E n; = mn.

i=1

Also, we have o' = 01...03prg,) and each oj is the product of permutations in &} in order
(Lemma [3.3.9). The group generated by S acts transitively on X/. Let [; be the number of
disjoint cycles of o/. By Lemma we have

d 1

By Remark [3.3.5] we have

dD(FSg)
> i =1-dP(FSp) + dD(FSp).

=1

Finally, we come to the following equation

o) =1= > w'o). (3.3.4)



This equation holds, because we delete the first d-cycle d; (or multiply d;* to o) and S!
corresponds to a minimal transitive factorization of o by Lemma [3.3.9, Equation (3.3.4)

can be rewritten as
n+l—2=(d—-1)+n+(—dP(FSs)+dD(FSs)) —2dD(FSp).
We get

d+1=dP(FSs) + dD(FSs) = d(FSs).

Definition 3.3.11. Given a positive integer n, let o be a partition of n. We define

Al(a) ={([61], 02, ..., Ok, ) | o is of type a, (61, ..., 0%)

is a d-minimal transitive factorization of o}.
Fixing a permutation § € Sy, we define
A%(oa) = {([01], 62, ..., Ok, 0) € A%a) | B is the RP of (¢, [61])},

where o' = 05...0}.

The generating function f—vlg”” can be rewritten as

rrmin __ |Ad(a)| z" u,ud(a)
H™ =2 0 = 2@
n>1 atn
because
d
hd(a) — |A (a)|

Also, given a d-tuple of distinct integers [d1], o’ corresponds to a unique  as we explained
in Remark (3.3.5, Hence, Af%(a) are pairwise disjoint, i.e.

A (0) VA (@) =0, B #5.
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By Definition [3.3.11] we have a disjoint union

U Ad(a) = A%(a).

BESq

By Lemma [3.3.10, A%(a) is nonempty if and only if d(FSs) = d + 1. With the discussion

above, we can write the generating function Fy as following

4a)
AT (u, 2, p) = dzz > AYa) ;,Zﬂ( TP

n>1 atn BESy,
d(FSg)=d+1

Given a permutation € Sy, we define the generating function (ﬁd) 3 as
~ z uu 4(a)
()5t ) = 5 3 3 AR 2
n>1 aFn

Clearly,

Hpm= N (Hpm).

BeSy,
d(FSg)=d+1

Now we have defined two different types of sets, .A%(a) and pairwise disjoint sets Aj(a),
B € Sy. But that’s not enough to prove Theorem W, since |.A% ()| is not easily computable.
In this section, we break A% () into much smaller disjoint computable sets.

We will give a brief description of the sets which will be defined to get our target set
Ag(a’, (09, .eey Oy ), (i1, oy 1))

e The first set is BE(/). This set is constructed from A%(«), contains k-tuples
(52a ) 5/@7 [51]_10>

such that ([01],0a, ..., 0, 0) € A%(a) (see Definition [3.3.12).

e The second set is A%(a,a’,il, .y iq). We fix d integers iy, ...,iq and use elements in

Bj(a’) to construct pairwise disjoint subsets

Ag(a,o/,il,...,id)
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of A%(a) such that

U Ao i, ig) = AL(a).

i eig>1
See Definition B.3.13] and Remark [3.3.15]

e The last set is Ag(o/, (09, ..., 0, 0"), (i1, ...,1q)). Based on d integers iy, ..., iq, We use a

single element (ds, ..., 0, 0') € Bg(a’ ) to construct pairwise disjoint subsets
Ag(o/, (09, ey Ok, '), (11, -y ig))

such that

U AU, (000, 0), (s nsia)) = A0, 0 iy, ooy i),

(il,...,id)EZ‘io
(see the proof of Lemma |3.3.19)).

The set Ag(a’, (09, ..., Ok, 0’), (i1, ..., 1q)) is our target set, since its cardinality is computable

(see Lemma [3.3.18)).

Definition 3.3.12. Let o' be a partition of n. Let Bg(o/) be the set of k-tuples (9, ..., 0k, 0'),
where 6;, 2 < i < k, are d-cycles and o' = ,...0;, is of type o, such that there exist a d-tuple
[01], a partition o and a permutation o satisfying ([01], 02, ..., 0, 0) € A%(a), i.e.

Bg(&') = {(d2, ..., 0k, 0) | 0" = 0a...0;, 0" is of type o
and ([61], 62, ..., 0, 0) € Aj(a) for some partition o,

some permutation o and some d-tuple [01]}.

Let (03, ..., 0k, 0’) be an element in B§(). By Lemma , we have dD(F'S3) connected
components of X = {1,...,n} with respect to the action of the group {ds,...,dx}. Usually,
we say that (d2,...,0r,0") has dD(F'Sz) connected components. Denote by X1, ..., Xap(rs,)
the connected components. Let S = {0,...,0x}. S; is the subset of S, which contains all
nontrivial permutation in S on the connected component X;, and o) is the product of all
permutations in S; with respect to their order in the original tuple (ds, ..., dx). Clearly, we

!/ __ / /
have 0" = 07...04p(pg,)-
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For example, consider n = 8,d = 3 and o = (1235)(4678), so that o = (4 + 4), where
(44 4) is a partition of 8. Clearly, A*((4 + 4)) contains the following tuple

([4,5,6], (123), (345), (678), (1235)(4678)).

g

Now ((123), (345), (678), (12345)(678)) € B3((5 + 3)) for some 3, where o/ = (5 + 3) is a

0./

partition of 8.

Now we fix d positive integers iy, ..., 14.

Definition 3.3.13. Denote by Ag(o/, i1, ..., 1q) the set of (k+ 1)-tuples

([51],(52, '~-75k70)7

where [61] = [ja,---, J1], such that ([01],d2,...,0k,0) can be obtained from some elemen-
t (02, ..., 0, 0") € Bi(a) satisfying

o =[]0,

iqg = dist(4g, 0", {ja 1)), 1 < g < d.

See Definition [2.10.30 for the definition of distance.

Lemma 3.3.14. Assume .Ag(o/, i1,y ...,0q) 18 nonempty. Given any two elements

([61], 8, ... O, &), ([01], 02, ..., O, &)

in the set Ag(o/,il, .y 1q), 0 and & are of the same type, i.e. (o) = (7).
Proof. Let ([61], 02, ..., Ok, 0), ([ci],gg,...,gk,'&) be two elements in Ag(o/,il, iy g). Assume
([01], 92, ..., Ok, ) is constructed from the element (0o, ..., 0k, 0’) by multiplying a d-tuple [0;]

and ([61], 0, ..., 05, ) is constructed from (s, ..., 05, &) by multiplying a d-tuple [&;]. If the
lengths of disjoint cycles are distinct, we have
R : L0 . ,
P(d...1)5(11, "‘ald)a_A(Zla oy ia) | @(0') = @(0),
Pp
. : L0 . ~ -
P(d.. )81 s zd)a—A(zl, v lq) | (') = ®(0).
Pp
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By Definition [3.3.12[ and 3.3.13, we know (Js, ..., Ik, o), (gg, cory Ok, a)e Bg(o/), ie. o/ and o’
both are of type o’. So ®(0) = ®(7), which means ¢ and ¢ are of the same type.

The statement is true if the disjoint cycles are not necessarily distinct. We omit the proof
here. O

Remark 3.3.15. By Lemma (3.3.14), we know that given any element ([01],d2, ..., 0k, 0) in
the set A%(o/,il, ey iq), 0 18 always of the same type. Denote by « the type of o. Sometimes
we use the notation A%(a,o/,il, ., 1q) to emphasize the type . Clearly, A%(a,o/,il, )

is a subset of A%(a) and we have a disjoint union

U U Ag(a,a’,il,...,id):Ag(a).

a’'tnit,..ig>1

Let (09, ...,0x,0") be an element in Bg(a’). Suppose that ([d1], 2, ..., 0, o) is an element
in A%(c/, i1, ...,1q) constructed from (dy, ..., dx,0’) by adding the d-tuple [0;] as introduced
in Definition [3.3.13] Clearly, the reduction permutation of ¢’ is 3 with respect to [d1].
Similarly, the reduction permutation of o} is 3;, 1 <i < dD(FSp), where 8 = B1...84p(rs;)
is the decomposition in disjoint cycles.

Let (0, ...,0k,0") be an element in Bj(a’). We define our target set as follows.

Definition 3.3.16. Define Ag(a’, (09, .. O, 0"), (i1, ..., 1q)) to be the set containing all el-
ements ([01], 02, ..., 0k, 0) in Ag(o/,z'l, .y iq) constructed from (0, ..., 0k, 0") as in Definition
3.3, 15

By the above definition, we have

U Ag(o/, (52, ...,5k,0'/), (il, ,Zd)) = Ag(a',il, ...,id),

(02,...,0k,0" ) EBE (')

which is a disjoint union.

Now consider the differential operator (see Definition [2.10.2)

o .. . = . d
a—ﬁﬁ(zl,...,zd) = H ((Z@)a—> )

J p )
i—1 \ jeg 2jep; b

89



e~ —

We define a new operator %(z’l, .., 1) acting on ®(0’) = (01)...®(0yp(pg,)) as follows

b o -, 0%(07)
a_ﬁﬁ(zl, ey ig) (®(0") = H ((Z Zj)a—> )

i=1 \ jeBi Py jes, s

If the disjoint cycles of o} are of distinct lengths, 1 <1i < dD(F'Sz), we have

Pas i, ...,i@%(il, ig) (B(0)) = (H(Zij)) ®(0).

=1 jep;

e~ —

The operator %(il, .y 1q) is different from %(il, ...,1g) by changing the higher order
differential operator into the product of first derivatives as we did for F'S 3. Recall that

we define F'S 5 as an operator on generating functions. We consider FS 3 as the sum of

pap(is, ...,id)%(il, ...,iq) (see Definition [2.10.3)), i.e.

e~

_ R
FSg = C_Z Z p(d...l)ﬂ(llv ”'JZd)a_ﬁ/B(ll’ "’7Zd)'

U1,8d > 1

Lemma 3.3.17. With the same notation above, we have

I
(]
by
2

([61],02,-,01,0) EAG (A (82,.-,01,07), (i1,---4i4))

Proof. First, if we cannot find a disjoint cycle with length > jep, b In o, for some v, 1 <

v < dD(FSs), it means that Ag(a’, (09, ..., 0, '), (i1, ...,14)) is empty. So, we have

Z P(o) | =0

(627“'7676)U)GA%(Q,)(627"'76IC’0/)7(7:1 )"'7’L‘d))

Also, 8;;& = 0. So, the formula is true in this special case.
j€By 1
Now we assume there is at least one disjoint cycle with length > iep, b o) foralll <wv <

dD(FSg) and c, is the number of disjoint cycles with length ., 4; in o;,. By the following
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lemma (Lemma [3.3.18), we know the number of elements in Acﬁl(o/, (02, vy O, 07), (i1, ovyig))

18

dD(FSg)
H CU(Zij)‘
v=1 JE€BY
So, we have
dD(FSg)
> o) | = JI «O_ i) | ).
(52,...,5]9,0'75)E.Ag(CM’,(52 ..... 5k70/),(i1 ..... ld)) v=1 J€Bv

By assumption, we know there are ¢, disjoint cycles with length > iep, b In o,. This means

. . . / .
the degree of py~ __; in the monomial ® (o) is ¢,. So, when we calculate _O%000) e will
j€Bo U v ’ P jepy i’
have a coefficient ¢,, i.e.

5 dD(FSp)
ﬁ(d.,,l)g(lj,...,Z'd)a—A(il,...,id)<q)(0/)):( I[I i
Dp v=1 JEBY
So, we have
P(a.. )8 (i1, - ia) 5 (i1 s 10) (P(07))
Ps

Lemma 3.3.18. With the same notation as in Definition we have

dD(FSg)
|AY(, (62, .., Oy '), (i, ia)) =[] <cv(2¢j)>.

v=1 JE€Bv

Proof. If ¢, = 0 for some 1 < v < dD(F'Sg), then Ag(a’, (09, ...y O, 0, (i1, ..., 1)) iS empty.

It means

AL, (83, ey 04 0), (i ey a))| = 0.
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v=1

Also, HdD(FSB) (CU(ZjE,BU zj)) = 0. Hence, the statement is true in this special case.

Now we assume that there is at least one disjoint cycle with length ) e, b 10 o,

1 < v < dD(FSg). We first pick disjoint cycle p;, with length >, i; in 0,, 1 < v <

dD(FSgz). The number of the choices of pl is Hiﬂ”") ¢y,. Now we fix a choice of the

disjoint cycles p!, we claim that we can construct HiﬂFSB ) > jep, iy many [61] such that

([61], 02, ..., Ok, [01]0") € A%/, (02, ..., O, &), (i1, ..., 1)), Which implies

dD(FSg)
JAG(, (8, - 64, 07), (i, i) = ] (CU(Z@))

v=1 J€EBv

Now we will prove the claim. If we want to use these disjoint cycles p! to construct the other
d-tuples [d1] such that [ is the RP of ¢’ with respect to [d1], we have to pick |5,| (|5,] is the
length of ,) many integers m;, j € f3,, from pl, such that i; = dist(m;, o', {mg,...,m1}),1 <
J <d. In fact, any integer k in p) uniquely determines the choices of all integers m;, j € S,.
Let 8, = (j1v~-'j|%v|)- Let k = my». myy is uniquely determined by the distance i in pf.
Similarly, all m;, j € f,, are uniquely determined. Hence, the number of choices of all
possible integers from p/ is the length of p! ie. > e, Ui~ Go through all of the disjoint
cycles pi, 1 <v < dD(FSg). We have HdD(FSB)

v=1

> _jep, i many choices of [d;]. ]

Lemma 3.3.19. Let iy, ...,14 be d positive integers. We have

—_—

Z ﬁ(dml)ﬁ(il,...,id)i(il,...,id)(q)(a'))

a/\
(52,...,5k,0’)68g(a’) pﬁ

= > (o)

([51],(52,...,5k,0)6Ag(a,a’,i1,...,id)

Proof. Given any element (s, ..., 0, 0") € Bg(a’ ), we have the following formula (Lemma
3.3.17)

I
(]
Py
2

([61}7627"'76]%0-)6“’42(al7(627"'76k70/)7(i17'“7id))



If we sum over all elements in Bf(/), we get the formula in the lemma

e~

Z ﬁ(dml)ﬁ(il,...,id)i(il,...,id)(CID(a'))

aA
(62,...,5k,a’)€Bg(a’) pﬁ

D> > e

AL (! (62,000.8,0"),(i1,---ri)) (191),62.--.,3),0)€
A%(D/,(tSQ ..... 51207), (81500 vig))

= > (o)

([(51},52,...,(5;670)6.,4%(O/,il ..... id)

The first equality comes from Definition [3.3.13| and [3.3.16| From these two definitions, we

know that an element (ds, ..., 0, 0’) in Bg(o/ ) corresponds uniquely to the set
Ag(o/, (52, ceey 6k7 O',), (’il, ceey Zd))

So, summing over all elements in the set Bg(o/ ) is equivalent to sum over all possible sets

Ag(a’, (02, ..., Ok, "), (i1, ..., iq)). The second equality comes from the following disjoint union

U A4, (83, ooes Ok, ), (i1, ooy i) = AS( i1, .oy da).

(627""6/970/)682?(&/)

Now we are ready to prove the following key lemma.
Lemma 3.3.20.

o - 5] ﬁ'm’m
FSB(H(TWL): ( adu )ﬁ

Proof. We use the same notation as in Lemma|3.3.19, Recall the following formula in Lemma
9.9, 10

dD(FSp)

pilo) —1= Z u'(ay).
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By Lemma [3.3.19, we have

> Daaslinia) 0 (/v (@) | 2 uZien P e
Pa.. 1)\t -5 td) 721, -5 Ud o — ZD(FS
OB (S o))

(82.-.,0,0")EBY ()

n uud(a)—l

- 2 *0) | S @) T

([51],52,...,5k,0)€./4g(a,0/,i1,...,id)

Summing over all partition o/ of n (contribute to the generating function) and all positive

integers i1, ..., 74 (contribute to the operator), we have

0 T 2" uzéle(FS£)“d(U{)
> > Bia.plins - ia) 5 (i1, -, i) (@) | ~——aprey
Y7 \GodooneBt@) s nl (25 (o)1
] geeey iq

n uud (a)—1

=2 2 *0) | i) T

. al’aé ([51}»527~--,5k:0')€"4g(a70/711""vid)

The left hand of the equation is clear. We want to explain why we also take the sum over
a on the right hand side of the equation. By Lemma the data {iy, ..., 14, 5, '} will
uniquely determine the type « of the set Ag(o/ ,i1,...,14). Hence, if @ does not correspond
to these data, we take Ag(a, o', i1, ...,1q) as an empty set. Hence, we take the sum over all

partitions v and o' of n.

By Remark [3.3.15 we have

U U Ag(a,a',il,...,id):Adﬁ(a).

a'tFni,..ig>1

It means

> > ) a1y

. 04/,04. ([61}7627"'761670-)6"4,(‘13(a7a,7i17“'7id)

B 5ees iq
_ N _OUH™)s
N ; ; [As()] n! (ut(a) — 1>!(I)(a) =d ou '
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which gives the right hand side of the equation. The left hand side of the equation is exactly

> > Bawplin . ia) ’ (/v (@) | 2 w7 e
p(d._l)/g U1y ey 0g) =21, ..., g g —' AD(FS3)

R N s nl (2 (o)1

DY 5eees iq

= dF Ss(H™).

Hence, we have

Fs(yny = 20
O
Theorem [3.3.6|is a direct result of Lemma [3.3.20l Here is the proof.
Proof of Theorem[3.3.6. By Lemma [3.3.20] we have
A _
Take the sum over § € S; such that d(F'Ss) is of degree d + 1, we have
oM™ _ Y M, 3PS = HV () )
d(FSg) =it d(FSg)=d+1
O

Remark 3.3.21. By Theorem|[3.3.6, given any minimal transitive factorization

([51],52, ""5H3(C¥)’0)7

it corresponds to a unique permutation B € Sq such that dD(FSz) = d+1. This type of tran-
sitive factorization gives the construction of the operator F'Sg. All transitive factorizations

of this type contribute to the generating function

FSa(Hy™),
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more precisely,

O(H7™)s

au :FSB(Hd )

With Lemma [3.3.20] and Theorem [3.3.6] we have the following corollary.

Corollary 3.3.22.

1 <z - +i>zlpia—pi — 2H] ) = HW ([d))(H]"™).

Proof. Theorem |3.3.20] gives us the following equation,

OH™

o = HW([d]) (™). (3.3.5)

Recall the definition of H"" and ]ch’lm” (Construction [3.3.3). We know
H™ (2,1, pay-.) = HP (2,0, 01, P2y o) et
Let u = 1. The RHS of the equation (3 is
Right Side = HW ([d]) (™) lumr = HW ([d]) (H;™).

Now we want to calculate the LHS of (3.3.5) when u = 1. By simple calculations, we have

1

aHmln Z ut ( )—
=2 Ha —Md(a)! @ (),

n>1 akn
8Hm7,n
S Y )!‘MO‘%
n>1 abn

aHTrLln 1
i I(c P ().
;ﬁ” ZZ ey ™

where [(«) is the length for the partition o. By Lemma [3.3.2] we know
i ntlla) -2
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Hence, when v = 1, LHS of the equation in Theorem [3.3.6] is

LHS = —%— |,—1= d i~ — 2H"™).
ou = d—1 (2 0z + ;p op; i)
Combining LHS and RHS, we prove this corollary. O]

3.4 Generating Function of d-Hurwitz Number

Recall the d-Hurwitz number hLd](a) and the d-Frobenius number fid](a) (see Definition
3.2.6). The Frobenius number flgd}(a) counts the number of coverings of P! with k + 1
branch points (not necessarily connected), where k branch points correspond to d-cycles and
the other one corresponds to a cycle of type . We have an equation in Theorem [3.2.7]
satisfied by the generating series for the Frobenius numbers. The Hurwitz number hLd](a)
counts connected coverings. In this section, we will derive an equation satisfied by the

generating functions
) L5 ) L
H (y, n—Zth ()77 2(a) -
n> k=1 atn :

In the previous section, we discussed the minimal Hurwitz number hl¥(a) = Bl d(a)< Q).
For example, let a be the partition (12) of 2. Then ((12),(12),(1)(2)) is a well-defined
minimal transitive factorization of a contributing to h[;](oz) = h%(a). In this section, we
discuss all transitive factorizations (not necessarily minimal). For example, the transitive
factorization ((12), (12), (12), (12), (1)(2)) contributes to the 2-Hurwitz number h (a).

Let ([01],02, ..., 0,a(),0) € Ab(a) (See Definition . We found in Lemma m
that the action of the group generated by {ds,...,d,4(,)} has exactly dD(FSs) connected
components. This property gave us the idea to construct the operator FS 3 (see Construction
3.3.3). We emphasize that the number of connected components is exactly the number of
disjoint cycles of 3 (or dD(FSg)) under the "minimal” condition (see Remark [3.3.5).

Now we are interested in all transitive factorizations d;...0 = o, not necessarily minimal.
In this case, if ¢/ = [6;]7'o, with RP 3 with respect to [0;], the number of connected
components of (dg, ..., 0k, 0’) is between 1 and dD(FSs).
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For example, let o = (1342). We have the following two transitive factorizations
= (23)(12)(34)(34)(34) = (23)(12)(23)(23)(34).

Clearly, (1)(2) is the RP of ¢/ = (12)(34) with respect to [01] = [(23)] in both cases. But the

number of connected components is different:

[01] o' (02, 03, 04, 05) # connected components
2, 3] (12)(34) ((12),(34),(34), (34)) 2,
[2,3] (12)(34) ((12),(23),(23),(34)) 1.

Let’s take d = 2 and consider the generating function H?. Details can be found in [I3].
Consider a transitive factorization ([01], 2, ..., 0, ). 5 is the RP of ¢’ = 05...0;, with respect
to the 2-tuple [d1]. There are three possible cases.

e 3 =(12). In this case, (9, ..., 0k, 0’) always has one connected component. All transi-

tive factorizations in this case contribute to the generating function

OH?
a Z + ] pzp]

zg>1 Op ’ﬂ

e 5= (1)(2) and (02, ..., 0, 0’) has one connected component. The generating function

constructed from all transitive factorizations in this case is

HA

5 Z ]pz—i-Ja 3

7,j>1 pﬂ

e 5 = (1)(2) and (d2,...,0,0') has two connected components. Similarly, this case

contributes to following the generating function

l— .  OHZoHV
§lepz‘+j——-

= dp;  Op;
Hence, we have
OHR 1 OHP 9*H®  9HP 9HU
o —52; (H‘J Pibig, — +ipiig, o i )
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In fact, the transitive factorization in the second case and third case have the same
RP 5 = (1)(2), but with different number of connected components. We introduce a new
notation F'S 3, B € Sy, as follows

—~ 1 S 0
FS9) = 5 Z(Z + J)pivi

)
ij>1 Opity

—~ 1 0? 0 0
FSaye) =5 D ijpi+j (— + o X —) :
2 ”221 OpiOp;  Op;  Op,
We want to extend this construction to any permutation g € S;. With the same no-
tation as above, we know the number of connected components of (da, ..., dx, ¢’) should be
between 1 and dD(F'Sg). Assume that there are ¢ connected components. We break the
set {B1, ..., Bap(rsy)} into @ nonempty disjoint sets. Denote by SParg; the set of all possible
cases.

For example, let

B = (15205

Then, SParg s has three elements

SPCLTBQ = { {{61762}7 {63}}7 {{517 63}7 {52}}7 {{ﬁ% 53}7 {ﬁl}} }

Now we return to the general case 8 = fi...04p(rs,) and let Par € SParg;. Then, Par

has i elements, Pary,...,Par;. Recall that for iq,...,iq4 > 1 and § € Sy, we define a polynomial

pp(i1,...,7q) and a differential operator %(z’l, ...,1g) in Construction [3.3.3| Similarly, we

define the operator F'Par;(iy,...,iq4) as

FPary(ir, i) = [] <Z%>aAL

B'ePar; jeB’ ijEB/ i
Then, we define the operator FS 3,i,par as follows

FSgipar== Y Ba.nsliv,ria) (Xiy (FPar;(i, ... 1a))) - (3.4.1)

U15eeylg 21

S

The operator (x’_,(FPar;(i1,...,iq))) means that each element in Par corresponds to a

connected component, where x;zl is the "product” of differential operators from different
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connected components, the same as the product defined in FS 3, and Hﬁ,

composition of differential operator as in Construction [3.3.3] Consider the example

Par = {{(2),(3)},{(1)}} € SParq)@@3).2-

For Par; = {(2),(3)} € Par, we have

0 0?
FP@Tl(ilaiQai3) = H —— =iy (.
gepar, OPF Opi, Opis
Similarly, Pary = {(1)} gives
0 0
Fparg(il,ig,ig) = H —_— :il .
B'€Pars apﬁl ap“

Finally, we take the ”product” of these two differential operators

0? « i 0
apizapi3 ! apzl '

(X?Zl(FPCLTj(il, 12,23)))) = i913

9
€Par; 8}36,

is the

Remark 3.4.1. Let 8 be a permutation in Sy. Clearly, SParg, and SPﬁ’dD(Fsﬁ) have only

one element. We have the following relations

.F/;B'BJ - FSﬁ,
ﬁ@dD(FSg) == P/—;S’B.

If B has only one disjoint cycle (corresponding to a full length partition), we have

FS5=FS5=FSj.

Given an element Par € SParg;, we already defined the operator F8 3.i,par Dy Equation

(3.4.1f). Define F/’B’m by summing over all elements in SParg;, i.e.

F/;\Sﬁ,i = Z P/H\S’B,i,Pm"

PareSParg ;
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Similarly, the operator ﬁS’B is the sum of ﬁk\gw for 1 <i < dD(FSp), i.e
dD(FSg)
FSy= Y FSg, (3.4.3)
i=1

Finally, we give the definition of W([d])

Definition 3.4.2. Let d be a positive integer. Define W([d]) as the sum of ﬁS’B (Eq. (3.4.3)))
over § € Sy, i.e.

Theorem 3.4.3.

Proof. We only give the idea of the proof. Details are similar to the proof of Theorem |3.3.6,
Consider a transitive factorization ([01], 2, ..., 0k, ). 5 is the RP of ¢’ = 05...0;, with respect
to the d-tuple [0;] and (dg, ..., 0%, 0’) has i connected components. This gives an element
Par € SParg;. In fact, all such transitive factorizations contributes to the generating

function
ﬁﬁ,i,Pur (H[d] ) .

All transitive factorizations ([d1], d2, ..., O, o) with RP S give the generating function

FSs(H") = | Y Y FSgipa | (HY).

1<i<dD(FSg) PareSParg ;

By summing over all g € S;, we have

oHM
= W ([d))(H").
o = W) (H)
O
Example 3.4.4. We already gave an example d = 2 as above. Here, we give another

example, d = 3.
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1. We begin with the easiest two operators ﬁg(lgg) and ﬁg(ggl). Since (123) and (321)

have only one disjoint cycle, so

FSa3) = FS(123) = FS(123),
FS 321y = FS321) = FS(321).-

2. Now let’s consider the permutations B = (12)(3) or (13)(2) or (23)(1), which have two

disjoint cycles. It is easy to check the following relations

j52;571 — fpé;@,
FS4s = S,

Hence, we have

F<\Sg = F/’L\9571 —G—F/E’@Q = FSB —|—F/TS'5.

3. Finally, let 8 = (1)(2)(3). The number of connected components can be 1,2,3. If we
have only one connected component, SParay2y 31 = {{{(1),(2),(3)}}}, where there is
only one element {{(1),(2), (3)}} in the set SParuy2)s),1- By calculation, we find

j;E;ﬁ71 - ]?2;5.
If the number of connected components is two, SPargo has three elements

SPargs = {{{(1), (2)}:{3)}1}, {1, 3} {2)}}, 11(2), B)}, {3}

We take Par = {{(1),(2)},{(3)}} as an ezample as above. We have

—~ 1 o 0? 9,
FS1)2)3)i,par = 3 Z 112203y +ig+is Opr Op; X opr.
i1 Qo i3

i1 yeenyiz>1

The reader can write down the operator F/%'(l)(g)(g)7i7par for the other two elements in
SPargy similarly. Now let’s go to the case that we have three connected components.

In this case,

SParmyee, ={ {({(WH{@HL{B)}} }
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in which the unique element {{(1)},{(2)},{(3)}} has three element. By calculation,

we have
FSuy@)@)3 = FS1@)3)-

With the discussion above, we have

W(3) =Y FSs

BESs

= FSuz) + FSaan+ Y (FSs+FS)
Be{(12),(28),13)}

+FS m@E) T FSnee) + 153(1)(2)(3)72
= W([3]) + HW([3]) — FSq23) + }7:9’(1)(2)(3),2

3.5 Topological Recursion

In this section, we consider a ramified n-fold covering of IP; by a genus g smooth curve with
k + 1 ramified points, where k of them correspond to d-cycles and the last one corresponds

to a permutation of type . By Riemann-Hurwitz formula, we have
2g—2=n(=2)+((d— 1)k —l(a) +n).

The number of ramified points corresponding to d-cycles is

n+l(a)+2g—2

k=
d—1

(3.5.1)

Denote this number by u%9(a). We emphasize that, given d, o, n, the genus g and the number
of simple branched points k& determine each other uniquely.
We define Al%9(a) to be the number of (u®9() + 1)-tuples (1, ..., 6,44 (a), 0) satisfying

the following conditions
e §; is of type (1"7¢d) (or d-cycles), 1 <i < pu®9(a) and o is of type «,
[ 61...6ud,g(a) = 0,

e the subgroup generated by {41, ...,0,4.0(4)} acts transitively on the set {1,...,n},
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Define the generating function of hl?9(a) as following
] @ w
H 7g(uap) =H 7g(uaplap%--- Z Z

n>1 : akFn Oé))'

Clearly,

[e.e]

— Hldg

We use another parameter y for the genus g and define the generating function as

H(y Z Hday9
g=1
Given a transitive factorization ([01], ..., Ik, o) corresponding to a genus g covering, delet-

ing the first d-tuple (or d-cycle), we get a factorization (ds,...,dx,0") of 0/ = d5...0,. We
assume [ is the RP (see Definition of ¢’ with respect to [01]. If (Ja, ..., %, 0’) has
1 connected components X, ..., X;, each of which corresponds to a transitive factorization
of a permutation o;, 1 < j < 4. Assume that the transitive factorization of o; (of type ;)

corresponds to a genus g; covering. We have

nj + (o)) +2g; — 2
d—1 ’

n+l(a)+2g—2
d—1 ’

kj:

k:

where k; is the number of permutations in the factorization of o; and n; is the cardinality

of X;. Based on the following three equations

Ski=t-1 Y n=n Zzaj — dD(FS3) + dP(FSp) = l(a),
j=1 i=1

we have

_ n+4l(a) = dP(FSg) + dD(FSg) + 3)_, (29, — 2)
B d—1 '
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The above calculation gives us the relation for the genus,

gj = 5 =g —dD(FSs) +1, (3.5.2)

z’: 29 —1—d+dP(FSg) — dD(FSg) + 2i
J

Jj=1

where the second equality comes from d + 1 = dD(FSg) + dP(FSs) by Lemma [3.3.10
This formula tells us that when we add a d-cycle 0; to a covering (may not be connected)
corresponding to the factorization (ds, ..., 0k, 0’), the genus of the corresponding transitive

factorization (1, ..., 0, o) will increase by
dD(FSg) — 1.
With this property, we add the parameter y to the operator FS 3,i as follows
ﬁgﬁz(w — P/w\sﬂ’iydD(FSﬁ)—i'

Similar to Definition [3.4.2, we define

dD(FSg)
WD) =S > FSsily). (3.5.3)
BESy =1

With the same proof as Theorem [3.4.3], we have the following corollary.
Corollary 3.5.1.

W) ) o) 119,

Recall that P/’\SI&Z'(H ) is the ”product” of differential operators acting on the same
generating series H'%. Since the differential part of F<\S'57i is defined as the ”product” of ¢
differential operators, we can define S gi(H [dhgr ... H9:9) as the i differential operators

acting on Hldar  H9 separately. For example,

—~ 1 o 92 Hldar 9 pldl.g2
FS(1)(2)(3),¢,PM(H[d}’gl,H[d]"%) =3 Z 112283Dj +ig+is Opr. Op; X api
11 12 i3

i1,050321

’

where i = 2 and Par = {{(1),(2)},{(3)}}.
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Corollary 3.5.2 (Topological Recursion for Connected d-Hurwitz number).

dD(FSp)

H[ 1,9 Z Z Z ﬁﬁ,z’(H[d]’m? e H[d},gi).

peSy =1 g1+-+9;=
g—dD(FSg)+i

Proof. We give two proofs for this corollary. For the first one, given a power series f(y) €

Clly]l, [¥"]f(y) means the coefficient of y™ in f(y). Then, this corollary comes from Corollary
by taking the coefficient of 39, i.e.

[d] —~
12— ) ) 9 ), (3.5.4)

The RHS of Eq. (3.5.4) is

dD(FSg)

[y TW ([d)) (y) H " 130 > FSsily)H Y y)
peSy; i=1

vy Z FS@z y) (D HIyT)

BESy =1 g’'>0
dD(FSg)

Yy~ dD(FSg)—H Z Z FSg ZH[d]g

BeSy i=1 g'>0
dD(FSg)

=3 ¥ > FSg,(H\ Do gl

peSy i=1 91+ +9;=
g—dD(FSg)+i

Now we give another method to prove this formula. Given a transitive factorization
([01], ..., Ok, o) corresponding to a genus g covering, delete the first d-tuple (or d-cycle), we
get a factorization (0, ..., O, 0’) of 0’ = ds...0;. We assume that 3 is the RP of ¢’ with respect
to [01]. If (g, ..., 0k, o) has i connected components, each of which corresponds to a transitive
factorization of a permutation o;, 1 < j < 4. Assume that the transitive factorization of o;

corresponds to a genus g; covering. By Equation (3.5.2)), we have

Zgj:g—dD(FSg)-i—z

=1
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All such transitive factorizations ([d1], ..., 0, o) contribute to the generating function

dD(FSp)

Z Z ﬁﬂ7i(H[d]7gl, - H[d]vgi>‘

g1+.--+9;=
g— dD(FSﬁ)-H

Taking the sum over 3, we get the generating function. O]

Example 3.5.3. Corollary gives a recursion formula for H'W9. Let’s consider the
example d = 2. We get the following equation

H[2 Z OHP2lg o2 H29-1
=5 2 i+ ippj—5— +ijpiej— 75—
”>1 7 op Pi+j I OpiOp;
O H12har 912192
+ Z Z]pz+] .
g1+g2=g 8}? apj

Taking the coefficient of [y°], i.e. g =0, we have

8H[2]’0 Z 8H[2] 0 8H[2 1,0 8H[2]’0
=5 i+ J)pipj——— + ijpi S
8u 2]>1 ! 8 l—‘r] T op apz 6pj
This equation is exactly the formula in Theorem when d = 2.
Taking the coefficient of [y'], i.e. g =1, we have
aH[Q Z aH[2] 1 82 [2],0
=3 i+ J)pip; +1pitj
zg>1 jalﬂ " OpiOp;
H2hor 97292
+ > ipees
g1+g2=1 apj

This formula only contains HPO and HP' . Hence, if we solve the genus zero case, then we
can plug the solution into this equation and solve for HP'. In fact, Goulden and Jackson
use this idea to calculate the genus one covering [13]. Using similar method, they calculate
the genus two and three covering in [1])] and make the polytonality conjecture, which was
proved by Torsten Ekedahl, Sergei Lando, Michael Shapiro and Alek Vainshtein [3] [6] by the
ESLV formula.
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Example 3.5.4. In this example, we study the case d = 3. By Corollary[3.5.9, we have

OHBlL9

api+j+k

OHBLy
ou

=3 > ((i+ 5+ k)i

i,5,k>1

0?2 H[2lg—1 2 H 2o 52 [1(2).92
+3i(j + k)piripk————— +3 i(J + k)pitiDk
N OpiOpjin g1+zg; , U Ops O
OHBl9—2 O HBLar 9 FBlg2
+ ijkpivjrk s T 1JkDivjtk
" Opidpiopr +922291 T dpi Op;Opw
N OHBLa 9 FrBLez 9 [rl3lgs
+ Z 1Jkpitjr o o D
g1+92+9gs=g pi P Pk
+ 0+ 7+ K)Pitjrk
R api-i—j—l—k
Taking g = 0, we have
8H[3]’0 1 aH[B],O 82H[2]’0 62H[2]’0
=5 > (G+7+k)pip;p +3i(j + K)pit;pr
Ou 3 ”%1 S Opi g N Op Opjan

L QHB g0 HIY
+ 1)RDitj+k o p, opr

Y

which 1s exactly the formula proved in Theorem|3.5.6l. This formula first appears in Goulden
and Jackson’s paper [19]. But people do not know how to solve this formula and find the

Huruntz numbers in this case. Taking g = 1, we have

OHBM 1 OHBM O*HEO
=3 i+ J + k)pip;p +3i(J + F)piviPr
du 3 ”%1(( Jpip; kapi+j+k ( Jpiti kapiapj+k
92 H 291 92 [(2].92 OHBLO § B0
+3 i(J + k)pi+jpx + ikpitjr—p—
1_%2: 1 +] Opi Opjtk R O Op;Opy,
N OHBLar 9 Bla2 9 393 1310
+ ) kP 5 o T+ R)pisigy——).
g1+g2+g3=1 pi Dj Dk Pitj+k
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