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ABSTRACT 
 

 Plant growth regulators (PGRs) and biostimulants are product chemistries that have 

recently become popular in the agricultural market. There is no concrete evidence however, for 

their best place in a management system to optimize their return on investment and crop yield 

potential. The objective of this study was to evaluate the responses of corn (Zea mays L.) grain 

yield to in-furrow and foliar applications of PGRs and biostimulants, and to determine if PGRs 

and biostimulants impact yield differently under varying management systems. Field studies were 

conducted in the 2017 and 2018 growing seasons across three locations: Harrisburg, Champaign, 

and Yorkville in Illinois. Corn was grown under two different management conditions, a standard 

or an intensive input system. The standard management was implemented with a standard planting 

population, fertility based on soil test values, and with no foliar fungicide. The intensive input 

system used an increased plant population, added fertility through nitrogen side-dress and foliar 

micro fertilizer applications, and provided a fungicide application at the VT growth stage. 

 The PGRs (Ascend SL or Optify/Stretch) were applied in-furrow at planting, and either 

Ascend SL, or a biostimulant (Toggle or Voyagro) was applied to the foliage at the V5 growth 

stage. Corn plants grown in the intensive input system out-yielded those grown in the standard 

system by 1 kilogram hectacre-1 (15 bushels acre-1) on average, showing that grain yield can be 

increased through management. Plant growth regulators and biostimulant applications resulted in 

few significant impacts on yield and yield components, with responses being both positive and 

negative. Therefore, PGRs and biostimulants can influence corn grain yield,  but these responses 

vary and their effects were greatest when applied in an intensive input system.  
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LITERATURE REVIEW 

Corn Production and Management 

 With the current world population of 7.6 billion people expected to grow to 9.8 billion 

people by 2050 (United Nations, 2017), crop yields need to double in the next 30 years to meet 

population needs (Ray et al., 2013). Corn (Zea mays L.) is one of the most important crops in the 

world, and in 2018 the United States planted 36 million hectares (89 million acres) of corn (USDA 

NASS, 2018a). Climate, soil, and the weather vary by location, and each producer has their own 

strategy for producing their crop through various agronomic management practices, including 

hybrid selection, crop nutrition, and pest management strategies. Corn has twice the grain yield 

potential of other cereal crops (Tollenaar and Lee, 2002), and research has revealed that it is a 

system of crop management factors working together that leads to the greatest corn grain yields 

(Ruffo, 2015). While there are many management factors that contribute to producing high yields, 

five have been identified as having the largest impacts on grain yield: hybrid, planting population, 

nitrogen fertility, additional nutrient fertility, and foliar protection (Ruffo, 2015). 

Hybrid 

 Hybrid selection is one of the first things a grower considers in preparation for their 

growing season. Each hybrid varies in its genetic make-up, and therefore interacts differently with 

all other management and environmental factors (Castleberry et al., 1984). Corn yields have 

greatly increased since the introduction of double-cross hybrids in the 1930’s, and then single-

cross hybrids in the 1960’s (Crow, 1998). Among the various management practices, hybrid 

genetics strongly influence crop response to greater planting populations (Tokatlidis and 

Koutroubas, 2004). Thus, it is important to use the appropriate hybrid to maximize the yield 

potential of the given management system. 
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Planting Population 

 While hybrid genetics have changed greatly in the last century, planting population has 

been the management factor that producers have changed the most. The average planting 

population for corn grown in Illinois was 55,000 plants hectare-1 (22,200 plants acre-1) in 1982, 

and has since risen to 79,000 plants hectare-1 (32,000 plants acre-1) in 2018; an average increase 

of 670 plants hectare-1 year-1 (270 plants acre-1 year-1) (USDA NASS, 1982; USDA NASS 2018b). 

Understanding the impacts of deficient or excessive plant populations is key to optimizing corn 

growth and yield, as too high of a population can increase barren stalks and kernel abortion, while 

too low of a population can limit grain yield potential (Hashmei et al., 2005). Establishing the 

correct planting population is a key management decision for optimizing yield (Jiang et al., 2013). 

After the hybrid is planted at the appropriate population, the next management factors of concern 

involve in-season applications of plant nutrition and plant protection products.   

Nitrogen Fertility 

 There are sixteen essential mineral nutrients needed for plant growth and development 

(Taiz, 2015a). An essential nutrient has to meet the following criteria to be classified as 

“essential”: (a) a deficiency of the element makes it impossible for the plant to complete its life 

cycle; (b) the deficiency is specific for the element as the function of the element is not replaceable 

by another element; and (c) the element is directly involved in the metabolism of the plant (Arnon 

and Stout, 1939). Of the essential elements, nitrogen is often the most limiting to corn growth due 

to the high levels of nitrogen accumulated by the crop (Ciampitti and Vyn, 2012). A 14.5 T 

hectare-1 (230 bushel acre-1) corn crop will take up 287 kg nitrogen hectare-1 (256 lbs nitrogen 

acre-1), and 75% of this nitrogen uptake occurs after the V10 growth stage (Bender et al., 2013). 

The season-long uptake of nitrogen implies that nitrogen availability is necessary throughout the 
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crop’s growth and development. Although nitrogen availability is highly influenced by weather 

conditions, the use of urease inhibitors and side-dress applications can help mitigate nitrogen loss 

and increase season-long availability.  

Foliar Micronutrients 

 The essential nutrients can be classified as macro- or micro-nutrients. The difference in 

nomenclature is not based on being more or less essential than the other nutrients, but rather refers 

to the quantity of each nutrient that is needed to support growth. Macronutrients are needed in 

larger quantities by the plant, while micronutrients are needed in much smaller quantities. There 

is increasing interest in mitigating micronutrient deficiencies as limiting factors for crop growth 

and yield due to a multitude of reasons. Current crop yields are greater and therefore require larger 

quantities of all nutrients. Topsoil loss through erosion removes nutrients present in the surface 

layers of soil. Furthermore, land management such as terracing can change nutrient availability 

across fields, and long term cropping systems are removing these nutrients with the grain (Bell 

and Dell, 2008). To determine if micronutrient deficiencies exist, in-season leaf tissue is typically 

analyzed for nutrient concentrations and compared to pre-determined critical levels. Any nutrients 

that are shown to be deficient can then be corrected with a foliar spray application. Often it is the 

micronutrients Boron (B) and Zinc (Zn) that are deficient and targeted for in-season foliar nutrient 

management. Boron and Zn play key roles in seed set and pollination processes, whereby their 

deficiency can decrease seed set and lower grain yield (Ziaeyan and Rajaie, 2009). Boron plays 

an important role in photosynthesis, accumulation of carbohydrates, cell wall synthesis, cell wall 

structure, lignification, membrane transportation, vegetative growth and retention of flowers and 

fruits, as well as phenol and indole acetic acid metabolism. A deficiency of B leads to browning 

of plant tissues along with stunting of young plants (Takano et al., 2007; Miwa et al., 2008; 
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Dordas et al., 2007). Zinc plays a key role in many plant metabolic processes as a regulatory co-

factor of a wide range of different enzymes and proteins, or as a structural constituent in many 

important biochemical pathways relating to carbohydrate metabolism, auxin metabolism, protein 

metabolism, pollen formation, the integrity of biological membranes, and disease resistance 

(Alloway, 2004). Sulfur (S) is a micronutrient that has shown more frequent deficiencies in recent 

years due to new environmental laws creating greater filtration requirements on factories, leading 

to less sulfur in the atmosphere to be deposited in crop fields (Husain et al., 1998). Sulfur is 

essential to many plant functions as it is an important factor in protein structures, in fragrance for 

attracting pollinators, and can be utilized as a source of energy for soil bacteria (Hawkesford and 

Kok, 2007). Manganese (Mn) is another micronutrient often found to be deficient in plant tissues, 

with various crop species showing varying levels of Mn requirements (Reuter et al., 1988).  

Foliar Protection 

 Greater planting populations and adequate fertility programs can result in rapid plant 

growth that leads to greater risk of disease pressure as the decreased plant to plant spacing and 

greater above-ground biomass reduces airflow, leading to a moist environment conducive to 

fungal growth. Strobilurin fungicides inhibit mitochondrial respiration and are effective at 

controlling disease-causing mycelium and spores (Bartlett et al., 2002; Vincelli, 2012). While 

increased disease control keeps plants healthy, another advantage to strobilurin fungicides is their 

ability to induce the “stay green” effect. The “stay green” effect is a delay in plant senescence as 

a result of a decrease in the rate at which chlorophyll is degraded (Thomas and Howarth, 2000). 

Longer chlorophyll duration can lead to greater photosynthetic output during grain fill, leading to 

heavier kernel weights and greater yields.  
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Biological Products 

In addition to ensuring that sufficient levels of nutrients are available, the use of biological 

products is one of the newest solutions to help growers increase corn grain yields. The average 

yield for corn in the United States in 2017 was 11.11 T hectare-1 (176.6 bushels acre-1), setting a 

new national record. The average in 2018 was close to breaking that record with an average of 

10.97 T hectare-1 (174.4 bushels acre-1) (USDA NASS, 2018c). These records are broken more 

frequently each subsequent year as growers learn to better manage their crops and increase their 

yields. Recently, the biological product market available to producers has exploded with new 

technologies. This biological management category is relatively undefined, and there are many 

different products that can be classified as biological management factors. The vast majority of 

these products can be grouped in a variety of ways: application methods, intended use (bio-

pesticides, fertility enhancement, growth alteration, etc.), as well as by their active ingredients or 

modes of action. Two such categories are plant growth regulators and biostimulants. 

Plant Growth Regulators (PGRs) 

 Plant growth regulators have many different purposes and uses in agriculture. One of the 

most ambiguous concepts in the agricultural industry is what a PGR actually is. One definition of 

a PGR is as follows: “an organic compound, either natural or synthetic, that modifies or controls 

one or more specific physiological processes within a plant. If the compound is produced within 

the plant, it is called a plant hormone” (Lemaux, 1999). For the most part, the various definitions 

are similar and focus on the concept that PGRs are compounds that influence plant growth. The 

inconsistency among a large number of definitions comes between the terms regulator and 

hormone, as well as whether these compounds can be either natural and synthetic. A common 

definition of a hormone is “a product of living cells that circulates in body fluids (such as blood) 
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or sap and produces a specific often stimulatory effect on the activity of cells usually remote 

from its point of origin; also a synthetic substance that acts like a hormone” (Merriam-

Webster, 2019). This definition would imply that a hormone is either naturally derived from 

cells, or can be a synthetic compound that acts as a natural hormone. However, this definition 

only refers to the compounds themselves, and does not account for other compounds that 

interfere with hormones or hormone signaling. Interference with hormones and hormone 

signaling still affects plant growth by either accelerating or delaying the signaling process, and 

as such would still be included under the definition of a plant growth regulator. Therefore, all 

hormones can be considered plant growth regulators, but not all plant growth regulators can 

be classified as hormones. Thus, it is essential to understand the known plant hormones so one 

can differentiate between the natural plant hormones and the PGRs designed to interact with 

hormone signaling.   

Plant Hormones 

 In the last century, nine major classes of plant hormones have been discovered and 

classified (Taiz, 2015b). These nine classes include auxins, cytokinins, gibberellins, abscisic 

acid, ethylene, brassinosteroids, jasmonates, salicylic acid, and strigolactones. While all 

classes of plant hormones are key to plant growth and development, auxins, gibberellins, and 

cytokinins are the most common hormones to be concentrated into agricultural products and 

labeled as PGRs. These products may be applied as seed treatments, in-furrow at planting, or 

at multiple vegetative and early reproductive stages during the corn growth cycle. Two such 

product examples are Ascend SL (Winfield Solutions LLC., St. Paul, MN) (containing auxins, 

gibberellic acids, and cytokinins) and Optify/Stretch (United Suppliers, Eldora, IA) 

(containing cytokinins). The hypothesis is that exogenous applications of these three hormones 
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(or synthetic versions of them) will increase cell growth through enlargement, elongation, and 

division. Seed treatments and in-furrow applications primarily target the root system, while 

foliar applications are designed to impact leaf growth. This upregulation in cell growth and 

maturation is expected to lead to more extensive root systems, quicker emergence, and faster 

light interception, all of which are assumed to positively influence grain yield. 

Auxins 

 Auxins were the first group of hormones to be identified and studied. Charles Darwin 

made the observations that plants bend towards light and termed this phenomenon as 

“phototropism.” The first appearance of auxin in the plant sciences was with the discovery of an 

unknown phytohormone in plants that were the result of Darwin’s observations (Peterson, 1967). 

F. W. Went took Darwin’s original work further and is credited with identifying and extracting 

auxin in 1926. There are many different pathways for auxin synthesis. The most common 

natural forms of auxin in plants is indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) 

(Moore, 1989a). Many theories exist regarding auxin synthesis in plants. Most proposed 

pathways for auxin synthesis start with the amino acid tryptophan, and it is theorized that IAA 

is a coincidental by-product of tryptophan degradation through transamination, as opposed to 

being produced through a specific product pathway (Sheldrake, 1973). Recent studies suggest 

that in addition to the degradation of tryptophan, IAA can be synthesized independently of 

tryptophan as a reactant in an enzymatic process (Wang et al., 2015). Auxins are involved in 

many cellular processes, are predominately produced in meristematic tissue, and are key to 

cell enlargement, apical dominance, root initiation, leaf and fruit abscission, and flowering 

(Taiz, 2015b). Ascend SL contains IBA as an active ingredient and is labeled to be applied 

either in-furrow or as a foliar application. When IBA was applied to maize seedling roots, there 



8 
 

was an increase in lateral root formations (Schlicht et al., 2013). Direct application of IBA to 

the roots of an early seedling plant indicates that in-furrow applications of IBA can also 

increase lateral root growth in field scenarios. Foliar applications of IBA have been shown to 

increase stem diameter, plant height, number of leaves per plant, leaf area index, total leaf area, 

total biomass, and increased corn yields (Amin et al., 2006).  

Gibberellic Acids 

 The second class of hormones to be extensively studied are the gibberellic acids (GAs). 

Their first discovery was theorized through observations of “foolish seedling” disease in rice. 

The disease is caused by the fungus Gibberella fujikuroi. In 1926, Kurosawa was able to grow 

the fungus on growth medium, and used filtrates from the medium the fungus was grown on 

to induce “foolish seedling” disease in rice seedlings (Moore, 1989b). The first successful 

isolation of GAs from fungal filtrates occurred in 1938, by Yabuta and Simuki (Yabuta, 1938) 

in Japan, and extensive research on GAs did not start in the United States until the 1950’s. By 

the end of the decade pure isolates of GAs had been extracted from fungal colonies, and the 

term gibberellic acid was officially coined in 1954 (Stodola et al., 1955). Further research 

showed the discovery of natural gibberellins in plants, proving their production was not just 

isolated to fungus. Many of the first studies of exogenous applications of GA’s to plants was 

on dwarf varieties of peas and maize. Applications of GA’s on dwarf cultivars was able to 

increase internode length of the dwarf plants, but showed no influence on standard cultivars 

(Leopold and Kriedemann, 1975). Initial studies demonstrated that GA’s could enlarge fruits, 

specifically grapes (Weaver, 1958), while more recent research shows increases in cereal crop 

yields (Hedden, 2003). In addition to IBA, Ascend SL contains gibberellic acid as an active 

ingredient, and mesocotyl elongation was shown to be increased in maize seeds that had been 



9 
 

soaked with GA3 (Pan et al., 2017). Greater mesocotyl elongation during germination can lead 

to quicker emergence and reduced time spent in the soil. When applied in-furrow at planting, 

there is the opportunity for increased cell elongation of the roots and emerging shoots to lead 

to greater emergence rates. This increased emergence and early growth is especially important 

when seedlings are planted too deep, where there is a greater advantage to exogenous 

applications of GA’s (Zhao and Wang, 2008). While in-furrow applications have the potential 

to influence crop growth and yield, foliar applications of IBA and GA at early vegetative leaf 

stages (V4-V6), and at flowering (VT/R1) have also been shown to enhance the rate of crop 

development and yield in corn by increasing kernel number per area (Ghodrat et al., 2012). 

This positive interaction of IBA and GA give the possibility of blending these hormones into 

agricultural products designed for foliar applications in agricultural systems.  

Cytokinins 

 The third class of hormones is cytokinins, which, like auxins and gibberellins are 

essential to numerous plant growth processes. Like the other hormones, the effects of 

cytokinins were first visually observed, and the idea of specific compounds being involved 

was theorized long before their isolation and extraction. Folke Skoog officially isolated kinetin 

in 1955, and showed that exogenous applications of kinetin led to growth in tobacco cultures 

of mature cells which would not normally be actively dividing (Miller et al., 1955). Since then, 

different cytokinins have been shown to actively influence mitosis and cell division in plants 

(Moore, 1989c). There are many different cytokinins, and they are developed in living systems 

as N6-substituted adenine derivatives. The first plant-natural cytokinin to be isolated was 

zeatin, found in corn seed (Letham et al., 1964). Cytokinins are not just active in plant systems, 

but can be used to induce growth of fungi, protozoans, and bacteria (Taiz, 2015b). In addition 
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to cell division, cytokinins have been shown to prevent senescence in aging leaves (Richmond 

and Lang, 1957) and release axillary buds from the control of apical dominance (Brown et al., 

1967). Since then, various formulations of cytokinins have been developed for agriculture 

production systems for use in increased root growth and development and increased leaf area. 

The third active ingredient in Ascend SL is kinetin, a form of cytokinin. Foliar applications of 

kinetin can cause increased biomass, chlorophyll content, and proline concentrations of maize 

seedlings (Xu et al., 2010). Optify/Stretch also contains kinetin, and it is the cytokinin effects 

of kinetin that can be advantageous with in-furrow applications. 

Abscisic Acid, Ethylene, Brassinosteroids, Strigolactones, Jasmonates, and Salicylic Acids 

 The remaining six classes of PGRs contain the abscisic acids (ABA), ethylene, 

brassinosteroids, strigolactones, jasmonates, and salicylic acid. While these hormones are key 

to plant growth and development, they are less extensively utilized as active ingredients in 

commercial products.  

 The first isolation of ABA was from mature cotton burs as reported by Liu and 

Carnsdagger in 1961. In addition to its initial discovery in the ability to induce dormancy of 

buds, ABA has been shown to function in seed dormancy (Sondheimer et al., 1968), leaf and 

fruit abscission (Davis and Addicott, 1972), and seed maturation (Williamson et al., 1988). 

Abscisic acid production is upregulated during times of stress, and has been shown to play a 

key role in stomata closure (Honour, 1995). Ethylene is a simple gas and found in many 

different environments and living systems, and D. N. Neljubow was the first scientist to discuss 

the impacts of ethylene on plants (Moore, 1989e).  Earlier work with auxin showed that 

ethylene production was increased in conjunction with IAA (Zimmerman and Wilcoxon, 

1935). Agricultural uses of ethylene were primarily targeted to reduce stem elongation in small 
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grains by interfering with auxin stimulation, leading to less lodging and higher yields 

(Simmons et al., 1988). Brassinosteroids were first isolated from rape (Brassica napus) pollen 

(Grove et al., 1979). They appear to interact with other hormones, primarily auxin and GAs, 

and have multifaceted influences on plant growth. Strigolactones were observed and isolated 

from witchweed (Striga spp.) species and broomrapes (Orobanche and Phelipanche spp.) and 

shown to initiate root growth from parasitic plants (Seto et al., 2012). Jasmonates are key in 

protein synthesis and tissue repair (Wasternack and Strnad, 2019). Salicylic Acid is reactive 

when plants are stressed and mitigates reactive oxygen species damage in plants (Jahan et al., 

2019). It is the interactions of all plant hormones that determine crop growth patterns, and it is 

key to understand these interactions for beneficial use of plant hormones as commercial 

products in agricultural production systems. 

Biostimulants  
  
 The newest category of products that are used to increase yield production is 

biostimulants. The distinction of a biostimulant from what would be considered a PGR or 

fertilizer is vague, but typically biostimulants have a role in stress reduction or nutrient 

accumulation in plants (Harpen et al., 2015). A definition used by the European Union is as 

follows: plant biostimulants are substances or materials, with the exception of nutrients and 

pesticides, which, when applied to plants, seeds, or growing substrates in specific formulations, 

have the capacity to modify physiological processes in plants in a way that provides potential 

benefits to growth, development, or stress response” (du Jardin, 2012). These products are 

assumed to up-regulate plant or microbe activity with the goal of increasing growth. Ordinarily, 

these types of products are targeted for stress relief, especially drought stress. Biostimulant 

products are designed to upregulate innate processes by providing the crop with similar substrates 
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that it produces naturally in response to drought tolerance, such as amino acids, betaines, and 

sugars. Many biostimulants are manufactured through microbial extract processes with amino 

acids or sugars being the primary filtrates utilized. Many other products are derived from marine 

seaweed extracts.  

Amino Acids 

 Amino acids (AAs) influence a multitude of plant processes. As protein building blocks, 

they can be directly utilized for crop growth and enzyme upregulation. Additional interactions 

involve gene regulation, ion transport and chelation, and heavy metal detoxification (Rai, 2002).  

Proline specifically has been shown to have higher accumulations in plants under drought stress 

(Sing et al., 1972). In addition to proline, glycine betaine has been shown to increase in 

concentration under drought stress, which translates to greater crop growth and yield (Ashraf and 

Foolad, 2005). Voyagro (Winfield Solutions, St. Paul, MN) (containing proline and glycine 

betaines) is one such amino acid product currently utilized in cropping systems. Exogenous 

applications of proline and glycine betaine together reduced the negative effects of salt stress in 

canola (Sakr et al., 20120). Under controlled drought scenarios, the foliar application of proline 

to corn was able to increase potassium, calcium, nitrogen, and phosphorus uptake leading to 

greater levels of drought tolerance (Ali et al., 2008).  

Marine Extracts 

 In addition to AA products, the use of marine extracts as active ingredients for foliar 

biostimulants is a common approach for drought tolerance and enhanced plant growth (Spinelli 

et al., 2010).  The use of seaweed extracts in commercial products has been around since 1912 

(Booth, 1969). A product example available in today’s market is Toggle (Acadian Plant Health, 

Dartmouth, Nova Scotia, Canada). Marine extracts act similarly to AAs, in that they interact with 
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a multitude of plant metabolic processes and are the most commonly used products to mitigate 

drought stress. Marine extracts have also been shown to increase chlorophyll levels as a result of 

their interactions with betaines (Whapham et al., 1993). The most prominent method of marine 

extract applications is as foliar sprays during times of stress, and they are often tank mixed with 

herbicide and fungicide applications to reduce the cost. Foliar applications in sweet corn have 

been shown to increase total nutrient uptake, crop growth, and yield (Pal et al., 2015). The marine 

extract products vary in the species that they are derived from, and different compositions of 

extracts can result in a variety of responses across management systems.  
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INTRODUCTION 

 While there are many studies looking into the impacts of individual management factors 

or PGR and biostimulant effects on corn grain yield, there is little research assessing the 

interactions that these biological products have with the degree of crop management. The genetic 

makeup of different hybrids can lead to varying microbe interactions and growth patterns (Picard 

and Bosco, 2006), which in turn can influence the effectiveness of PGRs and biostimulant 

applications. Increasing the planting population creates a more competitive environment between 

individual plants within the row and can affect the potential treatment responses as compared to 

lower population systems (Sangoi, 2001). Fertility levels also affect both plant and soil microbe 

community growth. As fertility management varies across environments (Vanlauwe et al., 2010), 

understanding how varying levels of fertility interact with PGRs and biostimulant applications is 

key to maximizing their potential in a grower system. Foliar protection with fungicide 

applications has shown a positive influence on leaf area duration of corn, which can, in turn, lead 

to greater grain fill. Keeping the plant active for a longer period of time further influences the 

impact of biological products introduced into the system. 

 While each grower varies in their individual crop management decisions, they grow their 

crops based on the entire system rather than changing a single factor at a time. Recent low grain 

commodity prices have hampered the ability of growers to purchase inputs and have led to more 

farms being managed at a standard or base level with fewer inputs, and planting populations are 

kept lower to maximize the yield potential of each planted seed with fewer inputs. Base rates of 

nitrogen are applied, and any additional fertilizer or foliar protection is based on soil test values 

and pest thresholds. A majority of the state of Illinois has naturally fertile soils, and pre-plant soil 

test values often indicate that phosphorus and potassium are adequately present for crop needs. 
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Thus, many growers use a base rate of pre-plant nitrogen as the only fertilizer addition, and the 

only in-season treatments are herbicide applications for weed control; unless insect and disease 

thresholds are met and justify the need of insecticide and/or fungicide applications.  

 In contrast, intensive input systems will utilize management responsive hybrids that are 

planted at greater populations with more comprehensive fertilizer applications and with foliar 

protection regardless of disease thresholds to maximize the influence of the other factors on yield 

potential. Utilizing all of these management practices would be charactersitic of a progressive 

grower working to optimize the yield potential of all management factors of population, fertility, 

and foliar protection. These standard and intensive management systems differ greatly in their 

total inputs, and the addition of PGRs and biostimulants to these systems is likely to result in 

different responses.  

 While PGRs and biostimulants have been shown to increase corn grain yields in individual 

studies, there is limited research on how they interact with other management decisions. Studies 

comparing PGRs and biostimulants are often conducted in the greenhouse, and as a result, 

treatment differences observed may not reflect those observed in a field setting. Additionally, 

when these products are tested in field studies, they typically only use a single hybrid and plant 

population, with either no fertilizer added or base rates of nitrogen, phosphorus, and potassium. 

More research is needed comparing products across management factors, as well as product 

blends for optimal yield increases (Calvo et al., 2014).   

 The first objective of this research was to compare the impact of individual PGRs and 

biostimulants applied either in-furrow, foliar at V5, or in combination on the growth and yield of 

corn. The second objective was to evaluate these products under two varying levels of crop 

management, a standard and an intensive input system, to determine if they are best recommended 
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in a lower input system, or if they are best utilized in an intensive system where population, 

fertility, and foliar protection are managed to be non-limiting factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

MATERIALS AND METHODS 

In-Season Pesticide Applications and Location Soil Parameters 

The experiment was implemented during the 2017 and 2018 growing seasons, at three 

locations across the state of Illinois: the Crop Sciences Research and Education Center in 

Champaign, IL and two offsite locations at Harrisburg, IL, in the southern part of the state, and 

Yorkville, IL, in the northern part of the state.  

In 2017, these locations were maintained weed-free with a pre-emergence herbicide 

application of S-metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-

methylethyl) acetamide] + atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine) + 

mesotrione (2-[4-(methylsulfonyl)-2-nitrobenzoyl] cyclohexane-1,3-dione), known as Lumax 

(Syngenta, Basel, Switzerland) at a rate of 7.6 L hectare-1 (3.25 qt acre-1) at all three locations, 

and with glyphosate (N-phosphonomethyl glycine, in the form of a potassium salt), known as 

RoundUp PowerMax (Monsanto, St. Louis, MO) included in Harrisburg at a rate of 2.33 L 

hectare-1 (1 qt acre-1). Field sites provided relatively even distributions of soil fertility, pH, soil 

organic matter, and water availability. Soil samples 0-15 cm (0 – 6 in) deep were obtained from 

plot areas prior to planting and analyzed for significant constituents by A&L Great Lakes 

Laboratories (Ft. Wayne, IN)  to confirm fertility levels. Plots were planted with an ALMACO 

Seed Pro 360 planter (ALMACO, Nevada, IA) on 9 May 2017 in Harrisburg, 18 May 2017 in 

Champaign, and 16 May 2017 in Yorkville. 

 In 2018, these locations were maintained weed-free with a pre-emergence herbicide 

application of Lumax at a rate of 7.6 L hectare-1 (3.25 qt acre-1) in Harrisburg; Bicyclopyrone 

(Bicyclo[3.2.1]oct-3-en-2-one, 4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-

(trifluoromethyl)-3-pyridinyl]carbonyl] + mesotrione + S-Metolachlor  + atrazine, known as 
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Acuron (Syngenta, Basel, Switzerland) at a rate of 7 L hectare-1 (3 qt acre-1) in Champaign; and 

pyroxasulfone (3-[[[5-(difluoromethoxy)-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-

y]methyl]sulfonyl]-4,5-dihydro-5,5-dimethylisoxazole), known as Zidua (BASF Corporation, 

Research Triangle Park, NC) at a rate of 219 ml hectare-1 (3 oz acre-1), flumioxazin (2-[7-fluoro-

3,4-dihydro-3-oxo-4-(2-propynyl)-2H-1,4-bensoxazin-6-y]-4,5,6,7-tetrahydro-1H-isoindole-

1,3(2H)-dione) + pyroxasulfone, known as Fierce (Valent, Walnut Creek, CA) at a rate of 36.5 

ml hectare-1 (0.5 oz acre-1), and atrazine, known as AAtrex 4L (Syngenta, Basel, Switzerland) at 

a rate of 1.1 kg hectare-1 (1 lb acre-1) in Yorkville. Plots were planted on 1 May 2018 in Harrisburg, 

28 April 2018 in Champaign, and 18 May 2018 in Yorkville. 

 In both years, all plots received an in-furrow soil insecticide application of 

[tefluthrin:(2,3,5,6-tetrafluoro-4-methylphenyl)methyl-(1α,3α)-(Z)-(±)-3-(2-chloro-3,3,3-

trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylate], known as Force 3G (Syngenta, 

Basel, Switzerland) at a rate of 0.1134 kg hectare-1 (4 oz acre-1) and soybean was the previous 

crop with conventional tillage used at all three locations. 

 The 2017 in-season weed control was applied at the V8 growth stage in Harrisburg with 

topramezone [3-(4,5-dihydro-isoxazolyl)-2-methyl-4-(methylsulfonyl)phenyl](5-hydroxy-1-

methyl-1H-pyrazol-4-yl)methanone, known as Armezon (BASF Corporation, Research Triangle 

Park, NC) at a rate of 54.8 ml hectare-1 (0.75 oz acre-1), RoundUp Powermax at a rate of 2.33 L 

hectare-1 (1 qt acre-1), ammonium sulfate (AMS; 21-0-0-24S) at a rate of 1.87 L hectare-1 (0.2 gal 

acre-1), and Interlock (Winfield Solutions LLC, St. Paul, MN) surfactant at a rate of 292.3 ml 

hectare-1 (4 oz acre-1). In Champaign, in-season weed control was applied at the V5 growth stage 

with Armezon at a rate of 54.8 ml hectare-1 (0.75 oz acre-1), RoundUp Powermax at a rate of 2.33 

L hectare-1 (1 qt acre-1), AAtrex 4L at a rate of 1.1 kg hectare-1 (1 lb acre-1), and Class Act Ridion 
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(Winfield Solutions LLC, St. Paul, MN) water conditioner at a rate of 1.4 L hectare-1 (19.2 oz 

acre-1). In Yorkville, in-season weed control was applied at the V7 growth stage with Armezon at 

a rate of 54.8 ml hectare-1 (0.75 oz acre-1), RoundUp Powermax at a rate of 2.33 L hectare-1 (1 qt 

acre-1), and Class Act Ridion water conditioner at a rate of 2.33 L hectare-1 (1 qt acre-1).  

 In-season weed control in 2018 was applied at the V5 to V6 growth stages with AAtrex 

4L at a rate of 1.1 kg hectare-1 (1 lb acre-1), RoundUp Powermax at a rate of 2.33 L hectare-1 (1 

qt acre-1), and AMS at a rate of 1.87 L hectare-1 (0.2 gal acre-1) at all three sites, with Armezon at 

a rate of 54.8 ml hectare-1 (0.75 oz acre-1) added at Harrisburg and Yorkville. 

Management Specifics 

 A corn hybrid responsive to management practices (Croplan 6594VT2P; 113-day relative 

maturity, in 2017 and Croplan 6594SS; 113-day relative maturity, in 2018) was used at all 

locations. These two hybrids have the same base genetics, but differ in their degree of transgenic 

insect protection. Two management systems were assessed, a standard system and an intensive 

input system. All plots across both managements received 179 kg hectare-1 (160 lbs acre-1) pre-

plant nitrogen (28% urea ammonium nitrate at Champaign in 2017 and 2018, and Yorkville in 

2018; dry urea in Harrisburg in 2017 and 2018, and Yorkville in 2017) and 47 L hectare-1 (5 gal 

acre-1) ammonium polyphosphate (10-34-0) with 2.3 L hectare-1 (1 qt acre-1) Ultra-Che Zinc 9% 

EDTA (7-0-0-9Zn) (Winfield Solutions LLC, St. Paul, MN) applied in-furrow at planting. The 

standard management plots were planted at 79,000 plants hectare-1 (32,000 plants acre-1) and 

received no additional fertility or foliar protection. The intensive input system was planted at 

94,000 plants hectare-1 (38,000 plants acre-1) and received an additional 89 kg hectare-1 (80 lbs 

acre-1) nitrogen [urea coated with urease inhibitor, known as Limus (BASF, Research Triangle 

Park, NC)] at side-dress (V5-V7), a single foliar application of micro-nutrient product Max-In 
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Ultra ZMB (3.6% Sulfur, 0.1% Boron, 3.0% Manganese, and 4.0% Zinc)  (Winfield Solutions 

LLC, St. Paul, MN) at 2.3 L hectare-1 (1 qt acre-1) within the V5-V7 growth stages, and a foliar 

application of fungicide [pyraclostrobin (carbamic acid, [2,-[[[1-(4-chlorophenyl)-1H-pyrazol-3-

y]oxy]methyl]phenyl]methoxy-,methylester) + metconazole (5-[4-chlorophenyl)methyl]-2,2-

dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol)], known as Headline AMP (BASF 

Corporation, Research Triangle Park, NC) at a rate of 1 L hectare-1 (14.4 oz acre-1) with 

MasterLock (Winfield Solutions LLC., St. Paul, MN) surfactant at a rate of 468 ml hectare-1 (6.4 

oz acre-1) at the VT/R1 growth stage. 

Treatment Applications 

 Applications were designed to supply products to the corn plants either in-furrow at 

planting and/or as a foliar application at the V5 growth stage (Table 1). In-furrow applications 

included the PGRs Ascend SL (containing cytokinins, gibberellic acids, and indolebutyric acid) 

(Winfield Solutions LLC., St. Paul, MN) at a rate of 387 ml hectare-1 (5.3 oz acre-1) or 

Optify/Stretch [containing cytokinins and complex polymeric polyhydroxy acids (CPPA)] 

(United Suppliers, Eldora, IA) at a rate of 730 ml hectare-1 (10 oz acre-1). The in-furrow treatments 

were applied at planting to all plot rows with a planter-attached liquid starter applicator system 

(Surefire Ag Systems, Atwood, KS). Foliar applications included Ascend SL at a rate of 490 ml 

hectare-1 (6.7 oz acre-1), the biostimulant Toggle (containing marine extracts) (Acadian Seaplants 

Limited, Dartmouth, Nova Scotia, Canada) at a rate of 2.9 L hectare-1 (40 oz acre-1), or the 

biostimulant Voyagro (containing proline, glycine betaine, and glutamic acid) (Winfield 

Solutions LLC., St. Paul, MN) at a rate of 585 ml hectare-1 (8 oz acre-1) at approximately the V5 

growth stage. All foliar treatments were applied with MasterLock surfactant at a rate of 468 ml 

hectare-1 using a pressured CO2 backpack sprayer with water as a carrier for a total spray volume 
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of 140 L hectare-1 (15 gal acre-1) application rate, providing full coverage across the center two 

plot rows. Flat fan nozzles (TeeJet XR1002) with 110º spray pattern were used. In the first year, 

foliar treatments were applied 5 June 2017 (V6 PGR), 9 June 2017 (V7 Max-In Ultra ZMB) and 

10 July 2017 (VT/R1 Fungicide) at Harrisburg. Champaign foliar treatments occurred on 16 June 

2017 (V5 PGR and Max-In Ultra ZMB) and 21 July 2017 (VT/R1 Fungicide), and Yorkville 

foliar applications were accomplished on 14 June 2017 (V5 PGR and Max-In Ultra ZMB) and 25 

July 2017 (VT/R1 Fungicide). In the second year, Harrisburg treatments were sprayed 25 May 

2018 (V5 PGR and Max-In Ultra ZMB), and 29 July 2018 (VT/R1 Fungicide). Champaign foliar 

sprays occurred 24 May 2018 (V5 PGR), 25 May 2018 (Max-In Ultra ZMB) and 27 June 2018 

(VT/R1 Fungicide). Yorkville foliar treatments were supplied 8 June 2018 (V5 PGR and Max-In 

Ultra ZMB) and 18 July 2018 (VT/R1 Fungicide). 

Experimental Design and Statistical Analysis 

 Treatments (660 total plots; 336 in 2017 and 324 in 2018) were arranged using a split-

split-plot experimental design with six replications. Plots were split first by management system 

as the main-plot, second by in-furrow products as the sub-plot, and third by foliar applications as 

the sub-sub-plot. Each experimental unit consisted of four 11.4 meter long rows spaced 76 

centimeters apart with a 0.76 meter walk alley between each range of plots. All data were analyzed 

in PROC MIXED of SAS (SAS 9.4) (SAS Institute Inc., Cary, NC). The initial analysis was run 

as a single data set composed of all three locations, with location as a random factor in the model. 

All random factors were assumed to be independent of each other and follow a normal distribution 

(NID). PROC GLM of SAS was used to conduct the Brown-Forsythe modification of the Levene 

test for homogeneity of variance on the errors, with significance declared at P ≤ 0.05 (Table 30). 

PROC UNIVARIATE of SAS was used to determine potential outliers and assess the normality 
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of the errors, with significance declared at P ≤ 0.01 (Table 30). In addition to the Shapiro-Wilk 

test, QQ plots and histograms were utilized to assess normality of the errors in situations where 

the Shapiro-Wilk tests were significant. With homogeneity of variance and normality 

assumptions met, the data were analyzed as a single set across all three locations.  

The 2017 experimental design was asymmetrical, with unequal balance between the foliar 

and in-furrow applications such that not all foliar applications occurred in combination with every 

in-furrow application. This design inhibited the use of a factorial analysis to describe the 

individual products of the foliar and in-furrow applications. To properly obtain estimates of 

treatment effects and LSMEANS, the initial analysis was performed with the in-furrow and foliar 

treatments as a treatment combination, using the following model.  

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐿𝐿𝑖𝑖 + 𝐵𝐵(𝑖𝑖)𝑗𝑗 + 𝑀𝑀𝑘𝑘 + 𝐿𝐿𝑀𝑀𝑖𝑖𝑖𝑖 + 𝜖𝜖1𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑙𝑙 + 𝐿𝐿𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑇𝑇𝑘𝑘𝑘𝑘 + 𝐿𝐿𝐿𝐿𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖2𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 
 

Where: 
 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the individual observation at the ith location, jth block, kth management, and lth treatment 
combination,  

𝜇𝜇 is the grand mean of all individual observations, 

𝐿𝐿𝑖𝑖 is the random effect of the ith location, NID (0, 𝜎𝜎𝐿𝐿2), 

𝐵𝐵(𝑖𝑖)𝑗𝑗 is the random effect of the jth block, NID (0, 𝜎𝜎𝐵𝐵2), 

𝑀𝑀𝑘𝑘 is the fixed effect of the kth management level, 

𝐿𝐿𝑀𝑀𝑖𝑖𝑖𝑖 is the random interaction between the ith location and the kth management level, NID (0, 
𝜎𝜎𝐿𝐿𝐿𝐿2 ), 

𝜖𝜖1𝑖𝑖𝑖𝑖𝑖𝑖 is the random error associated with the whole plot experimental unit, NID (0, 𝜎𝜎𝑒𝑒12 ), 

𝑇𝑇𝑙𝑙 is the fixed effect of the lth treatment combination, 

𝐿𝐿𝑇𝑇𝑖𝑖𝑖𝑖 is the random effect of the interaction between the ith location and the lth treatment 
combination NID (0, 𝜎𝜎𝐿𝐿𝐿𝐿2 ), 

𝑀𝑀𝑇𝑇𝑘𝑘𝑘𝑘 is the fixed effect of the interaction between the kth management level and the lth treatment 
combination, 
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𝐿𝐿𝐿𝐿𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 is the fixed effect of the interaction between the ith location, kth management level, and lth 
treatment combination, 

𝜖𝜖2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the random error associated with the sub-plot experimental unit, NID (0, 𝜎𝜎𝑒𝑒22 ) 

For further analysis, a second data set was created with the removal of the control 

treatments (no in-furrow additives or foliar sprays, both for standard and intensive input systems), 

leaving only the two in-furrow products and their corresponding foliar applications. Analysis of 

variance assumptions of normality of the errors and homogeneity of variance were re-assessed 

for the new data set (Table 31). Removal of the control treatment allowed the individual products 

to be analyzed separately as a factorial, as opposed to a treatment combination in order to better 

examine the additive and non-additive effects of in-furrow and foliar applications. This analysis 

utilized the following model: 

 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐿𝐿𝑖𝑖 + 𝐵𝐵(𝑖𝑖)𝑗𝑗 + 𝑀𝑀𝑘𝑘 + 𝐿𝐿𝑀𝑀𝑖𝑖𝑖𝑖 + 𝜖𝜖1𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑙𝑙 + 𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑀𝑀𝐼𝐼𝑘𝑘𝑘𝑘 + 𝐿𝐿𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑚𝑚

+ 𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖 + 𝑀𝑀𝐹𝐹𝑘𝑘𝑘𝑘 + 𝐿𝐿𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐼𝐼𝐹𝐹𝑙𝑙𝑙𝑙 + 𝐿𝐿𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑀𝑀𝐹𝐹𝑘𝑘𝑘𝑘𝑘𝑘 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖3𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 
Where: 
 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the individual observation at the ith location, jth block, kth management level, lth in-
furrow, and mth foliar, 

𝜇𝜇 is the grand mean of all individual observations, 

𝐿𝐿𝑖𝑖 is the random effect of the ith location NID (0, 𝜎𝜎𝐿𝐿2), 

𝐵𝐵(𝑖𝑖)𝑗𝑗 is the random effect of the jth block NID (0, 𝜎𝜎𝐵𝐵2), 

𝑀𝑀𝑘𝑘 is the fixed effect of the kth management level, 

𝐿𝐿𝑀𝑀𝑖𝑖𝑖𝑖 is the random interaction between the ith location and the kth management level, NID (0, 
𝜎𝜎𝐿𝐿𝐿𝐿2 ), 

𝜖𝜖𝑗𝑗𝑗𝑗 is the random error associated with the whole plot experimental unit, NID (0, 𝜎𝜎𝑒𝑒12 ), 

𝐼𝐼𝑙𝑙 is the fixed effect of the lth in-furrow product, 

𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖 is the random effect of the interaction between the ith location and the lth in-furrow NID (0, 
𝜎𝜎𝐿𝐿𝐿𝐿2 ), 



24 
 

𝑀𝑀𝐼𝐼𝑘𝑘𝑘𝑘 is the fixed effect of the interaction between the kth management level and lth in-furrow, 

𝐿𝐿𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 is the random effect of the interaction between the ith location, kth management level, and 
the lth in-furrow, NID (0, 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿2 ), 

𝜖𝜖2(𝑖𝑖)𝑗𝑗𝑗𝑗𝑗𝑗 is the random error associated with the sub-whole-plot experimental unit, NID (0, 𝜎𝜎𝑒𝑒22 ), 

𝐹𝐹𝑚𝑚 is the fixed effect of the mth foliar, 

𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖 is the random effect of the interaction between the ith location and the mth foliar, NID (0, 
𝜎𝜎𝐿𝐿𝐿𝐿2 ), 

𝑀𝑀𝐹𝐹𝑘𝑘𝑘𝑘 is the fixed effect of the interaction between kth management level and mth foliar, 

𝐿𝐿𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 is the random effect of the interaction between the ith location, kth management level, and 
mth foliar, NID (0, 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿2 ), 

𝐼𝐼𝐹𝐹𝑙𝑙𝑙𝑙 is the fixed effect of the interaction between lth in-furrow and mth foliar, 

𝐿𝐿𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 is the random effect of the interaction between the ith location, lth in-furrow, and mth foliar, 
NID (0, 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿2 ), 

𝑀𝑀𝑀𝑀𝐹𝐹𝑘𝑘𝑘𝑘𝑘𝑘 is the fixed effect of the interaction between the kth management level, lth in-furrow, and 
mth foliar applications, 

𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the random interaction between the ith location, kth management level, lth in-furrow, 
and mth foliar, NID (0, 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 ), 

𝜖𝜖3𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the random error associated with the sub-plot experimental unit, NID (0, 𝜎𝜎𝑒𝑒32 ) 

 All random three- and four-way interactions resulted in ANOVA p-values greater than 

0.6, and therefore were removed from the model for final analysis.  

 In 2018, the trial was redesigned to equally balance the in-furrow and foliar interactions, 

allowing in-furrow and foliar interactions to be separated into their individual effects through a 

factorial design. Therefore, only one analysis was run, using the second model outlined above. 

Due to differences in treatment responses and weather patterns, years were not analyzed together 

across the replicated treatments. Analysis of variance assumptions for the 2018 data were also 

checked for normality of errors and homogeneity of variance (Table 32).  
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Measured Parameters 

 In 2018, total plant biomass was recorded at the V4 growth stage, and above-ground 

biomass was recorded at the V8 growth stage. For the V4 sampling, three plants were dug from 

plot border rows (i.e., rows one and four of each plot). The soil was removed from the roots using 

pressurized water, and plants were dried and weighed for root biomass, shoot biomass, and 

shoot:root ratios. The V8 sampling was done by excising six plants at the soil surface from plot 

rows two and three (three plants from each row). Samples were then dried and weighed for total 

shoot biomass. In both years, stand and lodging counts of all plots were conducted prior to harvest 

to determine the final plant population. At physiological maturity, the center two rows of each 

plot were mechanically harvested with an ALMACO SPC40 combine (ALMACO, Nevada, IA) 

for determination of grain yield, with values adjusted to 15.5% moisture. Harvest in 2017 was on 

9 September at Harrisburg, 30 September at Champaign, and 31 October at Yorkville. Harvest in 

2018 was 14 September at Harrisburg, 22 September at Champaign, and 12 October at Yorkville. 

Subsamples of harvested grain were analyzed for grain quality (starch, protein, and oil 

concentrations at 0% grain moisture) by near-infrared transmittance spectroscopy using a Foss 

Infratec 1241 grain analyzer (Eden Prairie, WI). Subsamples of harvested grain were also used to 

determine individual kernel weight based on a representative sub-sample of 300 kernels and 

adjusted to 0% moisture. Kernel number on a per-area basis was calculated algebraically by 

dividing total grain weight by the individual kernel weight.  
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2017 RESULTS AND DISCUSSION 

Soil Characteristics 

 Prior to planting, a soil sample was taken at each field site to measure organic matter (%), 

pH, CEC (meq/100g), phosphorus (ppm), and potassium (ppm) (Table 2). Values of these  

characteristics varied across the field sites, with the general trend that the native soil organic 

matter and CEC increased from south to north, with greater pH at Harrisburg, and the greatest 

native phosphorus and potassium levels at Yorkville (Table 2).  

Weather 

 Weather conditions across the three sites showed similar trends when compared to the 30-

year averages at each respective site (Table 3). Individual months varied slightly in temperature 

compared to the 30-year average, but the average temperature for the entire 2017 growing season 

was the same as the 30-year average at Yorkville and Champaign, and only 0.6 degrees Celsius 

lower in Harrisburg (Table 3). The month of May had about average rainfall followed by 6.6, 4.5, 

and 6.3 cm less rainfall in June when compared to the 30-year averages at Harrisburg, Champaign, 

and Yorkville, respectively (Table 3). The months of July and August had variable precipitation 

across the three locations, but no extremes of either excess or limiting rainfall. In September, 

during grain fill, there was 5.4, 5.9, and 7.6 cm less rainfall than the 30-year average at Harrisburg, 

Champaign, and Yorkville, respectively (Table 3). These seasonal trends led to seasonal total 

precipitation that was 14.5, 19.3, and 10.4 cm less than the 30-year average at Harrisburg, 

Champaign, and Yorkville, respectively (Table 3), which led to moderate drought stress during 

early vegetative growth, and again during grain fill, impacting both seedling emergence and final 

grain yields.  
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Final Plant Population 

 The target planting populations were 79,000 and 94,000 plants hectare-1 for the standard 

and intensive input systems, respectively. Across the three locations, the final plant population 

for the control treatments of the standard and intensive input systems averaged 76,869 and 86,467 

plants hectare-1, respectively (Table 4). This represents a loss of 2,131 plants hectare-1 (-2.7% of 

the target population) in the standard management compared to a loss of 7,533 plants hectare-1 (-

8.0% of the target population) in the intensive input system.  The percentage of target population 

lost was 3 times greater under the intensive input system, suggesting that wet conditions during 

planting followed by dry soils during emergence and early season growth had a greater negative 

effect on the final population when the planting rate, and plant to plant competition, was greater. 

There was a significant interaction of management and treatment, indicating that the final plant 

population responses to the treatments were different between the two crop management systems 

(Table 4). Final plant populations were unchanged by any of the biological treatments of Ascend 

SL or Optify/Stretch in-furrow and Ascend SL, Toggle, or Voyagro foliar under standard 

management at any location (Table 5). In contrast, all combinations of PGR and/or biostimulant 

treatments in combination with the intensive input system led to significant increases in plant 

population at Harrisburg, and tended to increase plant population at Champaign and Yorkville 

(Table 4). When averaged across the three locations the treatments of Ascend SL applied in-

furrow with no V5 foliar application, Ascend SL applied in-furrow followed with a foliar 

application of Ascend SL at V5, and Optify/Stretch applied in-furrow followed with a foliar 

application of Toggle at V5 each led to significant increases in final plant populations of 4,146, 

5,869, and 4,529 more plants hectare-1, respectively over the corresponding intensive 

management control (Table 4). The application of PGRs and biostimulants had a positive effect 
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on final plant populations at the higher target population of the intensive system, especially at 

Harrisburg, similar to previous reports of foliar PGR applications reducing crop lodging (Cao et 

al., 2016). Final plant population resulted in no significant effects of PGR or biostimulant 

supplementation when plants were grown in a standard management system, although, foliar 

applications of Voyagro tended to decrease final stand (Table 4).  

Grain Yield and Yield Parameters 

Comparison of All Treatment Combinations 

 All grain yield, yield components, and grain quality results and discussion are in reference 

to the average of the three locations unless otherwise noted. Grain yields, yield components, and 

grain quality for each treatment at individual locations are listed in Appendix B (Tables 33-35). 

The average grain yield was 14.5 and 15.4 metric tons (T) hectare-1 for corn grown in the standard 

and intensive input systems, respectively (Table 6). Additionally, all treatments promoted 

significantly higher yields when plants were grown with intensive inputs than when grown in the 

standard management system (Table 7). Different yields can be characterized via a yield gap, 

which is the difference between the final yield and the yield potential of the crop with no limiting 

factors. Closing this yield gap involves better management to achieve greater yields (Dobermann 

et al., 2003). The intensive input system was better able to close the yield potential gap and 

maximize yields of the hybrid compared to the standard management. Yield responses varied 

significantly when plants were grown with intensive inputs but not when grown under standard 

management, resulting in a significant interaction of management with biological treatments 

(Table 8). While there were statistically no significant differences in the plant yield response to 

treatments under the standard management system, there were consistent patterns in yield 

response when averaged across the locations. Ascend SL applied in-furrow tended to promote the 
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greatest yields when followed by a V5 foliar application of either Ascend SL, Toggle, or Voyagro, 

compared to no response or a negative response to Ascend SL applied in-furrow with no foliar 

follow-up (Table 9). Corn grown under the intensive input system with Optify/Stretch applied in-

furrow and followed by a foliar application of Toggle at V5 increased yield over the respective 

control (Table 6 and 9). Toggle is a marine extract, and foliar applications of marine extracts have 

been shown to increase grain yield of corn in other studies (Basavaraja et al., 2018). The other 

yield responses to treatments in combination with the intensive input system tended to be 

inconsistent, except that the foliar application of Toggle led to a yield increase at all three sites 

when following Optify/Stretch applied in-furrow, but a yield decrease when following Ascend 

SL applied in-furrow (Table 9). Overall, the treatment combinations had non-significant impacts 

on yield under a standard management system, but led to inconsistent yield responses under an 

intensive input system.  

In-furrow and Foliar Main Effects 

 With the removal of the control treatment from the analysis, the remaining treatments 

were balanced between in-furrow and foliar products and individual product comparisons could 

be made. In either management system, supplementation with either in-furrow product resulted 

in similar grain yields (Table 10). Additionally, the main effect of the foliar application was also 

non-significant, regardless of the management system, indicating that all foliar applications were 

equal to each other as well as to no foliar product application (Table 11). However, all foliar 

products tended toward greater yields compared to plants without the foliar application, and had 

an even greater effect in combination with the intensive input system (Table 11).  
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Yield Components 

 There was a significant effect of crop management on final kernel number (Table 6), likely 

because the intensive input system had an a priori greater plant population, and therefore more 

ears per unit area (Table 4). The intensive input system also received a fungicide application at 

VT, reducing disease pressure and stress, which has been shown to increase kernel set during 

pollination (Andrade et al., 1999). However, specific biological treatment combinations did not 

affect kernel number (Table 6). Overall, the management system did not affect kernel weight 

either, but there was an interaction between the level of crop management and the treatments 

(Table 6). Notably, Ascend SL applied in-furrow and followed by a foliar Toggle application at 

V5 resulted in a slight increase in kernel weight with standard management, but a decrease of 6 

mg kernel-1 with the intensive input system; the latter is reflective of the 0.3 T hectare-1 decrease 

in yield (Tables 6 & 12).  

Grain Quality 

 Neither the level of crop management nor PGR and biostimulant treatment combinations 

significantly affected the concentrations of grain oil, protein, or starch (Table 6). Most PGR and 

biostimulant treatments tended to result in equal or greater concentrations of grain protein and 

starch. However, Optify/Stretch applied in-furrow, and followed by a foliar application of Toggle 

at V5, in combination with the intensive input system decreased grain protein concentration 

(Table 6).  

2017 Conclusions 

 With wet planting conditions in May followed by a dry June, supplying PGRs and 

biostimulants was the most beneficial to plant growth and stand count when applied in 

combination with the intensive input system that had more stress due to a higher planting 
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population and greater plant to plant competition. Continued dry conditions throughout the 

growing season, especially during grain fill, led to additional, but moderate, in-season stress 

(Table 3). However, yields in these trials were still above the state average (12.6 T hectare-1, or 

201 bu acre-1) (USDA NASS, 2017) and there was little effect of the PGRs and biostimulant 

treatments on grain yields. There was a tendency of PGR and biostimulant combinations to 

increase yields for plants grown under standard management, but results under intensive 

management were inconsistent. Interestingly, yield differences due to PGR and biostimulant 

supplementation in 2017 were a result of differences in kernel weights, suggesting that the 

products maintained leaf area duration and extended grain filling. 
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2018 RESULTS AND DISCUSSION 

Trial Redesign 

 As the original experimental design in 2017 was unbalanced with an unequal distribution 

of foliar applications to in-furrow products, the treatment combinations were redesigned in 2018 

to balance in-furrow and foliar applications. These treatment combinations are outlined in Table 

13. 

Soil Characteristics 

 As in 2017, soil samples were taken at each location prior to planting and analyzed for 

significant constituents by A&L Great Lakes Laboratories (Ft. Wayne, IN) (Table 14). Organic 

matter (%), CEC (meq/100g), and phosphorus (ppm) concentrations all increased from the 

southern to the northern testing sites, while pH was highest at the southern location (Harrisburg) 

and lowest at the northern one (Yorkville). Potassium (ppm) levels were high at all three locations, 

with Yorkville having the greatest native potassium soil levels (Table 14). 

Weather 

 Weather trends in 2018 were similar across the three locations (Table 15). The month of 

May experienced 3.9, 5.0, and 3.3 degrees Celsius greater than average temperatures in 

Harrisburg, Champaign, and Yorkville, respectively, compared to the 30-year averages (Table 

15). The temperatures for the rest of the growing season were more similar to the 30-year averages 

at all three sites. The month of May had close to average precipitation at Harrisburg and 

Champaign, but 5.6 cm more rainfall at Yorkville than the 30-year average, while June led to 4.1, 

7.6, and 7.1 cm greater precipitation at Harrisburg, Champaign, and Yorkville, respectively 

(Table 15). Rainfall for July and August varied at each location, but the differences from the 30-

year average were not great enough to lead to drought or excess water stresses. The month of 
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September had 1.8 cm less rainfall than average at Yorkville, while Champaign and Harrisburg 

had 4.0 and 11.9 cm greater rainfall than the 30-year averages (Table 15). The above average 

temperatures in May and consistent rainfall into June led to excellent conditions for seedling 

emergence at all three locations, followed by relatively seasonal precipitation and temperature in 

July and August. The month of September was slightly warmer than average at all three sites, 

with excess rainfall in Champaign and Harrisburg leading to favorable conditions for grain fill.  

 Final Plant Population 

 The target planting populations were 79,000 and 94,000 plants hectare-1 for the standard 

and intensive input systems, respectively. When averaged across the three locations, the final 

plant population for the control treatment of the standard management system was 79,978 (+1.2% 

of the target population) and for the intensive input system was 90,949 plants hectare-1 (-3.2% of 

the target population) (Table 16). Planter settings are designed to plant the crop at a greater 

population than the final target population to ensure final populations are near to the final target. 

The weather conditions in 2018 were ideal with minimal emergence issues, and early season 

growth was fostered with adequate rainfall and temperatures leading to synchronous emergence 

and greater observed plant stand in the standard management treatment. Conversely, the subpar 

population tallied in the intensive input system indicates that plants grown at the greater planting 

population had greater competition for resources required for emergence and continued growth. 

Management, the management by foliar interaction, and the in-furrow by foliar interaction all 

exhibited significant effects on the final plant population (Table 16). The management by foliar 

interaction indicated that the three foliar treatments led to significantly different final plant 

populations in combination with intensive inputs, but not when combined with standard 

management (Table 17). Under the more stressful intensive input system, applications of Toggle 
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led to higher plant populations than when Voyagro was applied (Table 16). The in-furrow by 

foliar interaction indicates that foliar applications did not cause variations in plant populations 

when there was no product applied in-furrow, or when following Optify/Stretch, but did affect 

plant populations when following in-furrow Ascend SL (Table 18). Similarly, the in-furrow 

treatments generated similar final plant populations when followed with Voyagro or no foliar 

application, but the in-furrow treatments did differ when followed by an application of Toggle 

(Table 18). When plants were grown under standard management, final plant population was 

decreased when applications of Toggle followed no in-furrow application or when they followed 

Optify/Stretch, but increased when Toggle applications followed Ascend SL (Table 16). Overall, 

the additions of PGRs and/or biostimulants as a combination of either in-furrow, foliar, or both 

had no individual effect on final plant populations in either management system (Table 16). With 

adequate weather conditions for emergence and early vegetative growth in 2018, there was no 

benefit from applying PGR and/or biostimulant combinations for increasing the final plant 

population, but individual products interacted differently under varying application combinations. 

In-Season Plant Biomass – Champaign Location Only 

V4 Plant Biomass 

 Total plant biomass was measured at the V4 growth stage to assess the influence of the 

in-furrow applied Ascend SL or Optify/Stretch. Foliar applications had not yet been made, so the 

analysis was limited to just the in-furrow and management system factors. The only significant 

influence on V4 plant biomass was from the management system (Table 19). On a per plant basis, 

there was no difference in shoot or root weights across the two management systems. Greater 

total biomass per land area, but the same biomass per plant, indicates that at the V4 growth stage 

the difference between the managements in total biomass was directly related to the intensive 
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system having more plants per hectare (Table 16). There was also no difference in the shoot:root 

ratio for any treatment combination, further emphasizing that all measured plants at the V4 growth 

stage were growing at the same rates regardless of treatment applications, and that any observable 

differences resulted from greater plant populations (Tables 16 and 19).  

V8 Plant Biomass 

 The foliar treatments were applied at the V5 growth stage and plant shoots were sampled 

at the V8 growth stage to determine foliar product impact on above-ground biomass. Roots were 

not dug at this stage as the plants were too large to dig individual roots without damaging 

neighboring plants and potentially negatively influencing final plant population and grain yield. 

The three-way interaction of management by in-furrow by foliar applications was not significant, 

and there were no differences in above-ground biomass at the V8 growth stage due to any in-

furrow by foliar treatment combinations (Table 20). However, the individual main effects of in-

furrow or foliar treatments were significant, and both Ascend SL and Optify/Stretch significantly 

increased above-ground biomass over the no-in-furrow application control (Table 21). 

Additionally, a foliar application of Toggle at the V5 growth stage also led to increased total 

above-ground biomass compared to the no-V5 foliar treatment (Table 22). Also by V8, foliar 

applications affected above-ground biomass differently depending on the level of crop 

management (Table 23). Notably, the application of Voyagro led to increased shoot biomass 

under standard management, while the application of Toggle resulted in greater biomass in the 

intensive input system (Table 22). Surprisingly, the V8 biomass per area was similar, regardless 

of the crop management system, even with the greater plant populations in the intensive input 

system. Therefore, at the V8 growth stage, individual plants in the standard system had greater 

shoot biomass than individual plants in the intensive input.   
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 In summary, plant biomass was unaffected by treatment applications at the V4 growth 

stage, but was changed by in-furrow and foliar products by the time plants attained the V8 growth 

stage. In-furrow treatments did not affect plant biomass at V4, but did by V8, indicating that the 

plant response to in-furrow applications was delayed. Presumably, at the V4 growth stage the 

plant is just exhausting the seed reserves and the plant roots had not yet depleted the readily-

available levels of soil nutrients, but additional research is needed to confirm this hypothesis. 

Grain Yield and Yield Parameters 

Comparison of All Treatment Combinations and Individual In-furrow and Foliar Main Effects 

 All grain yield, yield components, and grain quality results and discussion are in reference 

to the average of the three locations unless otherwise noted. Grain yields, yield components, and 

grain qualities at each location are listed in the Appendix B (Tables 36-38). The overall grain 

yield, averaged across the three locations, was 14.5 metric tons (T) hectare-1 using the standard 

management system, and this increased to 15.4 T hectare-1 when plants were grown in the 

intensive input system (Table 24). All in-furrow and foliar treatments led to significantly higher 

yields when grown with intensive inputs when compared to their corresponding application in a 

standard management system (Table 25). Individual biological treatment combinations did not 

significantly change grain yield under either management system, when compared to the 

respective management controls (Table 26). However, there was an observable tendency across 

the three locations of the PGR and biostimulant treatments to reduce yields in a standard 

management system, but increase yields in an intensive input system (Table 26). The only 

exception to this negative yield tendency with standard management was at Yorkville, where 

some positive yield responses to PGRs and biostimulants were recorded. The difference in 

responses to the treatments between the two management systems can likely be attributed to the 
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weather. Weather patterns in 2018 were conducive to high-yielding systems and overall yields 

were above the state average at all three locations. The start of the season provided adequate 

precipitation and temperature, resulting in good conditions for crop growth and development. The 

standard management received no additional management factors after planting, whereas the 

intensive input system received side-dress nitrogen, foliar micronutrients, and foliar protection at 

the VT growth stage. The standard system was able to set a high yield potential early in the season, 

but the lack of additional inputs for the remainder of the season limited the assimilate supply 

needed to adequately fill all of the kernels that were originally set early in the season. In contrast, 

the intensive input system was able to set a higher yield potential early in the season with the 

additional PGRs and biostimulants, and the additional in-season nutrients and foliar protection 

provided the assimilates needed to fill the kernels and lead to the greater yields (Table 24). As 

cytokinins can positively influence root growth and nutrient acquisition from the soil, leading to 

greater photosynthetic activity (Werner and Schmülling, 2009), the expectation would be for 

PGRs having a greater influence in the intensive input system where there was greater nutrient 

availability through both foliar and side-dress nitrogen applications. The Yorkville location 

contained the highest levels of native potassium and phosphorus levels with values well over the 

recommended thresholds for fertilizer input needs, and this high native soil fertility was able to 

supplement those few treatments in the standard management that did show a positive yield 

response to PGRs and biostimulants (Tables 14 and 26). The main effects of in-furrow and foliar 

treatments were non-significant, indicating that no product was better able to increase yields over 

another, nor over the untreated plots at each respective timing (Tables 27 and 28).  
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Yield Components 

 There was a significant effect of crop management system on final kernel number per area 

(Table 24), presumably due to the fact that the intensive input system had a greater final plant 

population and therefore more ears per unit area (Table 16). While the individual biological 

treatment combinations did not affect kernel number per area (Table 24), the main effect of in-

furrow, and the in-furrow by foliar interaction, did lead to significant differences in final kernel 

number (Table 24). Neither Ascend SL nor Optify/Stretch in-furrow applications changed kernel 

number per area compared to the treatment of no in-furrow application, but Ascend SL 

supplementation did result in significantly more kernels per square meter than Optify/Stretch, and 

this same trend resulted in the significant interaction of in-furrow treatments with the foliar 

applications (Table 24). Toggle applied at the V5 growth stage following either Optify/Stretch, 

or no in-furrow application, resulted in significantly fewer kernels than Toggle following Ascend 

SL, of which the latter interaction led to the greatest number of kernels per square meter of any 

in-furrow by foliar treatment combinations (Tables 24 and 29). There was a tendency for the PGR 

and biostimulant treatments to generate fewer kernels per square meter compared to the standard 

management control, which corresponded to the observed yield decreases when plants were 

grown with the standard management. Corn will tentatively set the number of kernel rows around 

the ear at the V5-V6 growth stages, and the number of kernel ovules per row around V9-V10 

(Stevens, 1986). As both crop management systems received upfront nitrogen applications and 

starter in-furrow, it is unlikely that the plants experienced stress early in the season, leading to the 

observed greater kernel set and yield potential. The standard management-grown plants did not 

have the supplemental full season treatments to fill all of those kernels (resulting in the decrease 
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in kernel number), whereas the intensive system with additional fertility and foliar protection 

filled a greater proportion of those potential kernels.  

 The only factor leading to changes in individual kernel weight was the crop management 

system (Table 24). Lighter kernels were produced in response to the PGR and biological 

treatments with standard management, compared to kernels receiving the same PGR and 

biological treatments in the intensive input system. All PGR and biostimulant treatments in 

combination with the intensive input system resulted in slightly heavier individual kernels, 

resulting in the observed yield increases for the intensive input system.  

Grain Quality 

 No in-furrow or foliar treatments affected the concentrations of grain oil or protein (Table 

24). The crop management system did significantly alter the concentration of grain starch, with 

the standard system resulting in grain with a higher starch concentration than those grown in the 

intensive input system (Table 24).  

2018 Conclusions 

 With good early season weather patterns, there was no effect of PGRs and/or biostimulants 

on final plant population. Individual plant growth and development was relatively unaffected by 

varying agronomic management or PGRs and/or biostimulant treatments through the V4 growth 

stage, with the only factor influencing plant biomass on a per area basis being planting population. 

By V8, the plant had expended its seed reserves and started to use resources from the surrounding 

soil environment. Therefore, there was increased shoot biomass as a result of PGR and 

biostimulant applications, with those plants growing in the standard management system showing 

greater shoot biomass per plant when compared to the ones grown in the intensive input system. 

Combining PGRs and biostimulants with a standard management system tended to decrease yield 
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as a result of fewer kernels per square meter, but tended to increase yields in an intensive system 

by producing heavier kernels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

TWO-YEAR SUMMARY 

Weather 

 The greatest difference in precipitation in 2018 compared to 2017 occurred during the 

months of June and September. There was 13.4, 12.1, and 10.7 cm greater rainfall in the month 

of June in 2018 than in 2017 at Yorkville, Champaign, and Harrisburg, respectively (Tables 3 and 

15). This contrast led to a minor drought stress in 2017 compared to adequate rainfall and limited 

early season crop stress in 2018. While temperatures in 2017 were average, in 2018 the crop 

experienced above-average temperatures in May from planting through emergence. Mid-season 

temperature and rainfall were reasonably close to the 30-year averages in both years. The month 

of September led to 5.8, 9.9, and 17.3 cm greater rainfall in 2018 than 2017 at Yorkville, 

Champaign, and Harrisburg, respectively (Tables 3 and 15). These weather patterns likely 

resulted in vastly different growing conditions between the two years, leading to the different 

responses to the PGR and biostimulant treatment combinations. 

Final Plant Population 

 In 2017, the emergence conditions were slightly wet and cool followed by a dry period 

that led to PGRs and biostimulants increasing final plant population under the greater planting 

population stress with the intensive input system. This benefit from supplementations was not 

present in 2018, as the emergence and early season growth conditions were ideal and there was 

no need of external factors to increase emergence rate and early growth when plants were grown 

under either the standard or intensive input systems. 

Grain Yield and Yield Parameters 

 In both years, the intensive input system led to higher  grain yields than the standard 

management system as a direct result of greater planting populations and greater kernel numbers 
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in 2017 and significantly greater kernel numbers and weights in 2018. Individual PGR and 

biostimulant treatments led to variable responses in combination with the management systems 

in 2017. In 2018, PGR and biostimulant treatments tended to decrease yield in a standard system 

as a result of fewer kernels per unit area, but increase yield in an intensive system as a result of 

heavier individual kernels. Precipitation in 2017 was less than average, and biological treatments 

were able to potentially alleviate this stress in the standard management under some biological 

treatment combinations, while the intensive input system led to more variability in treatment 

responses. With the greater planting populations, it is likely that the water needs of the individual 

plants was not met and precipitation was the yield-limiting factor overcoming any potential 

advantage of added PGRs and biostimulants to increase yield. In contrast, 2018 weather 

conditions were conducive to high yields, and plants grown under both management systems 

experienced good conditions for setting early yield potential. The early season greater biomass of 

the standard system plants became limited during the later stages of crop growth and hindered 

yield, whereas the intensive system plants with the additional management factors were able to 

fulfill their additional yield potential as a result of the PGR and biostimulant applications. 

Therefore, we found that PGRs and biostimulants were best suited to an intensive grower system 

where the management factors of population, fertility, and foliar protection were non-limiting and 

yield potential could be increased and realized with the addition of biological products. 
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TABLES  

2017 Tables 
Table 1. Nine in-furrow and foliar treatment combinations used in the evaluation of the 
effect of plant growth regulators (Ascend SL, Optify/Stretch) and biostimulants (Toggle, 
Voyagro) on corn grain yield tested under two different management systems, standard 
and intensive, at three locations in Illinois, in 2017. 

In-furrow Treatment † Foliar Treatment ‡ 
None None 

  
Ascend SL None 

“ Ascend SL 
“ Toggle 
“ Voyagro 
  

Optify/Stretch None 
“ Ascend SL 
“ Toggle 
“ Voyagro 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml 
ha-1; Ascend SL at 490 ml ha-1, Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   
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Table 2. Soil test values for the three field sites used for the testing of plant growth 
regulators and biostimulants under two different management systems at Harrisburg, 
Champaign, and Yorkville, IL in 2017.  
Soil Characteristics Harrisburg Champaign Yorkville 
Organic Matter, % 2.5 3.7 3.2 

pH 6.3 5.6 5.6 
CEC, meq/100g 13.1 20.8 20.5 

P, ppm 23 13 56 
K, ppm 127 96 175 

 
 

 

 

Table 3. Precipitation and temperature during the production season at Harrisburg, 
Champaign, and Yorkville, IL in 2017 compared to the 30-year average. Values 
obtained from the Illinois State Water Survey. 

 Precipitation (cm) Temperature (°C) 

Month 2017 30-Year 
Average 2017 30-Year 

Average 
 Harrisburg 

May 14.7 13.7 18.9 18.9 
June   4.8 11.4 23.3 23.9 
July   5.1   9.4 26.1 25.6 

August   9.1   8.4 22.2 25.0 
September   2.5   7.9 20.6 20.6 

Total/Average 36.3 50.8 22.2 22.8 
 Champaign 

May 14.2 12.4 16.1 17.2 
June   6.4 10.9 22.8 22.2 
July   5.6 11.9 25.0 23.9 

August   5.6   9.9 22.2 22.8 
September   2.0   7.9 20.6 18.9 

Total/Average 33.8 53.1 21.1 21.1 
 Yorkville 

May 11.9 10.9 14.4 16.1 
June   4.6 10.9 22.2 21.1 
July 17.8 11.9 23.3 23.3 

August   7.1 10.4 21.1 22.2 
September   0.3   7.9 20.0 18.3 

Total/Average 41.7 52.1 20.0 20.0 
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Table 4. Effect of management and in-furrow plant growth regulators (Ascend SL, 
Optify/Stretch) and foliar plant growth regulator (Ascend SL) or biostimulants (Toggle, 
Voyagro) treatments on final plant population and tests of fixed effects at Harrisburg, 
Champaign, and Yorkville, IL in 2017.  

Management † In-Furrow Foliar 
Locations 

Harrisburg Champaign Yorkville All  
   plants / hectare 

Standard None None 78,631 74,248 77,117 76,869 
       

 Ascend SL None 79,014 75,011 78,839 77,826 
  Ascend SL 79,205 74,631 76,926 77,070 
  Toggle 78,058 71,873 76,926 75,809 
  Voyagro 79,014 68,888 76,543 75,019 
       
 Optify/Stretch None 79,751 73,672 78,839 77,660 
  Ascend SL 78,631 72,525 78,456 76,741 
  Toggle 79,780 73,022 80,178 77,875 
  Voyagro 79,205 68,888 75,011 74,653 
       
       

Intensive None None 87,144 81,517 88,983 86,467 
       
 Ascend SL None 94,414 83,050 92,617 90,613 
  Ascend SL 94,990 87,067 93,191 92,336 
  Toggle 92,773 80,371 91,085 88,476 
  Voyagro 90,396 79,988 92,808 88,318 
       
 Optify/Stretch None 90,969 83,240 90,705 88,891 
  Ascend SL 93,663 81,517 91,851 89,511 
  Toggle 95,370 81,710 94,147 90,996 
  Voyagro 91,740 81,354 92,427 89,155 

Management*Treatment LSD (α = 0.10) 2,454 NS NS 3,961 
     

Source of Variation ---------------------------  p-value  ------------------------- 
Management <0.0001 <0.0001 <0.0001 0.1543 

Treatment 0.0016 0.0091 0.2281 0.0212 
Management*Treatment 0.0077 0.7511 0.5236 0.0369 

† Standard management planting population target was 79,000 plants/hectare and intensive 
management planting population target was 94,000 plants/hectare. 
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Table 5. Slice effects of the management by treatment interactions on final 
plant population averaged over three locations in Illinois in 2017. 

 Management † p-value 
 Standard  0.0820 
 Intensive    0.0019* 
   
Treatment Combination ±  

In-Furrow Foliar p-value 
None None 0.2039 

   
Ascend SL None 0.1542 

 Ascend SL 0.1281 
 Toggle 0.1558 
 Voyagro 0.1483 
   

Optify/Stretch None 0.1738 
 Ascend SL 0.1533 
 Toggle 0.1491 
 Voyagro 0.1343 

*Significant at α = 0.05. 
† Comparisons of treatment combinations when managements are held constant. 
± Comparisons of managements when treatment combinations are held constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

Table 6. Effect of management and in-furrow plant growth regulator and foliar plant growth 
regulator or biostimulant treatment on corn grain yield, yield components (kernel number and 
kernel weight), and grain quality (oil, protein, and starch concentrations), and test of fixed effects 
averaged over three locations in Illinois in 2017. Grain yield is presented at 15.5% moisture, and 
kernel weight and grain qualities are presented at 0% moisture. 

Management In-Furrow † Foliar ‡ Yield 
Yield Components Grain Quality 

Kernel 
Number 

Kernel 
Weight Oil Protein Starch 

   T/ha kernels/m2 mg/kernel ------------------------------------------------      g/kg --------------------------------------------------- 
Standard None None 14.5 4447 276 40.5 65.5 713 

         
 Ascend SL None 14.2 4378 275 40.5 66.8 717 
  Ascend SL 14.7 4444 281 41.1 66.8 714 
  Toggle 14.7 4454 279 40.5 66.8 715 
  Voyagro 14.7 4395 283 40.6 67.3 715 
         
 Optify/Stretch None 14.7 4402 282 40.0 65.9 719 
  Ascend SL 14.6 4446 278 40.3 66.3 716 
  Toggle 14.3 4382 278 40.4 67.2 715 
  Voyagro 14.4 4408 279 41.2 67.0 714 
         
         

Intensive None None 15.4 4782 273 39.0 66.5 714 
         
 Ascend SL None 15.4 4816 270 39.0 66.5 716 
  Ascend SL 15.4 4806 271 39.0 66.9 717 
  Toggle 15.1 4765 267 39.6 67.4 715 
  Voyagro 15.7 4794 272 38.8 67.1 716 
         
 Optify/Stretch None 15.2 4691 274 39.3 67.4 716 
  Ascend SL 15.5 4767 274 39.1 66.5 719 
  Toggle 15.8 4846 274 39.4 66.3 717 
  Voyagro 15.5 4782 275 39.9 67.0 716 

Management*Treatment LSD (α = 0.10)   0.4 NS 6 NS NS NS 
       

Source of Variation --------------------------------  p-value  ----------------------------- 
Management 0.0002 0.0006 0.2321 0.2243 0.6785 0.4107 

Treatment 0.2634 0.8152 0.1213 0.7618 0.3693 0.4684 
Management*Treatment 0.0165 0.4506 0.0829 0.9342 0.4697 0.8566 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1; 
Ascend SL at 490 ml ha-1, Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   
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Table 7. Yield differences of corn grown under the intensive management system compared 
to standard management-grown corn due to nine different plant growth regulator and/or 
biostimulant treatments at Harrisburg, Champaign, and Yorkville, IL in 2017.  

 Location 
In-Furrow † Foliar ‡ Harrisburg Champaign Yorkville All  

 Tons / hectare 
None None + 1.3 + 0.4 + 1.3 + 0.9 

      
Ascend SL None + 1.3 + 0.7 + 1.6 + 1.2 

 Ascend SL + 1.3  - 0.4 + 1.3 + 0.7 
 Toggle + 0.8  - 0.1 + 0.8 + 0.4 
 Voyagro + 1.3 + 0.3 + 1.6 + 1.1 
      

Optify/Stretch None + 1.3  - 0.3 + 0.8 + 0.4 
 Ascend SL + 1.0 + 0.3 + 1.5 + 0.9 
 Toggle + 1.4 + 1.3 + 1.7 + 1.4 

 Voyagro + 2.0 + 0.1 + 1.3 + 1.1 
Management LSD (α = 0.10)    0.3    0.3    0.3    0.3 
† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-

1; Ascend SL at 490 ml ha-1, Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   
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Table 8. Effects of the management by treatment interactions on corn grain 
yield averaged over three locations in Illinois in 2017. 

 Management † p-value 
 Standard 0.0948 
 Intensive   0.0127* 
   
Treatment Combination ±  

In-Furrow Foliar p-value 
None None   0.0004* 

   
Ascend SL None <0.0001* 

 Ascend SL   0.0077* 
 Toggle 0.0953 
 Voyagro   0.0002* 
   

Optify/Stretch None 0.0757 
 Ascend SL   0.0010* 
 Toggle <0.0001* 
 Voyagro <0.0001* 

*Significant at α = 0.05. 
† Comparisons of treatment combinations when managements are held constant. 
± Comparisons of managements when treatment combinations are held constant.  
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Table 9. Effects of in-furrow plant growth regulator and/or foliar plant growth regulator or 
biostimulant treatments on corn grain yield differences compared to the respective 
management control at Harrisburg, Champaign, and Yorkville, IL in 2017. Grain yield is 
presented at 15.5% moisture. 

   Location 
Management In-Furrow † Foliar ‡ Harrisburg Champaign Yorkville All  

   Tons / hectare 
Standard None None 15.3 13.3 14.4 14.5 

       
 Ascend SL None + 0.0  - 0.3  - 0.4  - 0.3 

  Ascend 
SL + 0.3 + 0.2 + 0.1 + 0.3 

  Toggle + 0.3 + 0.1 + 0.3 + 0.2 
  Voyagro + 0.2 + 0.1 + 0.3 + 0.2 
       
 Optify/Stretch None  - 0.3 + 0.3 + 0.4 + 0.3 

  Ascend 
SL + 0.1  - 0.1 + 0.1 + 0.1 

  Toggle + 0.0  - 0.6 + 0.2  - 0.1 
  Voyagro  - 0.6 + 0.1 + 0.3  - 0.1 
       
       

Intensive None None 16.7 13.6 15.7 15.4 
       
 Ascend SL None + 0.0 + 0.1  - 0.1 + 0.0 

  Ascend 
SL + 0.3  - 0.6 + 0.1 + 0.0 

  Toggle  - 0.3  - 0.4  - 0.3  - 0.3 
  Voyagro + 0.3 + 0.0 + 0.6 + 0.3 
       
 Optify/Stretch None  - 0.3  - 0.4  - 0.2  - 0.2 

  Ascend 
SL  - 0.2  - 0.2 + 0.3 + 0.1 

  Toggle + 0.1 + 0.3 + 0.5   + 0.4* 
  Voyagro + 0.1  - 0.1 + 0.3 + 0.1 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1; 
Ascend SL at 490 ml ha-1, Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   
* Significant difference from respective management control. 
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Table 10. Effect of management and in-furrow plant growth regulator treatment on corn 
grain yield and tests of fixed effects averaged over three locations in Illinois in 2017. Grain 
yield is presented at 15.5% moisture.  

Management System In-Furrow Treatment † Grain Yield  
  Tons / hectare 

Standard Ascend SL 14.6 
 Optify/Stretch 14.6 
   

Intensive Ascend SL 15.3 
 Optify/Stretch 15.5 

Management*In-Furrow LSD (α = 0.1) NS 
  

Source of Variation ------------------  p-value  --------------- 
Management 0.0070 

In-Furrow 0.7182 
Management*In-Furrow 0.3510 

† Both in-furrow treatments applied at planting; Ascend SL at 387 ml ha-1 and 
Optify/Stretch at 730 ml ha-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

Table 11. Effect of management and foliar plant growth regulator or biostimulant treatment 
on corn grain yield and test of fixed effects averaged over three locations in Illinois in 2017. 
Grain yield is presented at 15.5% moisture.  

Management System Foliar Treatment † Grain Yield  
  Tons / hectare 

Standard None 14.5 
 Ascend SL 14.7 
 Toggle 14.6 
 Voyagro 14.6 
   

Intensive None 15.3 
 Ascend SL 15.4 
 Toggle 15.4 
 Voyagro 15.6 

Management*Foliar LSD (α = 0.1) NS 
  

Source of Variation ------------------  p-value  --------------
- 

Management 0.0070 
Foliar 0.3367 

Management*Foliar 0.6340 
† All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml 
ha-1; Ascend SL at 490 ml ha-1, Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   

 

.   
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Table 12. Slice effects of the management by treatment interactions on kernel 
weights averaged over three locations in Illinois in 2017. 

 Management † p-value 
 Standard 0.0584 
 Intensive 0.0830 
   
Treatment Combination ±  

In-Furrow Foliar p-value 
None None 0.5343 

   
Ascend SL None 0.2837 

 Ascend SL 0.0658 
 Toggle   0.0314* 
 Voyagro 0.0553 
   

Optify/Stretch None 0.1141 
 Ascend SL 0.4900 
 Toggle 0.4783 
 Voyagro 0.3166 

*Significant at α = 0.05. 
† Comparisons of treatment combinations when managements are held constant. 
± Comparisons of managements when treatment combinations are held constant.  
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2018 TABLES 

 

Table 13. Nine in-furrow and foliar treatment combinations used in the evaluation of the 
effect of plant growth regulators (Ascend SL, Optify/Stretch) and biostimulants (Toggle, 
Voyagro) on corn grain yield tested under two different management systems, standard 
and intensive, at three locations in Illinois, in 2018. 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml 
ha-1; Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In-furrow Treatment † Foliar Treatment ‡ 
None None 

“ Toggle 
“ Voyagro 
  

Ascend SL None 
“ Toggle 
“ Voyagro 
  

Optify/Stretch None 
“ Toggle 
“ Voyagro 
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Table 14. Soil test values for the three field sites used for the testing of plant growth 
regulators and biostimulants at Harrisburg, Champaign, and Yorkville, IL in 2018.  
Soil Characteristics Harrisburg Champaign Yorkville 
Organic Matter, % 2.3 4.5 7.0 

pH 6.5 6.3 5.8 
CEC, meq/100g 17.1 25.1 28.7 

P, ppm 20 50 248 
K, ppm 143 137 180 

 
 
 
 
 
 

Table 15. Precipitation and temperature during the production season at Harrisburg, 
Champaign, and Yorkville, IL in 2018 compared to the 30-year average. Values obtained 
from the Illinois State Water Survey. 

 
 

 Precipitation (cm) Temperature (°C) 

Month 2018 30-Year 
Average 2018 30-Year 

Average 
 Harrisburg 

May 12.7 13.0 22.8 18.9 
June 15.5 11.4 25.6 23.9 
July   7.9   9.7 25.6 25.6 

August 12.7   7.6 24.4 25.0 
September 19.8   7.9 22.2 20.6 

Total/Average 68.6 49.5 23.9 22.8 
 Champaign 

May 10.7 12.4 22.2 17.2 
June 18.5 10.9 23.9 22.2 
July   8.1 11.9 23.9 23.9 

August 10.2   9.9 23.9 22.8 
September 11.9   7.9 21.7 18.9 

Total/Average 59.4 53.1 23.3 21.1 
 Yorkville 

May 16.5 10.9 19.4 16.1 
June 18.0 10.9 21.7 21.1 
July   4.8 11.9 22.2 23.3 

August   7.1 10.4 21.7 22.2 
September   6.1   7.9 18.9 18.3 

Total/Average 52.6 52.1 20.6 20.0 
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Table 16. Effect of management and in-furrow plant growth regulators (Ascend SL, 
Optify/Stretch) and/or foliar biostimulants (Toggle, Voyagro) treatments on final plant 
population and tests of fixed effects at Harrisburg, Champaign, and Yorkville, IL in 2018.  

   Location 
Management † In-Furrow Foliar Harrisburg Champaign Yorkville All 

   plants / hectare 
Standard None None 76,558 77,883 84,836 79,978 

  Toggle 69,916 79,222 81,391 76,818 
  Voyagro 72,155 81,977 82,731 79,074 
       
 Ascend SL None 73,605 79,032 83,114 78,073 
  Toggle 79,101 81,900 81,391 80,233 
  Voyagro 73,934 79,988 84,068 78,703 
       
 Optify/Stretch None 76,138 78,075 85,219 79,770 
  Toggle 71,547 78,762 82,157 77,107 
  Voyagro 78,626 81,517 83,497 80,915 
       
       

Intensive None None 84,399 91,392 94,888 90,949 
  Toggle 82,293 92,617 95,163 90,641 
  Voyagro 79,808 91,278 96,502 89,810 
       
 Ascend SL None 81,505 92,044 94,587 89,620 
  Toggle 85,523 92,541 97,841 92,301 
  Voyagro 80,546 92,617 95,546 89,810 
       
 Optify/Stretch None 84,861 93,000 98,224 91,404 
  Toggle 88,498 92,044 96,309 91,661 
  Voyagro 82,182 93,383 93,631 89,109 

LSD Management*In-Furrow*Foliar (α = 0.10) NS NS NS NS 
     

Source of Variation ----------------------------------  p-value --------------------------------- 
Management 0.2253 <0.0001 <0.0001 <0.0001 

In-Furrow 0.5143 0.7151 0.6973 0.7256 
Management*In-Furrow 0.8251 0.6511 0.8682 0.9406 

Foliar 0.3268 0.1371 0.2819 0.7789 
Management*Foliar 0.0485 0.2647 0.0423 0.0083 

In-Furrow*Foliar 0.0361 0.6141 0.1275 0.0236 
Management*In-Furrow*Foliar 0.2271 0.6080 0.3202 0.3541 

† Standard management planting population target was 79,000 plants hectare-1 and intensive 
management planting population target was 94,000 plants hectare-1. 
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Table 17. Slice effects of the management by foliar 
interactions on final plant population averaged over 
three locations in Illinois in 2018. 

Management † p-value 
Standard 0.1365 
Intensive   0.0435* 

  
Foliar ± p-value 

None   <0.0001* 
Toggle   <0.0001* 

Voyagro   <0.0001* 
 *Significant at α = 0.05. 
 † Comparisons of foliar products when managements are 
held constant. 

 ± Comparisons of managements when foliar products are 
held constant.  

 
 
 
 
 
 
 

Table 18. Slice effects of the in-furrow by foliar 
interactions on final plant population averaged over 
three locations in Illinois in 2018. 

In-Furrow † p-value 
None 0.2068 

Ascend SL   0.0281* 
Optify/Stretch 0.4640 

  
Foliar ± p-value 

None 0.1358 
Toggle   0.0259* 

Voyagro 0.7218 
*Significant at α = 0.05. 

 † Comparisons of foliar products when in-furrow 
products are held constant. 

 ± Comparisons of in-furrow products when foliar 
products are held constant.  
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Table 19. Effect of management and in-furrow plant growth regulator treatment on V4 
plant biomass and tests of fixed effects at Champaign, IL in 2018.  

  Growth Parameter 

Treatment Factor Treatment Root 
Weight 

Shoot 
Weight 

Total 
Weight 

Shoot:Root 
Ratio 

 kg dry wt / hectare †  
Management Standard 46 146 192 3.1 

 Intensive 53 172 225 3.2 
 LSD (α = 0.1) 4 9 12 NS 

      
      

In-Furrow None 50 156 206 3.1 
 Ascend SL 51 162 213 3.2 
 Optify/Stretch 49 158 207 3.2 

 LSD (α = 0.1) NS NS NS NS 
      
      

Management*In-Furrow Standard*None 48 147 195 3.1 
 Standard*Ascend SL 46 146 192 3.2 
 Standard*Optify/Stretch 46 145 191 3.2 
      
 Intensive*None 52 166 218 3.2 
 Intensive*Ascend SL 55 178 233 3.2 
 Intensive*Optify/Stretch 52 171 224 3.3 

 LSD (α = 0.1) NS NS NS NS 

     
Source of Variation -----------------------------  p-value  ---------------------------- 

Management 0.0064 <0.0001 0.0001 0.4138 
In-Furrow 0.8172 0.6671 0.7096 0.6981 

Management*In-Furrow 0.6821 0.5956 0.5744 0.9380 

† Values calculated based on final plant stand measurements. 
 

 

 

 

 

 

 

 



59 
 

Table 20. Effect of management and in-furrow plant growth regulator and/or foliar 
biostimulant treatment effect on V8 plant biomass and test of fixed effects at Champaign, 
IL in 2018. 

Management In-Furrow Foliar Shoot Weight  

   kg dry wt / hectare †  
   Standard None None 1240 

  Toggle 1407 
  Voyagro 1364 
    
 Ascend SL None 1471 
  Toggle 1488 
  Voyagro 1449 
    
 Optify/Stretch None 1249 
  Toggle 1431 
  Voyagro 1672 
    
    

Intensive None None 1273 
  Toggle 1483 
  Voyagro 1307 
    
 Ascend SL None 1436 
  Toggle 1524 
  Voyagro 1391 
    
 Optify/Stretch None 1435 
  Toggle 1545 
  Voyagro 1354 

LSD Management*Treatment (α = 0.10) NS 
  
Source of Variation ---------  p-value  ------ 

Management 0.8923 
In-Furrow 0.0288 

Management*In-Furrow 0.8911 
Foliar 0.0174 

Management*Foliar 0.0519 
In-Furrow*Foliar 0.4920 

Management*In-Furrow*Foliar 0.3943 
† Values calculated based on final plant stand measurements. 
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Table 21. Effect of management and in-furrow plant growth regulator on V8 shoot 
biomass and tests of fixed effects at Champaign, IL in 2018. 

Treatment Factor Treatment Shoot Weight 

  kg dry wt / hectare †  
Management Standard 1416 

 Intensive 1411 
 LSD (α = 0.1) NS 
   
   

In-Furrow None 1345 
 Ascend SL 1459 
 Optify/Stretch 1436 
 LSD (α = 0.1) 74 
   
   

Management*In-Furrow Standard*None 1337 
 Standard*Ascend SL 1469 
 Standard*Optify/Stretch 1427 

   
 Intensive*None 1354 

 Intensive*Ascend SL 1450 
 Intensive*Optify/Stretch 1444 
 LSD (α = 0.1) NS 
   

Source of Variation ---------  p-value ------ 
Management 0.8923 

In-Furrow 0.0288 
Management*In-Furrow 0.8911 

† Values calculated based on final plant stand measurements 
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Table 22. Effect of management and foliar biostimulant on V8 shoot biomass and test 
of fixed effects at Champaign, IL in 2018. 

Treatment Factor Treatment Shoot Weight 

  kg dry wt / hectare † 
Management Standard 1416 

 Intensive 1411 
 LSD (α = 0.1) NS 
   
   

Foliar None 1351 
 Toggle 1480 
 Voyagro 1411 
 LSD (α = 0.1) 74 
   
   

Management*Foliar Standard*None 1319 
 Standard*Toggle 1443 
 Standard*Voyagro 1472 

   
 Intensive*None 1381 

 Intensive*Toggle 1517 
 Intensive*Voyagro 1351 
 LSD (α = 0.1) 104 

  
Source of Variation -------------------  p-value  ---------------- 

Management 0.8923 
Foliar 0.0174 

Management*Foliar 0.0519 
† Values calculated based on final plant stand measurements 
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Table 23. Slice effects of the management by foliar 
interactions on V8 shoot biomass averaged over 
three locations in Illinois in 2018. 

Management † p-value 
Standard   0.0449* 
Intensive   0.0216* 

  
Foliar ± p-value 

None 0.3445 
Toggle 0.2228 

Voyagro 0.0565 
*Significant at α = 0.05. 
 † Comparisons of foliar products when managements are 
held constant. 

 ± Comparisons of managements when foliar products are 
held constant.  
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Table 24. Effect of management and in-furrow plant growth regulator and/or foliar biostimulant 
treatment on corn grain yield, yield components (kernel number and kernel weight), and grain 
quality (oil, protein, and starch concentrations), and tests of fixed effects averaged over three 
locations in Illinois in 2018. Grain yield is presented at 15.5% moisture, and kernel weight and 
grain qualities are presented at 0% moisture. 

Management In-Furrow † Foliar ‡ Yield 
Yield Components Grain Quality 
Kernel 

Number 
Kernel 
Weight Oil Protein Starch 

   Ton/ha number/m2 mg/seed ------------------------------------------------------      g/kg -------------------------------------------------------- 
Standard None None 14.5 4977 246 42.8 70.2 728 

  Toggle 14.2 4825 247 42.4 69.8 730 
  Voyagro 14.0 4821 240 42.6 69.4 728 
         
 Ascend SL None 14.1 4807 248 42.2 69.4 730 
  Toggle 14.3 4842 243 42.6 69.8 728 
  Voyagro 14.0 4883 244 42.5 69.8 729 
         
 Optify/Stretch None 14.1 4847 245 42.3 70.4 729 
  Toggle 13.8 4775 245 41.9 69.9 729 
  Voyagro 13.9 4802 245 42.8 69.7 728 
         

Intensive None None 15.4 5294 248 42.8 71.0 728 
  Toggle 16.0 5325 252 42.7 71.8 727 
  Voyagro 16.2 5280 250 42.0 71.6 729 
         
 Ascend SL None 16.2 5356 252 42.5 71.4 728 
  Toggle 16.2 5412 252 42.7 71.0 728 
  Voyagro 16.4 5422 255 43.2 71.8 726 
         
 Optify/Stretch None 16.1 5368 253 43.4 70.9 727 
  Toggle 15.7 5284 249 42.1 70.2 728 
  Voyagro 16.1 5354 254 43.2 71.2 726 

Management*In-Furrow*Foliar LSD (α = 0.10) NS NS NS NS NS NS 

       
Source of Variation -------------------------------------------------  p-value  ------------------------------------------------ 

Management <0.0001 0.0006 0.0005 0.6431 0.3537 0.0297 
In-Furrow 0.1473 0.0767 0.5652 0.9809 0.6515 0.8518 

Management*In-Furrow 0.2016 0.2173 0.8583 0.6165 0.5098 0.7139 
Foliar 0.9212 0.8992 0.9140 0.5102 0.7794 0.4987 

Management*Foliar 0.1585 0.3393 0.2312 0.8904 0.1131 0.9791 
In-Furrow*Foliar 0.6897 0.0855 0.4606 0.5222 0.7191 0.3985 

Management*In-Furrow*Foliar 0.3468 0.4485 0.6717 0.7342 0.3399 0.3122 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1; 
Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   
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Table 25. Yield differences of corn grown under the intensive management system 
compared to standard management-grown corn due to nine different plant growth 
regulator and/or biostimulant treatments at Harrisburg, Champaign, and Yorkville, IL 
in 2018.  

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 
ml ha-1; Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  Location 
In-Furrow † Foliar ‡ Harrisburg Champaign Yorkville All 

  Tons / hectare 

None None + 1.0 + 0.6 + 1.3 + 0.9 
 Toggle + 1.9 + 1.8 + 1.9 + 1.9 
 Voyagro + 1.8 + 2.4 + 2.4 + 2.2 

Ascend SL None + 1.7 + 2.6 + 2.0 + 2.1 
 Toggle + 1.5 + 2.6 + 1.8 + 1.9 
 Voyagro + 2.0 + 2.6 + 2.4 + 2.4 

Optify/Stretch None + 2.1 + 2.7 + 1.5 + 2.0 
 Toggle + 1.8 + 1.6 + 1.6 + 1.9 
 Voyagro + 1.6 + 2.4 + 2.5 + 2.2 

Management LSD ( α = 0.10)    0.3    0.4    0.4    0.2 
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Table 26. Effects of in-furrow plant growth regulator and/or foliar biostimulant treatments on 
corn grain yield differences compared to the respective management control at Harrisburg, 
Champaign, and Yorkville, IL in 2018. Grain yield is presented at 15.5% moisture. 

   Location 

Management In-Furrow † Foliar ‡ Harrisburg Champaign Yorkville All 

   Tons / hectare 

Standard None None   13.1   15.5   14.8   14.5 

  Toggle  - 0.6  - 0.4 + 0.0  - 0.3 

  Voyagro  - 0.5  - 0.6  - 0.4  - 0.5 

       

 Ascend SL None  - 0.4  - 0.9 + 0.4  - 0.4 

  Toggle  - 0.1  - 0.9 + 0.5  - 0.2 

  Voyagro  - 0.4  - 0.6  - 0.1  - 0.4 

       

 Optify/Stretch None  - 0.5  - 1.2 + 0.4  - 0.4 

  Toggle  - 0.3  - 0.9  - 0.1  - 0.6 

  Voyagro  - 0.4  - 0.8  - 0.5  - 0.6 

       

       

Intensive None None   14.1   16.0   16.1   15.4 

  Toggle + 0.4 + 0.8 + 0.6 + 0.6 

  Voyagro + 0.3 + 1.2 + 0.7 + 0.8 

       

 Ascend SL None + 0.3 + 1.1 + 1.1 + 0.8 

  Toggle + 0.4 + 1.2 + 0.9 + 0.8 

  Voyagro + 0.6 + 1.4 + 0.9 + 1.0 

       

 Optify/Stretch None + 0.6 + 0.9 + 0.6 + 0.7 

  Toggle + 0.5 + 0.1 + 0.3 + 0.3 

  Voyagro + 0.2 + 1.1 + 0.7 + 0.7 

Management*In-Furrow*Foliar LSD (α = 0.10) NS NS NS NS 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1; 
Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   
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Table 27. Effect of management and in-furrow plant growth regulator treatment on corn 
grain yield and tests of fixed effects averaged over three locations in Illinois in 2018. Grain 
yield is presented at 15.5% moisture. 

Management System In-Furrow Treatment † Grain Yield  
  Tons / hectare 

Standard None 14.2 
 Ascend SL 14.2 
 Optify/Stretch 13.9 
   

Intensive None 15.8 
 Ascend SL 16.3 
 Optify/Stretch 16.0 

Management*In-Furrow LSD (α = 0.1) NS 
  

Source of Variation ------------------  p-value  --------------- 
Management <0.0001 

In-Furrow   0.1473 
Management*In-Furrow   0.2016 

† Both in-furrow treatments applied at planting; Ascend SL was applied at 387 ml ha-1 
and Optify/Stretch at 730 ml ha-1. 
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Table 28. Effect of management and foliar biostimulant treatment on corn grain yield and 
tests of fixed effects averaged over three locations in Illinois in 2018. Grain yield is 
presented at 15.5% moisture.  

Management System Foliar Treatment † Grain Yield  
  Tons / hectare 

Standard None 14.2 
 Toggle 14.1 
 Voyagro 14.0 
   

Intensive None 15.9 
 Toggle 16.0 
 Voyagro 16.2 

Management*Foliar LSD (α = 0.1) NS 
  

Source of Variation ------------------  p-value --------------- 
Management <0.0001 

Foliar   0.9212 
Management*Foliar   0.1585 

† All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-

1; Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1   
 

 

 

 

Table 29. Slice effects of the in-furrow by foliar 
interactions on kernel number averaged over three 
locations in Illinois in 2018. 

In-Furrow † p-value 
None 0.6751 

Ascend SL 0.1457 
Optify/Stretch 0.1228 

  
Foliar ± p-value 

None 0.6347 
Toggle   0.0102* 

Voyagro 0.0847 
*Significant at α = 0.05. 
 † Comparisons of foliar products when in-furrow 
products are held constant. 

 ± Comparisons of in-furrow products when foliar 
products are held constant.  
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APPENDIX A: ANOVA ASSUMPTION TESTS 
 
 
Table 30. Shapiro-Wilk and Brown-Forsythe tests for normally distributed errors and 
homogeneity of variance for ANOVA assumptions in tests of corn grain yield, yield 
components, and kernel quality at Harrisburg, Champaign, and Yorkville, IL, in 2017.  

 Shapiro-Wilk † Brown-Forsythe ± 

 All  Harrisburg Champaign Yorkville All Harrisburg Champaign Yorkville 

 --------------------------------------------------------------------------------------------------- p-value -------------------------------------------------------------------------------------------------- 

Yield,  
T/ha 0.0916 0.0746 0.3252 0.8064 0.3695 0.3063 0.5221 0.4923 

Pop. 0.1108 0.4974 0.8392 0.3892 0.5514 0.9442 0.4063 0.3940 

number/ m2 0.1415 0.4550 0.1738 0.1714 0.2503 0.0452 0.7896 0.8469 

g/kernel 0.8165 0.0265 0.1896 0.1280 0.6821 0.4095 0.8442 0.4075 

Oil, % 0.0423 0.4405 0.0365 0.9409 0.4709 0.6226 0.2194 0.4318 

Protein, % 0.1438 0.4733 0.3407 0.4730 0.1646 0.7830 0.7110 0.7761 

Starch, % 0.3801 0.2099 0.0014 0.0494 0.7478 0.6912 0.9781 0.6866 

† Shapiro-Wilk significane declared at α = 0.01. 
± Brown-Forsythe significance declared at α = 0.05. 
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Table 31. Shapiro-Wilk and Brown and Forsythe tests for normally distributed errors and 
homogeneity of variance for ANOVA assumptions in tests of corn grain yield with control 
treatment removed, averaged across three locations in Illinois, in 2017.  

 Final Grain Yield 
ANOVA Assumption Tests All locations 

 ------------------------------ p-value ---------------------------- 
Shapiro Wilk † 0.1484 

Brown-Forsythe ± 0.9557 
† Shapiro-Wilk significane declared at α = 0.01. 
± Brown-Forsythe significance declared at α = 0.05. 
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Table 32. Shapiro-Wilk and Brown and Forsythe tests for normally distributed errors and 
homogeneity of variance for ANOVA assumptions in tests of V4 and V8 growth, corn grain 
yield, yield components, and kernel quality at Harrisburg, Champaign, and Yorkville, IL in 
2018.  

 Shapiro-Wilk † Brown-Forsythe ± 
 Harrisburg Champaign Yorkville All Harrisburg Champaign Yorkville All 
 --------------------------------------------------------------------------------------------------- p-value -------------------------------------------------------------------------------------------------- 

V4 root, 
kg hectare-1 -   0.2636 - - - 0.6870 - - 

V4 shoot, 
kg hectare-1 -   0.7885 - - - 0.2922 - - 

V4 shoot:root 
ratio -   0.9610 - - - 0.7163 - - 

V4 total, 
kg hectare-1 -   0.8630 - - - 0.4771 - - 

V8 shoot, 
kg hectare-1 -   0.6778 - - - 0.9163 - - 

Yield, 
T/Ha <0.0001 0.0655 <0.0001 0.3403 0.5368 0.9697 0.6984 0.9333 

Pop.   0.0114 0.1703   0.3115 0.4632 0.8302 0.6648 0.9615 0.8295 
number/m2   0.8478 0.0678   0.6486 0.1883 0.4948 0.9554 0.5333 0.9814 

g/kernel   0.0032 0.2218   0.0394 0.0217 0.6864 0.6310 0.4631 0.6195 
Oil, %   0.0133 0.0995   0.6082 0.0077 0.2711 0.6648 0.7517 0.9542 

Protein, %   0.9717 0.0698   0.9416 0.4799 0.1846 0.9416 0.6220 0.1377 
Starch, %   0.0081 0.1668   0.0117 0.4534 0.6269 0.1997 0.5482 0.0936 

† Shapiro-Wilk significane declared at α = 0.01. 
± Brown-Forsythe significance declared at α = 0.05. 
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APPENDIX B: INDIVIDUAL LOCATION DATA 
 

Table 33. Effect of management and in-furrow plant growth regulator and foliar plant growth 
regulator or biostimulant treatment on corn grain yield, yield components (kernel number and 
kernel weight), and grain quality (oil, protein, and starch concentrations), and tests of fixed 
effects at Harrisburg, IL, in 2017. Grain yield is presented at 15.5% moisture, and kernel 
weight and grain qualities are presented at 0% moisture. 

Management In-Furrow † Foliar ‡ Yield 
Yield Components Grain Quality 

Kernel 
Number 

Kernel 
Weight Oil Protein Starch 

   T/ha kernels/m2 mg/kernel ------------------------------------------------------      g/kg -------------------------------------------------------- 
Standard None None 15.3 5009 262 40.2 64.7 710 

         
 Ascend SL None 15.3 5000 258 39.8 64.7 712 
  Ascend SL 15.6 5020 266 40.1 65.0 713 
  Toggle 15.6 5097 262 39.8 64.2 712 
  Voyagro 15.5 4995 266 39.1 64.7 715 
 Optify/Stretch None       
   15.1 4808 264 37.6 63.4 721 
  Ascend SL 15.5 4987 266 39.3 64.7 710 
  Toggle 15.3 5042 260 39.7 65.5 711 
  Voyagro 14.7 4969 259 41.0 65.0 709 
         

Intensive None None 16.7 5339 267 40.6 66.5 709 
         
 Ascend SL None 16.7 5442 263 39.9 66.0 712 
  Ascend SL 16.9 5425 267 40.0 65.8 713 
  Toggle 16.4 5371 261 40.3 65.9 712 
  Voyagro 16.9 5386 268 40.3 66.3 711 
         
 Optify/Stretch None 16.4 5238 268 41.0 65.7 709 
  Ascend SL 16.5 5350 264 39.7 64.1 715 
  Toggle 16.8 5506 261 38.7 63.5 715 
  Voyagro 16.7 5366 268 40.2 66.2 712 

Management*Treatment LSD (α = 0.10) NS NS NS NS NS NS 

       
Source of Variation ------------------------------------------------  p-value  ----------------------------------------------- 

Management <0.0001 <0.0001 0.1573 0.3039 0.0937 0.6606 
Treatment 0.6739 0.2454 0.3669 0.8229 0.9286 0.7179 

Management*Treatment 0.7812 0.9796 0.9171 0.4689 0.6600 0.1503 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1;   
Ascend SL at 490 ml ha-1, Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   
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Table 34. Effect of management and in-furrow plant growth regulator and foliar plant growth 
regulator or biostimulant treatment on corn grain yield, yield components (kernel number and 
kernel weight), and grain quality (oil, protein, and starch concentrations), and test of fixed 
effects at Champaign, IL, in 2017. Grain yield is presented at 15.5% moisture, and kernel 
weight and grain qualities are presented at 0% moisture. 

Management In-Furrow † Foliar ‡ Yield 
Yield Components Grain Quality 

Kernel 
Number 

Kernel 
Weight Oil Protein Starch 

   T/ha kernels/m2 mg/kernel ------------------------------------------------------      g/kg -------------------------------------------------------- 
Standard None None 13.3 3923 285 38.8 64.7 717 

         
 Ascend SL None 13.0 3764* 291 40.3 67.6 720 
  Ascend SL 13.5 3902 291 40.1 67.2 720 
  Toggle 13.3 3865 290 40.0 67.5 719 
  Voyagro 13.3 3849 292 41.0 68.2 719 
 Optify/Stretch None       
   13.6 3918 293 39.6 67.2 721 
  Ascend SL 13.2 3907 286 39.3 67.2 722 
  Toggle 12.7 3700* 289 39.2 68.1 718 
  Voyagro 13.4 3835 295 39.5 67.1 719 
         

Intensive None None 13.6 4298 276 37.0 66.0 721 
         
 Ascend SL None 13.7 4234 275 37.6 66.2 724 
  Ascend SL 13.1 4206 271 38.2 67.9 724 
  Toggle 13.2 4359 267 38.6 67.4 721 
  Voyagro 13.6 4184 275 37.5 67.0 722 
         
 Optify/Stretch None 13.3 4134* 279 38.1 67.7 724 
  Ascend SL 13.5 4167 281 38.5 67.2 723 
  Toggle 14.0 4269 280 40.1 67.7 720 
  Voyagro 13.5 4241 277 38.6 66.9 724 

Management*Treatment LSD (α = 0.10) NS 153 NS NS NS NS 

       
Source of Variation -----------------------------------------------  p-value  ----------------------------------------------- 

Management <0.0001 <0.0001 <0.0001 0.0010 0.8188 0.0710 
Treatment 0.9966 0.4036 0.8754 0.8383 0.1469 0.9521 

Management*Treatment 0.1950 0.0913 0.7274 0.5347 0.8252 0.9998 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1; 
Ascend SL at 490 ml ha-1, Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   
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Table 35. Effect of management and in-furrow plant growth regulator and foliar plant growth 
regulator or biostimulant treatment on corn grain yield, yield components (kernel number and 
kernel weight), and grain quality (oil, protein, and starch concentrations), and tests of fixed 
effects at Yorkville, IL, in 2017. Grain yield is presented at 15.5% moisture, and kernel weight 
and grain qualities are presented at 0% moisture. 

Management In-Furrow † Foliar ‡ Yield 
Yield Components Grain Quality 

Kernel 
Number 

Kernel 
Weight Oil Protein Starch 

   T/ha kernels/m2 mg/kernel ------------------------------------------------------      g/kg -------------------------------------------------------- 
Standard None None 14.4 4420 278 40.5 66.4 712 

         
 Ascend SL None 14.0 4386 272 39.2 67.4 718 
  Ascend SL 14.5 4416 283 40.7 67.7 709 
  Toggle 14.7 4408 283 39.4 68.2 713 
  Voyagro 14.7 4352 288 39.6 68.6 710 
 Optify/Stretch None       
   14.8 4439 285 40.4 66.2 715 
  Ascend SL 14.5 4455 278 40.0 66.6 715 
  Toggle 14.6 4413 282 40.1 67.6 716 
  Voyagro 14.7 4428 282 40.7 68.2 715 
         

Intensive None None 15.7 4789 276 39.3 65.7 713 
         
 Ascend SL None 15.6 4855 271 39.6 66.2 713 
  Ascend SL 15.8 4869 274 38.7 65.7 714 
  Toggle 15.5 4714 276 40.2 67.9 712 
  Voyagro 16.3 4895 274 38.6 66.7 716 
         
 Optify/Stretch None 15.5 4784 274 38.9 67.4 716 
  Ascend SL 16.0 4865 278 39.0 66.6 718 
  Toggle 16.2 4844 282 38.9 66.1 715 
  Voyagro 16.0 4828 279 41.1 66.7 711 

Management*Treatment LSD (α = 0.10) NS NS NS NS NS NS 

       
Source of Variation -----------------------------------------------  p-value  ---------------------------------------------- 

Management <0.0001 <0.0001 0.2664 0.0828 0.0251 0.7617 
Treatment 0.6193 0.9688 0.3848 0.6839 0.3333 0.5792 

Management*Treatment 0.8378 0.8803 0.6065 0.7233 0.6056 0.6224 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1; 
Ascend SL at 490 ml ha-1, Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   
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Table 36. Effect of management and in-furrow plant growth regulator and/or foliar 
biostimulant treatment on corn grain yield, yield components (kernel number and kernel 
weight), and grain quality (oil, protein, and starch concentrations), and tests of fixed effects at 
Harrisburg, IL, in 2018. Grain yield is presented at 15.5% moisture, and kernel weight and 
grain qualities are presented at 0% moisture. 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1; 
Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   

Management In-Furrow † Foliar ‡ Yield 
Yield Components Grain Quality 

Kernel 
Number 

Kernel 
Weight Oil Protein Starch 

   T/ha kernels/m2 mg/kernel ------------------------------------------------------      g/kg -------------------------------------------------------- 

Standard None None 13.1 4496 246 43.3 73.6 721 

  Toggle 12.5 4261 245 42.9 72.8 725 

  Voyagro 12.6 4307 233 42.3 71.6 725 

         

 Ascend SL None 12.6 4220 248 43.1 74.1 721 

  Toggle 13.0 4499 243 42.9 73.8 722 

  Voyagro 12.6 4363 243 43.1 74.3 722 

         

 Optify/Stretch None 12.6 4183 247 42.4 74.1 724 

  Toggle 12.8 4155 245 41.7 73.6 725 

  Voyagro 12.7 4358 245 43.1 73.1 721 

         

Intensive None None 14.1 4771 251 43.0 75.4 721 

  Toggle 14.5 4820 253 42.5 75.7 723 

  Voyagro 14.3 4745 252 42.3 74.5 724 
         

 Ascend SL None 14.3 4757 252 44.0 75.5 721 

  Toggle 14.5 4877 250 42.6 74.7 721 

  Voyagro 14.7 4743 254 42.2 75.4 724 

         

 Optify/Stretch None 14.7 4752 253 42.8 74.5 725 

  Toggle 14.6 4889 252 42.0 74.5 723 

  Voyagro 14.3 4694 252 43.0 75.5 720 
Management*In-Furrow*Foliar 
LSD (α = 0.10) NS NS NS NS NS NS 

       

Source of Variation ------------------------------------------------  p-value  ---------------------------------------------- 

Management <0.0001 <0.0001 <0.0001 0.9522 0.2847 0.7803 

In-Furrow 0.7999 0.7374 0.2979 0.4839 0.6097 0.4718 

Management*In-Furrow 0.6618 0.8122 0.3917 0.8518 0.4035 0.8295 

Foliar 0.7066 0.4277 0.1723 0.2336 0.6561 0.7469 

Management*Foliar 0.8292 0.6214 0.0936 0.7083 0.8179 0.6664 

In-Furrow*Foliar 0.8693 0.4328 0.3411 0.4307 0.8148 0.0967 

Management*In-Furrow*Foliar 0.2448 0.5706 0.5238 0.8778 0.8904 0.9451 



82 
 

Table 37. Effect of management and in-furrow plant growth regulator and/or foliar biostimulant 
treatment on corn grain yield, yield components (kernel number and kernel weight), and grain 
quality (oil, protein, and starch concentrations), and tests of fixed effects at Champaign, IL, in 
2018. Grain yield is presented at 15.5% moisture, and kernel weight and qualities are presented 
at 0% moisture. 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1; 
Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   

Management In-Furrow † Foliar ‡ Yield 
Yield Components Grain Quality 

Kernel 
Number 

Kernel 
Weight Oil Protein Starch 

   T/ha kernels/m2 mg/kernel ------------------------------------------------------      g/kg -------------------------------------------------------- 

Standard None None 15.5 5202 261 44.0 68.0 726 

  Toggle 15.0 5059 261 42.5 67.2 730 

  Voyagro 14.8 5028 259 43.9 67.5 726 

         

 Ascend SL None 14.5 4962 257 42.1 64.8 731 

  Toggle 14.6 5023 255 42.7 66.0 729 

  Voyagro 14.9 5112 255 42.9 66.8 727 

         

 Optify/Stretch None 14.3 5105 257 42.8 67.8 727 

  Toggle 14.5 4983 257 43.0 66.7 727 

  Voyagro 14.7 5038 256 43.6 67.2 722 

         

Intensive None None 16.0 5264 264 42.8 66.8 730 

  Toggle 16.9 5325 266 43.0 69.0 726 

  Voyagro 17.2 5378 270 41.4 68.2 731 

         

 Ascend SL None 17.1 5372 269 41.5 68.0 729 

  Toggle 17.2 5489 266 42.8 68.5 727 

  Voyagro 17.5 5418 272 43.5 69.5 726 

         

 Optify/Stretch None 17.0 5428 263 42.6 68.3 727 

  Toggle 16.2 5226 260 42.4 66.0 728 

  Voyagro 17.1 5432 266 43.1 68.0 725 
Management*In-Furrow*Foliar  
LSD (α = 0.10) NS NS NS NS NS 44 

       

Source of Variation -----------------------------------------------  p-value  ---------------------------------------------- 

Management <0.0001 0.0127 0.0006 0.7964 0.1520 0.6665 

In-Furrow 0.5554 0.9223 0.4704 0.7723 0.8467 0.5168 

Management*In-Furrow 0.2868 0.4758 0.4246 0.5000 0.3794 0.4969 

Foliar 0.5709 0.7558 0.7865 0.6112 0.3975 0.6354 

Management*Foliar 0.7143 0.8212 0.5746 0.6796 0.8808 0.6250 

In-Furrow*Foliar 0.9724 0.6814 0.9904 0.4410 0.6805 0.7946 
Management*In-Furrow*Foliar 0.6062 0.7398 0.9969 0.5855 0.8456 0.5508 
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Table 38. Effect of management and in-furrow plant growth regulator and/or foliar 
biostimulant treatment on corn grain yield, yield components (kernel number and kernel 
weight), and grain quality (oil, protein, and starch concentrations), and test of fixed effects at 
Yorkville, IL, in 2018. Grain yield is presented at 15.5% moisture, and kernel weight and 
grain qualities are presented at 0% moisture. 

† Ascend SL was applied at 387 ml ha-1 and Optify/Stretch at 730 ml ha-1. 
‡ All foliar treatments applied at V5 growth stage with MasterLock surfactant at 468 ml ha-1; 
Toggle at 2.9 L ha-1, and Voyagro at 585 ml ha-1.   

Management In-Furrow † Foliar ‡ Yield 
Yield Components Grain Quality 

Kernel 
Number 

Kernel 
Weight Oil Protein Starch 

   T/ha kernels/m2 mg/kernel ------------------------------------------------------      g/kg -------------------------------------------------------- 

Standard None None 14.8 5372 231 41.9 67.3 735 

  Toggle 14.8 5296 234 42.5 67.8 736 

  Voyagro 14.4 5266 227 42.5 67.7 734 

         

 Ascend SL None 15.2 5378 238 42.2 67.8 738 

  Toggle 15.3 5145 230 42.9 68.2 733 

  Voyagro 14.7 5314 232 42.1 66.8 738 

         

 Optify/Stretch None 15.2 5433 231 42.5 67.7 737 

  Toggle 14.7 5328 232 41.6 67.8 736 

  Voyagro 14.3 5151 233 42.4 67.3 739 

         

Intensive None None 16.1 5822 237 42.8 71.0 732 

  Toggle 16.7 5806 238 42.8 71.0 733 

  Voyagro 16.8 5692 229 42.4 72.3 733 

         

 Ascend SL None 17.2 5915 234 41.9 71.0 736 

  Toggle 17.0 5855 237 42.7 70.2 736 

  Voyagro 17.0 6080 238 44.0 71.3 729 

         

 Optify/Stretch None 16.7 5900 240 44.7 70.0 730 

  Toggle 16.4 5711 233 42.1 70.3 734 

  Voyagro 16.8 5910 241 43.3 67.8 733 
Management*In-Furrow*Foliar 
LSD (α = 0.10) NS NS NS NS NS NS 

       

Source of Variation -----------------------------------------------  p-value  ---------------------------------------------- 

Management <0.0001 <0.0001 0.2653 0.0815 <0.0001 0.0002 

In-Furrow 0.0488 0.0520 0.1387 0.8088 0.6380 0.5945 

Management*In-Furrow 0.9145 0.3866 0.5607 0.6516 0.6380 0.2641 

Foliar 0.5418 0.4779 0.8240 0.7343 0.9670 0.8403 

Management*Foliar 0.1013 0.0993 0.9488 0.6764 0.4965 0.0736 

In-Furrow*Foliar 0.5195 0.3937 0.5205 0.2297 0.9523 0.2245 

Management*In-Furrow*Foliar 0.8941 0.3929 0.7154 0.5687 0.9807 0.0729 


