
EVALUATING GREENHOUSE GAS EMISSIONS FROM ILLINOIS AGRICULTURE SYSTEMS 

BY 

GEVAN DEMARCO BEHNKE 

DISSERTATION 

Submitted in partial fulfillment of the requirements  
for the degree of Doctor of Philosophy in Crop Sciences 

in the Graduate College of the  
University of Illinois at Urbana-Champaign, 2019 

Urbana, Illinois 

Doctoral Committee: 

Associate Professor María B. Villamil, Chair 
Professor Emeritus Emerson D. Nafziger 
Associate Professor DoKyoung Lee 
Assistant Professor Cameron M. Pittelkow 



ii 
 

ABSTRACT 

Many Illinois cropping systems rely on nitrogen (N), which is an essential element and usually a 

limiting factor in corn (Zea mays, L.) production; yet N build-up in the soil might lead to nitrate (N-NO3) 

leaching, and release of nitrous oxide (N2O) by denitrification, thus contributing to both water and air 

pollution. Agricultural soil management accounts for much of the total N2O production in the US. Two of 

the most important agricultural practices aimed at improving soil properties and reducing inputs are crop 

rotations and no-tillage, yet relatively few studies have assessed their long-term impacts on crop yields 

and soil greenhouse gas (GHG) emissions. Likewise, the inclusion of cover crops (CCs) has been proposed 

to scavenge surplus soil N, which might lead to a decrease in the substrate needed for N2O production 

from the field and aqueous N losses.  

In chapter 2 of this dissertation, the objective was to determine the influence of tillage and crop 

rotation on soil GHG emissions and yields following 15 years of treatment implementation in a long-term 

cropping systems experiment in Illinois, USA. The experimental design was a split-plot RCBD with crop 

rotation as the main plot: (continuous corn [Zea mays L.] (CCC), corn-soybean [Glycine max (L.) Merr.] 

(CS), continuous soybean (SSS), and corn-soybean-wheat [Triticum aestivum L.] (CSW); with each phase 

of each crop rotation present every year) and tillage as the subplot: chisel tillage (T) and no-tillage (NT). 

Tillage increased the yields of corn and soybean. Tillage and crop rotation had no effect on methane (CH4) 

emissions (p = 0.4738 and p = 0.8494 respectively) and only rotation had an effect on cumulative carbon 

dioxide (CO2) (p = 0.0137). However, their interaction affected cumulative nitrous oxide (N2O) emissions 

significantly (p = 0.0960); N2O emissions from tilled CCC were the greatest at 6.9 kg-N ha-1-yr-1; while 

emissions from NT CCC (4.0 kg-N ha-1-yr-1) were not different than both T CS or NT CS (3.6 and 3.3 kg-N 

ha-1-yr-1, respectively). Utilizing just a CS crop rotation increased corn yields by around 20% while reducing 

N2O emissions by around 35%; soybean yields were 7% greater and N2O emissions were not affected. 

Therefore results from this long-term study indicate that a CS rotation has the ability to increase yields 

and reduce GHG emissions compared to either CCC or SSS alone, yet moving to a CSW rotation did not 

further increase yields or reduce N2O emissions. 

In Chapter 3, the objective was to explore the relationships between the physical and chemical 

properties and GHG emissions of soil, and cash crop yields over a four-year time-period and following 15 

years of treatment implementation in Illinois, USA. The experimental layout was a split-plot arrangement 

involving rotation and tillage treatments in a randomized complete block design with four replications. 

The studied crop rotations were CCC, CS, SSS, and CSW, with each phase being present for every year. 

Again, the tillage options were T and NT. We used an array of multivariate approaches to analyze both of 
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our datasets that included 31 soil properties, GHG emissions (N2O, CO2, and CH4) and cash crop yields. The 

results from our analyses indicate that N2O emissions are associated with a low soil pH, an increased Al 

concentration, the presence of soil nitrate throughout the growing season, an increase in plant available 

water (PAW) and an increased soil C concentration. Likewise, soil CO2 respiration was correlated with low 

pH, elevated Al concentrations, low Ca, increased PAW, higher levels of microbial biomass carbon (MBC), 

and lower water aggregate stability (WAS). Emissions of CH4 were associated with increased levels of MBC. 

Lastly, the yield index (YdI) was correlated with lower levels of soil Ca and available P and lower values of 

WAS. The association between high YdI and lower WAS can be attributed to tillage, as tillage lowers WAS, 

but increases yields in highly productive cropping systems in the Midwest. 

In Chapter 4, the objective was to determine the effect that corn-soybean rotations with different 

CCs, and tillage methods have on GHG emissions and crop yields in Illinois, USA. The experimental design 

was a split-block arrangement of tillage (whole plot treatment, chisel vs. no-till) and CC rotations (subplot 

treatment) in a RCBD with 4 replications with the corn and soybean phases present each year. GHG 

emissions - N2O, CO2, and CH4 – soil available N and yields were sampled from the corn phase of each 

rotation over a period of 4 years (2013-2017). CC rotations included five corn-soybean rotations that 

included different CCs and one that had fallows as control. Our results suggest that CC efficacy in IL is 

associated with winter temperature and precipitation. In two of the years, spring CC growth was poor due 

to unseasonably cold temperatures; however, in two of the other years, weather was favorable and spring 

CC biomass ranged from 2-3 Mg ha-1 from three of the species tested. In years where spring CC biomass 

was recorded, a fivefold reduction in N2O emissions occurred due to significant reductions in soil N-NO3. 

Corn yields were not improved with the utilization of CCs and a yield decrease of 12% occurred in the 

annual ryegrass (Lolium multiflorum Lam.) rotation.  

In Chapter 5, conclusions among the three studies are reviewed and discussed. Combining the 

knowledge gained from these three studies, utilization of a crop rotation system with a cover crop has the 

ability to substantially reduce GHG emissions. Yield benefits were observed at the crop rotation level only; 

however, CC’s (excluding annual ryegrass) did not reduce yields. Tillage also provided a yield increase in 

both studies with no increases in GHG emissions. The knowledge gained through these studies provides 

an insight as to how Illinois cropping systems produce GHG emissions, and more importantly, which 

cropping systems are able to reduce GHG emissions. 
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CHAPTER 1: PREFACE 

Greenhouse gas emissions (GHG) are an important area of recent research and of a particular 

interest of mine. Specifically, agriculturally related GHG emissions are interesting due to their major 

contribution to global emissions and are a link to climate change. The GHG’s included in this dissertation 

are N2O, CO2, and CH4. These gases are emitted from the soil and accumulate in the atmosphere, 

intensifying the greenhouse effect, or the trapping of heat in the lower atmosphere. These GHG’s are 

influential in the warming of the Earth.  

The abundance of these GHG’s are a result of agricultural soil management. In many countries 

around the world, N fertilization is essential for production of enough food to feed its citizens and also to 

use as a global export; this is especially true of corn production in the United States. However, N 

fertilization also comes with consequences; leaching into waterways and N2O emissions occur, which 

threaten global air and water quality. The research included in this dissertation aims to help explain how 

agricultural production in Illinois affects GHG emissions. Agricultural management practices that reduce 

these GHG emissions are especially important to determine. Therefore, I organized three different 

projects (or chapters in the case of this dissertation) that employed several different management 

practices to elucidate their effect on GHG emissions. I also investigated the effect of these management 

practices on yield and other soil parameters as to assess their efficacy in a realistic scope. The cropping 

systems investigated in the following chapters of research include different continuous cropping systems 

and crop rotations with and without cover crops; in addition, the use of conventional tillage compared to 

no-tillage systems were studied.  

My interest in GHG emissions begin quite a few years ago as part of my Master’s research in 

environmental science studying GHG emissions from Miscanthus x giganteus, a bioenergy crop. This 

research taught me how to investigate the effect of agricultural management on one particular crop and 

system: how N rate affects GHG emissions from Miscanthus x giganteus. Using that knowledge I was hired 

in Dr. María Villamil’s lab as a lab technician, specifically due to my expertise in GHG emissions. My first 

project was studying the effects of crop rotation and tillage on GHG emissions; this will be discussed in 

chapters 2 and 3 of this dissertation. Using some of the GHG chambers and my knowledge gained from 

this project I employed a similar GHG setup to a different project and site already in place studying the 

effects of crop rotation, tillage, and cover crop species rotation on GHG emissions.  

The projects included in this dissertation have allowed me to investigate several different 

cropping systems commonly employed in the state of Illinois. Coupling these projects with coursework in 

crop sciences, especially statistical modeling and design have given me the tools needed to publish two 
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of the three chapters in peer-reviewed journals already and chapter 4 will be submitted for publication 

by the time this dissertation is published. This dissertation is a culmination of much of my work spanning 

seven years of research; although much of that time I was employed full-time as a senior research 

specialist in sustainable cropping systems for the University of Illinois in the Crop Sciences Department in 

Dr. María Villamil’s lab. 

 Each chapter of this dissertation was written to stand alone as published material; however, a 

conclusion is included in Chapter 5 to give an overview of my findings as to how agricultural 

management affects GHG emissions in Illinois and some management recommendations.  
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CHAPTER 2: LONG-TERM CROP ROTATION AND TILLAGE EFFECTS ON SOIL GREENHOUSE GAS 

EMISSIONS AND CROP PRODUCTION IN ILLINOIS, USA1 

2.1.  Introduction 

The agricultural sector produces food, fuel, and fiber but is also an important source of 

greenhouse gas (GHG) emissions. Agriculture contributes around 9% of total United States GHG emissions, 

with carbon dioxide (CO2) making up the majority (81%), followed by methane (CH4) (11%) and nitrous 

oxide (N2O) (6%) (EPA, 2016). The global warming potential (GWP) of N2O and CH4 is 298 and 25 times 

greater than that of CO2, respectively. Global warming potential is a measure of the amount of energy one 

kilogram of a certain GHG will absorb over a given time period, usually 100 years, relative to CO2 (EPA, 

2016).  

Agricultural soil management which includes synthetic fertilizer application and use, tillage 

practices, and crop rotation systems accounts for around 80% of total N2O emissions in the U.S. annually 

(EPA, 2016) (Venterea et al., 2011). Nitrous oxide emissions are directly affected by N application rate as 

well as fertilizer source and crop type (Eichner, 1990; FAO, 2001). Likewise, fertilizer application technique 

and timing, use of other chemicals, irrigation, and residual N and C from previous crops and fertilizer all 

affect N2O emissions (Eichner, 1990). Application of N fertilizer stimulates N2O production by providing a 

substrate for microbial N conversion through nitrification and denitrification (Norton, 2008; Venterea et 

al., 2005). Nitrification occurs when ammonium is either added to the soil in the form of fertilizers, as N 

fixation by legumes, or as mineralized soil organic matter (SOM) (Paustian et al., 2016). During this 

microbial process, ammonium is converted to nitrite and eventually to nitrate, yet small quantities can be 

lost as N2O (Snyder et al., 2009). Likewise, in conditions of low soil oxygen, denitrifiers use nitrate as a 

terminal electron acceptor and N2O is an intermediate step in complete denitrification to N2 gas (Aulakh 

et al., 1992; Paustian et al., 2016; Robertson et al., 2007). Since spring fertilizer application in the United 

States Corn Belt (Illinois, Iowa, Indiana, Ohio southern and western Minnesota, and eastern Nebraska) 

occurs when saturating rains are common, the soil may easily become water-logged, promoting large 

denitrification events wherein a large proportion of annual N2O flux can occur over short time scales 

(Venterea et al., 2012).  

                                                           
1 Chapter 2 was published in: 

Behnke G.D., Zuber S.M., Pittelkow C.M., Nafziger E.D., Villamil M.B. (2018) Long-term crop 
rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, 
USA. Agriculture, Ecosystems & Environment 261:62-70. 
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Tillage studies often have mixed results with no-till (NT) or reduced till having less, more, or no 

effect on N2O emissions compared to conventional tillage systems (T) (Rochette et al., 2008; Snyder et al., 

2009; Venterea et al., 2005). Snyder et al. (2009) compared various cropping rotation studies and found 

that continuous corn (Zea mays L.)- (CCC) had higher yields compared to a corn-soybean [Glycine max (L.) 

Merr.]-wheat (Triticum aestivum L.) (CSW) rotation. While CCC resulted in a two to three time’s higher 

N2O emissions, it produced four to five times the food yield in caloric value compared to the CSW rotation. 

Parkin and Kaspar (2006) observed that a corn-soybean (CS) rotation did not differ in N2O emissions 

between T and NT, but  corn in the rotation emitted more N2O than did soybeans. In a meta-analysis by 

Pittelkow et al. (2015) studying the long-term effects of no-till on yield in several agroecosystems, the 

authors found that after 5+ years of no-till, soybean and wheat yields matched that of conventional tillage; 

however, corn yields did not improve over time compared to conventional tillage.  Relatively few studies 

have compared side-by-side crop rotation effects as influenced by tillage, and since both of these practices 

tend to influence soil properties more over time, long-term assessments are needed which allow for soils 

to stabilize. 

Millar et al. (2010) reported that fertilized crops take up less than 50% of the N applied, leaving 

the excess available for loss. Given the established connection between substrate availability and GHG 

emissions, the US Corn Belt tends to be a major source of agricultural GHG emissions (EPA, 2016). The 

large amount of land reserved to growing highly fertilized corn and N-fixing soybeans supplies the N 

substrate needed to emit significant quantities of N2O; on average, 1% of the fertilizer N applied directly 

is emitted as N2O (Bouwman et al., 2002). As commodity prices vary, the land area allocated to soybean 

has increased slowly. However, the rate of no-till adoption around the Corn Belt has decreased  (USDA-

ERS, 2016a; USDA-ERS, 2016b). With mixed results from cropping rotation and tillage studies and the time 

needed to allow for proper system stabilization, more work is needed to understand their effects on GHG 

emissions.  

We hypothesized that crop rotations using less N fertilizer inputs would lower GHG emissions, 

specifically N2O, whereas chisel tillage would increase N2O and CO2 emissions due to enhanced 

mineralization of decomposing residues. Growing corn in a rotation will increase yields due to synergistic 

effects of soybeans and vice-versa.  Hence the objectives of this study were to evaluate the effects of long-

term crop rotations, and tillage practices on GHG emissions and their relation to soil available N and crop 

yields.  

 

 



5 
 

2.2. Materials and Methods 

2.2.1. Site Characterization and Experimental Layout 

This study was conducted at the Northwestern Illinois Agricultural Research and Demonstration 

Center (40°55’50” N, 90°43’38” W), approximately 8 km northwest of Monmouth, IL. The experimental 

plots were initially established beginning in 1996. The mean annual precipitation is approximately 978 

mm and the mean annual temperature is 16 ˚C (ISWS, 2016). Soils at the experimental site primarily 

consisted of Sable silty clay loam (fine-silty, mixed, mesic Typic Endoaquoll) and Muscatune silt loam (fine-

silty, mixed, mesic Aquic Argiudoll); a small area of Osco silt loam (fine-silty, mixed, mesic Typic Argiudoll) 

(Soil-Survey-Staff, 2016). The plot layout consisted of a split-plot arrangement of four rotation levels and 

two tillage levels in a randomized complete block design with four replications. Crop rotations of 

continuous corn (CCC), corn-soybean (CS), corn-soybean-wheat (CSW), soybean-corn (SC), continuous 

soybean (SSS), and wheat-corn-soybean (WCS) were assigned to the main plots, with each phase of each 

rotation (a total of seven main plots) present each year. The two subplot treatments were tillage (T) and 

no-till (NT). The main plots were 22 m long by 12 m wide, with subplots 22 m long by 6 m wide. It is 

important to note that we did not sample the NT pair for the CSW rotation nor the soybean phase of the 

CSW rotation (SWC). Cropping systems used in the analysis included: CCC-NT, no-till continuous corn; CCC-

T, tilled continuous corn; CS-NT, no-till corn of the corn-soybean rotation; CS-T, tilled corn of the corn-

soybean rotation; CSW-T tilled corn of the corn-soybean-wheat rotation; SC-NT, no-till soybean of the 

soybean-corn rotation; SC-T, tilled soybean of the soybean-corn rotation; SSS-NT, no-till continuous 

soybean; SSS-T, tilled continuous soybean; WCS-NT, no-till wheat of the wheat-corn-soybean rotation; 

WCS-T, tilled wheat of the wheat-corn-soybean rotation. 

Following fall harvest, the tilled corn and soybean plots were cultivated using a disk ripper 

operated at a depth of about 35 cm; in the spring a soil finisher was used to prepare the seedbed in tilled 

plots. Wheat plots were tilled using a rototiller in the fall before planting. No-till plots received zero tillage. 

Fertilizer and pest management decisions were made using best management practices according to the 

Illinois Agronomy Handbook (Nafziger, 2009). Application of N fertilizer to both tilled and no-till corn was 

done in the spring, at or before planting, as injected incorporated urea ammonium nitrate (UAN) at rates 

of 246 kg N ha-1 for CCC and 202 kg N ha-1 for CS and CSW. The increased fertilization rate for CCC 

compared to rotated corn was implemented following the Illinois Agronomy Handbook recommendations 

for the area (Nafziger, 2009). The wheat phase of the cropping rotation received 34 and 56 kg-N ha-1 at 

planting and as a spring topdress as UAN, respectively. No N fertilizer was applied to soybean treatments. 

Additional P and K fertilizer was applied in the fall every two years, based on soil test results. Corn plots 
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were planted in April or May in 76-cm rows at a seeding rate of 86 500 ha-1. Soybean plots were planted 

in May in 38-cm rows at a seeding rate of approximately 358 000 ha-1. Wheat plots were planted in late 

September or early October, with seed drilled in 19-cm rows at a rate of about 3.7 x 106 seeds ha-1. Due 

to winter wheat damage during the winter of 2013-14, wheat was replaced by oats [Avena sativa L.] 

planted on 14 April, 2014. Oat yields were similar to wheat yields found in other years, and for purposes 

of this report we will treat the 2014 oat crop as wheat. Yields were harvested using a plot combine 

(Almaco, Nevada, IA) and adjusted to 15.5%, 13%, and 13.5% moisture for corn, soybean, and wheat, 

respectively. Detailed information including dates are summarized in the supplemental information 

section (Appendix A, Table A.1). 

2.2.2. Gas Sampling Procedures 

Soil GHG emissions were taken weekly during a period of 4 growing seasons (2012-2015) following 

the GRACEnet chamber-based trace gas flux measurement protocol (Parkin and Venterea, 2010). 

Beginning in March 2012, 0.031 m2 polyvinyl chloride (PVC) white chamber bases were installed in the 

experimental plots immediately after planting and initial fertilizer application. Two chamber bases were 

used in corn plots: one in-row and one between-row. One chamber was used in each soybean and wheat 

plots. Due to severe weather, we were not able to collect wheat data during 2014 and 2015. The chamber 

tops were also made of white PVC, contained a vent tube, sampling septa, and insulation foam to create 

an air tight seal to the chamber bases. The chamber bases were left in the field for the growing season 

and were removed before harvest. 

 Soil GHG measurements were conducted near noon, when air temperatures were around the 

average for the day. Gas samples were taken by placing the chamber top on the base and extracting 15 

mL using a Precision-Glide ® needle syringe at 0, 10, 20, and 30 minutes. Gas samples were then 

transferred into 10 mL aluminum crimp top vials with 20 mm Pharma-Fix Butyl ® septa. Gas samples were 

analyzed on a gas chromatograph with an electron capture detector and flame ionization detector 

(Shimadzu ® GC 2014 with AOC-5000). Soil GHG fluxes were calculated as the rate of change in gas 

concentration inside the chamber headspace over the 30 minute collection period. 

2.2.3. Soil Sampling and Analyses 

 Two soil cores (0-10 cm depth) were collected from each plot during gas sampling for the 2013-

2015 growing seasons, composited, and then analyzed for available N concentrations: ammonium and 

nitrate (NH4-N and NO3-N). Concentrations of NH4-N and NO3-N from soil extracts (1 M KCl) were 

measured colorimetrically by flow injection analysis with a Lachat Quick-Chem 8000 (Lachat Quickchem 

Analyzer, Lachat Instruments Loveland, CO). In addition, to evaluate long-term treatment effects on soil 
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properties, three soil cores 4.3 cm in diameter were taken in the spring of 2014 for each subplot to 10 cm 

depth with a tractor mounted hydraulic probe (Amity Technology, Fargo, ND). Soil properties were 

determined as follows: bulk density (BD, g cm-3) by the core method (Blake and Hartge, 1986), pH by 

potentiometry (1:1 water and soil ratio) (McLean, 1982), carbon/nitrogen ratio (C/N) by dry combustion 

(Nelson and Sommers, 1996), and texture (% sand, % silt, and % clay) by the hydrometer method (ASTM-

D422, 2007). These soil properties are included in Table 2.1 as a general description of the soils in this 

study. 

2.2.4. Data Analysis 

Greenhouse gas flux measurements were extrapolated to daily GHG  emissions  and in conjunction 

with soil available nitrogen concentrations were grouped into three periods based on sampling date; 

spring (March through May), summer (June through August), and fall (September through November). 

Grouping the dates into three “seasons” allowed us to analyze the significance of seasonality on GHG 

emissions. In addition, grouping the dates allowed us to analyze the soil available nitrogen dynamics 

throughout the growing season. Cumulative GHG emissions were linearly extrapolated to predict fluxes 

for the growing season. Exact number of sampling events is included in the supplemental information 

(Appendix A, Table A.2). Yields were analyzed by cash crop to account for differences in yield levels. Since 

wheat did not have a second rotation, comparisons were not possible at the rotation level. 

Linear mixed models were performed using the GLIMMIX procedure of SAS software version 9.4 

(SAS Institute, Cary, NC). Rotation, tillage, and season were considered fixed variables, while year and 

block were considered random. The factor season was analyzed using a repeated measures approach 

selecting the variance-covariance matrix of the residuals based on the Akaike’s Information Criterion 

(Littell et al., 2006). The repeated measures approach for analyzing methane over seasons did not 

converge with any of the variance covariance matrices available or distributions tested. Thus, methane 

data for each season was analyzed independently. Model residuals were not normally distributed, thus 

GHG emissions, soil variables, and yields were analyzed using a lognormal distribution link function (dist 

= logn) within the model statement in GLIMMIX, with a Kenward-Rogers adjustment to the degrees of 

freedom (ddfm = kr) to account for model complexity and missing data (Gbur et al., 2012). Least square 

means were separated using the lines option of LSMEANS using a Bonferroni adjustment. Statistical model 

and SAS codes are available upon request from the authors. 
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2.3. Results and Discussion 

2.3.1. Temperature, Precipitation and Soil Characteristics 

The mean annual temperature was 10.1˚C and the mean annual precipitation was 858 mm 

between 1989 – 2015 (ISWS, 2016), and the mean maximum and minimum temperatures from March to 

November were 20.4 and 8.9 ˚C, respectively. The precipitation totals for 2012 – 2015 were 825, 913, 

1075, and 1155 cm, respectively (Fig. 2.1). The 2012 growing season experienced well below the historical 

average precipitation during July, which impacted crop progress. If it were not for a heavy precipitation 

event (5.2cm) on August 26th, 2012, the month of August would have had less than 40 mm of precipitation. 

Likewise, the 2013 growing season experienced well below the historical average precipitation during 

June-September, which impacted crop progress. The 2014 and 2015 growing seasons were above average 

for precipitation.   

Surface soil bulk density (BD) (Table 2.1) values were fairly consistent throughout the site and 

across treatments with small differences occurring between tillage and no-till when looking at each 

cropping rotation. Soil pH appeared lower for rotations with more corn. Zuber et al. (2015) conducted an 

in depth analysis of these same soils and attributed the lower pH to the frequency of corn in the rotation. 

The more corn years present in the rotation, the more N fertilizer events occur and ammonia-based N 

fertilizer is known to acidify the soil (Divito et al., 2011; Hickman, 2002; Karlen et al., 1994).  

2.3.2. Crop Yields 

Corn yield during 2012-2015 was affected by crop rotation and tillage, but no interaction was 

detected (Table 2.2). Mean corn yield increased by almost 3 Mg ha-1 for the CS (14.0 Mg ha-1) and CSW 

(14.4 Mg ha-1) rotations compared to the CCC (11.1 Mg ha-1). In a similar study at the same research station 

in Monmouth, IL, Jagadamma et al. (2008) also observed a significant yield advantage for rotated corn 

compared to continuous corn. On highly productive IL soils, Gentry et al. (2013) synthesized that the yield 

gap between rotated corn and continuous corn is related to N availability, corn residue accumulation, 

weather, and their interactions. In this study, since the CCC plots were fertilized at higher N rates and the 

soil C/N ratios were similar, the weather was most likely the reason for the yield gap between rotated 

corn and CCC (Fig. 2). While rotated corn yields were fairly consistent throughout the study (12 Mg ha-1 – 

16 Mg ha-1), CCC yields exhibited greater variability (8 Mg ha-1 – 16 Mg ha-1), with the CCC rotation 

experiencing the largest yield decreases in 2012 and 2013. The 2012 growing season was abnormally hot 

and dry, whereas 2013 was very wet during April and May and then very little precipitation occurred 

during June, July and August (Fig. 1). The temperature and water stresses of these two years likely 

contributed to lower yields for CCC. On productive Midwest soils, it has been reported that rotated corn  
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Figure 2.1. (A) Precipitation (mm) and (B) temperature (˚C) from 2012-2015 and the normal for the 1989-
2015 period. Source: ISWS, 2016. 
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Table 2.1. Soil bulk density (BD, Mg m-3), pH, C/N ratio (carbon to nitrogen ratio, %), and soil texture 
(percent of sand, silt, and clay) of the surface 0-10 cm under each rotation tillage system. Determinations 
were made in the spring of 2014, 17 years after the project was initiated at Monmouth, IL. 

Rotation † Tillage ‡ 
BD  

pH C/N 
Sand Silt Clay 

(Mg m-3) (%) (%) (%) 

CCC 
T 1.32 4.9 12.2 3 72 26 

NT 1.40 5.1 12.4 3 72 26 

CS 
T 1.30 6.0 12.5 3 71 26 

NT 1.33 5.8 12.9 3 72 25 

CSW 
T 1.34 5.9 13.4 3 73 24 

NT 1.31 5.7 12.8 3 73 25 

SSS 
T 1.34 7.3 14.2 2 72 26 

NT 1.32 6.9 13.3 2 73 25 
† CCC, continuous corn; CS, corn-soybean; CSW, corn-soybean-
wheat; SSS continuous soybean. 
‡ T, chisel till; NT, no-till. 

 

Table 2.2. Back-transformed mean values and standard errors (within parentheses) of corn, soybean and 
wheat yields (Mg ha-1) under each rotation and tillage practices taken during the growing seasons of 2012-
2015 from Monmouth, IL. Within a column, different lowercase letters are significant at p ≤ 0.10. 

Rotation †  Tillage ‡ 
Corn  Soybean  Wheat 

(Mg ha-1)   (Mg ha-1)   (Mg ha-1) 
CCC  11.1 (1.1) b         
CS  14.0 (1.1) a         

CSW  14.4 (1.1) a         
  (p ≤ 0.0001)         

SC  
    4.4 (1.1) a     

SSS  
    4.1 (1.1) b     

  
    (p ≤ 0.0001)     

WCS  
        4.3 (1.2)  

                    N/A 
 T 13.6 (1.7) a  4.4 (1.1) a  4.2 (1.2) a 

 NT 12.6 (1.7) b  4.1 (1.1) b  4.5 (1.2) a 
    (p = 0.0192)   (p = 0.0192)   (p = 0.1027) 

† CCC, continuous corn; CS, corn-soybean; CSW, corn-soybean-wheat; SC, soybean-corn; SSS 
continuous soybean; WCS, wheat-corn-soybean. 
‡ T, chisel till; NT, no-till. 
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has a lower risk for yield loss compared to CCC (Al-Kaisi et al., 2015) especially in years with scarce or 

excessive moisture and above-average temperatures (Gentry et al., 2013) due to water and temperature 

stress (Wilhelm and Wortmann, 2004). Results from this study agree with several studies in the Midwest 

that show that significant yield gains are possible for corn when a crop rotation plan is implemented on 

highly productive soils (Al-Kaisi et al., 2015; Daigh et al., 2017; Gentry et al., 2013). 

Figure 2.2. Yield results (Mg ha-1) from cropping systems (CCC-NT, no-till continuous corn rotation ; CCC-
T, tilled continuous corn rotation; CS-NT, no-till corn of the corn-soybean rotation; CS-T, tilled corn of the 
corn-soybean rotation; CSW-T tilled corn of the corn-soybean-wheat rotation; SC-NT, no-till soybean of 
the soybean-corn rotation; SC-T, tilled soybean of the soybean-corn rotation; SSS-NT, no-till continuous 
soybean rotation; SSS-T, tilled continuous soybean rotation; WCS-NT, no-till wheat of the wheat-corn-
soybean rotation; WCS-T, tilled wheat of the wheat-corn-soybean rotation) during 2012-2015 from 
Monmouth, IL. The first letter of the cropping system abbreviation indicates the crop which yield is 
represented by the vertical bar each year. Error bars represent standard errors of treatment means for 
each year of the study. 
 

Corn yields were also significantly greater under tillage (13.6 Mg ha-1) compared to NT (12.6 Mg 

ha-1). Significant yield increases due to tillage in the Midwest are fairly common (Halvorson et al., 2006; 

Parkin and Kaspar, 2006). In a recent study conducted by Daigh et al. (2017) at several sites in the Midwest, 

yield increases due to tillage were correlated to the crop phase of the rotation especially during non-

drought conditions. Decreases in yield by long-term (5+ years) NT in corn systems was observed in a global 

meta-analysis conducted by Pittelkow et al. (2015); reduced yield in NT have been attributed to 

waterlogging and poor establishment, compaction, and nutrient deficiencies (Cid et al., 2014; Halvorson 

et al., 2006; Rusinamhodzi et al., 2011). The results from this study indicate that utilizing chisel tillage to 
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manage corn residue in high organic matter soils will increase yields significantly assuming the added costs 

of tillage are not prohibitive.  

In addition, main effects of crop rotation and tillage were observed on soybean yields (Table 2.2). 

Rotating soybeans with corn (SC) increased yields by around 0.3 Mg ha-1 compared to SSS. Studies 

conducted in the Midwest have also confirmed that rotated soybean experienced significant yield gains 

(Adee et al., 1994; Kelley et al., 2003; Pedersen and Lauer, 2003; Peterson and Varvel, 1989; Seifert et al., 

2017; Sindelar et al., 2015; Wilhelm and Wortmann, 2004). Possible explanations for the yield gap 

between rotated soybeans and SSS have been attributed to diseases (Li et al., 2010; Pedersen and Lauer, 

2003) and changes in soil physical properties, like water aggregate stability and better water infiltration 

in rotated soybeans compared to SSS (Fahad et al., 1982). Increased aggregate stability is related to higher 

soil organic carbon (Kumar et al., 2012; Martens, 2000; Zuber et al., 2015; Zuber et al., 2017) and also is 

related to increases in yields (Nakajima et al., 2016).  At the same study site, Zuber et al. (2015) found that 

soil aggregate stability decreased over time under more years of soybean. Tillage also had a significant 

effect of 0.3 Mg ha-1 on soybean yield. Pittelkow et al. (2015) found that rainfed legumes from humid 

regions did not experience a benefit of NT; likewise, higher latitudes experienced an overall decrease in 

yields; the latitude of this study was around 40˚N. The decrease in yields due to NT was likely the result of 

corn residue buildup in the soil, which could impede seedling emergence (Farooq et al., 2011). However, 

Daigh et al. (2017) observed no yield effect due to tillage in rotated soybean when averaged across several 

Midwestern sites; the authors attributed this to beneficial effects of crop rotation (corn-soybean) on yield 

stability and soil health. Our results indicate a yield gain to soybeans using chisel tillage; the driver of this 

is likely due to the rotated soybean rotation experiencing better emergence in the spring after the 

previous year corn stubble is broken up by tillage. 

 Wheat yields from the WCS rotation were not affected by tillage (continuous wheat was not 

evaluated as a crop rotation in this study) (Table 2.2). Wheat yields varied widely throughout the study; 

2012 had the highest yields (Fig. 2), likely because precipitation and temperature (Fig. 1) were favorable 

during the wheat growing season. Unseasonably warm temperatures in March and April of 2012 allowed 

for favorable growth early in the spring, which is normally associated with lower temperatures. Pittelkow 

et al. (2015) found that in the Midwest, where it is humid and rainfed, wheat was only slightly impacted 

by NT. 

2.3.3. Greenhouse Gas emissions 

 A significant interaction between crop rotation and season (p ≤ 0.0001) on daily N2O emissions 

was detected (Table 2.3). Daily N2O emissions during the spring were higher for the corn rotations 
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compared to the soybean rotations and likewise for the CCC in the summer. The larger emissions during 

the spring from CCC, CS and CSW were likely due to fertilizer application during that period. Several studies 

in the Corn Belt (Drury et al., 2014a; Ginting and Eghball, 2005; Halvorson et al., 2008; Hoben et al., 2011; 

Lehman et al., 2017; Leick and Engels, 2002; Parkin and Kaspar, 2006; Venterea et al., 2005) reported 

peaks of N2O emissions closer to fertilizer application with larger peaks corresponding to greater N rates 

(MacKenzie et al., 1998; Malhi et al., 2006; McSwiney and Robertson, 2005; Omonode et al., 2011; Smith 

et al., 2011). Other studies in the Midwest found that crop rotations lowered N2O emissions compared to  

CCC (Adviento-Borbe et al., 2006; Adviento-Borbe et al., 2007; Jacinthe and Dick, 1997; Omonode et al., 

2011). The main effect of season was also found to influence N2O emissions with more than double the 

daily emissions occurring during the spring compared to the summer and more than 3 times that occurring 

during the fall (Table 2.3). On productive Iowa soils Parkin and Kaspar (2006) observed an effect of season 

on N2O emissions from corn-soybean rotations. Likewise, Hoben et al. (2011) saw between 61% and 95% 

of the cumulative flux occurred during the first 8 weeks after fertilization in Michigan.  The main effect of 

crop rotation seemed to influence daily N2O emissions with the corn phases emitting larger amounts of 

N2O compared to the soybean phases (Table 2.3).  In a study on similar soils in Indiana by Smith et al. 

(2011), the authors described significant seasonal increases in N2O values from corn plots during the 

warmer months and following fertilization; soybean and grass plots were lower compared to corn plots 

throughout the growing season. 

 Similar to N2O, daily CO2 emissions were significantly affected by a rotation effect and CCC had 

greater emissions compared to SSS, but not different from CS, CSW and SC (Table 2.3). On comparable 

soils in Iowa, a seasonal rotation effect was detected by Wilson and Al-Kaisi (2008) with CCC emitting more 

than CS. Likewise, tillage produced significantly greater daily CO2 emissions compared to NT (Table 2.3). 

On northern Corn Belt soils Johnson et al. (2010) found that tillage increased CO2 fluxes seasonally, but 

not annually. A main effect of season was also detected for CO2 emissions; summer CO2 emissions were 

larger compared to fall, but not different from spring emissions. Other studies have observed peaks in CO2 

emissions during the summer months due to warmer soil temperatures from a variety of crop systems 

(Behnke et al., 2012; Drury et al., 2006; Parkin and Kaspar, 2003; Raich and Potter, 1995). While it is true 

that all crop systems emit greater amounts of CO2 during the warmer summer months, SSS has the ability 

to decrease CO2 emissions albeit with a significant yield penalty (Table 2.2). 
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Table 2.3. Back-transformed mean values and standard errors (within parentheses) of daily soil GHG emissions and average soil inorganic N under each rotation 
and tillage practice taken during the growing seasons of 2012-2015 from Monmouth, IL. Within a column, different lowercase letters are significant at p ≤ 0.10. 

Rotation †  Tillage ‡ Season § 
N2O CO2 CH4 NO3-N NH4-N 

(g-N ha-1-day-1) (kg-C ha-1-day-1) (g-C ha-1-day-1) (ppm) (ppm) 
Rotation effect 

CCC   18.5 (1.6)  13.0 (1.4) a N/A 17.4 (1.5)  5.4 (1.4)  
CS   13.9 (1.6)  12.0 (1.3) ab N/A 16.0 (1.5)  4.7 (1.4)  

CSW   15.8 (1.8)  12.7 (1.6) ab N/A - - 
SC   5.7 (1.9)  9.1 (1.4) ab N/A 8.8 (1.7)  3.2 (1.4)  
SSS   4.7 (2.1)  6.1 (1.5) b N/A 11.6 (1.7)  3.0 (1.4)  

   (p ≤ 0.0001) (p = 0.0005) N/A (p ≤ 0.0001) (p ≤ 0.0001) 
Tillage Effect 

 T  10.4 (1.7)  10.7 (1.3) a N/A 13.1 (1.5)  3.9 (1.4)  
 NT  9.9 (1.7)  9.7 (1.4) b N/A 12.9 (1.6)  4.0 (1.4)  
   (p = 0.8128) (p ≤ 0.0001) N/A (p = 0.8756) (p = 0.7477) 

Season Effect 
  Spring 19.3 (2.7)  7.9 (1.7) ab N/A 32.9 (2.1)  6.4 (1.4)  
  Summer 9.3 (1.4)  20.5 (1.3) a N/A 9.3 (1.4)  2.9 (1.4)  

  Fall 5.8 (1.4)  6.6 (1.3) b N/A 7.1 (1.5)  3.4 (1.4)  

   (p = 0.0887) (p = 0.0069) N/A (p = 0.1394) (p ≤ 0.0001) 
Rotation x Season Effect 

CCC 

 Spring 47.9 (2.2) a 11.9 (1.6)  2.2 (1.1)  61.1 (1.8)  14.4 (1.4) a 
 Summer 23.0 (1.5) a 23.6 (1.3)  3.1 (1.1)  12.9 (1.5)  3.1 (1.4) b 
  Fall 5.8 (1.6) ab 7.8 (1.5)   4.1 (1.0)   6.7 (1.6)   3.6 (1.4) b 

CS 

 Spring 37.2 (2.1) a 10.2 (1.6)  0.0 (1.1)  45.8 (1.8)  9.6 (1.4) a 
 Summer 15.2 (1.6) ab 23.4 (1.3)  1.2 (1.1)  11.4 (1.5)  3.2 (1.4) b 
  Fall 4.7 (1.6) b 7.2 (1.4)   3.3 (1.0)   7.8 (1.6)   3.4 (1.4) b 

CSW 

 Spring 40.3 (2.0) a 12.1 (1.6)  4.3 (1.2)  N/A N/A 
 Summer 9.2 (2.1) ab 26.5 (1.7)  4.8 (1.1)  N/A N/A 
  Fall 10.6 (2.4) ab 6.3 (2.4)   -3.6 (1.0)   N/A N/A 

SC 

 Spring 7.3 (3.5) ab 5.8 (2.2)  -2.6 (1.5)  17.7 (2.5)  4.0 (1.4) b 
 Summer 4.6 (1.7) ab 17.8 (1.4)  1.8 (1.1)  6.0 (1.4)  2.7 (1.4) b 
  Fall 5.5 (1.7) ab 7.4 (1.4)   1.8 (1.0)   6.4 (1.5)   3.1 (1.4) b 

SSS 
  Spring 5.1 (5.3) ab 3.5 (2.4)   -1.8 (1.5)   23.7 (2.6)   3.1 (1.4) b 
 Summer 4.8 (1.7) ab 13.9 (1.4)  2.2 (1.1)  8.4 (1.4)  2.6 (1.4) b 
 Fall 4.2 (1.7) b 4.7 (1.4)  3.0 (1.0)  7.8 (1.5)  3.4 (1.4) b 

      (p ≤ 0.0001) (p = 0.9184) - (p = 0.0309) (p ≤ 0.0001) 
† CCC, continuous corn; CS, corn-soybean; CSW, corn-soybean-wheat; SC, soybean-corn; SSS continuous soybean. 
‡ T, chisel till; NT, no-till. 
§ Spring, March-May; Summer, June-August; Fall, September-November. 
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Combined seasonal analysis of methane was not possible due to statistical constraints in SAS, 

so the rotation by season effect was conducted separately by season. This made completion of Table 

2.3 impossible.  

 Over the four year study, there was a significant interaction at the p ≤ 0.10 of crop rotation and 

tillage on cumulative N2O emissions (P = 0.0960) (Table 2.4). The CCC-T treatment had the largest 

emissions compared to all other practices, but it was not different from the CCC-NT system. Cumulative 

N2O emissions from the CCC-NT, CS-T, and CS-NT were not statistically different, but were all larger 

compared to the soybean phases due to N fertilization (Adviento-Borbe et al., 2007; Halvorson et al., 

2008; Parkin and Kaspar, 2006). While the interaction was significant, rotation was highly significant and 

was likely the driver of the interaction; therefore decreasing the number of corn years in a rotation will 

lower the N2O emissions. The corn year of the cropping rotation (CCC and CS) showed an increased 

amount of total in-season N2O emissions compared to the soybean (SC and SSS) or wheat (WCS) phases 

of the rotation (Table 2.4). The larger emissions from the CCC rotation are likely due to the increased N 

fertilizer amounts compared to CS and CSW rotations as other studies have observed (Adviento-Borbe 

et al., 2007; Eichner, 1990; Halvorson et al., 2008; Hoben et al., 2011; McSwiney and Robertson, 2005; 

Smith et al., 2011). While examining the interaction effect of rotation and tillage in Table 2.4, we observe 

that the interaction is driven by the trend in lower measurements of N2O emissions for CCC under NT 

compared to T, yet we did not detect a tillage effect for the other rotations under study. Table 2.4 shows 

that there is a consistent and statistically significant effect of the rotation on N2O emissions. Likewise, 

the SC rotation had larger total in-season N2O emissions compared to the WCS rotation, which may be 

attributed to residual N from the fertilization occurring to corn the previous year (Mosier et al., 2006). 

In contrast, N2O emissions for SSS and WCS were not different. In general, cool temperatures when 

wheat is grown are not conducive to large N2O emissions due to low soil temperatures inhibiting the 

microbial mineralization of N from OM, which can limit the NO3-N substrate needed for nitrification and 

denitrification processes (Aulakh et al., 1992; Johnson et al., 2005; Snyder et al., 2009). However, it 

should be noted that freeze-thaw fluxes during the winter can be significant sources of annual N2O 
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emissions (Johnson et al., 2010; Lebender et al., 2014; Snyder et al., 2009; Wagner-Riddle et al., 2007), 

yet a limitation of this study is that sampling was not conducted frequently enough to capture these 

emissions.  

Table 2.4. Back-transformed mean values and standard errors (within parentheses) of cumulative GHG 
emissions under each rotation and tillage practices taken during the growing seasons of 2012-2015 from 
Monmouth, IL. Within a column, different lowercase letters are significant at p ≤ 0.10. 

Rotation † Tillage ‡  
N2O   CO2   CH4 

(kg-N ha-1-yr-1)   (Mg-C ha-1-yr-1)   (kg-C ha-1-yr-1) 
Rotation Effect 

CCC  5.2 (1.1)   3.8 (1.2) a  0.2 (1.7)  

CS  3.4 (1.1)   3.7 (1.2) ab  0.2 (1.7)  

SC  0.9 (1.1)   2.8 (1.2) abc  0.2 (1.7)  

SSS  0.8 (1.1)   2.4 (1.2) bc  0.3 (1.7)  

WCS  0.5 (1.2)   2.3 (1.2) c  0.2 (1.8)  
 

 (p ≤ 0.0001)  (p = 0.0137)  (p = 0.8494) 
Tillage Effect  

T 1.4 (1.07)   2.9 (1.19)   0.2 (1.64)  
 

NT 1.5 (1.07)   3.0 (1.19)   0.3 (1.62)  

  (p = 0.4067)  (p = 0.3830)  (p = 0.4738) 
Rotation x Tillage Effect 

CCC T 6.9 (1.1) a  4.2 (1.2)   0.2 (1.7)  

CCC NT 4.0 (1.1) ab  3.5 (1.2)   0.2 (1.7)  

CS T 3.6 (1.1) b  3.6 (1.2)   0.3 (1.8)  

CS NT 3.3 (1.1) b  3.9 (1.2)   0.2 (1.8)  

SC T 0.8 (1.1) c  2.4 (1.2)   0.2 (1.8)  

SC NT 1.0 (1.1) c  2.3 (1.2)   0.4 (1.9)  

SSS T 0.9 (1.1) c  3.2 (1.2)   0.3 (1.8)  

SSS NT 0.8 (1.2) c  2.7 (1.2)   0.3 (1.8)  

WCS T 0.5 (1.2) c  2.2 (1.2)   0.2 (2.1)  

WCS NT 0.5 (1.2) c  2.4 (1.2)   0.2 (1.9)  

    (p = 0.0960)   (p = 0.1110)   (p = 0.9750) 
† CCC, continuous corn; CS, corn-soybean; SC, soybean-corn; SSS continuous soybean; WCS, 
wheat-corn-soybean. 
‡ T, chisel till; NT, no-till. 

 Similar to N2O, cumulative CO2 emissions were significantly influenced by crop rotation (Table 

2.4). Cumulative CO2 emissions were largest for CCC, CS, and SC, but only the CCC rotation was 

statistically greater than SSS and WCS, while CS was statistically greater than WCS (Table 2.4). 

Cumulative CO2 emissions were similar to the values reported from northern Corn Belt soils (Drury et 
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al., 2006; Johnson et al., 2010); similar to this study, both groups did not observe an effect of tillage. 

Wilson and Al-Kaisi (2008) also described similar values and also an effect of rotation on annual CO2 

emissions; however, in their study on similar soils in Iowa, they found that CCC emitted more CO2 

compared to CS. Greater cumulative in-season CO2 emissions from CCC in their study were attributed 

to greater residue amounts.  

2.3.4. Soil Inorganic Nitrogen 

 A three way interaction for soil NO3-N concentrations over the growing season was observed 

between crop rotation, tillage, and season (Table 2.5). Higher concentrations of soil NO3-N occurred in 

the corn and soybean plots in the spring compared to the fall. The greater concentrations of soil NO3-N 

from the corn rotations during the spring can be explained by the spring application of N fertilizer, then 

decreasing throughout the growing season as a result of plant uptake, denitrification, and leaching 

below sampling depth (Drury et al., 2006). Peaks in NO3-N were also detected during spring in the 

soybean plots (Table 2.5) and is most likely due to breakdown of plant residues (Baggs et al., 2000) and 

possibly biological N fixation (Baggs et al., 2000; Tortosa et al., 2015).  Interestingly, our results align 

with those from other studies showing that peaks in soil NO3-N do not necessarily correspond to large 

fluxes of N2O (Adviento-Borbe et al., 2007; Amos et al., 2005). While high soil NO3-N concentrations may 

not automatically trigger N2O emissions in this system, prolonged periods of high soil NO3-N would likely 

pose a problem for N leaching losses owing to downward movement of mobile NO3-N into tile drainage 

lines. This usually occurs in the spring when soils are at their highest N content due to fertilization and 

when soils are most saturated due to the frequent rain (Gentry et al., 2014). Nitrate loss in the Midwest 

is estimated at between 3.8 to 21 kg-N ha-1-ya-1 (David et al., 2009). Christianson and Harmel (2015) 

observed that on average 20% of the N applied to corn is lost in drainage. The three way interaction was 

not evident for NH4-N; however, a rotation by season effect was observed (Table 2.3). The interaction 

was only significant for NH4-N between CCC and CS during the spring compared to all other rotation by 

season pairs. This can be explained by the N fertilization input in the form of injected UAN contributing  

to the high soil NH4-N values during spring. In contrast, the soybean rotations had similar NH4-N 

concentrations throughout the growing season.  
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Table 2.5. Back-transformed mean values and standard errors (within parentheses) of soil inorganic N 
under each rotation and tillage practices taken during the growing seasons of 2012-2015 from 
Monmouth, IL. Values indicated are back-transformed averages. Values in parentheses () are standard 
errors. Within a column, different lowercase letters are significant at P ≤ 0.10. 

Rotation Tillage Season NO3-N   NH4-N 
(ppm)   (ppm) 

Rotation x Tillage x Season Effect 

CCC 

T Spring 64.3 (1.8) a   14.6 (1.4)   
T Summer 12.9 (1.5) abc  3.5 (1.4)  
T Fall 5.4 (1.6) bc  4.2 (1.5)  

NT Spring 58.0 (1.8) abc  14.2 (1.4)  
NT Summer 13.0 (1.5) abc  2.7 (1.4)  
NT Fall 8.2 (1.6) abc  3.2 (1.5)  

CS 

T Spring 61.2 (1.9) ab   9.7 (1.4)   
T Summer 11.7 (1.5) abc  3.2 (1.4)  
T Fall 7.8 (1.7) abc  3.3 (1.5)  

NT Spring 34.3 (1.8) abc  9.4 (1.4)  
NT Summer 11.2 (1.5) abc  3.3 (1.4)  
NT Fall 7.8 (1.5) abc  3.5 (1.5)  

SC 

T Spring 16.2 (2.6) abc   3.7 (1.5)   
T Summer 6.0 (1.5) bc  2.6 (1.4)  
T Fall 5.4 (1.5) c  3.3 (1.5)  

NT Spring 19.3 (2.6) abc  4.3 (1.5)  
NT Summer 5.9 (1.4) bc  2.7 (1.4)  
NT Fall 7.6 (1.5) abc  2.8 (1.5)  

SSS 

T Spring 19.9 (2.8) abc   2.8 (1.5)   
T Summer 7.6 (1.5) abc  2.5 (1.4)  
T Fall 10.4 (1.5) abc  3.7 (1.5)  

NT Spring 28.2 (2.5) abc  3.4 (1.5)  
NT Summer 9.2 (1.4) abc  2.7 (1.4)  
NT Fall 5.9 (1.5) bc  3.1 (1.5)  

      (p = 0.0491)   (p = 0.9776) 
† CCC, continuous corn; CS, corn-soybean; SC, soybean-corn; SSS continuous 
soybean. 
‡ T, chisel till; NT, no-till. 
§ Spring, March-May; Summer, June-August; Fall, September-November. 

 

 Throughout approximately 20-30% of the US Midwest, corn is grown after corn which poses 

significant risks for growers. The risks include lower yields compared to rotated corn (Al-Kaisi et al., 

2015; Daigh et al., 2017; Gentry et al., 2013) and significant air and water pollution due to greater 
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fertilizer inputs necessary for growers to obtain similar yields compared to rotated corn (Zhao et al., 

2016). However, the additional fertilizer can be lost as N2O or leached as aqueous NO3 to tile lines. Based 

on the results of our study and agreeing with other studies, utilizing a crop rotation can be an effective 

strategy to mitigate GHG emissions, especially N2O (Adviento-Borbe et al., 2007; Eichner, 1990; 

Halvorson et al., 2008; Hoben et al., 2011; McSwiney and Robertson, 2005; Smith et al., 2011). 

2.4. Conclusions 

This study was conducted in Illinois on highly productive soils aiming to investigate the effects 

of crop rotation and tillage on crop yields, GHG emissions, and soil available N. Results from this study 

indicated that yields of rotated corn were significantly greater and yields seemed to be more stabilized 

during suboptimal conditions. Soybean yields were also significantly greater when grown in rotation 

compared to a monoculture. The benefit of chisel tillage to corn and soybean yields in high organic 

matter and high residue systems was significant and an increase in N2O and CO2 emissions was not 

observed in this study. In addition, growing corn in a rotation has the ability to significantly lower 

cumulative N2O emissions by nearly 2 kg-N ha-1-yr-1. Cumulative N2O emissions from rotated soybeans 

were also not different from SSS even though the corn phase of the CS rotation received N fertilizer. 

Therefore, shifting from a CCC rotation to a CS or CSW rotation will lower N2O and CO2 emissions, while 

also increasing yields during the corn and soybean phases of the rotation. The results of this study will 

add valuable information to the impact of long term agricultural management practices on GHG 

emissions in the US Corn Belt. 
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CHAPTER 3: EXPLORING THE RELATIONSHIPS BETWEEN GREENHOUSE GAS EMISSIONS, YIELDS, AND 

SOIL PROPERTIES IN CROPPING SYSTEMS2 

3.1. Introduction 

The Midwestern United States (US) is regarded as having some of the most productive lands in 

the world; deep and dark Mollisols cover over half of the state of Illinois (Dunn et al., 2016). Accordingly, 

Illinois places in the top two states for corn (Zea mays L.) and soybean [Glycine max (L). Merr.] 

production, with nearly 5 million ha of corn planted and 4 million ha of soybean planted each year 

(USDA-NASS, 2018). Due to a large amount of production expected to feed a growing global population, 

significant inputs of N and P are added each year in order to achieve maximum productivity. Specifically, 

in 2016, 954,400 tons of N and 446,350 tons of P were applied to 98% and 86% of the planted corn area, 

respectively (USDA-NASS, 2018). This demand for high yield does not come without consequences; 

agriculture contributes around 9% of total US greenhouse gas (GHG) emissions. Of this 9%, carbon 

dioxide (CO2) makes up the majority (81%), followed by methane (CH4) (11%) and then nitrous oxide 

(N2O) (6%) (EPA, 2016). In addition to gaseous losses, agricultural land is deteriorated each year due to 

erosion, flooding, mining, urban development, and other sensitive agricultural practices; these 

destructive consequences lead to soil contamination and have an overall undesirable effect on the soil 

quality (FAO, 2015). Therefore, the protection of fertile soil is critical to human welfare (Pimentel and 

Burgess, 2013). 

Soil management is critical both for productivity and to limit environmental degradation. 

Agricultural soil management includes fertilizer use, agrochemicals, tillage practices, and crop rotation 

systems. These management decisions influence agricultural N2O emissions which constitute 

approximately 80% of the total annual N2O emissions in the US (EPA, 2016). The global warming 

potentials (GWP) of N2O and CH4 are 298 and 25 times greater than that of CO2, respectively. Global 

warming potential is a measure of the amount of energy that one kilogram of a certain GHG will absorb 

over a given time period, usually 100 years, relative to CO2 (EPA, 2016). Nitrous oxide emissions are 

affected by the N application rate, fertilizer source, application technique and timing, use of other 

                                                           
2 Chapter 3 was published in: 

Behnke G.D., Pittelkow C.M., Nafziger E.D., Villamil M.B. (2018) Exploring the Relationships 
between Greenhouse Gas Emissions, Yields, and Soil Properties in Cropping Systems. 
Agriculture 8:62. 
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chemicals, irrigation, crop type, and residual N and C from previous crops and fertilizers (Eichner, 1990; 

FAO, 2001; Venterea et al., 2011). Nitrogen added to the system through fertilizers, other 

agrochemicals, or residue decomposition stimulates N2O production by providing a substrate for 

microbial N conversion through nitrification and 

denitrification (Norton, 2008; Venterea et al., 2005). Nitrification occurs when ammonium is added to 

the soil through either fertilizers, N fixation by legumes, or mineralized soil organic matter (SOM) 

(Paustian et al., 2016). Microbial transformations cause the ammonium to be converted to nitrite and 

eventually to nitrate, though small quantities can be lost as N2O (Snyder et al., 2009). Similarly, low soil 

oxygen conditions lead to microbial denitrification as denitrifiers use nitrate as a terminal electron 

acceptor, and N2O is an intermediate step in complete denitrification to N2 gas (Aulakh et al., 1992; 

Paustian et al., 2016; Robertson et al., 2007). Throughout the US Corn Belt (Illinois, Iowa, Indiana, Ohio, 

Southern and Western Minnesota, and Eastern Nebraska), spring fertilization application is common. 

However, events involving saturating rain to flooding routinely occur during this time as well, so water-

logging of the soil ensues, which promotes large denitrification events due to low soil oxygen 

concentrations, wherein a large proportion of annual N2O flux can occur over a short time scale, ranging 

from hours to weeks (Venterea et al., 2012). 

The fertilization of crops is inherently leaky; many take up less than 50% of the N applied, leaving 

the N that is not stored in the soil subject to loss (Millar et al., 2010). Due to the excess N in the system 

and the connection between this N and GHG emissions, the US Corn Belt tends to be a major source of 

agricultural GHG emissions (EPA, 2016). Greater N2O emissions have been reported in continuous corn 

operations compared to corn in rotation, due to increased fertilizer input which is common in 

continuous corn operations. In addition, continuous corn operations return greater amounts of residue 

to the soil compared to rotated corn and this increased amount of C substrate allows for greater 

microbial decomposition and increased denitrification (Behnke et al., 2018b; McSwiney and Robertson, 

2005; Omonode et al., 2011; Snyder et al., 2009). However tillage studies have been less conclusive; no-

till (NT) or reduced till can have less, more, or no effect on N2O emissions compared to conventional 

tillage systems (T) (Rochette et al., 2008; Snyder et al., 2009; Venterea et al., 2005). Two common 

agricultural practices aimed at improving soil properties are crop rotations and no-tillage systems. These 

management practices directly influence the soil organic carbon (SOC) content by affecting the quantity, 

quality, and rate of crop residue decomposition returned to the system; SOC is an indicator of soil health 

and quality (Varvel, 1994; West and Post, 2002). The benefits of SOC are an increase in nutrient 
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availability, an increased cation exchange capacity (CEC), an improved water holding capacity, and a 

lowered bulk density (Varvel, 1994; West and Post, 2002).  

 Despite the benefits to SOC under no-till systems, corn yields in the Midwest tend to be greater 

when a tillage regime is used compared to a no-till regime (Behnke et al., 2018b; Halvorson et al., 2006; 

Jagadamma et al., 2008; Parkin and Venterea, 2010). In a recent study conducted by Daigh et al. (2018) 

at several sites in the Midwest, yield increases due to tillage were correlated with the crop phase of the 

rotation, especially during non-drought conditions. Greater decreases in yield with long-term (5+ years) 

NT in corn systems were observed in a global meta-analysis conducted by Pittelkow et al. (2015); the 

reduced yield with NT systems has been attributed to waterlogging, poor establishment, compaction, 

and nutrient deficiencies (Cid et al., 2014; Halvorson et al., 2006; Rusinamhodzi et al., 2011).  

Just as tillage has been shown to increase yields in the Midwest, crop rotation has been well 

documented to increase yields in both corn and soybean years (Adee et al., 1994; Al-Kaisi et al., 2015; 

Behnke et al., 2018b; Daigh et al., 2018; Gentry et al., 2013; Kelley et al., 2003; Pedersen and Lauer, 

2003; Peterson and Varvel, 1989; Seifert et al., 2017). However, some soil properties, such as SOC, have 

been shown to increase with more years of growing corn due to the larger residue return from corn 

back to the soil system (Havlin et al., 1990; Jagadamma et al., 2007; Jagadamma et al., 2008; Studdert, 

2000; Varvel, 1994; Varvel and Wilhelm, 2010). The increases in SOC can also be related to increased 

levels of N and P (Franzluebbers et al., 1994; Power et al., 1998). The intricate interactions of crop 

rotations influence the soil environment through the quantity and quality of residue decomposition. 

Crop rotation decreases weed and insect pest pressure and also increases the residue quality by 

improving the retention of N in microbial biomass (McDaniel et al., 2014). The inclusion of crops with 

high C/N ratios in their residue, like corn and wheat (Triticum aestivum L.), combined with NT has been 

found to increase SOC, TN, and aggregate stability (Benjamin et al., 2010; Zuber et al., 2015).  

In Behnke et al. (2018b), a study published previously using some of the data that is presented 

subsequently in the current study, it was found that tillage increased the yields of corn and soybean. 

Likewise, utilizing a corn-soybean rotation (CS) increased corn yields by 20% while reducing N2O 

emissions by nearly 35%; soybean yields were 7% greater with no reduction in N2O emissions. The 

authors found that a CS rotation can increase yields and reduce GHG emissions compared to continuous 

corn or continuous soybean systems alone. Furthermore, moving to a corn-soybean-wheat rotation did 

not further increase yields or reduce N2O emissions. This study highlights how management decisions 

can affect soil GHG emissions and crop production. As a result, the interactions between several soil 

properties, GHG emissions and yields need to be further evaluated. Several studies have included soil 
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properties related to tillage and crop rotation practices, but few have taken into account GHG emissions; 

even fewer have been conducted on a long-term scale (15+ years). In order to understand the dynamic 

relationships between these variables, a multivariate statistical analysis on a large dataset is urgently 

needed. Thus, our goal for this project was to elucidate the relationships between GHG emissions, soil 

properties, and crop yields in typical cropping systems in Illinois. 

3.2. Materials and Methods 

3.2.1. Site Characterization and Experimental Layout 

This study was established in 1996 at the Northwestern Illinois Agricultural Research and 

Demonstration Center (40°55′50″ N, 90°43′38″ W), approximately 8 km northwest of Monmouth, IL. 

The mean annual precipitation in this area is approximately 978 mm and the mean annual temperature 

is 16 °C (ISWS, 2018). Soils at the experimental site were predominantly comprised of Sable silty clay 

loam (fine-silty, mixed, mesic Typic Endoaquoll) and Muscatune silt loam (fine-silty, mixed, mesic Aquic 

Argiudoll). In addition, the plots contained a small area of Osco silt loam (fine-silty, mixed, mesic Typic 

Argiudoll) (Soil-Survey-Staff, 2018). The plot layout consisted of a split-plot arrangement of four rotation 

levels and two tillage levels in a randomized complete block design with four replications. Crop rotations 

of continuous corn (CCC), corn-soybean (CS), corn-soybean-wheat (CSW), soybean-corn (SC), soybean-

wheat-corn (SWC), continuous soybean (SSS), and wheat-corn-soybean (WCS) were assigned to the 

main plots, with each phase of each rotation (a total of seven main plots) being present during each 

year. The two subplot treatments were tillage (T) and no-till (NT). The main plots were 22 m long by 12 

m wide, with subplots being 22 m long by 6 m wide. It is important to note that we did not sample the 

NT pair for the CSW rotation, nor the soybean phase of the CSW rotation (SWC) for greenhouse gas 

(GHG) emissions; however, soil samples and yields were taken in those plots. The first letter of the 

cropping system abbreviation indicates the crop for which a property is being reported. The cropping 

systems used in the analysis included no-till continuous corn (CCC-NT); tilled continuous corn (CCC-T); 

no-till corn of the corn-soybean rotation (CS-NT); tilled corn of the corn-soybean rotation (CS-T); no-till 

corn of the corn-soybean-wheat rotation (CSW-NT); tilled corn of the corn-soybean-wheat rotation 

(CSW-T); no-till soybean of the soybean-corn rotation (SC-NT); tilled soybean of the soybean-corn 

rotation (SC-T); tilled soybean-wheat-corn (SWC-T); no-till soybean-wheat-corn (SWC-NT); no-till 

continuous soybean (SSS-NT); tilled continuous soybean (SSS-T); no-till wheat of the wheat-corn-

soybean rotation (WCS-NT); and tilled wheat of the wheat-corn-soybean rotation (WCS-T). 

Following fall harvest, the tilled corn and soybean plots were cultivated using a disk ripper 

operated at a depth of about 35 cm. In the spring, a soil finisher was used to prepare the seedbed in 
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tilled plots. Wheat plots were tilled using a rototiller in the fall before planting. No-till plots received 

zero tillage. Fertilizer and pest management decisions were made using best management practices 

according to the Illinois Agronomy Handbook (Nafziger, 2009). Application of N fertilizer to both tilled 

and no-till corn was done in the spring, at or before the time of planting, as injected incorporated urea 

ammonium nitrate (UAN), at rates of 246 kg-N ha−1 for CCC and 202 kg-N ha−1 for CS and CSW. The 

increased fertilization rate for CCC compared to rotated corn was implemented following the Illinois 

Agronomy Handbook recommendations for the area (Nafziger, 2009)]. The wheat phase of the cropping 

rotation received 34 kg-N ha−1 at planting and 56 kg-N ha−1 as a spring topdress of UAN. No N fertilizer 

was applied to soybean treatments. Additional P and K fertilizer were applied in the fall every two years, 

based on soil test results. Corn plots were planted in April or May in 76-cm rows at a seeding rate of 

86,500 ha−1. Soybean plots were planted in May in 38-cm rows at a seeding rate of approximately 

358,000 ha−1. Wheat plots were planted in late September or early October, with seeds drilled in 19-cm 

rows at a rate of about 3.7 × 106 seeds ha−1. Due to winter wheat damage during the winter of 2013–

14, wheat was replaced by oats [Avena sativa L.] planted on 14 April 2014. Oat yields were similar to 

wheat yields found in other years, and for the purpose of this report, we will treat the 2014 oat crop as 

wheat. Yields were harvested using a plot combine (Almaco, Nevada, IA, USA) and adjusted to 15.5%, 

13%, and 13.5% moisture levels for corn, soybean, and wheat, respectively. Detailed information, 

including dates, is summarized in the Appendix B (Table B.1). 

3.2.2. Gas Sampling Procedures 

Soil GHG emissions were taken weekly over a period of 4 growing seasons (2012–2015) 

following the GRACEnet chamber-based trace gas flux measurement protocol (Parkin and Venterea, 

2010). Beginning in March 2012, 0.031 m2 polyvinyl chloride (PVC) white chamber bases were installed 

in the experimental plots immediately after planting and initial fertilizer application. Two chamber bases 

were used in corn plots: one in-row and one between-row. One chamber was used for each of the 

soybean and wheat plots. Soil CO2 emissions were used to represent soil respiration. Due to severe 

weather, we were not able to collect wheat data in 2014. The chamber tops were also made of white 

PVC, and contained a vent tube, sampling septa, and insulation foam to create an airtight seal to the 

chamber bases. The chamber bases were left in the field for the growing season and were removed 

before harvest. 

Soil GHG measurements were conducted near noon when air temperatures were around the 

average for the day. Gas samples were taken by placing the chamber top on the base and extracting 15 

mL using a Precision-Glide ® needle syringe at 0, 10, 20, and 30 min. Gas samples were then transferred 
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into 10 mL aluminum crimp top vials with 20 mm Pharma-Fix Butyl® septa. Gas samples were analyzed 

on a gas chromatograph with an electron capture detector and flame ionization detector (Shimadzu® 

GC 2014 with AOC-5000). Soil GHG fluxes were calculated as the rate of change in gas concentration 

inside the chamber headspace over the 30 minute collection period. The number of sampling events by 

year is included in the supplemental information Appendix B (Table B.2). 

3.2.3. Soil Sampling and Analyses 

Two soil cores (0–10 cm depth) were collected from each plot and each sampling event during 

gas sampling for the 2013–2015 growing seasons (complete list found in Appendix B Table B.2), 

composited, and then analyzed for available N concentrations in ammonium and nitrate (NH4–N and 

NO3–N). Concentrations of NH4–N and NO3–N from soil extracts (1 M KCl) were measured 

colorimetrically by flow injection analysis with a Lachat Quick-Chem 8000 (Lachat Quickchem Analyzer, 

Lachat Instruments Loveland, CO, USA). The concentrations of NH4–N and NO3–N were used to calculate 

the soil nitrogen intensity throughout the growing season, following the protocol in (Venterea et al., 

2011); this will be discussed later. In addition, to evaluate long-term treatment effects on soil properties, 

three soil cores, 4.3 cm in diameter, were taken in May of 2014 for each subplot to a depth of 20 cm 

with a tractor-mounted hydraulic probe (Amity Technology, Fargo, ND, USA). Soil cores were cut to 0–

10 and 10–20 cm depths and stored refrigerated at 4 °C in plastic bags until analysis. Soil samples from 

depths of 0–10 and 10–20 cm were combined in this study. Soil samples were air-dried, ground, and 

sieved through a 2-mm sieve, and the three subsamples from each plot were composited to provide 

one sample per plot for the remainder of the soil analyses. The soil physical properties measured 

included soil texture (% sand, % silt, and % clay) by the hydrometer method (ASTM-D422, 2007); soil 

moisture (Ho, %) at each NO3 and NH4 soil sampling event (determined gravimetrically) (Carter, 1993); 

permanent wilting points (PWP, cm3 cm−3) (determined from separate soil cores, 4.8 cm in diameter), 

and plant available water (PAW, cm3 cm−3) (measured using a Decagon WP4C device (Decagon Devices, 

Inc., Pullman, WA, USA) following Basche et al. (2016b)). Likewise, soil bulk density (Bd, g cm−3) was 

determined for each subsample using the core method (Blake and Hartge, 1986). Lastly, three 

subsamples from the 1–2-mm soil fraction were used to determine the water aggregate stability (WAS) 

with an Eijkelkamp wet sieving apparatus (Eijkelkamp Agrisearch Equipment, Giesbeek, The 

Netherlands), following Kemper and Rosenau (1986). The microbial biomasses of C (MBC, µg g−1) and N 

(MBN, µg g−1) were analyzed on a Shimadzu TOC-L and TNM-L analyzer (Shimadzu Corporation, Kyoto, 

Japan), following the modified chloroform fumigation extraction protocol for air-dried soils described 

in Zuber et al. (2017). Furthermore, soil macronutrients included soil ammonia intensity (NH4, mg-N 
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kg−1day−1 during the growing season), soil nitrate intensity (NO3, mg-N kg−1day−1 during the growing 

season), and total soil nitrogen intensity (TIN, mg-N kg−1day−1 during the growing season), which was 

determined by trapezoidal integration of soil concentration over time (Venterea et al., 2011) —NH4 and 

NO3 separately and the sum of the two for TIN. 

Air-dried soil samples were sent to a commercial laboratory for the determination of pH, CEC, 

SOM, C, N, C/N, Pa, K, S, Ca, Mg, Na, B, Fe, Mn, Cu, Zn, and Al (Brookside Laboratories, Inc., New Bremen, 

OH, USA). Soil pH was analyzed using potentiometry (1:1 water and soil ratio) (McLean, 1982); cation 

exchange capacity (CEC, cmol kg−1) was determined by the summation method of exchangeable cations 

(Ca, Mg, K, Na, H) (Sumner and Miller, 1996). The quantities of soil organic matter (SOM, %), carbon (C, 

%), nitrogen (N, %), and the carbon/nitrogen ratio (C/N) were analyzed using dry combustion 

(McGeehan and Naylor, 1988; Nelson and Sommers, 1996). Available phosphorus (Pa, mg kg−1) was 

measured through Bray I extraction (Bray and Kurtz, 1945) while potassium (K, mg kg−1), sulfur (S, mg 

kg−1), calcium (Ca, mg kg−1), magnesium (Mg, mg kg−1), sodium (Na, mg kg−1), boron (B, mg kg−1), iron 

(Fe, mg kg−1), manganese (Mn, mg kg−1), copper (Cu, mg kg−1), zinc (Zn, mg kg−1), and aluminum (Al, mg 

kg−1) concentrations were determined following Mehlich III extraction (Mehlich, 1984) and further 

analysis was conducted by inductively coupled plasma (ICP).  

3.2.4 Data Analysis 

The experiment aimed to test the relationships between GHG emissions, soil properties, and 

crop yields following the effects of cropping rotation and tillage that have occurred since 1996. 

Cumulative GHG emissions (N2O, CO2, and CH4) were linearly extrapolated to predict fluxes for the 

growing season. The exact number of sampling events is included in Appendix B (Table B.2). A detailed 

description of the cumulative GHG calculations and other information is included in a previous 

publication (Behnke et al., 2018b). Yields were standardized by crop to account for differences in yield 

levels, and values were normalized to a mean of 0 and standard deviation of 1. Therefore, the variable 

yield index (YdI) is unitless. The number of observations included in the original dataset before averaging 

by plot is included in Appendix B (Table B.3). The inclusion of both tables (Appendix B Tables B.1 and 

B.2) shows which variables were present throughout the growing season and which variables we 

sampled in the spring of 2014. 

Two subsets of the data, analyzing GHG and YdI, were created to extract maximum information 

knowing that our software of preference to conduct multivariate analyses automatically removes 

observations with missing data (SAS 9.4, SAS Institute Inc., Cary, NC, USA, 2012). Thus, the first data set 

for GHG emissions included all 32 variables (including YdI), rendering a total of 32 observations with no 
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missing data. A second data set for GHG emissions was comprised of 56 observations on 23 measured 

variables, excluding sand, silt, clay, Ho, PWP, PAW, NH4, NO3, and TIN. Similarly, the first data set for YdI 

included all 34 variables (including GHG emissions) rendering a total of 32 observations with no missing 

data. A second data set for YdI was comprised of 52 observations on 25 measured variables, excluding 

sand, silt, clay, Ho, PWP, PAW, NH4, NO3, and TIN. 

The GHG, YdI, and soil variables measured had contrasting variances and units of measurement. 

The means and standard errors of the mean values for each variable were determined using the means 

procedure in SAS software (SAS 9.4, SAS Institute Inc., Cary, NC, USA). The mean and standard error 

values for each crop rotation, tillage, and crop rotation by tillage combination are included in Appendix 

B (Tables B4–B8). To avoid having the variable with the highest variance dominate the results, all 

multivariate analyses were conducted on standardized data (mean = 0, standard deviation = 1) obtained 

with the STANDARD procedure in SAS. Pearson’s correlation coefficients were calculated using the CORR 

procedure in SAS to explore correlations between GHG, YdI, and soil variables (Appendix B Table B.9). 

Correlations between variable pairs were found to be ≥|0.25| (moderate to high range) which, in most 

cases, indicated the need to deploy a data reduction technique such as principal component analysis 

(PCA) to avoid problems of multicollinearity by compiling the information into a new smaller set of 

uncorrelated variables. We performed a PCA using the PRINCOMP procedure in SAS. PCA creates new 

uncorrelated, orthogonal variables called principal components (PCs) that are linear combinations of 

the original raw variables that maximize the variability explained by the set of variables (Johnson and 

Wichern, 2002). The PCA of the available variables in the data set determines coefficients in a new linear 

design (Yeater and Villamil, 2017). The PCA technique uses the relationships between the original 

variables to develop a smaller set of components that empirically summarizes the correlations between 

the variables (Tabachnick and Fidell, 2013). The new reduced set of variables or PCs contains almost as 

much information as the original variables but reveals relationships that would not typically result. 

Eigenvalues represent a special set of scalars associated with a linear system of equations; eigenvalues 

are comprised of all the variables tested and each explains a percentage of the variability (Johnson and 

Wichern, 2002). The reorganized and uncorrelated PCs contain loading factors or eigenvectors based 

on the contribution of variability and correlation to the PC axis (Yeater and Villamil, 2017). We extracted 

PC scores with eigenvalues ≥1 that explained an important proportion of the total variability of each 

data set; these new variables are hereby called PC1 to PC8. Eight PCs were extracted from the first GHG 

dataset and seven PCs from the second GHG data set, as previously described. Eight PCs were extracted 

from both of the YdI data sets, as previously described. The PCA thus reduced the dimensionality of the 
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first GHG dataset from 32 (correlated) variables to eight (uncorrelated) PCs (PC1 to PC8), and from 23 

variables to seven uncorrelated linear combinations (PC1 to PC7) with limited loss of information in both 

data sets. Likewise, the PCA reduced the dimensionality of the first YdI dataset from 34 (correlated) 

variables to eight (uncorrelated) PCs (PC1 to PC8); and from 25 variables to eight uncorrelated linear 

combinations (PC1 to PC8), again with limited loss of information in both data sets. Soil, GHG, and YdI 

variable loadings ≥|0.25| were considered in the interpretation of each set of PCs. Next, we fitted 

multiple linear regression models to the PCs extracted in each case using PROC REG in SAS to evaluate 

the relationships between soil, GHG, and YdI. Regression analyses were conducted using stepwise 

selection with sle = 0.1 and sls = 0.15. 

3.3.  Results 

3.3.1. Greenhouse Gas 32 Variable Dataset 

The PCA of the 32 variable dataset for GHG emissions rendered a set of eight uncorrelated 

variables or PCs (PC1 to PC8, Table 3.1) with eigenvalues larger than 1, which, when added together 

explained about 83% of the total variability contained in the GHG database. These eight PCs 

incorporated the 32 original variables but contained high loading factors based on their contributions 

to variability and correlations with the PC. PC1 had the largest eigenvalue (8.17) and explained around 

26% of the variability with its eigenvector that included high positive loadings (>0.25) for CEC, N, and 

Fe. In addition, PC1 included high negative loadings (<−0.25) for pH, C/N, and B. PC2 had an eigenvalue 

of 6.66 and explained around 20% of the variability in the 32 variable set for GHG emissions. The 

eigenvector for PC2 had positive loadings for PWP, C, Ca, and Cu. The eigenvalue for PC3 was 3.28 and 

explained an additional 11% of the total variability. The eigenvector for PC3 included positive loadings 

for silt and SOM. Likewise, the eigenvector for PC3 contained negative loadings for clay, NH4, NO3, and 

TIN. The eigenvalue for PC4 was 2.41 and accounted for 8% of the variability. PC4 contained positive 

loadings for PAW, Pa, Mn, and Zn. In addition, PC4 contained negative loadings for sand and WAS. PC5 

had an eigenvalue of 2.37 and explained 7% of the variability. PC5 included positive loadings for clay, 

MBN, and Na. Conversely, PC5 contained negative loadings for silt, Bd, and Mn. PC6 had an eigenvalue 

of 1.42 and explained 4% of the variability. The eigenvector for PC6 showed positive loadings for YdI, 

sand and MBC, and negative loadings for WAS and Na. The eigenvalue for PC7 was 1.31 and explained 

an additional 4% of the variability. The eigenvector for PC7 contained positive loadings for Bd, MBN, Na, 

and Zn. PC7 also contained a negative loading for CEC. The final PC8 had an eigenvalue of 1.07 and 

explained 3% of the variability, while its eigenvector showed positive loadings for PAW, Bd, and C, and 
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a negative loading for Pa. These eight significant PCs were used as independent variables in our multiple 

regression analysis.  

Table 3.1. Principal component analysis based on 32 observations modeling greenhouse gas (GHG) 
emissions (N2O, CO2, and CH4) with 32 variables, with eigenvalues and the cumulative proportion of the 
dataset variability explained by eight principal components (PC) extracted from eigenvalues >1. 
Component correlation scores (eigenvalues) with loadings greater than |0.25| are in bold.  

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Eigenvalue 8.17 6.66 3.28 2.41 2.37 1.42 1.31 1.07 
Cum. Proportion 0.26 0.46 0.57 0.64 0.72 0.76 0.80 0.83 
Soil Variable Component Correlation Scores 
Yield Index (YdI) -0.13 -0.16 0.13 0.11 0.19 0.38 -0.05 0.11 
Sand 0.21 0.00 -0.01 -0.26 0.13 0.33 0.10 0.08 
Silt -0.09 -0.18 0.30 0.07 -0.32 -0.08 0.04 0.01 
Clay 0.06 0.19 -0.31 -0.02 0.30 0.02 -0.06 -0.03 
Ho 0.04 0.22 0.20 -0.18 -0.15 -0.10 -0.17 0.08 
Permanent Wilting Points (PWP) -0.08 0.30 0.10 -0.20 -0.04 -0.23 -0.09 -0.10 
Plant Available Water (PAW) 0.10 -0.09 -0.06 0.43 0.02 0.06 -0.20 0.44 
Soil Bulk Density (BD) 0.07 -0.03 0.06 -0.15 -0.26 -0.12 0.60 0.25 
Water Aggregate Stability (WAS) 0.04 0.19 0.04 -0.30 0.03 -0.38 -0.05 0.08 
pH -0.32 -0.02 -0.13 -0.06 -0.09 -0.03 0.08 0.06 
Cation Exchange Capacity (CEC) 0.29 0.11 0.13 0.06 0.04 -0.03 -0.26 -0.05 
Soil Organic Matter (SOM) 0.23 0.18 0.26 0.01 0.07 0.11 0.05 0.20 
C 0.13 0.27 0.25 0.05 0.03 0.12 0.03 0.30 
N 0.26 0.18 0.18 -0.02 -0.05 0.09 0.07 0.16 
C/N -0.26 0.17 0.09 0.07 0.15 0.07 -0.09 0.18 
Microbial Biomass Carbon (MBC) -0.13 0.12 0.17 -0.02 -0.12 0.45 0.12 -0.12 
Microbial Biomass Nitrogen (MBN) -0.17 0.04 -0.03 -0.01 0.40 0.08 0.37 -0.22 
NH4 0.18 0.14 -0.31 -0.04 -0.15 0.11 0.08 -0.08 
NO3 0.19 0.11 -0.37 0.08 -0.07 0.09 0.02 0.08 
Total Soil Nitrogen Intensity (TIN) 0.20 0.13 -0.37 0.03 -0.11 0.11 0.05 0.02 
Pa 0.00 0.19 0.11 0.39 -0.07 0.00 -0.01 -0.38 
K 0.23 0.05 -0.15 -0.03 -0.18 0.05 0.17 -0.12 
S 0.25 -0.23 0.01 0.10 0.05 -0.10 0.03 0.08 
Ca 0.01 0.32 -0.02 0.07 0.03 -0.03 0.13 0.05 
Mg -0.21 0.25 -0.16 0.04 -0.04 -0.05 -0.08 0.13 
Na 0.05 -0.15 0.00 0.21 0.31 -0.38 0.32 0.23 
B -0.27 0.10 -0.13 0.13 0.05 -0.03 0.14 0.22 
Fe 0.25 0.08 0.11 0.19 0.24 -0.12 0.04 -0.21 
Mn 0.00 -0.09 -0.11 0.32 -0.42 -0.09 -0.05 -0.01 
Cu -0.11 0.30 -0.04 0.24 0.04 -0.17 -0.05 -0.02 
Zn 0.00 0.19 0.18 0.31 -0.08 0.03 0.34 -0.23 
Al 0.23 -0.23 0.08 -0.01 0.15 -0.14 -0.01 -0.20 
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3.3.2. Greenhouse Gas 23 Variable Dataset 

 The PCA of the 23 variable dataset for GHG emissions rendered a set of seven uncorrelated 

variables or PCs (PC1 to PC7, Table 3.2) with eigenvalues larger than 1, which, when added together 

explained about 80% of the total variability contained in the GHG database. These seven PCs 

incorporated the 23 original variables but contained high loading factors based on their contributions 

to variability and correlations with the PC. PC1 had the largest eigenvalue (6.04) and explained around 

26% of the variability with its eigenvector that included high positive loadings (>0.25) for pH C/N, Mg, 

and B. In addition, PC1 included high negative loadings (<−0.25) for S and Al, C/N, and B. PC2 had an 

eigenvalue of 5.01 and explained around 22% of the variability in the 23 variable set for GHG emissions. 

The eigenvector for PC2 had positive loadings for CEC, SOM, C, N, Ca, and Zn. The eigenvalue for PC3 

was 2.17 and explained an additional 10% of the total variability. The eigenvector for PC3 included 

positive loadings for YdI and MBN. Likewise, the eigenvector for PC3 contained negative loadings for Pa 

and Mn. The eigenvalue for PC4 was 1.56 and accounted for 8% of the variability. PC4 contained positive 

loadings for MBN, Na, Fe, and Cu. In addition, PC4 contained negative loadings for Bd and K. PC5 had an 

eigenvalue of 1.39 and explained 6% of the variability. PC5 included positive loadings for YdI, S, Na, Mn, 

and Zn. Conversely, PC5 contained negative loading for WAS. PC6 had an eigenvalue of 1.13 and 

explained 5% of the variability. The eigenvector for PC6 showed positive loadings for Pa and Zn. PC6 

also contained negative loadings for YdI, CEC, and Ca. The final PC7 had an eigenvalue of 1.12 and 

explained 5% of the variability, while its eigenvector showed positive loadings for Bd, WAS, and Na. 

These seven significant PCs were used as independent variables in our multiple regression analysis. 

3.3.3. Yield Index 34 Variable Dataset 

The PCA of the 34 variable dataset for the yield index rendered a set of eight uncorrelated variables or 

PCs (PC1 to PC8, Table 3.3) with eigenvalues larger than 1, which, when added together explained about 

83% of the total variability contained in the YdI database. These eight PCs incorporated the 34 original 

variables but contained high loading factors based on their contributions to variability and correlations 

with the PC. PC1 had the largest eigenvalue (8.75) and explained around 26% of the variability with its 

eigenvector that included high positive loadings (>0.25) for CEC and S. In addition PC1 included high 

negative loadings (<−0.25) for pH and B. PC2 had an eigenvalue of 6.58 and explained around 19% of 

the variability in the 34 variable set for yield index. The eigenvector for PC2 had positive loadings for 

PWP, C, Ca, and Cu. The eigenvalue for PC3 was 3.54 and explained an additional 11% of the total 

variability. The eigenvector for PC3 included positive loadings for CH4, clay, NH4, NO3, and TIN. The 

eigenvalue for PC4 was 2.62 and accounted for 7% of the variability. PC4 contained positive loadings for 
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Table 3.2. Principal component analysis based on 52 observations modeling GHG emissions (N2O, CO2, 
and CH4) with 23 variables, with eigenvalues and the cumulative proportion of the dataset variability 
explained by the seven principal components (PC) extracted with eigenvalues >1. Component 
correlation scores (eigenvalues) with loadings greater than |0.25| are in bold.  

PC1 PC2 PC3 PC4 PC5 PC6 PC7 
Eigenvalue 6.04 5.01 2.17 1.56 1.39 1.13 1.12 
Cum. Proportion 0.26 0.48 0.58 0.64 0.70 0.75 0.80 
Soil Variable Component Correlation Scores 
YdI 0.07 −0.05 0.37 0.11 0.44 −0.35 −0.21 
BD −0.09 0.00 −0.03 −0.45 0.07 0.24 0.60 
WAS −0.04 0.19 0.07 0.14 −0.52 −0.06 0.27 
pH 0.32 −0.21 0.00 −0.18 0.00 0.15 0.05 
CEC −0.22 0.28 −0.17 0.20 −0.01 −0.30 −0.05 
SOM −0.12 0.39 0.16 −0.16 0.08 −0.07 −0.01 
C 0.03 0.39 0.18 −0.22 0.09 −0.01 0.01 
N −0.17 0.36 0.05 −0.21 0.07 −0.09 0.06 
C/N 0.32 0.11 0.20 −0.03 0.00 0.13 −0.08 
MBC 0.18 0.14 0.20 −0.12 0.00 0.16 −0.14 
MBN 0.14 −0.02 0.44 0.32 −0.04 0.18 0.19 
Pa 0.04 0.19 −0.25 0.18 0.22 0.52 −0.23 
K −0.19 0.14 −0.14 −0.28 −0.06 0.04 −0.10 
S −0.26 −0.10 0.07 −0.12 0.37 −0.11 0.09 
Ca 0.19 0.30 −0.09 0.08 0.06 −0.30 0.09 
Mg 0.33 0.12 −0.20 0.03 −0.02 −0.24 0.12 
Na −0.15 −0.10 0.12 0.29 0.32 −0.01 0.52 
B 0.34 −0.01 −0.05 −0.03 0.14 −0.11 0.19 
Fe −0.25 0.22 0.01 0.34 −0.03 0.22 0.04 
Mn −0.03 −0.11 −0.52 0.04 0.29 −0.04 0.03 
Cu 0.23 0.23 −0.25 0.33 0.04 0.04 0.22 
Zn 0.09 0.28 0.04 0.01 0.31 0.32 −0.04 
Al −0.35 −0.11 0.12 0.14 −0.03 0.10 −0.06 

 

PAW, Pa, Mn, and Zn. In addition, PC4 contained a negative loading for WAS. PC5 had an eigenvalue of 

2.35 and explained 7% of the variability. PC5 included positive loadings for clay, MBN, Na, and Fe. 

Conversely, PC5 contained negative loadings for silt, Bd, and Mn. PC6 had an eigenvalue of 1.66 and 

explained 5% of the variability. The eigenvector for PC6 showed positive loadings for CH4, sand, MBC, 

and MBN. The eigenvalue for PC7 was 1.38 and explained an additional 4% of the variability. The 

eigenvector for PC7 contained positive loadings for Bd, MBN, Na, and Zn. PC7 also contained a negative 

loading for N2O. The final PC8 had an eigenvalue of 1.20 and explained 4% of the variability, while its 

eigenvector showed positive loadings for Bd, Na, and B and a negative loading for Pa. These eight 

significant PCs were used as independent variables in our multiple regression analysis. 
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3.3.4. Yield Index 25 Variable Dataset 

The PCA of the 25 variable dataset for the yield index rendered a set of eight uncorrelated variables or 

PCs (PC1 to PC8, Table 3.4) with eigenvalues larger than 1, which, when added together explained about 

82% of the total variability contained in the YdI database. These eight PCs incorporated the 25 original 

variables but contained high loading factors based on their contributions to variability and correlations 

with the PC. PC1 had the largest eigenvalue (6.73) and explained around 27% of the variability with its 

eigenvector that included high positive loadings (>0.25) for S and Al. In addition PC1 included high 

negative loadings (<−0.25) for pH, C/N, Mg, and B. PC2 had an eigenvalue of 5.23 and explained around 

21% of the variability in the 25 variable set for yield index. The eigenvector for PC2 had positive loadings 

for CEC, SOM, C, N, Ca, and Zn. The eigenvalue for PC3 was 2.16 and explained an additional 8% of the 

total variability. The eigenvector for PC3 included positive loadings for N2O, CO2, and Mn. PC3 also 

contained negative loadings for WAS and MBN. The eigenvalue for PC4 was 1.58 and accounted for 7% 

of the variability. PC4 contained positive loadings for CH4, MBN, Na, and Fe. In addition, PC4 contained 

a negative loading for Bd. PC5 had an eigenvalue of 1.48 and explained 6% of the variability. PC5 

included positive loadings for N2O, CH4, Bd, MBC, and K. Conversely, PC5 contained negative loadings 

for WAS, CEC, and Cu. PC6 had an eigenvalue of 1.25 and explained 5% of the variability. The eigenvector 

for PC6 showed positive loadings for N2O, CO2, Na, and B. PC6 also contained a negative loading for Pa. 

The eigenvalue for PC7 was 1.13 and explained an additional 4% of the variability. The eigenvector for 

PC7 contained positive loadings for Bd, Na, and Zn. PC7 also contained a negative loading for N2O. The 

final PC8 had an eigenvalue of 1.01 and explained 4% of the variability, while its eigenvector showed 

positive loadings for N2O, CH4, WAS, and K. PC8 also had a negative loading for MBC. These eight 

significant PCs were used as independent variables in our multiple regression analysis. 

3.3.5. Multiple Regression Analysis 

Following extraction of the uncorrelated PCs from each of the datasets, multiple regression 

analyses were conducted to model each GHG emission type (N2O, CO2, and CH4), and also to model the 

yield index. Multiple regression analyses were conducted to determine which variables impact GHG 

emissions and YdI. Modeling of N2O emissions using the larger (32) variable dataset resulted in three 

PCs being retained (Table 3.5). These three PCs explained around 39% of the N2O variability in the 

dataset. The PCs retained were PC1, PC3, and PC4. The variables included within each PC are listed in 

full in Section 3.3.1 above. Modeling of CO2 emissions using the 32 variable dataset resulted in five PCs 

being retained (Table 3.5). These five PCs explained around 49% of the CO2 variability in the dataset.  
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Table 3.3. Principal component analysis based on 32 observations modeling the yield index with 34 
variables, with eigenvalues and cumulative proportion of the dataset variability explained by the eight 
principal components (PC) extracted with eigenvalues >1. Component correlation scores (eigenvalues) 
with loadings greater than |0.25| are in bold.  

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Eigenvalue 8.75 6.58 3.54 2.62 2.35 1.66 1.38 1.20 
Cum. Proportion 0.26 0.45 0.56 0.63 0.70 0.75 0.79 0.83 
Soil Variable Component Correlation Scores 
N2O 0.20 0.08 0.23 0.18 −0.01 0.07 −0.26 0.15 
CO2 0.22 −0.07 0.00 0.21 0.15 0.18 −0.20 0.22 
CH4 0.03 0.05 0.25 0.16 −0.07 0.46 0.13 −0.12 
Sand 0.20 0.01 −0.02 −0.24 0.07 0.35 −0.05 0.05 
Silt −0.08 −0.19 −0.24 0.21 −0.29 0.03 0.04 0.05 
Clay 0.05 0.20 0.26 −0.18 0.29 −0.10 −0.03 −0.06 
Ho 0.02 0.22 −0.22 −0.09 −0.17 −0.04 −0.17 0.04 
PWP −0.11 0.29 −0.14 −0.14 −0.05 −0.06 −0.05 −0.02 
PAW 0.13 −0.07 0.14 0.37 0.08 −0.12 −0.24 0.16 
BD 0.05 −0.03 −0.07 −0.07 −0.26 0.13 0.35 0.54 
WAS 0.00 0.18 −0.13 −0.31 0.00 −0.22 0.10 0.09 
pH −0.31 −0.05 0.12 −0.05 −0.08 0.00 0.04 0.10 
CEC 0.28 0.14 −0.13 0.04 0.03 −0.10 −0.18 −0.15 
SOM 0.21 0.21 −0.25 0.06 0.04 0.10 −0.02 0.12 
C 0.11 0.28 −0.22 0.10 0.02 0.10 −0.08 0.19 
N 0.23 0.20 −0.19 0.00 −0.08 0.04 0.03 0.11 
C/N −0.25 0.15 −0.04 0.12 0.18 0.12 −0.19 0.07 
MBC −0.13 0.11 −0.10 0.13 −0.15 0.50 −0.05 −0.15 
MBN −0.16 0.03 0.05 −0.02 0.38 0.31 0.31 −0.06 
NH4 0.16 0.16 0.28 −0.13 −0.19 0.06 0.14 −0.06 
NO3 0.18 0.13 0.35 −0.04 −0.07 0.01 0.00 0.03 
TIN 0.19 0.15 0.34 −0.08 −0.12 0.03 0.06 −0.01 
Pa −0.01 0.19 −0.05 0.35 −0.03 −0.14 0.22 −0.38 
K 0.21 0.07 0.10 −0.11 −0.21 −0.10 0.24 −0.02 
S 0.26 −0.20 0.00 0.08 0.06 −0.02 0.03 0.08 
Ca −0.01 0.33 0.02 0.04 0.03 −0.07 0.11 0.16 
Mg −0.22 0.23 0.16 0.02 −0.01 −0.10 −0.10 0.12 
Na 0.06 −0.14 0.01 0.14 0.36 −0.16 0.32 0.34 
B −0.25 0.08 0.16 0.11 0.09 −0.04 0.03 0.28 
Fe 0.24 0.11 −0.09 0.14 0.25 −0.05 0.13 −0.16 
Mn 0.01 −0.09 0.17 0.30 −0.37 −0.20 0.01 0.00 
Cu −0.12 0.29 0.07 0.21 0.10 −0.14 −0.02 0.01 
Zn −0.01 0.20 −0.11 0.31 −0.06 −0.01 0.42 −0.06 
Al 0.23 −0.21 −0.10 −0.05 0.13 −0.06 0.14 −0.18 

 

The PCs retained were PC1, PC2, PC4, PC6, and PC8. The variables included within each PC are listed in 

full in Section 3.3.1 above. Modeling of CH4 emissions using the 32 variable dataset resulted in only one 

PC being retained (Table 3.5). This single PCs explained only around 11% of the CH4 variability in the 
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dataset. The PC retained was PC6. The variables included within the PC are listed in full in Section 3.3.1 

above. Modeling of YdI emissions using the 34 variable dataset resulted in only one PC being retained 

(Table 3.5). This single PCs explained around 12% of the YdI variability in the dataset. The PC retained 

was PC2. The variable included within the PC is listed in full in Section 3.3.3 above. The variables chosen 

to represent the PC component in the N2O, CO2, CH4, and YdI regression equations (listed below) were 

based on the largest loading values from the retained PCs: 

N2O = 0.16 + 0.23(−pH)− 0.20(−NO3) + 0.22(PAW), 

CO2 = 0.30 + 0.20(−pH)− 0.09(Ca) + 0.17(PAW) + 0.20(MBC) + 0.27(PAW), 

CH4 = 0.02 + 0.30(MBC), 

YdI = −0.55− 0.14(Ca). 

Table 3.4. Principal component analysis based on 52 observations modeling the yield index with 25 
variables, with eigenvalues and the cumulative proportion of the dataset variability explained by the 
eight principal components (PC) extracted with eigenvalues >1. Component correlation scores 
(eigenvalues) with loadings greater than |0.25| are in bold.  

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Eigenvalue 6.73 5.23 2.16 1.58 1.48 1.25 1.13 1.01 
Cum. Proportion 0.27 0.48 0.56 0.63 0.69 0.74 0.78 0.82 
Soil Variable Component Correlation Scores 
N2O 0.13 0.15 0.30 0.24 0.26 0.29 −0.25 0.26 
CO2 0.21 0.10 0.26 0.17 0.01 0.37 −0.15 −0.06 
CH4 0.00 −0.04 0.09 0.41 0.48 −0.19 −0.08 0.33 
BD 0.08 0.01 −0.04 −0.26 0.31 0.16 0.58 0.11 
WAS 0.01 0.15 −0.27 −0.11 −0.28 −0.19 0.01 0.59 
pH −0.32 −0.20 0.04 −0.07 0.14 0.01 0.12 0.02 
CEC 0.23 0.28 0.08 −0.04 −0.26 0.01 −0.18 −0.08 
SOM 0.12 0.37 −0.16 −0.08 0.13 0.12 0.04 −0.09 
C −0.03 0.38 −0.18 −0.08 0.17 0.16 0.04 −0.15 
N 0.16 0.35 −0.11 −0.19 0.10 0.05 0.08 −0.03 
C/N −0.30 0.10 −0.12 0.13 0.09 0.12 −0.06 −0.19 
MBC −0.17 0.14 −0.19 0.09 0.26 0.04 −0.10 −0.28 
MBN −0.13 −0.04 −0.35 0.48 −0.06 0.09 0.10 0.10 
Pa −0.04 0.19 0.24 0.19 0.04 −0.51 0.20 −0.17 
K 0.19 0.12 0.11 −0.20 0.28 −0.16 0.04 0.36 
S 0.32 −0.11 0.06 0.10 0.04 0.19 0.11 −0.05 
Ca −0.16 0.32 0.08 −0.04 −0.17 0.09 0.00 0.13 
Mg −0.31 0.15 0.19 −0.08 −0.13 0.13 −0.03 0.18 
Na 0.15 −0.10 −0.01 0.27 −0.24 0.32 0.52 0.08 
B −0.31 0.01 0.13 0.01 −0.03 0.26 0.14 0.09 
Fe 0.24 0.20 −0.05 0.29 −0.16 −0.16 0.05 −0.08 
Mn 0.05 −0.07 0.54 −0.13 −0.07 −0.09 0.16 −0.18 
Cu −0.20 0.24 0.23 0.19 −0.27 −0.01 0.10 0.09 
Zn −0.10 0.27 0.07 0.19 0.10 −0.23 0.33 −0.10 
Al 0.33 −0.13 −0.15 0.11 −0.07 −0.11 0.04 −0.10 
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Likewise, using multiple regression analysis modeling of N2O emissions using the smaller (23) 

variable dataset resulted in two PCs being retained (Table 3.5). These 2 PCs only explained around 10% 

of the N2O variability in the dataset, a drop of nearly 30% in explanatory capability. The PCs retained 

were PC1 and PC2. The variables included within each PC are listed in full in Section 3.3.2 above. 

Modeling of CO2 emissions using the 23 variable dataset resulted in two PCs being retained (Table 3.5). 

These two PCs explained around 26% of the CO2 variability in the dataset, a drop of 23% in explanatory 

capability. The PCs retained were PC1 and PC5. The variables included within each PC are listed in full 

in Section 3.3.2 above. Modeling of CH4 emissions using the 23 variable dataset resulted in only one PC 

being retained (Table 3.5). This single PC explained only around 6% of the CH4 variability in the dataset. 

The PC retained was PC6. The variables included within the PC are listed in full in Section 3.3.2 above. 

Modeling of YdI emissions using the 25 variable dataset resulted in two PCs being retained (Table 3.5). 

These PCs explained around 9% of the YdI variability in the dataset. The PCs retained were PC6 and PC8. 

The variables included within the PCs are listed in full in Section 3.3.4 above. The variables chosen to 

represent the PC component in the N2O, CO2, CH4, and YdI regression equations (listed below) were 

based on the largest loading values from the retained PCs: 

N2O = 0.02 − 0.10(−Al) + 0.12(C), 

CO2 = 0.02− 0.18(−Al) + 0.25(−WAS), 

CH4 = −0.00092 + 0.27(Pa), 

YdI = −0.08 + 0.23(−Pa)− 0.22(WAS). 

3.4.  Discussion 

3.4.1. Nitrous Oxide 

The results from the multiple regression analysis on the 32 variable dataset reveal that pH, NO3, 

and PAW are the variables with the heaviest loadings in the model (Table 3.5). This means that low pH, 

increased levels of NO3, and greater levels of PAW are needed to explain N2O emissions. Wang et al. 

(2018) concluded that pH was the chief factor in global a meta-analysis using 1104 field measurements. 

Their results used a similar multivariate approach to discover that N2O emissions increase significantly 

with a decrease in soil pH. We observed a similar result; the CCC-T cropping system emitted greater N2O 

emissions compared to other systems (7.67 kg-N ha−1 year−1, Appendix B Table B.4). Furthermore, the 

CCC-T rotation had the lowest mean pH (5.08, Appendix B Table B.6). Increased levels of NO3 (similarly 

NH4 and TIN contained important loadings in PC3) in the soil provided the necessary substrate for 

incomplete denitrification, as seen in other N2O studies (McSwiney and Robertson, 2005; Snyder et al., 

2009; Weier et al., 1993). Likewise, large loadings in PC1 (Table 3.1) included N and low C/N, which  
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Table 3.5. Dependent variables are based on multiple regression analyses of principal components (PC) extracted with eigenvalues >1 and retained in 
the model (significance level = 0.1500). Dependent variables (nitrous oxide, N2O; carbon dioxide, CO2; methane, CH4; yield index YdI) were modeled 
using both datasets (PCs are separated by either the 32 or the 52 observation datasets). Variables contained within each PC have component 
correlation scores (eigenvalues) with loadings greater than |0.25|. Overall adjusted R2 values represent the amount of variation explained by the 
regression analysis. 

Principal Components Summary Using 32 (for GHG) and 34 (for YdI) Variables 

Dependent 
Variable Retained Estimate p-

Value Variables Contained 1 Stepwise 
R2 

Stepwise 
p-Value 

Overall 
Adjusted 

R2 

N2O 
PC1 0.20 0.00 pH, CEC, N, C/N, S, B, Fe 0.26 0.00 

0.39 PC3 0.20 0.03 Silt, Clay, SOM, C, NH4, NO3, TIN 0.36 0.04 
PC4 0.22 0.04 Sand, PAW, WAS, Pa, Mn, Zn 0.45 0.04 

CO2 

PC1 0.20 0.00 pH, CEC, N, CN, S, B, Fe 0.31 0.00 

0.49 
PC2 0.20 0.08 PWP, C, Ca, Mg, Cu 0.52 0.09 
PC4 0.17 0.05 Sand, PAW, WAS, Pa, Mn, Zn 0.46 0.06 
PC6 0.27 0.04 YdI, Sand, WAS, MBC, Na 0.57 0.08 
PC8 0.09 0.08 PAW, BD, C, Pa 0.39 0.06 

CH4 PC6 0.30 0.04 YdI, Sand, WAS, MBC, Na 0.14 0.04 0.11 
YdI PC2 0.14 0.03 PWP, C, Ca, Cu 0.15 0.03 0.12 

Principal Components Summary Using 23 (for GHG) and 25 (for YdI) Variables 

Dependent 
Variable Retained Estimate p-

Value Variables Contained 2 Stepwise 
R2 

Stepwise 
p-Value 

Overall 
Adjusted 

R2 

N2O PC1 0.12 0.04 pH, C/N, S, Mg, B, Fe, Al 0.14 0.06 0.10 PC2 0.10 0.06 CEC, SOM, C, N, Ca, Zn 0.08 0.05 

CO2 
PC1 0.18 0.00 pH, C/N, S, Mg, B, Fe, Al 0.21 0.00 0.26 PC5 0.25 0.02 YdI, WAS, S, Na, Mn, Zn 0.29 0.02 

CH4 PC6 0.27 0.04 YdI, CEC, Pa, Ca, Zn 0.08 0.04 0.06 

YdI 
PC6 0.23 0.05 N2O, CO2, Pa, Na, B 0.07 0.06 

0.09 
PC8 0.22 0.10 N2O, CH4, WAS, MBC, K 0.12 0.10 

1 Variables are listed in full in Tables 1 and 3; 2 Variables are listed in full in Tables 2 and 4. 
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mirrors our results from NO3. PAW is defined as the difference between the water retained at field 

capacity and the permanent wilting point, so a higher level of PAW means that the soil can hold more 

water due to having larger pore spaces. Weier et al. (1993) concluded that the percentage of additional 

NO3 lost via denitrification increased with increasing water-filled pore spaces and amounts of C 

substrate. Important loadings from the retained PC3 include SOM, which furthers the need for C 

substrate for N2O emissions. Our model explained around 40% of the variation using these three 

variables. 

Comparing the results from the 32 variable dataset, we see a large decrease in the total amount 

of variation explained, down from 40% in the 32 variable dataset, to 10% in the 23 variable dataset 

(Table 3.5). The 23 variable dataset contained only variables with equal comparisons; the loss of sand, 

silt, clay, Ho, PWP, PAW, NH4, NO3, and TIN reduced the ability to explain N2O emissions by 30%. 

Exclusion of soil water dynamics and soil nitrogen intensity variables led to this loss in ability. The 

multiple regression analysis on the 23 variable dataset revealed that Al and C are the variables with the 

heaviest loadings in the model. The combination of these variables means that low levels of Al and 

increased levels of C are needed to explain N2O emissions. In terms of understanding the Al dynamics 

occurring in this model, the means table reveals that the soybean rotation had lower values of Al 

compared to corn (586.38 mg kg−1 compared to 670.78 mg kg−1, respectively; Appendix B Table B.8). 

This is further verified by the increased pH values (also heavy loading in PC1, Table 3.2) occurring in the 

soybean rotations (7.13 compared to 5.34, respectively; Appendix B Table B.6). Likewise, the CCC 

rotations had significantly greater emissions of N2O compared to SSS (6.18 kg-N ha−1 year−1 compared 

to 0.97 kg-N ha−1 year−1; Appendix B Table B.4) (Behnke et al., 2018b). The effects of low pH are conveyed 

indirectly in this model, and can also be observed in the recent meta-analysis conducted by Wang et al. 

(2018). Other studies conducted on similar soils have observed that N2O emissions occur in greater 

amounts when given an increased level of C substrate (Weier et al., 1993). In addition, SOM is an 

important loading in PC2, which has a similar effect to adding C substrate. 

3.4.2. Carbon Dioxide 

The results from the multiple regression analysis on the 32 variable dataset reveal that pH, Ca, 

PAW, and MBC are the variables with the heaviest loadings in the model (Table 3.5). Thus, low pH, low 

Ca, increased PAW, and higher levels of MBC are needed to explain CO2 emissions. Linn and Doran 

(1984) discovered that CO2 production increases as water-filled pore spaces are filled, regardless of the 

application of N fertilizer. As PAW increases, water is more prevalent in the soil, which can lead to CO2 

evolution through increased microbial activity. During wheat production, Lupwayi et al. (1999) observed 
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that microbial biomass is more dynamic compared to SOM, and changes in management may be 

reflected more clearly in MBC compared to SOM. The authors also observed that the amount of MBC is 

directly related to CO2 evolution; a similar observation was seen by Linn and Doran (1984), albeit with 

microbial activity and not MBC specifically. Low pH and low Ca levels in the soil negatively affect the 

levels of MBC, which limits the production of CO2. Likewise, in environments with low pH levels, Ca is 

able to leach through the soil (Brady and Weil, 1996). Our model explained around 50% of the variation 

using these five variables. 

Compared with results from the 32 variable dataset, there was a large decrease in the total 

amount of variation explained, down from 50% in the 32 variable dataset, to 26% in the 23 variable 

dataset. The 23 variable dataset was reduced by nine variables and decreased the ability to explain CO2 

emissions by 24%. The multiple regression analysis on the 23 variable dataset revealed that Al and WAS 

are the variables with the heaviest loadings in the model (Table 3.5). The combination of these variables 

means that high levels of aluminum and lower WAS are needed to explain CO2 emissions. Al is more 

available at a lower pH. Similar to the N2O model, when observing the means table, the soybean rotation 

had lower values of Al compared to corn (586.38 mg kg−1 compared to 670.78 mg kg−1, respectively; 

Appendix B Table B.8). This was further verified by the increased pH values (also heavy loading in PC1, 

Table 3.2) occurring in the soybean rotations (7.13 compared to 5.34, respectively; Appendix B Table 

B.6). Likewise, the CCC rotations had significantly greater emissions of CO2 compared to SSS (4.43 Mg-N 

ha−1 year−1 compared to 2.63 kg-N ha−1 year−1; Appendix B Table B.4) (Behnke et al., 2018b). Increases 

in WAS are related to the protection of SOM. The destruction of stable aggregates (WAS) causes 

decomposition of SOM and greater CO2 emissions (Paustian et al., 2000). Our model explained around 

26% of the variation using only these two variables. 

3.4.3. Methane  

The results from the multiple regression analysis on the 32 variable dataset reveal that MBC is 

the variable with the heaviest loading in the model (Table 3.5). This means that a larger MBC 

concentration leads to increased CH4 production. Methane produced from agricultural practices has 

been found to be emitted biologically via methanogenic bacteria under anaerobic soil conditions (Chan 

and Parkin, 2001; Johnson et al., 2007). Methane has also been found to be consumed in agricultural 

soils by soil methanotropic bacteria (McLain and Martens, 2006). This phenomenon causes agricultural 

soils (excluding rice paddies) to be consumers, producers or neutral, depending on the time of season 

(Chan and Parkin, 2001). It is not surprising that the biological nature of CH4 production is explained 

best by MBC. The means for CH4 show the largest emissions from the CCC rotation compared to the 
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other rotations (0.43 kg-C ha−1 year−1, CCC; 0.25 kg-C ha−1 year−1, CS; 0.22 kg-C ha−1 year−1, CSW; and 

0.24 kg-C ha−1 year−1, SSS) (Appendix B Table B.4); however, MBC is the lowest in CCC compared to the 

other rotations (54.69 µg g−1, CCC; 67.27 µg g−1, CS; 70.72 µg g−1, CSW; and 77.38 µg g−1, SSS) (Appendix 

B Table B.6). On similar Mollisols in Ohio, Jacinthe and Lal (2005) observed that increased CH4 uptake in 

soils occurs with greater MBC concentrations. Our model explained around 11% of the variation using 

this one variable. 

Compared with the results from the 32 variable dataset, there was a decrease in the total 

amount of variation explained, down from 11% in the 32 variable dataset, to 6% in the 23 variable 

dataset. The multiple regression analysis on the 23 variable dataset revealed that Pa was the variable 

with the heaviest loading in the model (Table 3.5). This means that higher values of Pa are needed to 

explain CH4 emissions. Our model explained around 6% of the variation using this one variable. 

3.4.4. Yield Index 

The results from the multiple regression analysis on the 34 variable dataset reveal that Ca is the 

variable with the heaviest loading in the model (Table 3.5). This single variable means that lower Ca 

concentrations lead to an increased YdI. Since the YdI variable is standardized by cash crop to a mean 

of 0 and a standard deviation of 1, direct comparisons are difficult to interpret. However, looking at the 

YdI means (Appendix B Table B.4) reveals that larger YdI values occur in the crop rotations (0.27, CS and 

0.19, CSW) relative to the monocultures (−0.74, CCC and −0.26, SSS). Using the same yield data, Behnke 

et al. (2018b) found that crop rotation increased the yields of corn and soybean in the CS rotation 

compared to either the CCC and SSS monocultures. Since wheat was not grown continuously, a wheat 

comparison was not possible. As yield levels increase, Ca concentration in the removed grain increases 

(Heckman et al., 2003). However, Ca levels seem to be weakly correlated with crop rotation, though the 

crop rotations do have smaller standard errors compared to the CCC and SSS monocultures. However, 

the CSW rotation did have the largest values (Appendix B Table B.7). Since these soils are naturally high 

in Ca and were limed every two years, following the guidelines in the Illinois Agronomy Handbook 

(Nafziger, 2009), levels of Ca are likely not limiting. Our model explained around 12% of the variation 

using this one variable. 

When looking at the results from the 34 variable dataset, we can see a small decrease in the 

total amount of variation explained—9% in the 25 variable dataset. The multiple regression analysis on 

the 23 variable dataset reveals that Pa and WAS are the variables with the heaviest loadings in the 

model (Table 3.5). Thus, low levels of Pa and lower WAS are needed to explain YdI. Similar to Ca in the 

34 variable dataset, as yield levels increase, greater amounts of Pa are removed by the grain (Heckman 
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et al., 2003). Therefore, as YdI levels increase less Pa will remain in the soil. The YdIs of the crop rotations 

(CS and CSW; Appendix B Table B.4) are greater compared to the monocultures (CCC and SSS; Appendix 

B Table B.4). This can be as attributed to the levels of Pa in the crop rotations (8.59 mg ka−1, CS and 9.87 

mg kg−1, CSW; Appendix B Table B.7) being lower compared to those in the monocultures (13.56 mg 

kg−1, CCC and 17.50 mg kg−1, SSS; Appendix B Table B.7). Trends in WAS are less evident as the crop 

rotations had similar WAS means (Appendix B Table B.5). The trends in WAS may be more related to the 

tillage implementation as WAS levels from tilled treatments were lower than their NT counterparts (0.82 

g g−1, T and 0.85 g g−1, NT; Appendix B Table B.5). Comparing this to the T and NT YdI levels, an inverse 

relationship exists (0.22, T and −0.18 NT; Appendix B Table B.4). Behnke et al. (2018b) observed a 

significant yield increase due to tillage used as a means of managing the high amount of corn residue 

produced in high organic matter soils. Other studies in the Midwest confirm an increase in yield due to 

tillage as well (Halvorson et al., 2006; Parkin and Kaspar, 2006). Long-term (5+ years) NT corn systems 

are routinely subject to reductions in yields (Pittelkow et al., 2015) due to waterlogging and poor 

establishment, compaction, and nutrient deficiencies (Cid et al., 2014; Halvorson et al., 2006; 

Rusinamhodzi et al., 2011). Villamil et al. (2015) concluded that in highly productive and highly resilient 

Illinois systems, tillage does not pose a threat to soil quality. 

This multivariate analysis was conducted using data from Illinois on highly productive soils from 

different cropping systems with the objective of investigating the relationships among GHG emissions, 

yields, and soil properties. The two datasets including differing numbers of variables highlight the 

importance of utilizing data with and without missing data points. The dataset with more variables 

contained missing data, while the dataset containing fewer variables contained paired data with no 

missing data. Both datasets are important in discovering which variables are important predictors for 

GHG emissions and the yield index.  

3.5. Conclusions 

Overall, our analysis showed the complex relationships among GHG emissions, yield and soil 

properties. Increased N2O emissions were correlated to low pH conditions (and an increased Al 

concentration), the presence of soil NO3 throughout the growing season, an increase in plant available 

water and an increased C concentration. Lower soil pH was evident in the CCC rotation compared to the 

other rotations; CCC also had greater N2O emissions. Greater CO2 emissions were related to low pH (or 

high Al concentrations), low levels of Ca, increased PAW, higher levels of MBC, and lower WAS. Methane 

emissions reveal that higher levels of MBC lead to lower CH4 emissions due to methane uptake from 

soil microbes. Lastly, increased levels of YdI were correlated with lower levels of soil Ca and Pa and lower 
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values of WAS. It is important to note that lower levels of WAS were seen in the T treatments compared 

to the NT treatments. Likewise, the NT YdI was lower than the T YdI. Therefore increases in YdI can be 

attributed to tillage more than to lower levels of WAS, as is typical in highly productive Midwest 

cropping systems. The results from this study describe the influences that crop rotation and tillage have 

on the modeling of GHG emissions and yields. Our results indicate the benefits of utilizing a crop rotation 

compared to a monoculture. The results include a decrease in N2O emissions and an increase in yield. 

This study will add valuable information to the understanding of how interconnected numerous soil 

properties are to GHG emissions and yield. 
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CHAPTER 4: COVER CROP ROTATIONS AFFECT GREENHOUSE GAS EMISSIONS AND CROP 

PRODUCTION IN ILLINOIS, USA 

4.1. Introduction 

Cover crops (CCs) have a role in lowering greenhouse gas (GHG) emissions and have a climate 

change alleviation potential akin to switching to no-till (NT); they also have been shown to benefit soil 

and water quality (Kaye and Quemada, 2017). Agriculture contributes around 9% of the total United 

States GHG emissions, with carbon dioxide (CO2) making up the majority (81%), followed by methane 

(CH4) (11%), nitrous oxide (N2O) (6%), and other trace gases (2%) (EPA, 2016). However, compared to 

CO2, N2O and CH4 are 298 and 25 times as potent, respectively (EPA, 2016). According to the US 

Environmental Protection Agency (EPA), around 80% of the total US annual N2O emissions are caused 

by agricultural soil management, including synthetic fertilizer application and use, tillage practices, and 

crop rotation systems (EPA, 2016; Venterea et al., 2011). The US Midwest (Illinois, Indiana, Iowa, 

Michigan, Minnesota, Ohio, and Wisconsin) exemplifies one of the most intensively cultivated areas in 

the world (Hatfield, 2012). Millar et al. (2010), reported in their most recent literature review on the 

subject, that fertilized crops take up less than 50% of the N applied, potentially leaving the excess 

available for loss. In 2017, Illinois seeded more than 4.5 million hectares of corn (Zea mays L.) and nearly 

4.3 million hectares of soybean [Glycine max (L.) Merr.] (USDA-NASS, 2018). As of 2016, 97% of corn 

planted received an N and 79% received a P fertilizer application with an average rate of 163 and 68 kg 

ha-1 for N and P (as P2O5), respectively (USDA-NASS, 2016). Considering the widespread tile drainage in 

the state, significant fertilizer loss to the environment is routinely observed, leading to environmental 

issues and human health concerns (Alexander et al., 2007; Nolan and Hitt, 2006). 

Due to the excessive amount of N and P entering the Mississippi River Basin, the US EPA set a 

goal for states within the Midwest to reduce the amount of nutrients entering waterways. The IL 

Nutrient Loss Reduction Strategy recognizes the implementation of CC’s as the most promising in-field 

strategy to help reduce the N load by 2025 (IL-NLRS, 2015). Cover crops can include legumes, grass, 

mustards, or mixtures of those species grown to improve soil quality; improvements in soil erosion, 

structure, and fertility; pest suppression; and decreased nutrient leaching from the root zone (Kaspar 
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et al., 2012; Sainju et al., 2002; Snapp, 2005; Villamil et al., 2008; Villamil et al., 2006). In Illinois, Villamil 

et al. (2008; 2006) found that after three corn-soybean rotation cycles with and without CC’s, a mixture 

of cereal rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) drilled into crop stubble each year 

increased soil organic carbon, nutrient retention, and water aggregate stability compared to winter 

fallows.  

Despite the need for proactive efforts in the US Midwest region to reduce N and P entering 

waterways, low rates of voluntary adoption of CC’s continues (Dozier et al., 2017; Plastina et al., 2018; 

Roth et al., 2017). Several CC species have been shown to lower N-NO3 levels in the soil by taking up the 

N and sequestering it into their biomass, therefore, reducing the N that can reach waterways (Drury et 

al., 2014b; Kladivko et al., 2014; Malone et al., 2014) or be lost to the environment through gaseous 

pathways (Baggs et al., 2000; Basche et al., 2016a; Mitchell et al., 2013; Snyder et al., 2009). In a meta-

analysis conducted by Tonitto et al. (2006) comparing CC’s to bare fallow, N-NO3 leaching was reduced 

on average by 70% and 40% utilizing grass and legume CC species, respectively. Similarly, Dozier et al. 

(2017) found that in Illinois following a corn-soybean, a 42% reduction in available soil N can be achieved 

using cereal rye following corn and hairy vetch following soybean cash crops; cereal rye can also help 

mitigate N2O production by reducing the amount of N-NO3 in a system (Dabney et al., 2001; Millar et 

al., 2010). Cover crops can also mitigate N2O production taking up soil water in their living plant tissue 

because the decrease in soil water would not favor conditions of denitrification through which N2O can 

be produced (Basche et al., 2016a; Basche et al., 2014; Davidson et al., 2000). Following CC suppression, 

the decomposition of CC residues in the presence of oxygen would allow for mineralization or 

immobilization of the residue N (Aulakh et al., 1992; Basche et al., 2014). 

Another mitigation technique found to reduce N2O emissions is utilization of crop rotation 

(Snyder et al., 2009; Zhao et al., 2016); in Illinois, N2O emissions were reduced by 35% from a corn-

soybean rotation compared to continuous corn, with an added yield increase of 20% (Behnke et al 

2018). Other Midwestern studies have concluded that rotated corn exhibits greater yield stability 

compared to continuous corn due to moisture or temperature stresses (Al-Kaisi et al., 2015; Gentry et 
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al., 2013; Wilhelm and Wortmann, 2004) and significant yield gains are routinely witnessed (Daigh et 

al., 2018; Gentry et al., 2013). Increased N2O emissions from continuous corn compared to rotated corn 

have been linked to increased fertilizer use associated with continuous corn (Adviento-Borbe et al., 

2007; Eichner, 1990; Halvorson et al., 2008; Hoben et al., 2011; McSwiney and Robertson, 2005; Smith 

et al., 2011). Numerous studies have documented that increasing the N fertilization rate will increase 

N2O emissions (Bouwman et al., 2002; Eichner, 1990). Fertilizer N stimulates N2O production by 

providing a substrate for microbial N conversion through nitrification and denitrification (Norton, 2008; 

Venterea et al., 2005). Nitrification occurs when ammonium (N-NH4) is either added to the soil in the 

form of fertilizers, during biological N fixation, or as mineralized soil organic matter (Paustian et al., 

2016). Nitrification is a microbial process where N-NH4 is converted to nitrite and eventually to N-NO3; 

during this process, small quantities can be lost as N2O (Snyder et al., 2009). Additionally, in 

environments of low soil oxygen, denitrifying microbes use N-NO3 as a terminal electron acceptor and 

N2O emissions can occur as N2O is an intermediate step in the full denitrification process to N2 gas 

(Aulakh et al., 1991; Paustian et al., 2016; Robertson et al., 2007). 

Historically, tillage is an important tool used to enhance crop production through the 

incorporation of crop residues into the soil, leading to increased aeration and temperature, expediting 

the breakdown of organic matter and nutrient release. In the highly fertile soils in northwestern Illinois, 

chisel tillage was found to increase yields compared to NT (Behnke et al., 2018b); however, Daigh et al. 

(2018) found that there were no differences between chisel tillage and NT throughout much of the 

Midwest. Likewise, the inclusion of CCs did not affect yields in  corn (Miguez and Bollero, 2005) or 

soybeans (Ruffo et al., 2004). In NT systems, however, the accumulated residues following CC 

suppression may exacerbate conditions of high soil moisture common in the spring, which can lead to 

N2O production. 

Management practices of crop rotation, tillage, and CC implementation affect the soil 

environment which leads to GHG production. Relatively few CC studies have been conducted in Illinois 

and none contain GHG measurements. In a meta-analysis conducted by Basche et al. (2014) comparing 
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N2O emissions from CCs, the type of CC was shown to have an effect on N2O emissions; legume species 

were found to increase N2O emissions, while non-legume species had little to no effect on N2O 

emissions. This meta-analysis covered much of the available data at the time (2014); however, only 26 

studies were included in their analysis. With mixed results from CC studies, more work is needed to 

understand their effects on GHG emissions, especially in Illinois.  

First, we hypothesized that CC growth, regardless of species, will reduce N2O emissions 

compared to a fallow control by scavenging residual soil N that could be used as a substrate in 

denitrification. Second, we hypothesized that chisel tillage will not increase N2O and CH4 emissions 

compared to NT due to enhanced soil aeration; conversely, chisel tillage will increase CO2 emissions due 

to enhanced residue breakdown and subsequent soil respiration. Hence the objective of this study was 

to evaluate the effects of five different CC rotations and tillage practices on GHG emissions, soil N, and 

crop yields. 

4.2. Materials and Methods 

4.2.1. Site Characterization and Management 

 The study was established in the fall of 2012 at the University of Illinois, Crop Sciences Research 

and Education Center in Savoy, IL (40°05’73” N, –88°22’73” W). The experimental plots were located 

within the Drummer-Flanagan-Catlin soil catena (Soil-Survey-Staff, 2018) with 70% of the plot area 

containing Drummer silty clay loam (fine-silty, mixed, superactive, mesic, Typic Endoaquoll), 20% 

containing Flanagan silt loam (fine, smectitic, mesic, Aquic Argiudoll), and 10% containing Catlin silt loam 

(fine-silty, mixed, superactive, mesic, Oxyaquic Argiudoll). Two adjacent fields were initiated into a corn-

soybean rotation and rotated annually; experimental plots were set up inside each crop rotation. Corn 

and soybean plots were planted in May or early June depending on field conditions (Table 4.1). Corn 

plots received pre-plant incorporated urea ammonium nitrate (UAN) at a rate of 190 kg N ha−1. Following 

glyphosate [N-(phosphonomethyl)glycine] burndown (1.12 kg a.i. ha-1) to suppress CC growth, weed 

biomass was negligible in all plots. Tillage (T) was conducted with a chisel plot 20 to 25 cm deep in the 

spring following CC suppression and before planting. No-till plots had zero tillage done. For a full 

description of the site see Dozier et al. (2017). 
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Cover crops were broadcast-seeded by hand into the standing cash crop in early to mid-September 

(Table 4.1). Seeding rates and suppression dates were selected using the online decision tool developed 

by the Midwest Cover Crop Council (MCCC) [online at: 

http://mccc.msu.edu/covercroptool/covercroptool.php]. Thus, 5.6 kg ha-1 for rape (Brassica napus L.); 

9 kg ha-1 for radish (Raphanus sativus L.); 16.8 kg ha-1 for annual ryegrass (Lolium multiflorum Lam); 67.2 

kg ha-1 for spring oat (Avena sativa L.); 100 kg ha-1 for cereal rye ; 22.4 kg/ha for each red clover (Trifolium 

pratense L.); and hairy vetch . However, some of the CC species were selected specifically to be seeded 

into corn or soybean; the CC species selection process included no legume preceding the soybean crop 

and no cereal rye preceding the corn crop. Red clover was included as soybean red clover – corn spring 

oat rotation, where red clover was seeded into standing the soybean crop and spring oat was seeded 

into the standing corn crop. Likewise, hairy vetch was seeded into the standing soybean crop and cereal 

rye was seeded into the standing corn crop. Thus, red clover and hairy vetch were not directly sampled 

in this study as all sampling was conducted following the corn phase of the corn soybean rotations. 

However, the interactions due to growing a cover crop rotation cannot be ignored. Therefore, the CC 

rotations included were as follows: (1) CrpSrp, rape following both corn and soybean; (2) CcrShv, cereal 

rye following corn, hairy vetch following soybean; (3) CT, fallow control; (4) CrdSrd, radish following 

both corn and soybean; (5) CarSar, annual ryegrass following both corn and soybean; and (6) CsoScl, 

spring oats following corn, clover following soybean. Fall stand counts of CCs (plants m-2) were taken in 

early to mid-November (Table 4.1) in 2014, 2015, and 2016 using three random tosses of a 0.25 m2 

quadrat to estimate the number of CCs growing in each plot prior to winterkill. Spring CC biomass 

samples were collected following the same 0.25 m2 quadrat tosses in late April to early May (Table 4.1). 

The CC biomass (g m-2) that survived the winter was cut at ground level and oven-dried at 60˚C and 

weighed; CC biomass results are expressed as Mg ha-1. Corn yields (Mg ha-1) were taken using an Almaco 

(Nevada, IA) plot combine and adjusted to 15% moisture. 
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Table 4.1. Field event dates from Savoy, IL throughout the duration of the study. Greenhouse gas (GHG) measurements began in the previous year 
following corn harvest. 

Field Event Type 2012 2013 2014 2015 2016 2017 
Broadcast seeding date of 

cover crop (CC) 10/1/2012 9/16/2013 9/17/2014 9/17/2015 9/7/2016 N/A 

CC stand count N/A N/A 11/20/2014 11/3/2015 11/11/2016 N/A 
Fall soil sampling 11/16/2012 12/12/2013 12/15/2014 11/4/2015 11/16/2016 N/A 
Biomass sampling N/A 5/6/2013 4/25/2014 4/27/2015 4/25/2016 4/11/2017 

Spring soil sampling N/A 6/21/2013 5/5/2014 4/30/2015 4/29/2016 4/21/2017 
CC suppression N/A 5/7/2013 5/20/2014 4/29/2015 5/19/2016 4/12/2017 

Spring tillage of T plots1 N/A 6/5/2013 5/20/2014 5/21/2015 5/24/2016 5/17/2017 

Planting date of corn2 4/12/2012 6/6/2013 5/21/2014 5/22/2015 5/25/2016 5/18/2017 
Harvest of corn N/A 10/29/2013 11/3/2014 10/9/2015 10/28/2016 10/16/2017 

GHG sampling dates N/A N/A 12/4/2013 
to 5/1/2014 

12/17/2014 
to 5/1/2015 

12/10/2014 
to 5/2/2016 

2/17/2014 
to 

4/21/2017 
Number of GHG sampling 

events N/A N/A 5 7 5 4 

1 Tillage was conducted with a chisel plow 20-25 cm deep in plots designated as tilled; no-till received zero tillage. 
2 Pre-plant N fertilizer was applied at a rate of 190 kg N ha-1. 
N/A, not applicable. 
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4.2.2. Gas Sampling Procedures 

 Soil GHG emissions were taken periodically during the period following corn harvest and CC 

suppression beginning in the fall of 2013 and ending in the spring of 2017. The number of sampling 

events by year is included in Table 1. Greenhouse gas sampling followed the GRACEnet chamber-based 

trace gas flux measurement protocol (Parkin and Venterea, 2010). Beginning in December 2013, 

0.031m2 polyvinyl chloride (PVC) white chamber bases were installed in 48 plots following harvest of 

the corn cash crop. The chamber bases were left in the field and were removed before subsequent cash 

crop planting. Soil GHG measurements were taken and analyzed following the procedure explained in 

Behnke et al. (2018b).  

4.2.3. Soil Sampling and Analysis 

Two soil cores (0 to 10 cm depth) were collected from each plot and each sampling event during 

gas sampling, composited, and then analyzed for available N concentrations in N-NH4 and N-NO3 . 

Concentrations of N-NH4 and N-NO3–N from soil extracts (1 M KCl) were measured colorimetrically by 

flow injection analysis with a Lachat Quick-Chem 8000 (Lachat Quickchem Analyzer, Lachat Instruments, 

Loveland, CO, USA) in years 2013-2015 and a SmartChem 200 (Westco Scientific Instruments, Inc., 

Danbury, CN, USA) in years 2015-2017. The trapezoidal integration protocol described in Venterea et al. 

(2011) was used to calculate intensity measurements for soil N-NH4 (mg-N kg-1day-1); soil N-NO3 (mg-N 

kg-1day-1); N2O (kg-N ha-1 year-1); CO2 (kg-C ha-1 year-1); and CH4 (kg-C ha-1 year-1). The dates used for 

intensity calculations ranged from the beginning of December to the beginning of May (Table 1). Soil 

moisture content (%), determined gravimetrically, (Carter, 1993) was taken at each GHG sampling event 

to correct inorganic N analyses.  

4.2.4. Experimental Design and Data Analysis 

The experiment aimed to test the effect of tillage and CC rotations on GHG emissions, soil 

available N, and crop yields following five years of management. The experimental design was a split-

block arrangement of tillage (whole plots, NT and T) and CC rotation treatments (subplots) in a RCBD 

with four replications. Side by side fields were used each year to have each phase of the corn soybean 

rotations present each year. Tillage plots were split into subplot treatments of CCs, 3m by 12.5 m and 
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each comprising a cash crop–CC rotation that was maintained across years. The field used in GHG 

sampling and yields alternated each year, following the corn phase of the corn-soybean rotations. The 

total number of observations included in the dataset from 2013 to 2017 is included in Appendix C (Table 

C.1). 

Linear mixed models were performed using the GLIMMIX procedure of SAS software version 

9.4 (SAS Institute, Cary, NC). Rotations with CCs, tillage, and years were analyzed as fixed factors, while 

blocks were considered random terms. Year was chosen to be analyzed as a fixed factor due to 

contrasting weather environments between the first two years and the last two years.  Model residuals 

were not normally distributed, thus GHG emissions, soil available N, and yields were analyzed using a 

lognormal distribution link function (dist=logn) within the model statement in GLIMMIX, with a 

Kenward-Rogers adjustment to the degrees of freedom (ddfm=kr) to account for model complexity and 

missing data (Gbur, 2012). Least square means were separated using the lines option of LSMEANS and 

adjusted using Bonferroni adjustment using an alpha=0.1; Fisher’s least significant differences (LSD) are 

included for comparisons within treatments. Only descriptive statistics of means and standard errors 

are reported for CC biomass and stand counts due to non-estimable ls means among years, caused by 

missing data in years where CCs did not grow. It is important to note that not all CC species were 

selected to overwinter, as producers may favor those that do not increase workload in the spring, so 

spring biomass was not expected for rotations with either rape or radish. Simple linear regressions 

between variables were conducted using POC REG in SAS 9.4. An analysis of variance table is included 

to summarize probabilities associated to main effects and interactions for the experiment (Table 4.2). 

4.3. Results 

4.3.1. Weather and Cover Crop Establishment  

Temperatures in November of 2013 and 2014 were below the historic average recorded 

minimum temperatures of -3.7˚C on 25 October 2013 and -4.4˚C on 2 November 2014 (Fig. 4.1) (ISWS, 

2018). Precipitation values for November 2013 to 2016 were 36, 66, 117, and 87 mm, respectively; the 

historical average is 84 mm for November, so two years were below the average and two were at or 

above the average. Mean temperatures in November from 2013 to 2016 were 3.6, 1.7, 7.8, and 7.9 ˚C, 
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respectively; the historic average is nearly 6 ˚C, hence again, the first two years were below the average 

and the last two years were above the average temperature for the month of November. Mean 

temperatures in January and February of 2014 were -6.9 and -6.7 ˚C, respectively and March was 1.4 ˚C. 

Likewise, temperatures in January and February of 2015 were on average -3.7 and -6.7 ˚C, respectively 

and March was 3.4 ˚C. The historical means for January, February, and March are -2.8, -0.4, and 5.2 ˚C, 

respectively. March precipitation for 2013-2015 was below average at 40.3 mm, compared to an 

average March of 77.5 mm.  

Fall CC stand counts and spring CC biomass experienced no observable CC growth, so our 

statistical analyses are limited to presentation of treatment means and standard errors and were not 

included in the analysis of variance table (Table 4.2). The following statements regarding CC stand 

counts and spring biomass are not intended to reflect statistical significance since linear models could 

not be fit to these variables. Stand count for CC species was negligible for fall of 2013 and was not 

included in Table 4.3. Stand counts in fall 2014 averaged nearly 75 plants m-2 for tillage and 70 plants m-

2 for NT. Fall CC stand counts in 2015 averaged 253 and 272 plants m-2 for till and NT respectively. Fall 

2016 stand counts were 54 and 45 plants m-2 for till and NT, respectively. Averaged across years (2014 

to 2016), CarSar averaged nearly 220 plants m-2, followed by CcrShv at 155 plants m-2, then CsoScl at 

138 plants m-2, then CrdSrd 65 plants m-2, and finally CrpSrp at 50 plants m-2. Stand counts were greatest 

for all CC species in the fall of 2015 compared to 2014 and 2016.  

Spring CC biomass in 2014 was only observed in the CcrShv plots at 0.46 Mg ha-1 (Table 4.4). 

Spring CC biomass in 2015 was lower for CcrShv at 0.17 Mg ha-1, but CarSar and CrpSrp also experienced 

some biomass accumulation at 0.24 and 0.10 Mg ha-1, respectively. Spring CC biomass in 2016 was the 

greatest at 2.5, 2.48, and 1.74 Mg ha-1 for CcrShv, CarSar, and CrpSrp, respectively. Spring CC biomass 

in 2017 only saw CcrShv and CarSar biomass growth at 1.86 and 1.76 Mg ha-1, respectively. Tillage 

increased CC biomass in years 2014, 2015, and 2017 (0.49 vs 0.43; 0.26 vs 0.18; and 1.89 vs 1.73 Mg ha-

1, respectively), while 2016 observed an advantage of NT compared to tillage (2.67 vs. 2.03 Mg ha-1). Fall 
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stand counts and spring CC biomass were positively correlated (p < 0.0001; r2 = 0.27).  There was no 

observable spring CC biomass for the CrdSrd or CsoScl CC rotations in any year.  

 
Figure 4.1. (A) Precipitation (mm) and (B) temperature (˚C) from 2013 to 2017 during the study along 
with the respective historical averages for the 1989 to 2012 period. Source: Illinois State Water Survey 
(2018).  
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Table 4.2. Analysis of variance results to assess the effect of year, tillage, cc rotation, and their 
interactions for each variable from Urbana, IL. 

Factors 
N2O CO2 CH4 N-NO3 N-NH4 Corn Yield 

DF 
P-

Value DF 
P-

Value DF 
P-

Value DF 
P-

Value DF 
P-

Value DF 
P-

Value 
Year 3 <.0001 3 <.0001 3 <.0001 3 <.0001 3 <.0001 4 <.0001 
Tillage 1 0.424 1 0.832 1 0.25 1 0.115 1 0.780 1 0.028 
Year*Tillage 3 0.424 3 0.321 3 0.547 3 0.007 3 0.912 4 0.082 
CC 5 0.626 5 0.413 5 0.634 5 0.422 5 0.725 5 0.104 
Year*CC 15 0.314 15 0.561 15 0.216 15 0.464 15 0.413 20 0.753 
Tillage*CC 5 0.200 5 0.527 5 0.455 5 0.853 5 0.520 5 0.868 
Year*Tillage*CC 15 0.901 15 0.952 15 0.682 15 0.988 15 0.936 20 0.538 

 

Table 4.3. Means and standard errors associated with cover crop stand counts (plants m-2) for each 
species and tillage option taken in the fall of 2014 to 2016. Fall 2013 counts were negligible and they 
are not included in this table. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Cover crop1  Tillage2  
Fall 2014 Fall 2015 Fall 2016 

Mean SEM3 Mean SEM Mean SEM 
CrpSrp   44.83 10.28 98.50 8.89 5.71 0.48 
CcrShv  39.33 4.81 371.67 33.13 54.17 7.90 
CT  .4 . . . . . 
CrdSrd  62.67 5.59 88.83 6.91 44.17 6.18 
CarSar  176.17 15.04 366.67 42.97 112.33 17.59 
CsoScl  7.33 1.15 388.17 53.62 17.11 9.95 
  T 74.89 16.27 253.27 36.13 54.22 11.74 
  NT 70.30 13.90 272.27 39.67 44.84 10.06 
1 CrpSrp, rape following both corn and soybean; CcrShv, cereal rye 
following corn, hairy vetch following soybean; CT, fallow control; CrdSrd, 
radish following both corn and soybean; CarSar, annual ryegrass following 
both corn and soybean; CsoScl, spring oats following corn, clover following 
soybean. 
2 T, chisel till; NT, no-till. 
3 SEM, standard error of the mean values. 
4 no observable biomass. 
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Table 4.4. Mean values of cover crop biomass dry weight (Mg ha-1) determined each year, for each 
cover crop rotation and each tillage option (NT and T). 

Cover crop1  Tillage2  
Spring 2014 Spring 2015 Spring 2016 Spring 2017 

Mean SEM3 Mean SEM Mean SEM Mean SEM 
CrpSrp   .4 . 0.10 .5 1.74 0.18 . . 
CcrShv  0.46 0.06 0.17 0.08 2.5 0.27 1.86 0.16 
CT  . . . . . . . . 
CrdSrd  . . . . . . . . 
CarSar  . . 0.27 0.04 2.48 0.33 1.76 0.08 
CsoScl  . . . . . . . . 
  T 0.49 0.06 0.26 0.06 2.03 0.12 1.89 0.14 
  NT 0.43 0.04 0.18 0.05 2.67 0.31 1.73 0.11 
1 CrpSrp, rape following both corn and soybean; CcrShv, cereal rye following corn, hairy 
vetch following soybean; CT, fallow control; CrdSrd, radish following both corn and 
soybean; CarSar, annual ryegrass following both corn and soybean; CsoScl, spring oats 
following corn, clover following soybean. 

2 T, chisel till; NT, no-till. 

3 SEM, standard error of the mean values. 
4 no observable biomass. 
5 only 1 observation so SEM was not possible. 

 

4.3.2. Greenhouse Gas Emissions 

All GHG emissions (N2O, CO2, and CH4) included in this study experienced a significant main 

effect due to year (Table 4.2). Back transformed mean N2O emissions from 2014 to 2017 ranged from 

0.28 to 1.68 kg-N ha-1 and observed a significant (α = 0.1) main effect of year (p ≤ 0.0001) (Table 4.5). 

Emissions of N2O for the first two years (2014 and 2015) were around 5 times more that emissions 

measured during the last two years of the study (2016 and 2017). No effect due to tillage, CC species, 

or their interaction effect was detected. Spring CC biomass and N2O emissions were negatively 

correlated (p < 0.0001; r2 = 0.31).   

Similar to N2O, back transformed mean CO2 emissions from 2014 to 2017 identified a significant 

main effect of year (p < 0.0001) (Table 4.5). Mean CO2 emissions ranged from 127.10 to 1160.26 kg-C 

ha-1 (Table 4.5). The lowest CO2 emission years were 2015 and 2017 and were 2.5 times and 8 times 

lower compared to 2016 and 2014, respectively. Like N2O, no effect or interaction due to tillage or CC 

species was detected. The last GHG measured was CH4, which also experienced a significant main effects 
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of year (p ≤ 0.0001) (Table 4.5). Back transformed mean CH4 emissions ranged from 0.47 to 2.28 kg-C 

ha-1 with 2015 being significantly lower compared to the other years by 4 times. Similarly, CH4 

experienced no effect or interaction caused by tillage or CC species. Neither CO2, nor CH4 emissions 

correlated to spring CC biomass (p = 0.4014, r2 = -0.005; and p = 0.1766, r2 = 0.02, respectively). 

4.3.3. Soil Inorganic Nitrogen 

 Soil N-NO3 experienced a significant year*tillage interaction and soil N-NH4 experienced a 

significant main effect of year (Table 2). Back transformed mean N-NO3 during 2014 to 2017 ranged 

from 0.08 to 1.19 g-N kg-1 day-1 and observed a significant interaction between year and tillage (p = 

0.0065) (Table 4.5). 2014 observed the greatest soil N-NO3 for both the T and NT treatments at 1.16 and 

1.19 g-N kg-1 day-1. Each year the N-NO3 decreased significantly, except for the 2015 T interaction as it 

was not different from 2014 (Table 4.5). Spring CC biomass and N-NO3 were negatively correlated (p < 

0.0001, r2 = 0.24). Conversely, N2O emissions were positively correlated to N-NO3 (p < 0.001, r2 = 0.31). 

Mean N-NH4 during 2014 to 2017 ranged from 0.38 to 7.90 g-N kg-1 day-1 and observed a significant 

main effect of year (p ≤ 0.0001) (Table 4.5). Each year was significantly different with 2016 comprising 

the largest N-NH4. 

4.3.4. Corn Yields 

 Corn yields experienced a marginally significant year*tillage interaction (p<0.08) as well as a 

marginally significant main effect of the CC species (p < 0.10) (Table 4.2). Back transformed mean corn 

yield during 2013 to 2017 ranged from 3.60 to 14.05 Mg ha-1 (Table 4.5). The greatest yield occurred in 

2014 with 13.82 and 14.28 Mg ha-1 occurring from the T and NT treatments, respectively. Overall, tillage 

increased yields by 0.64 Mg ha-1. The marginal effect of CC species was due to CarSar lowering yields by 

approximately 1.0 Mg ha-1 compared to the other CC species and the fallow control (Table 4.5). Spring 

CC biomass and corn yield were negatively correlated (p < 0.0001, r2 = 0.28).  



 
 

55 
 

Table 4.5. Least square means and back-transformed mean values (within parentheses) of GHG emissions, soil available N intensity, and corn yield by 
year, tillage practice, and cover crop species during 2013 - 2017 from Urbana, IL. Within a column and below the effect or interaction, Fisher’s least 
square difference (LSD) values are included; significance is set at α = 0.10. 

Year1 Tillage2 Cover Crop 
Rotation3 

N2O   CO2   CH4   NO3   NH4   Corn Yield 
(kg N ha-1)   (kg C ha-1)   (kg C ha-1)   (g N kg-1 day-1)   (g N kg-1 day-1)   (Mg ha-1) 

2013 
  

.4  .  .  .  .  2.24 (9.38) 
2014 

  
0.52 (1.68)  7.06 (1160.26)  0.50 (1.64)  0.16 (1.17)  -0.96 (0.38)  2.64 (14.05) 

2015 
  

0.47 (1.60)  4.85 (127.10)  -0.76 (0.47)  -0.28 (0.76)  -0.20 (0.82)  2.17 (8.75) 
2016 

  
-1.02 (0.36)  5.93 (377.43)  0.82 (2.28)  -1.04 (0.35)  2.07 (7.90)  1.32 (3.74) 

2017 
  

-1.28 (0.28)  5.13 (169.76)  0.63 (1.88)  -2.44 (0.09)  0.53 (1.69)  2.33 (10.27)    
LSD = 0.29  LSD = 0.43  LSD = 0.46  LSD = 0.18  LSD = 0.17  LSD = 0.06  

‡NT 
  

-0.37 (0.69)  5.76 (318.17)  0.39 (1.47)  -0.81 (0.44)  0.34 (1.41)  2.10 (8.93) 
T 

  
-0.29 (0.75)  5.72 (305.48)  0.21 (1.23)  -0.99 (0.37)  0.37 (1.45)  2.18 (9.57) 

   LSD = 0.20  LSD = 0.36  LSD = 0.31  LSD = 0.19  LSD = 0.22  LSD = 0.05  
2013 NT 

 
.  .  .  .  .  2.18 (8.80) 

2013 T 
 

.  .  .  .  .  2.30 (10.00) 
2014 NT 

 
0.48 (1.61)  7.22 (1370.87)  0.70 (2.02)  0.18 (1.19)  -1.01 (0.36)  2.66 (14.28) 

2014 T 
 

0.56 (1.75)  6.89 (981.91)  0.29 (1.33)  0.15 (1.16)  -0.90 (0.40)  2.63 (13.82) 
2015 NT 

 
0.49 (1.62)  4.87 (129.72)  -0.71 (0.49)  -0.33 (0.72)  -0.21 (0.81)  2.11 (8.25) 

2015 T 
 

0.46 (1.58)  4.82 (124.54)  -0.81 (0.45)  -0.23 (0.79)  -0.19 (0.83)  2.23 (9.29) 
2016 NT 

 
-0.98 (0.37)  5.72 (305.61)  0.75 (2.12)  -0.78 (0.46)  2.06 (7.83)  1.28 (3.60) 

2016 T 
 

-1.07 (0.34)  6.41 (466.15)  0.90 (2.45)  -1.31 (0.27)  2.07 (7.96)  1.36 (3.88) 
2017 NT 

 
-1.46 (0.23)  5.24 (188.59)  0.80 (2.23)  -2.32 (0.10)  0.53 (1.70)  2.27 (9.73) 

2017 T 
 

-1.10 (0.33)  5.03 (152.80)  0.46 (1.59)  -2.56 (0.08)  0.52 (1.68)  2.38 (10.84)    
LSD = 0.41  LSD = 0.63  LSD = 0.66  LSD = 0.30  LSD = 0.31  LSD = 0.10     

 
 

CrpSrp -0.19 (0.83)  5.57 (262.91)  0.25 (1.30)  -0.82 (0.44)  0.41 (1.50)  2.18 (8.84) 
 

 
CcrShv -0.38 (0.69)  6.01 (408.50)  0.23 (1.24)  -1.04 (0.35)  0.36 (1.43)  2.15 (8.60) 

 
 

CT -0.46 (0.63)  5.66 (287.06)  0.16 (1.23)  -0.91 (0.40)  0.29 (1.34)  2.16 (8.70) 
 

 
CrdSrd -0.47 (0.63)  5.42 (226.65)  0.55 (1.71)  -0.93 (0.40)  0.44 (1.55)  2.18 (8.82) 

 
 

CarSar -0.28 (0.75)  6.05 (423.60)  0.11 (1.13)  -0.91 (0.40)  0.31 (1.36)  2.03 (7.63) 
 

 
CsoScl -0.20 (0.82)  5.74 (310.35)  0.49 (1.72)  -0.80 (0.45)  0.34 (1.41)  2.14 (8.46) 

      LSD = 0.41   LSD = 0.68   LSD = 0.61   LSD = 0.24   LSD = 0.21   LSD = 0.115 
1 2013, fall 2012 - spring 2013; 2014, fall 2013 - spring 2014; 2015, fall 2014 - spring 2015; 2016, fall 2015 - spring 2016; 2017, fall 2016 - spring 2017. 
2 NT, no-till; T, chisel till. 

3 CrpSrp, rape following both corn and soybean; CcrShv, cereal rye following corn, hairy vetch following soybean; CT, fallow control; CrdSrd, radish following both corn and 
soybean; CarSar, annual ryegrass following both corn and soybean; CsoScl, spring oats following corn, clover following soybean. 

4 no data taken. 

5 marginally significant. 
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4.4. Discussion 

4.4.1. Cover Crop Growth 

 This study is the lone experiment investigating the effects of tillage and CC rotations on GHG 

emissions and crop yields in the state of Illinois to date; likewise, this is one of few of its kind in the 

Midwest region. Establishment of CC species in the fall of 2013 was poor and stand counts were 

negligible for all species and were not reported; lower than average temperatures and precipitation 

(Fig. 4.1) likely caused the lack of CC stand in the fall of 2013. A similar weather pattern occurred in fall 

2014 resulting in a low CC stand count. Due to the low establishment of CC species in the fall, subsequent 

spring biomass was negatively affected. Temperatures in January, February, and March of 2014 were 

abnormally cold and the only CC species to produce spring biomass was CcrShv (Table 4.4). In a review 

of other studies in the Midwest, Appelgate et al. (2017) found that rye species accounted for more than 

79% of the spring biomass accumulation due to its ability to survive most winters in this region. The 

CrdSrd rotation was not expected to over-winter as is common for that species. Similar to 2014, cold 

temperatures in January, February, and March of 2015 impeded spring biomass growth and was very 

low; however, CarSar and CrpSrp did survive the winter as did CcrShv again. Due to a lack of cold 

tolerance, Appelgate et al. (2017) found that rape, oat, and radish have limited potential as CC species 

in the Midwest due to high rates of winterkill (Appelgate et al., 2017). In addition, at the same site, 

Dozier et al. (2017) concluded that the seeding method coupled with poor fall growing conditions was 

likely the reasoning for the poor fall CC establishment. 

Contrary to the previous two years, warmer than average temperatures in the fall of 2015 and 

timely November precipitation events created conditions for successful fall CC stands. As a result, spring 

2016 biomass was the largest recorded in this study with CcrShv, CarSar, and CrpSrp all successfully 

overwintering and producing 2-3 Mg ha-1 in biomass for each CC species. Several studies in the Midwest 

have observed CC biomass in excess of 2 Mg ha-1 (Appelgate et al., 2017; Kaspar and Bakker, 2015; 

Kaspar et al., 2012). Similarly, in the fall of 2016, warmer November temperatures allowed for successful 

CC establishment; coupled with warmer than average February and March temperatures, spring 
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biomass near 2 Mg ha-1 was observed for CcrShv and CarSar. A lack of consistent fall CC growth in our 

study indicates that simulated aerial seeding may be a poor CC planting technique in central Illinois. This 

likely affected CC growth patterns and may have led to lowered fall stand counts and subsequent spring 

biomass production.  

4.4.2. Environmental effects 

 The limited CC growth affected the ability of CCs to successfully intercept soil N-NO3 and 

subsequently negatively affected N2O emissions. The negative correlation between spring biomass and 

soil N-NO3 (p < 0.0001, r2 = 0.24) suggests that when CC biomass occurs, soil N-NO3 can be reduced. 

Likewise, a similar negative correlation between spring CC biomass and N2O (p < 0.0001, r2 = 0.31) 

suggests that when CC biomass occurs, N2O emissions can be reduced. Emissions of N2O during the first 

two years (2014 and 2015) were significantly larger compared to the last two years (2016 and 2017) 

1.64 vs 0.32 kg-N ha-1 (Fig. 4.3). Mitchell et al. (2013), found that the mechanism behind this is likely due 

to soil N-NO3 uptake by CCs; this would decrease substrate needed for denitrification (Baggs, 2000, 

Snyder, et al., 2009). Also, by allowing CC residue to decompose on the soil surface with oxygen 

available, mineralization or immobilization of the residue N can occur and denitrification should be 

reduced (Aulakh et al., 1992; Basche et al., 2014). Tillage treatment was found to have no effect on N2O 

emissions; this has been observed in other studies comparing the effect of conventional tillage to NT 

(Rochette et al., 2008; Snyder et al., 2009; Venterea et al., 2005). It is important to note that we did not 

sample GHG emissions following CC residue incorporation, or not in the case of NT, so those effects 

cannot be inferred from this study. 

In this study, the increase in N2O emissions during the first two years is likely related to the lack 

of CC biomass growth suppressed by adverse weather. Due to the extreme cold in the winters of 2014 

and 2015, the lack of spring CC biomass resulted in less N-NO3 taken up in actively growing CCs providing 

the substrate needed for N2O emissions. In the springs of 2016 and 2017, warmer winters allowed for 

actively growing CC to take up N in their biomass, leaving less N in the soil for conversion to N2O.  This 

is corroborated by an observed positive correlation between N2O and N-NO3 (p < 0.0001, r2 = 0.31). 

Furthermore, actively growing CCs take up soil water in living plant tissue; the decrease in soil water 
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would not favor conditions of denitrification and therefore lower the amount of N2O produced (Basche 

et al., 2014; Davidson et al., 2000). The herbicide application error in 2016 led to an accumulation of N-

NH4 in the soil (Table 4.5), which resulted in the corn and weed species and subsequent CC species 

preferentially taking up much of the remaining N-NO3 that was available (Curran et al., 2018). This is 

supported by 2017 having the lowest N-NO3 values (0.09 g N kg-1 day-1). The lack of soil N-NO3 likely led 

to low N2O emissions in 2016 and 2017 due to an absence of available substrate for N2O emissions to 

occur. Our results also indicate that T reduced N-NO3 concentrations in only one of the years, 2016 

compared to NT; therefore, year was likely the driver of the interaction between year and tillage. 

 The largest CO2 emissions occurred in 2014 and were nearly four times as large as 2016 and 

nearly eight times as much as 2015 and 2017. This effect could be attributed to an increase in soil 

respiration due to a lack of CC growth and an increase in soil temperatures associated with bare soil 

compared to covered soil. Plant residues are known to have a higher albedo and thermal radiative 

properties compared to bare soil, causing lower temperature at the soil surface (Paustian et al., 2000); 

other studies have shown a positive correlation between CO2 and soil temperature (Behnke et al., 2012; 

Drury et al., 2006). Emissions of CH4 behaved similar to CO2 and were only different in 2015. Both CO2 

and CH4 experienced a lack of tillage effect; Behnke et al. (2018b) observed a similar result comparing 

chisel tillage to NT from various crop rotations in Illinois. Other studies in the Corn Belt (Illinois, Iowa, 

Indiana, Ohio, Minnesota, and Nebraska) detected comparable CO2 emission results (Drury et al., 2006; 

Johnson et al., 2010). 

4.4.3. Corn Yields 

 Mean corn yields were approximately 9 Mg ha-1 for the duration of the study. The interaction 

between year and tillage is likely driven by strong main effects of year and tillage because each year by 

tillage combination is not different; however, overall tillage increased yields by 0.64 Mg ha-1 (Table 4.5). 

Yield advantages associated with tillage has been observed in other Midwestern studies (Behnke et al., 

2018b; Halvorson et al., 2006; Parkin and Kaspar, 2006). Decreases in yield were observed following five 

or more years of NT  in a global meta-analysis conducted by Pittelkow et al. (2015) due to waterlogging 

and poor establishment, compaction, and nutrient deficiencies (Cid et al., 2014; Halvorson et al., 2006; 
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Rusinamhodzi et al., 2011). Results from this study suggest that in high organic matter soils with large 

amounts of corn residue, tillage increases yields.  

Furthermore, no interaction was observed between tillage and CC type, so the utilization of 

tillage to manage CC residue cannot be inferred. Corn yields were negatively correlated to CC biomass 

(p < 0.0001, r2 = 0.28), meaning that increased CC biomass led to a decrease in corn yields. This was 

likely due to a significant yield decrease of 1 Mg ha-1 associated with the CarSar rotation was observed 

compared to the other CC species and the control. Yield losses associated with CarSar were also 

observed from a farmer focus group with a location in Illinois (Plastina et al., 2018). Actively growing 

CCs can take up necessary water early in the growing season, which may have contributed to the 

negative correlation between yield and spring CC biomass. In a study observing different CC species and 

their effect on organic cropping rotations in IL, Welch et al. (2016) found that in years where soil water 

is limiting, certain CC mixtures take up soil water at the detriment of the subsequent cash crop. It is 

important to note that following the initial CC termination glyphosate application, an operator error in 

the spring of 2016 resulted in no herbicide being applied to the study leading to the very low mean corn 

yield of 3.74 Mg ha-1 (Table 4.5). The low yield during 2016 likely led to such a large year effect. We did 

not omit the 2016 year from our analysis because the application error occurred throughout the entire 

study. 

Overall, levels of N2O decreased with increasing CC biomass, confirming our hypothesis that CC 

growth will reduce N2O emissions. Tillage (chisel or NT) was found to have no effect on N2O and CH4 

emissions, confirming our hypothesis. Similarly tillage had no effect on CO2 emissions, contradicting our 

hypothesis. Results from this study indicate that weather greatly affects the potential benefits that CC 

can offer in IL. These benefits include reductions in soil N-NO3 and lowered N2O emissions when spring 

CC biomass occurs greater than 0.5 Mg ha-1. Annual ryegrass has the ability to survive most winters in 

IL and can reduce soil N; however, there is a slight yield reduction of around 12%. Future research should 

focus on CC mixtures that are more likely to overwinter successfully in Illinois, such as cereal rye, annual 
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ryegrass, and/or hairy vetch. In addition, seeding techniques that ensure good seed-to-soil contact are 

vital to allow for enough fall biomass to over winter successfully.  
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CHAPTER 5: CONCLUSIONS 

This dissertation is a compilation of two published works and the last will be submitted for 

publication studying the effects of cropping systems on GHG emissions. All three projects were 

conducted in Illinois on highly productive soils, but had different management treatments. 

Management treatments included in these studies were tillage versus no-till systems, various crop 

rotation systems versus continuous monoculture, and the inclusion of cover crops versus a fallow 

control. Crop rotation and the inclusion of CC’s into a system are some of the proposed tactics for 

reducing GHG emissions, so by studying the effects of each of these various cropping systems on GHG 

emissions, management recommendations can be supposed. 

The results presented in this dissertation and published in Behnke et al. (2018b) indicate that 

shifting from a continuous monoculture of corn or soybean alone to a crop rotational system will not 

only reduce GHG emissions, but will also increase yields for each year of the rotated crop. The reduction 

in GHG emissions is likely due to the decreased use of N fertilizer in non-corn years compared to high N 

input required by CCC. Specifically, rotated corn reduced N2O emissions by 2 kg N ha-1 compared to 

continuous corn. Another benefit of rotated corn is improved yield stability compared to CCC during 

poor environmental years. Soybean yields were also improved by rotating with corn compared to SSS; 

however, N2O emissions were not different between rotated soybean and SSS. Some possible reasons 

that rotated soybean compared to SSS are lower instances of diseases and changes in soil properties, 

such as an increase in WAS and better water infiltration due to increases in soil organic matter. For both 

corn and soybean, tillage was found to increase yields by aiding in the decomposition of residues 

common in high organic matter environments and providing a warmer and weed-free seedbed for 

emerging seedlings. Tillage also had no effect on GHG emissions compared to no-till in this study. 

 A further investigation into this crop rotation and tillage study was published in Behnke et al. 

(2018a) and revealed that increases in N2O emissions were correlated to low soil pH conditions, elevated 

levels of soil NO3 throughout the growing season, elevated levels of plant available water, and increased 

soil C levels. The crop rotation that closest resembles these conditions is CCC; the CCC system had the 

lowest soil pH and consequently had the greatest N2O emissions. Likewise, increases in CO2 emissions 
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were related to low soil pH, low levels of Ca, increased plant available water, higher levels of microbial 

biomass C, and lower WAS. However, these results are less evident compared to the N2O as the CCC 

rotation had the greatest CO2 emissions and the lowest soil pH, but had the lowest microbial biomass C 

and highest WAS. It is important to note that CO2 emissions were not different among corn rotations 

and only the CCC rotation was greater than SSS, but not different from rotated corn or rotated soybean. 

Emissions of CH4 were related to increased levels of microbial biomass C due to uptake of CH4 by soil 

microbes; CH4 emissions were not different among rotations or tillage. 

 The final chapter of this dissertation examined the inclusion of CC’s into a corn-soybean rotation 

system. Results indicate that of N2O emissions can be reduced when CC biomass is greater than 0.5 Mg 

ha-1; this is due to the uptake of soil N-NO3 by the actively growing CC, which reduces the substrate 

needed for N2O evolution. Similar to the crop rotation and tillage study from Monmouth, IL, the use of 

tillage was found to have no effect on GHG emissions when including CC’s or the fallow control. This 

study highlights the effect that weather has on the potential benefits that CC may offer in IL. Two of the 

four years, the weather was advantageous for CC growth and large amounts of CC biomass was recorded 

in CC species that successfully overwintered; however, the other two years, severe cold winters 

eliminated nearly all CC spring growth, negating potential benefits that the CCs could offer. One of the 

CC species included in this experiment was annual ryegrass; it has the ability to survive most winters in 

IL, but also reduced yields of the following cash crop by 12%.  

Combining the information from each of these three studies shows that utilizing a crop rotation 

(corn-soybean or corn-soybean-wheat) and the inclusion of a winter hardy CC species or mixture (cereal 

rye + hairy vetch) in IL has the potential to lower GHG emissions significantly. In addition, utilizing a crop 

rotation boosts yields for each subsequent cash crop and including a CC species does not negatively 

affect yields (excluding annual ryegrass). Therefore, my recommendation for growers in IL is to shift 

away from a continuous monoculture and into a crop rotation system. In highly productive soils, tillage 

was found to improve yields, but had no effect on GHG emissions. Including CC’s into a crop rotational 



63 
 

system may not provide a yield benefit, but does provide environmental benefits, such as reduced GHG 

emissions and lowered winter soil N-NO3 concentrations, which are subject to leaching.  
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APPENDIX A: SUPPLEMENTAL TABLES FOR CHAPTER 2 

Table A.1. Field event dates from Monmouth, IL over the duration of the study. Wheat plot operations 
began the previous year due to fall planting. 

Field event type 2012 2013 2014 2015 
Tilled wheat plots 3-Oct-2011 28-Sep-2012 2-Oct-2013 7-Oct-2014 

Planted wheat crop 3-Oct-2011 28-Sep-2012 3-Oct-2013 7-Oct-2014 
Fall wheat fertilization 24-Oct-2011 17-Oct-2012 21-Oct-2013 1-Nov-2014 
Fall tillage of corn and 

soybean plots1 8-Nov-2011 9-Nov-2012 4-Nov-2013 14-Nov-2014 
Spring wheat 
fertilization 20-Mar-2012 5-Apr-2013 

11-Apr-
20143 1-Apr-2015 

Secondary tillage in corn 
and soybean plots2 4-Apr-2012 1-May-2013 18-Apr-2014 24-Apr-2015 

Spring corn fertilization 18-Apr-2012 17-May-2013 22-Apr-2014 1-May-2015 
Corn planting 18-Apr-2012 16-May-2013 22-Apr-2014 1-May-2015 

Soybean planting 10-May-2012 24-May-2013 
22-May-

20144 13-May-2015 
Harvest of wheat 20-Jun-2012 10-Jul-2013 31-Jul-2014 10-Jul-2015 
Harvest of corn 24-Sep-2012 2-Oct-2013 30-Sep-2014 23-Sep-2015 

Harvest of soybean 27-Sep-2012 2-Oct-2013 7-Oct-2014 24-Sep-2015 
1 Chisel tillage used a disk-ripper 14" deep in plots designated as tilled; no till received zero 
tillage 
2 Secondary tillage used a field cultivator in plots designated as tilled; no-till received zero tillage 
3 Winter wheat crop was terminated due to poor stands stemming from harsh winter 
conditions; spring oats were planted 4/17/2014 and fertilized 4/11/2014 
4 Soybean plots receiving tillage had secondary tillage 5/8/2014 

 

Table A.2. Number of sampling events from Monmouth, IL by year and season. 

Season1 
Number of Observations 

2012 2013 2014 2015 
Spring 8 2 4 5 

Summer 9 9 8 13 
Fall 1 3 2 3 

1 Spring, March-May; Summer, June-August; Fall, 
September-November. 
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APPENDIX B: SUPPLEMENTAL TABLES FOR CHAPTER 3 

Table B.1. Field event dates from Monmouth, IL throughout the duration of the study. Wheat plot 
operations began in the previous year due to fall planting. 

Field Event Type 2012 2013 2014 2015 

Tilled wheat plots 1 3 October 
2011 

28 September 
2012 2 October 2013 7 October 2014 

Planting date of all 
wheat plots 

3 October 
2011 

28 September 
2012 3 October 2013 7 October 2014 

Fall wheat 
fertilization 

24 October 
2011 17 October 2012 21 October 

2013 
1 November 

2014 
Fall tillage of corn 

and soybean plots 1 
8 November 

2011 9 November 2012 4 November 
2013 

14 November 
2014 

Spring wheat 
fertilization 20 Mar 2012 5 April 2013 11 April 20143 1 April 2015 

Secondary tillage in 
corn and soybean 

plots 2 
4 April 2012 1 May 2013 18 April 2014 24 April 2015 

Spring corn 
fertilization 18 April 2012 17 May 2013 22 April 2014 1 May 2015 

Planting date of all 
corn plots 18 April 2012 16 May 2013 22 April 2014 1 May 2015 

Planting date of all 
soybean plots 10 May 2012 24 May 2013 22 May 20144 13 May 2015 

Harvest of all wheat 
plots 20 June 2012 10 July 2013 31 July 2014 10 July 2015 

Harvest of all corn 
plots 

24 September 
2012 2 October 2013 30 September 

2014 
23 September 

2015 
Harvest of all 
soybean plots 

27 September 
2012 2 October 2013 7 October 2014 24 September 

2015 
1 Chisel tillage used a disk-ripper 36-cm deep in plots designated as tilled; no-till 
received zero tillage.  
2 Secondary tillage used a field cultivator in plots designated as tilled; no-till received 
zero tillage.  
3 Winter wheat crop was terminated due to poor stands stemming from harsh winter 
conditions; spring oats were planted 17 April 2014 and fertilized 11 April 2014.  
4 Soybean plots receiving tillage had secondary tillage on 8 May 2014. 

 

Table B.2. Number of GHG sampling events from Monmouth, IL by year and season. 

Season 1 Number of Observations 
2012 2013 2014 2015 

Spring 8 2 4 5 
Summer 9 9 8 13 

Fall 1 3 2 3 
1 Spring, March-May; Summer, June–August; Fall, September–November. 
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Table B.3. Number of observations, season of sampling, and year of sampling originally included for 
each variable throughout the study (2012–2015) from Monmouth, IL. 

Variable No. of Obs. Season of Sampling 1 Year(s) of 
Sampling 

YdI 192 Summer & Fall 2012–2015 
N2O 2531 Spring, Summer, Fall & Winter 2012–2015 
CO2 2531 Spring, Summer, Fall & Winter 2012–2015 
CH4 2531 Spring, Summer, Fall & Winter 2012–2015 

Sand 176 Spring 2012 
Silt 176 Spring 2012 
Clay 176 Spring 2012 
Ho 1970 Spring, Summer, Fall & Winter 2013–2015 

PWP 192 Spring 2012 
PAW 192 Spring 2012 
BD 336 Spring 2014 

WAS 336 Spring 2014 
pH 112 Spring 2014 
CEC 112 Spring 2014 
SOM 112 Spring 2014 

C 112 Spring 2014 
N 112 Spring 2014 

C/N 112 Spring 2014 
MBC 224 Spring 2014 
MBN 224 Spring 2014 
NH4 1970 Spring, Summer, Fall & Winter 2013–2015 
NO3 1970 Spring, Summer, Fall & Winter 2013–2015 
TIN 1970 Spring, Summer, Fall & Winter 2013–2015 
Pa 112 Spring 2014 
K 112 Spring 2014 
S 112 Spring 2014 

Ca 112 Spring 2014 
Mg 112 Spring 2014 
Na 112 Spring 2014 
B 112 Spring 2014 
Fe 112 Spring 2014 
Mn 112 Spring 2014 
Cu 112 Spring 2014 
Zn 112 Spring 2014 
Al 112 Spring 2014 

1 Spring, March–May; Summer, June–August; Fall, September–November; 
Winter, December–February. 
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Table B.4. Mean values of yield index (YdI), nitrous oxide (N2O, kg-N ha−1 year−1), carbon dioxide (CO2, 
Mg-C ha−1 year−1), and methane (CH4, kg-C ha−1 year−1), determined by crop rotation (R) and tillage (T) 
and for each R and T combination. 

Crop 
Rotation (R) Tillage (T) YdI N2O CO2 CH4 

Mean SEM 1 Mean SEM Mean SEM Mean SEM 
CCC  −0.74 0.11 6.18 0.73 4.43 0.42 0.43 0.07 
CS  0.27 0.09 2.42 0.15 3.57 0.22 0.25 0.07 

CSW  0.19 0.07 2.17 0.35 2.98 0.28 0.22 0.09 
SSS  −0.26 0.12 0.97 0.14 2.63 0.15 0.24 0.12 

 T 2 0.22 0.08 3.26 0.41 3.63 0.24 0.31 0.05 
 NT −0.18 0.10 2.00 0.33 2.97 0.20 0.21 0.09 

Rotation x Tillage         

CCC 3 T −0.46 0.04 7.67 0.83 5.11 0.68 0.52 0.07 
CCC NT −1.02 0.07 4.69 0.59 3.75 0.18 0.34 0.11 
CS T 0.64 0.12 2.06 0.12 3.47 0.47 0.13 0.09 
CS NT 0.23 0.02 2.06 0.33 3.35 0.24 0.08 0.19 

CSW T 0.09 0.05 3.17 0.53 4.85 0.25 0.07 0.06 
CSW NT −0.35 0.02 0.97 0.06 2.96 0.29 −0.03 0.30 
SC T 0.28 0.20 2.43 0.13 3.89 0.52 0.34 0.08 
SC NT −0.06 0.16 3.12 0.21 3.57 0.63 0.45 0.12 

SWC T 0.43 0.09 2.33 0.36 2.30 0.22 0.43 0.17 
SWC NT −0.09 0.07 0.34 0.09 1.46 0.16 0.29 0.32 
SSS T 0.01 0.11 1.10 0.24 2.49 0.19 0.34 0.17 
SSS NT −0.53 0.10 0.85 0.17 2.76 0.24 0.14 0.17 

WCS T 0.52 0.03 4.07 0.64 3.32 0.24 0.34 0.08 
WCS NT 0.53 0.10 _ 4 _ _ _ _ _ 

1 SEM, standard error of the mean values; 
2 T, chisel till; NT, no-till; 
3 CCC, continuous corn; CS, corn-soybean; CSW, corn-soybean-wheat; SC, soybean-corn; SWC, 
soybean-wheat-corn; SSS continuous soybean; WCS, wheat-corn-soybean; 
4 _, no samples taken. 
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Table B.5. Mean values of sand (%), silt (%), clay (%), average soil moisture (Ho, %), permanent wilting point (PWP, cm3 cm−3), plant available 
water (PAW, cm3 cm−3), bulk density (Bd, Mg m−3), water aggregate stability (WAS, g g−1), determined by crop rotation (R) and tillage (T) and for 
each R and T combination. 
Crop 

Rotation (R) 
Tillage 

(T) 
Sand Silt Clay Ho PWP PAW Bd WAS 

Mean SEM 1 Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 
CCC  2.50 0.16 70.44 0.39 27.06 0.37 18.51 0.23 0.11 0.00 0.35 0.01 1.37 0.03 0.84 0.02 
CS  2.47 0.12 71.22 0.66 26.31 0.69 17.45 0.21 0.10 0.00 0.34 0.01 1.34 0.02 0.83 0.01 

CSW  2.50 0.12 72.19 0.50 25.31 0.52 18.83 0.81 0.11 0.00 0.31 0.01 1.35 0.02 0.84 0.01 
SSS  2.00 0.00 72.31 0.69 25.69 0.69 17.34 0.42 0.11 0.00 0.31 0.01 1.33 0.02 0.82 0.02 

 T 2 2.44 0.10 71.48 0.44 26.08 0.47 17.75 0.41 0.10 0.00 0.34 0.01 1.32 0.01 0.82 0.01 
 NT 2.38 0.09 71.71 0.45 25.92 0.45 18.51 0.43 0.11 0.00 0.32 0.01 1.37 0.02 0.85 0.01 

Rotation × Tillage                 

CCC 3 T 2.50 0.29 70.50 0.54 27.00 0.46 18.47 0.34 0.11 0.00 0.37 0.01 1.32 0.01 0.81 0.02 
CCC NT 2.50 0.20 70.38 0.66 27.13 0.66 18.55 0.35 0.11 0.00 0.33 0.02 1.42 0.03 0.87 0.01 
CS T 2.63 0.38 71.00 1.49 26.38 1.70 17.23 0.21 _ _ _ _ 1.34 0.03 0.83 0.03 
CS NT 2.75 0.14 71.00 1.54 26.25 1.65 18.09 0.29 _ _ _ _ 1.34 0.03 0.86 0.03 

CSW T 2.38 0.13 72.25 1.05 25.38 1.11 17.46 0.41 0.11 0.00 0.33 0.00 1.34 0.04 0.83 0.02 
CSW NT 2.50 0.29 72.13 0.94 25.38 0.72 21.13 1.27 0.12 0.01 0.30 0.02 1.40 0.04 0.89 0.02 
SC T 2.25 0.14 71.00 1.47 26.75 1.45 17.24 0.39 0.10 0.00 0.36 0.02 1.29 0.02 0.85 0.01 
SC NT 2.25 0.14 71.88 1.34 25.88 1.33 17.23 0.64 0.11 0.01 0.32 0.02 1.41 0.06 0.80 0.02 

SWC T _ 4 _ _ _ _ _ 14.81 0.27 _ _ _ _ 1.28 0.02 0.81 0.03 
SWC NT _ _ _ _ _ _ _ _ _ _ _ _ 1.36 0.07 0.83 0.02 
SSS T 2.00 0.00 72.25 1.09 25.75 1.09 17.10 0.68 0.11 0.00 0.32 0.02 1.30 0.01 0.79 0.02 
SSS NT 2.00 0.00 72.38 1.03 25.63 1.03 17.57 0.57 0.11 0.00 0.31 0.02 1.36 0.03 0.86 0.02 

WCS T 2.88 0.24 71.88 1.11 25.25 1.23 21.93 0.51 _ _ _ _ 1.38 0.03 0.81 0.03 
WCS NT 2.25 0.25 72.50 1.32 25.25 1.44 _ _ _ _ _ _ 1.35 0.03 0.85 0.02 

1 SEM, standard error of the mean values; 
2 T, chisel till; NT, no-till; 
3 CCC, continuous corn; CS, corn-soybean; CSW, corn-soybean-wheat; SC, soybean-corn; SWC, soybean-wheat-corn; SSS continuous soybean; WCS, 
wheat-corn-soybean; 
4 _, no samples taken. 
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Table B.6. Mean values of pH, cation exchange capacity (CEC, cmol kg−1), soil organic matter (SOM, %), carbon (C, %), nitrogen (N, %), carbon to 
nitrogen ratio (C/N), microbial biomass carbon (MBC, µg g−1), and microbial biomass nitrogen (MBN, µg g−1), determined by crop rotation (R) and 
tillage (T) and for each R and T combination. 

Crop Rotation 
(R) Tillage (T) 

pH CEC SOM C N C/N MBC MBN 
Mean SEM 1 Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

CCC  5.34 0.19 39.36 2.13 4.06 0.07 2.62 0.07 0.21 0.00 12.82 0.21 54.69 5.60 4.06 0.69 
CS  6.19 0.18 29.58 2.00 3.77 0.08 2.45 0.06 0.19 0.01 13.47 0.24 67.27 8.00 7.55 1.37 

CSW  6.23 0.14 28.80 1.38 4.08 0.09 2.72 0.06 0.20 0.00 13.90 0.20 70.72 6.88 7.09 0.69 
SSS  7.13 0.16 22.77 1.04 3.39 0.16 2.32 0.14 0.17 0.01 14.13 0.44 77.38 18.42 7.73 0.88 

 T2 6.29 0.17 29.62 1.60 3.79 0.09 2.52 0.06 0.19 0.00 13.69 0.23 68.45 7.69 6.96 0.84 
 NT 6.16 0.13 29.72 1.43 3.98 0.08 2.63 0.06 0.20 0.00 13.62 0.16 68.34 5.12 6.81 0.65 

Rotation × Tillage                 

CCC3 T 5.08 0.21 41.51 2.62 3.96 0.08 2.51 0.06 0.20 0.00 12.60 0.30 48.91 6.10 3.92 1.14 
CCC NT 5.60 0.29 37.22 3.34 4.17 0.09 2.74 0.11 0.22 0.00 13.05 0.28 60.46 9.32 4.19 0.94 
CS T 5.78 0.32 37.40 3.63 3.83 0.09 2.48 0.09 0.20 0.01 12.87 0.37 62.33 14.72 7.53 4.40 
CS NT 5.76 0.24 33.97 2.78 4.09 0.11 2.63 0.04 0.20 0.01 13.52 0.46 72.08 10.06 3.37 1.08 

CSW T 5.87 0.36 32.72 3.69 4.26 0.27 2.81 0.14 0.21 0.01 13.70 0.37 65.96 6.77 2.90 0.81 
CSW NT 5.75 0.49 36.23 5.14 4.24 0.21 2.76 0.10 0.22 0.01 13.06 0.35 62.87 8.65 4.57 1.03 
SC T 6.75 0.33 23.22 1.54 3.45 0.18 2.27 0.15 0.17 0.01 13.83 0.62 44.85 8.30 8.34 1.78 
SC NT 6.47 0.32 23.72 2.26 3.70 0.12 2.44 0.15 0.18 0.01 13.67 0.51 89.84 23.21 10.98 1.94 

SWC T 6.80 0.21 23.63 1.73 3.76 0.27 2.48 0.26 0.18 0.01 13.76 0.63 94.17 39.34 9.33 0.95 
SWC NT 6.37 0.21 25.57 1.42 3.77 0.23 2.55 0.19 0.19 0.01 13.88 0.48 63.02 14.78 7.90 1.11 
SSS T 7.33 0.20 22.28 1.72 3.21 0.18 2.23 0.16 0.16 0.01 14.34 0.74 88.83 32.97 7.36 1.70 
SSS NT 6.94 0.25 23.26 1.39 3.56 0.27 2.41 0.24 0.17 0.01 13.92 0.58 65.94 20.22 8.11 0.78 

WCS T 6.40 0.34 26.59 1.56 4.08 0.06 2.84 0.08 0.20 0.00 14.74 0.67 74.14 4.98 9.34 1.81 
WCS NT 6.21 0.30 28.08 1.69 4.37 0.15 2.87 0.06 0.21 0.01 14.27 0.21 64.18 3.76 8.53 1.50 

1 SEM, standard error of the mean values; 
2 T, chisel till; NT, no-till; 
3 CCC, continuous corn; CS, corn-soybean; CSW, corn-soybean-wheat; SC, soybean-corn; SWC, soybean-wheat-corn; SSS continuous soybean; WCS, 
wheat-corn-soybean; 
4 _, no samples taken. 

 

 



 

80 
 

Table B.7. Mean values of soil ammonia intensity (NH4, mg-N kg−1day−1 during the growing season), soil nitrate intensity (NO3, mg-N kg−1day−1 
during the growing season), total soil nitrogen intensity(TIN, mg-N kg−1day−1 during the growing season), available phosphorus (Pa, mg kg−1), 
potassium (K, mg kg−1), sulfur (S, mg kg−1), calcium (Ca, mg kg−1), magnesium (Mg, mg kg−1), and sodium (Na, mg kg−1), determined by crop 
rotation (R) and tillage (T) and for each R and T combination. 

Crop 
Rotation 

(R) 
Tillage (T) 

NH4 NO3 TIN Pa K S Ca Mg Na 

Mean SEM 1 Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

CCC  3.00 0.76 6.00 1.01 9.00 1.72 13.56 1.27 196.94 19.92 8.09 0.33 3515.06 156.59 436.47 24.29 16.97 1.26 
CS  1.10 0.17 2.57 0.24 3.67 0.35 8.59 1.13 146.52 7.76 7.47 0.27 3503.31 115.83 459.48 15.40 18.98 0.62 

CSW  1.55 0.40 3.46 0.68 5.03 0.87 9.87 0.90 164.48 8.55 7.56 0.31 3560.91 86.90 440.49 14.20 17.06 0.59 
SSS  0.53 0.04 1.44 0.13 1.98 0.16 17.50 4.00 134.31 12.97 6.56 0.22 3352.00 149.92 488.31 18.77 17.13 0.85 

 T 2 1.37 0.21 3.37 0.43 4.75 0.57 11.12 1.14 150.71 7.27 7.52 0.18 3490.98 81.57 461.17 11.77 17.76 0.48 
 NT 1.61 0.43 3.09 0.59 4.70 0.97 11.12 1.30 168.63 9.03 7.42 0.29 3525.13 83.23 443.18 13.02 17.46 0.61 

Rotation × Tillage                   

CCC 3 T 2.45 0.56 5.03 0.50 7.48 0.74 13.50 1.65 195.25 11.74 8.44 0.56 3348.63 203.94 419.06 35.47 16.31 1.96 
CCC NT 3.56 1.48 6.97 1.97 10.53 3.43 13.63 2.18 198.63 41.38 7.75 0.32 3681.50 233.17 453.88 35.96 17.63 1.82 
CS T 1.04 0.33 1.72 0.06 2.77 0.36 12.13 3.13 145.31 21.48 8.00 0.31 3873.25 189.36 502.13 32.55 19.94 0.50 
CS NT 0.98 0.39 2.66 0.47 3.64 0.83 9.50 1.58 161.00 11.33 7.00 0.54 3697.63 137.35 459.00 20.55 18.50 1.72 

CSW T 0.81 0.17 1.96 0.31 2.85 0.46 9.69 0.84 168.63 24.50 7.63 0.38 3625.88 195.37 445.19 34.74 17.19 0.90 
CSW NT 1.88 1.22 1.53 0.44 3.41 1.51 12.06 3.82 195.19 27.81 7.06 0.66 3614.94 141.44 429.88 33.57 15.81 1.82 
SC T 1.28 0.41 3.33 0.50 4.60 0.78 5.75 1.45 125.38 16.29 7.19 0.47 3270.19 205.04 459.50 32.93 18.25 0.63 
SC NT 1.09 0.35 2.58 0.46 3.67 0.68 7.00 1.75 154.38 10.47 7.69 0.79 3172.19 242.28 417.31 31.24 19.25 1.90 

SWC T 1.47 1.01 4.14 0.39 5.61 0.87 6.87 1.15 128.75 5.88 7.31 0.37 3469.81 264.08 451.63 33.86 17.75 1.31 
SWC NT _ 4 _ _ _ _ _ 9.56 2.81 139.00 6.67 7.31 0.73 3491.44 345.90 426.56 53.94 16.13 1.68 
SSS T 0.51 0.04 1.19 0.08 1.70 0.07 18.38 5.13 125.38 9.36 6.50 0.35 3320.88 277.88 499.50 16.49 16.13 1.16 
SSS NT 0.55 0.08 1.69 0.18 2.25 0.26 16.62 6.93 143.25 25.38 6.63 0.31 3383.13 164.38 477.13 35.91 18.13 1.16 

WCS T 2.06 0.58 6.20 2.02 8.26 2.38 11.56 1.60 166.31 17.11 7.56 0.39 3528.25 162.95 451.19 30.26 18.75 1.61 
WCS NT _ _ _ _ _ _ 9.50 2.19 189.00 21.30 8.50 1.59 3635.13 253.66 438.50 42.11 16.75 1.60 

1 SEM, standard error of the mean values; 
2 T, chisel till; NT, no-till; 
3 CCC, continuous corn; CS, corn-soybean; CSW, corn-soybean-wheat; SC, soybean-corn; SWC, soybean-wheat-corn; SSS continuous soybean; WCS, wheat-corn-soybean; 
4 _, no samples taken. 
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Table B.8. Mean values of boron (B, mg kg−1), iron (Fe, mg kg−1), manganese (Mn, mg kg−1), copper (Cu, mg kg−1), zinc (Zn, mg kg−1), and aluminum 
(Al, mg kg−1), determined by crop rotation (R) and tillage (T) and for each R and T combination. 

Crop Rotation (R) Tillage (T) B Fe Mn Cu Zn Al 
Mean SEM 1 Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

CCC  0.60 0.04 158.41 10.26 82.28 5.14 3.02 0.23 2.54 0.16 670.78 47.55 
CS  0.68 0.02 125.84 6.24 75.06 4.00 2.89 0.14 2.52 0.08 627.88 24.08 

CSW  0.66 0.02 125.95 5.54 66.34 2.07 2.73 0.06 2.76 0.09 638.67 20.51 
SSS  0.70 0.02 113.81 8.52 80.75 4.33 3.16 0.20 2.66 0.23 586.38 36.09 

 T2 0.67 0.02 120.71 4.95 76.04 2.97 2.85 0.09 2.56 0.09 624.25 18.52 
 NT 0.65 0.02 136.94 5.54 70.29 2.27 2.90 0.10 2.72 0.08 641.15 21.13 

Rotation × Tillage             

CCC3 T 0.59 0.07 156.44 15.79 88.81 1.57 2.93 0.36 2.40 0.24 680.19 78.85 
CCC NT 0.61 0.03 160.38 15.46 75.75 9.62 3.10 0.34 2.68 0.23 661.38 65.38 
CS T 0.66 0.03 122.50 10.58 83.44 10.13 3.12 0.31 2.53 0.16 606.38 35.16 
CS NT 0.66 0.02 131.63 11.94 73.38 8.12 2.93 0.27 2.61 0.23 603.63 40.22 

CSW T 0.67 0.03 120.81 13.77 66.06 7.19 2.66 0.15 2.64 0.20 628.75 46.33 
CSW NT 0.59 0.05 141.81 20.13 71.81 4.32 2.79 0.23 2.68 0.09 675.81 71.43 
SC T 0.70 0.05 114.31 11.18 72.19 7.77 2.70 0.25 2.43 0.16 639.06 48.08 
SC NT 0.72 0.03 134.94 17.70 71.25 7.68 2.81 0.35 2.51 0.10 662.44 75.13 

SWC T 0.69 0.04 103.00 5.40 73.81 7.08 2.69 0.18 2.39 0.23 624.81 65.73 
SWC NT 0.67 0.07 130.94 11.53 66.13 2.16 2.63 0.23 2.70 0.22 660.69 60.98 
SSS T 0.71 0.02 106.13 9.80 86.50 7.63 3.07 0.29 2.59 0.32 579.88 47.73 
SSS NT 0.69 0.03 121.50 14.25 75.00 2.68 3.24 0.32 2.74 0.38 592.88 61.42 

WCS T 0.68 0.04 121.75 11.23 61.50 3.47 2.80 0.08 2.97 0.27 610.69 33.91 
WCS NT 0.65 0.04 137.38 14.17 58.75 1.98 2.81 0.13 3.17 0.11 631.25 43.75 

1 SEM, standard error of the mean values; 
2 T, chisel till; NT, no-till; 
3 CCC, continuous corn; CS, corn-soybean; CSW, corn-soybean-wheat; SC, soybean-corn; SWC, soybean-wheat-corn; SSS 
continuous soybean; WCS, wheat-corn-soybean; 
4 _, no samples taken. 
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Table B.9. Pearson correlation matrix among greenhouse gas emissions, yield index, and soil physical and chemical properties from Monmouth, IL. Variable 
include yield index (YdI), nitrous oxide (N2O), carbon dioxide (CO2), methane (CH4), yield index (YdI), sand, silt, clay, average soil moisture (Ho), permanent 
wilting point (PWP), plant available water (PAW), bulk density (Bd), water aggregate stability (WAS), pH, cation exchange capacity (CEC), soil organic matter 
(SOM), carbon (C), nitrogen (N), carbon to nitrogen ratio (C/N), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), soil ammonia intensity 
(NH4), soil nitrate intensity (NO3), total soil nitrogen intensity(TIN), available phosphorus (Pa), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), sodium 
(Na), boron, (B), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and aluminum (Al).  
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APPENDIX C: SUPPLEMENTAL TABLE FOR CHAPTER 4 

Table C.1. Number of observations, season of sampling, and year of sampling originally included for each 
variable throughout the study (2013–2017) from Urbana, IL. 

Variable No. of 
Obs. Season of Sampling 1 Year(s) of 

Sampling 
NH4 192 Winter & Spring 2013-2017 
NO3 192 Winter & Spring 2013-2017 
TIN 192 Winter & Spring 2013-2017 
N2O 192 Winter & Spring 2013-2017 
CO2 192 Winter & Spring 2013-2017 
CH4 192 Winter & Spring 2013-2017 

Stand 144 Fall 2014-2016 
Bio 54 Spring 2013-2017 

Yield 239 Fall 2013-2017 
1 Spring, March–May; Summer, June–August; Fall, September–
November; Winter, December–February. 
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