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Abstract

Although the hierarchically hyperbolic space boundary is a generalization of the Gromov

boundary, we will show there are fundamental differences between the two. First, we pro-

vide negative answers to questions posed by Durham, Hagen, and Sisto on the existence of

boundary maps for some hierarchically hyperbolic spaces, namely maps from right-angled

Artin groups to mapping class groups. We then answer another question of Durham, Hagen,

and Sisto, proving that a Teichmüller geodesic ray does not necessarily converge to a unique

point in the hierarchically hyperbolic space boundary of Teichmüller space. In fact, we prove

that the limit set can be almost anything allowed by the topology.
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CHAPTER 1

Introduction

In this thesis, I will present my results about hierarchically hyperbolic spaces and their

boundaries. Hierarchically hyperbolic spaces were defined by Behrstock, Hagen and Sisto in

[BHS2017b] and [BHS2014]. The full definition of a hierarchically hyperbolic space (HHS)

is lengthy and technical, but the underlying spirit of the definition is simple:

A geodesic metric space is an HHS if its geometry can be approximately explained by

projecting to a collection of associated spaces with negatively curved geometry.

Perhaps the simplest, non-trivial example of an HHS is the Euclidean plane R2. It is

an HHS because the geometry of the x-axis and the geometry of the y-axis are sufficient

for coarsely describing the geometry of R2. In particular, the Euclidean distance between

two points in R2 can be approximated to O(1) by projecting the points onto each axis and

summing the distances between the projections (see Figure 1.1).

dx

dy
≈ dx + dy

x

y

Figure 1.1: Because the ratio of the `1 and `2-norms of a vector in R2 is at most
√

2, the
Euclidean distance between points in R2 can be approximated to O(1) by projecting to the
axes.

Of course, R2 is well-understood and an HHS structure is not needed to comprehend its

geometry. However, the spaces we are primarily concerned have much more complicated

geometries, and the negative curvature of the spaces we project to makes them preferable to

deal with.
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1.1 Motivation for hierarchically hyperbolic spaces

If a Riemannian manifold has constant negative sectional curvature, then its triangles are

uniformly thin in the following sense:

Uniformly thin triangle property: There exists a constant δ ≥ 0 such that for

every geodesic triangle, each side of the triangle is contained in the δ-neighborhood of

the union of the other two sides.

Figure 1.2: A δ-thin triangle.

We will call a geodesic metric space Gromov hyperbolic (and sometimes hyperbolic for

short) if it has the uniformly thin triangle property. Unlike negative sectional curvature,

Gromov hyperbolicity has the advantage of applying to spaces that are not manifolds; for

example, we can talk about a graph being Gromov hyperbolic. Moreover, it turns out that

there are many geometric consequences to assuming only uniformly thin triangles, and if the

metric space is a group, then there are algebraic consequences as well (see Section 2.1).

Examples of Gromov hyperbolic spaces include hyperbolic space Hn, graphs with no cycles

(trees), and fundamental groups of orientable, connected, compact surfaces of negative Euler

characeristic. In fact, in reasonable models of randomness, “most” finitely presented groups

are hyperbolic [Os1992].

Nevertheless, many spaces arising naturally in low-dimensional topology are not Gromov

hyperbolic, a primary example of interest being the mapping class group of an orientable

surface S of negative Euler characteristic, denoted Mod(S). Masur and Minsky [MM2000]

showed that the geometry of Mod(S) can be understood by projecting mapping classes to

the curve complexes of the subsurfaces of S, spaces they proved are Gromov hyperbolic

[MM1999]. The curve complex machinery has been deployed to answer important ques-

tions surrounding Mod(S) including computational complexity of the conjugacy problem

[MM2000] and quasi-isometric rigidity [BKMM2012], as well as Thurston’s Ending Lamina-

tion Conjecture on the geometry of 3-manifolds [BCM2012].
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In [BHS2017b], the authors present analogous machinery for certain CAT(0) cube-complexes.

They then defined the notion of hierarchically hyperbolic space structures to axiomatize

the machinery. The axiomatization has the advantage that theorems about mapping class

groups, right-angled Artin groups, Teichmüller space and more can now be proved simul-

taneously. HHS structures have been used to prove new theorems and strengthen existing

theorems, a few of which we describe below.

• [BHS2017c] proved certain quasi-flats in HHSs are stable, answering conjectures of

Farb in the mapping class group and Brock in Teichmüller space.

• [BHS2017a] proved HHSs have finite asymptotic dimension. In the mapping class group

case, the bound on asymptotic dimension was reduced from exponential to quadratic

in the complexity of the surface.

• [BHS2017b] proved every hierarchically hyperbolic group acts acylindrically on some

hyperbolic space (new for certain cubical groups).

1.2 Motivation for HHS boundary

For each Gromov hyperbolic space X, there is an associated space “at infinity” called the

Gromov boundary, which we will denote ∂GX. If X is proper, then its Gromov boundary

consists of equivalence classes of geodesic rays based at a given point. While the Gromov

boundary is not formally a part of the space X, studying group actions on X ∪ ∂GX (in

particular the dynamics of actions) has historically proved useful for recovering information

about X.

Every Gromov hyperbolic space is trivially an HHS, so it is natural to try to generalize

the Gromov boundary to yield an equally fruitful tool for the HHS setting; and that was pre-

cisely the aim of [DHS2017]. There Durham, Hagen, and Sisto constructed a boundary for

HHSs. They then took standard facts about the dynamics of actions on Gromov hyperbolic

spaces and their boundaries and generalized them to the HHS setting. For example, ana-

logues of loxodromic, elliptic, and parabolic isometries are defined, North-South dynamics

are established, and dense orbits in the boundary are guaranteed under certain conditions.

Their observations enabled them to generalize known theorems about mapping class groups

(the Tits Alternative and Omnibus Subgroup Theorem) and CAT(0) cube complexes (Rank-

rigidity) to all hierarchically hyperbolic groups.
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1.3 Statements of main results

The results in [DHS2017] highlight commonalities between the Gromov hyperbolic and HHS

settings. Our contribution is to expose fundamental differences between the two.

Our results in Section 1.3.1 are published in [Mou2018] and the results in Section 1.3.2

are to appear in Group, Geometry, and Dynamics (see [Mou2017]).

1.3.1 Boundary maps

Quasi-isometric embeddings between Gromov hyperbolic spaces always extend continuously

to maps between Gromov boundaries. Durham, Hagen, and Sisto [DHS2017] asked if the

same is true for hierarchically hyperbolic spaces. More broadly, they asked about extensions

of the embedding maps of Clay, Leininger, and Mangahas [CLM2012] and Koberda [Kob2012]

of right-angled Artin groups into mapping class groups of surfaces.

Question 1.1. Let A(Γ) be a right-angled Artin group embedded in Mod(S) in the sense of

either Clay, Leininger, and Mangahas [CLM2012] or Koberda [Kob2012]. Does the embed-

ding A(Γ)→ Mod(S) extend continuously to an injective map ∂A(Γ)→ ∂Mod(S)?

We prove that in general the answer to Question 1.1 is no by providing, for each type of

embedding, an explicit example where the embedding does not extend continuously.

Theorem 1.2. There exists a surface S, a right-angled Artin group A(Γ), a Clay, Leininger,

and Mangahas embedding φ : A(Γ)→ Mod(S), and a Koberda embedding φ′ : A(Γ)→ Mod(S)

such that, regardless of the HHS structure on A(Γ), neither φ nor φ′ extends continuously to

a map ∂A(Γ)→ ∂Mod(S).

Clay, Leininger, Mangahas embeddings are quasi-isometric embeddings (see Theorem 3.6).

Thus Theorem 1.2 shows that the sufficient conditions for extendability of maps between

hierarchically hyperbolic spaces are different than those for Gromov hyperbolic spaces.

Our Theorem 1.2 also contributes to the discussion of what it ought to mean for a subgroup

of the mapping class group to be geometrically finite [Mos2006] (a well-defined concept in the

Klennian group setting). Durham, Hagen, and Sisto [DHS2017] suggested it ought to mean

that the inclusion map from the subgroup into the mapping class group extends continuously

to a map on the HHSs boundaries, and thought the right-angled Artin subgroups were good

candidates for geometric finiteness. Thus, our work shows that either these right-angled

Artin groups are not geometrically finite or the proposed definition of geometric finiteness

is incorrect.
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We also prove the following result which gives a complete characterization of the Koberda

embeddings of free groups sending all generators to powers of Dehn twists that have contin-

uous extensions.

Theorem 1.3. Let {α1, . . . , αk} be a collection of pairwise intersecting curves in S and Γ the

graph with V (Γ) = {s1, . . . , sk} and no edges. For sufficiently large N , the homomorphism

φ : A(Γ)→ Mod(S) defined by φ(si) = TNαi for all i

is injective by the work of Koberda [Kob2012]. Moreover, φ extends continuously to a map

∂A(Γ) → ∂Mod(S) if and only if {α1, . . . , αk} pairwise fill S, where A(Γ) is equipped with

any HHS structure.

In fact, we prove something stronger than Theorem 1.3. We prove a non-existence result

(Theorem 3.22) for a class of Koberda embeddings of right-angled Artin groups that are

not necessarily free groups. We also prove an existence result (Theorem 3.23) for a class of

embeddings of free groups that includes the Koberda embeddings described in Theorem 1.3

as well as a class of Clay, Leininger, Mangahas embeddings.

Remark. We call the embeddings that send generators of our right-angled Artin group to

mapping classes that are pseudo-Anosov on subsurfaces Clay, Leininger, Mangahas embed-

dings and those that send generators to powers of Dehn twists Koberda embeddings, even

though Koberda [Kob2012] proved that both these types of embeddings are injective. We do

this primarily to distinguish the two types of embeddings, but also to emphasize that CLM

embeddings have nice geometric properties (see Theorem 3.6).

1.3.2 Exotic limit sets in HHS boundary of Teichmüller space

Let S = Sg be a connected, closed, orientable surface of genus g ≥ 2 and let Teich(S) denote

the Teichmüller space of S equipped with the Teichmüller metric.

Masur [Mas1975] proved that Teich(S) is not non-positively curved in the sense of Buse-

mann, and Masur and Wolf [MW1995] showed that Teich(S) is not Gromov hyperbolic. Nev-

ertheless, some properties of Teich(S) are hyperbolic-like (see Table 1.1 below and [Mas1992]

for a detailed survey on the matter).

In this paper, we explore to what extent Teich(S) has features of negative curvature by

studying the asymptotic behavior of geodesics. Working in the HHS paradigm, the question

becomes how do the asymptotics of geodesic rays in the HHS boundary of Teich(S) compare

to those of geodesic rays in the HHS boundary of a hyperbolic space? The identity map on a

5



Gromov hyperbolic space X Teich(S)

Triangles are uniformly thin
Triangles in the thick part of Teich(S) are
uniformly thin [KL2008, Raf2014]

Closed balls are quasi-convex Closed balls are quasi-convex [LR2011]

Geodesics are contracting
Geodesics in the thick part of Teich(S) are
contracting [Min1996b]

Any two geodesics with common endpoints
fellow travel

Two geodesics with common endpoints both
in the thick part of Teich(S) fellow travel
[Raf2014]

Quasi-convex subgroups of hyperbolic groups
are hyperbolic

Quasi-convex subsets contained in the thick
part of Teich(S) are hyperbolic [Ham2010]

Every isometric, finite group action on X has
a point whose orbit is bounded

Every isometric, finite group action on
Teich(S) fixes a point [Ker1983]

Geodesic flow on quotient of H2 by any group
of isometries acting properly discontinuously
is ergodic [Hop1971]

Geodesic flow on the quotient of Teich(S)
by its isometry group Mod(S) is ergodic
[Mas1992]

Table 1.1: Many negative curvature features are present in Teich(S), especially in the
thick-part of Teich(S); that is, in {X ∈ Teich(S) : ExtX(α) ≥ ε for all curves α in S},
where ε is some predetermined constant. Facts in column one are standard (see for
example [BH1999, Chapter III]).

hyperbolic space extends to a homeomorphism between its HHS and Gromov boundaries, so

certainly in this case geodesic rays are well-behaved and limit to a unique boundary point.

In [DHS2017] Durham, Hagen, and Sisto asked for a description of limit sets of Teichmüller

geodesic rays in the HHS boundary. We provide an answer to the question.

Theorem 1.4. Given a continuous map γ : R→42 to the standard 2-simplex, there exists

a Teichmüller geodesic ray G in Teich(S3) and an embedding of 42 into the HHS boundary

of Teich(S3) such that the limit set of G in the HHS boundary is the image of γ(R).

The study of limiting behaviors of Teichmüller geodesic rays began with Kerckhoff [Ker1980].

He proved that the Teichmüller boundary of Teich(S) (the collection of all geodesic rays em-

anating from a fixed basepoint) is basepoint dependent. Since then, the limit sets of geodesic

rays in Thurston’s compactification of Teich(S) by PMF , the space of projectivized mea-

sured foliations, have received much attention. Masur [Mas1982] showed that almost all

Teichmüller geodesic rays converge to a unique point in PMF . Lenzhen [Len2008] provided

the first example of a geodesic ray whose limit set in PMF is more than one point. The

study of limit sets in PMF continued in [CMW2014] and [LLR2013], where the influence

of the topological and dynamical properties of the associated vertical foliation was studied,

and in [BLMR2016] and [LMR2016], where rays with limits sets homeomorphic to a circle

6



and simplices of every dimension were constructed, respectively. It would be interesting to

know whether the kind of behavior we produce in Theorem 1.4 can occur in PMF .

1.4 Outline

In Chapter 2 we explain how to equip the mapping class group, Teichmüller space, and right-

angled Artin groups with HHS structures and how the HHS structures allow us to construct

boundaries for these spaces. Chapters 3 and 4 can be read independently of one another.

Chapter 3 proves results on the non-existence and existence of boundary maps (Theorems

1.2 and 1.3) and Chapter 4 is concerned with limit sets of Teichmüller geodesics (Theorem

1.4).

7



CHAPTER 2

Background

We begin this chapter discussing implications of Gromov hyperbolicity and then formulate

a definition of Gromov boundary that is most useful for our purposes. We then define the

mapping class group and Teichmüller space of a surface and right-angled Artin groups, our

primary objects of study. Next we discuss a framework for studying the coarse geometry

of these spaces. Namely, we will describe how to equip them with hierarchically hyper-

bolic space structures and introduce the boundary construction proposed by [DHS2017] for

hierarchically hyperbolic spaces.

Throughout this chapter, we let S = Sg,n denote a connected, oriented surface of genus g

with n punctures. Define the complexity of S to be ξ(S) = 3g−3+n. We will always assume

ξ(S) ≥ 1. Additionally, we fix a complete hyperbolic metric on S. That is, we assume that

S is of the form S = H2/Λ, where Λ ⊆ Isom+(H2) and Λ acts properly discontinuously and

freely on H2.

2.1 Gromov hyperbolicity and the Gromov boundary

A geodesic metric space X is (Gromov) hyperbolic if there exists a δ ≥ 0 such that given

any triangle in X, each side is contained in the δ-neighborhood of the union of the other two

sides. (Here and throughout, triangle indicates geodesic sides). The geometry of a hyperbolic

space is well-behaved. For example, if X is hyperbolic, then

• Every triangle in X has a center; that is, for each triangle, there is point in X that is

uniformly close to all its three sides.

• Quasi-geodesic stability: For every λ ≥ 1 and ε ≥ 0, there exists a constant K such

that every (λ, ε)-quasi-geodesic is contained in the K-neighborhood of every geodesic

between its endpoints.

• X satisfies a linear isoperimetric inequality.

8



See Table 1.1 for more geometric implications. Additionally, knowing X is hyperbolic

reveals algebraic information about every group G that acts properly and cocompactly on

X. For example, if X is hyperbolic, then

• Given g1, . . . , gr ∈ G, there exists n > 0 such that 〈gn1 , . . . , gnr 〉 is a free subgroup.

• If H is a finitely presented, one-ended subgroup of G, then up to conjugacy there are

only finitely many subgroups in G isomorphic to H.

• For infinite order g ∈ G, 〈g〉 has finite index in the centralizer of g. This implies that

all abelian subgroups of G are virtually cyclic.

• If G is torsion free, then it has a finite Eilenberg-MacLane complex K(G, 1), which is

useful for studying cohomology with coefficients in G.

Discussion of all the above geoemtric and algebraic properties can be found in [Gro1987]

and [BH1999].

Gromov boundary. Given a Gromov hyperbolic space (X, dX) and points x, y, z ∈ X, the

Gromov product of x and y with respect to z is defined as

(x, y)z =
1

2
(dX(x, z) + dX(y, z)− dX(x, y)) .

We say that a sequence (xn) in X converges at infinity if lim inf
i,j→∞

(xi, xj)z =∞ for some (ev-

ery) z ∈ X. We define two such sequences (xn) and (yn) to be equivalent if lim inf
i,j→∞

(xi, yj)z =∞
for some (every) z ∈ X. The Gromov boundary of X is the collection of all such sequences

up to this equivalence, and is denoted ∂GX or just ∂X when it is clear from context that we

are using the Gromov boundary.

Topology of the Gromov boundary. We give X ∪ ∂X the topology generated by the

following basis of neighborhoods. Fix a basepoint z ∈ X. For q ∈ X, take the open metric

balls centered at q (using the original metric on X) as the basis of neighborhoods at q. For

q ∈ ∂X and M ≥ 0, define

U(q,M) =

{
y ∈ X∪∂X :

lim inf
i,j→∞

(qi, yj)z ≥ M for some (qn) and

(yn) representing q and y respectively.

}
.

Here if y ∈ X, the sequence representing y is the constant all y sequence. Take

{U(q,M) : M ≥ 0} to be the basis of neighborhoods at q.

In the topology on X ∪ ∂X generated by this basis, a sequence (pn) in X ∪ ∂X converges

to a point q ∈ ∂X if and only if the following holds. There exists a sequence (qi) representing

9



α

f

Figure 2.1: Dehn twist f about curve α.

q and for each pn a representative sequence (pn,j)
∞
j=1 such that

lim inf
i,j→∞

(qi, pn,j)z →∞ as n→∞.

Moreover, the topology is such that ∂X is closed, and the subspace topology on X as a

subset of X ∪ ∂X is the same as the original topology on X. The topology is independent

of the basepoint z. For further discussion of the Gromov boundary and its properties see

[BH1999, III.H] and [KB2002].

2.2 Spaces of interest

2.2.1 Mapping class groups

The mapping class group of S, denoted Mod(S) is, roughly speaking, the group of symmetries

of S. Formally,

Mod(S) = {f : S → S : f is an orientation preserving homeomorphism}/ ∼,

where f, g : S → S are equivalent if they are isotopic.

Examples:

• Each essential, simple, closed curve α on S yields an element of Mod(S) called a Dehn

twist about α. First select a regular embedded neighborhood of α and associate it with

S1× [0, 1]. A Dehn twist about α is the identity outside of the neighborhood and inside

maps (θ, x) 7→ (θ + 2πx, x). See Figure 2.1.

• Every matrix in SL2(Z), viewed as a transformation of R2, descends to a homeo-

morphism of the torus T = R2/Z2. In fact, Mod(T ) = SL2(Z). For example, con-

sider A =

[
2 1

1 1

]
, whose eigenvectors

(
1±
√

5
2
, 1
)

are perpendicular. Observe that A
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stretches in one eigendirection by some factor λ and compresses in the other eigendirec-

tion by a factor of 1/λ. Each eigendirection yields a foliation of T , and the descension

T → T of A inherits the dynamics of A, stretching one foliation and compressing the

other. We call maps on T with such dynamics Anosov.

• Consider a non-annular subsurface Y ⊆ S. Because ξ(Y ) ≥ 1, it is not possible to

foliate Y and so there are no Anosov transformations of Y . However, away from a finite

set of points, called singular points, Y can be foliated. We call such almost-foliations

singular foliations. Roughly speaking, f ∈ Mod(S) is defined to be pseudo-Anosov on

Y if there exists a representative in the isotopy class of f that

– Pointwise fixes the complement of Y (that is, f is supported on Y ), and

– Away from singular points, locally deforms a pair of transverse measured singular

foliations of Y by stretching one foliation and compressing the other.

The Nielsen-Thurston classification of mapping classes implies that, after passing to a

sufficiently high power, every infinite order element f ∈ Mod(S) can be expressed as a com-

position of mapping classes, each pseudo-Anosov on a subsurface with all the subsurfaces

disjoint (see for example [CB1988]). (Here we define a pseudo-Anosov on an annular sub-

surface to be any non-zero power of a Dehn twist in S around the associated core curve.)

So, if f is not pseudo-Anosov on S, then f can be reduced to studying pseudo-Anosovs on

disjoint lower complexity surfaces.

Dehn [Deh1987] proved that, if S has no punctures, then a finite collection of Dehn twists

generate Mod(S). If S has punctures, then Mod(S) is still finitely generated, but “half

twists” are also needed [FM2012, Chapter 4]. Throughout, we fix a finite generating set

for Mod(S) and associate Mod(S) with the corresponding Cayley graph, making Mod(S)

a geodesic metric space. The mapping class group is not hyperbolic because it contains a

subgroup isomorphic to Z2 (for example, the subgroup generated by Dehn twists around two

disjoint curves.)

2.2.2 Teichmüller space

The Teichmüller space of S, denoted Teich(S), is the collection of equivalence classes of

complex structures on S, where we define two complex structures to be equivalent if there

is a map S → S isotopic to the identity that is biholomorphic when the domain is equipped

with one of the complex structures and the range is equipped with the other. Throughout
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this paper, when it is convenient, given X ∈ Teich(S), we will also use X to denote a

structure in the equivalence class.

We equip Teich(S) with a metric called the Teichmüller metric: for X1, X2 ∈ Teich(S)

the distance between them is

dTeich(S)(X1, X2) =
1

2
inf log(Kf ),

where the infimum is taken over all quasiconformal maps f : (S,X) → (S, Y ) isotopic to

the identity on S and Kf denotes the dilatation of f . Because we never explicitly compute

distances between complex structures, we refer the reader to [FM2012, Chapter 11] for

definitions of quasiconformal and dilatation.

Not only is Teich(S) geodesic, but between every two points in Teich(S), there is a unique

geodesic. As we will discuss in Section 4.2.2, each geodesic in Teich(S) can be described

through deformations of a foliation of S associated to some quadratic differential.

Masur and Wolf [MW1995] proved that Teich(S) is not hyperbolic by constructing, for

every δ ≥ 0, a triangle that is not δ-thin.

2.2.3 Right-angled Artin groups

Let Γ be a finite graph with vertex set V (Γ) = {s1, . . . , sk}. The right-angled Artin group

(RAAG) determined by Γ, denoted by A(Γ), is the group with the following presentation:

A(Γ) = 〈s1, . . . , sk : [si, sj] = 1⇔ sisj is an edge in Γ〉.

If Γ has no edges, then A(Γ) is the free group of rank k, and if Γ is a complete graph,

the A(Γ) is the free abelian group Zk. We associate A(Γ) with its Cayley graph built from

the generating set {s1, . . . , sk}, making A(Γ) a metric space. Except in the free-group case,

RAAGs are not hyperbolic because every edge in Γ yields a Z2 subgroup.

2.3 Tools for studying Mod(S) and Teich(S)

The purpose of this section is to define hyperbolic spaces associated to Mod(S) and Teich(S)

and define projection maps to those hyperbolic spaces.
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2.3.1 Curves and subsurfaces

By a curve in S, we will mean the geodesic representative in the homotopy class of an essential

(non-null homotopic and non-peripheral), simple, closed curve in S. By a multicurve in S,

we will mean a collection of pairwise disjoint curves in S. We write i(α, β) to denote the

geometric intersection number of curves α and β. We say that a pair of curves α and β fills

S if for every curve γ in S we have i(γ, α) > 0 or i(γ, β) > 0.

A non-annular subsurface Y of S is a component of S after removing a (possibly empty)

multicurve from S. Additionally, we require that Y satisfies ξ(Y ) ≥ 1; in particular, we do

not consider a pair of pants to be a subsurface. We define ∂Y to be the collection of curves

in S that are disjoint from Y and also are contained in the closure of Y , treating Y as a

subset of S. When Y 6= S, the path metric completion of Y is a surface with boundary, and

the image of this boundary under the map induced by the inclusion Y ⊆ S is ∂Y .

An annular subsurface of S is defined as follows. Let α be a curve in S. Choose a

component α̃ of the preimage of α in H2, and let h ∈ Λ be a primitive isometry with axis α̃.

Define

Y = (H2 − {x, y})/〈h〉,

where x and y are the fixed points of h on ∂H2. Observe that Y is a compact annulus and

int(Y ) → S is a covering. We say that Y is the annular subsurface of S with core curve α.

We define ∂Y to be α.

2.3.2 Curve complex, combinatorial horoballs

Let Y be a subsurface of S. If Y satisfies ξ(Y ) ≥ 1, the curve complex of Y , denoted C(Y ),

is the simplicial complex whose vertices are curves contained in Y , and if ξ(Y ) > 1, a set

of vertices forms a simplex if and only if they are pairwise disjoint. If ξ(Y ) = 1, then we

define the simplices of C(Y ) differently. In the case that Y is a once punctured torus, a set

of vertices forms a simplex if and only if they pairwise intersect exactly once. If Y is a four

times punctured sphere, a set of vertices forms a simplex if and only if they pairwise intersect

exactly twice.

Now let Y be an annular subsurface with core curve α. Consider all embedded arcs in Y

that connect one boundary component to the other. We define two arcs to be equivalent if one

can be homotoped to the other, fixing the endpoints of the arcs throughout the homotopy.

In this case, the curve complex of Y is the simplicial complex whose vertices are equivalence

classes of arcs, and a set of vertices forms a simplex if and only if for each pair of vertices

there exist representative arcs of each whose restrictions to int(Y ) are disjoint. We let both
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C(Y ) and C(α) denote the curve complex of Y .

The following simple formula will be useful to us: given inequivalent arcs γ, β in C(α),

dC(Y )(γ, β) = |γ · β|+ 1, (1)

where γ · β denotes the algebraic intersection number of γ and β.

Given a curve α in S, the combinatorial horoball associated to α, denoted Hα, is the

following graph. Begin with the graph Cartesian product C(α) × Z≥0 and then for each n

add edges so that each vertex (x, n) is adjacent to every vertex in {(y, n) : dC(α)(x, y) ≤ en}.
The spaces Hα and C(Y ) for each subsurface Y are Gromov hyperbolic (see[GM2008] and

[MM1999], respectively). We let ∂Hα and ∂C(Y ) denote their Gromov boundaries.

2.3.3 Extremal length

Consider X ∈ Teich(S) and equip S with a complex structure in X. Let A be an annulus

embedded in S. We define the modulus of A in X, denoted ModX(A), to be the inverse of the

circumference of the unique Euclidean cylinder of height one that is conformally equivalent

to A. We define the extremal length in X of a curve α in S to be

ExtX(α) = inf
1

ModX(A)
,

where the infimum is taken over all annuli A embedded in S with core curve α.

2.3.4 Markings

A marking µ on S is a maximal collection of pairwise disjoint curves in S, denoted base(µ),

together with another collection of associated curves called transversals : for each β ∈ base(µ)

its associated transversal γβ is a curve that intersects β minimally (i.e. once or twice) and

is disjoint from all other curves in base(µ).

Of course, there are infinitely many choices for markings on S. Given X ∈ Teich(S), we

will typically select a marking µX as follows. For base(µX), first choose a curve α1 with

shortest extremal length in X, then of those curves that do not intersect α1, choose one with

shortest extremal length. Continue until a maximal collection of non-intersecting curves

is obtained. Additionally, to each curve α ∈ base(µX) associate a transverse curve τα by

selecting from those curves that intersect α but no other curves in base(µX) a curve with

shortest length. We call µX a short marking on X.
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In [Min1993], Minsky proved that for curves α and β,

i(α, β)2 ≤ ExtX(α)ExtX(β). (2)

So if ExtX(α) is sufficiently small, then ExtX(β) > ExtX(α) for every curve β intersecting

α, yielding the following fact.

Fact 2.1. There exists a constant ε0 such that for all X ∈ Teich(S), if a curve α satisfies

ExtX(α) ≤ ε0, then α is in the base of every short marking on X.

Given f ∈ Mod(S) and a curve or simple bi-infinite geodesic γ in S, we define f(γ) to be

the curve or simple bi-infinite geodesic obtained as follows. Consider a component γ̃ of the

preimage of γ in H2. Choose a representative ψ in the isotopy class of f and lift it to a map

ψ̃ : H2 → H2. We define f(γ) to be the image in S of the geodesic in H2 that connects the

endpoints of ψ̃(γ̃) on ∂H2. Given a marking µ on S, we then define f(µ) to be the marking

obtained by applying f to each base and transversal curve.

2.3.5 Subsurface projection

Let Y be a subsurface of S and β a multicurve in S. We will now define the projection of β

to Y , which we will denote by πY (β). Suppose Y is not an annulus and β is a single curve. If

β is disjoint from Y , define πY (β) = ∅. If β is contained in Y , define πY (β) = β. Otherwise,

β ∩ Y is a collection of essential arcs in Y with endpoints on ∂Y . For each such arc γ, take

the geodesic representatives of the boundary components of a small regular neighborhood of

γ ∪ ∂Y that are contained in Y . Define πY (β) to be the collection of all such curves over all

arcs γ in β ∩ Y . If β is a multicurve, define πY (β) to be the union of the projections to Y

of each curve in β.

Now let Y be an annular subsurface with core curve α and int(Y ) → S the associated

covering. Let β be a multicurve or a bi-infinite, simple geodesic in S. Consider the compo-

nents of the full preimage of β in int(Y ) that are arcs. We will view each such component as

having endpoints on the boundary of Y . In this case, we define πY (β) to be the (equivalence

classes of) arcs in this collection that have an endpoint on each boundary component of Y .

When convenient, we will write πα(β) instead of πY (β).

We now describe how to project a marking µ to a subsurface Y of S. If Y is non-annular or

Y is an annulus whose core curve is not contained in base(µ), we define πY (µ) = πY (base(µ)).

Otherwise, Y is an annulus with core curve α ∈ base(µ), and we define πY (µ) to be πY (γα),

where γα is the transversal associated to α.
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For each X ∈ Teich(S), fix a short marking µX . Abusing notation, we define the projection

map

πY : Teich(S)→ 2C(Y ) via X 7→ πY (µX).

Additionally, for each curve α, we define a map πHα : Teich(S) → 2Hα as follows. For

X ∈ Teich(S), if ExtX(α) > ε0, define n(X) = 0. Otherwise, define n = n(X) ∈ Z≥0 so that
ε0
en+1 < ExtX(α) ≤ ε0

en
. We then define

πHα(X) = {(τ, n(X)) : τ ∈ πα(µX)}.

Here and throughout the remainder of this thesis, ε0 denotes the minimum of the ε0 constants

from Fact 2.1 and [CRS2008] (our Theorems 4.2 and 4.6 state the results we require from

[CRS2008]).

For every subsurface Y ⊆ S and curve α define

dY (·, ·) = diamC(Y )πY (·) ∪ πY (·) and dHα(·, ·) = diamHαπHα(·) ∪ πHα(·).

Sometimes when Y is annular with core curve α we write dα in place of dY .

2.3.6 Relations on subsurfaces

For every subsurface Y of S, we write Y ⊆ S to indicate that Y is a subsurface of S, even

though when Y is an annulus, Y is not a subset of S. We say that distinct subsurfaces X

and Y are disjoint if πX(∂Y ) = ∅ and πY (∂X) = ∅. We say that X is a proper subsurface

of Y , denoted X ( Y , if πY (∂X) 6= ∅ and πX(∂Y ) = ∅. We say that X and Y are

overlapping, denoted X t Y , if πY (∂X) 6= ∅ and πX(∂Y ) 6= ∅. In the case where X and Y

are not annuli, these relationships, respectively, are disjointness, proper containment, and

intersection without containment as subsets of S. We say X and Y fill S if for every curve

γ in S we have πX(γ) 6= ∅ or πY (γ) 6= ∅.

2.3.7 Pseudo-Anosovs and translation length

The information presented in this section is not needed to describe an HHS structure for

Mod(S), but nevertheless illustrates how curve complexes can reveal information about map-

ping classes.

To determine if f ∈ Mod(S) is pseudo-Anosov on a non-annular subsurface Y ⊆ S,

surprisingly it is not necessary to study foliations of Y . Instead, one can examine the

asymptotic rate at which f moves curves through C(Y ). Given f ∈ Mod(S) that is supported
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on Y , we define the translation length of f on C(Y ) to be

τY (f) = lim
n→∞

dY (µ, fn(µ))

n
,

where µ is any marking on S. By the work of Masur and Minsky [MM1999],

τY (f) > 0 ⇐⇒ f is pseudo-Anosov on Y .

In Chapter 3, it will be convenient to have the following vocabulary. If f ∈ Mod(S) is a

power of a Dehn twist about a curve α, we say that f is supported on the annular subsurface

Y with core curve α, and define τY (f) to be the absolute value of the power. In both the

annular and non-annular case, we say that Y fully supports f if Y supports f and τY (f) > 0.

2.4 Hierarchically hyperbolic spaces

In [BHS2017b] Behrstock, Hagen, and Sisto defined hierarchically hyperbolic spaces (HHSs).

Roughly, an HHS is a quasi-geodesic metric space X , equipped with additional structure

which we will call an HHS space structure. An HHS structure consists of an index set G
endowed with binary relations called orthogonality, transversality, and nesting and for each

Y ∈ G a Gromov hyperbolic space CY and a projection map πCY : X → 2CY . The elements

of G and the projection maps must satisfy a long list of properties. See [BHS2017b] and

[BHS2014].

Examples:

• Mod(S). Let G be the collection of all subsurfaces of S. Define two subsurfaces to be

orthogonal if they are disjoint, transverse if they overlap, and nested if one is a proper

subsurface of the other. For Y ∈ G, let CY be C(Y ), the curve complex of Y . Fix a

marking µ on S and for each Y ∈ G, define the projection

πY : Mod(S)→ 2C(Y ) via f 7→ πY (f(µ)).

The works of Masur and Minsky [MM1999],[MM2000], Behrstock, [Beh2006], and Behr-

stock, Kleiner, Minsky, and Mosher [BKMM2012] imply that all the required axioms

for an HHS structure are satisfied. See [BHS2014, Section 11] for details.

• Teich(S). Let G be the collection of all subsurfaces of S, where orthogonality, transver-

sality, and nesting are as in the above Mod(S) example. For Y ∈ G, if Y is non-annular,
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let CY be C(Y ), the curve complex of Y , and if Y is annular with core curve α, let

CY be the combinatorial horoball Hα. Let

{πY : Teich(S)→ 2C(Y ) : Y non-annular} ∪ {πHα : Teich(S)→ 2Hα : α a curve in S}

be the associated projection maps. The results in [Dur2016], [EMR2014],[MM2000],

[Raf2007] together establish that this is an HHS structure on Teich(S).

• Right-angled Artin groups. In the case of free groups, which are hypberbolic,

there is always a trivial structure: let G consist of a single element whose associated

hyperbolic space is the group itself and take the projection map to be the identity. In

[BHS2017b], an HHS structure for every right-angled Artin group is constructed by

considering interactions of convex subspaces in the universal cover of the associated

Salvetti complex. Because we only deal with free groups (with the exception of Theo-

rem 3.22), we refer the reader to [BHS2017b] for details on HHS structures for general

RAAGs.

We emphasize that there is not a unique way to equip a space with an HHS structure.

Nevertheless, throughout this thesis, we will regard Mod(S) and Teich(S) as HHSs equipped

with the structures described above.

2.5 Boundary of hierarchically hyperbolic spaces

In [DHS2017] Durham, Hagen, and Sisto construct a boundary for HHSs, called the hierarchi-

cally hyperbolic space boundary which we now recall. We emphasize that the homeomorphism

type of the HHS boundary may depend on the HHS structure taken [DHS2017, Question 1].

Let X be a hierarchically hyperbolic space with index set G and projection maps

{πCY : X → 2CY : Y ∈ G}. As a set, the HHS boundary of X is defined as follows:

∂X =

{∑
Y ∈G

cY λY : cY ≥ 0 and λY ∈ ∂GCY for all Y,
∑
Y ∈G

cY = 1,

and if cY ′ , cY > 0, then Y and Y ′ are orthogonal or equal

}
.

Every point in ∂X is a finite sum because every collection of pairwise orthogonal indices

must be finite [DHS2017, Lemma 1.4].
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Topology. We equip X ∪ ∂X with the Hausdorff topology described in [DHS2017]. The

proof of [DHS2017, Theorem 3.4] reveals that if X is proper, then X ∪ ∂X is sequentially

compact, implying that every infinite sequence has a non-empty limit set. Of particular

interest to us, this means the limit set of a geodesic ray in Teich(S) is always non-empty.

In what follows, for Y ∈ G, let

dCY (·, ·) = diamCY (πCY (·) ∪ πCY (·)).

Consider a point p =
∑
Y ∈G

cY λY ∈ ∂X and let Y1, . . . , Yk be the collection of indices in G with

cY > 0. By [DHS2017, Definition 2.10], a sequence of elements (xn)n∈N in X converges to p

if and only if the following statements hold for some (every) x ∈ X .

(I) lim
n→∞

πCYi(xn) = λYi for each i = 1, . . . , k,

(II) lim
n→∞

dCYi(x, xn)

dCYj(x, xn)
=
cYi
cYj

for each i, j = 1, . . . , k, and

(III) lim
n→∞

dCW (x, xn)

dCYi(x, xn)
= 0 for some (every) i = 1, . . . , k and every W ∈ G that is orthogonal

to Yj for all j = 1, . . . , k.

Because
∑
Y ∈G

cY = 1, we can replace (II) and (III) with the following equivalent statements.

(II′) lim
n→∞

dCYj(x, xn)
k∑
i=1

dCYi(x, xn)

= cYj for each j = 1, . . . , k, and

(III′) lim
n→∞

dCW (x, xn)
k∑
i=1

dCYi(x, xn)

= 0 for every W ∈ G that is orthogonal to Yj for all j = 1, . . . , k.

Examples:

• Mod(S). Let Y and Z be two disjoint subsurfaces in S, for example as in Figure

2.2, and let f, g ∈ Mod(S) be pseudo-Anosov on Y and Z respectively. Then in

Mod(S) ∪ ∂Mod(S),

fngn →

[
τY (f)λY + τZ(g)λZ +

∑
α∈∂Y ∪∂Z

cαλα

]
as n→∞

for some λY ∈ ∂C(Y ), λZ ∈ ∂C(Z), cα ≥ 0, and λα ∈ ∂C(α). Here the square brackets

indicate that the coefficients should be scaled to sum to one.
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g

∂Y

∂Z

Figure 2.2: Pseudo-Anosov mapping classes f and g on disjoint subsurfaces Y and Z.

To see why, observe that τY (f) > 0 implies that for any curve γ in Y , the map

Z→ C(Y ) n 7→ fn(γ) = fngn(γ)

is a quasi-isometric embedding. And so, because quasi-geodesics in C(Y ) are stable,

(fngn(γ)) converges to a point λY ∈ ∂C(Y ) and thus πY (fngn)→ λY as well. Similarly,

πZ(fngn) converges to some point λZ ∈ ∂C(Z).

For all subsurfaces W disjoint from Y and Z, except possibly the annular subsurfaces

corresponding to curves in ∂Y ∪ ∂Z, the sequence (πW (fngn)) is bounded in C(W ). If

W is non-annular, this is simply because fngn has a representative that fixes all curves

in W . For the annular case, see Lemma 3.13.

• Teich(S). Consider a geodesic ray G in Teich(S) such that the vertical foliation v of

the quadratic differential associated to G is minimal; that is, no trajectory of v is a

simple closed loop. Minimality of v guarantees that all points in the limit set of G
in PMF(S) are topologically equivalent to v [CMW2014, Lemma 3.2]. From here,

[Kla1999, Theorem 1.2] implies that the projection of G to C(S) limits to a unique

point λS ∈ ∂C(S). Because there are no subsurfaces disjoint from S, condition (III) is

trivially satisfied. Therefore, the limit set of G in ∂Teich(S) is {λS}.

• Free groups. Consider a hyperbolic space X (for example, a free group) equipped

with any HHS structure. By [DHS2017, Theorem 4.3] the identity map on X extends

to a homeomorphism

X ∪ ∂GX → X ∪ ∂X.

And so, convergence in the HHS boundary is equivalent to convergence in the Gromov

boundary. When X is equipped with the trivial HHS structure, the HHS boundary is

the Gromov boundary by definition.
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CHAPTER 3

Non-existence of boundary maps

Throughout this chapter, we let S = Sg,n denote a connected, oriented surface of genus g

with n punctures and ξ(S) ≥ 1. We fix a complete hyperbolic metric on S; that is, S is of

the form S = H2/Λ, where Λ ⊆ Isom+(H2) and Λ acts properly discontinuously and freely

on H2. We equip Mod(S) with the HHS structure described in Section 2.4.

3.1 Introduction

The primary goal of this chapter is to answer Question 1.1 posed in [DHS2017] by proving

the following theorem.

Theorem 1.2. There exists a surface S, a right-angled Artin group A(Γ), a Clay, Leininger,

and Mangahas embedding φ : A(Γ)→ Mod(S), and a Koberda embedding φ′ : A(Γ)→ Mod(S)

such that, regardless of the HHS structure on A(Γ), neither φ nor φ′ extends continuously to

a map ∂A(Γ)→ ∂Mod(S).

We also will prove an existence result.

Theorem 1.3. Let {α1, . . . , αk} be a collection of pairwise intersecting curves in S and Γ the

graph with V (Γ) = {s1, . . . , sk} and no edges. For sufficiently large N , the homomorphism

φ : A(Γ)→ Mod(S) defined by φ(si) = TNαi for all i

is injective by the work of Koberda [Kob2012]. Moreover, φ extends continuously to a map

∂A(Γ) → ∂Mod(S) if and only if {α1, . . . , αk} pairwise fill S, where A(Γ) is equipped with

any HHS structure.

By a map extending continuously we mean the following.
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Definition 3.1. Let φ : A(Γ) → Mod(S) be an injective homomorphism and let A(Γ)

be equipped with any fixed HHS structure. We say that φ extends continuously to a map

∂A(Γ) → ∂Mod(S) if there exists a function φ : A(Γ) ∪ ∂A(Γ) → Mod(S) ∪ ∂Mod(S) such

that (1) φ|A(Γ) = φ, (2) φ(∂A(Γ)) ⊆ ∂Mod(S), and (3) φ is continuous at each point in

∂A(Γ).

Remark 3.2. When A(Γ) is a free group, two sequences in A(Γ) converge to the same point

in ∂GA(Γ) if and only if they converge to the same point in ∂A(Γ) (see free group example

in Section 2.5). Consequently, given our goals, it will not be necessary to understand the

HHS structure A(Γ) is equipped with nor the boundary ∂A(Γ) the structure yields.

Remark 3.3. To establish that φ : A(Γ) → Mod(S) extends continuously, it is enough to

show that for all x ∈ ∂A(Γ), given any two sequences (xn) and (yn) in A(Γ) that converge

to x, we have that (φ(xn)) and (φ(yn)) converge to the same point in ∂Mod(S). This follows

from a diagonal sequence argument (see the end of the proof of Theorem 5.6 in [DHS2017]

for details).

Idea behind non-existence proofs (Theorems 1.2, 1.3, and 3.22). All of the embed-

dings φ : A(Γ) → Mod(S) we present that do not extend share the following key feature.

For some pair of non-commuting generators a and b of A(Γ), the subsurface Y filled by the

full supports of φ(a) and φ(b) is a proper subsurface of S. For the embeddings we consider,

this allows us to produce two sequences in A(Γ) that converge to the same point in ∂A(Γ),

but whose images do not converge to the same point in ∂Mod(S). We choose the nth term

of first sequence so that the annular projection of its image to some boundary component γ

of Y is distance O(n) from a basepoint, while the projection to γ of the image of the second

sequence has bounded diameter. We then show that O(n) is fast enough to conclude that

every accumulation point in ∂Mod(S) of the image of the first sequence has a term associated

to γ. On the other hand, accumulation points of the image of the second sequence have no

such term. Thus the images of the sequences do not converge to the same point in ∂Mod(S).

The following opens question arises naturally from our non-existence proofs.

Question 3.4. Let A(Γ) → Mod(S) be a Clay, Leininger, Mangahas embedding of a free

group that sends some pair of generators of A(Γ) to mapping classes whose full supports

together do not fill S. Is it always the case that φ does not extend? In other words, does

the forward direction of Theorem 1.3 hold for CLM embeddings? (Theorem 3.23 proves the

backwards direction).

Question 3.5. Let Teich(S) denote the Teichmüller space of a surface S, equipped with the

Weil-Petersson metric. There is an HHS structure on Teich(S), where the set of domains
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is all non-annular subsurfaces of S (see [Bro2003]). Given that we show annular subsurface

projections can obstruct extendability, we wonder if an orbit map from A(Γ) to Teich(S)

corresponding to a CLM embedding A(Γ) → Mod(S) extends continuously to a boundary

map. Note that this is clearly not the case for the Koberda embeddings described in Theorem

3.7 since applying powers of a Dehn twist to a point in Teich(S) can move it only a bounded

amount.

Chapter Outline. In Section 3.2 we will recall relevant definitions and theorems and

introduce notation. Section 3.3 will establish a handful of lemmas that will be used for

proving Theorem 1.2. Section 3.4 is devoted to proving Theorem 1.2 for a Clay, Leininger,

Mangahas embedding, and in Section 3.5 we prove Theorem 1.2 for a Koberda embedding.

Using similar techniques, we then prove that a more general class of Koberda embeddings

of right-angled Artin groups do not extend continuously (Theorem 3.22), which will imply

one direction of Theorem 1.3. In Section 3.6 we will prove Theorem 3.23, which will imply

the other direction of Theorem 1.3.

3.2 Background

3.2.1 Embedding RAAGs in Mod(S)

Clay, Leininger, and Mangahas [CLM2012] proved the following result, which allows us to

find quasi-isometrically embedded right-angled Artin subgroups inside Mod(S).

Theorem 3.6 ([CLM2012, Theorem 2.2]). Let Γ be a finite graph with V (Γ) = {s1, . . . , sk},
and let {X1, . . . , Xk} be a collection of non-annular subsurfaces of S. Suppose sisj is an

edge in Γ if and only if Xi and Xj are disjoint, and sisj is not an edge in Γ if and only

if Xi t Xj or i = j. Then there exists a constant C > 0 such that the following holds.

Let {f1, . . . , fk} be a set of mapping classes of S such that fi is pseudo-Anosov on Xi and

satisfies τXi(fi) ≥ C for all i. Then the homomorphism

φ : A(Γ)→ Mod(S) defined by φ(si) = fi for all i

is a quasi-isometric embedding, implying that φ is injective since A(Γ) is torsion-free.

Koberda [Kob2012] also has a result which produces right-angled Artin subgroups of

Mod(S). Below we give a special case of Koberda’s result that we will use.

Theorem 3.7 ([Kob2012, Theorem 1.1]). Let {α1, . . . , αk} be a collection of distinct curves

in S. Let Γ be the graph with V (Γ) = {s1, . . . , sk} and with sisj an edge in Γ if and only if
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i(αi, αj) = 0. Then for sufficiently large N , the homomorphism

φ : A(Γ)→ Mod(S) defined by φ(si) = TNαi for all i,

is injective, where Tαi denotes a Dehn twist about αi.

3.2.2 Subsurface projection theorems

In this section, we collect useful facts and theorems on subsurface projection.

Consider f ∈ Mod(S) and Y ⊆ S. Let µ and µ′ be either markings on S, collections of

curves, or bi-infinite simple geodesics (if Y is annular). It is a straight forward exercise to

see that

dY (f(µ), f(µ′)) = df−1(Y )(µ, µ
′).

Here if Y is non-annular, f(Y ) denotes the non-annular subsurface in its isotopy class. If Y

is an annulus with core curve α, then f(Y ) denotes the annular subsurface of S with core

curve f(α).

Masur and Minsky [MM2000] define the marking graph of S, denoted M̃(S), to be the

graph whose vertices are markings and vertices are adjacent if one can be obtained from

the other by an elementary move; see [MM2000] for a complete definition. Giving M̃(S)

the path metric dM̃(S) and Mod(S) a word metric dMod(S), there is an action of Mod(S) on

M̃(S) by isometries for which every orbit map is a quasi-isometry. The following theorem

gives a relationship between distances in M̃(S) and subsurface projections.

Theorem 3.8 ([MM2000, Lemma 3.5]). For any subsurface Y of S and any markings µ and

µ′ on S, we have that dY (µ, µ′) ≤ 4dM̃(S)(µ, µ
′).

Additionally, we will require the following theorems. The first theorem was proved in

[Beh2006] and later a simpler proof with constructive constants appeared in [Man2013].

Theorem 3.9 (Behrstock inequality [Beh2006, Theorem 4.3], [Man2013, Lemma 2.13]).

Let X and Y be overlapping subsurfaces of S and µ a marking on S. Then

dX(µ, ∂Y ) ≥ 10 implies that dY (µ, ∂X) ≤ 4.

Theorem 3.10 ([MM2000, Lemma 2.3]). For all subsurfaces Y of S, given any marking or

multicurve µ such that πY (µ) 6= ∅, we have that diamC(Y )(πY (µ)) ≤ 2. If Y is an annulus,

then diamC(Y )(πY (µ)) ≤ 1.
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Theorem 3.11 (Bounded Geodesic Image Theorem [MM2000, Theorem 3.1]). There

exists a constant K0 depending only on S such that the following is true. Let X and Y be

subsurfaces of S with X a proper subsurface of Y . Let v1, . . . , vn be any geodesic segment in

C(Y ) satisfying πX(vi) 6= ∅ for all 1 ≤ i ≤ n. Then

diamC(X)(πX(v1) ∪ . . . ∪ πX(vn)) ≤ K0.

We now establish a corollary of Theorem 3.11 that will be useful later.

Corollary 3.12. Let X and Y be subsurfaces of S with X a proper subsurface of Y . Suppose

(µn)n∈N is a sequence of markings on S such that πY (µn) → λ for some λ ∈ ∂C(Y ). Then

diamC(X)(πX(µ1) ∪ πX(µ2) ∪ . . .) <∞.

Proof. For each n, choose αn ∈ πY (µn). Because πY (µn) → λ ∈ ∂C(Y ), we can choose L

large so that for all n ≥ L we have

(αn, αL)α1 ≥ 2 + dY (∂X, α1), (3)

where the Gromov product is computed in C(Y ). Consider n ≥ L. Let γn be a geodesic in

C(Y ) with endpoints αn and αL. If there exists a vertex v on γn with πX(v) = ∅, then v and

∂X form a multicurve in Y, which implies that

(αn, αL)α1 =
1

2

(
dY (αn, α1) + dY (αL, α1)− dY (αn, αL)

)
≤ 1

2

(
dY (αn, v) + dY (v, α1) + dY (αL, v) + dY (v, α1)− (dY (αn, v) + dY (v, αL))

)
= dY (v, α1) ≤ dY (v, ∂X) + dY (∂X, α1) ≤ 1 + dY (∂X, α1).

But this contradicts Inequality (3), so we conclude that πX(v) 6= ∅ for all v on γn. We can

now apply Theorems 3.10 and 3.11 to see that for all n ≥ L

dX(µn, µL) ≤ diamC(X)(πX(µn)) + dX(αn, αL) + diamC(X)(πX(µL)) ≤ 2 +K0 + 2,

where K0 is an in Theorem 3.11. Therefore,

diamC(X)(πX(µ1) ∪ πX(µ2) ∪ . . .) ≤ diamC(X)(πX(µ1) ∪ . . . ∪ πX(µL)) + 2(K0 + 4) <∞.
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3.2.3 Partial order on subsurfaces

Let µ, µ′ be markings on S and K ≥ 20. Let Ω(K,µ, µ′) denote the collection of subsurfaces

Y of S such that dY (µ, µ′) ≥ K. Behrstock, Kleiner, Minsky, and Mosher [BKMM2012]

define the following partial order on Ω(K,µ, µ′). Given X, Y ∈ Ω(K,µ, µ′) such that X t Y ,

define X ≺ Y if and only if one of the following equivalent conditions is satisfied:

dX(µ, ∂Y ) ≥ 10, dX(∂Y, µ′) ≤ 4, dY (µ, ∂X) ≤ 4, or dY (∂X, µ′) ≥ 10.

That these conditions are equivalent is a consequence of Theorem 3.9; see Corollary 3.7 in

[CLM2012].

3.2.4 Notation

Let f, g : X → R be functions. Given constants A ≥ 1 and B ≥ 0, we write f
A,B
� g to

mean f(x) ≥ 1
A
g(x) − B for all x ∈ X, and will just write f � g when the constants are

understood.

3.3 Lemmas on subsurface projections

The following lemmas are the heart of our proof of Theorem 1.2.

Lemma 3.13. Suppose X and Y are disjoint subsurfaces of S, and if Y is an annulus, then

the core of Y is not contained in ∂X. If µ and µ′ are markings and f ∈Mod(S) a mapping

class supported on X, then |dY (µ, f(µ′))− dY (µ, µ′)| ≤ 4.

Proof. If Y is not an annulus, then πY (f(µ′)) = πY (µ′) so the claim clearly holds. Assume

then that Y is an annular subsurface of S with core α, and let int(Y )→ S be the associated

covering. If X is not an annulus, define Z to be the component of S −X that contains α.

If X is an annulus with core β, let Z be the component of S containing α after removing

a small regular neighborhood of β. Let α̃ be the component of the preimage of α in int(Y )

that is a closed curve. Let Z̃ be the component of the preimage of Z in int(Y ) that contains

α̃.

Abusing notation, we let f denote a representative in the isotopy class of f that fixes Z

pointwise. Consider the lift of f to int(Y ) that fixes a point on α̃, and thus fixes Z̃ pointwise.

Let f̃ : Y → Y denote the continuous extension of that lift. Consider β′ ∈ πY (µ′). We will

show

dC(Y )(β
′, f̃(β′)) ≤ 2. (4)
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x
y

f̃(x)

f̃(v)γ = f̃(γ)

γ

Y :

f̃(y)
r

v

f̃(r)

r

v = t([−ε, ε]× [0, 1])

= Z̃∪

Figure 3.1: The arc β′ is the concatenation of r, γ, and v. The concatenation of
r, γ, and v is equivalent to f̃(β′), and that representative of f̃(β′) intersects β′

at most once (drawn is the exactly once case). See the proof of Lemma 3.13.

This will complete the proof because (4), the triangle inequality, and Theorem 3.10 imply

that

|dY (µ, f(µ′))− dY (µ, µ′)| ≤ dY (µ′, f(µ′))

≤ diamC(Y )(πY (µ′)) + dC(Y )(β
′, f̃(β′)) + diamC(Y )(πY (f(µ′)))

≤ 1 + 2 + 1 = 4.

Inequality (4) holds if β′ is contained in Z̃, because in that case f̃(β′) = β′. Thus, we

assume β′ is not contained in Z̃. We break β′ up into three parts. Let γ be the the largest

subpath of β′ contained in Z̃. Let x and y denote the endpoints of β′ on ∂Y . Removing γ

from β′ yields rays r and v that limit to x and y, respectively.

We now construct an arc equivalent to f̃(β′) that intersects β′ at most once. Figure 3.1

illustrates the construction. Let t : [−ε, ε] × [0, 1] → Y be a small tubular neighborhood of

γ so that t|{0}×[0,1] = γ and t([−ε, ε] × {0, 1}) ⊆ ∂Z̃. Let R and V denote the components

of int(Y ) − Z̃ containing r and v, respectively. Because f̃ fixes Z̃ pointwise, f̃ restricts to

homeomorphisms of both R and V , implying that f̃(r) and f̃(v) are contained in R and V ,

respectively. Consequently, in R there exists a ray r based at t(−ε, 0) or t(ε, 0) that limits

to f̃(x) and is disjoint from r. If r is based at t(−ε, 0), define γ̄ = t|{−ε}×[0,1]. Otherwise,

define γ̄ = t|{ε}×[0,1]. Choose v to be an arc in V from γ(1) to f̃(y) that intersects v at most

once. Observe that the arc obtained by concatenating r, γ, and v is equivalent to f̃(β′) and

intersects β′ at most once.

Therefore, by Equation (1) we have dC(Y )(f̃(β′), β′) = 1 + |f̃(β′) · β′| ≤ 2, as desired.

Lemma 3.14. Given a homomorphism φ : A(Γ) → Mod(S) and a marking µ on S, there

exists a constant M ≥ 1 such that the following holds. Let y1 . . . yn ∈ A(Γ), where each

yi ∈ V (Γ). Then dW (µ, φ(y1 . . . yn)µ) ≤Mn for all subsurfaces W ⊆ S.
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Proof. Define M = 4 max{dM̃(S)(µ, φ(x)µ) : x ∈ V (Γ)}. By the triangle inequality and

Theorem 3.8,

dW (µ, φ(y1 . . . yn)µ) ≤
n∑
i=1

dW (φ(y1 . . . yi−1)µ, φ(y1 . . . yi)µ)

≤
n∑
i=1

4dM̃(S)(φ(y1 . . . yi−1)µ, φ(y1 . . . yi)µ)

=
n∑
i=1

4dM̃(S)(µ, φ(yi)µ) ≤Mn.

Lemma 3.15. Let φ : A(Γ) → Mod(S) be a homomorphism. Let (gn)n∈N be a sequence of

elements in A(Γ) and µ a marking on S. Suppose for some subsurface W ⊆ S there exist

constants A ≥ 1 and B ≥ 0, that do not depend on n, such that dW (µ, φ(gn)µ)
A,B
� ||gn||,

where ||gn|| denotes the word length of gn with respect to the standard generating set V (Γ)

for A(Γ). Further suppose that lim
n→∞

||gn|| =∞ and that (πW (φ(gn)µ))n∈N converges to some

point λW in ∂C(W ). Then all accumulation points of (φ(gn))n∈N in Mod(S) ∪ ∂Mod(S) are

in ∂Mod(S) and are of the form
∑
Y⊆S

cY λY , where cW > 0.

Proof. After passing to a subsequence, we may assume that (φ(gn))n∈N converges. By

assumption, lim
n→∞

dW (µ, φ(gn)µ) =∞. Combine this with Theorem 3.8 to see that

lim
n→∞

dM̃(S)(µ, φ(gn)µ) =∞. Because M̃(S) is quasi-isometric to Mod(S) via orbit maps,

it follows that lim
n→∞

dMod(S)(1, φ(gn)) =∞. Thus, it must be that lim
n→∞

φ(gn) ∈ ∂Mod(S).

Suppose lim
n→∞

φ(gn) =
∑
Y⊆S

cY λY for constants cY ≥ 0 and λY ∈ ∂C(Y ). We will now argue

that cW > 0. Let Z ⊆ S be such that cZ > 0. If W = Z, we are done. So we assume W 6= Z.

By definition of the topology on Mod(S)∪ ∂Mod(S), we have that lim
n→∞

πZ(φ(gn)µ) = λZ . If

W ( Z, then Corollary 3.12 implies that diamC(W )(πW (φ(g1)µ) ∪ πW (φ(g2)µ) ∪ . . .) < ∞.

But this cannot be since πW (φ(gn)µ)→ λW ∈ ∂C(W ). Similarly, we cannot have Z ( W for

then Corollary 3.12 implies that diamC(Z)(πZ(φ(g1)µ)∪πZ(φ(g2)µ)∪ . . .) <∞, contradicting

that πZ(φ(gn)µ) → λZ ∈ ∂C(Z). Now suppose that Z t W . Then by Theorem 3.9, after

passing to a subsequence, we have that

dW (∂Z, φ(gn)µ) ≤ 10 for all n, or dZ(∂W, φ(gn)µ) ≤ 10 for all n.
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S :

Xa

Xb

∂Xab

γ

Figure 3.2: Overlapping subsurfaces Xa and Xb of surface S, curve ∂Xab,
and bi-infinite simple geodesic γ.

If dW (∂Z, φ(gn)µ) ≤ 10 for all n, then for all n

dW (µ, φ(gn)µ) ≤ dW (µ, ∂Z) + dW (∂Z, φ(gn)µ) ≤ dW (µ, ∂Z) + 10,

contradicting πW (φ(gn)µ)→ λW ∈ ∂C(W ). Similarly, if dZ(∂W, φ(gn)µ) ≤ 10 for all n, then

dZ(µ, φ(gn)µ) is bounded independent of n contradicting that πZ(φ(gn)µ) → λZ ∈ ∂C(Z).

So it is not the case that Z t W . Therefore it must be that W and Z are disjoint for all

Z ⊆ S with cZ > 0.

Fix Z ⊆ S with cZ > 0. Lemma 3.14 together with the fact that dW (µ, φ(gn)µ)
A,B
� ||gn||

implies that
dW (µ, φ(gn)µ)

dZ(µ, φ(gn)µ)
≥

1
A
||gn|| −B
M ||gn||

, (5)

where M ≥ 1 is as in Lemma 3.14. Since ||gn|| → ∞, Equation (5) implies

lim
n→∞

dW (µ, φ(gn)µ)

dZ(µ, φ(gn)µ)
≥ lim

n→∞

1
A
||gn|| −B
M ||gn||

> 0.

Therefore by definition of the topology of Mod(S) ∪ ∂Mod(S), we have cW > 0 as desired.

3.4 Clay, Leininger, Mangahas RAAGs

In this section, we prove the first part of Theorem 1.2. First, a definition.

For i = 1, 2 let γ̃i be a bi-infinite path in H2 with ends limiting to distinct points xi and

yi on ∂H2. We say that γ̃1 and γ̃2 link if the geodesic connecting x1 to y1 intersects the

geodesic connecting x2 to y2 in the interior of H2.

Embedding construction: We now give a description of a Clay, Leininger, Mangahas

embedding φ : A(Γ) → Mod(S). Let Γ be the graph with vertex set V (Γ) = {a, b} and no

edges. Let S = H2/Λ, Xa, and Xb be the surfaces indicated in Figure 3.2. For short, let Xab
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denote Xa∪Xb. Let ˜S −Xab be a component of the preimage of S−Xab in H2, and let ∂̃Xab

be a geodesic in H2 that is in the boundary of ˜S −Xab.

Let γ̃ be a geodesic in H2 that links with ∂̃Xab and maps to a simple bi-infinite geodesic

γ in S. Further suppose that γ̃ ∩ ( ˜S −Xab) is an infinite ray and let p be its endpoint on

∂H2. For example, take γ to be the simple bi-infinite geodesic in S with one end spiraling

around a curve essential in S − Xab and the other end spiraling around a curve in Xa as

in Figure 3.2, and take γ̃ to be an appropriate lift of γ. Choose fb ∈ Mod(S) so that fb

is pseudo-Anosov on Xb. To simplify arguments, we abuse notation and let fb denote a

representative in the isotopy class of fb that fixes all points outside Xb. This ensures that f̃b

fixes ˜S −Xab pointwise, where f̃b : H2 → H2 is the lift of fb fixing some point on ∂̃Xab. Thus,

the extension of f̃b to ∂H2 fixes pointwise p and the endpoints x and y of ∂̃Xab. Additionally,

we choose fb to have the following properties:

(I) f̃b(γ̃) links with h(γ̃), where h ∈ Λ is a primitive isometry with axis ∂̃Xab, and

(II) τXb(fb) ≥ C, where C is as in Theorem 3.6.

We note that a pseudo-Anosov on Xb satisfying (I) can be obtained from any mapping

class that is pseudo-Anosov on Xb by post-composing with some number of Dehn twists (or

inverse Dehn twists) about ∂Xab. Finally, a pseudo-Anosov on Xb satisfying (I) and (II) can

be obtained from one satisfying (I) by passing to a sufficiently high power.

Let fa ∈ Mod(S) be any mapping class that is pseudo-Anosov on Xa and satisfies

τXa(fa) ≥ C. Theorem 3.6 says that the homomorphism

φ : A(Γ)→ Mod(S) defined by φ(a) = fa, φ(b) = fb

is a quasi-isometric embedding.

Equip A(Γ) with any HHS structure. In the remainder of this section, we will prove the

following theorem, which proves the first part of Theorem 1.2.

Theorem 3.16. The sequences (an)n∈N and (anbn)n∈N converge to the same point in ∂A(Γ),

but (φ(an))n∈N and (φ(anbn))n∈N do not converge to the same point in ∂Mod(S).

We will divide the proof of Theorem 3.16 into two propositions.

Proposition 3.17. The sequences (an)n∈N and (anbn)n∈N converge to the same point in

∂A(Γ).

Proof. Let X be the Cayley graph of A(Γ). By Remark 3.2, to show that (an)n∈N and

(anbn)n∈N converge to the same point in ∂A(Γ), it is enough to show that they converge to
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the same point in ∂GX. Now the Gromov product

(ai, ajbj)1 = min(i, j)→∞ as i, j →∞.

Thus, lim
n→∞

an = lim
n→∞

anbn in ∂GX, as desired.

Throughout the rest of this section µ will denote a fixed marking on S. To continue, we

require the following lemma.

Lemma 3.18. There exist constants A ≥ 1 and B ≥ 0 such that for all n ≥ 1 we have

d∂Xab(µ, φ(anbn)µ)
A,B
� n. Consequently, after passing to a subsequence, (π∂Xab(φ(anbn)µ))n∈N

converges to a point in ∂C(∂Xab).

Proof. We begin by establishing the following claim.

Claim 1: Let n ≥ 1. Then f̃b
n
(γ̃) has endpoint p and links with hi(γ̃) for all 1 ≤ i ≤ n.

Proof of Claim 1. By our choice of f̃b and γ̃, we know the claim holds for n = 1. Let n ≥ 2.

Inductively, suppose that f̃b
n−1

(γ̃) has endpoint p and links with hi(γ̃) for all 1 ≤ i ≤ n− 1.

Let I be the interval in ∂H2 that connects the endpoints of ∂̃Xab and does not contain p,

oriented from the repelling fixed point of h to the attracting fixed point. We will use interval

notation when speaking about connected subsets of I. Now f̃b extends continuously to a

homeomorphism of ∂H2, which we will also denote by f̃b, and because f̃b fixes the endpoints

of ∂̃Xab, this extension restricts to a homeomorphism of I. Let z be the endpoint of γ̃ in I,

and let x ∈ ∂I be the attracting fixed point of h. Because f̃b
n−1

(γ̃) links with hi(γ̃) for all

1 ≤ i ≤ n− 1 and has endpoint p, we have

(f̃b
n−1

(z), x] ⊆ (hi(z), x] for all 0 ≤ i ≤ n− 1. (6)

Since f̃b(γ̃) has endpoint p and links with h(γ̃), it must be that f̃b(z) ∈ (hz, x]. It follows

from this, the fact that f̃b and h fix x, that f̃b and h commute by uniqueness of map lifting,

and (6), that for all 0 ≤ i ≤ n− 1

f̃b
n
(z) = f̃b

n−1
(f̃b(z)) ∈ f̃b

n−1
(h(z), x] = h(f̃b

n−1
(z), x] ⊆ h(hi(z), x] = (hi+1(z), x]. (7)

Because f̃b fixes p, we have f̃b
n
(p) = p. This combined with (7) implies that f̃b

n
(γ̃) links

with hi+1(γ̃) for all 0 ≤ i ≤ n− 1, proving Claim 1.
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By Claim 1, after replacing f̃b
n
(γ̃) with the geodesic connecting its endpoints, the images

of f̃b
n
(γ̃) and γ̃ in (H2 − {x, y})/〈h〉 intersect each other at least n times, and all these

intersections have the same sign. Now apply Equation (1) to see that

d∂Xab(γ, φ(bn)γ) ≥ n+ 1.

It follows that

d∂Xab(µ, φ(bn)µ) ≥ d∂Xab(γ, φ(bn)γ)− d∂Xab(µ, γ)− d∂Xab(φ(bn)µ, φ(bn)γ)

≥ n+ 1− 2d∂Xab(µ, γ) (8)

Lemma 3.13 says that |d∂Xab(µ, φ(anbn)µ)−d∂Xab(µ, φ(bn)µ)| ≤ 4. This together with Equa-

tion (8) implies that

d∂Xab(µ, φ(anbn)µ)) � n.

From this and the fact that C(∂Xab) is quasi-isometric to R it is immediate that

(π∂Xab(φ(anbn)µ))n∈N has a subsequence converging to a point in ∂C(∂Xab).

Proposition 3.19. The sequences (φ(an))n∈N and (φ(anbn))n∈N do not converge to the same

point in Mod(S) ∪ ∂Mod(S).

Proof. After passing to a subsequence, we may assume that (φ(an))n∈N and (φ(anbn))n∈N

converge to points p and q respectively in Mod(S) ∪ ∂Mod(S) and, by Lemma 3.18, that

(π∂Xab(φ(anbn)µ))n∈N converges to a point in ∂C(∂Xab). Lemmas 3.15 and 3.18 imply that

q is in ∂Mod(S). Say q =
∑
Y⊆S

cqY λ
q
Y , where cqY ≥ 0 and λqY ∈ ∂C(Y ) for all Y ⊆ S. Then

Lemmas 3.15 and 3.18 also imply that cq∂Xab > 0.

Now if p were in Mod(S), then we would be done since clearly then p 6= q. So we will

assume that p ∈ ∂Mod(S), and let p =
∑
Y⊆S

cpY λ
p
Y . Now observe that by Lemma 3.13 and

Theorem 3.10

d∂Xab(µ, φ(an)µ) ≤ d∂Xab(µ, µ) + 4 ≤ 5.

Thus, (π∂Xab(φ(an)µ))n∈N does not limit to a point on ∂C(∂Xab). So by definition of the

topology of Mod(S) ∪ ∂Mod(S), it must be that cp∂Xab = 0. Since cq∂Xab > 0, we see that

p 6= q, which completes the proof.
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Figure 3.3: Curves α, β, and η, bounding an annulus A, and simple
bi-infinite geodesic γ on surface S, and the universal cover H2 of S as in
Lemma 3.21.

3.5 Koberda RAAGs

In this section we complete the proof of Theorem 1.2. Following this, we will discuss how to

use similar techniques to prove a large class of Koberda embeddings do not extend.

Let α and β be the pair of intersecting curves on S = H2/Λ depicted in Figure 3.3. Let Γ

be the graph with V (Γ) = {a, b} and no edges. For sufficiently large N , Theorem 3.7 says

that the homomorphism

φ : A(Γ)→ Mod(S) defined by φ(a) = Tα
N and φ(b) = Tβ

N

is injective, where Tα and Tβ denote Dehn twists about α and β respectively. Throughout

this section, we let µ be a fixed marking on S. Equip A(Γ) with an HHS structure.

In this section we prove the following theorem, which will complete the proof of Theorem

1.2.

Theorem 3.20. There exists g ∈ A(Γ) such that the sequences (an)n∈N and (angn)n∈N

converge to the same point in ∂A(Γ), but (φ(an))n∈N and (φ(angn))n∈N do not converge to

the same point in ∂Mod(S).

As a step towards proving Theorem 3.20, we prove the following lemma in which we

construct g ∈ A(Γ).

Lemma 3.21. There exist constants A ≥ 1 and B ≥ 0 and a word g ∈ A(Γ) such that for all

n ≥ 1 we have dη(µ, φ(angn)µ)
A,B
� n, where η is the curve shown in Figure 3.3. Consequently,

after passing to a subsequence, (πη(φ(angn)µ))n∈N converges to a point in ∂C(η).
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Proof. We will prove that there exist constants c1, c2, c3 such that g = bc1ac2bc3 has the

desired properties.

Let A be the annulus in Figure 3.3. Let Ã be a component of the preimage of A in H2.

Let β̃ be a component of the preimage of β such that a segment of β̃ is in the boundary of

Ã, and let η̃ denote the component of the preimage of η in the boundary of Ã. Let h ∈ Λ be

a primitive isometry with axis η̃. Let α̃ be the component of the preimage of α that links

with β̃ and h(β̃) and contains a segment that is in the boundary of Ã.

Let Yα be the component of S − α that contain η. To simplify arguments, we let φ(a)

denote a representative in its isotopy class that fixes Yα pointwise. Let φ̃(a) : H2 → H2 be

the lift of φ(a) that fixes some point on α̃. Similarly define Yβ to be the component of S−β
containing η, choose a representative in the isotopy class of φ(b) that fixes Yβ pointwise, and

let φ̃(b) be the lift of φ(b) that fixes some point on β̃. It then follows that

φ̃(a) = 1 on Ỹα and φ̃(b) = 1 on Ỹβ,

where for i ∈ {α, β} we let Ỹi denote the component of the preimage of Yi in H2 whose

boundary contains ĩ. Observe that for i ∈ {a, b} we have that φ̃(i) fixes the endpoints of η̃.

Choose a geodesic γ̃ in H2 that links with both β̃ and η̃ and maps to a simple bi-infinite

geodesic in S. Further, suppose that γ̃ ∩ Ỹα ∩ Ỹβ is an infinite ray, and let p denote its

endpoint on ∂H2. For example, take γ to be the simple bi-infinite geodesic in S with one

end spiraling around a curve essential in Yα ∩ Yβ and the other end spiraling around a curve

essential in S − Yβ as in Figure 3.3, and take γ̃ to be an appropriate component of the

preimage of γ. Observe that φ̃(a) and φ̃(b) must fix p.

Now choose c3 ∈ Z so that φ̃(b)
c3

(γ̃) links with α̃. Then pick c2 ∈ Z so that φ̃(a)
c2
φ̃(b)

c3
(γ̃)

links with h(β̃). Finally, choose c1 ∈ Z so that φ̃(b)
c1
φ̃(a)

c2
φ̃(b)

c3
(γ̃) links with h(γ̃). See

Figure 3.3.

To simplify notation, define

g = bc1ac2bc3 ∈ A(Γ) and φ̃(g) = φ̃(b)
c1
φ̃(a)

c2
φ̃(b)

c3
.

As in Lemma 3.18, we have that φ̃(g)
n
(γ̃) has endpoint p and links with hi(γ̃) for all 1 ≤

i ≤ n, implying that dη(γ, φ(gn)γ) ≥ n+ 1. It follows that

dη(µ, φ(gn)µ) ≥ dη(γ, φ(gn)γ)− dη(µ, γ)− dη(φ(gn)µ, φ(gn)γ) ≥ n+ 1− 2dη(µ, γ). (9)

Now Lemma 3.13 says that |dη(µ, φ(angn)µ)− dη(µ, φ(gn)µ)| ≤ 4. This together with Equa-

tion (9) implies that dη(µ, φ(angn)µ) � n. From this and the fact that C(η) is quasi-isometric
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to R, it is immediate that (πη(φ(angn)µ))n∈N has a subsequence converging to a point in

∂C(η).

We can now prove Theorem 3.20.

Proof of Theorem 3.20. Let g ∈ A(Γ) be as in Lemma 3.21. By Remark 3.2, to show

that (an)n∈N and (angn)n∈N converge to the same point ∂A(Γ) it is enough to show that they

converge to the same point in ∂GX, where X is the Cayley graph of A(Γ). Now the Gromov

product

(ai, ajgj)1 = (ai, aj(bc1ac2bc3)j)1 = min(i, j)→∞ as i, j →∞.

Therefore lim
n→∞

an = lim
n→∞

angn in ∂GX, as desired.

To finish this proof, we mimic the proof of Proposition 3.19. Replacing b with g, and ∂Xab

with η, and Lemma 3.18 with Lemma 3.21, we find that (φ(an))n∈N and (φ(angn))n∈N do not

converge to the same point in ∂Mod(S).

Our techniques used to prove Theorem 3.20 can be used to prove a more general statement

on non-existence of boundary maps for right-angled Artin groups that are not necessarily

free groups. To prove this more general statement, one needs to understand HHS structures

for all right-angled Artin groups. In the following theorem, by a standard HHS structure

on A(Γ), we mean one induced by a factor system generated by a rich family of subgraphs

of Γ. We refer the reader to [BHS2017b], specifically Proposition 8.3 and Remark 13.2, for

details. In the proof of the following theorem, we freely use definitions and notations used

in [BHS2017b] and [DHS2017].

Theorem 3.22. Let {α1, . . . , αk} be any collection pairwise distinct of curves in S. Let Γ

be the graph with V (Γ) = {s1, . . . , sk} and sisj an edge in Γ if and only and i(αi, αj) = 0.

Give A(Γ) a standard HHS structure, or if A(Γ) is a free group, any HHS structure. If there

exist distinct intersecting curves αi and αj that do not fill S, then any corresponding Koberda

embedding φ : A(Γ)→ Mod(S) does not extend continuously to a map ∂A(Γ)→ ∂Mod(S).

Proof. Consider the subgraph Λ of Γ with V (Λ) = {si, sj}. Contained in the Salvetti

complex SΓ associated to Γ there is a subcomplex that is the Salvetti complex associated

to A(Λ). We let S̃Λ denote the lift of this subcomplex to the universal cover S̃Γ of SΓ that

contains 1. Let R be a rich family of induced subgraphs of Γ, and let F be the corresponding

factor system in S̃Γ. Lemma 8.4 of [BHS2017b] tells us that

F ′ = {F ∩ S̃Λ : F ∈ F}
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is a factor system in S̃Λ. Associating A(Γ) and A(Λ) with S̃Γ and S̃Λ respectively, we equip

each with the HHS structures corresponding to their respective factor systems. We first

argue that the inclusion map A(Λ)→ A(Γ) extends continuously to a map ∂A(Λ)→ ∂A(Γ).

If φ extends continuously to a map ∂A(Γ)→ ∂Mod(S), it will follow that A(Λ)→ Mod(S)

extends continuously to a map ∂A(Λ)→ ∂Mod(S); we will show that this is impossible.

First, consider A(Λ) → A(Γ). Given U ∈ F ′ such that U is not a 0-cube, define π(U) to

be the parallelism class of the ⊆-minimal F ∈ F such that U = F ∩ S̃Λ. Observe that U and

V are nested (respectively orthogonal) if and only if π(U) and π(V ) are nested (respectively

orthogonal). This together with Lemma 10.11 of [DHS2017] implies that (A(Λ)→ A(Γ), π)

is a hieromorphism. Theorem 5.6 of [DHS2017] gives a condition guaranteeing that a hiero-

morphism extends continuously. In our case, if the following claims are true, we can apply

Theorem 5.6 to conclude that A(Λ)→ A(Γ) extends continuously.

Claim 1: π is injective.

Proof of Claim 1. Suppose U, V ∈ F ′ and π(U) = π(V ). Then π(U) v π(V ) and

π(V ) v π(U). Thus, U ⊆ V and V ⊆ U , implying U = V , as desired.

Claim 2: If [F ] ∈ F is not a class of 0-cubes and there exists no U ∈ F ′ satisfying

π(U) = [F ], then diamĈF (πF (S̃Λ)) is bounded above uniformly for some (any) F ∈ [F ].

Proof of Claim 2. Let [F ] ∈ F be as in Claim 1. First, suppose there exists F ∈ [F ] such

that F ∩ S̃Λ 6= ∅. By Lemma 8.5 in [BHS2017b], we have gF (S̃Λ) ⊆ F ∩ S̃Λ. If F ∩ S̃Λ is a

0-cube, then diamĈF (πF (S̃Λ)) ≤ 1, so the claim holds. Otherwise, there must exists F ∈ F
such that F ( F and F ∩ S̃Λ = F ∩ S̃Λ. It follows that CF is coned off in ĈF and that

gF (S̃Λ) ⊆ F . This implies that diamĈF (πF (S̃Λ)) ≤ 4.

Now assume F ∩ S̃Λ = ∅ for all F ∈ [F ]. An argument like that in the proof of Proposition

8.3 of [BHS2017b] shows that we can find g ∈ A(Γ),Γ′ ∈ R, and x ∈ A(Λ) so that gS̃Γ′ ∈ [F ]

and

ggS̃Γ′
(S̃Λ) ⊆ g(S̃Γ′∩Λ∩Lkg) ⊆ g(S̃Γ′∩Lkg), (10)

where g = g−1x and Lkg denotes the link of g. Now if Γ′∩Λ∩Lkg = ∅, then ggS̃Γ′
(S̃Λ) = {g},

implying that diamĈ(gS̃Γ′ )
(πgS̃Γ′

(S̃Λ)) ≤ 1. Assume then that Γ′ ∩ Λ ∩ Lkg 6= ∅. Then by

definition of R and F , we have that Γ′ ∩ Lkg ∈ R and g(S̃Γ′∩Lkg) ∈ F − {0-cubes}. If

g(S̃Γ′∩Lkg) is not a proper subcomplex of gS̃Γ′ , then Γ′ ⊆ Lkg, implying that xS̃Γ′ is parallel to

gS̃Γ′ (see Lemma 2.4 in [BHS2017b]). But this cannot be because (xS̃Γ′)∩ S̃Λ = x(S̃Γ′∩Λ) 6= ∅
and no factor parallel to gS̃Γ′ intersects S̃Λ non-trivially. Therefore, g(S̃Γ′∩Lkg) must be a
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proper subcomplex of gS̃Γ′ . Thus, Cg(S̃Γ′∩Lkg) is coned off in Ĉ(gS̃Γ′). This together with

(10) implies that diamĈ(gS̃Γ′ )
(πgS̃Γ′

(S̃Λ)) ≤ 4, completing the proof of Claim 2.

We now argue that A(Λ)→ Mod(S) does not extend continuously. Let η denote a geodesic

representative of an essential boundary component of a small regular neighborhood of αi∪αj.
Using the proof techniques of Lemma 3.21, we can construct g ∈ A(Λ) so that dη(µ, φ(sni g

n)µ)

grows linearly in n. For later convenience, we construct g so that when written in reduced

form, the first letter of g is s±1
j . As in Proposition 3.19, we see that the sequences (φ(sni )) and

(φ(sni g
n)) do not converge to the same point in Mod(S) ∪ ∂Mod(S). Now observe that (sni )

and (sni g
n) converge to the same point in ∂GA(Λ). Therefore, by the discussion in Section

2.5, (sni ) and (sni g
n) converge to the same point in ∂A(Λ). We have now established that

A(Λ) → Mod(S) does not extend continuously to a map ∂A(Λ) → ∂Mod(S). Therefore,

A(Γ)→ Mod(S) does not extend continuously when A(Γ) is equipped with a standard HHS

structure.

Now suppose A(Γ) is a free group equipped with any HHS structure. By Remark 3.2,

because (sni ) and (sni g
n) converge to the same point in ∂GA(Γ), we have that (sni ) and (sni g

n)

converge to the same point in ∂A(Γ). Because (φ(sni )) and (φ(sni g
n)) do not converge to the

same point in ∂Mod(S), it follows that A(Γ)→ Mod(S) does not extend continuously.

3.6 Existence of boundary maps for some free groups

In this section, we show that a class of embeddings of free groups in Mod(S), which includes

a class of Koberda embeddings and a class of CLM embeddings, extend continuously.

Throughout this section, let Γ be the graph with V (Γ) = {s1, . . . , sk} and no edges, and let

A(Γ) denote the corresponding right-angled Artin group (a rank k free group). Equip A(Γ)

with an HHS structure. Let {X1, . . . , Xk} be a collection of distinct, pairwise overlapping,

and pairwise filling subsurfaces of S and {f1, . . . , fk} a collection of mapping classes such

that fi is fully supported on Xi. Let µ be a fixed marking on S. The main theorem of this

section is the following, which implies the remaining direction of Theorem 1.3.

Theorem 3.23. Let A(Γ) be the rank k free group equipped with any HHS structure. Let

{X1, . . . , Xk} be a collection of distinct, pairwise overlapping, and pairwise filling subsurfaces

of S, and {f1, . . . , fk} a collection of mapping classes such that fi is fully supported on Xi.

There exists a C > 0 such that if τXi(fi) ≥ C for all i, then the homomorphism

φ : A(Γ)→ Mod(S) defined by φ(si) = fi for all i

is a quasi-isometric embedding and extends continuously to a map ∂A(Γ)→ ∂Mod(S).
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We emphasize the arguments we will use to establish that φ is a quasi-isometric embedding

are essentially the same as those used by Clay, Leininger, and Mangahas to prove Theorem

3.6. In particular, when the the Xi are all non-annular, that φ is a quasi-isometric embedding

is Theorem 3.6. To prove Theorem 3.23, we require the following proposition.

Proposition 3.24. There exists K > 0 such that the following holds. For each

1 ≤ i ≤ k, assume τXi(fi) ≥ 2K. Let φ : A(Γ) → Mod(S) be the homomorphism defined by

φ(si) = fi for all i. Consider g1 . . . gk ∈ A(Γ), where for each i we have gi = xeii for some

xi ∈ {s±1
1 , . . . , s±1

k } and ei > 0, and xi 6= xi+1, and xe11 . . . xekk is a reduced word. Let Yi be

the subsurface of S that fully supports φ(xi). Then

(1) For each 1 ≤ i ≤ k, we have dφ(g1...gi−1)Yi(µ, φ(g1 . . . gk)µ) ≥ Kei,

(2) For all 1 ≤ i < j ≤ k, we have φ(g1 . . . gi−1)Yi ≺ φ(g1 . . . gj−1)Yj, where ≺ denotes the

partial order on Ω(K,µ, φ(g1 . . . gk)µ), and

(3) The homomorphism φ : A(Γ)→ Mod(S) is a quasi-isometric embedding.

Proof. Define K = K0 + 20 + 2 max{dXi(µ, ∂Xj) : 1 ≤ i, j ≤ k and i 6= j}, where K0 is

maximum of the constants in Theorem 6.12 of [MM2000] and Theorem 3.11. Statements

(1) and (2) of this proposition are essentially Theorem 5.2 in [CLM2012]. The difference is

that Theorem 5.2 does not allow for the homomorphism to send a generator to a power of a

Dehn twist. The only obstruction to Theorem 5.2 holding for homomorphisms φ of this type

is the following. Suppose Xi is the subsurface that fully supports φ(si), and let σ ∈ A(Γ)

be a non-empty word in letters commuting with si, not including si. If Xi is non-annular,

then dXi(φ(σ)µ′, µ′′) = dXi(µ
′, µ′′) for any markings µ′, µ′′. This not necessarily true if Xi

is an annulus. However, this issue does not arise for us because A(Γ) a free group implies

no such σ exists. Thus, the arguments used to prove Theorem 5.2 in [CLM2012] also prove

our Statements (1) and (2). The proof of our Statement (3) is the same as the proof in

[CLM2012] of Theorem 3.6, using our Statement (1) instead of their Theorem 5.2.

The proof of the next lemma is essentially contained in the proof of Theorem 6.1 in

[CLM2012]. We include a proof here for completeness.

Lemma 3.25. Let φ : A(Γ) → Mod(S), g1 . . . gk ∈ A(Γ), and Yi be as in Proposition 3.24.

Let G be a geodesic in C(S) with one end in πS(µ) and one end in πS(φ(g1 . . . gk)µ). Then

for each 1 ≤ i ≤ k, there exists a curve γi on G such that πφ(g1...gi−1)Yi(γi) = ∅. If |i− j| ≥ 3

and γi and γj are two such curves, then γi 6= γj.
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Proof. Fix 1 ≤ i ≤ k. By way of contradiction, suppose for all curves v on G, we have

πφ(g1...gi−1)Yi(v) 6= ∅. Then Theorems 3.10 and 3.11 together imply that

dφ(g1...gi−1)Yi(µ, φ(g1 . . . gk)µ) ≤ 4 +K0.

But Proposition 3.24 says dφ(g1...gi−1)Yi(µ, φ(g1 . . . gk)µ) ≥ K > K0 +4, a contradiction. Thus,

there must exist a curve γi on G such that πφ(g1...gi−1)Yi(γi) = ∅, as desired. Note that this

implies that γi and ∂φ(g1 . . . gi−1)Yi form a multicurve.

Now consider γi and γj, where 1 ≤ i < j ≤ k and |i − j| ≥ 3. We will show that γi and

γj are distinct curves. To the contrary, suppose γi = γj. Because of the filling assumption

on {X1, . . . , Xk}, the pair of subsurfaces Yi+1 and Yi+2 fill S. Thus, the subsurface pair

φ(g1 . . . gi+1)Yi+1 = φ(g1 . . . gi)Yi+1 and φ(g1 . . . gi+1)Yi+2 also fill S. Thus, it must be that

πφ(g1...gn−1)Yn(γi) 6= ∅ for some n ∈ {i+ 1, i+ 2}. In any case, i < n < j.

In the remainder of this proof, to simplify notation, for each ` we define Y` = φ(g1 . . . g`−1)Y`.

By Proposition 3.24, we have

Yi ≺ Yn ≺ Yj,

where ≺ is the partial order on Ω(K,µ, φ(g1 . . . gk)µ). In particular, these three subsurfaces

are pairwise overlapping. This together with the assumption that γi = γj and Theorem 3.10

implies that

dYn(∂Yi, ∂Yj) ≤ dYn(∂Yi, γi) + dYn(γj, ∂Yj) ≤ 2 + 2 = 4.

It follows from this and the definition of ≺ that

dYn(µ, φ(g1 . . . gk)µ) ≤ dYn(µ, ∂Yi) + dYn(∂Yi, ∂Yj) + dYn(∂Yj, φ(g1 . . . gk)µ) ≤ 4 + 4 + 4 = 12.

But this cannot be, because dYn(µ, φ(g1 . . . gk)µ) ≥ K ≥ 20 by Proposition 3.24. Therefore,

γi and γj are distinct curves.

We have now developed the tools we will need to prove Theorem 3.23.

Proof of Theorem 3.23. Define C = 2K, where K is as in Proposition 3.24 and for each

1 ≤ i ≤ k, assume that τXi(fi) ≥ C. By Proposition 3.24, φ is a quasi-isometric embedding.

Let X denote the Cayley graph of A(Γ). Choose x ∈ ∂GX. Let γ be the infinite geodesic

ray in X based at 1 limiting to x in ∂GX. We think of γ as an infinite word of the form

y1y2y3 . . ., where each yi ∈ {s±1
1 , . . . , s±1

k } and the word y1y2 . . . yi is a reduced word for

all i. By construction, the sequence (y1 . . . yn) converges to x in X ∪ ∂GX. Let (hn) be

another sequence in A(Γ) that converges to x in X ∪ ∂GX. We will show that (φ(hn)) and

(φ(y1 . . . yn)) converge to the same point in ∂Mod(S). By Remark 3.3, this will prove the

39



theorem. We will consider two cases: (1) There does not exist N ≥ 1 such that yi = yN

for all i ≥ N , and (2) such an N exists. In both cases, we will assume each hn is written

in the form hn = gn,1 . . . gn,N(n), where for all i we have gn,i = x
en,i
n,i for some en,i > 0 and

xn,i ∈ {s±1
1 , . . . , s±1

k } satisfying xn,i 6= xn,i+1, and xe,1n,1 . . . x
en,N(n)

n,N(n) is a reduced word.

Case 1: Suppose there does not exist N ≥ 1 such that yi = yN for all i ≥ N . Then we

can think of γ as an infinite word of the form g1g2g3 . . ., where gi = xeii for some ei > 0 and

xi ∈ {s±1
1 , . . . , s±1

k } satisfying xi 6= xi+1, and xe11 . . . xeii is a reduced word for all i. Define Yi

to be the subsurface that fully supports φ(xi). For short, we let Yi denote φ(g1 . . . gi−1)Yi.

Because (hn) and (y1 . . . yn) converge to the same point in ∂GX and X is a tree, hn and

y1 . . . yn must agree on longer and longer initial segments as n → ∞. In particular, given

L ≥ 1, there exists M such that for all n ≥ M , we have gn,1 . . . gn,L = g1 . . . gL. Consider

n ≥ M and k ≥ e1 + · · · + eL. Choose a curve β ∈ base(µ). Given σ ∈ A(Γ), let G(σ)

denote some choice of geodesic in C(S) with endpoints β and φ(σ)β. By Lemma 3.25, for

all 1 ≤ i ≤ L there exist curves γi and γ′i on G(y1 . . . yk) and G(hn) respectively such that

πYi(γi) = ∅ and πYi(γ
′
i) = ∅. Observe that

dS(γi, ∂Yi) ≤ 1 and dS(γ′i, ∂Yi) ≤ 1.

Choose γr to be the curve in {γi : 1 ≤ i ≤ L} closest to φ(y1 . . . yk)β. Lemma 3.25 tells us

that if |i− j| ≥ 3, then γi 6= γj. So necessarily dS(β, γr) ≥ L/3. Thus, the Gromov product,

computed in C(S), is

(φ(y1 . . . yk)β, φ(hn)β)β =
1

2

[
dS(β, φ(y1 . . . yk)β) + dS(β, φ(hn)β)− dS(φ(y1 . . . yk)β, φ(hn)β)

]
≥ 1

2

[
dS(β, γr) + dS(γr, φ(y1 . . . yk)β) + dS(β, γ′r) + dS(γ′r, φ(hn)β)−(

dS(φ(y1 . . . yk)β, γr) + dS(γr, ∂Yr) + dS(∂Yr, γ
′
r) + dS(γ′r, φ(hn)β)

)]
≥ 1

2

[
dS(β, γr) + dS(β, γ′r)− 2

]
≥ 1

2
(L/3− 2).

It follows that

lim inf
k,n→∞

(φ(y1 . . . yk)β, φ(hn)β))β =∞. (11)

Because (hn) is an arbitrary sequence converging to x, we could have taken it to be (y1 . . . yn).

Thus, Equation (11) tells us two things: (1) (φ(y1 . . . yn)µ) converges to a point in ∂C(S),
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and (2) (φ(y1 . . . yn)µ) and (φ(hn)µ) converge to the same point in ∂C(S). By definition of

the topology on Mod(S)∪ ∂Mod(S), this tells us that (φ(y1 . . . yn)) and (φ(hn)) converge to

the same point in ∂Mod(S).

Case 2: Assume there exists N ≥ 1 such that yi = yN for all i ≥ N . Corollary 6.2 in

[DHS2017] tells us that the action of Mod(S) by left multiplication extends to an action

of Mod(S) on Mod(S) ∪ ∂Mod(S) by homeomorphisms. Consequently, if we can show that

(φ((y1 . . . yN−1)−1hn))n∈N and (φ(yN . . . yn))n∈N converge to the same point in ∂Mod(S), then

(φ(hn))n∈N and (φ(y1 . . . yn))n∈N must converge to the same point in ∂Mod(S). Furthermore,

((y1 . . . yN−1)−1hn)n∈N and (yN . . . yn)n∈N converge to the same point in ∂GX. Thus, without

loss of generality we assume N = 1. By our assumption, y1 . . . yn = yn1 for all n.

Let Y be the subsurface that fully supports φ(y1) and let ∂Y = {β1, . . . , β`}. Then

lim
n→∞

dY (µ, φ(yn1 )µ)

n
> 0 and πY (φ(yn1 )µ)→ λY for some λY ∈ ∂C(Y ). (12)

Further observe that for all i

lim
n→∞

dβi(µ, φ(yn1 )µ)

n
≥ 0. (13)

If (13) is an equality, let λi be any point in ∂C(βi). Otherwise, define λi ∈ ∂C(βi) to

be lim
n→∞

πβi(φ(yn1 )µ). For all subsurfaces W disjoint from Y and not an annulus with core

curve in ∂Y , Lemma 3.13 and Theorem 3.10 imply that dW (µ, φ(yn1 )µ) ≤ dW (µ, µ) + 4 ≤ 6.

Consequently,

lim
n→∞

φ(yn1 ) = cY λY +
∑̀
i=1

ciλi,

where

cY +
∑̀
i=1

ci = 1 and
ci
cY

= lim
n→∞

dβi(µ, φ(yn1 )µ)

dY (µ, φ(yn1 )µ)
.

Because (hn) and (yn1 ) converge to the same point in ∂GX, given any L ≥ 1, for all

sufficiently large n we have xn,1 = y1 and en,1 ≥ L. So by removing finitely many initial

terms from (hn), for convenience we may assume that gn,1 = y
en,1
1 for all n. Observe that

en,1 → ∞ as n → ∞. It is immediate from this and the definition of the topology of

Mod(S) ∪ ∂Mod(S) that lim
n→∞

φ(gn,1) = lim
n→∞

φ(yn1 ). Thus, to finish the proof, we must show

lim
n→∞

φ(gn,1) = lim
n→∞

φ(hn). By passing to subsequences, we may assume that either N(n) = 1

for all n or N(n) ≥ 2 for all n. If the former holds, then hn = gn,1, and we are done. Assume

then that N(n) ≥ 2 for all n. To proceed, we require the following claims.
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Claim 1: dY (φ(gn,1)µ, φ(hn)µ) is bounded above, independent of n.

Claim 2: Let W be a subsurface that is disjoint from Y . Then dW (φ(gn,1)µ, φ(hn)µ) is

bounded above, independent of n.

We postpone the proofs of these claims and for now assume they are true. First, observe

that Claim 1 and (12) imply that πY (φ(hn)µ)→ λY . If Inequality (13) is strict, then Claim

2 implies that πβi(φ(hn)µ)→ λi. Further observe that Claims 1 and 2 imply that for all W

disjoint from Y

lim
n→∞

dW (µ, φ(gn,1)µ)

dY (µ, φ(gn,1)µ)
=

lim
n→∞

dW (µ, φ(gn,1)µ)

en,1

lim
n→∞

dY (µ, φ(gn,1)µ)

en,1

=

lim
n→∞

dW (µ, φ(hn)µ)

en,1

lim
n→∞

dY (µ, φ(hn)µ)

en,1

= lim
n→∞

dW (µ, φ(hn)µ)

dY (µ, φ(hn)µ)
.

It follows that lim
n→∞

φ(gn,1) = lim
n→∞

φ(hn) as desired.

To finish the proof, we will now prove Claims 1 and 2. For each n, let Zn denote the

subsurface that fully supports φ(xn,2).

Proof of Claim 1. Fix n ≥ 1. Because Y fully supports φ(xn,1), by Proposition 3.24,

we know Y ≺ φ(gn,1)Zn, where ≺ denotes the partial order on Ω(K,µ, φ(hn)µ). Thus,

dY (∂φ(gn,1)Zn, φ(hn)µ) ≤ 4. Therefore,

dY (φ(gn,1)µ, φ(hn)µ) ≤ dY (φ(gn,1)µ, ∂φ(gn,1)Zn) + dY (∂φ(gn,1)Zn, φ(hn)µ) ≤ dY (µ, ∂Zn) + 4.

There are finitely many possibilities for Zn, so this completes the proof of Claim 1.

Proof of Claim 2. Fix n ≥ 1. Because Y and Zn fill S and Y and W are disjoint, it must

be that πZn(∂W ) 6= ∅. There are two cases to consider: (1) W t Zn and (2) W ( Zn.

First, suppose that W t Zn. It then follows from Proposition 3.24, Theorem 3.10, and the

definition of K that

dZn(∂W, φ(gn,2 . . . gn,N(n))µ) ≥ dZn(µ, φ(gn,2 . . . gn,N(n))µ)− dZn(∂Y, ∂W )− dZn(µ, ∂Y )

≥ K − 2−K/2 ≥ 10.

Thus Theorem 3.9 implies that dW (∂Zn, φ(gn,2 . . . gn,N(n))µ) ≤ 4. From this and Theorem
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3.8 we find that

dW (φ(gn,1)µ, φ(hn)µ) = dW (µ, φ(gn,2 . . . gn,N(n))µ)

≤ dW (µ, ∂Zn) + dW (∂Zn, φ(gn,2 . . . gn,N(n))µ)

≤ 4 max{dM̃(S)(µ, µi) : 1 ≤ i ≤ k}+ 4, (14)

where µi is a fixed choice of marking with ∂Xi ⊆ base(µi) for each 1 ≤ i ≤ k. This provides

a uniform bound in the case that W t Zn.

Now suppose that W ( Zn. First, observe that because Zn fully supports φ(xn,2), the

sequence (πZn(φ(xn,2)mµ))m∈N converges to a point in ∂C(Zn). Thus, by Corollary 3.12 there

exists a constant M , that depends on W and xn,2, such that dW (µ, φ(gn,2)µ) ≤ M for all

n. Note that there are only finitely many possibilities for xn,2, so M can be chosen to be

independent of n. This implies that

dW (φ(gn,1)µ, φ(hn)µ) ≤ dW (µ, φ(gn,2 . . . gn,N(n))µ)

≤ dW (µ, φ(gn,2)µ) + dW (φ(gn,2)µ, φ(gn,2 . . . gn,N(n))µ)

≤M + dφ(gn,2)−1W (µ, φ(gn,3 . . . gn,N(n))µ).

Now if N(n) = 2, then we can apply Theorem 3.10 to see that

dφ(gn,2)−1W (µ, φ(gn,3 . . . gn,N(n))µ) = dφ(gn,2)−1W (µ, µ) ≤ 2,

and Claim 2 is established. Suppose then that N(n) ≥ 3. Let Vn denote the subsurface that

fully supports φ(xn,3). Observe that because τZn(φ(xn,2)) ≥ 2K and ∂Y and ∂W form a

multicurve, we have

dZn(∂φ(gn,2)−1W,∂Vn) ≥ dZn(∂W, ∂φ(gn,2)−1W )− dZn(∂W, ∂Y )− dZn(µ, ∂Y )− dZn(µ, ∂Vn)

≥ 2K − 2−K/2−K/2 > 2.

This together with Theorem 3.8 establishes that ∂φ(gn,2)−1W and ∂Vn do not form a multi-

curve. Thus, φ(gn,2)−1W t Vn. So to bound dφ(gn,2)−1W (µ, φ(gn,3 . . . gn,N(n))µ) from above in-

dependent of n, we can use the same techniques used above to bound dW (µ, φ(gn,2 . . . gn,N(n))µ)

when W t Zn. This completes the proof of Claim 2, and thus the proof of Theorem 3.23.
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CHAPTER 4

Exotic limit sets of Teichmüller geodesics

4.1 Introduction

The goal of this chapter is to anwer the question of Durham, Hagen, and Sisto [DHS2017]

on the uniqueness of accumulation points of Teichmüller geodesic rays in the HHS boundary

by proving the following theorem.

Theorem 1.4. Given a continuous map γ : R→42 to the standard 2-simplex, there exists

a Teichmüller geodesic ray G in Teich(S3) and an embedding of 42 into the HHS boundary

of Teich(S3) such that the limit set of G in the HHS boundary is the image of γ(R).

Strategy for proving Theorem 1.4. To build Teichmüller geodesic rays, we use a classical

construction (see for example Masur and Tabachnikov [MT2002]) also used by Lenzhen

[Len2008] and Lenzhen, Modami, Rafi [LMR2016] to study limit sets of Teichmüller geodesics

in Thurston’s compactification. Given irrational numbers θ0, θ1, θ2 and 0 < s < 1, for each

i = 0, 1, 2 cut a slit of length s and slope θi in a unit square Ri. Rotate Ri counterclockwise so

that its slit is vertical. For each rotated Ri, identify its parallel sides to form a torus with one

boundary component. Then identify the left side of the slit in Ri with the right side of the

slit in Ri−1 (indices mod 3). This produces a genus 3 translation surface, yielding a complex

R0 R1

R2

glue

βi

Yi

Figure 4.1: Three slitted unit squares glued to form a genus 3 translation surface.
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structure X and a quadratic differential q with respect to X (see Figure 4.1). We consider

the Teichmüller geodesic ray corresponding to (X, q). Given a continuous map γ : R→42,

we will show how to construct irrational numbers θ0, θ1, θ2 and an embedding of 42 into the

HHS boundary of Teich(S3,0) so that the limit set of the corresponding Teichmüller geodesic

ray is the image of γ(R).

The vertical foliations of the geodesic rays used to prove Theorem 1.4 are not minimal.

On the other hand, as mentioned in [DHS2017], if the vertical foliation is minimal, then the

limit set in the HHS boundary consists of a single point (see the Teich(S) example in Section

2.5).

Chapter Outline. In Section 4.2 we define necessary terms and collect useful theorems.

In Section 4.3 we give conditions on the irrational numbers to guarantee that the limit set in

the HHS boundary of the corresponding Teichmüller geodesic ray is contained in a 2-simplex.

Section 4.4 contains the proof of Theorem 1.4, rephrased there as Theorem 4.16. There we

show how to carefully choose the entries of the continued fraction expansions of our irrational

numbers to obtain fine control of the limit set.

4.2 Background

4.2.1 Notation and conventions

Throughout Section 4.2, let S denote a connected, closed, orientable surface of genus at

least 2. Throughout this chapter , a curve in S means a homotopy class of an essential,

simple, closed curve in S. Though when convenient, we will also call a representative in the

homotopy class a curve.

Let f, g : Y → R be functions. If there exist constants A ≥ 1 and B ≥ 0 that depend only

on the topology of S, such that for all y ∈ Y , we have 1
A

(g(y) − B) ≤ f(y) ≤ Ag(y) + B,

then we write f � g. In the case that B = 0 we write f
∗� g, and if A = 1 we write f

+� g.

We define ≺,
∗
≺, and

+
≺ similarly.

4.2.2 Extremal length and Teichmüller geodesics

Consider X ∈ Teich(S). Every complex structure determines a collection of conformally

equivalent Riemannian metrics on S, and in the collection there is a unique hyperbolic

metric by the Uniformization Theorem. We let HypX(α) denote the length of the geodesic

representative of α in the hyperbolic metric associated to X ∈ Teich(S). The following
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theorem compares the hyperbolic and extremal lengths, showing that when the hyperbolic

length of a curve is small, its extremal length and hyperbolic length are (coarsely) equal.

Theorem 4.1 (Maskit [Mas1985]). Given X ∈ Teich(S) and a curve α in S,

1

π
≤ ExtX(α)

HypX(α)
≤ 1

2
eHypX(α)/2.

Let q be a (holomorphic) quadratic differential with respect to X. Local coordinates for

q give S a singular flat structure, inducing a geodesic metric on S. We let `q(γ) denote

the q-length of a geodesic representative of a curve γ in the metric induced by q. The

collection of q-geodesic representatives of a curve α form a (possibly degenerate) Euclidean

cylinder, which we will call F . An expanding annulus with core α is the largest one-sided

regular neighborhood of a boundary component of F in a direction away from F that is

an embedded annulus. Let E and G denote the two expanding annuli with core α. As a

corollary to Minsky’s work [Min1992], Choi, Series, and Rafi [CRS2008] deduce the following

theorem that relates ExtX(α) to the moduli of F,E, and G. The subsequent theorem gives

a way to estimate the modulus of an annulus that satisfies certain properties.

Theorem 4.2 (Minsky [Min1992, Theorems 4.5 and 4.6]; Choi, Series, Rafi [CRS2008,

Corollary 5.4]). There exists ε0 depending only on S such that if ExtX(α) ≤ ε0, then

1

ExtX(α)

∗� ModX(E) + ModX(F ) + ModX(G).

Theorem 4.3 (Rafi [Raf2005, Lemma 3.6]). Let q be a quadratic differential with respect

to X ∈ Teich(S). Let A be an annulus in S such that with respect to the q-metric, A has

equidistant boundary components and exactly one boundary component γ0 a geodesic. Further

suppose the interior of A does not contain any singularities of q. Then

ModX(A) � log

(
d

`q(γ0)

)
,

where d is the q-distance between the boundary components of A.

Let q be a quadratic differential with respect to X. We now explain how the pair (X, q)

determines a geodesic in the Teichmüller metric. Composing the natural coordinates of q

away from its singularities with

(
et 0

0 e−t

)
yields a new complex structureXt ∈ Teich(S) on

S and a new quadratic differential qt with respect to Xt. The map G : (−∞,∞)→ Teich(S)

given by t 7→ Xt is a geodesic. All geodesics in Teich(S) can be described in this way.
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The horizontal foliation (respectively vertical foliation) associated to G is the collection

of paths that are smooth with respect to X and whose tangent vectors are taken to positive

(respectively negative) real numbers by q. Let α be a curve in S such that no representative

of α is a leaf of the vertical or horizontal foliation of S corresponding to G. Then we define

the balance time of α along G to be the time t that minimizes `qt(α).

We define the geodesic ray determined by (X, q) to be G restricted to [0,∞). We will let

Extt, Modt, and Hypt denote ExtXt , ModXt , and HypXt , respectively.

4.2.3 Continued fractions for irrational numbers

Here we recall some elementary facts on continued fractions (see for example [RS1992]). Let

θ be an irrational number with continued fraction expansion [a0; a1, a2, a3, . . .]. That is,

θ = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

We will always assume a0 ≥ 0 and all other an are strictly positive. We define the nth

convergent of θ to be the reduced fraction pn
qn

= [a0; a1, a2, . . . , an]. The numbers pn and qn

are given recursively by

qn = anqn−1 + qn−2, q−1 = 0, and q−2 = 1 (15)

and

pn = anpn−1 + pn−2, p−1 = 1, and p−2 = 0

and satisfy
1

qn + qn+1

≤ |pn − θqn| ≤
1

qn+1

(16)

and

|pnqn+1 − qnpn+1| = 1. (17)

A simple but useful observation is that θ and each pn/qn can be bounded as follows:

a0 ≤ θ ≤ a0 + 1 and a0 ≤ pn/qn ≤ a0 + 1. (18)
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4.2.4 Teichmüller geodesic rays from irrational numbers

Let θ0, θ1, θ2 be irrational numbers and 0 < s < 1 and consider the corresponding Teichmüller

geodesic ray G : [0,∞) → Teich(S), described in Section 4.1, parameterized by arc length.

We let Xt denote G(t). For each i, let Yi denote the subsurface of S that is the image

of the slitted square Ri under the gluing map, and let βi denote the boundary of Yi. Let

pin/q
i
n denote the nth convergent of θi. Let αi(n) denote the curve in S corresponding to the

trajectory in Ri with slope pin/q
i
n. Define T in to be the balance time along G of αi(n). We

shall use these notations throughout the paper. When we use them, it will be clear from

context which irrational numbers and Teichmüller geodesic ray we are working with.

In [Len2008] Lenzhen gave an explicit formula for T in and gave a useful bound for the

extremal length of αi(n) along G.

Theorem 4.4 (Lenzhen [Len2008, Lemma 1, proof of Lemma 3]). For all n ≥ 0 and i =

0, 1, 2

(1) Extt(αi(n)) ≤
( √

1+θ2
i√

1+θ2
i−s|qinθi−pin|

)
`2
qt(αi(n)) for t ≥ 0.

(2) The quadratic differential qt induces a flat structure on the torus Y ′i obtained by ignoring

the slit in Yi. In that metric, for all t ∈ [T in, T
i
n+1], a shortest curve in Y ′i is αi(n)

or αi(n + 1). This statement also holds for the slitted torus Yi using the qt-metric.

Moreover, the length of αi(n) in the metric qt induces on Y ′i is equal to `qt(αi(n)).

(3) T in = 1
2

log pinθi+q
i
n

|qinθi−pin|
.

Remark 4.5. There exists a constant K such that given any unit area flat structure on a

torus, there is a curve of length less than K (Loewner’s torus inequality). Thus, Statement

(2) of Theorem 4.4 tells us that for t ∈ [T in, T
i
n+1], we have `qt(αi(n)) or `qt(αi(n + 1)), that

is the length of the qt-shortest curve in Yi, is bounded uniformly above.

Observe that βi is a closed leaf in the vertical foliation associated to G. The following

theorem of Choi, Rafi, and Series gives us useful information about how the projection of G
to C(βi) moves through C(βi).

Theorem 4.6 ([CRS2008, Theorem 5.13]). There exists a constant ε0 depending only on S

such that the following holds. Let G be a Teichmüller geodesic with horizontal and vertical

foliation ν+ and ν−, respectively. Suppose α is a closed leaf in ν− and Extt(α) ≤ ε0. Then

dα(ν+, Xt) ≺
1

Hypt(α)
.
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4.3 Form of accumulation points of Teichmüller geodesics

Throughout this section, for each i = 0, 1, 2 we fix sequences (θi(j))
∞
j=1 and (ni(j))

∞
j=1, where

θi(j) ≥ 2 for all i, j. We then define

θi = [0; θi(1), . . . , θi(1)︸ ︷︷ ︸
ni(1)

, . . . , θi(j), . . . , θi(j)︸ ︷︷ ︸
ni(j)

, . . .].

We fix a slit length s. We let S denote the genus 3 surface, and let G : [0,∞)→ Teich(S) de-

note the Teichmüller geodesic ray associated to (θ0, θ1, θ2) with slit length s. Define Ni(0) = 0

and for k ≥ 1 define Ni(k) =
k∑
j=1

ni(j).

In this section, through a sequence of lemmas, we will show that if the sequences (ni(j))
∞
j=1

grow sufficiently fast, then there exists ηi ∈ ∂C(Yi) such that every point in the limit set of

G is of the form
2∑
i=0

cYiηi for some cYi ≥ 0.

We begin with Lemma 4.7, where we establish that the projection of G to C(Yi) converges

to a unique point ηi ∈ ∂C(Yi). This is almost immediate from Theorem B of Rafi [Raf2014],

which says that the projection of any Teichmüller geodesic to C(Y ) is an unparameterized

quasi-geodesic for every non-annular subsurface Y , but we provide a direct proof in our

setting that will also reveal information about when G makes progress in C(Yi) that will be

useful later. From Lemma 4.7, it will follow that every point in the limit set of G is of the

form
2∑
i=0

(cYiηi + cβiηβi) ,

where ηβi is the point in ∂Hβi . To determine what the constants cYi and cβi can be, we

must understand how fast the projection of G moves through each of the C(Yi) and Hβi for

i = 0, 1, 2 relative to one another. In Lemma 4.7, we will see that dY (X0, XT in
)

+� n. From

here, we use Theorem 4.4 to provide useful estimates for balance times T in (Lemma 4.8). We

will then prove Lemma 4.10, which puts an upper bound on how fast the projection of G
can move through a horoball Hβi . We use this upper bound to prove that if the sequence

(ni(j))
∞
j=1 grows fast enough, then cβi = 0 (Lemma 4.12).

To simplify the notation, throughout the rest of this section, we will fix i ∈ {0, 1, 2} and

suppress i in all the associated notations. In particular, Y, Tn, θ(j), β, and qn will denote

Yi, T
i
n, θi(j), βi, and qin, respectively.
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Lemma 4.7. For all n ≥ 1,

t ∈ [Tn−1, Tn] ⇒ dY (X0, Xt)
+� n.

Thus, the projection of G to C(Y ) is an unparameterized quasi-geodesic converging to a unique

point ηi ∈ ∂C(Y ).

Proof. Let n ≥ 1. By (17) the curves α(n − 1) and α(n) are adjacent in C(Y ). In fact,

because the convergent pn/qn has a depth n continued fraction expansion with all but the

zeroth coefficient at least 2, we have

dY (α(0), α(n)) = n. (19)

(See [Ser1985]). Fix t ∈ [Tn−1, Tn]. By the triangle inequality, we have

|dY (X0, Xt)− n| = |dY (X0, Xt)− dY (α(0), α(n))| ≤ dY (X0, α(0)) + dY (α(n), Xt).

We now show that dY (X0, α(0)) and dY (α(n), Xt) are each bounded above by a constant

depending only on S.

Consider the Euclidean cylinder A in S with core α(0) that is the union of the q0-

geodesic representatives of α(0). Because θ, s ∈ (0, 1), we have that Mod0(A) ≥ 1
4
. Thus,

Ext0(α(0)) ≤ 4. Now for every curve β in the base of the short marking µ0 on X0, we

also have that Ext0(β) is bounded uniformly above by a constant depending only on S (see

[Min1996a] and Theorem 2.3 in [Raf2014]). So by Inequality (2), the intersection of α(0)

with every curve in base(µ0) is bounded above uniformly. Therefore, dY (X0, α(0)) is bounded

above uniformly.

Observe that (16) together with the fact that θ(j) ≥ 2 for all j and θ, s ∈ (0, 1) imply that
√

1+θ2√
1+θ2−s|qnθ−pn|

is bounded above by a uniform constant. So, Theorem 4.4 tells us

Extt(α(m)) ≺ `2
qt(α(m)) for all m ≥ 0. (20)

Combining this with Remark 4.5, we find that Extt(α(n−1)) or Extt(α(n)) is bounded above

uniformly. An argument similar to that used above for dY (X0, α(0)) together with the fact

that dY (α(n − 1), α(n)) = 1 implies dY (α(n), Xt) is bounded above by a uniform constant,

as desired. Therefore,

dY (X0, Xt)
+� n.

Because this coarse equality is true for all n, the projection of G to C(Y ) is an unparameterized

quasi-geodesic. Consequently, {πY (Xt)}t≥0 accumulates on a unique point in ∂C(Y ).
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Remark: Theorem 4.4 of Lenzhen gives us an exact formula for Tn, but this formula is

insufficient for our purposes because it requires us to know θ exactly. In Lemma 4.8 we use

Lenzhen’s formula as a starting point to show that an initial segment of length n + 1 of

the continued fraction expansion of θ is all that is required to obtain a coarse estimate for

Tn. We remark that Lenzhen, Modami, and Rafi [LMR2016] also provided a coarse estimate

with this property. The estimates we present in Lemma 4.8 are more useful to us because

the continued fractions we consider will have long stretches of the same number.

Before stating the lemma, for x ∈ R we define

λ(x) =
x+
√
x2 + 4

2
and λ(x) =

x−
√
x2 + 4

2
.

Lemma 4.8. There exists a uniform additive error such that for all j ≥ 1 the following hold.

1. For all 0 ≤ ` ≤ n(j) we have

log qN(j−1)+`
+� log qN(j−1) + ` log λ(θ(j)).

2. For all 0 ≤ ` ≤ n(j)− 1, we have

TN(j−1)+`
+� log qN(j−1) + (`+ 1/2) log λ(θ(j)).

Proof. Fix j ≥ 1.

Proof of 1. Equation (15) says the qn are given recursively by

qN(j−1)+` = θ(j)qN(j−1)+`−1 + qN(j−1)+`−2 when 1 ≤ ` ≤ n(j). (21)

The solution to this recursion is

qN(j−1)+` = A(j)λ(θ(j))` +B(j)λ(θ(j))` 0 ≤ ` ≤ n(j),

where we define

A(j) =
qN(j−1)+1 − λ(θ(j))qN(j−1)

λ(θ(j))− λ(θ(j))
and B(j) =

qN(j−1)λ(θ(j))− qN(j−1)+1

λ(θ(j))− λ(θ(j))
. (22)

If ` = 0, statement 1 is clearly true. So assume 1 ≤ ` ≤ n(j). Observe that λ(θ(j)) > 1

and −1 < λ(θ(j)) < 0. This with Equation (15) and our assumption that θ(j) ≥ 2 implies
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∣∣∣∣B(j)λ(θ(j))`

A(j)λ(θ(j))`

∣∣∣∣ =

∣∣∣∣∣qN(j−1)λ(θ(j))− qN(j−1)+1

qN(j−1)+1 − λ(θ(j))qN(j−1)

(
λ(θ(j))`

λ(θ(j))`

)∣∣∣∣∣
≤
∣∣∣∣qN(j−1)λ(θ(j))− qN(j−1)+1

qN(j−1)+1

(
λ(θ(j))`

λ(θ(j))`

)∣∣∣∣
≤
∣∣∣∣ λ(θ(j))`

λ(θ(j))`−1

∣∣∣∣+

∣∣∣∣λ(θ(j))`

λ(θ(j))`

∣∣∣∣
≤ 2|λ(θ(j))| ≤ 2|λ(2)|.

This implies that

| log qN(j−1)+` − log(A(j)λ(θ(j))`)| = | log[A(j)λ(θ(j))` +B(j)λ(θ(j))`]− log(A(j)λ(θ(j))`)|

=

∣∣∣∣log

(
1 +

B(j)λ(θ(j))`

A(j)λ(θ(j))`

)∣∣∣∣
≤ | log(1 + 2λ(2))|. (23)

To complete the proof of statement (1), we now show logA(j)
+� log qN(j−1). It follows

directly from (21) and (22) that

logA(j) ≤ log
2qN(j−1)+1

λ(θ(j))
= log

2(θ(j)qN(j−1) + qN(j−1)−1)

λ(θ(j))
≤ log 4qN(j−1),

and

logA(j) ≥ log
qN(j−1)+1

λ(θ(j))− λ(θ(j))
≥ log

θ(j)qN(j−1)

2θ(j)

+
� log qN(j−1).

Proof of 2. Let n ≥ 0. Theorem 4.4 (Lenzhen) tells us Tn = 1
2

log pnθ+qn
|qnθ−pn| . We will use this

to first show that Tn is coarsely 1
2

log qnqn+1. We remark that Lenzhen, Modami, and Rafi

[LMR2016] obtain this same coarse estimate for the sequences they consider. Because our

sequences do not fit their form, we derive the estimate for sequences in our setting.

By (16), we have

pnθ + qn
|qnθ − pn|

≥ (pnθ + qn)qn+1 ≥ qnqn+1,

and applying (16) and (18) and the fact that qn+1 > qn, we find

pnθ + qn
|qnθ − pn|

≤ (pn + qn)(qn + qn+1) ≤ (qn)2 + qnqn+1 + (qn)2 + qnqn+1 ≤ 4qnqn+1.
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Figure 4.2: Annulus At in Y with core curve βi and large modulus in Xt ∈ Teich(S).

These inequalities show that

Tn
+� 1

2
log qnqn+1 for all n ≥ 0. (24)

This together with statement 1 of the lemma implies that for 0 ≤ ` ≤ n(j)− 1

TN(j−1)+`
+� log qN(j−1) + (`+ 1/2) log(λ(θ(j))).

The projection of G to the horoball Hβ depends on whether or not the extremal length of

β is small. Thus, we now show that if the slit length s happens to be small enough, then

the extremal length of β is small at every time along G.

Lemma 4.9. If s is sufficiently small, then Extt(β) ≤ ε0
e

for all t ≥ 0.

Proof. Let t ≥ 0. Because Exttβ = inf 1
ModtA

, where the infimum is taken over all annuli A

in S with core β, to show Exttβ is small, we exhibit such an annulus with large modulus.

Let At be the annulus contained in Y with core curve β and boundary components Eu-

clidean circles in the flat qt-metric as pictured in Figure 4.2. Let r(t) and R(t) denote the

flat qt-length of the inner and outer radii of At respectively. As we move along G, the flat

qt-length of a segment in S shrinks at most exponentially. Thus, R(t) ≥ e−tR(0). Observe

that

ModAt =
1

2π
log

R(t)

r(t)
≥ 1

2π
log

e−tR(0)
1
2
se−t

=
1

2π

(
log 2R(0) + log

1

s

)
.

Therefore, provided that s is sufficiently small, we have Extt(β) ≤ ε0
e

.

Notice that how small s must be for the conclusion of Lemma 4.9 to hold is independent

of θ. Thus, throughout the remainder of this paper, we can and do assume the slit length s

is small enough to satisfy Lemma 4.9.
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Lemma 4.10. For all t ≥ 1 we have

dHβ(X0, Xt)
+
≺ log t,

where the error constant depends only on s.

Proof. For each t ≥ 0, define h(t) and v(t) so that πHβ(Xt) = (h(t), v(t)). Recall that two

vertices at height n in Hβ are adjacent if their horizontal components are within en of each

other in C(β). By Lemma 4.9, Extt(β) ≤ ε0
e

for all t ≥ 0. So the construction of Hβ implies

v(t) ≥ 1 and v(t)
+� log 1

Exttβ
for all t ≥ 0. These observations together with the triangle

inequality imply

dHβ(X0, Xt)
+
≺ v(0) + log

(
1

Exttβ

)
+
dβ(X0, Xt)

ev(t) − 1
.

To establish the desired bound on dHβ(X0, Xt), our strategy is to prove the following claims,

which for now we assume are true.

Claim 1: 1
Extt(β)

≺ t for t ≥ 0.

Claim 2: dβ(X0, Xt) ≺ 1
Extt(β)

for t ≥ 0.

Claim 1 implies that v(0) is bounded above uniformly and if t ≥ 1, it implies that

log
(

1
Exttβ

)
+
≺ log t (this is because t is bounded uniformly away from 0). Claim 2 to-

gether with the fact that Extt(β) ≤ ε0
e

implies that
dβ(X0,Xt)

ev(t)−1
is bounded above by a uniform

constant. Combining these observations, we have

dHβ(X0, Xt)
+
≺ log t for all t ≥ 1.

Thus, all that remains is to prove the claims.

Proof of Claim 1. Let t ≥ 0. We consider the flat structure determined by qt. The

flat annulus with core β is degenerate. Observe that `qt(β) = 2se−t and that the distance

between the boundary components of the expanding annulus in the direction opposite Y is

at most 1
2
se−t. So by Theorem 4.3, the modulus of that expanding annulus is uniformly

bounded above. It then follows by Theorems 4.2 and 4.3 that

1

Extt(β)
� log

dt
`qt(β)

= t+ log
dt
2s
,
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where dt is the qt-distance between the boundary components of the expanding annulus in

the direction of Y at time t. Now dt is at most half the length of the shortest qt-length curve

in Y at time t, which is bounded above uniformly (see Remark 4.5). So, we have 1
Extt(β)

≺ t,

establishing Claim 1.

Proof of Claim 2. For t ≥ 0 let µt be a short marking on Xt. Because Extt(β) ≤ ε0,

we know β ∈ base(µt). This tells us πβ(Xt) is the projection to C(β) of the transversal in

µt associated to β. Let ν+ denote the horizontal foliation of G. Because β is a leaf of the

vertical foliation of G, by Theorem 4.6

dβ(ν+, Xt) ≺
1

Hypt(β)
. (25)

Further observe that because Extt(β) ≤ ε0, Theorem 4.1 tells us that 1
Hypt(β)

∗� 1
Extt(β)

. So

(25) and Claim 1 imply that

dβ(X0, Xt) ≤ dβ(ν+, X0) + dβ(ν+, Xt) ≺
1

Ext0(β)
+

1

Extt(β)
≺ 1

Extt(β)
,

proving Claim 2 and thus completing the proof of the lemma.

Convention 4.11. Throughout the rest of this paper, when we say the sequence (ni(j))
∞
j=1

grows sufficiently fast we shall mean that for each k we have ni(k) is larger than some

function fk of the numbers in (n`(j))
k−1
j=1 and (θ`(j))

k+1
j=1 for each ` ∈ {0, 1, 2}, where the

functions vary based on the context in which this phrase is used.

Lemma 4.12. If the sequence (n(j))∞j=1 grows sufficiently fast, then

dHβ(X0, Xt)

dY (X0, Xt)
→ 0 as t→∞.

Proof. Consider t ≥ TN(1) ≥ 1. For some k ≥ 2 and 0 ≤ ` ≤ n(k)− 1 we have that

TN(k−1)+`−1 < t ≤ TN(k−1)+`.

Regardless of how fast the n(j) are growing, the following will be true. Lemmas 4.10 and
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4.8 imply that

dHβ(X0, Xt)
+
≺ log t ≤ log TN(k−1)+`

+
≺ log

(
log qN(k−1) +

(
`+

1

2

)
log λ(θ(k))

)
+
≺ log

(
log qN(k−2) + n(k − 1) log λ(θ(k − 1)) +

(
`+

1

2

)
log λ(θ(k))

)
,

(26)

and Lemma 4.7 implies that

dY (X0, Xt)
+
� N(k − 1) + ` = N(k − 2) + n(k − 1) + `. (27)

Observe that N(k − 2), qN(k−2), λ(θ(k − 1)), and λ(θ(k)) are completely determined by

(θ(j))kj=1 and (n(j))k−2
j=1 , and thus are completely independent of n(k − 1). Further observe

that if n(k − 1) is sufficiently large relative to the numbers in (θ(j))kj=1 and (n(j))k−2
j=1 , then

the ratio of the upper bound of (26) to the lower bound of (27) is arbitrarily small, implying

that
dHβ (X0,Xt)

dY (X0,Xt)
is also small. This proves the lemma.

Remark 4.13. The conclusion of Lemma 4.12 holds under a weaker hypothesis. With only

a little more work, the result can be obtained by only assuming that n(k) is larger than some

function fk of (θ(j))k+1
j=1 . In fact, if (θ(j))∞j=1 is a bounded sequence, then (n(j))∞j=1 need not

grow at all. However, when proving Lemmas 4.14 and 4.15 more is required of (n(j))∞j=1. It

is with those lemmas and the simpler proof of Lemma 4.12 that we make our definition of

sufficiently fast growth.

4.4 Teichmüller geodesics with exotic limit sets

Throughout this section, we fix s sufficiently small in the sense of Lemma 4.9. We fix a

continuous map γ : R → 42 to the standard 2-simplex in R3, and let γi denote the ith

component function of γ. In this section, we will show how to carefully choose infinite

sequences (θi(j))
∞
j=1 and (ni(j))

∞
j=1 for i = 0, 1, 2 and an embedding 42 → ∂Teich(S) so

that the limit set of the associated Teichmüller geodesic ray is the image of γ(R), proving

Theorem 1.4.

We also fix a sequence (tj)
∞
j=1 in R so that (γ(tj))

∞
j=1 is dense in γ(R) and

|γi(tj−1)− γi(tj)| < εj for each i = 0, 1, 2 and j ≥ 2, (28)
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where (εj) is some decreasing sequence, εj <
1
2
, and lim

j→∞
εj = 0.

Let L denote the additive error in the coarse estimates of Lemma 4.8. Now for i = 0, 1, 2

choose the sequence (θi(j))
∞
j=1 so that the following hold for all j ≥ 1 and i, ` = 0, 1, 2:

log λ(θi(j)) ≥ 4L, (29)

log λ(θ`(j))

log λ(θi(j + 1))
< εj+1, (30)

and ∣∣∣∣∣∣∣∣
[log λ(θi(j))]

−1

2∑̀
=0

[log λ(θ`(j))]−1

− γi(tj)

∣∣∣∣∣∣∣∣ < εj+1. (31)

Note that it is always possible to find sequences (θi(j))
∞
j=1 satisfying (29), (30), and (31) by

choosing θ`(k) for all ` = 0, 1, 2 and 1 ≤ k ≤ j − 1 before choosing θi(j).

Given a sequence (ni(j))
k
j=1, i = 0, 1, 2, we define Ni(0) = 0 and Ni(k) =

k∑
j=1

ni(j) for

k ≥ 1. When we say the Teichmüller geodesic ray corresponding to (ni(j))
∞
j=1, i = 0, 1, 2, we

shall mean the Teichmüller geodesic ray G with slit length s associated to (θ0, θ1, θ2), where

θi = [0; θi(1), . . . , θi(1)︸ ︷︷ ︸
ni(1)

, . . . , θi(j), . . . , θi(j)︸ ︷︷ ︸
ni(j)

, . . .].

We then use G to define a map φ : [0,∞)→42 given by

t 7→ 1
2∑
i=0

dYi(X0, Xt)

(dY0(X0, Xt), dY1(X0, Xt), dY2(X0, Xt)),

where as usual Xt is the point on G distance t from the base of the ray. We will write φi to

denote the ith component of φ.

We will show how to pick the (ni(j))
∞
j=1 so that if t is between the balance times T 0

N0(k−1)−1

and T 0
N0(k)−1, then for each i we have φi(t) is close to

[log λ(θi(k − 1))]−1

2∑̀
=0

[log λ(θ`(k − 1))]−1

or
[log λ(θi(k))]−1

2∑̀
=0

[log λ(θ`(k))]−1

and thus close to γi(tk−1) or γi(tk), which are close to each other by (28). As a first step

toward this goal, we prove the following lemma. (See Convention 4.11 for our definition of

sufficiently fast growth.)
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Lemma 4.14. For each i = 0, 1, 2 suppose (ni(j))
∞
j=1 grows sufficiently fast and that the

balance times along the corresponding Teichmüller geodesic ray satisfy

T iNi(k)−3 < T 0
N0(k)−1 ≤ T iNi(k)−1 for all k ≥ 1 and i = 0, 1, 2.

Then for all k ≥ 2 and i = 0, 1, 2

t ∈ [T 0
N0(k−1)−1, T

0
N0(k)−1) =⇒ |φi(t)− γi(tk)| ≤ 11εk. (32)

Proof. Let G : [0,∞) → Teich(S) be the Teichmüller geodesic associated to (ni(j))
∞
j=1,

i = 0, 1, 2. Fix k ≥ 2 and t ∈ [T 0
N0(k−1)−1, T

0
N0(k)−1). For each i = 0, 1, 2, define m(i) so that

T iNi(k−1)+m(i)−1 < t ≤ T iNi(k−1)+m(i). (33)

Fix ` ∈ {0, 1, 2}. Then Lemma 4.7 implies that φ`(t) is bounded above and below as follows:

N`(k − 1) +m(`)−R
2∑
i=0

(Ni(k − 1) +m(i) +R)

≤ dY`(X0, Xt)
2∑
i=0

dYi(X0, Xt)

≤ N`(k − 1) +m(`) +R
2∑
i=0

(Ni(k − 1) +m(i)−R)

, (34)

where R > 0 denotes the additive error from Lemma 4.7. Thus, to bound φ`(t) we must

compare m(`) to m(i) for each i = 0, 1, 2.

First, observe our assumption that

T iNi(k−1)−3 < T 0
N0(k−1)−1 and T 0

N0(k)−1 ≤ T iNi(k)−1

implies −2 ≤ m(i) ≤ ni(k)− 1. This means that m(i) + 2 ≥ 0. Now by the definition of the

m(i), we know that

T `N`(k−1)+m(`)−1 ≤ T iNi(k−1)+m(i) ≤ T iNi(k−1)+m(i)+2. (35)

So provided that m(`)− 1 ≥ 0, (35) together with Lemma 4.8 part 2 implies that

log q`N`(k−1)+

(
m(`)− 1

2

)
log λ(θ`(k))−L ≤ log qiNi(k−1)+

(
m(i) +

5

2

)
log λ(θi(k))+L. (36)
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Now (36), Lemma 4.8 part 1, and (30) imply

m(i) ≥ −5

2
−

log qiNi(k−1) + 2L+ 1
2

log λ(θ`(k))

log λ(θi(k))
+

log λ(θ`(k))

log λ(θi(k))
m(`)

≥ −5

2
−

log qiNi(k−2) + 3L+ 1
2

log λ(θ`(k))

log λ(θi(k))
− εkNi(k − 1) +

log λ(θ`(k))

log λ(θi(k))
m(`)

= −Hi,`(k)− εkNi(k − 1) +
log λ(θ`(k))

log λ(θi(k))
(m(`) + 2), (37)

where Hi,`(k) is defined precisely so that the equality holds. Notice that Hi,`(k) is completely

determined by the finite sequences (ni(j))
k−2
j=1 and (θi(j))

k
j=1 and θ`(k). Further observe that

the lower bound (37) for m(i) still holds even if m(`) ≤ 0 since m(i) ≥ −2 and log qiNi(k−2),

L, log λ(θi(k)), and log λ(θ`(k)) are all greater than 0.

We assume ni(j) ≥ 3 for all i, j (as part of our sufficiently fast growth assumption).

Lemma 4.8 part 2 and our assumption on the balance times tell us

Ni(k − 1) +R

T 0
N0(k−1)−1

≤ Ni(k − 1) +R

T iNi(k−1)−3

≤ Ni(k − 2) + ni(k − 1) +R

log qiNi(k−2) + (ni(k − 1)− 5
2
) log λ(θi(k − 1))− L

(38)

and

Ni(k − 1)− 2Hi,`(k)− 2R

T 0
N0(k−1)−1

≥ Ni(k − 1)− 2Hi,`(k)− 2R

T iNi(k−1)−1

≥ Ni(k − 2) + ni(k − 1)− 2Hi,`(k)− 2R

log qiNi(k−2) + (ni(k − 1)− 1
2
) log λ(θi(k − 1)) + L

. (39)

If ni(k − 1) is sufficiently large, the right hand sides of Inequalities (38) and (39) are both

greater than 0 and very close to 1/ log λ(θi(k − 1)). The crucial part of this proof is to

notice that how large ni(k− 1) must be to guarantee a certain prescribed closeness is deter-

minable from θ`(k) and the numbers in the finite sequences (ni(j))
k−2
j=1 and (θi(j))

k
j=1. Thus,

if (ni(j))
∞
j=1 grows sufficiently fast for each i = 0, 1, 2, then

0 <
N`(k − 1) +R

2∑
i=0

(Ni(k − 1)− 2Hi,`(k)− 2R)

≤ [log λ(θ`(k − 1))]−1

2∑
i=0

[log λ(θi(k − 1))]−1

+ εk,
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which together with (37), (31), and (28) implies that

dY`(X0, Xt)
2∑
i=0

dYi(X0, Xt)

≤ N`(k − 1) +m(`) +R
2∑
i=0

(Ni(k − 1) +m(i)−R)

≤
(

1

1− εk

)
N`(k − 1) +R + (m(`) + 2)

2∑
i=0

(Ni(k − 1)− 2Hi,`(k)− 2R) +

(
2∑
i=0

log λ(θ`(k))
log λ(θi(k))

)
(m(`) + 2)

≤
(

1

1− εk

)
max


N`(k − 1) +R

2∑
i=0

(Ni(k − 1)− 2Hi,`(k)− 2R)

,
[log λ(θ`(k))]−1

2∑
i=0

[log λ(θi(k))]−1


≤
(

1

1− εk

)
max


[log λ(θ`(k − 1))]−1

2∑
i=0

[log λ(θi(k − 1))]−1

+ εk,
[log λ(θ`(k))]−1

2∑
i=0

[log λ(θi(k))]−1


≤
(

1

1− εk

)
(γ`(tk) + 3εk) ≤ γ`(tk) + 11εk.

Note that the last inequality follows because γ(tk) ∈ 42 implies γ`(tk) ≤ 1, and εk <
1
2

implies 1
1−εk
≤ 1 + 2εk.

A similar argument shows that if (ni(j))
∞
j=1 grows sufficiently fast for all i = 0, 1, 2, then

dY`(X0, Xt)
2∑
i=0

dYi(X0, Xt)

≥ γ`(t)− 11εk.

The goal of the next lemma is to show that sequences satisfying the hypotheses of Lemma

4.14 can actually be constructed.

Lemma 4.15. Let k ≥ 1. Given (ni(j))
k−1
j=1 , i = 0, 1, 2 and any number N , for each i there

exists ni(k) ≥ N so that the following holds. If θi is any irrational number whose continued

fraction expansion begins with

0, θi(1), . . . , θi(1)︸ ︷︷ ︸
ni(1)

, . . . , θi(k), . . . , θi(k)︸ ︷︷ ︸
ni(k)

for each i, then the balance times on the Teichmüller geodesic ray corresponding to (θ0, θ1, θ2)

satisfy

T iNi(k)−3 < T 0
N0(k)−1 ≤ T iNi(k)−1 for i = 0, 1, 2.
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Proof. Suppose we are given (ni(j))
k−1
j=1 for each i and a number N , which we may assume

is at least 3. Choose n0(k) ≥ N so that for each i = 1, 2 if ` is an integer satisfying

log q0
N0(k−1) +

(
n0(k)− 1

2

)
log λ(θ0(k)) +L ≤ log qiNi(k−1) +

(
`− 1

2

)
log λ(θi(k))−L, (40)

then ` ≥ N . Now for i = 1, 2 choose ni(k) to be the smallest integer ` satisfying Inequality

(40). Then we have ni(k) ≥ N ≥ 3 for all i = 0, 1, 2.

For each i = 0, 1, 2, let θi be any irrational number whose continued fraction expansion

begins with

0, θi(1), . . . , θi(1)︸ ︷︷ ︸
ni(1)

, . . . , θi(k), . . . , θi(k)︸ ︷︷ ︸
ni(k)

.

Consider the Teichmüller geodesic ray corresponding to (θ0, θ1, θ2). Lemma 4.8 part 2 and

(40) tells us that T 0
N0(k)−1 ≤ T iNi(k)−1 for each i.

We now show that because we chose θi(k) to be large relative to L, then necessarily

T iNi(k)−3 < T 0
N0(k)−1. Observe that

T iNi(k)−3 ≤ log qiNi(k−1) +

(
ni(k)− 5

2

)
log λ(θi(k)) + L by Lemma 4.8 part 2

≤ log qiNi(k−1) +

(
ni(k)− 3

2

)
log λ(θi(k))− 3L by Eq.(29)

< log q0
N0(k−1) +

(
n0(k)− 1

2

)
log λ(θ0(k))− L by def. of ni(k)

≤ T 0
N0(k)−1 by Lemma 4.8 part 2.

We now use Lemmas 4.14 and 4.15 to prove our main result, Theorem 1.4, which we

rephrase as Theorem 4.16 below.

Theorem 4.16. There exists a triple of irrational numbers such that the limit set in ∂Teich(S)

of the associated Teichmüller geodesic ray is

{c0η0 + c1η1 + c2η2 : (c0, c1, c2) ∈ γ(R)}

for some ηi ∈ ∂C(Yi), i = 0, 1, 2.

Proof. By Lemma 4.15, we can choose sequences (ni(j))
∞
j=1 growing sufficiently fast in the

sense of both Lemmas 4.12 and 4.14 such that the corresponding geodesic ray
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G : [0,∞)→ Teich(S) satisfies

T iNi(k)−3 < T 0
N0(k)−1 ≤ T iNi(k)−1 for all k ≥ 1.

(See Convention 4.11 for our definition of sufficiently fast growth.) We can now apply

Lemmas 4.12 and 4.14 to conclude that for each i = 0, 1, 2 and k ≥ 2

lim
t→∞

dHβi (X0, Xt)

dYi(X0, Xt)
= 0 (41)

and

t ∈ [T 0
N0(k−1)−1, T

0
N0(k)−1) =⇒ |φi(t)− γi(tk)| ≤ 11εk. (42)

Let L denote the limit set of G in ∂Teich(S). By the definition of the topology of

Teich(S) ∪ ∂Teich(S), Equation (41) and Lemma 4.7 imply that for some ηi ∈ ∂C(Yi)

L = {c0η0 + c1η1 + c2η2 : (c0, c1, c2) ∈ Lφ},

where Lφ denotes the set of accumulation points of φ in 42. So, to complete this proof, we

must show that Lφ = γ(R).

Throughout the rest of the proof, we think of 42 as a subset of R3 equipped with the

`1-norm. Consider a point P ∈ γ(R). Because (γ(tj))
∞
j=1 is a sequence dense in γ(R), some

subsequence γ(tjn)→ P as n→∞. Observe that (42) tells us that φ(T 0
N0(jn−1)−1) is within

33εjn of γ(tjn). Since εjn → 0 as n → ∞, it must be that φ(T 0
N0(jn−1)−1) → P as n → ∞.

Therefore, P ∈ Lφ, which establishes that γ(R) ⊆ Lφ.

We now establish that Lφ ⊆ γ(R). For each p ∈ 42 \ γ(R), there exists ε > 0 such that p

is not contained in the closed 33ε-neighborhood of γ(R), denoted by N33ε(γ(R)). Now choose

K ≥ 2 so that εj < ε for all j ≥ K. It follows from (42) that

φ[T 0
N0(K−1)−1,∞) =

∞⋃
j=K

φ[T 0
N0(j−1)−1, T

0
N0(j)−1) ⊆

∞⋃
j=K

N33εj(γ(tj)) ⊆ N33ε(γ(R)).

Therefore, p 6∈ Lφ, which establishes that Lφ ⊆ γ(R).
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