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Abstract

This thesis consists of two parts.

In the first half, we define, so called, generalized Artin-Schreier cover of

a scheme X over k. After defining Artin-Schreier group scheme Γ over X, a

generalized Artin-Schreier cover is realized as a principal homogeneous space

of Γ. We are especially interested in the case when X is P1\{0, 1,∞}, a

thrice punctured plane. An argument of (generalized) Artin-Schreier field

extension and its function field arithmetic follows.

The second half is about the coding theory. For a full flag of codes, if it is

equivalent to its duals, then it is said to have the isometry-dual property. In-

troducing characterizations of isometry-dual property for one-point AG codes

and its preservation after puncturing at some points, some generalizations in

different directions will be given.
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Chapter 1

Preliminaries

Let K be a field of characteristic p. An Artin-Schreier extension F over K is

given by a splitting field of an irreducible polynomial of the form T p−T−u ∈
k[T ] for some u ∈ K. It is a cyclic Galois extension of degree p, whose

Galois group is generated by σ(y) = y + γ where γ ∈ Fp. One feature of

the polynomial T p − T − u is that its nonconstant parts form an additive

polynomial whose roots corresponds to elements of the Galois group. We

will define a generalized Artin-Schreier extension in this manner, that is,

it is a splitting field of a monic irreducible polynomial which is given by a

sum of additive polynomial and a constant. For a generalized Artin-Schreier

extension, the structure of the roots of its additive parts is highly related to

the Galois group of the extension. If the additive parts splits completely in

the base field then the root of the additive parts are actually isomorphic to

the Galois group of the extension.

In the first section, properties of additive polynomials in general are given.

Then in the second section, after briefly reviewing the Artin-Schreier exten-

sion, we generalize it. Then we go over theories to compute the genus of a

function field. Lastly, we give definition of principal homogeneous space in

the theory of schemes which will be used to define generalize Artin-Schreier

cover in the next chapter.

1.1 Additive polynomials

This section gives properties of additive polynomials over a Dedekind domain

R. For statements and proofs for the case of fields of characteristic p, refer

to Chapter 1 of [8].

Let R be a Dedekind domain of characteristic p > 0 and K be its field of

fraction. Fix an algebraic closure K of K. Let R be the integral closure of

R in K.
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Definition 1.1. A polynomial f(T ) ∈ R[T ] is additive if f(a+ b) = f(a) +

f(b) for all a, b ∈ K.

The definition of additive polynomial above is sometimes called absolutely

additive. We use additive for short.

The following proposition gives a critical characterization of additive poly-

nomials.

Proposition 1.2 (Proposition 1.1.5 of [8]). If f(T ) ∈ R[T ] is additive if and

only if it is a linear combination of monomials of the form T p
i

for i ≥ 0.

Proof. Note that the if part is obvious. Assume that f is additive. Then

the polynomial f(T + a)− f(T )− f(a) is identically 0 because it is zero for

infinitely many elements in K. By taking the derivative and evaluating at 0,

we get f ′(a) = f ′(0). So, f ′(a) = c is a constant for all a ∈ K. Note that

f(0) = 0 because for a root γ ∈ K of f(T ), we get f(γ + 0) = f(0) = 0.

We proceed by induction on degree of f . If deg f = 1, then f(T ) = cT ,

so it is of the required form. In general, consider g(T ) := f(T )− cT , where

c is the coefficient of the degree one term of f(T ). Then g′(T ) = 0, so there

exists a polynomial h(T ) such that h(T p) = g(T ). Considering the injective

homomorphism T 7→ T p, it is clear that h(T ) is additive if and only if h(T p)

is also additive. Then deg h(T ) < deg f(T ). Therefore by the induction on

the degree of f(T ), the polynomial h(T ) is linear combination of monomials

T p
i

and so is f(T ).

The following theorem is called the Fundamental Theorem of Additive

Polynomial.

Theorem 1.3 (Theorem 1.2.1 of [8]). Suppose K is infinite. Let f(T ) ∈
K[T ] be a sepaable polyonmial with set of roots Γ := {γ1, · · · , γn} ⊆ K.

Then f(T ) is additive if and only if Γ is an additive group.

Proof. Assume that f(T ) is an additive polynomial. Then f(γi + γj) =

f(γi)+f(γj) = 0. So, the set of roots Γ forms an additive group. Conversely,

assume that Γ is a group under addition. Note that f(T ) =
∏n

i=1(T − γi). If

γ ∈ Γ, then f(T + γ) = f(T ). For any arbitaray y ∈ k, let

g(T ) := f(T + y)− f(T )− f(y).
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Then deg g(T ) < deg f(T ) and g(T ) has all Γ as its roots. Then g(T ) = 0.

Since y is arbitrarily chosen from K, it is identically zero.

Then the following can be obtained.

Corollary 1.4. Let f(T ) ∈ R[T ] be a monic polynomial. Suppose f(T ) is

separable if it is viewed as a polynomial over K. Then f(T ) is additive if

and only if the roots α1, · · · , αn of f in K forms an additive subgroup in R.

Proof. Supoose that f(T ) is additive. Then it is also additive as a polynomial

over K. From Theorem 1.3 the roots {α1, · · · , αn} of f(T ) forms an additive

group in K. Then so is in R. Conversely, if {α1, · · · , αn} forms an additive

subgroup of R, it is an additive subgroup of K and f(T ) is additive in the

sense of f(T ) ∈ K[T ]. Then it is obviously additive in R[T ].

Definition 1.5. A finite set V of R is called an R-subgroup if

FV (T ) =
∏
v∈V

(T − v)

is a polynomial with coefficients in R.

Example 1.6. For any n > 1, the field Fpn is an Fp-subgroup. It consists of

all roots of the polynomial∏
v∈Fpq

(T − v) = T p
n − T ∈ Fp[T ]

Proposition 1.7. Let V and W be additive R-subgroups. Note that they are

also finite dimenstional Fp vector spaces. If V ∩W = {0} then V ⊕W is

also an additive R-subgroup.

Proof. Let v1, · · · , vn be an basis of V and w1, · · · , wm be a basis of W over

Fp. Then FV (T ) and FW (T ) are given as follow:

FV (T ) =
∏
v∈V

(T − v) = T p
n

+ a1T
pn−1 + · · ·+ arT

pn−r + · · ·+ apn−1T

FW (T ) =
∏
w∈W

(T − w) = T p
m

+ b1T
pm−1 + · · ·+ brT

pm−r + · · ·+ bpm−1T
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where all ai and bj are in R for 1 ≤ i ≤ pn−1 and 1 ≤ j ≤ pm−1. Note that

both polynomials have no constant terms because V and W both contain 0.

Now we have

FV⊕W (T ) =
∏
v∈V
w∈W

(T − v − w) =
∏
v∈V

∏
w∈W

(
(T − v)− w

)
=
∏
v∈V

FW (T − v) =
∏
v∈V

(
FW (T )− FW (v)

)
The last equality comes from FW (T ) being an additive polynomial.

Let’s introduce indeterminates x1, · · · , xpn and y1, · · · , ypm and consider

the elementary symmetric functions :

αi(x1, · · · , xpn) =
∑

1≤i1<···<il≤n

l∏
k=1

xik for 1 ≤ l ≤ pn

βj(y1, · · · , ypm) =
∑

1≤j1<···<jl≤m

l∏
k=1

yjk for 1 ≤ l ≤ pm

Then

α0(x1, · · · , xpn) = 1

α1(x1, · · · , xpn) =

pn∑
k=1

xk

...

αr(x1, · · · , xpn) =
∑

1≤i1<···<ir≤pn
xi1xi2 · · ·xir

...

αpn(x1, · · · , xpn) = x1x2 · · ·xpn
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β0(y1, · · · , ypm) = 1

β1(y1, · · · , ypm) =

pm∑
k=1

yk

...

βr(y1, · · · , ypm) =
∑

1≤l1<···<lr≤pm
yl1yl2 · · · ylr

...

βpm(y1, · · · , ypm) = y1y2 · · · ypm

We may write

FX(T ) =
∏

1≤i≤pn
(T−xi) = T p

n

+α1T
pn−1+α2T

pn−2+· · ·+αrT p
n−r+· · ·αpn−1T+αpn

FY (T ) =
∏

1≤j≤pn
(T−yj) = T p

m

+β1T
pm−1+β2T

pm−2+· · ·+βrT p
m−r+· · · βpm−1T+βpm

Note that FX(T ) ∈ R[x1, · · · , xpn , T ]S
x
pn = R[α0, α1, · · · , αpn , T ] and FY (T ) ∈

R[y1, · · · , ypm , T ]S
y
pm = R[β0, β1, · · · , βpm , T ], where Sxpn and Sypm act as per-

mutations on xi’s and yj’s respectively.

Consider the function

FX+Y (T ) =
∏

1≤i≤pn
1≤j≤pm

(T − xi − yj) ∈ R[αi, βj, T ]

Then FX+Y (T ) ∈ R[xi, yj, T ]S
x
pn ∩R[xi, yj, T ]S

y
pm = R[αi, βj, T ].

Now, let’s evaluate xi, 1 ≤ i ≤ pn by all distinct v ∈ V and evaluate yj,

1 ≤ j ≤ pm by all distinct w ∈ W and write the value of αi and βj by this

evaluation by αi(V ) and βj(W ). Then obviously αi(V ) = ai and βi(W ) = bi.

Thus by this evaluation, all αi and βj are in R. Then

FV⊕W (T ) =
∏
v∈V
w∈W

(T − v − w) ∈ R[αi(V ), βj(W ), T ] = R[ai, bj, T ] = R[T ]

Therefore V ⊕W is also an additive R-subgroup.
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Proposition 1.8. For finite additive R-subgroups V and W , the set FW (V ) :=

{FW (v) : v ∈ V } is also an additive R-subgroup.

Proof. It is obvious that the set FW (V ) forms an additive group. To prove

that it is an R-subgroup, we need to show that the coefficients of the following

polynomial is in R : ∏
v∈V

(T − FW (v))

Using the notation of the proof of the previous theorem, we may put the

polynomial as the following form∏
1≤i≤pn

(T − FY (xi))

It is enough to show that the coefficients of the polynomial is preserved

by the action of Sxpn and Sypm which are permutation groups on xi’s and

yj’s respectively. However, the coefficients of the polynomial is given by

α0(FW (x1), · · · , FW (xpn)), · · · , αpn(FW (x1), · · · , FW (xpn)). For example,

α2(FW (x1), · · · , FW (xpn)) =
∑
i<j

(∏
y∈Y

(xi − y)
∏
y∈Y

(xj − y)
)

Since this polynomial is symmetric with respect to xi’s and yj’s separately,

it is also in R[αi, βj, T ]. Therefore the original polynomial is in R[ai, bj, T ] =

R[T ], so it is and R-subgroup.

Remark 1.9. For additive R-subgroups V and W with V ∩W = {0} we have

the following relation

FV⊕W (T ) = FFW (V )(FW (T )) = FFV (W )(FV (T ))

In [11], Ore gives the following theorem.

Theorem 1.10. For any g(T ) ∈ K[T ], there exists an additive polynomial

f(T ) ∈ K[T ] such that g(T )|f(T ).

1.2 Generalized Artin-Schreier extension

According to the Artin-Schreier theorem, every degree p extension of a field

of characteristic p is a splitting field of an irreducible polynomial of the form
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T p − T − u for some u in the base field. In this section we generalize it. Use

the following notations throughout this section. Let K/k be a function field,

that is, K is an extension with transcendental degree 1 over k.

P , P ′, Q Places of the function field K/k

PK Set of places of K/k

d(P ′|P ) Different exponent of P ′ over P

e(P ′|P ) Ramification index of P ′ over P

f(P ′|P ) Relative degree of P ′ over P

The following theorem states the Artin-Schreier extension and an explicit

formula computing the genus of the function field given by the function field

extension.

Theorem 1.11 ([12], Proposition 3.7.8, Artin-Schreier). Let u ∈ K such that

the polynomial T p − T − u ∈ K[T ] has no roots in K. Let L be a splitting

field of K by the polynomial and y ∈ L be the root of the polynomial.

mP :=


m, if there exists z ∈ F such that

vP (u− (zp − z)) = −m with m 6≡ 0 mod p

−1, if there exists z ∈ F such that vP (u− (zp − z)) > 0

Then the following hods:

(a) L/K is a cyclic Galois extension of degree p and the generator of

Gal(L/K) is given by

σ : y 7→ y + 1

(b) P is unramified in L/K if and only if mP = −1.

(c) P is totally ramified in L/K if and only if mP > 0. If P ′|P , in this

case, then

d(P ′|P ) = (p− 1)(mP − 1)

(d) If at least one Q ∈ PK satisfies mQ > 0, then K is algebraically closed

in L and

g′ = p · g +
p− 1

2

(
− 2 +

∑
P∈PF

(mP + 1) · degP
)

8



here g and g′ are the genus of the function field K/k and L/k respec-

tively.

We define generalized Artin-Schreier extension as follow.

Definition 1.12. Let K be a field of characteristic p > 0. Let Γ be an

additive K-subgroup. Then by definition fΓ(T ) is an additive polynomial.

Let u ∈ K be such that f(T ) − u is irreducible over K. The splitting field

L of the polynomial f(T ) − u over K is called a generalized Artin-Schreier

extension.

One example of generalized Artin-Schreier extension is an elementary

abelian p-extension where Γ is given by Fpn , so the polynomial is of the form

fΓ(T )− u := T p
n − T − u ∈ K[T ].

Proposition 1.13 (1.1 Proposition of [5]). Let Fpn ⊆ K and L/K is ele-

mentary abelian extension of degree pn. Then the extension L/K is given by

the quotient field of an irreducible polynomial

T p
n − T − u

for some u ∈ K.

Proposition 1.14 (1.2 Proposition of [5]). Let L/K be an elementary abelian

p-extension given by an irreducible polynomial T p
n −T −u. Then there exist

total t =
(pq − 1)

(p− 1)
number of degree p subextensions of L/K. Write them as

E1, · · · , Et. Moreover, each subextension Ei is given by Ei = K(αµ) where

for µ ∈ F∗pn,

αµ := (µα)p
n−1

+ (µα)p
n−2

+ . . .+ (µα)p + µα

where α is a root of T p
n − T − u = 0.

The genus of the function field given by the extension of fΓ(T ) − u is

given explicitly by the following theorem.

Theorem 1.15 ([5], 2.1 Theorem). Let L/K be an elementary abelian p-

extension of degree pn, i.e. L is a splitting field of the polynomial of the form
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f(T )− u of degree pn such that k is also the constant field of L. Then

g(L) =
t∑
i=1

g(Ei)−
p

p− 1
(pn−1 − 1) · g(L)

Definition 1.16. A generalized Artin-Schreier extension L/K given by fΓ(T )−
u is called split if Γ ⊆ K.

In the above case, the group Γ is a subset of the field K. In general, if

Γ is not in K then the quotient field K[T ]/〈fΓ(T )− u〉 is not isomorphic to

the splitting field of fΓ(T )− u.

Remark 1.17. If α is a root of fΓ(T )− u, then all other roots are of the form

α + γ for some γ ∈ Γ. So, the splitting field of fΓ(T ) − u contains both α

and Γ regardless of Γ being a subset of K or not.

Proposition 1.18. Any finite algebraic field extension M of K is a subex-

tension of generalized Artin-Schreier extension.

Proof. Let α1, α2, . . . , αs be the genrator of M over K. Consider the irre-

ducible polynomials g1(T ), g2(T ), . . . , gs(T ) of α1, α2, . . . , αs respectively. Let

g(T ) =
∏s

i=1 gi(T ). Then by Theorem 1.10, there exists an additive poly-

nomial f(T ) which is divisible by g(T ). If there exists u ∈ K such that

f(T ) − u is irreducible then the splitting field of f(T ) − u is a generalized

Artin-Schreier extension which contains all α1, α2, . . . , αs. The existance of

such u can be proved by the following Proposition by choosing a place P

which is not a pole of any of coefficient of f(T ) and choose u to have a pole

at P .

The following Proposition gives criteria determining irreducibility of a

polynomial. One of its case is especially called Eisenstein Criterion.

Proposition 1.19 (Proposition 3.1.15 of [12]). For a function field K/k,

consider a polynomial

φ(T ) = T n + an−1T
n−1 + · · ·+ a1T + a0

with ai ∈ K. Assume that there exists a place P ∈ PK such that one onf the

following holds:

1. vP (ai) ≥ vP (a0) > 0 for i = 1, . . . , n− 1, and gcd(n, vP (a0)) = 1.
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2. vP (ai) ≥ 0 for i = 1, . . . , n− 1 and vP (a0) < 0 and gcd(n, vP (a0)) = 1.

Then φ(T ) is irreducible over K.

Lastly, we review the Kummer extension, which is a special type of Galois

extension of cyclic group, whose order is prime to the characteristic p. This

theorem will be used to compute the genus of anisotropic generalized Artin-

Schreier extension.

Theorem 1.20 ([12], Proposition 3.7.3). Let k contains a primitive n-th root

of unity. Let L/K be the splitting field of the polynomial T n − u = 0, where

there is no such w ∈ K satisfying

u = wd for d|n, d > 1

Then the following holds:

(a) The extension L = K(y) over K is Galois of degree n with cyclic

Galois group, where yn − u = 0. Automorphisms of L/K are given by

σ(y) = ζy, where ζ is a primitive n-th root of unity.

(b) For place P ′|P , where P ∈ PK and P ′ ∈ PL, we have

e(P ′|P ) =
n

rP
and d(P ′|P ) =

n

rP
− 1,

where rP = gcd(n, vP (u)) > 0.

(c) Let g and g′ denote the genus of K/k and L/k respectively, then

g′ = 1 + n
(
g − 1 +

1

2

∑
p∈PK

(
1− rP

n

)
degP

)

1.3 Branches, places and genus of a curve

In this section, we introduce the notion of branch in the power series k((t))

and use it to define place of an algebraic curve. This will lead us to compute

the genus of an algebraic curve. We will follow the exposition of Chapter 4

and 5 of [9].

Let k be a perfect field of characteristic p > 0 and k[[t]] be the ring of

power series over k. The field of fraction of k[[t]] is denoted by k((t)). We

state some properties of k[[t]] and k((t)).
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Remark 1.21. The following properties hold for k[[t]] and k((t)).

1. The ring k[[t]] is a UFD.

2. An element f(t) = f0 + f1t+ · · · of k[[t]] for fi ∈ k is invertible if and

only if f0 6= 0.

3. Every element of k((t)) can be expresses as tmf(t) where m ∈ Z and

f(t) is invertible in k[[t]].

Definition 1.22. For f(t) = fi1t
i1 + fi2t

i2 + · · · in k[[t]], where fij ∈ k with

i1 < i2 < · · · and fi1 6= 0, the order of f(t) is i1 denoted by ordtf(t).

As a convention, we put ordt0 =∞. Note that an element f(t) in k[[t]] is

invertible if and only if ordtf(t) = 0, that is, it has a nonzero constant term.

Proposition 1.23 (Theorem 4.4 of [9]). The following holds.

1. Every k-monomorphism of k[[t]] is of the form

k[[t] −→ k[[t]]

t 7−→ τ

where ordtτ ≥ 1.

2. Every k-automorphism of k[[t]] is given as a k-monomorphism with

ordtτ = 1.

3. Every k-monomorphism of k((t)) is given by k-monomorphism of k[[t]]

and the converse is also true, that is, every k-monomorphism of k((t))

gives a k-monomorphism of k[[t]] by restriction to k[[t]].

Definition 1.24. A branch representation is a point (x0(t) : x1(t) : x2(t)) ∈
P3
k((t))\P3

k. A branch representation is special if min{ordtxi(t)} is zero. In

this case a point P = (x0(0) : x1(0) : x2(0)) is the center of the branch

representation.

For a special branch representation (x0(t), x1(t), x2(t)), let

x0(t) = a+ a1t+ a2t
2 + · · ·

x1(t) = b+ b1t+ b2t
2 + · · ·

x2(t) = c+ c1t+ c2t
2 + · · ·

12



Definition 1.25. The order of a special branch representation (x0(t), x1(t), x2(t))

is defined as the positive integer

min{ordt(d0x0(t) + d1x1(t) + d2x2(t)) : for all (d0, d1, d2) ∈ P3
k

with d0a+ d1b+ d2c = 0}

Remark 1.26. If one of the coordinate of (x0(t) : x1(t) : x2(t)) is invertible,

we define branch representation (x(t), y(t)) in affine plane over k((t)) in the

trivial way by dividing by the invertible component and eliminating the com-

ponent 1. We define special branch representation in affine coordinates and

the center of it in the similar manner.

Definition 1.27. Two branch representations in special affine coordinates

(x(t), y(t)) and (ξ(t), η(t)) are equivalent if there exists a k-automorphism σ

of k[[t]] such that

x(t) = σ(ξ(t)) and y(t) = σ(η(t)).

Two branch represntations are equivalent if they are equivalent in the form

of special affine coordinates.

Definition 1.28. A branch representation in special affine coordinates (x(t), y(t))

is imprimitive if there exists a branch representation in special affine coordi-

nates (ξ(t), η(t)) such that

x(t) = σ(ξ(t)) and y(t) = σ(η(t))

for some k-monomorphism σ with ordtσ > 1.

A branch representation is imprimitive if it is imprimitive in the form of

special affine coordinates. A branch representation which is not imprimitive

is called primitive.

The following characterizes primitive branch representations.

Theorem 1.29 (Theorem 4.21 of [9]). A branch representation (x(t), y(t))

in special affine coordinates is primitive if and only if there is an element of

order 1 in k(x(t), y(t)).

Definition 1.30. A special affine branch represenation is reducible if for any

of its equivalent branch representation, say (x(t), y(t)), there exists a branch
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representation (ξ(t), η(t)) such that

x(t) = ξ(tm) and y(t) = η(tm)

for an integer m > 1.

The following sereies of theorems will be useful to pick a branch repre-

sentation of a place of an algebraic curve later:

Theorem 1.31 (Theorem 4.26 of [9]). Let p = 0 or p > 0 with p - n. A

branch representation in special affine coordinates

x(t) = a+ tn,

y(t) = b+ b1t
n1 + b2t

n2 + · · · ,

is reducible if and only if gcd(n, n1, n2, . . .) > 1.

Theorem 1.32 (Theorem 4.27 of [9]). Let p = 0 or p - n. Every branch

representation of order n has a special affine coordinate form of the type

x(t) = a+ tn, y(t) = b+ η(t)

where ordtη(t) ≥ n.

Theorem 1.33 (Theorem 4.28 of [9]). Let p = 0 or p - n. A branch repre-

sentaion of special affine coordinates of order n is imprimitive if and only if

it is reducible.

Definition 1.34. A branch is an equivalence class of primitive branch rep-

resentations. The center and order are the center and order of any of its

primitive branch representation and do not depend on a choice of branch

representations.

Let F be an irreducible projective plane curve over the field k defined by

a homogeneous polynomial F (X0, X1, X2).

Definition 1.35. A branch of a plane curve F is a branch whose represen-

tation (x0(t), x1(t), x2(t)) satisfies F (x0(t), x1(t), x2(t)) = 0 in k((t)).

Theorem 1.36 (Theorem 4.31 of [9]). The center of a branch of a plane

curve is a point of the curve.
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Theorem 1.37 (Theorem 4.32 of [9]). For a simple point P of F , there

exists a unique branch of F whose center is P .

Definition 1.38. Let G be a projective plane curve defined by a homoge-

neous polynomial G(X0, X1, X2) and let γ be a branch centered at a point P .

If (x0(t), x1(t), x2(t)) is a representation of γ in a special coordinates, then

the intersection multiplicity is defined by

I(P,G ∩ γ) =

{
ordtG(x0(t), x1(t), x2(t)) if γ /∈ G
∞ if γ ∈ G

Note that I(P,G ∩ γ) doesn’t depend on the choice of a representation

(x0(t), x1(t), x2(t)).

The following theorem gives a method of computing intersection multi-

plicity of two plane curves G and F .

Theorem 1.39 (Theorem 4.36 of [9]). 1. Let γ be a branch of F centered

at a simple point P of F and let G be any curve. Then

I(P,G ∩ γ) = I(P,G ∩ F).

2. If P is a singular point of an irreducible curve F and G is a plane curve

not containing F as a component, then

I(P,G ∩ F) =
∑
γ

I(P,G ∩ γ)

where γ runs over all branch of F centered at P .

3. If P is a mP -fold singular point of F then the number of branches of

F centered at P is bounded above by mP .

Definition 1.40. P = (ζ, η) is called a point if ζ and η is in some extension

of the field k. A branch representation is a point in this sense. A point is

constant if both ζ and η are in k, or otherwise, the point is called variable.

A point P = (ζ, η) on the curve F = v(F (X, Y )) is called generic if for

every G(X, Y ) ∈ k[X, Y ] satisfying G(ζ, η) = 0, we have G(a, b) = 0 for all

constant points Q = (a, b) on F . This is equivalent to G ≡ 0 (mod F ).
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Let k be a field of characteristic p and let Σ be a field of transcendental

degree 1 over k.

Definition 1.41. A model of Σ is given by P = (x, y) such that Σ = k(x, y)

and by the curve F having P as a generic point. We write it as (F ; (x, y)).

Let (F ; (x, y)) be a model of Σ and η(t)) be a branch representation of

F .

Definition 1.42. 1. A k-monomorphism σ : Σ −→ k((t)) is a place rep-

resentation.

2. A place representation σ is primitive if (σ(x), σ(y)) is a primitive branch

representation of F .

3. Two place representations σ and σ′ are equivalent if there is a k-

automorphism ρ of k((t)) such that σ = σ ◦ ρ.

4. A place is an equivalence class of primitive place representations.

5. Write P(Σ) for the set of all places of Σ.

Remark 1.43. There is a one-to-one correspondence between the places of Σ

and the branches of any model of Σ in a natural way. Moreover, if (F ; (x, y))

and (F ′; (x′, y′)) are two models of Σ, then for the birational transformation

sending P = (x, y) to P ′ = (x′, y′) there is one-to-one correspondence between

branches of F and F ′ which is coherent with the correspondence of places of

Σ, that is, any two corresponding branches of F and F ′ correspond to the

same place of Σ.

With this relation, we can convert computations regarding plces of Σ to

those in terms of power series.

For an irreducible curve F = v(F (X, Y )), and a generic point P = (x, y),

let P be a place of Σ = K(x, y).

Definition 1.44. Let σ be a primitive representation of a place P of Σ.

1. The order of ζ at a plae P is ordPζ = ordtσ(ζ).

2. If ordPζ = 1 then ζ is a local parameter at P .

3. The place P is a zero of multiplicity ordPζ if ordPζ > 0.
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4. The place P is a pole of multiplicity −ordPζ if ordPζ < 0.

Theorem 1.45 (Theorem 5.33 of [9]). The number of zeros counted with

multiplicity is [Σ : K(ζ)].

Corollary 1.46 (Corollary 5.35 of [9]). The number of zeros and pole of ζ

are equal, so ∑
P∈P(Σ)

ordPζ = 0.

Definition 1.47. Let ζ ∈ Σ. For any η ∈ Σ\K, the irreducible polynomial

f(X, Y ) such that f(ζ, η) = 0 has the property that f(ζ, Y ) ∈ K(ζ)[Y ] is

separable, then ζ is separable.

The derivation and differential copies from that of K((t)) and K((t))dt

to Σ.

Definition 1.48. We define the order of dζ in the following way

ordPdζ = ordt
dζ(t)

dt

where ζ(t) denotes the image of ζ by a place representation corresponding to

P .

Theorem 1.49. For a separable variable ζ, the genus g of Σ satisfies∑
P∈P(Σ)

ordPdζ = 2g − 2

Definition 1.50. The genus of an irreducible algebraic curve is the genus

of its function field Σ.

1.4 Principal Homogeneous Space

Let k be a field and X be a smooth k-scheme. Let Γ be an algebraic group

over k.

Definition 1.51. A principal homogeneous space (PHS in the sequel)for Γ

over X is a surjective morphism π : Y → X such that
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1. There exists an associative nontrivial action Γ×k Y
α−→ Y such that the

diagram commutes

Γ×k Y Y

X

α

π◦p2
π

and

2. There exsists an isomorphism

Γ×k Y Y ×X Y

X

(α,p2)

∼=

p2
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Chapter 2

Artin-Schreier cover

In this chapter we define a generalized Artin-Schreier cover over the thrice

punctured plane X. For a group scheme Γ, which is constructed by an

additive polynomial, generalized Artin-Schreier cover is defined as a principal

homogeneous space of Γ. Depending on Γ being in the base ring or not, split

or nonsplit cases are considered.

2.1 Generalized Artin-Schreier cover

The thrice punctured plane is defined as Spec R for the ringR := k
[
x,

1

x
,

1

1− x

]
.

Let K = k(x) be the fraction field of R. Fix an separable algebraic closure

K of K. Let Γ ∈ K be a finite R-additive subgroup, which implies that

fΓ(T ) =
∏
γ∈Γ

(T − γ)

is a polynomial with coefficients in R. Let L = K(Γ) be the field obtained

by adjoining all elements of Γ to K. Then L/K is Galois because L is a

splitting field of a separable polynomial fΓ(T ) over K.

Choose u ∈ K such that fΓ(T )− u ∈ K[T ] is irreducible over both in K

and L. Let α ∈ K a root of fΓ(T ) − u. Define M := L(α) = K(Γ, α) to be

the field adjoining α to L. Then M/L and M/K are both Galois extension

realized as a splitting field of a separable polynomial fΓ(T ) − u. Note that

M , in general, is not isomorphic to a quotient field N := K[T ]/(fΓ(T )− u).

The following diagram shows the relations
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M = K(Γ, α)

L = K(Γ) N = K(α)

K

R

⊆

Let X := Spec R and X̃ := Spec
(
R[T ]/(fΓ(T ) − u)

)
. The following

notation for group scheme is not confusing in our context, so we use Γ :=

Spec
(
R[T ]/(fΓ(T ))

)
. Write S = R[T ]/〈fΓ(T )− u〉 and G = R[T ]/〈fΓ(T )〉.

Theorem 2.1. X̃ is a PHS of Γ over X.

Proof. From the definition of PHS, the corresponding Hopf algebra diagrams

are
G⊗ S S

R

µ

and
G⊗ S S ⊗ S

R

α

Let T̄ be the class of T in G and T̃ be the class of T in S. Define the map

µ : S → G⊗S by T̃ 7→ T̄⊗1+1⊗T̃ . Note that T̃ in S satisfies fΓ(T̃ )−u = 0.

Then

µ(fΓ(T̃ )− u) = fΓ(T̄ ⊗ 1 + 1⊗ T̃ )− 1⊗ u

= fΓ(T̄ )⊗ 1 + 1⊗
(
fΓ(T̃ )− u

)
= 0

Note that the map from S ⊗ S to G⊗ S is determined by the map µ, which

corresponds to the group action Γ on X̃ and the identity. Then the map is
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given by

α : K[T̃ ]⊗R K[T̃ ] −→ K[T̄ ]⊗R K[T̃ ]

T̃ ⊗ 1 7−→ T̄ ⊗ 1− 1⊗ T̃

1⊗ T̃ 7−→ 1⊗ T̃

It needs to be verified that the image of the classes
(
fΓ(T ) − u

)
⊗ 1 and

1⊗
(
fΓ(T )− u

)
is zero.

α
((
fΓ(T̃ )− u

)
⊗ 1
)

= α
(
fΓ(T̃ ⊗ 1− 1⊗ u

)
= fΓ(T̄ ⊗ 1− 1⊗ T̃ )− 1⊗ u

= fΓ(T̄ )⊗ 1− 1⊗
(
fΓ(T̃ )− u

)
= 0

Therefore, since the diagrams commute in the Hopf algebra level, the orignal

group scheme diagrams also commute.

Definition 2.2. In the above contruction of generalized Artin-Schreier cover

of the scheme X, if the K-additive subgroup Γ is a subset of R, then we call

the cover X̃ is split.

Remark 2.3. Consider the affine scheme R = Spec k
[
x,

1

x
,

1

1− x

]
. Then

the cover X̃ being split means that L = K, so the field M and N are

equal, that is, the splitting field of fΓ(T )− u over K is same as the quotient

field N = K[T ]/〈fΓ(T ) − u〉 and the group scheme Γ is discrete. Then the

generalized Artin-Schreier cover is given by the Galois extension N/K whose

Galois group is the additive subgroup isomorphic to Γ.

2.2 Function field arithmetic

In this section we take an example of generalized Artin-Schreier extension

over a field and compute the genus of it. Let fΓ(T ) = T p
n

+ xT and u =

−x(x− 1). Here, we consider the case when p > 0 is odd.

Let’s compute the genus of the function field of the curve F which is
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defined by the following equation:

f(X, Y ) = Y pn −XY +X(X − 1) ∈ k[X, Y ].

Let’s first check if f(X, Y ) has any singularities :

∂f

∂X
= −Y + 2X − 1

∂f

∂Y
= −X

To have a singular point, we have X = 0 and also Y = 0 because of f(X, Y ) =

0. However, then the partial derivative ∂f/∂X is nonzero. So, there is no

singular point on the affine plane.

Apply Proposition 1.19 to check the irreducibility of f(X, Y ). Consider

f(x, Y ) = Y pn − xY − x(x − 1) ∈ k(x)[Y ] as a polynomial in Y over the

rational function field k(x). Apply the above theorem with the place P = P0

of the funciton field K/k, we know that f(x, Y ) is irreudiclbe over K. This

implies that f(X, Y ) is irreducible in k[X, Y ].

Let y be a root of f(x, Y ) and let Σ = k(x, y)/k be the function field.

Recall that the genus of the function field Σ satisfies∑
P∈PΣ

ordPdx = 2g − 2.

To compute the genus, we classify the points on the curve F into 3 groups:

points on affine plane with non-veritical tangent line, points on affine plane

with vertical tangent line, and points at infinity.

1. Points on affine plane with non-vertical tangent line.

According to Theorem 1.32 and Theorem 1.37, on a simple point of a

plane curve F , there exists a unique branch and the unique branch can

be representedby the following :

x(t) = u+ t

y(t) = v + η(t)

with ordtη(t) ≥ 1. Then for these points, ordPdx = 0 and they have

no contribution of the summation
∑
P∈PΣ

ordPdx.
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2. Points on affine plane with vertical tangent line.

At a point (x0, y0) with a vertical tangent line, it satisfies
∂f

∂Y
(x0, y0) =

0. On F , only O = (0, 0) satisfies it and it is not singular. Then a

primitive branch representation is

x(t) = c1t
i1 + c2t

i2 + . . . , where 0 < i1 < i2 < · · ·

y(t) = t

Computing i1 and i2 explicitly, we have

f(x(t), y(t)) =tp
n − (c1t

i1 + c2t
i2 + . . .)t

+ (c1t
i1 + c2t

i2 + . . .)(−1 + c1t
i1 + c2t

i2 + . . .)

=tp
n − c1t

i1+1 − c2t
i2+1 − . . .

− c1t
i1 − c2t

i2 + c2
1t

2i1 + . . .

=0

This determines i1, i2 and so forth, where

i1 = pn and i2 = pn + 1.

Then

ordt
dx(t)

dt
= pn.

3. Points at infinity.

By homogenizing the curve f(X, Y ), we get

F (X, Y, Z) = Y pn −XY Zpn−2 +X2Zpn−2 −XZpn−1

and the partials are given by

∂F

∂X
= −Y Zpn−2 + 2Zpn−2 − Zpn−1

∂F

∂Y
= −XZpn−2

∂F

∂Z
= 2XY Zpn−2 − 2X2Zpn−2 +XZpn−2

Then X∞ = (1 : 0 : 0) is the only point at inifinity and it is singular
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with multiplicity pn − 2. By setting X = 1, we get

g(Y, Z) = Y pn − Y Zpn−2 + Zpn−2 − Zpn−1

Then (0, 0) is a singular point with multiplicity pn − 2 with only one

tangent V(Z), the Y axis. Let G be the plane curve defined by g(Y, Z).

Computing the primitive branch representation explicitly, we let

y(t) = ti1 + c2t
i2 + . . . , where i1 < i2 < · · ·

z(t) = d1t
j1 + d2t

j2 + . . . , where j1 < j2 < · · ·

with gcd(i1, j1) = 1. Such pair (i1, j1) can be chosen due to Theorem

4.21 of [9]. Then it should satisfy

g(y(t), z(t)) = 0.

Explicitly plug in y(t) and z(t), we get

g(y(t), z(t)) =(ti1 + c2t
i2 + . . .)p

n − (ti1 + c2t
i2 + . . .)(d1t

j1 + d2t
j2 + . . .)p

n−2

+ (d1t
j1 + d2t

j2 + . . .)p
n−2 − (d1t

j1 + d2t
j2 + . . .)p

n−1

=ti1p
n

+ cp
n

2 t
i2pn + . . .

− dp
n−2

1 ti1+j1(pn−2) − d1c2t
i2+j1(pn−2)

−
(
pn − 2

1

)
dp

n−3
1 d2t

i1+j1(pn−3)+j2 + . . .

+ dp
n−2

1 tj1(pn−2) +

(
pn − 2

1

)
dp

n−3
1 d2t

j1(pn−3)+j2 + . . .

− dp
n−1

1 tj1(pn−1) −
(
pn − 1

1

)
dp

n−2
1 d2t

j1(pn−2)+j2 + . . .

Note that the last equality express the expansion of parenthesis upto
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possible 2nd least degree terms. The list of degrees are

i1p
n, i2p

n

i1 + j1(pn − 2), i2 + j1(pn − 2), i1 + j1(pn − 3) + j2

j1(pn − 2), j1(pn − 3) + j2

j1(pn − 1), j1(pn − 2) + j2

Since g(y(t), z(t)) = 0, we get i1p
n = j1(pn − 2) considering the least

degree terms, where

i1 = pn − 2 and j1 = pn.

If p was even, such i1 and j1 contradicts the condition gcd(i1, j1) 6= 1.

Consider the 2nd least degrees, we get i1 + j1(pn− 2) = j1(pn− 3) + j2

and then

j2 = 2pn − 2

Then a branch representation of the curve F (X, Y, Z) at X∞ is given

by

x(t) = 1

y(t) = ti1 + c2t
i2 + . . . , where i1 = pn − 2 < i2 < · · ·

z(t) = d1t
j1 + d2t

j2 + . . . , where j1 = pn < j2 = 2pn − 2 < · · ·

which is equivalent to

x(t) =
1

d1

t−j1η(t)−1

y(t) =
1

d1

ti1−j1ξ(t)/η(t)

z(t) = 1

where

η(t) = 1 +
d2

d1

tj2−j1 +
d3

d1

tj3−j1 + · · ·
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and ξ(t) ∈ k((t)) with ordtξ(t) = 0. Then

x(t) =
1

d1

t−j1η(t)−1

=
1

d1

t−j1(1− d2

d1

tj2−j1 + . . .)

=
1

d1

(
t−j1 − d2

d1

tj2−j1 + . . .
)

and
dx(t)

dt
= − 1

d1

· d2

d1

(j2 − 2j1)tj2−2j1−1

Then for each place γ of the curve F centered at X∞ = (1 : 0 : 0), we

have

ordγdx = j2 − 2j1 − 1 = 2pn − 2− 2pn − 1 = −3.

Claim. The curve F has only one branch centered at X∞ = (1 : 0 : 0).

Proceed the argument on the affine plane X = 1. Let G and g(Y, Z) be

as before. Let H be the curve V(Y ) and δ be a branch of H centered

at O = (0, 0), which is represented by y(t) = 0 and z(t) = t. Then the

intersection multiplicity of G with δ at O = (0, 0) is

I(O,G ∩ δ) = ordt(G(0, t)) = pn − 2.

So, we have

I(O,G ∩ H) = pn − 2

since H has only one branch δ.

Note that

pn − 2 = I(O,G ∩ H) = I(O,H ∩ G)

=
∑
γ

I(O,H ∩ γ)

=
∑
γ

pn − 2

where γ runs through all branches of G centered at P . Thus there is

only one branch γ of G centered at O.
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Combining all three cases, from the equation∑
P∈PΣ

ordPdx = 2g − 2

the only places contributing the summation on the left hand side is the one

centered at O and X∞ = (1 : 0 : 0). Thus pn − 3 = 2g − 2 and then

g =
1

2
(pn − 1).

Remark 2.4. According to the genus computation, the thrice punctured plane

have an abelian covering of arbitrary high genus for p > 0 odd.
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Part II

Isometry-dual property of

Algebraic Geometry Code
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Chapter 3

Preliminaries

In this chapter, we review some definitions and properties of Algebraic Ge-

ometry Codes following the exposition of [12].

3.1 Codes

Let Fq be the finite field of q elements, where q is some power of a prime

number p.

Definition 3.1. A linear code C is a linear subspace of Fnq . An element of C

is a codeword. The length of C is n and the dimension of C is the dimension

dimC as a Fq-vector space.

We only discuss linear codes and we call them codes for short.

Definition 3.2. Let a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ Fnq . The Ham-

ming distance d : Fnq × Fnq → R is defined by

d(a,b) := |{i : ai 6= bi}|,

which counts the number of distinct components of a and b. The weight is

an integer valued function on Fnq defined by

wt(a) := d(a,0).

The minimum distance of C 6= 0 is

d(C) := min{d(a,b)|a,b ∈ C and a 6= b} = min{wt(c)|0 6= c ∈ C}

The full space Fnq has structure as Fq-algebra.
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Definition 3.3. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be vectors in Fnq .

An operation ∗ : Fnq × Fnq → Fnq is defined by

a ∗ b = (a1b1, a2b2, . . . , anbn)

With this operation, an equivalence relation is defined on codes in Fnq .

Definition 3.4. Two codes C1 and C2 in Fnq are said to be equivalent if there

exists a vector v ∈ (F×q )n such that v ∗ C1 = C2; i.e.,

C2 = {v ∗ a | a ∈ C1}.

3.2 AG code and its dual

Algebraic geometry codes, written by AG code in the sequel, were introduced

by V. D. Goppa in [7] and are also called geometric Goppa codes. It is a linear

code which is defined using the functions and rational points of a projective

smooth curve over a field Fq.
For the rest of the discussion, we use the following notations:

X smooth absolutely irreducible projective curve of genus g

F = F (X ) fucntion field of the curve X
P1, . . . , Pn, Q pairwise distinct rational points of F/Fq
D divisor given by P1 + . . .+ Pn

G divisor of F/Fq such that Supp G ∩ Supp D = ∅
L(G) Riemann-Roch space of functions with (f) ≥ −G

Consider the map defined on L(G) as follows:

evD : L(G) −−−−→ Fnq
f 7−−−−→ (f(P1), · · · , f(Pn)).

We often write the image of f by evD as f(D).

Definition 3.5. An AG code CL(D,G) is a linear code given by the image

of L(G) by evD. If the divisor G is a multiple of Q, then CL(D,G) is called

one-point AG code.
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Definition 3.6. Two divisors G and H, both of which are disjoint from D,

are said to be rational equivalent with respect to D, witten as G ∼D H if

there exists a rational function u such that u(Pi) = 1 for all i = 1, . . . , n and

H = G+ (u).

Now we define the dual of AG code which is given by residues of Weil

differentials. Let ΩF (G−D) be the Weil differential of F/Fq.

Definition 3.7. The code CΩ(D,G) ⊆ Fnq is defined by

{(ResP1(ω), . . . ,ResPn(ω)) | ω ∈ ΩF (G−D)}

Theorem 3.8 (Theorem 2.2.7 of [12]). The minimum distance d′ of the code

CΩ(D,G) is given by

d′ ≥ degG− (2g − 2).

The following theorem gives a relation between the two codes CL(D,G)

and CΩ(D,G).

Theorem 3.9 (Theorem 2.2.8 of [12]). CΩ(D,G) = CL(D,G)⊥

Next, we find a divisor H, by which the code CΩ(D,G) is represented as

CL(D,H). To this end, we need the following Lemma.

Lemma 3.10 (Lemma 2.2.9 of [12]). There exists a Weil differential η such

that

vPi
(η) = −1

ResPi
(η) = 1 for i = 1, . . . , n

Proposition 3.11 (Proposition 2.2.10 of [12]). Let η be the Weil differential

given in Lemma 3.10. Then

CL(D,G)⊥ = CΩ(D,G) = CL(D,H)

where H := (η) +D −G.

For a divisor G, we write G⊥ := (η)+D−G. Then the proposition shows

that CL(D,G)⊥ = CL(D,G⊥).

For the rest of the section we give some statements will be needed to

prove the Theorem 4.3 in the next chapter.
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Lemma 3.12 (Lemma 3.1 of [10]). Let C be a linear code in Fnq not contained

in any of the coordinate hyperplanes and n < q. Then there exits c ∈ C such

that wt(c) = n.

Proof. Let Ci be the coordinate hyperplane defined by xi = 0. Then C ( Ci

for all i = 1, . . . , n. Suppose there is no codeword c in C of weight n. Then

C ⊆
⋃n
i=1Ci. Let k = dimC. Counting the cardinality of both sets, we get

qk ≤ nqk−1, so q ≤ n. This is a contradiction, so there is a codeword c ∈ C
of weight n.

Corollary 3.13 (Corollary 3.2 of [10]). Let n < q and 2g−1 < degG. Then

there exists a codeword of weight n in CL(D,G).

Proof. If we can prove that the code CL(D,G) is not contained in any of the

hyperplane xi for i = 1, . . . , n, then we are done. So, assume contrary that

CL(D,G) is contained in some xi = 0. Then its dual code CΩ(D,G) contains

a codeword of weight 1. However, the minimum distance of CΩ(D,G) is at

least degG− (2g − 2), which is a contradiction.

Viewing the curve X over the Fqr , the extension of Fq,

Theorem 3.14 (Theorem 3.6.3 of [12]). Consider the compositum of fields

F ′ := FFqr , then F ′/Fqr is an extension of the function field F/K. The

conorm map

ConF/F : Cl(F ) −→ Cl(F ′)

is injective.
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Chapter 4

Isometry-dual property

Consider a full flag of codes in Fnq . If the flag is the same as its dual flag upto

equivalence with respect to a fixed vector v with wt(v) = n, it is said to be

isometry-dual. For one-point AG codes, by [6], the isometry-dual property

can be characterized in two ways: one in terms of divisors and the other in

terms of the Weierstrass semigroup of nongap numbers. In addition, interests

are in the case when the isometry-dual property is preserved after puncturing

the codes at some points. The paper [2] gives a necessary condition for a

punctured flag of one-point AG codes preserving the isometry-dual property.

In this chapter, after going through the detail of previous works, we generalize

a result in [6] and give a different proof. Our proof does not depend on results

in [10] that are used in the proof in [6] and in this way we are able to obtain

a stronger result. Moreover, we present examples that show that our result

are best possible. A further aspect of our proof is that it makes clear which

part of the isometry-dual property of AG codes depends on curve properties

and which part on linear algebra.

4.1 Isometry-dual property of one-point AG

codes

In this chapter, we consider a full flag (Ci)i=0,...,n of codes, that is, a series of

codes with strict inclusions

{0} = C0 ( C1 ( . . . ( Cn = Fnq

such that dimCi = i.

Definition 4.1. The full flag (Ci)i=0,...,n is isometry-dual if there exists a
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vector v ∈ (F×q )n such that

Ci ⊥v Cn−i,

or, equivalently, if the dual flag

Fnq = C⊥0 ) C⊥1 ) . . . ) Cn = F⊥qn = {0}

is the same as the original flag modulo the equivalence with respect to v.

Note that the vector v depends on the flag (Ci)i=0,...,n but not on i.

Consider one-point AG codes on a smooth absolutely irreducible projec-

tive curve X with genus g. Let W be the set of Weierstrass nongap numbers

at a rational point Q. Let Ci be given by CL(D,miQ) with mi satisfying the

following:

1. m0 = −1.

2. dimCL(D,miQ) = i and mi is minimal with respect to this property

for i = 1, . . . , n.

We call mi a geometric nongap for each i = 1, . . . , n and let W ∗ be the

set of all geometric nongaps. It is obvious that W ∗ ⊆ W . Then we have

the following characterization of the full flag of one-point AG codes being

isometry-dual.

Theorem 4.2 (Proposition 4.3 of [6]). Suppose n > 2g + 2. Then the fol-

lowing are equivalent for the full flag (CL(D,miQ))i=0,...,n.

(a) The flag is isometry-dual.

(b) (n+ 2g − 2)Q−D is a canonical divisor.

(c) n+ 2g − 1 ∈ W ∗

where K is a canonical divisor.

The above theorem refers in its proof to the following theorem from [10],

from which the condition n > 2g + 2 originated.

Theorem 4.3 (Theorem 4.14 and Corollary 4.15 of [10]). Suppose n > 2g+2.

Let G and H be divisors with supports disjoint from D. Let 2g−1 < degG =

degH < n − 1. Then CL(D,G) = CL(D,H) if and only if G ∼D H, i.e.

there is a function f with (f) = G−H and f(P ) = 1 for all P ∈ D.
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Let I be an index set given as a subet of {1, 2, . . . , N} of size n. Consider

a projection map prI : FNq → Fnq given by prI(c) = (ci)i∈I for c ∈ FNq . For

a code C ⊆ FNq , we call prI(C) ⊆ Fnq the punctured code of C at positions

{1, 2, . . . , N}\I. In one-point AG codes, we can define it in the following

way.

Definition 4.4. For one-poin AG code CL(D,mQ), the punctured code at

points Pi1 , . . . Pil is CL(D′,mQ) where D −D′ = Pi1 + . . .+ Pil .

For a full flag of one-point AG codes (CL(D,miQ))i=0,...,N , the puncturing

will induce a new series of codes (CL(D′,miQ))i=0,...,N . Note that there are

some redundancies in the series since the length of the flag is N but the codes

are in Fnq if n < N . So, we remove CL(D′,miQ) from the series if it satisfies

CL(D′,miQ) = CL(D′,mi−1Q).

In this way, we get a full flag of length n after puncturing. We can formulate

it in more strict sense.

Definition 4.5. Let D′ ⊂ D be a divisor with |D′| = n. For a full flag of

one-point AG codes (CL(D,miQ))i=0,...,N , the punctured flag at points D−D′

gives a full flag (CL(D′,m′iQ))i=0,...,n where the subset {m′0,m′1, . . . ,m′n} ⊆
{m0,m1, . . . ,mN} are chosen to satisfy CL(D′,m′iQ) 6= CL(D′, (ms − 1)Q).

The m′i satisfying the last condition are called optimal.

In [2], for one-point AG codes, a necessary condition is given for the inher-

itance of the isometry-dual property from the original flag to its punctured

flag.

Theorem 4.6 (Theorem 6 of [2]). Suppose N ≥ n > 2g + 2. Let a full flag

of one-point AG codes (CL(D,miQ)i=0,...,N be isometry-dual. Consider a full

flag codes (CL(D′,m′iQ))i=0,...,n obtained by puncturing at D −D′. The flag

of punctured codes is also isometry-dual only if N − n ∈ W , i.e., only if

L((N − n)Q) 6= L((N − n− 1)Q).

It will be shown in the next section that the proof of the equivalence

of (a) and (c) in Theorem 4.2 depends highly on (b). Here we present a

generalization and a different proof. In this way, we can see what aspect of

a curve contributes to the isometry-dual property and its inheritance to a

puncturing.
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Theorem 4.7. Let CL(D,miQ)i=0,...,N be a full flag of one-point AG codes.

For a divisor D′ ⊂ D, suppose that the punctured flag CL(D′,m′i)i=0,...,n is

isometry-dual. Let m := m′n. Then only one of the following three can occur.

(a) If m ≥ 4g, then n = m− 2g + 1.

(b) If m ≤ 4g − 2, then n ≤ 2g.

(c) If m = 4g − 1, then either n = 2g or n = 2g + 1.

Note that, in the above theorem, we do not exclude the case n = N . So,

the theorem can be used to see if the original flag is isometry-dual.

Remark 4.8. If n = 2g + 2 then m = n + 2g − 1. So the equivalence of (a)

and (c) in Theorem 4.2 can be extended to the case n = 2g + 2. It can be

shown easily that (c) implies (a).

In the rest of this section we will prove Theorem 4.3, Theorem 4.2, and

Theorem 4.6.

4.1.1 Equivalence of divisors from equality of codes

In [10], the complete proof of Theorem 4.3 spreads out in many Theorems

and Corollaries combined with more general cases. In this subsection we give

compact and essential proof of the theorem extracted from [10]. Through-

out this subsection let G and H be two divisors with same degree m. For

notation, we write m⊥ := n+ 2g − 2−m.

The following are some preliminary works which will be needed in the

proof of the Theorem 4.2.

Remark 4.9 (Remark 4.4 of [10]). The following fact can be verified readily

from the definition of G⊥.

G⊥ ∩H⊥ = D +K −G−H +G ∩H

= G⊥ +H⊥ −D −K +G ∩H

Remark 4.10 (Proposition 4.5 of [10]). Let E and F be two divisors with

`(F ) 6= 0. Suppose 2g − 1 < degF and degE < degF . Then `(E) < `(F ).

Indeed, if degE ≤ 2g − 2, then by Clifford’s theorem and Riemann-Roch

theorem, we get `(E) ≤ g < `(F ). If degE > 2g− 2, then also by Riemann-

Roch theorem, `(E) < `(F ).
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The proof of the following proposition refers to [4].

Proposition 4.11 (Proposition 4.7 of [10]). Let G and H be two divisors

with degG = degH = m, both of which are not supported in D. If 2g − 1 <

m < n− 1 and CL(D,G) = CL(D,H) then

`(G) ≤ `(G ∩H) + `(G+H −G ∩H −D).

Proof. For any f ∈ L(G), let hf ∈ L(H) be such that evD(f) = evD(hf ).

The function hf is unique because if evD(f) = evD(hf ) = evD(h′f ), then

hf − h′f ∈ L(H −D) = {0}. Consider the map

φ : L(G) −→ F (X )

f 7−→ h− hf

Let V be the image of φ. Then kerφ = L(G ∩ H). Note that V '
L(G)/L(G ∩ H), so `(G) = dimV + `(G ∩ H). If f ∈ L(G) and h ∈ L(H)

then f − h ∈ L(G+H −G∩H). Since the image of φ vanishes at all D, we

get dimV ≤ `(G+H −G ∩H −D). Therefore we get the result.

Lemma 4.12 (Lemma 4.10 of [10]). Let 2g − 1 < m < n − 1. Suppose

0 ≤ deg(G ∩ H) ≤ 2g − 2 and 0 ≤ deg(G + H − G ∩ H − D) ≤ 2g − 2. If

CL(D,G) = CL(D,H) then n ≤ 2g + 2.

Proof. Note that `(G) = m+1−g. Applying Proposition 4.11 and Clifford’s

theorem, we get

m+ 1− g ≤
(deg(G ∩H)

2
+ 1
)

+
(deg(G+H −G ∩H −D)

2
+ 1
)

= m− n

2
+ 2

Then n ≤ 2g + 2.

Proof of Theorem 4.3. The proof is given in three steps starting with some

restrictions on the degrees of G and H and then removing the restrictions as

the proof proceeds.

Step 1. The theorem holds with an additional condition deg(G ∩H) > m− n.
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Let s := deg(G∩H) and t := deg(G⊥∩H⊥). We will use the following

relation, which can be readily obtained from the definition.

deg(G+H −G ∩H −D) = 2m− n− s

= deg((η)−G⊥ ∩H⊥) = 2g − 2− t

We prove separately for cases for s and t.

(a) s > 2g − 2

deg(G⊥∩H⊥) = 2m⊥−n−(2g−2)+s > 2m⊥−n by Remark 4.9.

If G⊥ 6= H⊥ then

G⊥ ∩H⊥ < G⊥

so deg(G⊥∩H⊥) < degG⊥. By Lemma 4.11, we get `(G⊥∩H⊥) <

`(G⊥). Applying Lemma 4.12, we get

`(G⊥ ∩H⊥) < `(G⊥) < `(G⊥ ∩H⊥) + `(G⊥ +H⊥ −G⊥ ∩H⊥ −D)

= `(G⊥ ∩H⊥),

which is a contradiction. Therefore G⊥ = H⊥, so G = H.

(b) t > 2g − 2

The argument is same if we replace G, H, and s by G⊥, H⊥, and

t respectively.

(c) 0 ≤ s ≤ 2g − 2

Note that

0 ≤ deg(G+H −G ∩H −D) = deg((η)−G⊥ ∩H⊥) ≤ 2g − 2.

Then by Lemma 4.12, this implies that n ≤ 2g+ 2, which contra-

dicts the assumption n > 2g + 2. So, this case does not occur.

(d) 0 ≤ t ≤ 2g − 2

The argument is same if we replace G, H and s by G⊥, H⊥, and

t respectively.

(e) s < 0

Note that `(G∩H) = 0. Then `(G) ≤ `(G+H −G∩H −D) by

38



Proposition 4.11. Since m− n < s from the assumption, we get

deg(G+H −G ∩H −D) < degG.

Applying Remark 4.10 for E = G+H −G ∩H −D and F = G,

it has to be that

`(G+H −G ∩H −D) < `(G),

which is a contradiction. So, this does not occur.

(f) t < 0

The argument is similar to (e) after replacing G, H, and s by G⊥,

H⊥, and t respectively.

Therefore we get the following table of cases for the degree of s and

t, wihch proves the Theorem with additional condition deg(G ∩H) >

m− n.

s > 2g − 2 0 ≤ s ≤ 2g − 2 s < 0

t > 2g − 2 (a), (b) (d) (e)

0 ≤ t ≤ 2g − 2 (c) (c),(d) (e)

t < 0 (f) (f) (e),(f)

The cases corresponding to shaded regions does not occur. Note that

with the additional assumption deg(G∩H) > m−n, we proved G = H.

Step 2. The theorem holds if both G and H are effective.

Since deg(G ∩H) ≥ 0 > m− n, it is a special case of Step 1.

Step 3. The theorem holds for general G and H.

View the codes CL(D,G) and CL(D,H) in Fnqr for some r large enough

to satisfy qr > n. According to Corollary 3.13, there exist f ∈ L(G)
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and h ∈ L(H) be such that evD(f) = evD(h) with weight n. Let

G′ = G+(f) and H ′ = H+(h). Then G′ and H ′ are both effective and

evD(f) ∗ CL(D,G′) = CL(D,G) = CL(D,H) = evD(h) ∗ CL(D,H ′).

Then G′ = H ′ by Step 2. Therefoer G ∼D H. By Theorem 3.14,

equivalence of G and H over Fqr implies the equivalnece of G and H

over Fq.

4.1.2 Isometry-dual property in two characterizations

In this subsection we give proof of Theorem 4.2.

Lemma 4.13. Let A = miQ and B = mjQ be divisors given by multples of

Q. If A+B ∼ K +D +Q for a canonical divisor K then

mi ∈ W ∗ ⇔ mj ∈ W ∗

Proof. Suppose that mi ∈ W ∗, then

L(A)/L(A−D) ∼= L(K +D +Q−B)/L(K +Q−B)

dimL(A)/L(A−D)− dimL(A−Q)/L(A−Q−D) = 1

Combining the above two facts, we get

dimL(K +D+Q−B)/L(K +Q−B)− dimL(K +D−B)/L(K −B) = 1

Applying the Riemann-Roch Theorem, we get

dimL(B)/L(B −D)− dimL(B −Q)/L(B −Q−D) = 1

Thus we conclude that mj ∈ W ∗. The converse can be shown similarily.

Proof of Theorem 4.2. Let E be the divisor (n+ 2g − 2)Q−D.

(a) ⇒ (b) Assume that the sequence (CL(D,miQ))i=0,··· ,n is isometry-dual. Choose

i such that 2g ≤ mi ≤ n − 1. This is possible since 2g + 2 < n and

there is no Weierstrass gap number of Q between 2g and n. Since
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2g ≤ n+2g−2−mi ≤ n−1, there exists j such that mj = n+2g−1−mi,

where mj ∈ W ∗. From the isometry-dual property, we get

CL(D,miQ) ⊥f CL(D,mn−iQ)

and for K is cacnonical

CL(D,miQ)⊥ = CL(D,K +D −miQ).

Let’s first show that i + j = n. Using Riemann-Roch theorem, we get

the following.

dimCL(D,miQ) = n− `(K +D −miQ) = i

= `(miQ) = mi + 1− g = i

Similarly, j = mj + 1− g and then

i+ j = mi +mj − 2g + 2 = n

Thus

CL(D,K +D −miQ) ∼ CL(D,mjQ).

By Theorem 4.3, it will be induced that K+D−miQ ∼ mjQ and then

the divisor (n+ 2g − 2)Q−D is canonical.

(b) ⇒ (a) First, assume that (ω) = (n + 2g − 2)Q − D is a canonical divisor.

Let η be a differential as in Lemma 3.10. Choose f such that fω = η.

Then f has no zero at Pi for i = 1, . . . , n. Let A = miQ and B =

(n+ 2g − 1−mi)Q be divisors. Then

A+B = (n+ 2g − 1)Q = (ω) +D +Q ∼ (η) +D +Q.

By the above Lemma 4.13, sincemi ∈ W ∗, we have n+2g−1−mi ∈ W ∗,

and

CL(D,miQ)⊥ = CL(D, (η) +D −miQ)

= CL(D, (f) + (ω) +D −miQ)

= evD(f) ∗ CL(D, (n+ 2g − 2−mi)Q)
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with dimCL(D, (n + 2g − 2 − mi)Q) = n − i. Note that the first

equality holds by Proposition 3.11 and the second is by fω = η. Thus

mn−i = n+ 2g − 2−mi and CL(D,miQ) ⊥f CL(D,mn−iQ).

(b) ⇔ (c) By the equivalence of (a) and (b), the flag is isometry-dual if and only if

the divisor A = (n+2g−2)Q−D is canonical. Note that degA = 2g−2.

Then A is canonical if and only if `(A) ≥ g (See [12], Proposition 1.6.2).

By Riemann-Roch theorem, `(A+Q) = g. Thus A is canonical if and

only if `(A) = `(A+Q). This is if and only if n+ 2g − 1 ∈ W ∗ due to

the characterization of geometric nongaps.

Note that degE = 2g− 2. Thus E is canonical if and only if `(E) = g.

By Reimann-Roch theorem, `(E +Q) = g. Then E is canonical if and

only if `(E) = `(E +Q), which is equivalent to n+ 2g − 1 ∈ W ∗.

4.1.3 Maximal sparse ideal and inheritance of

isometry-dual property

In this subsection we introduce the concept of maximal sparse ideal of a

numerical semigroup and use it to prove Theorem 4.6. The exposition and

result is from [2].

A numerical semigroup S is a subset of N0 which contains 0, is closed

under addition and has a finite complement in N0. Write it as

S = {0 = λ0 < λ1 < λ2 < · · · } ⊆ N0.

Define g := |N0\S| the genus and c := min{i : i + N0 ⊆ S} the conductor of

S. In [1], a partial order � on a numerical semigroup S is defined as follow

λi � λj ⇐⇒ ∃λk ∈ S such that λi + λk = λj

With the definition define the following two sets for any λi ∈ S.

D(λi) := {λj ∈ S : λj � λi}

Γ(λi) := {λj ∈ S : λi � λj}
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A proper subset I is an ideal of S if I + S ⊆ I. An ideal I is irreducible

if it is not an intersection of two ideals properly containing I. The Frobenius

number F of an ideal I is the largest number not in I.

Remark 4.14. Here, we list series of facts whose proof can be found in [2].

1. Γ(λi) is an ideal of S.

2. All irreducible ideals are of the form S\D(λi) for some λi and all set

of such form are irreducible.

3. F ≤ 2g − 1 + |S\I| and we call an ideal I maximum sparse if the

equality holds.

Let g(λi) denote the number of pairs of gaps adding to λi. Then the

following holds.

Theorem 4.15 (Theorem 4 of [2]). Let I and J be two maximum sparse ideal

of S with corresponding leaders λi and λj respectively. Then the following

are equivalent:

(1) J ⊇ I

(2) S\J ⊆ S\I

(3) D(λj) ⊆ D(λi)

(4) λi − λj ∈ S

(5) |S\I| − |S\J | ∈ S

Theorem 4.16 (Theorem 2 of [3]). An ideal I of S is maximum sparse if

and only if I = S\D(λi) for some i and g(λi) = 0.

Consider the one-point AG codes setting with the Weierstrass semigroup

W and geometric nongaps W ∗.

Proposition 4.17 (Corollary 3.3 of [6]). The set W\W ∗ is an ideal of W .

Remark 4.18. Note that n + 2g − 1 ∈ W ∗ is equivalent to W\W ∗ being

maximum sparse. Indeed, if n+2g−1 ∈ W ∗, it is maximum in W ∗ due to the

dimension argument of CL(D, (n+ 2g− 1)Q) using Reimann-Roch theorem.

Then F = n + 2g − 1 and |W\(W\W ∗)| = |W ∗| = n. Conversely, the ideal

W\W ∗ being maximum sparse implies that F = 2g− 1 + |W ∗| = n+ 2g− 1.

Then F ∈ W ∗.
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Proof of Theorem 4.6. Write (Ci) for the original flag and (C ′i) for the in-

duced punctured flag. Assume that they are both isometry-dual. Let (W ∗)′

be the set of geometric nongaps for the punctured flag. By the above re-

mark, since both the orignal and the induced flags are isometry-dual, the

ideal W\W ∗ and W\(W ∗)′ are both maximum sparse. For a fixed m, if

C ′m 6= C ′m−1 then Cm 6= Cm−1. This implies (W ∗)′ ⊆ W ∗. By Theorem 4.15,

it is equivalent to |W ∗| − |(W ∗)′| = n− s ∈ W .

4.2 Linear algebra argument

For a full flag of codes (Ci)i=0,...,N , the isometry-dual property is defined only

in terms of their inclusion of its dual flag modulo equivalence. So, we can

extend it to general linear code, not necessarily induced from a curve.

Definition 4.19. Let A be a N ×N matrix over Fq of rank N . The matrix

A is isometry-dual if there exists a vector v ∈ (F×q )N such that the matrix

A · diag(v) ·AT is a anti-diagonal lower triangular matrix with nonzero anti-

diagonal components, i.e.

A · V · At =



?

0 ?

. .
.

? ∗
?


where all the anti-diagonal components, i.e. all ?, are nonzero. We call v a

dualizing vector.

To easily move back and forth between linear algebra and AG codes, we

define formal notions of points and functions of a matrix A.

Definition 4.20. Let A be an N × N matrix. Corresponding to each j-th

column of A, we call Pj a point of A for j = 1, . . . , N . Write D for the set of

all points of A ordered by i.

Definition 4.21. For each i-th row of A, corresponds fi a function defined

on points of A whose value at Pj is the (i, j) component of A. Define F to

be a Fq-algebra spanned by f1, . . . , fn and call it a function space of A.
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For a function f and the set of pointsD of a matrix A, We interchangeably

write evD(f) or f(D) for the row vector (f(P1), . . . , f(PN)).

Puncturing a flag of codes corresponds to taking a n×n minor, say B, of

the matrix A. Without loss of generality, by reordering columns if necessary,

we may assume that the points D′ := {P1, . . . , Pn} are chosen for the minor

B. For rows, let {b1, . . . , bn} be the rows chosen for the minor B, that is, the

functions {fb1 , . . . , fbn} be chosen. However, there is a restriction in choosing

rows for B.

Definition 4.22. The n× n minor B of A is called optimal if the following

hold. bi has the property that fbi(D
′) is linearly independent over {fj(D′) :

j < bi}.

Remark 4.23. Note that all definitions given above correspond to the defini-

tion for one-pont AG codes.

Proposition 4.24. Let A be an N×N matrix of full rank. A n×n minor B

of A is optimal and isometry-dual if and only if there exists a vector w ∈ FNq
with wt(w) = n such that A · diag(w) · At is of the following form

?

?

...

?

?





0

∗

where the following hold:

1. There are exactly n number of ?.

2. All ? are nonzero.

3. Any component located left and/or above the ? is zero.

In a matrix of such form, we call a position of ? a pivot. The vector w is

called the characteristic vector.
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Proof. First, we prove the if part. Suppose that there exists a vector w ∈ FNq
of weight n which makes the matrix A·diag(w)·At of the required form. write

w = (w1, . . . , wN). Define x1 < x2 < · · · < xn be the position of nonzero

components of w. If (x, y) is the position of a pivot, then the corresponding

? is given by

(fx(D) ∗w) · fy(D).

Note that if (x, y) is a pivot position then so is (y, x). Let (x1, y1), . . . , (xn, yn)

be the pivot positions, where xi is in increasing order with respect to i. Let

D′ = {Pb1 , Pb2 , . . . , Pbn} and consider the functions fxi for i = 1, . . . , n. Then

define

B =
(
fxi(Pbj)

)
1≤i,j≤n.

We claim that B is an optimal minor of A and that B is an isometry-dual

matrix with dualizing vector vB := (wb1 , . . . , wbn). To show that it is optimal,

we need to prove that fxi(D
′) is linearly independent of all fj(D

′) for j < xi.

Suppose that fxi(D
′) is linearly dependent, so can be expressed as

fxi(D
′) =

∑
j<xi

ajfj(D
′).

Then (fxi(D
′) ∗ vB) · fyi(D′) =

∑
j<xi

aj(fj(D) ∗ w) · fyi(D) = 0 since all

(fj(D) ∗w) · fyi(D) = 0 for j < xi because they are components located left

of the ? at (xi, yi). Thus ? = 0, which is a contradiction. This shows that

the minor B is optimal.

In remains to prove that B is isometry-dual with respect to the vector

vB. Any anti-diagonal component of B · diag(vB) ·Bt is given as

(fxi(D
′) ∗ vB) · fyi(D′) = (fxi(D) ∗w) · fyi(D) = ?

So, they are all nonzero. Components of B · diag(vB) · Bt above the anti-

diagonal positions are

(fxi(D
′) ∗ vB) · fyj(D′) = (fxi(D) ∗w) · fyj(D)

for i < j. Since the right hand side corresponds to values of A · diag(w) ·At,
located above of a pivot position, it is zero. This proves B · vB · Bt is anti-

diagonal lower triangular, so B is isometry-dual.
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To prove the opposite direction, assume that the matrix B is isometry-

dual. Then there is a vector vB ∈ (F×q )n such that B ·vB ·Bt is anti-diagonal

lower triangular. Write vB = (v1, v2, . . . , vn). Let D′ := {Pb1 , . . . , Pbn} ⊆ D

be the points corresponding to the columns of B with induced order from

D and let {fx1 , . . . , fxn} be the functions corresponding to the rows of B

chosen from A with xi increasing order with respect to i. Define yi := xn−i,

for i = 1, . . . , n, the order reversing of xi’s. Let a vector w ∈ FNq have all

zero components except bi-th position, which is vi for i = 1, . . . , n. We need

to prove that the matrix A ·diag(w) ·At is of the required form. To this end,

prove the following two claims.

1. The (xi, yi) components are nonzero for all i = 1, . . . , n.

2. Any components located left and/or above the (xi, yi) position are zero.

Note that

(fxi(D) ∗w) · fyi(D) = (fxi(D
′) ∗ vB) · fyi(D′) = ? 6= 0

since the second term is the value of the anti-diagonal components of B ·
diag(vB) · Bt. This proves the first claim. Consider the (x, y) component of

A · diag(w) · At where x ≤ xi and y ≤ yi but (x, y) 6= (xi, yi) for some i. We

will show that (fx(D) ∗w) · fy(D) = 0.

(1) If x < xi, then fx(D
′) is a linear combination of fxj(D

′) for j < i and

fy(D
′) is a linear combination of fyk(D′) for k ≤ i. Then (fx(D) ∗w) ·

fy(D) is a linear combination of

(fxj(D) ∗w · fyk(D) = (fxj(D
′) ∗ vB) · fyk(D′)

for j < i and k ≤ i. These are above the anti-diagonal components of

B · diag(w) ·Bt, so they are zero.

(2) If y < yi, then it holds similarly.

Therefore there are exactly m pivot positions in the matrix A · diag(w) ·At.
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4.3 Proof of the main theorem

In this section, we prove Theorem 4.7. To this end, the following Lemma is

useful.

Lemma 4.25. Let (CL(D,miQ))i=0,...,N be a full flag of isometry-dual one-

point AG codes with generator matrix A and let (CL(D′,m′jQ))j=0,...,n be a full

flag of induced punctured codes which is also isometry-dual with corresponding

optimal generator matrix B with wt(w) = n is a vector as in Proposition 4.24.

Then one pivot of A·diag(w)·At occurs at the very first column of the matrix.

Moreover, any position of A · diag(w) · At corresponding to the degree m, it

is also a pivot.

Proof. All components of the first column are of the form evD(f1fi) where

each i is a geometric nongap. Letm to be the minimal i such that evD(f1fi) 6=
0. There exists such m since f1 is the constant function 1 and the matrix is

of full rank. Then by definition, (1, i) is a pivot position.

Suppose there exists functions fi and fj of A such that the degree of fifj

is also m but evD(fifj) · w = 0. Then fifj has pole order m at Q, so can

be expressed as a linear combination of fl with l ≤ m. However evD(fl) = 0

for all l < m and `(mQ)− `((m− 1)Q) = 1, so this contradicts evD(f1fm) =

evD(fm) 6= 0. Therefore any components of the form evD(fifj) · w with

mi +mj = m is also a pivot.

Now we give a proof of the main theorem.

proof of Theorem 4.7. Let A, B, m and w be as in the previous proof. By

the previous Lemma, all positions with entry of the form evD(fifj) ·w with

mi + mj = m are pivots. First, suppose that m ≥ 4g and see the following

diagram.

total of g gaps︷ ︸︸ ︷
−vQ(fi) 0 1 · · · 2g − 1 2g 2g + 1 · · · m

+ ∗ · · · ∗ + + · · · +

+ + · · · + + ∗ · · · +

−vQ(fj) m m− 1 · · · m− 2g + 1 m− 2g m− 2g − 1 · · · 0

︸ ︷︷ ︸
total of g gaps
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where ∗ indicates that it is eitehr + or −. In each column, the sum of the

numbers at the very top and bottom are all m. If a number on the top

row is a Weierstrass nongap(or gap), then the sign at the next row is +(or

− repectively). Similar for the bottom row and the third row. The shaded

background indicates the cells that the sign is +. This is because all numbers

greater than 2g − 1 are Weierstrass nongaps. Consider all pairs of functions

fi and fj such that the pole order of fifj exactly m. We will show that the

possible pivot positions are determined by the signs of columns.

1. For a column with

[
+

−

]
or

[
−
+

]
signs, the position corresponding

to (fi, fj) is not a pivot.

Since the − sign indicates the Weierstrass gap number, there is no

function having that exact pole number at Q. So, there is no such

corresponding entries in the matrix.

2. Any colum with

[
+

+

]
signs corresponds to a pivot position.

The signs imply that the correponding top and bottom numbers are

Weierstrass nongap. So, there exist functions fi and fj with the corre-

sponding pole order. Then vQ(fifj) = −m. Note that this function is a

linear combination of functions fl with l ≤ m. Write fifj =
∑

l≤m alfl.

Then

(
evD(fi) ∗ v

)
· evD(fj) =

∑
l<m

alevD(fl) · v + amevD(fm) · v

= amevD(fm) · v 6= 0

since all fl with l < m are in the dual space of f1 = 1 with respect

to the dualizing vector v, so that evD(fl) · v = 0. Therefore (fi, fj)

corresponds to a pivot position.

3. There are no pivots other than these at positions corresponding to

[++]t.

A pivot other than the [++]t case would correspond to a sign pattern
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− +

+ −

+ −

− +

However, this cannot occur since pattern [−+]t and [+−]t are separated

by the middle [++]t pattern at (2g, 2g).

Since there are total of m+ 1 possible choices of pair of numbers adding

to m and 2g of them are not pivots, there are exactly m + 1 − 2g pivots.

Then m = n+ 2g − 1. It follows that n ≥ 2g + 1. This proves (a).

Consider the case m ≤ 4g − 2. Also assume m > 2g because if m ≤ 2g

then it is obvious that n ≤ 2g. If m−2g is a nongap, then since (2g,m−2g)

corresponds to a pivot position, our previous argument works. So, let’s as-

sume that m−2g is a gap. Let λ be the largest nongap which is smaller then

m− 2g. Consider the following alternative intervals:

Interval 1︷ ︸︸ ︷ Interval A︷ ︸︸ ︷ Interval 2︷ ︸︸ ︷ Interval A’︷ ︸︸ ︷ Interval 3︷ ︸︸ ︷
0 · · · λ λ+ 1 · · · m− 2g · · · · · · 2g · · · m− λ · · · m

+ · · · + − · · · − · · · · · · + · · · + · · · +

+ · · · + · · · + · · · · · · − · · · + · · · +

m · · · m− λ · · · 2g · · · · · · m− 2g · · · λ · · · 0

We count the number of columns in each interval by their type.

In Interval 1, there are total a of

[
−
+

]
and λ + 1 − a of

[
+

+

]
. In

Interval 2, there are total b of

[
−
+

]
, b number of

[
+

−

]
by symmetry, c of[

−
−

]
, and d of

[
+

+

]
. In Interval A, there are total e of

[
−
+

]
. In Interval

A’, total e of

[
+

−

]
. In Interval 3, there are a

[
+

−

]
and λ+1−a of

[
+

+

]
.

Then we have the following by counting the Weierstrass gaps and the
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length of Interval A and 2.

a+ b+ c+ e = g (4.1)

e = m− 2g − λ (4.2)

2b+ c+ d = 2g − (m− 2g)− 1 = 4g −m− 1 (4.3)

Note that each

[
+

+

]
column corresponds to a pivot position, called

trivial pivots, and an ordered pair of

[
−
+

]
and

[
+

−

]
columns can possibly

give a pivot. Then the number of pivots are bounded by the following:

n ≤ 2(λ+ 1− a) + d+ b+ e

= 2λ+ 2− 2a+ 4g −m− 1− (b+ c) + e by (4.3)

= 2λ+ 4g −m+ 1− a+ 2e− g by (4.1)

= 2λ+ 3g −m+ 1− a+ 2m− 4g − 2λ by (4.2)

= m+ 1− g − a (4.4)

Note that we get the following by the Clifford’s theorem.

a ≥ λ

2
(4.5)

since λ+ 1− a = `(λQ) ≤ λ

2
+ 1.

Counting Weierstrass gaps and nongaps in the interval [0, 2g], we will get

the following information.

λ+ 1− a+ b+ d+ 1 = g + 1 ⇒ λ− a+ b+ d+ 1 = g. (4.6)

a+ (m− 2g − λ) + b+ c = g from (4.1) + (4.2)

We can combine them to get the following:

d− c = 2a+m− 2g − 2λ− 1

≥ λ+m− 2g − 2λ− 1 applying (4.5)

= m− 2g − λ− 1 ≥ 0 by the assumption λ < m− 2g
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Hence, we get d ≥ c.

Case1. d = 0. Then c = 0. Then number of gaps and nongaps are

Nongaps(+) λ+ 1− a+ b+ 1 = g + 1 ⇒ λ− a+ b+ 1 = g.

Gaps(-) a+ (m− 2g − λ) + b = g.

Then

⇒ λ+ 1− a+ b = a+m− 2g − λ+ b

⇒ λ+ 1− a = a+m− 2g − λ

⇒ 2λ+ 1 = 2a+m− 2g ≥ λ+m− 2g by (4.5)

⇒ λ+ 1 ≥ m− 2g > λ

So,

λ+ 1 = m− 2g (4.7)

Then we get the following table

0 · · · λ m− 2g · · · · · · 2g m− λ · · · m

+ · · · + − · · · · · · + + · · · +

+ · · · + + · · · · · · − + · · · +

m · · · m− λ 2g · · · · · · m− 2g λ · · · 0
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Then the number of pivots n is bounde by

n ≤ m+ 1− g − a by (4.4)

= λ+ 1 + g + 1− a by (4.7)

= λ+ g + 2− a

≤ λ

2
+ g + 2 by (4.5)

=
m− 2g − 1

2
+ g + 2 by (4.7)

=
m

2
+

3

2

≤ 2g − 1 +
3

2
= 2g +

1

2
by m ≤ 4g − 2

Thus n ≤ 2g.

Case2. d is nonzero.

Substitute g in (4.4) by (4.6),

n ≤ m− λ− (b+ d) (4.8)

Subcase 1. If b+ d ≥ e. Then

n ≤ m− λ− (b+ d)

≤ m− λ− e = 2g since Interval A’ has length e

Then we are done.

Subcase 2. If b+ d < e. Then

g = λ− a+ b+ d+ 1 by (4.6)

< λ− a+ 1 + e

= λ− a+ 1 +m− 2g − λ by (4.2)

= m− 2g + 1− a
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Applying the above result to (4.1)+(4.2), we have

g = a+m− 2g − λ+ b+ c < m− 2g − a+ 1

⇒ 2a+ b+ c < λ+ 1

⇒ λ+ b+ c ≤ 2a+ b+ c < λ+ 1 by (4.5)

⇒ λ+ b+ c < λ+ 1

⇒ b+ c < 1

So, b = c = 0.

In this case, in Interval 2, there are only

[
+

+

]
columns, which completely

separates Interval A and Interval A’. Then only trivial pivots occur and the

number is bounded by

n ≤ 2(λ+ 1− a) + d

≤ λ+ 2 + d by (4.5)

< λ+ 2 + e

= m− 2g + 2 by (4.2)

≤ 4g − 2− 2g + 2 = 2g

This completes the proof of (b) in Theorem 4.7.

Lastly, assume that m = 4g − 1. Then the diagram is of the form

total of g gaps︷ ︸︸ ︷
−vQ(fi) 0 · · · 2g − 1 2g · · · m

+ · · · ∗ + · · · +

+ · · · + ∗ · · · +

−vQ(fj) m · · · 2g 2g − 1 · · · 0

︸ ︷︷ ︸
total of g gaps

Then, in the middle, either of the following will happen.
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Case 1

2g − 1 2g

+ +

+ +

2g 2g − 1

Case 2

2g − 1 2g

− +

+ −
2g 2g − 1

Note that in Case 1, there are exactly m + 1 − 2g pivots correspond to the

[++]t factors, so that n = 2g. Assume that Case 2 occurs. If (2g, 2g) is not

a pivot position then there are total of m+ 1− 2g = 2g pivots. If (2g, 2g) is

a pivot position then n = 2g + 1.

We conclude this section with examples that show the bound n ≥ 2g + 2

in Theorem is best possible.

Example 4.26. Let X be a Hermitian curve defined by an affine equation

y2 + y = x3 over F4 = F2(α) with α2 + α+ 1 = 0. Then the genus of X is 1.

Case 1. m = 4g − 1 = 3 and n = 2g + 1.

Let D′ = {(0, 1), (α, α), (α2, α2)} ∼ 2P∞ + (0, 0). Then we get the

corresponding matrix

0 2 3 4 5 6

1 0 0 0 1 1 1 1

x 2 0 1 1 1 1 0

y 3 1 1 0 1 1 0

x2 4 1 1 1 0 0 1

xy 5 1 1 1 0 0 1

x3 6 1 0 0 1 1 1

with a dualizing vector v = (1, a2, a).

I(D′) = (F = y2 + y − x3, f4 = x2 + y + 1, f5 = xy + y + 1).

Case 2. m = 4g = 4 and n = 2g + 1.
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From m = 4g, it has to be that n = m− 2g + 1.

0 2 3 4 5 6

1 0 0 0 0 1 1 1

x 2 0 1 1 1 1 0

y 3 0 1 1 1 1 0

x2 4 1 1 1 0 0 1

xy 5 1 1 1 0 0 1

x3 6 1 0 0 1 1 1

with a dualizing vector v = (1, a2, a).

I(D′) = (F = y2 + y − x3, f3 = y + x).

Also, consider the Hermitian curve X given by the equation y3 + y = x4

over F9 = F3[α] with α2 − α− 1 = 0. This has genus 3.

Case 1. m = 4g − 1 = 11.

Choose D′ be such that

D′ = {(0, a2), (0, a6), (1, 2), (a, 1), (a3, 1), (a5, a7), (a7, a5)}

∼ 6P∞ + (0, 0).

Then we will get the matrix

0 3 4 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 1 1

x 3 0 0 0 0 0 1 1 1 0 2

y 4 0 0 0 0 1 1 1 0 2 1

x2 6 0 0 0 1 1 0 2 1 1 2

xy 7 0 0 1 1 0 2 1 1 2 1

y2 8 0 1 1 0 2 1 1 2 0 0

x3 9 0 1 1 2 1 1 2 1 0 2

x2y 10 0 1 0 1 1 2 1 0 1 1

xy2 11 1 0 2 1 2 0 0 1 1 1

x4 12 1 2 1 2 1 0 2 1 1 1
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with a dualizing vector v = (1, 1, 2, a7, a5, a, a3).

I(D′) = (F = y3+y−x4, f9 = x3+x2−y2−1, f10 = x2y+x2+xy−y2−1).

Case 2. m = 4g = 12.

Note that it has to be that n = 2g + 1 = 7. Let

D′ = {(1, a), (1, a3), (1, 2), (a, 1), (a3, 1), (a5, 1), (a7, 1)}

∼ 7P∞.

Then the matrix is

0 3 4 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 1

x 3 0 0 0 0 0 0 1 0 0 1

y 4 0 0 0 0 0 1 0 0 1 1

x2 6 0 0 0 1 0 0 1 1 0 1

xy 7 0 0 0 0 0 1 1 0 1 1

y2 8 0 0 1 0 1 1 0 1 1 1

x3 9 0 1 0 1 1 0 1 1 1 1

x2y 10 0 0 0 1 0 1 1 1 1 1

xy2 11 0 0 1 0 1 1 1 1 1 1

x4 12 1 1 1 1 1 1 1 1 1 0

with a dualizing vector v = (a5, a7, 2, a2, a6, a7, a5).

I(D′) = (F = y3 + y − x4, f7 = xy − y − x+ 1).

4.4 Examples

In this section we suggest various examples of isometry-dual codes and its

preservation by puncturing. We first suggest two cases of one-point AG codes,

one on the Hermitian curve and the other on Klein curve. Then we give an

example of Reed-Muller type code, which is not defined on any specific curve
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but given on affine plane.

4.4.1 Hermitian curve

The Hermitian curve X over Fq2 for some prime p power q is given by the

affine equation xq+1 = yq + y. It is a smooth curve of genus g = q(q − 1)/2.

There are a total of q3 + 1 rational points on the curve, one of which is at

infinity. Let q = 2 and α be the class of T in F4 = F2[T ]/(T 2 + T + 1).

Denote the eight affine rational points by

l1: P1 = (0, 0), P2 = (0, 1),

l2: P3 = (1, α), P4 = (α, α), P5 = (α, α),

l3: P6 = (1, α), P7 = (α, α), P8 = (α, α)

where li for i = 1, 2, 3 is a line passing through the points on the same row.

Let D = P1 + . . . + P8. The canonical divisor K is equivalent to 0. The

following table gives data of i and mi for the flag (CL(D,miQ))i=0,...,8 being

isometry dual.

i 0 1 2 3 4 5 6 7 8

mi −1 0 2 3 4 5 6 7 9

Then a generator matrix of the code CL(D,m8Q) is given by

P1 P2 P3 P4 P5 P6 P7 P8

1 1 1 1 1 1 1 1 1

x 0 0 1 α α 1 α α

y 0 1 α α α α α α

x2 0 0 1 α α 1 α α

xy 0 0 α α 1 α 1 α

x3 0 0 1 1 1 1 1 1

x2y 0 0 α 1 α α α 1

x3y 0 0 α α α α α α

where the very left column denotes functions in L(miQ)\L((mi − 1)Q on

which the points of D are evaluated. That the flag (CL(D,miQ))i=0,...,8 is
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isometry-dual can be obtained from the fact

K +D ∼ D ∼ 8Q.

and applying Theorem 4.2. The dualizing vector is v = (1, 1, . . . , 1). Note

that on an elliptic curve, an intersection of a line with the curve corresponds

to the identity according to the group law and we get the following.

3Q ∼ P3 + P4 + P5

∼ P6 + P7 + P8

Thus if D5 := P1 + . . .+P5, the punctured codes (CL(D5,m
′
jQ))j=0,...,5 is also

isometry-dual with the following generator matrix.

pole order at Q function P1 P2 P3 P4 P5

0 1 1 1 1 1 1

2 x 0 0 1 α α

3 y 0 1 α α α

4 x2 0 0 1 α α

6 x3 0 0 1 1 1

with a dualizing vector (1, α, α, α, α). This agrees with the Theorem 4.6 that

|D| − |D5| = 3 is a Weierstrass nongap.

Further, if we set D2 = P1 + P2, the induced code is also isometry-dual,

which is obvious from the following matrix

pole order at Q function P1 P2

0 1 1 1

3 y 0 1

with a dualizing vector (1, 1). Note that |D2| � 2g + 2, so not in the range

of the condition of Theorem 4.2.

4.4.2 Klein curve

The Klein curve X is given by X3Y + Y 3Z + Z3X = 0 in a projective plane

over a field of characteristic 2. There are three F2-rational poins of X , namely,
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Q1 = (1 : 0 : 0), Q2 = (0 : 1 : 0), and Q3 = (0 : 0 : 1). Let F8 = F2(α) such

that α3 + α + 1 = 0. Note that α7 = 1. The F8-rational points on X , which

are not Qi for i = 1, 2, 3 are given as follows:

l1 : P1 = (1 : α : 1), P2 = (1 : α2 : 1), P3 = (1 : α4 : 1),

l2 : P4 = (1 : 1 : α), P5 = (1 : α4 : α), P6 = (1 : α5 : α),

l3 : P7 = (1 : 1 : α2), P8 = (1 : α : α2), P9 = (1 : α3 : α2),

l4 : P10 = (1 : α3 : α3), P11 = (1 : α4 : α3), P12 = (1 : α6 : α3),

l5 : P13 = (1 : 1 : α4), P14 = (1 : α2 : α4), P15 = (1 : α6 : α4),

l6 : P16 = (1 : α2 : α5), P17 = (1 : α3 : α5), P18 = (1 : α5 : α5),

l7 : P19 = (1 : α : α6), P20 = (1 : α5 : α6), P21 = (1 : α6 : α6)

where points on each row are colinear on the line li for i = 1, . . . , 7. Recall

some properties of the Klein curve.

1. The genus of X is 3.

2. There are a total of twenty four F8-rational points, all of which are

flexpoints.

3. A tangent line to any of the twenty four points meets three times with

the curve X at the point and at other F8-rational point. Denote TQ the

tangent line of the curve X at Q, i.e. I(Q, TQ ∩X ) = 3 for all rational

points Q of X .

4. For any F8-rational point Q of X , there exists two distinct points,

written as Q′ and Q′′, such that

I(Q′, TQ ∩ X ) = 1

I(Q′′, TQ′ ∩ X ) = 1

I(Q, TQ′′ ∩ X ) = 1

5. With the previous notation of Q, Q′, Q′′, the canonical divisor L satis-

fies

L ∼ 3Q+Q′ ∼ 3Q′ +Q′′ ∼ 3Q′′ +Q

6. Consider any two F8-rational points R1 and R2 none of each is on the

tangent line of the other. Then the line through R1 and R2 meets X
at four distinct points. We write these two points by R3 and R4.
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7. With the previous notation forR1, R2, R3, andR4, the canonical divisor

L satisfies

L ∼ R1 +R2 +R3 +R4

8. Allowing redundancies, there are a total of 24C2 = 276 lines passing

through two distinct F8-rational points of X . Twenty four of them are

tangent lines at each points. The remaining 252 are 42 passing througth

4 distinct points of X . So, we get the computation 24 + 6× 42 = 276.

9. The Weierstrass nongaps at a point Q are given the following.

m 0 1 2 3 4 5 6 7 8 9 · · ·

mQ + − − + − + + + + + · · ·

Note that the Weierstrass semigroup of nongaps at Q is generated by

3, 5, and 7.

Let Q = Q3 = (0 : 0 : 1). Choose the following three functions:

u := Z/X pole order 3 at Q

v := Y Z/X2 pole order 5 at Q

w := Y 2Z/X3 pole order 7 at Q

Here, we suggest divisors Dn given by a sum of n F8-rational points such

that the one-point AG codes CL(D,mQ) satisfies the isometry-dual property.

Let Q = Q3 = (0 : 0 : 1) and consider a one-point AG code at Q. Define

D2 = Q′ +Q′′, where Q′ = (0 : 1 : 0) and Q′′ = (1 : 0 : 0). Note that

K +D2 ∼ 3Q+Q′ +Q′ +Q′′ = 3Q+ (3Q′ +Q′′)−Q′

∼ 3Q+K −Q′

∼ 6Q

The gap structure with mQ−D2 is given by

m 0 1 2 3 4 5 6 7 8 9 · · ·

mQ + − − + − + + + + + · · ·
mQ−D2 − − − + − + + − + +
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Note that

1 ∈ L(0Q)\L(0Q−D2)

w ∈ L(7Q)\L(7Q−D2)

and we get the 2× 2 generating matrix

Q′ Q′′

1 1 1

w 1 0

Let D5 = Q′ +Q′′ +P1 +P2 +P3, where P1, P2, P3, and Q′ are collinear.

Then

K +D5 ∼ 6Q+ P1 + P2 + P3 +Q′ −Q′

∼ 6Q+K −Q′ ∼ 9Q

and D5 −D2 ∼ 3Q.

The gap structure with mQ−D5 is given by

0 1 2 3 4 5 6 7 8 9 10 11 · · ·

mQ + − − + − + + + + + + + · · ·
mQ−D5 − − − − − − + − + + − + · · ·

Note that

u ∈L(3Q)\L(3Q−D5)

v ∈L(5Q)\L(5Q−D5)

v2 ∈L(10Q)\L(10Q−D5)
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and we get the 5× 5 generating matrix

Q′ Q′′ P1 P2 P3

1 1 1 1 1 1

u 0 0 1 1 1

v 0 0 w w2 w4

w 1 0 w2 w4 w

v2 0 0 w2 w4 w

with the dualizing vector of the above matrix is (1, 1, w, w2, w4). Note that

the yellow background indicates how the 2× 2 generating matrix for D2 case

embeds.

Let D8 = D5 + P4 + P5 + P6. Then

K +D8 = K +D5 + P4 + P5 + P6

∼ 9Q+K −Q′

∼ 12Q

with D8 −D5 ∼ 3Q and D8 −D2 ∼ 6Q.

The gap structure with mQ−D8 is given by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·

mQ + − − + − + + + + + + + + + + · · ·
mQ−D5 − − − − − − − − − + − + + − + · · ·

Note that

u2 ∈L(6Q)\L(6Q−D8)

uv ∈L(8Q)\L(8Q−D8)

uv2 ∈L(13Q)\L(13Q−D8)
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and we get the 8× 8 generating matrix

Q′ Q′′ P1 P2 P3 P4 P5 P6

1 1 1 1 1 1 1 1 1

u 0 0 1 1 1 w w w

v 0 0 w w2 w4 w w5 w6

u2 0 0 1 1 1 w2 w2 w2

w 1 0 w2 w4 w w w2 w4

uv 0 0 w w2 w4 w2 w6 1

v2 0 0 w2 w4 w w2 w3 w5

uv2 0 0 w2 w4 w w3 w4 w6

with the dualizing vector (w6, w6, w5, w6, w, 1, w4, w5). The shadowed

background indicates the embedding of 5× 5 matrix for the D5.

Lemma 4.27. Let n = 3i+ 2 and Dn = Q′ +Q′′ + P1 + · · ·+ P3i. Then

K +Dn ∼ (n+ 2g − 2)Q

for i = 0, . . . , 7.

Proof. It was proven for the case i = 0, 1, 2 in the above. From the con-

struction of Pi for i = 1, . . . , 21, we know that Q′, P3i+1, P3i+2, and P3i+3 are

colinear for i = 0, . . . , 6. Then

K +Dn+3 = K +Dn + P3i+1 + P3i+2 + P3i+3

∼ (n+ 2g − 2)Q+ L−Q′

∼ (n+ 3 + 2g − 2)Q

where L denotes the canonical divisor Q′ + P3i+1 + P3i+2 + P3i+3.

Hence finding set of points which are colinear on a line passing Q′ will

give a set of divisors satisfying isometry-dual condition on the corresponding

one-point AG codes. For D23 we have the following gap structure:
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mQ + − − + − + + + + + + + + + + +

mQ−D23 − − − − − − − − − − − − − − − −

16 17 18 19 20 21 22 23 24 25 26 27 28 29 · · ·

mQ + + + + + + + + + + + + + + · · ·
mQ−D23 − − − − − − − − + − + + − + · · ·

Let’s consider the following functions fi whose pole order at Q is i

1 u u2 u3 u4

1 f0 = 1 f3 = u f6 = u2 f9 = u3 f12 = u4

v f5 = v f8 = uv f11 = u2v f14 = u3v f17 = u4v

v2 f10 = v2 f13 = uv2 f16 = u2v2 f19 = u3v2 f22 = u4v2

v3 f15 = v3 f18 = uv3 f21 = u2v3

v4 f20 = v4 f23 = uv4

v5 f25 = v5 f28 = uv5

and f7 = w.

4.4.3 Reed Muller type code

Consider the affine space Fm2 . It is m dimensional vector space over F2, so

elements are of the form (αm, αm−1, . . . , α1) where each αj ∈ F2 = {0, 1} for

j = 1, . . . ,m. Let xαj
be the coordinate functions for j = 1, . . . ,m, that is,

xαj
(αm, αm−1, . . . , α1) = αj for j = 1, . . . ,m. Note that x2

αj
= xαj

. Then the

coordinate ring is R = F2[x1, x2, . . . , xm]/I for I = (x2
1−x1, x

2
2−x2, . . . , x

2
m−

xm), which is, as a set, a set of square free monomials in x1, . . . , xm. Let

α = (αm, αm−1, . . . , α1) and β = (βm, βm−1, . . . , β1) be vectors in Fm2 . We

write xα for the function xα1
1 x

α2
2 · · ·xαm

m . An order on R is defined by xα < xβ

if and only if

1. Either
∑
αi <

∑
βi

2. or
∑
αi =

∑
βi and ∃j such that αj = 0, βj = 1 and αk = βk for all
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k = j + 1, . . . ,m.

Call this by DegLex order. There is a bijection between F2-rational points

of Fm2 and functions in the coordinate ring R by α ←→ xα. We copy the

DegLex order on R to Fm2 . For a function f = Xα and a point P = β,

f(P ) =

1 if xα|xβ

0 otherwise

Let N = 2m. Define an N ×N matrix A = (Af,P ) with rows of functions in

R and columns of affine points in Fm2 both indexed by DegLex order. Then

with this orders on points and functions, we get an isometry-dual matrix.

For m = 3, we get the following matrix A.

000 001 010 100 011 101 110 111

1 1 1 1 1 1 1 1 1

x1 0 1 0 0 1 1 0 1

x2 0 0 1 0 1 0 1 1

x3 0 0 0 1 0 1 1 1

x1x2 0 0 0 0 1 0 0 1

x1x3 0 0 0 0 0 1 0 1

x2x3 0 0 0 0 0 0 1 1

x1x2x3 0 0 0 0 0 0 0 1

Then it can be easily checked that this matrix is isometry-dual with the

dualizing vector (1, 1, . . . , 1), that is, we get

AAT =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 1

0 0 0 1 0 1 1 1

0 0 1 0 1 0 1 1

0 1 0 0 1 1 0 1

1 1 1 1 1 1 1 1


For a subset of n rational points, the corresponding columns in A define
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a N × n submatrix whose row spaces define a flag of length n from 0 to Fn2 .

From this N×n matrix choose n rows in a way that the chosen row is linearly

independent on the previous rows. Then we get a full flag of Fn2 generated

by first i rows of the n× n matrix. We are interested in the case when this

choice gives an isometry-dual flag. The next two tables give the relevant

minors that define the flag for the subsets of points {000, 001, 010, 011} and

{000, 001, 010, 111}.

000 001 010 011

1 1 1 1 1

x1 0 1 0 1

x2 0 0 1 1

x1x2 0 0 0 1

000 001 010 111

1 1 1 1 1

x1 0 1 0 1

x2 0 0 1 1

x3 0 0 0 1

The two subsets share the same minors and thus the same flags. Both are

isometry-dual. For the first subset this follows immediately with the observa-

tion that the set is the set of all rational points in affine space of dimension 2,

that is, it is in the affine plane which is a hyperplane of a coordinate function

x3. The vanishing ideals for the two sets of points are

I({000, 001, 010, 011}) = (x3),

I({000, 001, 010, 111}) = (x1x2 + x3, x1x3 + x3, x2x3 + x3).

There are a total of 22 isometry-dual subsets of size 4. The row span R5 of the

first five rows in the 8-by-8 matrix A, the rows labeled 1, x1, x2, x3x1x2, con-

tains 32 vectors, with weight distribution 0 (1×), 2 (4×), 4 (22×), 6 (4×), 8 (1×).

The 22 vectors of weight 4 are the characteristic vectors of the 22 isometry-

dual subsets of size 4. They divide into four groups: 2 are in R2\R1, 4 are in

R3\R2, 8 are in R4\R3, and 8 are in R5\R4. Minors for subsets in the same

group share the same rows.

R2\R1 : 1, x2, x3, x2x3 (2×)

R3\R2 : 1, x1, x3, x1x3 (4×)

R4\R3 : 1, x1, x2, x1x2 (8×)

R5\R4 : 1, x1, x2, x3 (8×)
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Let v = (1, 1, 1, 0, 0, 0, 0, 1) be the characteristic vector for the subset {000, 001, 010, 111}.

Adiag(v)AT =



0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


Proposition 4.28. There are 54 = 26 − 10 isometry-dual subsets of size 8

in affine space F 4. Their characteristic vectors are the vectors of weight 8 in

the row span R6 of rows 1, x1, x2, x3, x4, x1x2 in A. The weight distribution

of the row span is 0144854124161. The 54 subsets divide into 6 orbits of sizes

2, 4, 8, 16, 8, 16. Pivots in positions (xα, xα
′
):

xαxα
′
=



x2x3x4 (2×)

x1x3x4 (4×)

x1x2x4 (8×)

x1x2x3 (16×)

x3x4 or x1x2x4 (8×)

x3x4 or x1x2x3 (16×)

Ideals that represent the different groups

I =



(x1)

(x2)

(x3)

(x4)

(x3 + x1x2, x3 + x1x3, x3 + x2x3)

(x4 + x1x2, x4 + x1x4, x4 + x2x4)

Proposition 4.29. There are 118 = 27 − 10 isometry-dual subsets of size

16 in affine space F 5. Their characteristic vectors are the vectors of weight
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16 in the row span R7 of rows 1, x1, x2, x3, x4, x5, x1x2 in A. The weight

distribution of the row span is 018416118244321. The 118 subsets divide into

8 orbits of sizes 2, 4, 8, 16, 32, 8, 16, 32.
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