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ABSTRACT 

This thesis focuses on the design and optimization of modular, reconfigurable, hosted 

payload platforms operating in Earth orbit. Recent advancements in on-orbit servicing 

technologies and robotics are creating a market for hosted-payload platforms which can support 

multiple payloads with varying requirements. Such platforms can employ on-orbit servicing and 

robotic manipulation to repair or replace modules, enhance the platform’s capabilities over time, 

and reconfigure modules to optimize performance. Traditional spacecraft design is often driven 

largely by payload requirements. For the case of persistent platforms, however, not all payloads 

will be known in the initial design phase. This presents a unique challenge to designers, who must 

account for the uncertainty of future payloads by trading off between the costs of adding more 

capability to the platform initially, which assumes the risk of wasted costs due to over-designing 

the platform, and the costs of utilizing an on-orbit servicer to add capability as needed. The hosted 

payload platforms considered in this thesis consist of platform modules and payload modules and 

uses a standardized interface for intermodular and customer payload connection. Each platform 

module contains a critical satellite subsystem that is necessary for on-orbit functionality. As 

payloads are added to the platform over time, their demands may exceed the current capability of 

the platform, at which point additional platform modules can be added to increase the platforms 

capabilities. This thesis proposes an approach using a multi-stage stochastic programming method 

to create an initial platform design that is robust and flexible enough to support a wide range of 

payloads and minimizes the expected costs of future platform additions. Probability distributions 

for future payload selections are created based on a survey of active satellites. These distributions 

are then used to create samples of payload selection scenarios. Using a simple cost model, the 

expected costs associated with the addition of new payloads and the required platform modules 
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are computed for each scenario in the sample. A genetic algorithm is used to find an optimal initial 

platform size that minimizes the combined total of the initial cost of the platform and the expected 

on-orbit servicing costs associated with adding future payloads and platform modules for each 

scenario. Platform designs are compared for a range of on-orbit servicing costs to determine the 

cost at which the optimizer begins to utilize servicing over adding more capability initially. Finally, 

a sensitivity analysis is performed to assess the variations in platform design due to the randomly 

selected payload scenario samples. The results of this work are a first step towards a solving a 

unique challenge presented by an emerging and increasingly relevant mission concept. 
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1. INTRODUCTION 

1.1 Motivation 

In today’s space industry, there has been an ever-increasing interest for sustainable 

spacecraft architectures that utilize on-orbit servicing (OOS). OOS addresses several issues with 

the process of designing and maintaining conventional monolithic satellites. It offers the 

opportunity to extend the operational lifetime of a satellite by resupplying propellant or repairing 

faulty components, reduce cost and complexity by relaxing the constraints on fault tolerance, 

correct a sub-optimal orbit insertion, or to remove nonoperational satellites from useable orbits 

[1]. In the past few years, architectures utilizing OOS have become even more relevant as 

significant progress has been made towards the development of OOS technologies. Several 

missions, such as DARPA’s Robotic Servicing of Geostationary Satellites program and Northrop 

Grumman’s Mission Extension Vehicle, seek to progress the capabilities of autonomous servicing 

spacecraft by demonstrating on-orbit servicing on active geostationary satellites in the near-term 

[2] [3]. A necessary aspect of OOS is the use of robotic manipulators capable of autonomously 

performing any tasks required to service or assemble satellites. Several robotic manipulators have 

already gained experience on-orbit [4] [5], or will soon be launched [6]. Additionally, NASA’s 

Dragonfly project aims to develop a robotic manipulator which will enable robotic self-assembly 

of satellites in Earth orbit [7]. 

The developing technologies mentioned above lay the foundation for a new type of 

architecture known as a hosted payload platform (HPP). Hosted payload platforms are persistent 

satellite platforms which are designed to support payloads by providing all necessary subsystems 

of a satellite. Payloads can be added or removed from the platform as necessary using a robotic 

servicing spacecraft, henceforth referred to as a “servicer”. Without the need to develop a dedicated 
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satellite platform for a payload, universities or small businesses could instead focus solely on 

designing a modular payload and would not incur the costs and schedule delays normally 

associated with commissioning a full satellite mission [8] [9]. As a result, space would become 

more accessible to a wider range of customers. Hosted payload platforms would also help to 

alleviate the overcrowding of the space environment. Platforms hosting multiple payloads in GEO 

would help to maximize the number of remaining orbit locations available for commercial use, 

while platforms in LEO would help to reduce space debris as a servicer could deorbit the payloads 

it removes from the platform [10]. With the increased frequency of launch opportunities seen in 

recent years, hosted payload platforms would be able make use of the more rapid response times 

to repair or replace faulty components and restore full capabilities of the platform before 

functionality is lost.   

1.2 Hosted Payload Platform Mission Architecture 

The hosted payload platforms considered in this thesis consist of platform modules and 

payloads. Each platform module contains a critical satellite subsystem that is necessary for on-

orbit functionality. This thesis considers four types of platform modules: Attitude Determination 

and Control Systems (ADCS), communications/command and data handling, power, and 

propulsion. The design of each platform module adheres to a specific form factor. The four form 

factors considered in this work are the Payload Orbital Delivery System (PODS) and PODS-

Extended from Space Systems Loral [11] and the Evolved Expendable Launch Vehicle (EELV) 

Secondary Payload Adapter (ESPA) and ESPA Grande form factors from Moog CSA Engineering 

[12]. These form factors were chosen because they were designed to be launched as a secondary 

payload on larger launch vehicles, resulting in reduced launch costs and more frequent launch 
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opportunities, and because their structural design facilitates modularity. The form factor 

specifications are described in more detail in Section 3.1.  

It is assumed that a servicer will be responsible for the delivery of modules from their 

launch orbit to the platform, assembly of new modules to the platform, reconfiguration of the 

platform, and refueling of propulsion modules. The modules are assumed to be connected via a 

standardized interface mechanism that supports inter-module power and data connections. The 

modular design of the platform allows it to employ on-orbit servicing and robotic manipulation to 

repair or replace modules, enhance the platform’s capabilities over time by adding platform 

modules, and reconfigure modules to optimize performance.  

1.3 Stochastic Payload Selection 

Traditional spacecraft design is often driven largely by payload requirements. For the case 

of hosted payload platforms, however, not all payloads will be known in the initial design phase. 

The uncertainty of future payload selection presents a unique challenge to designers. An HPP must 

be designed so that it can support almost any combination of unknown payloads with varying 

requirements. On-orbit satellite servicing is not an inexpensive service by any means, although the 

cost can be reduced in the long term through the advancement of servicing technologies and the 

development of space infrastructures to support servicing. Because of the high cost of servicing, a 

designer must tradeoff between adding more capability to the platform in the initial phase and 

adding more capability on an as-needed basis. In the latter case, a servicer will add more capability 

to the platform as payloads are determined. This would incur higher servicing costs but would 

prevent the platform from being given more capability than necessary. In the former case, the 

more-capable initial platform can be assembled before it is launched which reduces dependence 

on a servicer and therefore reduces cost. However, creating an initial platform design with higher 
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capability introduces the risk of over-designing the platform. For example, if the platform is 

designed for the worst-case scenario in which it must support multiple payloads with high mass 

and power requirements, there is a chance that the actual payloads it will support require very little 

capability, resulting in wasted costs from launching unused mass to orbit. This thesis classifies the 

problem of uncertain payload selection for HPPs as a stochastic programming (SP) problem and 

attempts to solve the problem by applying SP methods found in the literature. 

1.4 Thesis Overview 

This thesis aims to apply stochastic programming methods to solve the problem of 

uncertain payload selection for HPPs by optimizing the initial platform design to find a solution 

that is feasible for most or all possible combinations of payloads while minimizing the total cost 

of launching and servicing the platform as it evolves within an on-orbit servicing framework.  

Chapter 2 of this thesis develops a background in stochastic programming methods, 

problem formulations, decision-making processes, and describes how to interpret results. Chapter 

3 describes the hosted payload platform mission architecture used in this work, along with the 

methodology used to apply stochastic programming methods to the problem of hosted payload 

platform design. Chapter 4 presents the results of the stochastic programming methods used and 

discusses the significance of these results. Finally, Chapter 5 summarizes the findings of this thesis 

and outlines several directions for future work on this topic. 
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2. STOCHASTIC PROGRAMMING 

Stochastic programming is an optimization approach for modelling problems that involve 

some degree of uncertainty, or randomness. Unlike deterministic optimization problems, which 

are formulated using known data, stochastic optimization problems need to include parameters 

that are unknown at the time a design decision needs to be made. For many SP problems, including 

the problem of hosted payloads, a probability distribution for the uncertain parameters is known 

or can be estimated. The objective is then to create a decision-making framework that leads to a 

solution that is feasible for all or most realizations of the uncertain parameters, which are 

characterized by their probability distributions, and performs well on average [13]. Some fields 

where SP has been useful include capacity planning, production planning, transportation and 

logistics, and financial management [14]. 

2.1 Classes of Stochastic Programs 

Mitra [15] categorizes SP problems into three main classes: distribution, chance constraint, 

and recourse problems. Distribution problems are solved by varying inputs to obtain a distribution 

of solutions or objective function outcomes to the SP. This type of problem is considered to be the 

equivalent of a sensitivity analysis in linear programs and is used to determine the robustness of 

the model. Chance constraint problems are formulated to ensure that the probability of satisfying 

a constraint is above a specified level. This formulation restricts the feasibility region which leads 

to a high level of confidence in the solution. Recourse problems are problems where a decision is 

made before a random event occurs followed by a recourse decision made after a random event is 

realized which is meant to make any corrections to the previous decision. The initial decisions are 

made using knowledge of the probability distributions associated with the random events while 

the recourse decisions are made with the new knowledge the realization of a random event. The 
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problem of stochastic payload selection for hosted payload platforms falls into the recourse 

problem class of SPs and is described in further detail in the following sections. 

2.2 Two-Stage Stochastic Programming 

In two-stage stochastic programming, two decisions are made. The first-stage decision is 

made based on available data and does not depend on future observations. This decision is made 

to optimize the cost of the first-stage decision plus the expected cost of an optimal second-stage 

decision. The second-stage decision is another optimization problem to find the best recourse 

action to take following the realization of the uncertain data. Following the formulation of Shapiro 

and Philpott [13], the standard form for a two-stage SP is shown below in Equation (1) 

 min
𝑥

 𝑔(𝑥) = 𝑐𝑇𝑥 + 𝐸[𝑄(𝑥, 𝜉)] (1)  

Where 𝑥 is the first-stage decision vector, 𝑐𝑇𝑥 is the cost of the initial decision, 𝜉 is the vector 

containing the uncertain data, and 𝑄(𝑥, 𝜉) is the optimal value of the second-stage problem 

 
min

𝑦
= 𝑞𝑇𝑦

𝑠. 𝑡.   𝑇𝑥 + 𝑊𝑦 ≤ ℎ  
 (2)  

In Equation (2), 𝑦 represents the second stage decision vector, the term 𝑞𝑇𝑦 represents the 

cost of the recourse decision, and 𝑞, 𝑇, 𝑊, and ℎ contain data from the second stage. In the 

constraint of Equation (2), the 𝑊𝑦 term makes a correction for any inconsistencies in the system 

𝑇𝑥 ≤ ℎ. If the uncertain vector 𝜉 has 𝐾 finite realizations, also referred to as scenarios, with known 

probabilities 𝑝𝑘 for 𝑘 = 1, … , 𝐾, then the expected value for the optimal second-stage decision can 

be discretized as 

 𝐸[𝑄(𝑥, 𝜉)] = ∑ 𝑝𝑘𝑄(𝑥𝑘, 𝜉𝑘)

𝐾

𝑘=1  

 (3)  
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Now, the two-stage problem can be reformulated as a single optimization problem as seen in 

Equation (4) below. 

 

min
𝑥,𝑦1,…,𝑦𝐾

𝑐𝑇𝑥𝑘 + ∑ 𝑝𝑘𝑞𝑘
𝑇𝑦𝑘

𝐾

𝑘=1

𝑠. 𝑡.   𝑇𝑘𝑥𝑘 + 𝑊𝑘𝑦𝑘 ≤ ℎ𝑘  , 𝑘 = 1, … , 𝐾,

 

𝑥1 = 𝑥2 = ⋯ = 𝑥𝐾 

(4)  

The last constraint of Equation (4) is known as the non-anticipativity constraint, which 

forces the initial decision to be identical for every scenario. Without the non-anticipativity 

constraint, the decision variables 𝑥𝑘 would be allowed to depend on a realization of the uncertain 

data at the second stage which is not suitable for the two-stage decision model.  

2.3 Multi-stage Stochastic Programming 

Multi-stage SPs can be viewed as an extension of two-stage SPs [13]. This type of program 

is useful in problems where probabilistic data is realized sequentially over certain periods of time. 

Each time a random parameter or outcome is observed, that data becomes available to the decision-

maker and a recourse decision is made. In multi-stage SPs, decisions made at each stage must 

account for previous decisions as well as the residual uncertainty at every future stage.  

Scenarios in MSSPs are created from a sequence of realizations of a random variable. This 

sequence is represented by the vector 𝜉 =  𝜉1, … , 𝜉𝑁, where N is the total number of stages. 

Scenario trees are used to represent the branching process made by the realizations of 𝜉. An 

example of a scenario tree is shown below in Figure 1. 
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Figure 1: Scenario Tree Example 

The circles represent nodes where decisions are made, and each node is connected by a 

branch. The first node is called the “root” node and all others are “children” of the previous nodes. 

The numbers associated with each branch represent the probability of that realization occurring. 

In the example presented above, there are two stages and three possible outcomes after stage, 

resulting in 32 possible scenarios. To obtain the probability of a specific scenario occurring, one 

would multiply the probabilities of every branch which lead to the scenario. For example, the 

probability of scenario 3 in Figure 1 occurring is 𝑃 = 0.6 ∗ 0.1 = 0.06. 

Following a realization of 𝜉, a corresponding decision is made. The decision vector is 

represented by 𝑥 = 𝑥0, 𝑥1, … , 𝑥𝑁, where 𝑥𝑛 is the decision made at the nth stage. The general order 

of events is as follows:  

1. Initial decision 𝑥0 is made, accounting for the uncertainty 𝑃(𝜉1, … , 𝜉𝑁)at every future 

stage 

2. Random variable 𝜉1 is observed 

3. Decision 𝑥1(𝑥0, 𝜉1) is made, accounting for the uncertainty 𝑃(𝜉2, … , 𝜉𝑁) 

4. Random variable 𝜉2 is observed 

5. Decision 𝑥2(𝑥0, 𝑥1, 𝜉1, 𝜉2) is made, accounting for the uncertainty 𝑃(𝜉3, … , 𝜉𝑁) 
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This process continues until 𝜉𝑁 is observed and the final recourse decision 𝑥𝑁 is made.  

As mentioned above, each decision can only depend on the previous decisions and the 

previous realizations of uncertain data. During the planning stage, decision makers can consider 

as many scenarios as desired, but when decisions are made, they cannot depend on realizations 

that have not yet been observed [14]. In order to force decisions to have no dependence on future 

realizations, the non-anticipativity constraint from the two-stage formulation can be extended to 

the multi-stage case. This constraint is formulated as 

 

𝑥𝑘
0 = 𝑥𝑗

0, ∀𝑘, 𝑗 ∈ {1, … , 𝐾} 

𝑥𝑘
𝑛 = 𝑥𝑗

𝑛, 𝑤ℎ𝑒𝑛   𝜉𝑘
1, … , 𝜉𝑘

𝑛 ≡ 𝜉𝑗
1, … , 𝜉𝑗

𝑛, 𝑛 ≠ 0  
(5)  

Where 𝑘 represents the scenario and 𝐾 represents the total number of possible scenarios. As an 

example, when applied to the scenario tree in Figure 1 with nine scenarios, the constraint yields 

𝑥1
0 = 𝑥2

0 = ⋯ = 𝑥9
0 

𝑥1
1 = 𝑥2

1 = 𝑥3
1 

𝑥4
1 = 𝑥5

1 = 𝑥6
1 

𝑥7
1 = 𝑥8

1 = 𝑥9
1 

Now, the optimization problem formulation for a multi-stage SP with a finite number of 

scenarios and discrete probabilities can be formulated as follows: 

 

min
𝑥

∑ 𝑝𝑘 ∑ 𝑐𝑘
𝑛𝑇

𝑥𝑘
𝑛

𝑁

𝑛=1

𝐾

𝑘=1  

 

𝑠. 𝑡.   𝑥𝑘
0 = 𝑥𝑗

0, ∀𝑘, 𝑗 ∈ {1, … , 𝐾} 

𝑥𝑘
𝑛 = 𝑥𝑗

𝑛, 𝑤ℎ𝑒𝑛   𝜉𝑘
1, … , 𝜉𝑘

𝑛 ≡ 𝜉𝑗
1, … , 𝜉𝑗

𝑛, 𝑛 ≠ 0  

(6)  
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3. METHODOLOGY 

3.1 Hosted Payload Platform Mission Architecture 

3.1.1 Platform Module Design 

The hosted payload platform considered in this work consists of platform modules and 

payload modules, all of which are connected via a standardized interface mechanism that supports 

power and data transfer between modules. Each platform module contains a critical satellite 

subsystem that is necessary for on-orbit functionality of the platform. Although there are many 

ways to define the platform modules, this thesis considers four types. The different types of 

modules and their core functions are shown in Table 1 below. When the demand from the payload 

modules exceeds the platforms current capabilities, additional modules are added to meet the 

requirements of the payloads. 

Table 1: HPP module types 

Module Functions 

ADCS Attitude determination and control for platform 

Communications 
Transmission of telemetry and payload data; command and 
control for station as a whole 

Power Power generation, storage, and distribution 

Propulsion Orbital station-keeping and momentum dumping 

 

3.1.2 Module Form Factors 

Four module form factors have been considered for this work. Two are based off the PODS 

and PODS-Extended designs from Space Systems Loral [11] and the remaining two are based off 

the ESPA and the ESPA Grande designs from Moog CSA Engineering [12]. These form factors 
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were chosen primarily for their ability to be launched as a secondary payload, which leads to more 

frequent and less expensive launch opportunities. Also, the size ranges between the form factors 

allow for a wide range of potential payloads, as modules that are too small would not be able to 

support large payloads and modules that are too large would be inefficient. The physical 

characteristics and limitations of the form factors are presented in Table 2. 

Table 2: Form factor physical characteristics [11] [12] 

Form-Factor Company 
Mass limit 

(kg) 
Length 

(m) 
Width 

(m) 
Height 

(m) 
Volume 

(m3) 

PODS SSL 75 1 0.5 0.4 0.20 

PODS Extended SSL 150 1 1 0.6 0.60 

ESPA Moog CSA Eng. 180 0.97 0.71 0.61 0.42 

ESPA Grande Moog CSA Eng. 320 1.42 1.17 1.07 1.78 

 

 In this work, the HPP is assumed to consist modules of a single form factor. A standardized 

form factor is ideal because it lowers the complexity of module design and better facilitates 

assembly and reconfiguration of modules on-orbit. However, varying form factors would lead to 

an interesting optimization problem in which the form factor would be included as a decision 

variable. This problem will to be left for future work, and the module form factor is left as a 

constant parameter input by the user.  

3.1.3 Servicing Infrastructure and Assumptions 

 As the satellite servicer and servicing architecture are not the focus of this thesis, several 

assumptions are made about the servicer’s capabilities. One assumption is that the servicer will 

have the ability to refuel depleted propellant tanks. Refueling a propellant tank is likely to be more 

cost effective than launching a completely new module to the platform. Additionally, the use of 

fuel depots in space is a major goal of future on-orbit servicing infrastructures, so it follows that 

an HPP should employ this capability. Another assumption is that the servicer will be capable of 
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bringing multiple modules to the platform at a time, assuming that the modules have already been 

connected pre-launch. A third assumption is that there will be one dedicated servicer for an HPP, 

and the servicer is already on-orbit when the initial platform is launched. Having a dedicated 

servicer would result in shorter periods in which the recently launched modules are waiting to be 

collected by the servicer and brought to the platform. Finally, it is assumed that payloads will 

remain on the station for the entire lifetime of the platform. In reality, if a payload were to complete 

its objectives and no longer needed to be operated or if the payload failed irreparably, the servicer 

could remove the payload module from the platform to lower the mass and create more space for 

additional payloads. 

3.1.4 Platform Design 

Following the module design, the platform is designed according to a decision-making 

process. The first step of the process is to choose an initial number of platform modules to assemble 

and launch to the desired orbit. The method for designing an optimal initial platform is one of the 

main topics of this thesis and is discussed in Section 3.2. Following the launch of the initial 

platform, the first payload is selected. Then, the platform designer calculates the number of 

additional modules that are required for the platform to be self-sufficient for the user-defined 

lifetime. The payload and its additional required platform modules are then launched to orbit, 

where they are picked up by the servicer, brought to the platform, and integrated with the existing 

modules. After a user-defined time interval, a new payload is selected, and the platform module 

additions required for the new platform to be self-sufficient for the remainder of the lifetime are 

computed. At this stage, and all subsequent stages, fuel consumption for the platform is calculated 

and accounted for in the platform designer. If a propulsion module has expended all of its 
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propellant, the servicer will refuel the propellant tank when it arrives with the new modules. This 

process continues for a user-defined number of payload addition stages. 

3.2 Stochastic Programming 

3.2.1 Optimization Problem Formulation 

The problem being considered in this thesis is formulated as a single-objective, multi-stage 

programming problem. The objective is to find an optimal initial decision for the platform design 

that minimizes the average value for the cost of launching, maintaining, and servicing a hosted 

payload platform for a given set of input parameters, which include orbit, lifetime, module form 

factor, launch interval, and total number of payloads to be added to the platform over its lifetime. 

It is important to note that this formulation is slightly different from other multi-stage SPs. 

Typically, each decision made during the decision-making process is optimized based on the 

residual uncertainty of remaining future stages. In the problem considered in this work, only the 

initial decision is optimized, and all subsequent decisions are computed using the systems 

engineering HPP designer tool. These decisions are made to make corrections to the platform after 

the realization of an uncertain payload. 

There are two design variables in this problem. The first variable, 𝜉, is a stochastic variable 

defined as:  

 𝝃 = [𝜉𝑘
1, 𝜉𝑘

2, … , 𝜉𝑘
𝑁] (7)  

In Equation  (7), 𝜉𝑘
𝑛is an integer corresponding to the payload that is randomly selected at the nth 

stage of the kth scenario based on a discrete probability distribution. The second design variable, 

𝒙, is the decision variable. It is a vector containing integer values for the quantity of each type of 

module added at the beginning of each stage and is defined as follows: 
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 𝒙𝑘
𝑛 =  [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]𝑘

𝑛 (8)  

In Equation (8), 𝑥𝑖 for 𝑖 = {1, … ,5} is the number of ADCS modules, communication modules, 

power modules, propulsion modules, and propellant resupplies, respectively. The subscript 𝑘 

represents the scenario number. 

Constraints on the decision variable 𝒙 are fairly straightforward. The platform requires at 

least one of each type of platform module in order to be fully functional. Also, the number of 

propellant resupplies must be 0 for the initial decision and greater than or equal to 0 for all 

subsequent decisions. This yields the constraints shown in Equation (9) below. 

 

𝑥𝑖𝑘
𝑛 ≥ 1, 𝑖 ∈ {1, 2, 3, 4}, ∀𝑘, 𝑛  

𝑥5𝑘
0 = 0, ∀𝑘 

𝑥5𝑘
𝑛 ≥ 0, 𝑛 ∈ {1, … , 𝑁}, ∀𝑘 

(9)  

For multi-stage SPs, as mentioned in Section 2.3, the decision made at the previous stage must be 

constant for all future stages across all scenarios which branch from a common node. As a result, 

the non-anticipativity constraint is imposed on 𝒙 and formulated as follows:  

 

𝒙𝑘
0 = 𝒙𝑗

0, ∀𝑘, 𝑗 ∈ {1, … , 𝐾} 

𝒙𝑘
𝑛 = 𝒙𝑗

𝑛, 𝑤ℎ𝑒𝑛   𝜉𝑘
0, … , 𝜉𝑘

𝑛−1 ≡ 𝜉𝑗
0, … , 𝜉𝑗

𝑛−1, 𝑛 ≠ 0 

(10)  

Following Equation (6), the final optimization problem is formulated as follows: 

 

min
𝒙

[𝐶(𝒙𝑘
0) + ∑ 𝑝𝑘 ∑ 𝐶(𝒙𝑘

𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

] 

𝑠. 𝑡.    𝒙𝑘
0 = 𝒙𝑗

0, ∀𝑘, 𝑗 ∈ {1, … , 𝐾} 

𝒙𝑘
𝑛 = 𝒙𝑗

𝑛, 𝑤ℎ𝑒𝑛   𝜉𝑘
0, … , 𝜉𝑘

𝑛−1 ≡ 𝜉𝑗
0, … , 𝜉𝑗

𝑛−1, 𝑛 ≠ 0 

𝑥𝑖𝑘
𝑛 ≥ 1, 𝑖 ∈ {1, 2, 3, 4}, ∀𝑘, 𝑛  

(11)  
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𝑥5𝑘
0 = 0, ∀𝑘 

𝑥5𝑘
𝑛 ≥ 0, 𝑛 ∈ {1, … , 𝑁}, ∀𝑘 

 

3.2.2 Payload Survey Probability Functions 

To characterize the uncertainty of payload selection for the HPP, a probability distribution 

is required. To obtain a probability distribution for potential payloads, a satellite database, created 

and maintained by the Union of Concerned Scientists [16], was leveraged. The database contains 

data for almost 2,000 active satellites currently in orbit around Earth. In this thesis, it is assumed 

that the current satellites in orbit are an accurate representation of future payloads that an HPP 

might support. Realistically, this assumption may not be entirely accurate since the market is 

constantly changing, so predictions for the payload market in the future may also be required to 

obtain a more accurate probability distribution.  

For each satellite in the database, there is data for a variety of categories, including the 

satellites orbit class, orbit type, payload purpose, mass, power, and many others. Table 3 and Table 

4 below shows the breakdown of each class of orbit into its different types and different satellite 

purposes, along with the associated percentage of each respective class. 
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Table 3: Orbit class breakdown by orbit type 

Orbit Class Orbit Type Quantity % of Class 

Elliptical 

Cislunar 1 2.22% 

Deep Highly Elliptical 9 20.00% 

Molniya 17 37.78% 

Non-Polar Inclined 2 4.44% 

Other 16 35.56% 

GEO Geostationary 558 100.00% 

LEO 

Elliptical 8 0.65% 

Equatorial 20 1.63% 

Non-Polar Inclined 264 21.46% 

Polar 191 15.53% 

Sun-Synchronous 730 59.35% 

Other 17 1.38% 

MEO 

Equatorial 16 12.90% 

Non-Polar Inclined 90 72.58% 

Other 18 14.52% 

 

Table 4: Orbit class breakdown by satellite purpose 

Orbit Class Purpose Quantity % of Class 

Elliptical 

Communications 10 22.22% 

Earth Observation 10 22.22% 

Navigation 2 4.44% 

Space Science 20 44.44% 

Technology Demo 3 6.67% 

GEO 

Communications 477 85.48% 

Earth Observation 42 7.53% 

Navigation 28 5.02% 

Space Science 5 0.90% 

Technology Demo 6 1.08% 

LEO 

Communications 273 22.20% 

Earth Observation 658 53.50% 

Earth Science 25 2.03% 

Space Science 60 4.88% 

Technology Demo 214 17.40% 

MEO 
Communications 17 13.71% 

Navigation 107 86.29% 

 

From Table 3, it is observed that the majority of satellites in the elliptical orbit class are 

either government satellites in Molniya orbits or satellites with highly elliptic orbits, which 

typically have very strict and specific science requirements that require such an orbit. From Table 
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4, it can be observed that a large majority (86%) of MEO satellites are navigation satellites, with 

almost all of them being a part of a constellation. Therefore, it is assumed that satellites in MEO 

or elliptic orbits do not accurately represent the type of payloads that would benefit from a hosted 

payload platform and are excluded from the probability distribution. Thus, the focus for this work 

shifts to HPPs in both LEO and GEO. A case study for HPPs in both a sun-synchronous low Earth 

orbit and geostationary orbit will be used to test the HPP design tool and stochastic optimization 

methods. 

The current probability distribution for satellite purposes in the two classes of orbits under 

consideration is not yet sufficient to characterize payloads. Within each satellite purpose category, 

there is a wide variety of satellites, ranging from 5 kg CubeSats to 10,000 kg national security 

satellites. In order to create more accurate representations of potential payloads, satellites in each 

“satellite purpose” category for LEO and GEO were broken down further into several mass ranges. 

Several simplifying assumptions have been made to narrow the scope of the payloads considered 

for the probability distribution, thus reducing the total number of possible scenarios and 

computational cost. Due to the size of the form factors under consideration in this study, satellites 

with a launch mass less than 25 kg and greater than 4000 kg were excluded from the data for the 

payload probability function. Satellites under 25 kg are mostly CubeSats of size 12u and smaller. 

Due to the development of low-cost commercial off-the-shelf CubeSat buses and subsystems along 

with the increasing number of ride-share opportunities [17],  it was assumed that the cost of using 

a servicer to bring these small payloads to the platform would exceed the cost of developing a 

dedicated CubeSat platform to support the payload. Similarly, it was assumed that the massive 

payloads supported by satellites more than 4,000 kg would require an excessive amount of 

platform modules in order to have enough capability to support them, which would drive up the 
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cost and add a considerable amount of parasitic mass to the platform. The remaining satellites were 

then categorized into the following mass ranges: 25-99 kg, 100-499 kg, 500-999 kg, 1000-1999 

kg, 2000-2999 kg and 3000-3999 kg, as seen in Table 5 and Table 6 below. 

Table 5: Geostationary satellite breakdown by satellite type 

Satellite Type Survey Data 
500-999 

(kg) 
1000-1999 

(kg) 
2000-2999 

(kg) 
3000-3999 

(kg) 

Comms 

Quantity 1 32 73 107 

Probability (%) 0.47% 15.02% 34.27% 50.23% 

Avg Power (W) 1500 1860 4655 5851 

Avg mass (kg) 950 1523 2481 3388 

Earth 
Observation and 

Earth Science 

Quantity 

N/A 

7 12 6 

Probability (%) 28.00% 48.00% 24.00% 

Avg Power (W) 550 1434 2420 

Avg mass (kg) 1454 2264 3413 

Navigation 

Quantity 2 8 3 2 

Probability (%) 13.33% 53.33% 20.00% 13.33% 

Avg Power (W) 1500 1623 2000 6800 

Avg mass (kg) 800 1426 2233 3800 

Space Science 

Quantity 4 

N/A N/A  

1 

Probability (%) 80.00% 20.00% 

Avg Power (W) 600 1500 

Avg mass (kg) 700 3100 

Technology 
Demo 

Quantity 

N/A N/A 

1 1 

Probability (%) 50.00% 50.00% 

Avg Power (W) 2100 4142.75 

Avg mass (kg) 2650 3800 
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Table 6: Low Earth orbit satellite breakdown by satellite type 

Satellite 
Type 

Survey Data 
25-99 
(kg) 

100-499 
(kg) 

500-999 
(kg) 

1000 -
1999 (kg) 

2000 -
2999 (kg) 

3000 -
3999 (kg) 

Comms 

Quantity 31 69 117 

N/A N/A N/A 
Probability (%) 14.29% 31.80% 53.92% 

Avg Power (W) 160 482 397 

Avg mass (kg) 43 263 790 

Earth 
Observation 

and Earth 
Science 

Quantity 65 86 49 60 30 2 

Probability (%) 22.26% 29.45% 16.78% 20.55% 10.27% 0.68% 

Avg Power (W) 67 343 939 1493 3152 1950 

Avg mass (kg) 61 251 707 1382 2513 3525 

Space 
Science 

Quantity 3 9 4 2 1 

N/A 
Probability (%) 15.79% 47.37% 21.05% 10.53% 5.26% 

Avg Power (W) 39 188 703 940 750 

Avg mass (kg) 73 237 658 1657 2500 

Technology 
Demo 

Quantity 20 17 3 2 2 

N/A 
Probability (%) 10.70% 9.09% 1.60% 1.07% 1.07% 

Avg Power (W) 89 79 575 1000 1951 

Avg mass (kg) 53 154 639 1360 2240 

 

As seen in Table 5 and Table 6 above, the probability that a satellite would fall into each 

of the mass ranges was found, along with the average mass and power of a satellite in that range. 

Only satellites with available mass data were used to find the probabilities. Some satellite types 

had no occurrences in certain mass ranges, which is indicated in the tables by “N/A”. Also, it 

should be noted that due to the small sample size of Earth science satellites, the Earth observation 

and Earth science categories were combined to help reduce the scenario set. Each box under a 

mass range in Table 5 and Table 6 represents one possible choice for a payload selection, for a 

total of 15 choices for GEO and 19 choices for LEO.   

Now that the satellite information for each payload choice has been obtained, the 

corresponding payload information can be estimated. With such a large list of satellites, it would 

not be efficient to look up specific payload information for each satellite. Instead, several mass 
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and power fractions were obtained using historical satellite data from SMAD [18]. These fractions 

are shown in Table 7.  

Table 7: Payload mass and power fractions 

 LEO GEO 

 Comms 
Remote 

Sensing 

Average for 

LEO 
Comms 

Remote 

Sensing 
Navigation 

Average 

for GEO 

Satellite dry 

mass fraction 

of launch mass 

0.9 0.96 0.91 0.83 0.96 0.94 0.91 

Payload mass 

fraction of 

satellite dry 

mass 

0.27 0.35 0.31 0.27 0.35 0.21 0.32 

Payload power 

consumption 

fraction of 

satellite power 

N/A 0.46 N/A 0.35 

 

3.2.3 Scenario Generation 

Even with the reduced payload set, there are still 15 potential payload selections for GEO 

and 19 potential selections for LEO. This results in 15N or 19N total scenarios for each case. As the 

number of payloads increases, the total number of scenarios quickly grows to a level that is 

computationally infeasible. Instead of trying to compute every possible scenario, a sample of 

scenarios is randomly selected using the probability distributions that were created from the 

payload survey. Every time a sample is taken, the payloads will differ slightly from previous 

samples. This can lead to slightly different results for various samples. Additionally, the number 

of scenarios used in the sample will also likely affect the results. As the number of scenarios used 

in the sample increases, the variance from sample to sample is expected to decrease. The sensitivity 

can be characterized using a Monte Carlo analysis, in which the same simulation is run for many 

samples of the same size to determine variations in the solutions. The same analysis can then be 

re-run for different sample sizes to further characterize the effect of sample size on the solution. 
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3.2.4 Hosted Payload Platform Designer 

The HPP designer is a MATLAB-based code used to design the platform and make 

decisions on how the platform needs to change to accommodate new payloads that have been 

added. The designer begins by taking inputs from the user for the desired platform lifetime, desired 

orbit (LEO or GEO), module form factor, scenario sample size, new payload launch interval, and 

total number of payloads to be added to the platform. Next, the platform modules are designed, 

followed by the generation of a sample of randomly selected scenarios. Each scenario consists of 

the payloads that have been randomly selected, along with the corresponding payload data for each 

payload selection. The probability of each scenario occurring is also computed and stored with the 

data.  After a sample of scenarios have been generated, the designer enters the optimization and 

decision-making loop. The optimization problem is defined by Equation (12) below. 

 

min
𝒙

[𝐶(𝒙𝑘
0) + ∑ 𝑝𝑘 ∑ 𝐶(𝒙𝑘

𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

]

 

 

𝑠. 𝑡.   𝒙𝑘
0 = 𝒙𝑗

0, ∀𝑘, 𝑗 ∈ {1, … , 𝐾} 

𝒙𝑘
𝑛 = 𝒙𝑗

𝑛, 𝑤ℎ𝑒𝑛   𝜉𝑘
1, … , 𝜉𝑘

𝑛 ≡ 𝜉𝑗
1, … , 𝜉𝑗

𝑛, 𝑛 ≠ 0 

𝑥𝑖𝑘
𝑛 ≥ 1, 𝑖 ∈ {1, 2, 3, 4}, ∀𝑘, 𝑛  

𝑥5𝑘
0 = 0, ∀𝑘 

𝑥5𝑘
𝑛 ≥ 0, 𝑛 ∈ {1, … , 𝑁}, ∀𝑘 

(12)  

In Equation (12), 𝑝𝑘 represents the probability of each scenario occurring and 𝐶(𝒙𝑘
𝑛) 

represents the cost associated with making decision 𝒙 at stage 𝑛 for scenario 𝑘. Because the first 

non-anticipativity constraint is 𝒙𝑘
0 = 𝒙𝑗

0, the initial cost 𝐶(𝒙𝑘
0) is independent of the scenario and 
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can be rewritten as 𝐶(𝒙0). Writing out the second summation allows Equation (12) to be re-written 

as: 

 min
𝒙

[𝐶(𝒙0) + ∑ 𝑝𝑘

𝐾

𝑘=1

[𝐶(𝒙𝑘
1 ) + ⋯ + 𝐶(𝒙𝑘

𝑁) ]] (13)  

The expression 𝐶(𝒙𝑘
1 ) + ⋯ + 𝐶(𝒙𝑘

𝑁) in Equation (13) is the total cost of every decision made for 

scenario 𝑘, or more simply the total cost of scenario 𝑘. This expression for the total cost of scenario 

k can be represented by the term 𝐶𝑘. Equation (13) can then be simplified to: 

 min
𝒙

[𝐶(𝒙0) + ∑ 𝑝𝑘

𝐾

𝑘=1

𝐶𝑘] (14)  

After being given initial decision 𝒙0, the platform designer begins the process of computing 

the remaining decisions. The first payload from the first scenario, represented by 𝜉1
1, is added to 

the platform and then the recourse decision 𝒙1
1 is computed. The process continues until each 

decision 𝒙1
1, … , 𝒙1

𝑁 has been computed. After all decisions have been computed, they are input into 

the cost model which outputs the total cost of scenario 1, 𝐶1. This process for computing the total 

cost is then repeated, one scenario at a time, for every scenario in the sample. It should be noted 

that by computing the decisions one scenario at a time, the second non-anticipativity constraint of 

(12) is automatically enforced. Now that that initial cost and total costs for all scenarios has been 

computed, the total expected cost, given by the expression inside the brackets in Equation (14), 

can be computed. Finally, MATLAB’s genetic algorithm function is used to find the initial station 

configuration that minimizes the expected cost in an efficient manner. The optimal initial decision 

is denoted as 𝒙0∗
. 
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3.2.5 Cost Model 

The cost of on-orbit servicing is difficult to estimate and is highly dependent on the 

servicing infrastructure that has been put in place. Several works have explored the cost of on-

orbit servicing infrastructures [1] [19]. Instead of using a specific cost model, it is an objective of 

this thesis to explore the effects that changes in a simple cost model have on the optimal platform 

design. This method will help obtain an initial estimate for what the cost of servicing likely needs 

to be reduced to in order to achieve the benefits of HPPs.   

The cost model used in this work involves computing the cost associated with every 

decision that is made by the decision-maker. The decisions consist of an optimized initial decision, 

which chooses how many platform modules to use in the initial platform design, followed by 

calculated decisions for how many modules to add following the selection of each payload. The 

cost of the initial decision is assumed to be only the cost of launching the mass of the initial 

modules to the desired orbit. The cost-per-kg to GEO and LEO was found by averaging the costs 

for three launch vehicles: Atlas V, Delta IV, and Falcon 9 [20] [21]. These costs are shown in 

Table 8 below. 

Table 8: Launch cost-per-kg for selected launch vehicles 

 Cost per kg ($, FY2018) 

LEO GTO 

Falcon 9 2,700 7,470 

Atlas V 12,225 25,843 

Delta IV 12,193 22,072 

Avg 9,039 18,462 

 

The cost of all subsequent decisions is computed as the cost of launching the mass of the 

new modules to the desired orbit plus the cost of servicing associated with adding the new modules. 

It is assumed that there is already a servicer on orbit that is dedicated to servicing the HPP, so the 

initial cost of developing and launching a servicer is not included in this model. The servicing cost 
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for each decision is computed as the cost of launching the new modules using the prices in Table 

8, plus the cost-per-kg of servicing the new modules. With this cost model, it is assumed that the 

cost of servicing only depends on the mass of the modules that need to be ferried to the platform. 

In reality, the cost will likely depend on several additional factors. 

The cost model developed here is not meant to accurately portray the costs associated with 

an on-orbit servicing mission architecture. Instead, this cost model aims to enable testing of the 

stochastic optimization methods applied in this work and to obtain an initial estimate for a 

servicing cost at which servicing hosted payload platforms becomes cost-effective. A precise cost 

model will require further research and is left for future studies. 
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4. RESULTS AND ANALYSIS 

4.1 Effect of Form Factor Selection on Module Design 

To investigate the effect that form factor selection has on the HPP design, platform designs 

for all four form factors, PODS, PODS-Extended, ESPA, and ESPA Grande, were compared using 

a sample of 1000 scenarios and a mission lifetime of 15 years with new payload additions occurring 

every 2 years until the total number of payloads was reached. In this case, the initial decision has 

not yet been optimized. Instead, the initial platform design will consist of just one of each type of 

platform module so that modules are only added as needed, resulting in the smallest possible 

station size. Key platform characteristics for the GEO and LEO cases are shown in Table 9 through 

Table 12 below.  

Table 9: HPP designs to support 7 payloads for a lifetime of 15 years at GEO 

  Total Platform Mass (kg) 
Total Platform 

Modules 
Total Propellant 

Resupplies 

  Min Max Avg Min Max Avg Min Max Avg 

PODS 4820 9033 6952 27 50 41.6 5 17 9.8 

PODS 
Extended 

4384 8295 6431 19 29 25.0 1 6 3.4 

ESPA 4123 7435 5953 17 22 20.1 0 3 1.4 

ESPA Grande 3917 7891 6067 14 18 16.8 0 2 0.2 

 

Table 10: Number of modules by module type for platform designs at GEO 

  Average Number of Modules 

  ADCS Communications Power Propulsion 
Propellant 
Resupplies 

PODS 1 3 17.4 13.2 9.8 

PODS Extended 1 3 8.2 5.8 3.4 

ESPA 1 3 5.2 3.9 1.4 

ESPA Grande 1 3 3.0 2.8 0.2 
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Table 11: HPP designs to support 7 payloads for a lifetime of 15 years at LEO 

  Total Platform Mass (kg) 
Total Platform 

Modules 
Total Propellant 

Resupplies 

  Min Max Avg Min Max Avg Min Max Avg 

PODS 772 5956 2526 15 36 21.7 0 13 3.4 

PODS 
Extended 

838 5283 2396 13 21 15.8 0 5 0.8 

ESPA 722 4417 2196 12 17 14.0 0 2 0.2 

ESPA Grande 999 5675 2348 12 15 12.7 0 1 0.0 

 

Table 12: Number of modules by module type for platform designs at LEO 

  Average Number of Modules 

  ADCS Communications Power Propulsion 
Propellant 
Resupplies 

PODS 1 2 4.4 7.3 3.4 

PODS Extended 1 2 2.3 3.5 0.8 

ESPA 1 2 1.5 2.4 0.2 

ESPA Grande 1 2 1.0 1.7 0.0 

 

The total number of modules listed in Table 9 and Table 11 include all platform modules 

as well as all 7 payloads. Table 10 and Table 12 show the breakdown of the total modules into the 

specific module types, minus the payloads. One of the shortcomings of a modular design such as 

the HPPs considered in this work is the parasitic mass associated with the module structure and 

other components such as propellant tanks. Fewer modules used to make up the platform should 

result in a lower amount of dead weight. This effect is clearly seen in Table 9 and Table 11; for 

smaller form factors such as PODS and PODS-Extended, a larger number of modules are needed 

to support the payloads, resulting in a higher total platform mass. Additionally, it is observed that 

while the ESPA Grande form factor, which is the largest of the four, has the lowest average number 

of modules required to make up the platform, it does not have the lowest average total mass. This 

indicates that the platform may be “over-designed”, meaning that it has more capability than is 
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required to support the payloads. These results indicate that the ESPA form factor may be the most 

efficient for the payload set chosen in this work. 

4.2 Initial Platform Design Optimization 

Several methods are used to test the platform designer’s optimization of the initial platform 

design decision. First, an excessively high cost is assigned to servicer effort. This should result in 

an initial platform design that requires no platform module additions and no propellant resupplies 

for all scenarios considered. Then, no cost is assigned to servicer effort, which should result in an 

initial decision that allows for the maximum amount of servicer use to only add modules as needed, 

which would minimize the total mass of the platform. The platform designs and optimal initial 

decisions in this case would be very similar to the designs presented in Section 4.1, which assumed 

an initial decision of 𝒙0 = [1,1,1,1,0]. Once it is determined that the optimizer is working as 

expected, results can be obtained for a realistic cost for servicing at which HPPs would be most 

effective.  

4.2.1 High Cost on Servicer Effort 

The optimal initial decision and the resulting HPP designs for an excessively high cost on 

servicer effort is shown in the tables below.  

Table 13: Optimal initial decision compared with final platform design for GEO HPP 

  PODS PODS Extended ESPA ESPA Grande 

  𝒙0∗
 

Average 
Total 𝒙0∗

 
Average 

Total 𝒙0∗
 

Average 
Total 𝒙0∗

 
Average 

Total 

ADCS 1 1 1 1 1 1 1 1 

Comms 3 3 3 3 4 4 3 3 

Power 22 22 10 10 7 7 4 4 

Propulsion 34 34 13 13 7 7 4 4 

Propellant 
Resupplies 

0 0 0 0 0 0 0 0 
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Table 14: Properties of optimal platform designs in GEO 

 Total Number 
of Modules  

Total Platform Mass (kg) 

 
Min Max Avg 

PODS 67 7371 9382 8466 

PODS 
Extended 

34 6045 8407 7333 

ESPA 26 5293 7592 6481 

ESPA Grande 19 5705 7590 6647 

 

Table 15: Optimal initial decision compared with final platform design for LEO HPP 

  PODS PODS Extended ESPA ESPA Grande 

  𝒙0∗
 

Average 
Total 𝒙0∗

 
Average 

Total 𝒙0∗
 

Average 
Total 𝒙0∗

 
Average 

Total 

ADCS 1 1 1 1 1 1 1 1 

Comms 2 2 2 2 2 2 3 3 

Power 9 9 4 4 2 2 1 1 

Propulsion 26 26 10 10 5 5 3 3 

Propellant 
Resupplies 

0 0 0 0 0 0 0 0 

 

Table 16: Properties of optimal platform designs in LEO 

 Total Number 
of Modules  

Total Platform Mass (kg) 

 
Min Max Avg 

PODS 45 3017 6238 4102 

PODS 
Extended 

24 2266 5541 3376 

ESPA 17 1599 4236 2605 

ESPA Grande 15 1797 3983 2750 

 

In Table 13 and Table 15, the columns labeled 𝒙0∗
 show the optimal initial decision that 

was found. The “Average Total” columns show the total number of each type of module after the 

final stage, averaged over all scenarios in the sample. As expected, the two columns match exactly 
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for each form factor, indicating the high cost on servicer effort forces the optimizer to choose an 

initial configuration that will support all payloads of every scenario for the entire lifetime without 

adding any modules or refueling.  

This case represents a worst-case situation in terms of total platform mass because all 

platform modules must be added in the initial stage instead of being added as-needed, resulting in 

higher propellant consumption for a longer period of time and thus requiring more propulsion 

modules. Despite the parasitic mass from the modular design, even for this worst-case scenario, 

HPPs can offer significant mass savings over developing a dedicated satellite to support each 

payload. Table 17 shows characteristics of the total combined mass of the seven satellites used to 

determine the payload set for each scenario. 

Table 17: Combined mass of satellites required to support 7 payloads 

 Minimum Mass  Maximum Mass  Average Mass  

GEO 12,796 kg 24,128 kg 18,910 kg 

LEO 783 kg 12,380 kg 4,690 kg 

 

The average mass required for a dedicated satellite platform for each payload in GEO is 

significantly higher than even the worst-case average for hosted payload platforms, represented by 

the PODS form factor in GEO, with an average mass savings of about 55%. The average mass for 

individual satellite platforms in LEO is also higher than worst-case LEO average, with a mass 

savings of about 13%. 

The ESPA form factor once again appears to be the optimal choice of the four form factors 

that have been analyzed. From this point on, the results presented will focus exclusively on the 

ESPA form factor. 
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4.2.2 No Cost on Servicing 

Now, instead of placing an arbitrarily high cost on servicing, we remove the cost on 

servicing altogether to represent the other end of the spectrum. With no cost on servicing, the 

optimizer should choose to start with the minimal allowed initial station size, so that modules can 

be added as needed. Comparisons between the optimal initial platform size and the average final 

platform size of all scenarios in the sample is shown in Table 18 and Table 19 below.  

Table 18: Optimal platform designs in GEO for ESPA form factor with no cost on service effort 

  𝒙0∗
 Average Total 

Average Final 
Platform Mass 

ADCS 1 1 

5,984 kg 

Comms 1 3 

Power 1 5.3 

Propulsion 1 3.9 

Propellant Resupplies 0 1.5 

 

Table 19: Optimal platform designs in LEO for ESPA form factor with no cost on service effort 

  𝒙0∗
 Average Total 

Average Final 
Platform Mass 

ADCS 1 1 

2,178 kg 

Comms 1 2 

Power 1 1.5 

Propulsion 1 2.4 

Propellant Resupplies 0 0.2 

 

As expected, the optimal decision is to start with the smallest platform allowed and use the 

servicer as much as possible to minimize the mass of the platform. When compared with the case 

of a high price on servicing, this case reduces the average mass of the platform after the final stage 

by over 497 kg for the GEO case and 427 kg for LEO. 
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4.2.3 Effect of Servicing Cost on Optimal Platform Design 

Servicing is likely to be considerably costly, but the cost is highly dependent on the 

servicing infrastructure put in place. As an example, if there are multiple servicers already in orbit, 

then the closest servicer would be tasked with collecting the new modules and bringing them to 

the platform. Developing and operating multiple servicers at a time would have a high initial cost 

but would be more efficient in the long run than developing and employing a single dedicated 

servicer for one HPP. Additionally, fuel depots in space would lower the cost of refueling but 

would again have a high initial cost. As on-orbit satellite servicing technologies develop, and 

infrastructures begin to emerge, the servicing cost will begin to shift from the extreme with a very 

high cost of servicing towards the other extreme with a low cost of servicing. The concept of hosted 

payload platforms discussed in this work will become more beneficial as the cost of servicing 

decreases. Now that both extremes have been analyzed and the optimizer has been shown to be 

working properly, it is desired to examine how changes in the cost model affect the optimal 

decision for the initial platform design and at what costs of servicing are significant increases in 

servicer use observed. Figure 2 through Figure 5 below show various platform characteristics as 

the price of servicing changes for the GEO case using the ESPA form factor. 
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Figure 2: Size of initial platform compared to cost of servicing in GEO 

 

 

Figure 3: Average size of final platform compared to cost of servicing in GEO 

 



33 

 

 

Figure 4: Average final mass of platform compared to cost of servicing in GEO 

 

 

Figure 5: Average number of propellant resupplies compared to cost of servicing in GEO 

 In the figures above, it is observed that the optimal initial platform design remains 

unchanged at costs exceeding roughly $9,000 per kg. Above this cost, the optimizer chooses not 

to utilize the servicer at all. Once the cost is reduced below that point, the optimizer begins to 
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select fewer modules for the initial platform, indicating that it is more optimal to utilize a servicer 

than to add initial modules which are not immediately required. The number of initial modules 

continues to decrease until the cost reaches the edge case of $0 per kg, at which point the minimum 

number of required modules, one of each type of platform module for a total of four, is reached. 

Since the minimum platform size only reaches a minimum when there is no servicing cost, which 

is not a realistic scenario, it appears that the optimal solution at low costs is not always starting 

with the minimum platform size. Rather, it is a combination of servicer utilization and adding some 

extra capability initially. 

  Similarly, the average of all scenarios for the total number of modules after the final stage 

decreases in the same cost interval, although the difference in number of modules is not as drastic 

as with the initial platform size. As expected, as the total number of modules decreases, so does 

the total platform mass. Additionally, as the cost of servicing is reduced, the number of propellant 

resupplies begins to increase. Based on this simplified cost model and the scenario sample used to 

obtain the data, on-orbit servicers begin to become effective when the cost of bringing 1 kg of 

mass from its launch orbit to the platform drops below about $9,000. It should be noted that this 

cost is dependent on the scenario sample that was selected. In order to obtain a more reliable result, 

a sensitivity analysis is needed. Similar plots for the LEO case are shown in Figure 6 through 

Figure 9 below. 
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Figure 6: Size of initial platform compared to cost of servicing in LEO 

 

 

Figure 7: Average size of platform compared to cost of servicing in LEO 
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Figure 8: Average final mass of platform compared to cost of servicing in LEO 

 

 

Figure 9: Average number of propellant refills compared to cost of servicing in LEO 

Similar trends to those of the GEO case are observed for LEO. In this case, however, the 

optimizer begins to utilize servicing at a cost of about $16,000. As with the GEO case, the initial 

platform size only reaches the minimum at the edge case with no servicing cost. With a fully 
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developed, more precise servicing cost model, the methods used here would be helpful for 

determining the level of infrastructure necessary for HPPs to be cost effective and could help 

motivate technological advancements to begin to put the infrastructure into place.  

 

4.3 Sensitivity Analysis 

With such a large number of possible scenarios, samples of the scenario set must be taken 

to lower the computational costs to manageable levels. For small sample sizes, there is likely to be 

larger variation in platform design results because the optimizer has fewer scenarios to consider 

when searching for an optimal solution. As the sample size increases, the sample provides better 

estimates for the actual scenario set. With the optimizer considering a larger number of possible 

scenarios, the variance in the platform design should start to decrease. A sensitivity analysis was 

performed for the GEO case study by running the optimizer for 100 different samples using a fixed 

cost of $6,000 and a fixed sample size. This was done for sample sizes of 10, 50, and 100 scenarios. 

The results of this analysis are shown below. 

 

Figure 10: Variations in average platform mass – 10 scenarios per sample 
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Figure 11: Variations in average platform mass – 50 scenarios per sample 

 

 

Figure 12: Variations in average platform mass – 100 scenarios per sample 
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Figure 13: Variations in initial platform size - 10 scenarios per sample 

 

Figure 14: Variations in initial platform size - 50 scenarios per sample 
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Figure 15: Variations in initial platform size - 100 scenarios per sample 

 

 

Figure 16: Variations in final platform size - 10 scenarios per sample 
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Figure 17: Variations in final platform size - 50 scenarios per sample 

 

 

Figure 18: Variations in final platform size - 100 scenarios per sample 

 Figure 10 through Figure 12 show the variations in the average final platform mass for 

sample sizes of 10, 50, and 100 scenarios, respectively. It is observed that as the sample sizes 

increase, the variations in the average final platform mass start to decrease and fall within a smaller 

range. For the case with only 10 scenarios per sample, the masses fall within a 900 kg range. 
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Increasing the sample size to 100 scenarios per sample gives final masses that all fall within 

roughly 450 kg of each other. Figure 13 through Figure 15 show the variations in the number of 

each type of platform module in the optimal initial platform size. All three of these figures look 

very similar and do not immediately offer any insight into the trend as sample sizes increase. In 

each case, the number of power and propulsion modules stays mostly bounded between 4 and 6 

modules, with a few occurrences of 3 modules. The number of communications modules stays 

bounded between 1 and 3, and the number of ADCS modules stays constant at 1 module. Figure 

16 through Figure 18 show the average final size of the platform designs. In all cases, the total 

platform size stays bounded between 20 and 23 modules. A trend is observed in which the 

occurrences of final platform sizes of 20 and 23 modules increase as the sample size increases, 

while occurrences of final platform sizes of 21 and 22 modules. This could be explained by high 

probabilities on certain payloads which may have a larger impact on platform design than other 

payloads. As the number of scenarios per sample increases, the scenarios containing these high 

probability payloads also increase, causing the platform design to tend towards certain sizes as 

indicated in the figures. With the high computational cost on larger sample sizes, research into 

computational methods to make these methods more efficient is likely required to further 

characterize the quality of the solutions obtained. 
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5. CONCLUSIONS 

This thesis proposed an approach using stochastic programming methods to solve the 

design challenge presented by uncertain payload selection for hosted payload platforms. In this 

work, an HPP architecture was formulated within an on-orbit servicing framework, probability 

distributions were created to characterize the uncertainty of payload selection and to generate 

scenarios, and a simple cost model was created to assess the effect of servicing cost on optimal 

platform designs. The platform design results showed the benefits of HPPs over dedicated satellites 

and established an estimated cost of servicing at which it is optimal to utilize servicing over adding 

extra initial capability before launch. A sensitivity analysis using Monte Carlo simulations showed 

a general trend towards the convergence of final platform sizes as the sample size increased, 

however no convergence trend was yet observed for the optimal initial platform size. Future 

research into computational methods to reduce the cost of simulations with large sample sizes is 

likely required to further assess the quality of solutions obtained using these methods. 

The results presented here are an initial step towards addressing the complicated design 

problem presented by hosted payload platforms. It is this author’s hope that the methods used in 

this thesis can be further developed so that a more precise estimate can be made as to how far on-

orbit servicing development needs to go until HPPs become an efficient, cost effective solution. 

There are several logical next steps to build off the methods and results presented in this paper. 

One proposed next step is to replace the simple cost model used in this thesis with a well-developed 

servicing infrastructure cost model. This could provide much more realistic estimates for the cost 

at which the optimizer begins to utilize on-orbit servicing, which in turn would help determine 

whether the concept of hosted payload platforms is viable in the current market or, if not, how 

much more progress needs to be made towards developing OOS infrastructures in order to gain 



44 

 

the full benefits of the concept. Another area of future work is to incorporate additional areas of 

uncertainty into the stochastic programming model. Logistical uncertainties, such as launch 

vehicle delays or servicer delays, may have an impact on the margin required for platform module 

additions and could affect the optimal platform design decisions. Uncertainties related to 

component or module failures could also impact the platform design. An additional area of 

improvement could be to add more design variables to the optimizer, such as launch vehicle and 

form factor selection, to further refine the optimal design.  
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