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ABSTRACT

Modern multi-party computation applications no longer have a one-time execution pattern

and instead are required to be run continuously like a service. They are deployed over the

Internet which is inherently asynchronous and demand an infrastructure which is end-to-end

robust, fault-tolerant and scalable. Unfortunately, existing frameworks fail to satisfy all of

these requirements. Hence, many MPC applications are not yet practical due to the lack of

an MPC framework that meets these needs.

This work presents a scalable protocol for generating preprocessed elements required for

the execution of asynchronous MPC applications with optimal Byzantine fault-tolerance

(robust when one-third of the nodes are corrupt) in the asynchronous setting. We implement

this preprocessing protocol in HoneyBadgerMPC – a scalable, robust and fault-tolerant

framework designed to develop, test and benchmark MPC applications efficiently.
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CHAPTER 1: INTRODUCTION

Secure multi-party computation (MPC) allows participants to compute a public function

while ensuring privacy of their inputs and at the same time guaranteeing the correctness of

the computed results among other properties.

MPC has found its applications in many domains - varying from auctions in financial

markets [1, 2, 3, 4], preserving privacy in Machine Learning [5, 6, 7, 8], databases [9], key

management [10, 11, 12, 13], location services [14, 15], energy trading in electricity markets

[16], all the way up to satellite collision detection [17, 18]. Apart from satisfying the standard

MPC requirements of integrity, correctness, privacy, fairness and guaranteed output delivery,

these real-world applications pose an additional set of requirements on MPC systems:

1. In order to run these long-running applications, a system must be available to contin-

uously process inputs, perform computations and return results.

2. These applications are deployed over the Internet which is an asynchronous network

where a message between two participants can be delayed arbitrarily. As a result, it is

infeasible to wait for inputs from all participants.

3. In the real world, nodes may crash and the system must continue to run in the presence

of crash faults. This follows from the previous point and requires a system to be fault-

tolerant so that it does not need all the participants to be online.

4. It is infeasible for some of these applications to abort their execution in the presence

of malicious inputs i.e. a system which supports such applications must be robust to

adversaries.

5. Many applications may need to support a large number of participants so such a system

must be scalable.

Many related works [19, 20, 21, 22, 23, 24, 25, 26] follow the “offline-online” phase

paradigm. In the offline phase the parties generate preprocessed elements such as shares of

triples, shares of random field elements etc. These preprocessed elements are then consumed

in the online phase to operate on secret shared inputs. This thesis focuses on generating the

preprocessing elements which can be used in the realization of many of the above mentioned

applications.
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Figure 1.1: Clients submit secret shared inputs, the servers operate on secret shared inputs
and then return the output back to the user. The servers also generate all the preprocessed

data in the background.

1.1 CONTRIBUTION OF THIS THESIS

A major consequence of the above mentioned requirements is that now we need an infinite

supply of preprocessed elements in order to build a system which can continuously perform

MPC. In this thesis, we present a protocol which allows us to generate a continuous supply of

preprocessed elements in a setting where the threshold t for the number of malicious parties

is less than N/3.

As a part of this thesis, we also propose HoneyBadgerMPC, a framework capable of

performing both the preprocessing and the online phases of MPC securely in the presence

of t < N/3 corrupt parties. HoneyBadgerMPC is asynchronous, robust, fault-tolerant and

scalable. It has been designed to allow for rapid prototyping of new MPC applications.

Fig. 1.1 provides a high-level overview of the entire framework. We implement and evaluate

our preprocessing scheme using this framework.

As far as we are aware no other existing system achieves all of the previously stated

properties. VIFF [24] is non-robust and does not scale to a large number of parties. EMP-

toolkit [27], Obliv-C [28] and ObliVM [29] support only two-party computation. Sharemind

[30] does not support active adversaries. SCALE-MAMBA [25] does not guarantee output

in the presence of crash faults. Choudhary and Patra [26] present a work which achieves all

these properties but for a corruption threshold of t < N/4. We are able to achieve a higher
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threshold of t < N/3 because of our hbAVSS [31] protocol.

1.2 THESIS ORGANIZATION

This thesis is organized as follows:

• Chapter 2 goes over concepts used throughout the rest of the thesis.

• In Chapter 3, we describe the design and architecture of HoneyBadgerMPC.

• Chapter 4 illustrates an example HoneyBadgerMPC program.

• In Chapter 5, we evaluate our preprocessing phase along with other algorithms and

protocols implemented within HoneyBadgerMPC.

• Chapter 6 briefly describes related work.

• Chapter 7 discusses future work.
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CHAPTER 2: PRELIMINARIES

2.1 SYSTEMS

2.1.1 Asynchronous execution

When a program performs I/O such as reading from or writing to a network socket, it can

do so in two ways – blocking (synchronous) or non-blocking (asynchronous). A synchronous

operation implies that the execution of the program is blocked until all of the data has been

read or written to or from the network by the program. On the other hand, an asynchronous

operation implies that the execution can continue once the program passes the responsibility

of the data to the Operating System. For a write, it implies that the OS will take care of

sending the data on to the network and for a read, it implies that the OS will copy the data,

if any, from the network to a buffer allocated by the program. It is important to note that

this is different from a multi-threaded execution which requires spawning a thread to do a

read or write. Threads suffer from a synchronization overhead in order to access any shared

state apart from the additional overhead of creating and scheduling them.

Another point worth noting is that this is not limited to just network communication but

any operation managed by the OS, for example, spawning a separate process to execute

computation in parallel, can be executed asynchronously.

2.2 PYTHON

2.2.1 asyncio

asyncio [32] is a concurrent programming framework with its syntax integrated directly

within the Python [33] programming language. It uses the async keyword to denote a block

of asynchronous code and the await keyword to block until an asynchronous operation

finishes.

Listing 2.1 shows a sample program illustrating this framework. In this program we wish

to check if two servers are up by pinging them. Line 13 creates a list of two tasks to ping

the two servers. Note that when Line 13 is executed, the calls to function is server up are

not invoked right away but are merely scheduled as tasks to be executed later. At Line 14,

we want to wait until the two ping requests complete. As a result, these two tasks now get

a chance to run. It is worth noting that both the tasks run concurrently i.e. while task 1
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waits for its ping request to complete it gives up the control of the CPU and allows task 2

to send its ping request out.

In essence, multiple asynchronous operations (the two ping requests in this example) are

executed concurrently as tasks. While a task waits on its asynchronous operation(s) to finish,

other tasks have the opportunity to execute their asynchronous operations. This is possible

since these tasks are not keeping the CPU busy but are simply waiting for their respective

operations to complete.

1 import async io

2

3

4 async de f i s s e r v e r u p ( s e r v e r a d d r e s s ) :

5 # Returns a None response i f the s e r v e r i s not

6 # up otherwi se r e tu rn s a non None response .

7 re sponse = await p i n g s e r v e r ( s e r v e r a d d r e s s )

8 re turn response i s not None

9

10 s e r v e r a d d r e s s e s = [ ” 1 7 2 . 2 9 . 3 0 . 4 ” , ” 1 0 . 0 . 0 . 8 ” ]

11

12 loop = async io . g e t e v e n t l o o p ( )

13 ta sk s = [ async io . e n s u r e f u t u r e ( i s s e r v e r u p ( i ) ) f o r i in s e r v e r a d d r e s s e s ]

14 loop . r un u nt i l c om p l e t e ( async io . wait ( ta sk s ) )

15 loop . c l o s e ( )

Listing 2.1: asyncio example program

asyncio.Future

The is server up method in the previous example can be written in a slightly different

way to return immediately as shown in Listing 2.2. This is achieved by returning a Future

object which will eventually resolve to the result once the ping request is completed. The

caller of is server up now must await on the returned Future.

Note that the method no longer has the async keyword. Line 4 creates a task to execute

the ping request. This task will run whenever it gets a chance. When it finishes, we set the

result of the returned Future based on the ping response thus unblocking the caller.

In short, a Future object is a promise that it will eventually resolve to the result of an

asynchronous operation that it is tied to when that operation finishes.
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1 de f i s s e r v e r u p ( s e r v e r a d d r e s s ) :

2 fu tu r e = async io . Future ( )

3 de f c a l l b a c k ( f ) : r e turn fu tu r e . s e t r e s u l t ( f . r e s u l t ( ) i s not None )

4 r e s u l t = async io . e n s u r e f u t u r e ( p i n g s e r v e r ( s e r v e r a d d r e s s ) )

5 r e s u l t . add done ca l lback ( c a l l b a c k )

6 re turn fu tu r e

Listing 2.2: asyncio code snippet to demonstrate Future

2.3 LINEAR ALGEBRA

2.3.1 Polynomial operations

For this section, let us assume that we have a polynomial f(x) : Fp → Fp of the form:

f(x) = a0 + a1x+ · · ·+ anx
n (2.1)

Here, Fp is a Finite Field of size p where p is a prime.

1. Interpolation

Given a set of n+1 points (xi, yi), where xi, yi ∈ Fp and all xi are distinct, interpolation

is defined as the process of finding a polynomial g(x) : Fp → Fp of degree at most n

such that:

g(xi) = yi ∀ i ∈ [0, n] (2.2)

2. Evaluation

Evaluation of a polynomial at a point k refers to solving f(x) for k:

f(k) = a0 + a1k + · · ·+ ank
n (2.3)

2.3.2 Different algorithms for performing various polynomial operations

1. Lagrange Interpolation:

The Lagrange interpolating polynomial [34] is the polynomial P (x) : Fp → Fp of

degree <= (n) that passes through the n + 1 points (x0, y0 = f(x0)), . . . , (xn, yn =

f(xn)), and is given by
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P (x) =
n∑

j=0

Pj(x) (2.4)

where

Pj(x) = yj

n∏
k=0
k 6=j

x− xk
xj − xk

(2.5)

written explicitly as

P (x) =
(x− x1)(x− x2) · · · (x− xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
y0 + · · ·+ (x− x0)(x− x1) · · · (x− xn−1)

(xn − x0)(xn − x1) · · · (xn − xn−1)
yn

(2.6)

2. Horner’s rule:

Horner’s rule [35] states that the polynomial f(x) can be evaluated at a point k by

solving:

f(k) = a0 + k
(
a1 + k(a2 + k(a3 + · · ·+ x(an−1 + k an) · · · ))

)
(2.7)

This allows evaluation of a polynomial of degree n with only n multiplications and n

additions.

3. Vandermonde Matrix:

If we have the points (x0, y0), . . . , (xn, yn) where xi, yi ∈ Fp such that f(xi) = yi ∀ i ∈
[0, n], then we can interpret this as a system of linear equations in the coefficients ak.

This system of equations in the matrix form is as follows:


xn0 xn−10 xn−20 . . . x0 1

xn1 xn−11 xn−21 . . . x1 1
...

...
...

...
...

xnn xn−1n xn−2n . . . xn 1



an

an−1
...

a0

 =


y0

y1
...

yn

 (2.8)

or

V~a = ~y (2.9)

Here, V is the Vandermonde Matrix [36].
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Given points (x0, y0), . . . , (xn, yn), interpolation using the Vandermonde Matrix [37] is

the process of finding the coefficients ak of f(x) which is the same as solving Eq. (2.9)

for a:

~a = V −1~y (2.10)

An interesting observation here is that if we wish to find k+1 interpolating polynomials

f0(x), f1(x), . . . , fk(x) with the same form as f(x) defined above from the points:

{(x00, y00), . . . , (x0n, y0n)}, . . . , {(xk0, yk0), . . . , (xkn, ykn)}

then we have to compute V −1 only once and we can rewrite Eq. (2.10) as:

~A = V −1~Y (2.11)

where ~A is an n × k matrix denoting the coefficients of fj(x)∀ j ∈ [0, k] and ~Y is an

n× k matrix denoting the evaluations of fj(xi)∀ j ∈ [0, k] and ∀ i ∈ [0, n].

NOTE: This process of finding V −1 only once and interpolating multiple polynomials

is faster than performing k+1 interpolations using Lagrange’s method. This is because

after computing V −1, finding the interpolating polynomial involves only multiplications

and additions. The number of multiplications when compared with Lagrange’s method

is also less.

4. Fast Fourier Transform

• Polynomial Evaluation: Let us suppose we have the coefficients ai ∈ Fp ∀ i ∈
[0, k − 1] of a polynomial g(x) : Fp → Fp =

∑k−1
i=0 αix

i and we want to evaluate

g(x) at any n points where n = 2r. If we use Horner’s rule described above in

Item 2, then the algorithmic complexity of that operation is O(n2).

We can do better by using a Fast Fourier Transform in Fp as described in Al-

gorithm 2.1 [38]. This way we can obtain (g(ω0), . . . , g(ωn−1)) in O(n log(n))

instead of O(n2).

• Polynomial Interpolation: Let us suppose we have the evaluations g(ωi)∀ i in

[0, n − 1] where n = 2r and we want to find the coefficients of the interpolating

polynomial g(x) : Fp → Fp. If we do this by using Lagrange’s interpolation

method then the algorithmic complexity will be O(n2).

We can do better by using an Inverse Fast Fourier Transform in Fp as described

in Algorithm 2.2 [38] and bring down the complexity to O(n log(n)).
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Algorithm 2.1 Evaluating a polynomial using FFT

Input:

α: coefficient vector (α0, . . . , αk−1) such that g(x) : Fp → Fp =
∑k−1

i=0 αix
i

n: 2r . Number of evaluations must be a power of 2.

ω: primitive nth root of unity i.e. ωn = 1

Output:

Evaluation vector (g(ω0), . . . , g(ωn−1))

procedure FFT(α, ω, n)

d← n

if not is power of two(d) then

d← nearest power of two(d) . Get the next higher power of 2

α′← α + [0] ∗ (d− len(α)) . Pad with zeros to make a power of 2

Z ← FFTHelper(α′, ω)

return Z[: n] . Return only first n evaluations as were asked for

procedure FFT Helper(α, ω)

if len(α) = 1 then return (α0)

(α0, α1, . . . , αn/2−1)← FFT((α0, α2, . . . , αn−2), ω
2)

(β0, β1, . . . , βn/2−1)← FFT((α1, α3, . . . , αn−1), ω
2)

for j in [0, n− 1] do

k ← j mod n/2

γj ← αk + ωjβk

return (γ0, . . . , γn−1)

• Polynomial Interpolation with only a subset of points: Let us suppose that we

want to interpolate a degree t polynomial f(x) : Fp → Fp given evaluations of the

polynomial at t + 1 distinct points (x0, x1, . . . , xt) where xi = ωj ∀ i ∈ [0, t]∀ j ∈
[0, n − 1]. We can do this efficiently using FNT based Reed-Solomon decoding

[39]. Given below is an outline of the algorithm:

(a) Determine coefficients of polynomial A(x) = Πj(x − xj). This can be done

in O(t log2 (t)) time using a divide-and-conquer approach and FFT-based

polynomial multiplication.

(b) Differentiate polynomial A(x) to obtain A′(x). This can be trivially done in

O(t) time.
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Algorithm 2.2 Finding an interpolating polynomial using Inverse FFT

Input:
γ: evaluation vector (γ0, . . . , γn−1) = (g(ω0), . . . , g(ωn−1))
ω: primitive nth root of unity i.e. ωn = 1
n: 2k . Length of the vector α must be a power of 2

Output:
Coefficient vector (α0, . . . , αn−1) such that g(x) : Fp → Fp =

∑n−1
i=0 αix

i

procedure Inverse FFT(γ, ω)
β ← FFT(γ, 1/ω)
for j in [0, n− 1] do

αj ← βj/n

return (α0, . . . , αn−1)

(c) Evaluate A′(x) on (x0, x1, . . . , xk−1). Since xi = ωj ∀ i ∈ [0, t]∀ j ∈ [0, n− 1],

we can evaluate A′(x) at (ω0, . . . , ωn−1) and select the evaluations correspond-

ing to (x0, . . . , xk−1). This can be done in O(n log(n)) time.

(d) Set ni = yi/A
′(xi). Evaluate the polynomial N(m) = Σn−1

j=0njm
zj at ω−r ∀ r ∈

[0, n − 1] where ωzj = xj . This is equivalent to a single DFT and can be

done in O(n log(n)) time.

(e) Set polynomial Q(x) = −Σn−1
j=0N(ω−j−1)xj. The interpolated polynomial

P (x) is given by Q(x) ∗A(x). This can be done using FFT-based polynomial

multiplication in O(n log(n)) time.

5. Finding the interpolating polynomial with errors in data points

If we have up to e erroneous points then we can use Gao’s method [40] as described in

Algorithm 2.3 for finding the interpolating polynomial from a set of at least k+ 2e+ 1

points where k is the degree of the interpolating polynomial.

2.4 CRYPTOGRAPHY

2.4.1 Shamir’s Secret Sharing Scheme

In Shamir’s Secret Sharing Scheme [41], the goal is to divide a secret S into n pieces

S1, . . . , Sn such that S can be reconstructed from any k or more pieces. However, the

knowledge of k− 1 or fewer pieces does not reveal anything about S. The pieces Si are also

referred to as Shares and this scheme is called (k, n) threshold scheme where 0 < k ≤ n.

10



For the (k, n) threshold scheme, the idea is to choose at random k−1 points ai ∀ i ∈ [1, k−1]

where ai ∈ Fp and let a0 = S. We then build a polynomial f(x) = a0 + a1x+ · · ·+ ak−1x
k−1.

Lastly, we create the n shares by evaluating f(x) at i ∀ i ∈ [1, n]. Each of these shares can

then be distributed to n different parties.

Algorithm 2.3 Gao’s method for decoding Reed Solomon Codes

Input:
A received vector b = (b1, b2, ..., bn) ∈ Fn

p which comes from a codeword c with t errors
where t ≤ (d− 1)/2.

Output:
A message polynomial m1 +m2x+mkx

k−1, or “Decoding failure”

procedure Decoding Reed Solomon Codes (b)
Step 1: (Interpolation) Find the unique polynomial g1(x) ∈ Fp[x] of degree ≤ n−1

such that
g1(ai) = bi, 1 ≤ i ≤ n

Step 2: (Partial GCD) Apply the extended Euclidean algorithm to g0(x) and g1(x).
Stop when the remainder, say g(x), has degree < 1

2
(n+ k). Suppose we have at this time

u(x)g0(x) + v(x)g1(x) = g(x)

Step 3: (Long division) Divide g(x) by v(x), say

g(x) = f1(x)v(x) + r(x),

where deg r(x) < deg v(x). If r(x) = 0 and f1(x) has degree < k then output f1(x),
otherwise output “Decoding failure” (which means that more than (d− 1)/2 errors have
occurred).

Reconstruction

Given a set of z shares Si from a (k, n) threshold scheme where k ≤ z ≤ n, reconstruction

is the process of computing S from Si. We can do this easily by finding an interpolating

polynomial g(x) using the points (i, Si) where i ∈ [1, n] and then computing g(0) to obtain

the secret S.

NOTE: We can also employ FFT to construct the shares Si using the coefficients ai and

use Inverse FFT to get the interpolating polynomial g(x). We can then compute the secret

S by evaluating g(0).
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Notation

We use [x]t to denote a Shamir Share of the secret x where t is the threshold.

2.4.2 Multi Party Computation

Given n parties P1, . . . , Pn each of which have a private input x1, . . . , xn. In a multi-party

computation (MPC), the parties wish to jointly compute a function y = f(x1, . . . , xn) such

that this computation must preserve the following security properties even if some of the

parties collude and maliciously attack the protocol [42]:

1. Correctness: Parties obtain the correct output even if some parties demonstrate ad-

versarial behaviour.

2. Privacy: Only the output is learned and nothing else.

3. Independence of inputs: Parties cannot choose their inputs as a function of other

parties’ inputs.

4. Fairness: If one party learns the output then all parties learn the output.

5. Guaranteed output delivery: All honest parties learn the output.

Operations on shares

• Linear Combination:

We can compute a linear combination of the shares, [x]t, [y]t and [z]t as follows:

[m]t = a× [x]t − b× [y]t + [z]t/c

Here a, b and c are elements in Fp. This works because a linear combination of multiple

degree t polynomials also results in a degree t polynomial.

• Multiplication:

Unlike linear combination, multiplying two degree t polynomials results in a polynomial

of degree 2t. This requires us to have at least 2t+ 1 points in order to reconstruct the

result of multiplication. We can multiply the shares using the following two techniques:
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– We can use Beaver’s Circuit Randomization technique [43]. If we have access to

a set of shares [a]t, [b]t and [ab]t such that ab = a× b, then we can multiply two

shares [x]t and [y]t as follows:

D = Reconstruct([x]t − [a]t)

E = Reconstruct([y]t − [b]t)

[xy]t = DE +D[b]t + E[a]t + [ab]t (2.12)

This involves a total of two reconstructions, three additions, three multiplications

and three subtractions.

– We can also use a technique based on double shares. If we have access to a set of

shares [r]t and [r]2t where r is a random element in Fp, then we can multiply two

shares [x]t and [y]t as follows:

[xy]2t = [x]t × [y]t

D = Reconstruct([xy]2t − [r]2t)

[xy]t = [r]t +D (2.13)

This requires only one reconstruction, one addition, one multiplication and one

subtraction.

2.4.3 Robust Batch Reconstruction

A valid secret shared value [x]t can be trivially reconstructed by having every party broad-

cast their shares but this requires quadratic communication per share. We use the batch

reconstruction technique from Choudhury and Patra [26] as described in Algorithm 2.4

to keep the overall communication complexity involved in reconstructing a batch of secret

shared values to O(Nk) where k is the number of values to reconstruct and N is the total

number of nodes.

In each round of the algorithm we also make use of robust decoding to tolerate potential

corruptions or crashed parties. The main idea is to check that the reconstructed polynomial

coincides with 2t+1 received values, since t+1 of which must be honest and uniquely deter-

mine the correct degree t polynomial. We optimistically attempt to decode after receiving

2t + 1 values, but if this fails we fall back to Gao’s method of Reed-Solomon decoding as

additional shares arrive. We are able to leverage the speedup provided by FFT even when

working with only a subset of all points because of the FNT-based Reed Solomon decoding
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technique described above.

Algorithm 2.4 Batch reconstruction

Let there be N parties P1, . . . , PN . This protocol is executed at each party Pi.

Input: [s0]t, . . . , [st]t
Output: s0, . . . , st

procedure Batch Open( )

Let φ(i, x) =
∑t

j=0[sj]
(i)
t x

j. Evaluate φ(i, x) at [1, N ].
(Round 1)
for j in [1, N ] do

Send φ(i, j) to party Pj

Wait to receive between 2t+ 1 and N shares, robustly reconstructing φ(·, i)

(Round 2)
for j in [1, N ] do

Send φ(0, i) to each party

Wait to receive between 2t+ 1 and N shares, robustly reconstructing φ(0, ·)

for j in [1, t+ 1] do
yj ← jth coefficient of φ(0, ·)

return y

2.4.4 HoneyBadgerAVSS - hbAVSS

Definition 2.1. Asynchronous Verifiable Secret Sharing (AVSS)

In an AVSS protocol, the dealer D receives input s ∈ Fp, and each party Pi receives an

output share φ(i) for some degree t polynomial φ : Fp → Fp. The protocol must satisfy the

following properties:

• Correctness: If the dealer D is correct, then all correct parties eventually output a

share φ(i) where φ is a random polynomial with φ(0) = s.

• Secrecy: If the dealer D is correct, then the adversary learns no information about φ

except for the shares of corrupted parties.

• Agreement: If any correct party receives output, then there exists a unique degree t

polynomial φ′ such that each correct party Pi eventually outputs φ′(i).
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We use the hbAVSS protocol from [31], this protocol satisfies all the properties mentioned

above and has an overall linear amortized communication overhead, linear in terms of the

number of parties.

2.4.5 Asynchronous Common Subset

The Asynchronous Common Subset (ACS) primitive allows each party to propose a value,

and guarantees that every party outputs a common vector containing the input values of at

least N − 2t correct parties where t is the threshold for the number of adversarial parties.

We take the ACS implementation from HoneyBadgerBFT [44].
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CHAPTER 3: HONEYBADGERMPC

3.1 SYSTEM MODEL

We consider an asynchronous distributed system model with a fixed set of N communi-

cating parties P1, .., PN connected to each other by pairwise authenticated channels. For a

node1 in this system, we assume that there are no bounds on execution of its processes, that

its clock has an arbitrary drift rate, and that there can be an arbitrary and unbounded delay

in the transmission of a message sent by it.

In addition, we assume the existence of a global adversary capable of monitoring all

network communication, introducing arbitrary delays in the transmission of messages, and

delivering messages out of order. Since we assume secure channels, the global adversary

cannot inspect, modify or remove messages. We consider that any timeouts in the protocol

will always expire and it is best if they are avoided.

Furthermore, we assume that a Byzantine threshold adversary is allowed to corrupt any t

out of N nodes, such that t < N
3

. This Byzantine adversary can also collude with the global

adversary mentioned earlier. A node corrupted by the Byzantine adversary can behave

arbitrarily. It can fail to respond to messages, respond with incorrect messages, or collude

with other corrupt nodes to coordinate attacks. It is not possible to identify if a node has

crashed, is slow or is simply delaying the messages because it is corrupt. We do not consider

Sybil attacks, which could otherwise allow an attacker to gain control of a byzantine quorum

of the network. Similarly, although the Byzantine adversary can send invalid messages to

try to thwart the protocols, we consider the problem of an adversary trying to DOS the

network by sending very large amounts of invalid data to be out of scope.

We assume all adversaries are computationally bounded and are unable to break crypto-

graphic primitives.

Lastly, we assume the existence of an available and accurate public key infrastructure,

which nodes can use to learn the public keys of other parties.

3.2 SYSTEM GOALS

One of the major contributions of this work is HoneyBadgerMPC – an MPC toolkit

designed to achieve the following high-level goals for a corruption threshold of t < N/3:

1. Scalability

1The term node is used interchangeably with the term party.

16



We should be able to support a large number of parties (at least 100) and operate on

large input sizes (at least 212 field elements).

2. Fault-tolerance

We should be able to successfully execute a protocol to completion even in the case

when up to t nodes have crashed.

3. Robustness

We should be able to successfully execute a protocol to completion as long as we have

inputs from N − t parties following the protocol. In other words, we should guarantee

correct execution of the protocol even when up to t nodes have crashed or have been

compromised.

4. Confidentiality

We should never leak any information about any of the inputs even in the case when

up to t nodes are corrupt.

5. Asynchronous execution

MPC applications involve both computation and communication. This, coupled with

the fact that we are operating in an asynchronous communication model where mes-

sages may be delayed arbitrarily, provides us with the perfect opportunity to overlap

communication with computation as long as the two are independent.

More specifically, we should be able to asynchronously trigger communication and

continue further execution until we reach a point at which we need the output of

previously triggered operations. Refer to Section 2.1.1 for a detailed explanation of

asynchronous execution.

6. Ease of programmability

We should provide an easily programmable interface to a developer interested in build-

ing MPC applications.

3.3 IMPLEMENTATION

HoneyBadgerMPC has been heavily inspired by VIFF [24]. This section goes over all the

architectural decisions that have influenced the design of HoneyBadgerMPC.
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3.3.1 Programming Language

HoneyBadgerMPC is implemented in the Python [33] programming language. The choice

to pick Python was mainly influenced by the following factors:

• Need for a flexible language for rapid prototyping

• A syntax supported framework for writing concurrent programs

• Availability of an extensive set of packages providing various functionalities such as

testing frameworks, benchmarking frameworks, implementation of cryptographic op-

erations, modules to maintain code quality etc.

Python code is interpreted at runtime causing it to run slower when compared against

code written in a language like C/C++ where the code is first compiled to native code

and then executed. When building components which perform computationally intensive

operations, HoneyBadgerMPC invokes compiled code written in either Rust or C++ to

achieve the performance boost which Python cannot provide. Fig. 3.1 gives a perspective of

the different languages which make up the HoneyBadgerMPC codebase.

Python C++ Rust
Programming languages

0

2000

4000

6000

8000
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es
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f c
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Figure 3.1: Programming languages used in HoneyBadgerMPC.
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3.3.2 Asynchronous Framework

HoneyBadgerMPC is built on asyncio which is Python’s standard framework for concur-

rent programming. A syntax supported concurrent framework makes development easier

and results in less amount of more maintainable code. Refer to Section 2.2.1 for a brief

primer on asyncio.

3.3.3 Finite Field

We use a finite field Fp where p is a prime of size 255 bits and,

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

p is same as the order of zk-SNARK’s BLS12-381 curve [45]. We pick this particular modulus

since we leverage FFT to perform multi-point polynomial evaluations and interpolations and

in order to be able to that, Fp needs to be equipped with a large 2r root of unity. BLS12-381

is a recent Elliptic Curve Construction with support for asymmetric pairing groups which

allow us to perform elliptic curve operations with better performance.

3.3.4 Dataflow

We intend to deploy HoneyBadgerMPC in networks which are asynchronous by nature

and as a consequence it can take an arbitrary amount of time for a message to reach from one

node to another. asyncio’s ‘Future’ class allows us to handle this asynchronous behaviour

nicely.

In order to understand the flow of data within HoneyBadgerMPC, it is important to

understand the following abstractions, each of which is implemented as a separate class:

• GFElement: Denotes an element within a Finite Field Fp where p is a prime. Every

party has the same value.

• Share: Denotes a Shamir secret sharing [41] of a field element. Every party has a

different value which corresponds to its own ‘share’ of the value.

• ShareFuture: Denotes a promise that this object will resolve to a ‘Share’ object when

awaited.

• GFElementFuture: Denotes a promise that this object will resolve to a ‘GFElement’

object when awaited.
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An ‘open()’ method can be invoked on a ‘Share’ or ‘ShareFuture’ object to publicly recon-

struct the underlying secret represented by it. The return value of the ‘open()’ operation is

a ‘GFElementFuture’ object which will eventually resolve to a ‘GFElement’ object once we

await on the reconstruction to finish.

Listing 3.1 shows an example of how operations can be performed on these types without

any synchronization unless required. Note the absence of await statements while perform-

ing multiplication of two ‘Share’ objects (lines 5 and 6, recall that a share multiplication

requires at least one public reconstruction) or when opening a ‘Share’ (lines 7 and 8). The

expression tree in Fig. 3.2 describes how this code is evaluated. A key takeaway from this

expression tree is that X and Y are mutually independent and are evaluated in parallel i.e.

while the evaluation of X waits on network communication from other parties, we allow Y

to trigger its part of the communication. This is important for efficiency since depending on

the amount of computation and communication performed within an MPC application, the

communication may end up dominating the runtime.

1 async de f mpc prog (a , b , c , d ) :

2 ”””

3 a , b , c , d : Sec r e t shared va lue s o f type Share .

4 ”””

5 x = a ∗ b # Share x Share => ShareFuture

6 y = c ∗ d # Share x Share => ShareFuture

7 X = x . open ( ) # Async open ( ) o f a Share => GFElementFuture

8 Y = y . open ( ) # Async open ( ) o f a Share => GFElementFuture

9 Z = X ∗ Y # GFElementFuture x GFElementFuture =>

GFElementFuture

10 r e s u l t = await Z # Wait f o r r e s u l t to be computed be f o r e r e tu rn ing

11 re turn r e s u l t

Listing 3.1: HoneyBadgerMPC code snippet to demonstrate dataflow

Table 3.1 lists the relationships between various types within HoneyBadgerMPC and en-

lists all operations supported between them. In short:

• If a Future is returned then it needs to be awaited in order to retrieve the underlying

value.

• Future always dominates i.e. performing operations on a Future always returns a

Future.
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Figure 3.2: Expression tree for the code snippet in Listing 3.1.

• ‘open()’ always returns a ‘GFElementFuture’.

The dataflow in HoneyBadgerMPC is inspired from VIFF which uses callbacks and Def-

ferds to achieve the same. We wanted developers to have the flexibility of using different

operations directly on secret shared values and field elements without putting any constraints

on them to either cast or wait for values.

Operand 1 Type Operator Operand 2 Type Result Type

GFElement +,−,×,÷ GFElement GFElement

GFElement +,−,×,÷ int GFElement

int +,−,×,÷ GFElement GFElement

GFElementFuture +,−,×,÷ GFElement GFElementFuture

GFElement +,−,×,÷ GFElementFuture GFElementFuture

GFElementFuture +,−,×,÷ GFElementFuture GFElementFuture

Share +,− Share Share

Share × Share ShareFuture

ShareFuture +,−,× Share ShareFuture

Share +,−,× ShareFuture ShareFuture

ShareFuture +,−,× ShareFuture ShareFuture

GFElementFuture +,−,× Share ShareFuture

Share +,−,× GFElementFuture ShareFuture

GFElementFuture +,−,× ShareFuture ShareFuture

ShareFuture +,−,× GFElementFuture ShareFuture

Table 3.1: Summary of type relationships and operators
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3.3.5 Preprocessing Phase

An MPC application involves two phases, the preprocessing phase and the online

phase. The former is the one where preprocessed elements such as shares of multiplication

triples, shares of random field elements, shares of random bits etc. are generated. Different

kinds of MPC applications need one or more types of these preprocessed elements to perform

operations on secret shared inputs. On the other hand, the online phase is the one where

we compute a public function on the secret shared inputs to produce the output of MPC.

For a successful execution of an MPC application, we need to ensure that apart from

conforming to our system goals, the preprocessing phase in its steady state never runs out

of preprocessed elements i.e. a continuous supply of preprocessed elements is produced as

they are being consumed by the online phase.

The number of preprocessed elements required by an MPC application is usually a function

of the number of its inputs. Since scalability in the dimension of the number of inputs is

one of our goals, we need to be able to generate these preprocessed elements as efficiently as

possible.

Preprocessing in HoneyBadgerMPC

HoneyBadgerMPC uses hbAVSS (Section 2.4.4) to AVSS a batch of preprocessed elements,

post that it uses ACS (Section 2.4.5) to agree on a batch of these unrefined preprocessed

elements. Lastly, we leverage FFT to refine the agreed preprocessed elements.

For the ease of explanation, let us say that we want to generate shares of random field

elements in the preprocessing phase. The process is as follow:

1. AVSS:

(a) Each node Pi generates a batch b of random field elements. It then AVSSes these

random field elements to all other nodes using hbAVSS. In this process, Pi retains

its shares of the AVSSed values after they have been verified. Pi only waits for

its own AVSS instance to finish and must not wait for AVSS instances started by

other parties since they might never finish.

(b) Each node Pi also maintains a list of count of shares of AVSSed values that it has

received from each dealer Pj.

This process is illustrated in Fig. 3.3.
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(a) Each node AVSSes a batch
of random field values using
hbAVSS.

(b) Each node maintains a count of shares of AVSSed
values it has received per dealer. nij is the number of
AVSSed values Pi has received which have been dealt by
Pj .

Figure 3.3: An example with N = 4 demonstrating Step 1

2. ACS:

At any instant, it is possible that the list from 1.b) has different counts at some/all the

nodes since they might receive the AVSS acknowledgements in different order. Thus,

after every few AVSSes each node Pi needs to run an instance of ACS to agree on the

count of values obtained from Step 1.b).

Figure 3.4: After ACS each node gets to know the
count of AVSSed values received by all other nodes

3. Processing of agreed values:
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(a) After ACS, each node has the same view of the matrix (Fig. 3.4).

(b) We take the transpose of the matrix such that cell [i, j] now indicates the number

of values received by Pj dealt by Pi. Essentially, each row i is now Pi’s view of

the count of values dealt by itself that all the nodes have received.

(c) We then find zi, the tth largest element (0 based index), where t is the corruption

threshold in each row of the matrix. This implies that t + 1 nodes have seen at

least zi AVSSed values dealt by Pi. This gives us the confidence that now we can

process zi values, since if even one honest node has confirmed successful receipt

of a batch of AVSSed values then all nodes will eventually receive their shares of

that particular batch.

Fig. 3.5 illustrates this step.

Figure 3.5: Step 3

Triple generation: The process of generating unrefined shares of triples follows the

same steps except for minor changes listed below:

(a) The input batch for AVSS now consists of multiple sets of three field elements a,

b, and ab such that ab = a× b.

(b) While processing the agreed values, we must ensure that the set of agreed values

always includes a complete triple. This is just a note and in principle works

similar to the previous case since with hbAVSS we always receive the entire batch

and never receive only some of the values from a batch.

4. Refinement:

Up until this step, we have agreed on a set of AVSSed values at all nodes. However,

some of these values may have been AVSSed by corrupt nodes and thus we need to

refine them. We refine values in a batch such that each batch contains values dealt by

at least N − t different nodes, Fig. 3.6 describes the process of selecting a batch. Note
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that this batch comprises of values from multiple nodes whereas when we refer to a

batch of AVSSed values, those correspond to a batch of values dealt by a single node.

The process of refining a batch involves evaluating the polynomial represented by the

values in a batch on a new set of points.

Figure 3.6: All nodes have the same view of zi. Vij represents the share of jth

value dealt by Pi. All the values with the same color are refined together. The
values colored grey cannot be refined yet since for each refinement we need values
dealt from at least N − t different nodes.

The entire refinement process relies on the assumption that two batches of AVSSed

values dealt by the same dealer will arrive at all the parties in the same order. This

is enforced by associating a per dealer counter with each batch. This counter is incre-

mented at the dealer after each batch is AVSSed. If any batch from a particular dealer

arrives out of order at any of the parties, then we buffer it and wait for all previous

batches to arrive before processing it.

Random Refinement

It is possible for a node to have crashed and as a result it can no longer AVSS more values.

We can tolerate up to f such crash faults where 0 ≤ f ≤ t. We will continue to proceed by
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Algorithm 3.1 FFT based interpolation and extrapolation

FFT Interp Extrap takes a set of points Y and ω as input such that ω2×len(Y ) = 1. It
treats Y such that Yi = f(ω2i)∀ i ∈ [0, len(Y )− 1]. It returns a set of points Z such that
Zi = f(ωi)∀i ∈ [0, (2× len(Y ))− 1].

procedure FFT Interp Extrap(Y, ω)
n← len(Y )
Y ′← Inverse FFT(Y, ω2)
Y ′′← FFT(Y ′, ω, 2n)
return Y ′′

agreeing on values from all nodes which are currently online and are able to AVSS values. As

a result, an input batch for random refinement can contain unrefined shares from anywhere

between N − f to N nodes.

Algorithm 3.2 FFT based random refinement

Random Refinement takes a set of points Y . Let b← len(Y ), then each of the b points in
Y come from a different party and b ∈ [N − t, N ]. It treats Y such that Yi = f(ω2i)∀ i ∈
[0, b− 1] and returns a set of b− t points Z such that Zi = f(ω2i+1)∀ i ∈ [0, b− t− 1].
procedure Random Refinement(Y , N, t)

b← len(Y )
if not is power of two(b) then

b← nearest power of two(b) . Get the next higher power of 2

ω ← get omega(2× b) . Get (2b)th root of unity i.e. ω2b = 1
Y ′← Y + [0] ∗ (b− len(Y )) . Pad with zeros to make a power of 2
Z ′← FFT Interp Extrap(Y ′, ω) . Algorithm 3.1
return Z ′[1 : 2× (len(Y )− t) : 2] . Take only first len(Y )− t odd points

Yield: In the worst case, this input batch can contain values from all t corrupt nodes,

thus we can output only N − f − t refined shares. If we output more that N − f − t refined

shares, then after consuming N − f − t random shares, the corrupt parties have enough

points to define the polynomial and determine the shares of all other parties. Algorithm 3.2

describes the process of random refinement.

Algorithmic Complexity: The computational complexity per node isO(k log(k)) where

k is the nearest power of 2 for a batch of size m such that m ∈ [N − f,N ]. The refinement

of random shares does not involve any communication since the only operations that we

are doing are polynomial interpolation and evaluation on the shares which we have already

received.
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Comparison with other refinement techniques: HyperMPC [46] employs hyper-

invertible matrices for generating random double-sharings. First, every party Pi selects and

double-shares a random value si. Then, the parties compute double-sharings of the values

ri, defined as (r1, . . . , rn) = M(s1, . . . , sN), where M is a hyper-invertible N -by-N matrix.

Then, 2t of the resulting double-sharings are reconstructed, each towards a different party,

who verify the correctness of the double-sharings. The remaining N − 2t double-sharings

are outputted.

Our random refinement process can also be realized using a hyper-invertible matrix as

follows:

M ≡ {λ}i=1,...,N−f
j=1,...,N

withλi,j =
c∏

k=1
k!=j

ω2i+1 − ω2k

ω2j − ω2k
(3.1)

HyperMPC is non-robust, they use the hyper-invertible matrix not just for extraction of

random values but also for checking the degree of the polynomial which if it fails causes them

to abort. On the other hand, we rely on AVSS to guarantee the correctness of shares. Also,

instead of doing a matrix multiplication, we use the FFT-based polynomial interpolation

and evaluation. This reduces the computational complexity from O(N2) to O(N log(N)).

Apart from hyper-invertible matrices VIFF [24] also supports PRSS based generation

of shares. This does not scale with the number of parties since the local computation is

exponential in N . Fig. 3.7 illustrates how PRSS compares to hyper-invertible matrices for

generating a single 32-bit multiplication triple in VIFF.

Figure 3.7: Preprocessing time needed to generate a single 32-bit multiplication triple
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Triple refinement

In order to refine shares of triples A,B, and AB contributed by N − f parties where

0 ≤ f ≤ t and f denotes the number of crash faults, we use the first d + 1 points to define

all of A() and B(), both of which are degree d polynomials, and some of AB() = A()×B()

which is a degree 2d polynomial, here d = 2(N − f) + 1. We then evaluate A() and B() on a

different set of points and multiply them in order to get more points on AB() until we have

enough points to fully define AB(). The refined triples are those points on A(), B() and C()

that have not been used to define any of A(), B() or AB() and those which have not been

revealed yet. Algorithm 3.3 describes how we achieve this using FFT.

Algorithm 3.3 FFT based triple refinement

Input:
N ← Total number of nodes
t← Corruption threshold
A,B,AB ← [a0]t, . . . , [am−1]t, [b0]t, . . . , [bm−1]t, [ab0]t, . . . , [abm−1]t
Such that ai × bi = abi ∀ i ∈ [0,m− 1] and m ∈ [N − t, N ]

procedure Triple Refinement(A, B, AB, m, N , t)
d← (m− 1)/2 . Let d = 2m+ 1
A′, B′, AB′← A[: (d+ 1)], B[: (d+ 1), AB[: (d+ 1)] . First d+ 1 values
X ′, Y ′, XY ′← A[(d+ 1) :], B[(d+ 1) :], AB[(d+ 1) :] . Last d values
A′′← FFT Interp Extrap(FFT Interp Extrap(A′, ω2), ω)
B′′← FFT Interp Extrap(FFT Interp Extrap(B′, ω2), ω)
P,Q← A′′[1 :: 2], B′′[1 :: 2] . Get all values at odd indices
α, β ← A′′[0 :: 2], B′′[0 :: 2] . Get all values at even indices
AB′′← Batch Beaver(α, β,X ′, Y ′, XY ′) . Multiply shares of α, β using X ′, Y ′, XY ′

γ ← AB′0, AB′′0, AB′1, AB′′1, AB′2, AB′′2, . . .
PQ← FFT Interp Extrap(γ, ω)
k ← (m− 2t+ 1)/2
return P [: k], Q[: k], PQ[: k] . Return only first k points

Yield: Let m = N − f and d = 2m + 1. We use the first d + 1 points to define A(), B()

and AB() and now we are left with only the last d points which can be securely extracted

until A() and B() can be fully defined. Out of these d points, in the worst case t of these

could have been contributed by adversarial nodes which means we can extract only d− t+ 1

points. When d = t, we still get one triple after which the polynomial is revealed. Thus,

from m input triples we get d− t+1 refined triples. In other words, from N−f input triples

we get (N − f − 2t+ 1)/2 triples.

Algorithmic Complexity: The computational complexity per node per batch is similar
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to the Random Refinement process, O(k (log(k)) where k is the nearest power of 2 for a batch

of size m such that m ∈ [N − f,N ]. The triple refinement process involves multiplication of

shares using Beaver’s method which involves two share reconstructions per multiplication.

Thus, the communication complexity per node per batch is O(N).

Refining triples via Random Refinement

We can also refine triples using a 2t−share based Random Refinement approach. In this

method, each party t-shares a and b and double shares r (t and 2t shares). These shares

are then refined using the Random Refinement technique described above. Each party then

computes:

[ab]2t = [a]t × [b]t

[ab]t = Reconstruct([ab]2t − [r]2t) + [r]t (3.2)

[a]t, [b]t, and [ab]t then denote the shares of one refined triple.

In order to robustly interpolate a degree 2t polynomial, we need at least 4t + 1 points

which is not possible at N = 3t+ 1. Thus, when using double shares at t < N/3 we can no

longer be robust in the presence of faults. If we still want robustness, we have the option to

reduce our threshold to t < N/4 in order to stay robust.

The yield and the algorithmic complexity of this approach are exactly similar to that of a

t−share based Random Refinement.

3.3.6 Online Phase

As described earlier, in the online phase we evaluate a public function on secret shared

inputs. As of this writing, HoneyBadgerMPC supports the following functionalities:

1. Linear combination: A linear combination of Shares [x]t, [y]t and [z]t using coeffi-

cients p, q and r can be computed in HoneyBadgerMPC by:

w = p∗x + q∗y − r ∗z

Here x, y, z, and w are of type Share.

2. Multiplication: Two shares [x]t and [y]t can be multiplied in HoneyBadgerMPC

by:
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xy = x∗y

Here x and y are of type Share and xy is of type ShareFuture and thus needs to be

awaited.

Mixins:

HoneyBadgerMPC supports mixins to provide additional feature plugins. We support

the two ways of share multiplication as described in Section 2.4.2, each of which is

implemented as a mixin. These can be passed when creating a ‘ProgramRunner’

(described later in Section 3.4.3).

Public reconstruction: Throughout HoneyBadgerMPC we use Shamir’s secret sharing

technique to encode a secret into a set of shares which are then distributed to all parties us-

ing hbAVSS. Public reconstruction is the reverse process of revealing the underlying secret

encoded by a set of secret shares. This is implemented as the ‘open’ method in Honey-

BadgerMPC. The following steps describe the interpolation process to obtain a degree t

polynomial f(x) which can then be evaluated at f(0) to reconstruct the secret:

1. Wait for t+ 1 points.

2. Interpolate a degree t polynomial f(x) using the FNT-based algorithm as described in

Section 2.3.2.

3. Evaluate f(x) at all N points to compute the shares that you expect to receive from

other parties.

4. As more points arrive, compare them with the corresponding expected shares.

5. If a total of 2t + 1 points match with the expected shares, then we can be sure that

there are no errors. We can then return f(x).

6. If any of the 2t + 1 points fail to match with its corresponding expected share then

we invoke Gao’s algorithm (Section 2.3.2) which tells us if there’s a polynomial which

passes through those points and the number of erroneous points which do not lie on

that polynomial. We repeat this process as new points arrive until the number of non-

erroneous points is ≥ 2t + 1 and then return the polynomial passing through 2t + 1

points.
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ShareArray

MPC applications most often involve reconstruction of multiple secrets. We use the notion

of a ‘ShareArray’ to represent a list of shares. If we wish to reconstruct a list of k shares

then HoneyBadgerMPC employs the Robust Batch Reconstruction technique as described

in Section 2.4.3. We use the same interpolation technique as the one described above for a

single share reconstruction during the robust reconstruction process.

‘ShareArrays’ are also supported along with the Mixins described earlier in Section 3.3.6

to support the two variants of multiplications.

3.4 MISCELLANEOUS

3.4.1 Code optimizations

As mentioned briefly in Section 3.3.1, we have implemented certain components in different

languages in order to get better performance.

• Polynomial operations: Public reconstruction is a building block of most MPC

applications and it relies heavily on polynomial operations such as interpolation and

evaluation. In order to optimize for the common case, we implemented different poly-

nomial operations using various algorithms in C++. These include Lagrange based

interpolation, Vandermonde matrix based interpolation and evaluation, FFT based

interpolation and evaluation, and Gao’s robust interpolation. These algorithms have

been implemented using the NTL library [47] and are invoked directly from Python

via Cython [48].

• Pairing based cryptography: hbAVSS relies heavily on pairing based cryptography

for creating and verifying polynomial commitments. We create Rust [49] bindings for

the zkcrpto/pairing [50] library and build a Python wrapper to call it directly from

Python.

3.4.2 Development Environment

One of our design goals is the ease of programmability. We do not want the devel-

opers building MPC applications to suffer from debugging unrelated issues such as in-

stalling various toolkit dependencies, dealing with incompatible library versions, solving

cross-platform/compatibility problems etc. As a result, we have containerized the entire
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HoneyBadgerMPC codebase using Docker [51]. This essentially bundles all the dependen-

cies with their correct versions in a neat package freeing the application developer from

dealing with any issues in setting up the development environment.

3.4.3 Execution modes

HoneyBadgerMPC supports two execution modes:

1. Task-based: This is for rapid prototyping. This mode creates a mock router which

routes the messages between various parties. It allows the developer to swiftly build

and test the correctness of MPC applications without worrying about any network-

related issues such as packet loss, connection management, network congestion etc.

2. Process-based: After optimizing and testing the application in the task-based mode,

HoneyBadgerMPC offers a process-based mode allowing the developers to test their

applications by running each party as an independent process. This gives the develop-

ers additional confidence since they can ensure that their application works as expected

when receiving inputs via socket communication. Each process or party reads its con-

figuration settings such as the IP addresses and port numbers of other parties from

a configuration file. The parties then use this information to communicate with each

other.

The ideal deployment of an MPC application is that each party runs on a different

server. Now to deploy onto multiple servers, the developer has to simply take the

application written for the process-based mode, change the IP and ports within the

configuration file and start the application processes on different servers.

3.4.4 Test suite

We believe in heavily testing the implementation of any algorithm or protocol. As of

this writing, HoneyBadgerMPC has 178 test cases which cover 74% of the codebase. The

tests are written using the pytest [52] framework. The availability of a testing framework and

sample code to test an MPC application will allow the developers to automate the testing

of their applications.

For developers who are interested in contributing to HoneyBadgerMPC, we have a Con-

tinuous Integration pipieline setup using Travis CI [53] which validates any new pull re-

quests to ensure that all the tests pass and that the new code follows the coding prac-
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tices incorporated throughout the rest of the codebase. Our code is available at https:

//github.com/initc3/HoneyBadgerMPC.

3.4.5 Amazon Web Services

HoneyBadgerMPC has a seamless integration with Amazon Web Services (AWS) [54].

This provides the application developers the capability to test, deploy and benchmark their

applications on AWS using multiple servers launched in different regions.
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CHAPTER 4: EXAMPLE PROGRAM

Listing 4.1 describes a complete HoneyBadgerMPC program. The program is written from

a single party’s perspective and all parties execute the same code. The get random share

method provides an infinite supply of preprocessed random shares. When this method is

called, each party receives a different value which is its share of a random element.

The mpc prog collects 1000 random shares and then reconstructs all of them at once by

invoking a ShareArray.open().

This program runs in the process mode i.e. each party runs in a separate process. This

program also demonstrates the use of the configuration file.

Listing 4.1: HoneyBadgerMPC example program

1 import async io

2 from honeybadgermpc . c o n f i g import HbmpcConfig

3 from honeybadgermpc . ipc import ProcessProgramRunner

4 from honeybadgermpc . p r e p r o c e s s i n g import RandomGenerator

5

6

7 async de f get random share (n , t , my id , send , recv ) :

8 ”””

9 This method prov ides an unl imi ted supply o f preproce s s ed random share s

.

10 ”””

11 with RandomGenerator (n , t , my id , send , recv ) as random generator :

12 whi l e True :

13 y i e l d await random generator . get ( )

14

15

16 async de f mpc prog ( context , randoms ) :

17 ”””

18 This i s an MPC program which c r e a t e s a ShareArray

19 from 1000 random share s and then r e c o n s t r u c t s them .

20

21 This program i s wr i t t en from a p a r t i c u l a r party ’ s

22 pers

23 ”””

24 k , i = 1000 , 0

25 share s = [ None ] ∗ k

34



26 async f o r random in randoms :

27 share s [ i ] = random

28 i += 1

29 i f i == k :

30 break

31 p r i n t ( await context . ShareArray ( share s ) . open ( ) )

32 await randoms . a c l o s e ( )

33

34

35 async de f run ( peers , n , t , my id ) :

36 program runner = ProcessProgramRunner ( peers , n , t , my id )

37 await program runner . s t a r t ( )

38 send , recv = program runner . g e t s end and recv ( ” random generator ” )

39

40 program runner . add (

41 ”mpc” ,

42 mpc prog ,

43 randoms=get random share (n , t , my id , send , recv ) ,

44 )

45 await program runner . j o i n ( )

46 await program runner . c l o s e ( )

47

48

49 i f name == ” main ” :

50 loop = async io . new event loop ( )

51 async io . s e t e v e n t l o o p ( loop )

52 loop . r u n u nt i l c om p l e t e (

53 run (

54 HbmpcConfig . peers ,

55 HbmpcConfig .N,

56 HbmpcConfig . t ,

57 HbmpcConfig . my id ,

58 )

59 )

Listing 4.1 (cont.)

35



CHAPTER 5: EVALUATION

In this section, we evaluate the performance of various algorithms and protocols within

HoneyBagerMPC.

5.1 EXPERIMENTAL SETUP

• We deployed HoneyBadgerMPC on Amazon EC2 [55].

• We used c5.xlarge instances for all our distributed benchmarks. Each instance had the

following specifications:

– CPU: Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz

– Memory: 8 GiB

– Cores: 4

• For all our local benchmarks, we used a c5.large instance with the following specifica-

tions:

– CPU: Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz

– Memory: 4 GiB

– Cores: 2

• We used a finite field Fp where:

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

The size of p is 255 bits.

• We repeated each experiment three times and report the average of the three runs.

• All experiments were conducted in the us-east-1 region unless specified otherwise. The

ping latency and the bandwidth between two servers was measured to be 0.1 ms and

9.6 Gbits/sec respectively.

• All algorithms involving polynomial interpolation and evaluation were implemented

using the FFT based techniques described in Section 2.3.2.
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• We use pickle, Python’s default serialization protocol, for sending a share to another

node. A single serialized share value has a size of ≈ 34 bytes.

• We use t = b(N − 1)/3c for the t < N/3 setting and t = b(N − 1)/4c for the t < N/4

setting.

5.2 ONLINE PHASE: ROBUST BATCH RECONSTRUCTION

The Robust Batch Reconstruction algorithm described in Section 2.4.3 has a communica-

tion complexity of O(k) per node where k is the batch size. We evaluate our implementation

in the following two settings.

5.2.1 Single AWS Region

We demonstrate that HoneyBadgerMPC can successfully reconstruct a batch of 218=

262144 shares on 100 nodes in 32.135 seconds i.e. ≈ 8154 shares/second with a

communication cost of ≈ 198 bytes/share which is an overhead of 6×. Fig. 5.1 and

Table 5.1 describe the cost of batch reconstruction as the number of nodes and the batch

sizes are varied in the same AWS region.
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Figure 5.1: Batch reconstruction costs in the us-east-1 region
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N 24 26 28 210 212 214 216 218

4 79 80 112 86 268 984 3993 16509

32 63 125 41 97 385 1515 6138 24288

64 165 33 124 111 399 1533 6295 25362

100 215 156 115 144 512 1980 8035 32136

Table 5.1: Time in milliseconds to reconstruct batches of different sizes across varying
number of nodes in the us-east-1 region.

5.2.2 Multiple AWS Regions

Setup

In the multi-region setting, the minimum and maximum ping latency between any two

servers was 0.327 ms and 328 ms respectively and the minimum and maximum bandwidth be-

tween two servers was 15 Mbits/sec and 968 Mbits/sec respectively. We used the t2.medium

instance type for these experiments. Table 5.2 describes the configuration for this experi-

ment.

N Configuration

4 1: us-east-1, 1: ap-south-1, 1: ap-northeast-1, 1: sa-east-1

16 2: us-east-1, 1: us-east-2, 2: us-west-1, 1: eu-central-1, 2: ap-northeast-1, 1:

ap-south-1, 2: sa-east-1, 1: ca-central-1, 2: eu-west-2, 2: eu-west-3

50 5: us-east-1, 5: us-east-2, 5: us-west-1, 5: eu-central-1, 5: ap-northeast-1, 5:

ap-south-1, 5: sa-east-1, 5: ca-central-1, 5: eu-west-2, 5: eu-west-3

100 10: us-east-1, 10: us-east-2, 10: us-west-1, 10: eu-central-1, 10: ap-northeast-1,

10: ap-south-1, 10: sa-east-1, 10: ca-central-1, 10: eu-west-2, 10: eu-west-3

Table 5.2: Server configurations for the multi-region setting

Results

Fig. 5.2 and Table 5.3 describe the cost of reconstructing batches of different sizes across

a varying number of nodes in the multi-region setting. We observe that for N = 100 and

k = 214, the increased latency (from 0.1 ms to 328 ms in the worst case) between the servers

in the multi-region setting makes the reconstruction time go up by just 8.7%. This is because

we have to wait for only 2t + 1 points and not all. We are able to reconstruct a batch of
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Figure 5.2: Batch reconstruction costs in the multi-region setup

N 26 28 210 214 217

4 818 731 902 1705 8689
16 804 807 753 2768 9887
50 1186 779 814 2003 15533
100 726 779 770 2153 17093

Table 5.3: Time in milliseconds to reconstruct batches of different sizes across varying
number of nodes in the multi-region setting.

217 = 131072 shares on 100 nodes in 17.093 seconds i.e. ≈ 7668 shares/second. The

increased latency causes a 5.9% decrease in the throughput.

5.2.3 Communication Cost Validation:

In the following steps, we verify the communication cost for N = 100, t = 33 and k = 218

for the same region setting.

• The total number of bytes sent by one node on average was ≈ 51911697.33 bytes.

• For one round of batch reconstruction, we send out k/(t+ 1) shares to N − 1 parties,

making it a total of k(N−1)
t+1

bytes per round. There are two such rounds, therefore:

Total bytes sent by one node =
Size of one share× 2k(N − 1)

t+ 1
(5.1)

Size of one share =
Total bytes sent by one node× (t+ 1)

2k(N − 1)
(5.2)
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• If we use Eq. (5.2) to calculate the size of one share then it comes out to be ≈ 34.0047

bytes which is about right.

• We can also verify the per node per share communication cost by dividing Eq. (5.1)

with k making it equal to 6× Size of one share = 204 bytes/share, which is pretty

close to the observed value of 198 bytes/share.

• As expected, we have an overhead of 6× even in the multi-region setup.

Based on the results from this experiment, we fix the batch size to be 211 = 2048 for the

rest of our experiments since that’s when both the communication and computation costs

start to amortize.

5.3 ONLINE PHASE: SHARE MULTIPLICATION

We evaluated the following two techniques described in Section 2.4.2 for share multiplica-

tion in the online phase at t < N/3:

1. Beaver’s circuit randomization technique

2. Multiplication using double shares

For the share reconstructions involved in the two approaches we use our Robust Batch

Reconstruction algorithm. Note that the double share based multiplication in the N/3

setting is non-robust i.e. a single fault in this setting will cause the program to hang because

we will not have enough shares to reconstruct the polynomial robustly.

Fig. 5.3 describes how these two approaches compare against each other. We took a

batch of 8192 triples for this experiment in order to get stable results. At N=100, we

can multiply 6400 shares/second using double shares and 3312 shares/second using

Beaver’s method.

5.3.1 Computation Cost

We need to perform three multiplications, three additions and two subtractions per share

multiplication using Beaver’s method whereas if we were to use a double share then we need

to perform only one multiplication, one addition and one subtraction per share.

For Robust Batch Reconstruction we have to perform k/(t+ 1) polynomial interpolations

of a degree t polynomial and k/(t + 1) N−point polynomial evaluations in each of the two
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rounds. Since we are working with a degree 2t polynomial, we need to perform half the

number of interpolations with double the number of values and only half the number of

evaluations. As a result, we expect the double sharing technique to perform better as is

evident from Fig. 5.3a.

5.3.2 Communication Cost

Beaver’s method requires two share reconstructions for each share multiplication, on the

other hand using double shares requires only one reconstruction. Since we are working with

a degree 2t polynomial for double shares, we send out a chunk of (N − 1)/(2t + 1) shares

per round as compared to a chunk of (N − 1)/(t + 1) in the case of Beaver’s method. This

implies that we send roughly 2× more bytes in the case of Beaver’s method for a single batch

reconstruction. Since there are twice as many reconstructions for the Beaver’s method, each

node ends up sending 4× times more bytes in comparison with the double sharing case.

This is evident from Fig. 5.3b.
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Figure 5.3: Cost of 8192 multiplications in the online phase at t < N/3

5.4 PREPROCESSING PHASE: GENERATION OF UNREFINED PREPROCESSED
VALUES

We evaluate the performance of our preprocessing scheme as described in Section 3.3.5 by

AVSSing 128 random values from all nodes simultaneously. Table 5.4 and Fig. 5.4 demon-

strate the performance of one iteration of our preprocessing scheme. One iteration implies

one execution of hbAVSS → ACS → Processing of agreed values. These are the total costs
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inclusive of all the three phases. For hbAVSS, our implementation uses linear-sized polyno-

mial commitments instead of constant-sized ones and we skip the implicate phase. In our

implementation, we parallelize each of the below mentioned steps:

• Computation of polynomial commitments for all values in the batch.

• Computation of witnesses for all values in the batch.

• Computation of shares for all values in the batch.

• Computation of shared keys for each batch for all parties at the dealer.

• Encryption of all dealer messages.

• Decryption of values in a batch at each recipient.

• Verification of all shares and their corresponding witnesses at each recipient.

There is still a lot of room for improvement in our implementation such as moving the

polynomial commitment computation to C++, use of constant-sized commitments, moving

the Merkle tree creation to C++ etc.

5.4.1 Computation Cost

Let k be the number of values in a batch, then for our implementation of hbAVSS, the

computational complexity for creating the witnesses is O(kN2). Fig. 5.4a illustrates the

computation cost per node per output share as the number of nodes are increased, this is

expected to be linear since we get kN unrefined output shares.

5.4.2 Communication cost

As we can observe from Fig. 5.4b, the communication cost per node per output share has

a linear cost as the number of nodes increases, this is expected since we are using linear-

sized polynomial commitments. With the use of constant-sized polynomial commitments,

we expect the communication cost per node to be constant for a large enough batch size.
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Figure 5.4: Cost of AVSSing a batch of 128 random shares from all nodes simultaneously

N Count of generated unrefined random shares

per node

Total Time (s)

4 512 0.683712

32 4096 18.55580833

64 8192 71.74694167

100 12800 176.4862573

Table 5.4: Time taken to hbAVSS a batch of 128 random shares from all nodes

5.5 REFINING SHARES

After the Processing of agreed values phase each node receives a batch of shares from

anywhere between N−f to N nodes where f is the number of crash faults. Just to reiterate,

f is not an additional parameter to the protocol and is only a setting to simulate the number

of failed nodes. As described earlier in Section 3.3.5, these shares need to be refined. In

this section, we evaluate different techniques for refining shares of random field elements and

shares of triples.

5.5.1 Random shares

We performed an experiment to observe the cost of refining a single batch of random

t−shares for different threshold settings by varying the number of nodes and the number of
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crash faults. Note that the process of refining random shares involves only local computation

at each node and does not involve any communication since all we do is interpolate and

evaluate a polynomial on a set of points.

If there are f crash faults, then we need to refine N − f shares, where f ∈ [0, t] and for

N − f unrefined input shares we get N − f − t refined output shares. Fig. 5.5b illustrates

how the number of output refined shares varies theoretically as the input size changes for

different f and t values.
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Figure 5.5: Random Refinement of t−shares

The operation at the core of Random Refinement is FFT which has a computational

complexity of O(N (log(N)). The time taken per output share is expected to be of the order

of log(N). In Fig. 5.5a, for small batch sizes, the cost is dominated by other factors. As the

batch size grows, we can see that the plot tends to be linear as expected (this is a lin-log

plot). The amount of computation performed per output share correlates perfectly with the

theoretical yield in Fig. 5.5b.

5.5.2 Shares of triples

We compare the following two different techniques for refining triples as described in

Section 3.3.5:

1. t−share Triple Refinement

2. 2t−share Random Refinement

44



Just to recall, when using double shares at t < N/3 we can no longer be robust in the

presence of faults. In order to robustly interpolate a degree 2t polynomial, we need at least

4t+ 1 points which is not possible at N = 3t+ 1.
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Figure 5.6: Triple Refinement: Theoretical Yield

The number of refined output triples for a batch of N − f unrefined input triples for the

two different techniques are given by the following expressions:

1.

t− share Triple Refinement =
N − f − 2t+ 1

2
(5.3)

2.

2t− share Random Refinement = N − f − t (5.4)
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Refer to Section 3.3.5 for an explanation.

Fig. 5.6 illustrates how the number of output triples vary theoretically as the threshold,

the number of crash faults, and the number of nodes contributing the input triples change.

This plot is jagged because we compute t by taking floor of (N − 1)/3 or (N − 1)/4.

How much does it cost to be t−robust?

Fig. 5.8a illustrates the actual computation cost for different threshold settings as the

number of faults is varied. We fixed the number of nodes to be N = 32 for this experiment.

We ran this experiment with a batch size of 4096 where each batch contained N−f = 32−f
triples. For a given t, as the number of faults increase, the decrease in yield is much more

than the decrease in the amount of total computation causing the cost per output triple to

go up. If we fix f , then increasing the threshold t has a similar impact on the yield and

the total computation as it does when we fix t. These relations can be realized perfectly

with the help of a theoretical computation cost that we plot in Fig. 5.7 using the following

equation:

Computation cost per output triple =
c (N − f) log(N − f)

Number of output triples
(5.5)

Extracting triples using a Random Refinement approach based on 2t−shares does much

better because of a significantly higher yield and the fact that we need to do only one

polynomial interpolation and extrapolation. This increased yield is also evident in Fig. 5.6.

‘The theoretical communication cost per output triple is also very similar to the theoretical

computation cost. It just does not have the logarithmic component which is anyway pretty

small, as a result the graph in Fig. 5.8b looks very similar to Fig. 5.7.

Fig. 5.9 shows the cost of Triple Refinement for three different approaches as the number

of nodes are varied. For this experiment, we use 2048 batches of triples wherein each batch

contains exactly N triples. We can justify the computation cost by correlating with the

yield in Fig. 5.6. The 2t−share approach involves only half the number of reconstructions

compared to the t−share approach.
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Figure 5.8: Cost of Triple Refinement at N = 32 for 4096 batches
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Figure 5.9: Cost of Triple Refinement with zero crash faults for 2048 batches

5.5.3 Code optimization

Fig. 5.10 illustrates the performance benefit of implementing the same algorithm in C++

and invoking it via Python versus implementing it purely in Python. We can see that the

C++ implementation invoked via Python is orders of magnitude faster than the pure Python

implementation.
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Figure 5.10: C++ vs Python
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CHAPTER 6: RELATED WORK

VIFF [24] is secure against an active adversary in the t < N/3 setting. It is, however,

non-robust since an adversary can halt the protocol. VIFF’s preprocessing phase is also not

scalable since it uses an approach based on Hyperinvertible Matrices which has a per node

computation and communication cost of O(N2). Although they do talk about ShareList to

denote a collection of shares, the ShareList abstraction does not employ any techniques to

reduce the communication overhead for reconstructing a batch of shares when compared to

our ShareArray abstraction which uses the Robust Batch Reconstruction technique.

Damg̊ard et al. [23] describe a protocol with robust preprocessing for a threshold of

N/3 but it is synchronous since it relies on a synchronous VSS scheme. They are able to

maintain a threshold of N/3 with the use of double sharings even for the online phase since

they rely on a synchronous model. They make use of the Berlekamp-Welch algorithm for

robust decoding of shares which has a computational complexity of O(N3) whereas we use

Gao’s [40] algorithm which when used along with FFT has a complexity of O(n(log n)l) for

some small constant l.

Chida et al. [56] describe a method in which they propose techniques to verify that

the adversary has not cheated. Their protocol is secure in the presence of static malicious

adversaries who control at most t < N/2 corrupted parties. Their protocol however does not

achieve fairness, implying that the adversary may receive output while the honest parties do

not. It is also non-robust since a malicious party can cause the protocol to abort.

Choudhury and Patra [26] describe an asynchronous protocol resilient to t < N/4 adver-

sarial nodes. However, we can run in the t < N/3 setting since we make use of the hbAVSS

protocol based on polynomial commitments. The hbAVSS protocol has a linear amortized

overhead in the N/3 setting which is similar to the linear overhead of their AVSS protocol

in the N/4 setting.

HyperMPC [46] aims to achieve the same goal of supporting continuously running MPC

applications for a threshold of N/3. However, it is non-robust. It relies on double sharings for

the preprocessing phase followed by a polynomial reduction for a share multiplication in the

online phase. For the refinement of double shares, HyperMPC uses Hyperinvertible matrices,

this approach has a computation complexity of O(N2) as against O(N(log N)) for our FFT

based refinement. They do mention running the preprocessing in parallel in order to generate

a batch of random shares. However, in contrast to our hbAVSS protocol HyperMPC does

not employ any techniques to reduce the communication overhead for generating a batch of

shares.
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Other frameworks that we evaluated do not realize many-party computation or are not

robust to active adversaries. SCALE-MAMBA [25] is a production system which has evolved

from SPDZ [57], BDOZ [58] and TinyOT [59] but cannot guarantee output if some nodes

crash. MPyC [60] is an MPC framework which came out of VIFF but is secure only against

semi-honest adversaries. The EMP-Toolkit [27] supports 2PC and MPC with garbled circuits

but is not fault-tolerant. Obliv-C [28] and ObliVM [29] support only 2PC. Sharemind [30]

does not support active adversaries. Choudhary and Patra [26] present a work which achieves

all our goals but for a corruption threshold of t < N/4.
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CHAPTER 7: FUTURE WORK

HoneyBadgerMPC is an ongoing project and there are some important research directions

that we wish to explore. We want to see if we can get the benefit of cheap dot products using

double sharing while still maintaining a corruption threshold of t < N/3 with the help of

pairing friendly polynomial commitments. This will be essential in getting good performance

on linear regression and federated learning. In order to be able to scale to N = 10000 nodes,

we want to support committees where we would sample a constant number of nodes which

together make up a committee such that all committees work concurrently. We also intend

to investigate constant round MPC using MPC-friendly symmetric encryption along with

committees to generate garbled circuits. These garbled circuits can be evaluated in public,

and only the input/output and wire label mappings need to be stored in secret shared form.

Lastly, we would also like to look into publicly auditable MPC such that the output of

MPC also includes a zero-knowledge proof or correctness. In terms of the codebase, for

performance reasons it would be better to have the entire implementation in C++ which is

then wrapped in Python to still allow rapid prototyping of applications.
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