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ABSTRACT

We propose the Fixed Grouping Layer (FGL); a novel feedforward layer designed to incor-

porate structured smoothness in a deep learning model. FGL achieves this goal by connecting

nodes across layers based on spatial similarity. The inductive bias of structured smoothness

implemented by FGL is motivated by applications such as brain image decoding, i.e., pre-

dicting behavior based on brain images, where scientific prior knowledge suggests that brain

responses conditioned on behaviour are smoothed. Experimental results on simulated and

real data is provided. Our proposed model architecture performs better than conventional

neural network architectures.
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CHAPTER 1: INTRODUCTION

The effectiveness of a machine learning model often depends on the choice of inductive

bias, and the extent to which this inductive bias captures real-world structure. For instance,

convolutional neural networks (CNNs) have proven effective for computer vision tasks [1],

recurrent neural networks such as LSTMs are effective for text [2], and certain graphical

models are ideal for sentence segmentation and labeling [3]. In this work, we propose a new

feedforward layer for deep neural networks that is suitable for neuroimaging and potentially

useful for other data where variables can be grouped due to underlying structure.

We particularly focus on brain decoding – a standard task in fMRI brain data analysis

where the brain image is used to predict the associated task or stimulus. In recent years,

decoding from fMRI studies has been attempted using a variety of methods: factored logistic

regression [4], convolutional neural networks [5] and factored model after performing dimen-

sionality reduction [6]. Broadly, there are two types of brain decoding models: end to end

models and models which perform dimensionality reduction followed by a low-dimensional

prediction. On one hand, dimension reduction does directly capture the notion of grouping

variables together. On the other hand, end to end models often do not employ brain spatial

structure. This observation motivates our work.

While we focus on brain imaging, our proposed architecture is not restricted to neuroimag-

ing alone. Importantly, data with multiple input variables often exhibit some structure. For

example, the El Nino dataset [7] consists of measurements by weather buoys in the ocean,

and one expects that nearby buoys can be grouped together. Similarly, socio-economic data

can often be grouped together by geographic proximity. Financial market data of individual

stocks can be grouped together based on the industrial sector to which a company belongs.

Our primary technical contribution is the Fixed Grouping Layer (FGL). FGL is de-

signed to extract features within each group, and additionally guarantees that each output

vector is only affected by the input vectors related to it by the grouping specified. We demon-

strate the benefit of using FGL on simulated experiments and real neuroimaging data. We

compare FGL against fully connected networks, convolutional neural networks and Coord-

Conv [8]. We show the performance of FGL on simulated and real data. On real data, FGL

outperforms baseline models on 4 out of 5 datasets, and is tied for the best model on the

5th dataset.
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1.1 SPATIAL STRUCTURE IN FMRI

Functional Magnetic Resonance Imaging (fMRI) is a popular brain imaging technique

which measures a physiological correlate of neuron activity [9]. The brain imaging scans are

generally of two kinds: resting state and task data. Resting state data (rfMRI) is collected

while the subject is at rest, i.e., while the subject is not actively engaged in a task. Task

data (tfMRI) is collected while the subject is engaged in a predefined task, for example, a

motor task such as moving their fingers.

fMRI data can be represented as 3-dimensional images, and have rich structure that

has been studied extensively. Importantly, coarse correspondences have been discovered

between brain regions and specific functions or behavior [10, 11] Further, detailed functional

localization remains an important topic in neuroimaging.

Experimental and cognitive neuroscience suggests that functions in the brain are associated

with one or more spatial regions. One biological argument for it is the minimization of

material and metabolic costs in the brain [12]. Naturally, this leads to a distribution where,

for a given cognitive function, voxels within a region are correlated with other voxels within

the same region. Additionally, they may be correlated with voxels from a small number of

other regions but are largely uncorrelated with other regions in the brain. This distribution

has two notable properties: (a) sparsity, and (b) spatially smooth blocks. [13] work towards

understanding the sparsity of this distribution and leverage this sparsity by using a prior for

sparse structure. [14] take this a step further and model the spatial dependencies between

sparse supports. They capture the idea that sparse supports tend to group together, resulting

in a dependency they call ”region sparsity”. Finally, [15] simultaneously capture spatial block

sparsity and spatial smoothness in fMRI data and show that using such a structure can make

prediction more robust. We use a similar intuition to develop a deep neural network that

extracts features from spatially smooth regions.

We focus on grouping structure inferred from brain parcellation, i.e., non overlapping

segmentation of the brain. Brain parcellations are a well studied paradigm for capturing the

structure of brain activity. There are a variety of brain parcellations in common use, from

anatomical parcellations to statistical estimates based on resting data. Various techniques

for creating these parcellations have been studied [16] and an effective method for statistical

parcellations is ward clustering [17] – a hierarchical clustering algorithm. The result of ward

clustering is a tree where leaf nodes represent voxels of the brain and interior nodes represent

grouping of voxels into spatial clusters. Figure 1.1 visualizes the output of ward clustering

at various granularities.

2



1.2 BASELINES

Since brain decoding is usually treated as a classification task, we will use two common

types of baselines: models based on fully connected networks, such as Feedforward Neural

Networks, and convolution based models such as standard Convolutional Neural Networks

(CNNs) and their CoordConv variant.

Multinomial Logistic Regression (LR): Multinomial Logistic regression is a standard

model, given by:

ŷ = softmax(Wx+ b) (1.1)

for an input x ∈ Rd, parameterized by weights W ∈ Rk,d and bias b ∈ Rk where k is the

number of possible labels. Here, ŷ is the vector of predicted probabilities for each class or

label. Also, softmax(z)i = ezi/(
∑

j e
zj) is used to transform scores Wx+b into probabilities.

We use this notation instead of the standard sigmoid function since the problems we handle

are not binary. Clearly logistic regression by itself uses no spatial information.

Feedforward Neural Networks (FNN): FNNs, described in [18], are a common archi-

tecture for tasks where the input has neither a grid-like structure nor a sequential structure.

The architecture is an alternating sequence of linear transformations and activation func-

tions:

y = φL−1(bL−1 +WL−1φL−2(· · ·φ0(W0x+ b0))) (1.2)

where L is the number of layers, for a vector input x, parameters {Wi : 0 ≤ i < L} and

activation functions {φi : 0 ≤ i < L}. We find that, for brain decoding, using a linear

activation performs better than using non-linear activations.

Convolutional neural networks (CNNs): CNNs, [19], are a popular tool in deep

learning. Many problems, where the inputs have a spatial representation, lend themselves

to convolution. CNNs are popular not only for their flexibility but also because of the

assumptions they make about the nature of input - one of them being that dependencies

between pixels are local and within a cuboid of fixed shape. Additionally, these dependencies

do not change across the image. These assumptions are usually appropriate for natural

images. However, in the case of brain fMRI, since features are also dependent on position,

i.e., features are not position invariant, CNNs might not work as well. We note however

that some of these issues are alleviated via the use of many layers and more channels, as is

common in practice.

CoordConv (CC): While CNNs have been immensely successful in deep learning, they

have often been criticised. [8] demonstrate that CNNs are unable to transform spatial
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representations from one form to another. For example, from a pair of coordinates to a one-

hot representation. One reason for this failure could be that the coordinate transformation

problem directly conflicts with the underlying assumptions of a CNNs. They go on to

provide a solution: the CoordConv layer. CoordConv is essentially a convolutional layer

except that it takes in a few extra channels as input. These channels contain information

about the coordinates. Effectively, CoordConv alters the assumption of a CNN that local

dependencies do not change across the image since the input includes the position of the

image. This provides added flexibility since on one hand, it can learn to ignore these channels,

or it could learn transformations that depend on the position of a feature within the input.

While this is better aligned to fMRI, the resulting model still has to learn a dependency

between position and what each feature means. Nevertheless, we expect CoordConv to

provide a stronger baseline than CNNs.
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Figure 1.1: Brain parcellation at various granularities - the text in the top left the number
of regions. The cross-sections are at the same coordinates to demonstrate the consistency
between parcellations at increasing granularity. Each color in each row corresponds to a
region/group.
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CHAPTER 2: FIXED GROUPING LAYER

The Fixed Grouping Layer (FGL) exploits the observation that for prediction tasks, a

good strategy is to group variables and extract and compare features across groups. Before

defining FGL, we will first formally define our idea of groups.

2.1 GROUPS

Given a set of input variables X of the form:

X = {xi : 0 ≤ i < nin, i ∈ Z}. (2.1)

A grouping of variables, denoted by G is a subset of the power-set of X such that each xi is

in at least one set in G. That is,

G ⊂ 2X , (2.2)

∀xi ∈ X : xi ∈
⋃
G. (2.3)

Each set in G is a group of variables. For example, in the case of a colored image, each

pixel can be considered a variable with an associated feature vector of length 3, i.e., each xi

represents a pixel and xi ∈ [0, 1]3. A spatially smooth grouping of these variables corresponds

to a segmentation of the image, like the ones at the top of Figure 2.1. Optionally, the groups

can be mutually exclusive:

∀gi, gj ∈ G : gi 6= gj =⇒ gi ∩ gj = φ. (2.4)

2.2 SPECIFICATION

Now we define the FGL via its input-output specification. Suppose the FGL layer takes

as input nin vectors of cin length each, and the nin vectors are grouped into nout groups.

Further, let cout be the length of the vector associated with each group. Note that these

groups do not have to be mutually exclusive, but mutually exclusive groups offer benefits

that we describe in the supplementary. Mathematically, the Fixed Grouping Layer is given

by:

z = A((xv)� u) + b, (2.5)
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where:

• z ∈ Rnout,cout is the matrix representing the output. Each row represents one group.

• x ∈ Rnin,cin is a matrix representing the input - one row for each input vector. Addi-

tionally, let xi denote the ith input vector - equivalently, the ith row of x.

• A is a binary matrix that represents the grouping - Aj,i = 1 if and only if xi belongs

to group j.

• v, a parameter of the model, is a linear transform from Rcin to Rcout , i.e., v ∈ Rcin,cout

• � represents the Hadamard product (elementwise multiplication) [20]

• u, a parameter of the model, is a matrix of size nin × cout.

• b, the bias, is another parameter of the model and is represented by a matrix of size

nout × cout

To help understand FGL better, consider the case where cin = cout = 1. In this case, v is a

scalar multiplication and can be ignored. Disregarding the bias, zi0 is simply an aggregation

of group gi using weights defined by uj0,∀j : xj ∈ gi.
Fully Connected Network as FGL: A quick mathematical argument shows that under

certain conditions, FGL becomes a fully connected layer. Specifically, this occurs when we

collect all input variables into a single group. This corresponds to A being a row vector of

1s. Since the input can be fed into a fully connected work, we assume that, cin = 1. Then,

let cout equal the output size of the fully connected layer, but fix vij = 1. This reduces FGL

to

z0j =
∑
i

xi0uij + b0j, (2.6)

which is a fully connected network with weights uij. Hence, a fully connected network is a

special case of FGL.

2.3 CLASSIFICATION MODEL

In this section we briefly describe how to construct a deep network for classification using

FGL. The architecture is fairly straightforward - repeated layers of FGL (and activation

functions), followed by either a fully connected network or an FGL that groups all inputs

into a single group. This is inspired from traditional CNN based classification models. We

provide a visualization of a simplified model in Figure 2.1. There are a couple of challenges:
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Figure 2.1: FGL Classifier: An example that uses FGL. Given the numbered hierarchical
segmentation shown in the squares above, FGL extracts features for each segment. The
presented FGL architecture takes in 9 variables corresponding to segments of a square,
which are first grouped into 4 groups using the grouping {{1, 2}, {3, 4, 5}, {6, 7}, {8, 9}}.
The resulting 4 groups are then grouped into 2 groups using the grouping {{1, 2}, {3, 4}}.
Note that each intermediate layer can use feature vectors of length greater than 1. The final
label is predicted using a fully connected network which takes the output of the last FGL
layer as its input.

(a) casting the input into the right format and (b) constructing groupings for layers after

the first FGL layer.

Input Specification: In this work we deal with image-like data, either in 2D or 3D.

Consider an input with s pixels or voxels in c channels - for example, a 64× 64 image with

RGB colors will have s = 4096 and c = 3. Such an input is treated as s variables with feature

vectors of c length for each variable. Consequently, any segmentation is a valid grouping for

the first layer of FGL.

Groupings: Since the output of the first FGL layer is feature vectors for each group, the

grouping of the second FGL layer must group together the outputs of the first layer. Hence,

we need a hierarchical structure with input variables at the leaf nodes. For example, this

structure could be a hierarchical clustering, a type of algorithm that is very well studied.

[21, 22]. In this work, we use a Ward clustering of the brain - details are provided in Section

3.2.1.
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2.4 INITIALIZATION

Prior literature [23, 24, 25] has shown that initialization of deep networks matters. Gen-

erally, a layer’s weights are randomly initialized by sampling from U [−m,m] for some m

based on the number of inputs and outputs while keeping in mind the activation function

used.

For FGL, in general the number of inputs is not the same for each dimension of the output.

Mathematically,

zjk =
∑
i

Aji(x
>
i v)kuik + bjk (2.7)

=
∑
i∈gj

(x>i v)kuik + bjk, (2.8)

where the subscripts denote row and column indices respectively: zjk is the kth dimension

of the jth output group’s vector, ujk is a scalar at the jth row and kth column of u. Hence,

we use the following initialization:

uik ∼ U [−

√
(1 +

∑
j Aji)∑

j(Aji

∑
k Ajk)

,

√
(1 +

∑
j Aji)∑

j(Aji

∑
k Ajk)

] (2.9)

vij ∼ U [−
√

1

1 + 5cin
,

√
1

1 + 5cin
] (2.10)

These initialization strategies follow a reasoning similar to [23]. The variance of the out-

put of FGL needs to be the same order of magnitude as the variance of the input. We

find that this strategy improves performance. These strategies need to modified appropri-

ately depending on the activation function used. Additionally, a normal distribution with

appropriate standard deviation can be used instead of the uniform distribution.

2.5 VARIANTS

While the FGL model is straightforward, multiple variants of it are possible. First, notice

that FGL is essentially the following three operations (ignoring the bias):

• Linear transformation: The multiplication, xv, transforms the data x from one

basis to another using a linear transform v.

• Rescaling: The hadamard product with u rescales each vector along each dimension

independently
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• Aggregation: The multiplication by A aggregates the vectors (xv) � u within each

group using summation.

Performing these operations in a different order creates some basic variants: for example,

we could aggregate within groups, then rescale, and finally perform a linear transformation.

These changes to operation order will require the parameters to be defined differently. For

example, if the hadamard product with u is done after aggregation, then u will need to have

nout rows.

2.5.1 Alternative Reductions

Another interesting variant is to replace the aggregation with a max operation within each

group along each dimension. This is similar to doing a maxpool operation in convolution

neural networks while the summation by A is similar to a weighted-sum-pool depending

on the values of Aji. It might prove effective in cases where a signal being present in one

variable within a group is equivalent to the group showing that variable.

2.5.2 Multiple Groupings

Another possible benefit that we do not investigate is the use of multiple variable groupings

- we can concatenate the A matrices that represent each grouping to make FGL extract

features within each group from the union of both groups. That is, if A(0), A(1) are the

matrices that represent two groupings, we could use A = [A(0) A(1)]. This would allow one

to make use of multiple types of groupings. For example, we could create parcellations at

different points of the accuracy-reproducibility tradeoff studied by [16], and make use of

both. Similarly, one could create parcellations from different datasets and use them at once.

However, using a single parcellation was sufficient to create a significant gain in performance,

hence we don’t go deeper in this direction. We mention a few other variants that did not

perform as well in supplement 2.5.

2.6 OPTIMIZATION

In this section, we discuss some challenges in implementation - If the number of input

variables is large, performing A((xv)�u) as a matrix multiplication is expensive. There are

some ways to work around this:
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• Since A is a binary matrix, we can treat ((xv) � u) as a matrix of embeddings, and

lookup the indices at which A is non-zero, then performing necessary aggregation.

• If the variable groups are mutually exclusive - that is, each input variable only belongs

to one group, then A((xv) � u) can be performed by scattering (xv) � u according

to the indices at which A is non zero.

2.7 PARAMETER SHARING

One of the major benefits of using convolution is that it performs parameter sharing - which

comes with its own benefits. Adapting FGL to perform parameter sharing is much harder.

Typically, a fully connected from nin × cin numbers to nout × cout numbers would require

nin×nout× cin× cout parameters. But this number is astronomical. To avoid using as many

parameters, we decompose the operation into a multiplication by v followed by a Hadamard

product with u. Doing so reduces the number of parameters to cin × cout + nin × cout.

This is much more tractable, but more reduction might be possible: sharing parameters

between groups seems lucrative, unfortunately, different groups can have different sizes and

an arbitrary ordering - prevent us from parameter sharing further. If group sizes were

constant and an ordering of variables was fixed, it would be possible to further reduce the

number of parameters from O(nin) to O(groupsize).

11



CHAPTER 3: EXPERIMENTS

We study the performance of the FGL-based model on multiple fMRI datasets which are

publicly available. Before we perform experiments on fMRI data, we will study the behaviour

of our model in a more controlled setting - on a simulated dataset where the labels depend

on input images through aggregates within segments of the image. This demonstrates the

benefit of using the FGL model in terms of performance and also the robustness to using

less data.

Regularization: We found that weight normalization [26] worked quite well and had the

added benefit of not having hyperparameters. Weight normalization is a reparameterization

of the weights of a neural network that decouples the norm and the direction of the weights.

That is, for a single dimension of a fully connected layer such as y = w>x + b, weight

normalization reparameterizes w as:

w = g
θ

||θ||
(3.1)

where θ is a vector of the same length as w and g is a scalar. The network now learns g, θ

instead of w. For FGL we apply weight norm on both u and v. Weight norm is applied by

(1) treating u as cout different vectors and (2) treating v like the weights of a fully connected

network.

For both experiments, training was done using Adam [27]. Each model was implemented

using Pytorch [28], a python package for deep learning, and experiments were run on 4 K80

GPUs.

3.1 SIMULATED DATA

We propose a family of datasets, based on the same generating process but with variable

parameters. Consider data where the prior distribution is as follows:

x ∼ N (0, S), (3.2)

where 0 is a zero-vector and S is an arbitrary covariance matrix of appropriate size. We let

x ∈ Rs2 for an integer s - the idea being that x is a flattened version of a grayscale image of

size s× s. Next, suppose that datapoints are labelled based on a linear function constrained

12



(a) (b) (c) (d) (e)

Figure 3.1: Example of Voronoi diagrams and the groups induced by the Voronoi diagram.
(a) is a Voronoi diagram created from 8 random sites – the lines denote boundaries of
polygons, where each polygon consists of pixels closest to the same site. (b–e) Some possible
groupings consisting of 2 polygon each.

to aggregates within regions. That is,

z|x ∼ N (Fx,Σ), (3.3)

for a fixed covariance matrix Σ, and a matrix F of size k × s2 where k is the number of

labels. The label, y, is assigned based on z: it can sampled from a multinomial distribution

parameterized by ŷ = softmax(Wz) for some full-rank matrix W of size k × k. In our case

we use the most likely label.

Hence, using conjugate priors, we have,

x|z ∼ N (F>Σ−1z, (S−1 + F>Σ−1F )−1). (3.4)

The implications of equation (3.4) becomes clear once we think about F . Consider an F that

is sparse such that the non-zero positions in each row of F correspond to a segmentation of

the input image - that is, a grouping of pixels. For example, it could correspond to circular

patches on the image, or quadrants, or in our case, Voronoi diagrams. Additionally, if Σ is

an identity matrix, then each dimension of z corresponds to a group of pixels. The value in

that dimension corresponds to the sum of values of the pixels in the group.

3.1.1 Voronoi Diagrams

A Voronoi diagram is the division of a plane into regions based on distance to a specific

set of points (called sites). Usually, positions whose closest site is the same are grouped

together. Voronoi diagrams are popular in a variety of fields and they have been studied

thoroughly [29, 30]. However, we will not be using any of these properties - we will just use

Voronoi diagrams to subdivide the plane. Specifically, consider the grouping induced by a

13



(a)

(b)

Figure 3.2: (a) Simulated Dataset: The dataset consists of images like the ones on the left,
with label assigned by aggregating each image over groupings like the ones in the middle.
This results in latent variables (z) such as the activations on the right, which, after a linear
transform, are treated as labels. Notice that these groupings are comprised of multiple
smaller regions, each of which is spatially connected. (b) A histogram of the probability
of the most likely label assigned in our simulated dataset shows that the vast majority of
datapoints have Pr(y) > 0.5. This indicates that the labels are not very noisy.

set of m sites P = {pi : pi ∈ [0, s]2, 0 ≤ i < m} for some s indicating the size of the plane:

gi = {xj : min
k
|xj − pk| = i}∀0 ≤ i < m. (3.5)

We use Voronoi diagrams because they create regions which are spatially connected. To

increase the complexity of the task, we can consider groupings which are unions of arbitrarily

chosen Voronoi regions - resulting in groups comprised of multiple spatially connected regions

which may or may not be connected to each other. We provide an example in Figure 3.1.

3.1.2 Dataset

We create a dataset which samples x from the prior specified in equation (3.2) with S

being an identity matrix. We use s = 128 so that each x can be interpreted as a square

image. We create F by first creating a Voronoi diagram of 512 randomly selected points,

and then merging these regions into k = 32 groups. We sample z from the the distribution

specified in equation (3.3). We fix a random W and then assign the label y with highest

likelihood to the datapoint x. We sample 50000 points to create the simulated dataset. A

visualization of the process is provided in Figure 3.2a. To ensure that the dataset wasn’t

too noisy, we plot a histogram of probability of assigned label in Figure 3.2b. The histogram

shows that only a small number of datapoints are noisy - in most cases, the assigned label

has a probability of at least 0.5.
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(a) (b) (c)

Figure 3.3: (a) Test accuracy on held out 20% of simulated dataset vs. fraction of data used
for training. The graph indicates that FGL learns much faster than other models - or has
better sample complexity. Additionally, this is a plot with error bars - clearly visible when
only 10% of data is used. The small magnitude of error in estimation of performance indicates
that models are well trained and the difference is due to the models themselves. (b) Minimum
(across classes) F1 Score on held out test set vs. fraction of data used for training. Indicates
that the difference in performance is not due to performance on a single class/region, but
rather across all labels. (c) Histogram of probability of most likely labels for points where
FGL is correct but CNN misclassifies. This demonstrates that the misclassification by CNN
happen not only in datapoints with high amount of noise but also for datapoints where the
label should be clear.

3.1.3 Models

To demonstrate the benefit of using the Voronoi Diagram during classification, we train 4

models - Logistic Regression (LR), a Convolutional Neural Network (Conv), a CoordConv

variant (CC) of the same CNN, and a model using our proposed layer - FGL followed by a

fully connected network. Our FGL model is provided the voronoi regions. The number of

parameters in each model is roughly the same. Since the dataset uses labels that are linear

in terms of x, we use no non-linear activations in any of our models. We found that using

maxpooling in the CNN and CoordConv hurt performance.

3.1.4 Procedure and Analysis

We create a test set using 20% of the simulated dataset. The remaining points are used

for training. For each model, we train using various quantities of available data, and test on

the held out set. The results are aggregated over 10 runs – with a randomly sampled test

set for each run. A plot of the test accuracy vs. fraction of data used for training is given

in Figure 3.3. We find that the standard deviation of accuracies of these models is small -

indicating that the failures are not due to poor initialization or poor training but rather a

difference in models.

15



Figure 3.4: Test accuracy: Out of sample accuracy measured on 30% of dataset v/s
Fraction of subjects used for training. FGL performs well even when a small amount of data
is used for training.

Since FGL is given the grouping, it is perhaps unsurprising that it performs well given

enough data. More importantly, this experiment was designed to demonstrate a failure of

convolution based models and also fully connected methods. While this satisfies our intuition

that using spatial structure should help drastically improve performance, we investigate the

datapoints at which the CNN failed but FGL did not. The first thing to check was the

probability of assigned labels for these points - a histogram of the same for a random subset

of the testing set is provided in Figure 3.3c. The next sanity check is to ensure that the drop

in performance isn’t just for one set of regions or one class. To that end, we plot the lowest

F1 score (lowest across classes) in Figure 3.3b. We see the same trend - FGL performs better

than CNNs, CoordConv and Logistic Regression. This indicates the validity of the gain in

performance. Hence, using a grouping of variables does provide a significant benefit and the

next step is to apply the same on real fMRI decoding data.

3.2 FMRI CONTRAST PREDICTION

The assessment of fMRI decoding has been studied before [31]. Leave-one-out strategies

for cross validation can be unstable, and suggest that using reasonable defaults is a good

strategy. Additionally, it is well known that having common subjects between train and test

datasets can lead to misleading results. This is because such a test set does not measure

how well a model can generalize from one subject to another. Hence, we evaluate models on

out-of-sample accuracy, i.e., we hold out some subjects (30%) for the testing dataset in each

run. Further, we train all models with reasonable defaults that we found were not critical

for model performance.

We evaluate our models using the following datasets:

• Archi [32]: 78 subjects did motor, social, relational tasks to create a total of 2340 total
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images with 30 labels overall.

• Brainomics Localizer [33]: Localizer protocol - 94 subjects, 19 labels, 1786 total images.

• Cam-CAN [34]: Audio-video task at different frequencies. 605 subjects, 5 different

labels and 3025 total images.

• HCP [35]: 787 subjects participated in a variety of tasks corresponding to 23 labels

and a total of 18070 images.

• LA5c [36]: 191 subjects participated in various tasks with a total of 24 labels across

5756 images.

The above mentioned datasets are available on NeuroVault1 [37], which is an aggregation

of fMRI datasets. We did mininal preprocessing because the datasets were already centered

at 0 with a standard deviation of 1. Further, the datasets were already registered. However,

Cam-CAN and Brainomics were not at the same resolution as the other datasets, so we

upsampled them using nilearn, a python package for neuroimaging [38]. We also use

nilearn for a variety of other tasks such as loading, visualization and parcellation.

3.2.1 Parcellation

Since [16] showed that ward clustering provides good parcellations of the brain, we perform

ward clustering on a fraction of HCP resting state data (which has a total size of 4TB).

Specifically, we only use about 1% of the rfMRI data available in the HCP dataset. This is

largely due to hardware constraints. However, we still obtain an improvement in accuracy.

While we could have run clustering on the task datasets that were used for evaluating the

model, we would need to hold out a part of the dataset to avoid affecting the test score. Doing

so would make the datasets even smaller, which is not desirable. Perhaps more importantly,

since resting state data is more easily acquired [39], and there are strong correlations between

tfMRI and rfMRI [40], using rfMRI should provide a good if not better parcellation of the

brain.

To make a deep network using FGL we require a hierarchical clustering and not just a par-

cellation. Hence, instead of using the segmentation produced by the parcellation algorithm

provided by nilearn, we use the tree learnt by ward. We then slice into the ward clustering

to produce parcellations with 32, 256 and 1024 regions. These have been visualized in Figure

1.1. Clearly, these groups are spatially connected. While the cuts into the tree give us a

1https://neurovault.org/
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mapping from voxels of the brain to 32, 256 and 1024 groups respectively, what we need

is a mapping from voxels to 1024 groups, followed by a mapping from these 1024 groups

to 256 groups and finally from 256 groups to 32 groups. Ward clustering helps tackle this

problem: If selection of interior nodes is done such that the selections have sizes k1, k2 with

k1 < k2 then, no descendants of the second selection are selected in the first selection. This

means that we can generate the grouping of 1024 groups to 256 groups by looking at the

descendant relation between the interior nodes corresponding to each parcellation. Similarly

for the grouping of 256 groups to 32 groups.

3.2.2 Models

Fully Connected models We experimented with the following fully connected models:

• Multinomial Logistic Regression (LR): We use the standard multinomial logistic

regression as a weak baseline.

• Feedforward Neural Networks (FNN): We experimented with deep fully con-

nected neural networks, and settled on a model with intermediate layers of size 512

and 128. We found that using non-linear activations such as tanh hurt the performance

of the model, and hence used a linear activation function.

• Dimension Reduction + Logistic Regression: We performed dimension reduction

using the same parcellation we use for our FGL based model, followed by logistic

regression. Early experiments showed that this model usually performed worse than

Logistic Regression. Hence we did not experiment with it further.

The aforementioned models take a masked fMRI image as input and we used the MNI152

mask provided by nilearn.

Archi Brainomics Cam-CAN HCP LA5c

LR 81.00% 74.42% 63.29% 91.70% 61.12%

FNN 82.72% 81.47% 61.52% 92.16% 60.86%

Conv 84.23% 90.85% 63.77% 91.38% 61.99%

CC 83.96% 90.64% 63.07% 91.52% 62.04%

FGL 87.07% 90.38% 67.27% 93.36% 64.24%

Table 3.1: Test accuracy per dataset per model.

Convolutional Neural Networks (Conv, CC): We experimented with a variety of

architectures and found no improvement by using residual connections or Batch-Norm. We
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Archi Brainomics Cam-CAN HCP LA5c

LR 80.78% 74.32% 63.55% 91.70% 57.90%

FC 82.66% 81.39% 61.58% 92.17% 59.00%

Conv 84.14% 90.77% 64.04% 91.37% 60.35%

CC 83.74% 90.57% 63.37% 91.51% 60.32%

FGL 87.05% 90.29% 66.96% 93.37% 62.91%

Table 3.2: Mean F1 score on test dataset per model.

Archi Brainomics Cam-CAN HCP LA5c

LR 82.08% 78.63% 64.24% 91.93% 59.18%

FC 83.97% 84.21% 62.51% 92.32% 60.21%

Conv 84.93% 91.60% 64.53% 91.41% 60.86%

CC 84.36% 91.37% 63.93% 91.56% 60.72%

FGL 87.67% 91.25% 67.04% 93.42% 63.73%

Table 3.3: Mean precision on test dataset per model.

also report results using CoordConv. It uses an architecture identitical to the CNN except

that we replace convolution by CoordConv layers. We found that using non-linear activations

hurt the model’s performance, similar to our finding with FNNs. Further, maxpooling also

reduced performance. The architecture is 5 3-D convolution layers of stride 2 and kernel

size 4. The input volumes have size 91 × 109 × 91, and convolution reduces the volume to

2 × 3 × 2 with 128 channels. We flatten this volume and pass it through a fully connected

network to get the score for each label. The architecture for the CoordConv is identical to

the CNN since CoordConv only concatenates a few input channels to the input image. We

use Conv to refer to the Convolutional Neural Network and CC to refer to the CoordConv

variant.

FGL: We use 3 layers of FGL, each of which use the Parcellation described earlier. The

input image have 212455 voxels after masking. We treat each voxel as a variables with one

feature each. These are then reduced to 1024 groups with feature vectors of length 8 each.

Then, 256 variables with 64 features each and finally 32 variables with 128 features each.

The final prediction is made by flattening the output of the last FGL layer and passing it

through a fully connected layer. The resulting number of parameters is roughly 1.7m, which

is also roughly the same number of parameters used for convolution. While this is a lot of

parameters, we found that reducing the number of parameters by changing the number of

features for each intermediate variable decreases performance for both convolution and FGL.
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Archi Brainomics Cam-CAN HCP LA5c

LR 81.00% 74.42% 63.29% 91.70% 58.67%

FC 82.72% 81.47% 61.52% 92.16% 59.24%

Conv 84.23% 90.85% 63.77% 91.38% 60.36%

CC 83.96% 90.64% 63.07% 91.52% 60.52%

FGL 87.07% 90.38% 67.27% 93.36% 62.64%

Table 3.4: Mean recall on test dataset per model.

3.2.3 Procedure

For each model and each dataset, we split the dataset multiple (10) times into a train and

test set. The split is done by subjects so that no subject in the test set appears in the training

set. In each case, 30% of subjects are used for testing, and all or a part of the remaining

subjects are used for training. Each model was trained for a fixed number of epochs - 50 for

convolution based models, 30 for feedforward neural networks and 20 for FGL. The first set

of experiments involves using all of the training data (70% of total data) to train and testing

on the remaining data. We measure out-of-sample accuracy, mean F1 score, mean precision

and mean recall, which are provided in Tables 3.1,3.2,3.3 and 3.4 respectively. The second

set of experiments involved varying the fraction of data used for training on the smaller

datasets - namely, Archi, Cam-CAN and Brainomics. We plot the test accuracy versus the

fraction of data used for training in Figure 3.4. The plots demonstrate that even when a

small amount of training data is used, FGL performs better than the baselines we compare

against.

These experiments demonstrate the clear benefit of using FGL compared to other models

with roughly the same number of parameters. When using 70% of data for training, FGL

provides 2-6% of improvement in test accuracy on 4 of 5 datasets. A similar trend exists

even when smaller amounts of data is used. As for the 5th dataset, Brainomics, FGL is on

par with CNN based methods but better than Fully Connected networks.
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK

This work proposes the Fixed Grouping Layer, FGL, built on the intuition that for pre-

diction tasks, a good strategy is to group variables and extract and compare features across

groups. It is motivated by the observation that fully connected layers don’t use structure of

variables and convolutional layers extract local features that are spatially invariant - which

is not an appropriate assumption in some cases. It takes as input multiple feature vectors,

and outputs new feature vectors for each group of input vectors using a grouping specified

by the user. Additionally, a few possible variants of FGL are also described. The benefit of

using FGL is demonstrated on two experiments: first, on simulated data and then on various

fMRI datasets. In both cases, the benefit is an increase in test accuracy when using various

amounts of training data.

The simulated dataset is generated by sampling input images from a multivariate normal

distribution, and the label is assigned on the basis of a vector that aggregates pixel values

over a known segmentation. In particular, a segmentation is a random combination of regions

of randomly generated Voronoi diagram. An analysis of the dataset and datapoints where

FGL and CNN disagree shows that the difference in performance is not due to artifacts in

the dataset but rather due to the representation power of these models.

To demonstrate the benefit of using FGL on real data, experiments are conducted on

fMRI images. The work uses the knowledge that fMRI images show a spatially smooth

structure where different regions of the brain perform different functions. Previous work [11]

has provided biological reasons for this spatial smoothness, and other works [15, 14, 13] have

sought to make use of these properties of fMRI images.

A deep model using FGL is constructed for brain images using a hierarchical clustering

of resting state fMRI images, using ward clustering for its desirable properties [16]. A

significant improvement in performance is shown when comparing CNNs, FNNs, and the

proposed FGL-based deep network.

These observations pave way for more questions and directions of research. Some of

these directions involve the application of FGL to other domains and other kinds of variable

groupings. On the other hand, it raises questions about the right inductive bias and also

how to attain those inductive biases. We believe that at least for fMRI images, models that

leverage the spatial structure of the brain is a way towards better application of machine

learning to fMRI images.
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