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Abstract

Sequential analysis refers to the statistical theory and methods that can be applied to situations where

the sample size is not fixed in advance. Instead, the data are collected sequentially over time, and the

sampling is stopped according to a pre-specified stopping rule as soon as the accumulated information is

deemed sufficient. The goal of this adaptive approach is to reach a reliable decision as soon as possible. This

dissertation investigates two problems in sequential analysis.

In the first problem, assuming that data are collected sequentially from independent streams, we consider

the simultaneous testing of multiple hypotheses. We start with the class of procedures that control the

classical familywise error probabilities of both type I and type II under two general setups: when the

number of signals (correct alternatives) is known in advance, and when we only have a lower and an upper

bound for it. Then we continue to study two generalized error metrics: under the first one, the probability of

at least k mistakes, of any kind, is controlled; under the second, the probabilities of at least k1 false positives

and at least k2 false negatives are simultaneously controlled. For each formulation, the optimal expected

sample size is characterized, to a first-order asymptotic approximation as the error probabilities vanish, and

a novel multiple testing procedure is proposed and shown to be asymptotically efficient under every signal

configuration.

In the second problem, we propose a generalization of the Bayesian sequential change detection problem,

where the change is a latent event that should be not only detected but also accelerated. It is assumed

that the sequentially collected observations are responses to treatments selected in real time. The assigned

treatments not only determine the distribution of responses before and after the change, but also influence

when the change happens. The problem is to find a treatment assignment rule and a stopping rule to

minimize the average total number of observations subject to a bound on the false-detection probability.

We propose an intuitive solution, which is easy to implement and achieves for a large class of change-point

models the optimal performance up to a first-order asymptotic approximation. A simulation study suggests

the almost exact optimality of the proposed scheme under a Markovian change-point model.
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Chapter 1

Introduction

Two classical problems in sequential analysis are sequential hypothesis testing, initiated by Wald’s seminal

paper [75], and quickest change-point detection, pioneered by Shwehart [61] and Page [51]. We refer interested

readers to [35, 71] for an extensive review on the theory, methodology and diverse applications of sequential

analysis. In this dissertation, we study extensions of the classical problems, which are briefly discussed below

and developed in detail in the following chapters.

1.1 Multiple testing with sequential data

When testing simultaneously multiple hypotheses with data collected from a different stream for each hy-

pothesis, there are two natural generalizations of Wald’s sequential framework [75]. In the first one, sampling

can be terminated earlier in some data streams [3, 7, 45]. In the second, which is the focus of Chpater 2

and 3, sampling is terminated at the same time in all streams [17, 18]. The latter setup is motivated by

applications such as multichannel signal detection [73], multiple access wireless network [57] and multisensor

surveillance systems [26], where a centralized decision maker needs to make a decision regarding the pres-

ence or absence of signal, e.g., an intruder, in multiple channels/areas monitored by a number of sensors.

This framework is also motivated by online surveys and crowdsourcing tasks [33], where the goal is to find

“correct” answers to a fixed number of questions, e.g., regarding some product or service, by asking the

smallest necessary number of people.

Specifically, we consider J data streams, each associated with a hypothesis testing problem. At any time

prior to stopping, we collect one observation from each stream, and we decide whether to continue or to stop

the sampling process based on the current and past observations; in the latter case, we need to solve all J

problems based on the information prior to stopping (see Figure 1.1).

In Chapter 2, we consider the class of procedures that control the classical familywise error probabilities

of both type I and type II below given, user-specified levels, under two general setups: when the number of

signals (correct alternatives) is known in advance, and when we only have a lower and an upper bound for

1



Sample (X1
n, . . . , X

J
n ) Stop?Time n Time n+ 1

No

Yes
Solve all J testing problemsPast observations

Figure 1.1: J data streams. Xj
n is the observation collected from j-th stream at time n.

it. In Chapter 3, we consider two generalized error metrics: i) the probability of at least k mistakes of any

kind; ii) the probabilities of at least k1 false positives and at least k2 false negatives.

For each above formulation, under the independent streams assumption, we 1) characterize the optimal

expected sample size asymptotically as the error probabilities vanish, 2) propose a novel, feasible proce-

dure with non-asymptotic error control, 3) establish its asymptotic efficiency, and 4) quantify the gains of

sequential sampling over fixed-sample schemes.

1.2 Change detection with experimental design

Quickest change detection (QCD), the problem of detecting a change in the statistical properties of streaming

data, arises in applications such as quality monitoring, threat detection, and epidemic control. In the

literature, there are two main formulations: i) the mechanism that triggers the change is unknown; ii)

the change-point follows some prior distribution, and is not affected by observations. Thus, it is neither

permissible nor relevant to influence the change-point, which restricts the applicability of QCD in some

situations. We are in particular motivated by applications in intelligent tutoring systems, and we propose a

new paradigm where the change should be not only detected, but also accelerated.

Specifically, in Chapter 4, we consider a latent binary process {Lt}, whose value transits to one at some

unknown change-point (see Figure 1.2). At each time t, we select a treatment Xt among a number of options

and observe a response Yt whose distribution depends on Xt and the latent status Lt. Then, based on the

collected responses up to this time, we decide whether to stop and declare that a change has occurred, or

to continue the process, in which case we have to decide the treatment for time t+ 1. We assume that the

change is irreversible, and the probability of change at current time is a function of past treatments. Our goal

is to find a treatment assignment rule and a stopping rule to minimize the average number of observations

subject to a bound on the false detection probability. For a class of change-point models, we obtain the

optimal solution using dynamic programming, which however is not always computationally feasible and can

only be obtained numerically. Thus, we propose a novel procedure whose structure is explicit and whose

thresholds are specified via minimizing an upper bound on the sampling cost. In addition, we establish its

asymptotic efficiency under certain conditions.

2



Past: 1, . . . , t− 1

Responses: Y1, . . . , Yt−1

Hidden status: Lt−1

Treatments: X1, . . . , Xt−1

Current t

Xt Yt

Lt

Figure 1.2: An assignment rule selects treatment Xt based on past responses. If Lt−1 = 0, the probability
that Lt = 1 depends on the treatments up to time t.
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Chapter 2

Sequential multiple testing with prior
information

2.1 Introduction

1 Multiple testing, that is the simultaneous consideration of K hypothesis testing problems, Hk
0 versus Hk

1 ,

1 ≤ k ≤ K, is one of the oldest, yet still very active areas of statistical research. The vast majority of work

in this area assumes a fixed set of observations and focuses on testing procedures that control the familywise

type I error (i.e., at least one false positive), as in [28, 29, 46], or less stringent metrics of this error, as in

[8] and [36].

The multiple testing problem has been less studied under the assumption that observations are acquired

sequentially, in which case the sample size is random. The sequential setup is relevant in many applications,

such as multichannel signal detection [21, 47], outlier detection [40], clinical trials with multiple end-points [4],

ultra high throughput mRNA sequencing data [6], in which it is vital to make a quick decision in real time,

using the smallest possible number of observations.

Bartroff and Lai [5] were the first to propose a sequential test that controls the familywise error of

type I. De and Baron [17, 18] and Bartroff and Song [7] proposed universal sequential procedures that

control simultaneously the familywise errors of both type I and type II, a feature that is possible due to

the sequential nature of sampling. The proposed sequential procedures in these works were shown through

simulation studies to offer substantial savings in the average sample size in comparison to the corresponding

fixed-sample size tests.

A very relevant problem to multiple testing is the classification problem, in which there are M hypotheses,

H1, . . . ,HM , and the goal is to select the correct one among them. The classification problem has been

studied extensively in the literature of sequential analysis, see e.g. [1, 21, 22, 44, 64, 72], generalizing

the seminal work of Wald [75] on binary testing (M = 2). Dragalin et al. [22] considered the multiple

testing problem as a special case of the classification problem under the assumption of a single signal in

K independent streams, and focused on procedures that control the probability of erroneously claiming the

1This chapter is based on my publication [66].
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signal to be in stream i for every 1 ≤ i ≤ M = K. In this framework, they proposed an asymptotically

optimal sequential test as all these error probabilities go to 0. The same approach of treating the multiple

testing problem as a classification problem has been taken by Li et al. [40] under the assumption of an

upper bound on the number of signals in the K independent streams, and a single control on the maximal

mis-classification probability.

We should stress that interpreting multiple testing as a classification problem does not generally lead to

feasible procedures. Consider, for example, the case of no prior information, which is the default assumption

in the multiple testing literature. Then, multiple testing becomes a classification problem with M = 2K

categories and a brute-force implementation of existing classification procedures becomes infeasible even for

moderate values of K, as the number of statistics that need to be computed sequentially grows exponentially

with K. Independently of feasibility considerations, to the best of our knowledge there is no optimality theory

regarding the expected sample size that can be achieved by multiple testing procedures, with or without

prior information, that control the familywise errors of both type I and type II. Filling this gap was one of

the motivations of this Chapter.

The main contributions of the current Chapter are the following: first of all, assuming that the data

streams that correspond to the various hypotheses are independent, we propose feasible procedures that

control the familywise errors of both type I and type II below arbitrary, user-specified levels. We do so

under two general setups regarding prior information; when the true number of signals is known in advance,

and when there is only a lower and an upper bound for it. The former setup includes the case of a single

signal considered in Dragalin et al. [21, 22], whereas the latter includes the case of no prior information,

which is the underlying assumption in Bartroff and Song [7], De and Baron [17, 18]. While we provide

universal threshold values that guarantee the desired error control in the spirit of the above works, we also

propose a Monte Carlo simulation method based on importance sampling for the efficient calculation of non-

conservative thresholds in practice, even for very small error probabilities. More importantly, in the case

of independent and identically distributed (i.i.d.) observations in each stream, we show that the proposed

multiple testing procedures attain the optimal expected sample size, for any possible signal configuration,

to a first-order asymptotic approximation as the two error probabilities go to zero in an arbitrary way. Our

asymptotic results also provide insights about the effect of prior information on the number of signals, which

are corroborated by a simulation study.

The remainder of the Chapter is organized as follows. In Section 2.2 we formulate the problem mathemat-

ically. In Section 2.3 we present the proposed procedures and show how they can be designed to guarantee

the desired error control. In Section 2.4 we propose an efficient Monte Carlo simulation method for the

5



determination of non-conservative critical values in practice. In Section 2.5 we establish the asymptotic

optimality of the proposed procedures in the i.i.d. setup. In Section 2.6 we illustrate our asymptotic re-

sults with a simulation study. In Section 2.7 we conclude and discuss potential generalizations of our work.

Finally, we present two useful lemmas for our proofs in Section 2.8.

2.2 Problem formulation

Consider K independent streams of observations, Xk := {Xk
n : n ∈ N}, k ∈ [K], where [K] := {1, . . . ,K}

and N := {1, 2, . . .}. For each k ∈ [K], let Pk be the distribution of Xk, for which we consider two simple

hypotheses,

Hk
0 : Pk = Pk0 versus Hk

1 : Pk = Pk1 ,

where Pk0 and Pk1 are distinct probability measures on the canonical space of Xk. We will say that there

is “noise” in the kth stream under Pk0 and “signal” under Pk1 . Our goal is to simultaneously test these K

hypotheses when data from all streams become available sequentially and we want to make a decision as

soon as possible.

Let Fn be the σ-field generated by all streams up to time n, i.e., Fn = σ(X1, . . . , Xn), where Xn =

(X1
n, . . . , X

K
n ). We define a sequential test for the multiple testing problem of interest to be a pair (T, d)

that consists of an {Fn}-stopping time, T , at which we stop sampling in all streams, and an FT -measurable

decision rule, d = (d1, . . . , dK), each component of which takes values in {0, 1}. The interpretation is that

we declare upon stopping that there is signal (resp. noise) in the kth stream when dk = 1 (resp. dk = 0).

With an abuse of notation, we will also use d to denote the subset of streams in which we declare that signal

is present, i.e., {k ∈ [K] : dk = 1}.

For any subset A ⊂ [K] we define the probability measure

PA :=

K⊗
k=1

Pk; Pk =


Pk0 , if k /∈ A

Pk1 , if k ∈ A
,

such that the distribution of {Xn, n ∈ N} is PA when A is the true subset of signals, and for an arbitrary

6



sequential test (T, d) we set:

{A . d} := {(d \ A) 6= ∅} =
⋃
j 6∈A

{dj = 1},

{d . A} := {(A \ d) 6= ∅} =
⋃
k∈A

{dk = 0}.

Then, PA(A . d) is the probability of at least one false positive (familywise type I error) and PA (d . A) the

probability of at least one false negative (familywise type II error) of (T, d) when the true subset of signals

is A.

In this Chapter we are interested in sequential tests that control these probabilities below user-specified

levels α and β respectively, where α, β ∈ (0, 1), for any possible subset of signals. In order to be able to

incorporate prior information, we assume that the true subset of signals is known to belong to a class P of

subsets of [K], not necessarily equal to the powerset, and we focus on sequential tests in the class

∆α,β(P) := {(T, d) : PA(A . d) ≤ α and PA (d . A) ≤ β for every A ∈ P} .

We consider, in particular, two general cases for class P. In the first one, it is known that there are

exactly m signals in the K streams, where 1 ≤ m ≤ K − 1. In the second, it is known that there are at

least ` and at most u signals, where 0 ≤ ` < u ≤ K. In the former case we write P = Pm and in the latter

P = P`,u, where

Pm := {A ⊂ [K] : |A| = m} , P`,u := {A ⊂ [K] : ` ≤ |A| ≤ u} .

When ` = 0 and u = K, the class P`,u is the powerset of [K], which corresponds to the case of no prior

information regarding the multiple testing problem.

Our main focus is on multiple testing procedures that not only belong to ∆α,β(P) for a given class P, but

also achieve the minimum possible expected sample size, under each possible signal configuration, for small

error probabilities. To be more specific, let P be a given class of subsets and let (T ∗, d∗) be a sequential test

that can designed to belong to ∆α,β(P) for any given α, β ∈ (0, 1). We say that (T ∗, d∗) is asymptotically

optimal with respect to class P, if for every A ∈ P we have as α, β → 0

EA [T ∗] ∼ inf
(T,d)∈∆α,β(P)

EA [T ] ,

where EA refers to expectation under PA and x ∼ y means that x/y → 1. The ultimate goal of this Chapter

is to propose feasible sequential tests that are asymptotically optimal with respect to classes of the form Pm
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and P`,u.

2.2.1 Assumptions and notations

Before we continue with the presentation and analysis of the proposed multiple testing procedures, we will

introduce some additional notation, and impose some minimal conditions on the distributions in each stream,

which we will assume to hold throughout the Chapter.

First of all, for each stream k ∈ [K] and time n ∈ N we assume that the probability measures Pk0 and Pk1

are mutually absolutely continuous when restricted to the σ-algebra Fkn = σ(Xk
1 , . . . , X

k
n), and we denote by

λk(n) := log
dPk1
dPk0

(Fkn) (2.1)

the cumulative log-likelihood ratio at time n based on the data in the kth stream. Moreover, we assume

that for each stream k ∈ [K] the probability measures Pk0 and Pk1 are singular on Fk∞ := σ(∪n∈NFkn), which

implies that

Pk0

(
lim
n→∞

λk(n) = −∞
)

= Pk1

(
lim
n→∞

λk(n) =∞
)

= 1. (2.2)

Intuitively, this means that as observations accumulate, the evidence in favor of the correct hypothesis

becomes arbitrarily strong. The latter assumption is necessary in order to design procedures that terminate

almost surely under every scenario. We do not make any other distributional assumption until Section 2.5.

We use the following notation for the ordered, local, log-likelihood ratio statistics at time n:

λ(1)(n) ≥ . . . ≥ λ(K)(n),

and we denote by i1(n), . . . , iK(n) the corresponding stream indices, i.e.,

λ(k)(n) = λik(n)(n), for every k ∈ [K].

Moreover, for every n ∈ N we denote by p(n) the number of positive log-likelihood ratio statistics at time

n, i.e.,

λ(1)(n) ≥ . . . ≥ λ(p(n))(n) > 0 ≥ λ(p(n)+1)(n) ≥ . . . ≥ λ(K)(n).
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For any two subsets A, C ⊂ [K] we denote by λA,C the log-likelihood ratio process of PA versus PC , i.e.,

λA,C(n) := log
dPA
dPC

(Fn) =
∑
k∈A\C

λk(n)−
∑
k∈C\A

λk(n), n ∈ N. (2.3)

Finally, we use | · | to denote set cardinality, for any two real numbers x, y we set x ∧ y = min{x, y} and

x ∨ y = max{x, y}, and for any measurable event Γ and random variable Y we use the following notation

EA[Y ; Γ] :=

∫
Γ

Y dPA.

2.3 Proposed sequential multiple testing procedures

In this section we present the proposed procedures and show how they can be designed in order to guarantee

the desired error control.

2.3.1 Known number of signals

In this subsection we consider the setup in which the number of signals is known to be equal to m for

some 1 ≤ m ≤ K − 1, thus, P = Pm. Without loss of generality, we restrict ourselves to multiple testing

procedures (T, d) such that |d| = m. Thus, the class of admissible sequential tests takes the form

∆α,β(Pm) = {(T, d) : PA(d 6= A) ≤ α ∧ β for every A ∈ Pm} ,

since for any A ∈ Pm and (T, d) such that |d| = m we have

{A . d} = {d . A} = {d 6= A}.

In this context, we propose the following sequential scheme: stop as soon as the gap between the m-th and

(m+ 1)-th ordered log-likelihood ratio statistics becomes larger than some constant c > 0, and declare that

signal is present in the m streams with the top log-likelihood ratios at the time of stopping. Formally, we

propose the following procedure, to which we refer as “gap rule”:

TG := inf
{
n ≥ 1 : λ(m)(n)− λ(m+1)(n) ≥ c

}
,

dG := {i1(TG), . . . , im(TG)}.
(2.4)
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Here, we suppress the dependence of (TG, dG) on m and c to lighten the notation. The next theorem shows

how to select threshold c in order to guarantee the desired error control.

Theorem 2.1. Suppose that assumption (2.2) holds. Then, for any A ∈ Pm and c > 0 we have PA(TG <

∞) = 1 and

PA (dG 6= A) ≤ m(K −m)e−c. (2.5)

Consequently, (TG, dG) ∈ ∆α,β(Pm) when threshold c is selected as

c = | log(α ∧ β)|+ log(m(K −m)). (2.6)

Proof. Fix A ∈ Pm and c > 0. We observe that TG ≤ T ′G, where

T ′G = inf
{
n ≥ 1 : λ(m)(n)− λ(m+1)(n) ≥ c, i1(n) ∈ A, . . . , im(n) ∈ A

}
= inf

{
n ≥ 1 : λk(n)− λj(n) ≥ c for every k ∈ A and j /∈ A

}
.

(2.7)

Due to condition (2.2), it is clear that PA(T ′G < ∞) = 1, which proves that TG is also almost surely finite

under PA. We now focus on proving (2.5). The gap rule makes a mistake under PA if there exist k ∈ A and

j /∈ A such that the event Γk,j =
{
λj(TG)− λk(TG) ≥ c

}
occurs. In other words,

{dG 6= A} =
⋃

k∈A,j /∈A

Γk,j ,

and from Boole’s inequality we have

PA(dG 6= A) ≤
∑

k∈A,j /∈A

PA(Γk,j).

Fix k ∈ A, j /∈ A and set C = A∪{j} \ {k}. Then, from (2.3) we have that λA,C = λk − λj and from Wald’s

likelihood ratio identity it follows that

PA(Γk,j) = EC
[
exp{λA,C(TG)}; Γk,j

]
= EC

[
exp{λk(TG)− λj(TG)}; Γk,j

]
≤ e−c,

(2.8)

where the last inequality holds because λj(TG) − λk(TG) ≥ c on Γk,j . Since |A| = m and |Ac| = K −m,

from the last two inequalities we obtain (2.5), which completes the proof.
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2.3.2 Lower and upper bounds on the number of signals

In this subsection, we consider the setup in which we know that there are at least ` and at most u signals

for some 0 ≤ ` < u ≤ K, that is, P = P`,u. In order to describe the proposed procedure, it is useful to first

introduce the “intersection rule”, (TI , dI), according to which we stop sampling as soon as all log-likelihood

ratio statistics are outside the interval (−a, b), and at this time we declare that signal is present (resp.

absent) in those streams with positive (resp. negative) log-likelihood ratio, i.e.,

TI := inf
{
n ≥ 1 : λk(n) 6∈ (−a, b) for every k ∈ [K]

}
,

dI := {i1(TI), . . . , ip(TI)(TI)},
(2.9)

recalling that p(n) is the number of positive log-likelihood ratios at time n. This procedure was proposed

by De and Baron [17], where it was also shown that when the thresholds are selected as

a = | log β|+ logK, b = | logα|+ logK, (2.10)

the familywise type-I and type-II error probabilities are bounded by α and β for any possible signal config-

uration, i.e., (TI , dI) ∈ ∆α,β(P0,K).

A straightforward way to incorporate the prior information of at least ` and at most u signals in the

intersection rule is to modify the stopping time in (2.9) as follows:

τ2 := inf
{
n ≥ 1 : ` ≤ p(n) ≤ u and λk(n) 6∈ (−a, b) for every k ∈ [K]

}
, (2.11)

while keeping the same decision rule as in (2.9). Indeed, stopping according to τ2 guarantees that the number

of null hypotheses rejected upon stopping will be between ` and u. However, as we will see in Subsection

2.5.3, this rule will not in general achieve asymptotic optimality in the boundary cases of exactly ` and

exactly u signals. In order to obtain an asymptotically optimal rule, we need to be able to stop faster when

there are exactly ` or u signals, which can be achieved by stopping at

τ1 := inf
{
n ≥ 1 : λ(`+1)(n) ≤ −a, λ(`)(n)− λ(`+1)(n) ≥ c

}
,

and τ3 := inf
{
n ≥ 1 : λ(u)(n) ≥ b, λ(u)(n)− λ(u+1)(n) ≥ d

}
,

respectively. Here, c and d are additional positive thresholds that will be selected, together with a and b, in

order to guarantee the desired error control.
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We can think of τ1 as a combination of the intersection rule and the gap rule that corresponds to the case

of exactly ` signals. Indeed, τ1 stops when K − ` log-likelihood ratio statistics are simultaneously below −a,

but unlike the intersection rule it does not wait for the remaining ` statistics to be larger than b; instead,

similarly to the gap-rule in (2.4) with m = `, it requires the gap between the top ` and the bottom K − `

statistics to be larger than c. In a similar way, τ3 is a combination of the intersection rule and the gap rule

that corresponds to the case of exactly u signals.

Based on the above discussion, when we know that there are at least ` and at most u signals, we propose

the following procedure, to which we refer as “gap-intersection” rule:

TGI := min{τ1, τ2, τ3}, dGI := {i1(TGI), . . . , ip′(TGI)}, (2.12)

where p′ := (p(TGI) ∧ `) ∨ u is a truncated version of the number of positive log-likelihood ratios at TGI ,

i.e., if p′ = ` when p(TGI) ≤ `, p′ = u when p(TGI) ≥ u and p′ = p(TGI) otherwise. In other words, we stop

sampling as soon as one of the stopping criterion in τ1, τ2 or τ3 is is satisfied, and we reject upon stopping

the null hypotheses in the p′ streams with the highest log-likelihood ratio values at time TGI .

As before, we suppress the dependence on `, u and a, b, c, d in order to lighten the notation. Moreover,

we set λ(0)(n) = −∞ and λ(K+1)(n) = ∞ for every n ∈ N, which implies that if ` = 0, then τ1 = ∞, and

if u = K, then τ3 = ∞. When in particular ` = 0 and u = K, that is the case of no prior information,

TGI = τ2 and (TGI , dGI) reduces to the intersection rule, (TI , dI), defined in (2.9).

The following theorem shows how to select thresholds a, b, c, d in order to guarantee the desired error

control for the gap-intersection rule.

Theorem 2.2. Suppose that assumption (2.2) holds. For any subset A ∈ P`,u and positive thresholds

a, b, c, d, we have PA(TGI <∞) = 1 and

PA(A . dGI) ≤ |Ac|
(
e−b + |A| e−c

)
,

PA(dGI . A) ≤ |A|
(
e−a + |Ac| e−d

)
.

(2.13)

In particular, (TGI , dGI) ∈ ∆α,β(P`,u) when the thresholds a, b, c, d are selected as follows:

a = | log β|+ logK, d = | log β|+ log(uK),

b = | logα|+ logK, c = | logα|+ log((K − `)K).

(2.14)
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Proof. Fix A ∈ P`,u and a, b, c, d > 0. Observe that TGI ≤ τ2 ≤ τ ′2, where

τ ′2 = inf{n ≥ 1 : −λj(n) ≥ a, λk(n) ≥ b for every k ∈ A, j /∈ A}. (2.15)

Due to assumption (2.2), PA(τ ′2 <∞) = 1, which proves that TGI is also almost surely finite under PA. We

now focus on proving the bound in (2.13) for the familywise type-II error probability, since the corresponding

result for the familywise type-I error can be shown similarly. From Boole’s inequality we have

PA(dGI . A) = PA

(⋃
k∈A

{dkGI = 0}

)
≤
∑
k∈A

PA
(
dkGI = 0

)
. (2.16)

Fix k ∈ A. Whenever the gap-intersection rule mistakenly accepts Hk
0 , either the event Γk := {λk(TGI) ≤

−a} occurs (which is the case when stopping at τ1 or τ2), or there is at least one j /∈ A such that the event

Γk,j := {λj(TGI)− λk(TGI) ≥ d} occurs (which is the case when stopping at τ3). Therefore,

{dkGI = 0} ⊂ Γk ∪ (∪j /∈AΓk,j),

and from Boole’s inequality we have

PA(dkGI = 0) ≤ PA(Γk) +
∑
j /∈A

PA (Γk,j) .

Identically to (2.8) we can show that for every j /∈ A we have PA (Γk,j) ≤ e−d. Moreover, if we set C = A\{k}

(note that C /∈ P`,u, but this does not affect our argument), then λA,C = λk and from Wald’s likelihood

ratio identity we have

PA(Γk) = EC
[
exp{λA,C(TGI)}; Γk

]
= EC

[
exp{λk(TGI)}; Γk

]
≤ e−a.

Thus,

PA(dkGI = 0) ≤ e−a + (K − |A|)e−d,

which together with (2.16) yields

PA(dGI . A) ≤ |A|(e−a + |Ac|e−d) ≤ |A|
K

(Ke−a) +
|Ac|
K

(uKe−d).

Therefore, if the thresholds are selected according to (2.14), then Ke−a = β and uKe−d = β, which implies
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that

PA(dGI . A) ≤ |A|
K
β +
|Ac|
K

β = β,

and the proof is complete.

2.4 Computation of familywise error probabilities via

importance sampling

The threshold specifications in (2.6) and (2.14) guarantee the desired error control for the gap rule and

gap-intersection rule respectively, however they can be very conservative. In practice, it is preferable to

use Monte Carlo simulation to determine the thresholds that equate (at least, approximately) the maximal

familywise type I and type II error probabilities to the corresponding target levels α and β, respectively.

Note that this needs to be done offline, before the implementation of the procedure.

When α and β are very small, the corresponding errors are “rare events” and plain Monte Carlo will

not be efficient. For this reason, in this section we propose a Monte Carlo approach based on importance

sampling for the efficient computation of the familywise error probabilities of the proposed multiple testing

procedures.

To be more specific, let A ⊂ [K] be the true subset of signals and consider the computation of the

familywise type I error probability, PA(A . d), of an arbitrary multiple testing procedure, (T, d). The idea

of importance sampling is to find a probability measure P∗A, under which the stopping time T is finite almost

surely, and compute the desired probability by estimating (via plain Monte Carlo) the expectation in the

right-hand side of the following identity:

PA(A . d) = E∗A
[
(Λ∗A)−1;A . d

]
,

which is obtained by an application of Wald’s likelihood ratio identity. Here, we denote by Λ∗A the likelihood

ratio of P∗A against PA at time T , i.e.,

Λ∗A =
dP∗A
dPA

(FT ),

and by E∗A the expectation under P∗A. The proposal distribution P∗A should be selected such that Λ∗A is

“large” on the event {A . d} and “small” on its complement. This intuition will guide us in the selection

of P∗A for the proposed rules.
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For the gap rule (TG, dG) we suggest the proposal distribution to be a uniform mixture over the set of

distributions {PA∪{j}\{k}, k ∈ A, j /∈ A}, i.e.,

PGA :=
1

|A| |Ac|
∑
k∈A

∑
j /∈A

PA∪{j}\{k}, (2.17)

whose likelihood ratio against PA at time TG is

ΛGA :=
1

|A| |Ac|
∑
k∈A

∑
j /∈A

exp{λj(TG)− λk(TG)}.

Then, on the event {A . dG} there exists some k ∈ A and j /∈ A such that λj(TG) − λk(TG) ≥ c, which

leads to a large value for ΛGA. On the other hand, on the complement of {A . dG}, {dG = A}, we have

λj(TG)− λk(TG) ≤ −c for every k ∈ A, j /∈ A, which leads to a value of ΛGA close to 0.

For the intersection rule (TI , dI) we suggest the proposal distribution to be a uniform mixture over

{PA∪{j}, j /∈ A}, i.e.,

PIA :=
1

|Ac|
∑
j /∈A

PA∪{j}, (2.18)

whose likelihood ratio against PA at time TI takes the form

ΛIA :=
1

|Ac|
∑
j /∈A

exp{λj(TI)}.

Note that on the event {A . dI} there exists some j /∈ A such that λj(TI) ≥ b, which results in a large

value for ΛIA. On the other hand, on the complement of {A . dI} we have λj(TI) ≤ −a for every j /∈ A,

which results in a value of ΛIA close to 0.

Finally, for the gap-intersection rule we suggest to use PIA, the same proposal distribution as in the

intersection rule, when ` < |A| < u. In the boundary case, i.e. |A| = ` or |A| = u, we propose the following

mixture of PGA and PIA:

PGIA :=
|A|

1 + |A|
PGA +

1

1 + |A|
PIA.

In Section 2.6 we apply the proposed simulation approach for the specification of non-conservative thresh-

olds in the case of identical, symmetric hypotheses with Gaussian i.i.d. data. We also refer to [65] for an

analysis of these importance sampling estimators.
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2.5 Asymptotic optimality in the i.i.d. setup

From now on, we assume that, for each stream k ∈ [K], the observations {Xk
n, n ∈ N} are independent

random variables with common density fki with respect to a σ-finite measure µk under Pki , i = 0, 1, such

that the Kullback—-Leibler information numbers

Dk
0 :=

∫
log

(
fk0
fk1

)
fk0 dµ

k, Dk
1 :=

∫
log

(
fk1
fk0

)
fk1 dµ

k

are both positive and finite. As a result, for each k ∈ [K] the log-likelihood ratio process in the kth stream,

defined in (2.1), takes the form

λk(n) =

n∑
j=1

log
fk1 (Xk

j )

fk0 (Xk
j )
, n ∈ N,

and it is a random walk with drift Dk
1 under Pk1 and −Dk

0 under Pk0 .

Our goal in this section is to show that the proposed multiple testing procedures in Section 2.3 are

asymptotically optimal. Our strategy for proving this is first to establish a non-asymptotic lower bound on

the minimum possible expected sample size in ∆α,β(P) for some arbitrary class P, and then show that this

lower bound is attained by the gap rule when P = Pm and by the gap-intersection rule when P = P`,u as

α, β → 0.

2.5.1 A lower bound on the optimal performance

In order to state the lower bound on the optimal performance, we introduce the function

ϕ(x, y) := x log

(
x

1− y

)
+ (1− x) log

(
1− x
y

)
, x, y ∈ (0, 1), (2.19)

and for any subsets C,A ⊂ [K] such that C 6= A we set

γA,C(α, β) :=


ϕ(α, β), if C \ A 6= ∅, A \ C = ∅,

ϕ(β, α), if C \ A = ∅, A \ C 6= ∅,

ϕ(α, β) ∨ ϕ(β, α), otherwise.

Theorem 2.3. For any class P, A ∈ P and α, β ∈ (0, 1) such that α+ β < 1 we have

inf
(T,d)∈∆α,β(P)

EA[T ] ≥ max
C∈P,C6=A

γA,C(α, β)∑
k∈A\C D

k
1 +

∑
k∈C\AD

k
0

. (2.20)
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Proof. Fix (T, d) ∈ ∆α,β(P) and A ∈ P. Without loss of generality, we assume that EA[T ] < ∞. For any

C ∈ P such that C 6= A, the log-likelihood ratio process λA,C , defined in (2.3), is a random walk under PA

with drift equal to

EA[λA,C(1)] =
∑
k∈A\C

Dk
1 +

∑
k∈C\A

Dk
0 ,

since each λk is a random walk with drift Dk
1 under Pk1 and −Dk

0 under Pk0 . Thus, from Wald’s identity it

follows that

EA[T ] =
EA[λA,C(T )]∑

k∈A\C D
k
1 +

∑
k∈C\AD

k
0

,

and it suffices to show that for any C ∈ P such that C 6= A we have

EA[λA,C(T )] ≥ γA,C(α, β). (2.21)

Suppose that C \ A 6= ∅ and let j ∈ C \ A. Then, from Lemma 2.3 in the Section 2.8 we have

EA
[
λA,C(T )

]
= EA

[
log

dPA
dPC

(FT )

]
≥ ϕ

(
PA(dj = 1),PC(d

j = 0)
)
.

By the definition of ∆α,β(P), we have PA(dj = 1) ≤ α and PC(d
j = 0) ≤ β. Since the function ϕ(x, y) is

decreasing on the set {(x, y) : x+ y ≤ 1}, and by assumption α+ β ≤ 1, we conclude that if C \A 6= ∅, then

EA[λA,C(T )] ≥ ϕ(α, β).

With a symmetric argument we can show that if A \ C 6= ∅, then

EA[λA,C(T )] ≥ ϕ(β, α).

The two last inequalities imply (2.21), and this completes the proof.

Remark 2.1. By the definition of ϕ in (2.19), we have

ϕ(α, β) = | log β| (1 + o(1)), ϕ(β, α) = | logα |(1 + o(1)) (2.22)

as α, β → 0 at arbitrary rates.
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2.5.2 Asymptotic optimality of the proposed schemes

In what follows, we assume that for each stream k ∈ [K] we have:

∫ (
log

(
fk0
fk1

))2

fki dµ
k <∞, i = 0, 1. (2.23)

Although this assumption is not necessary for the asymptotic optimality of the proposed rules to hold, it

will allow us to use Lemma 2.4 in the Section 2.8 and obtain valuable insights regarding the effect of prior

information on the optimal performance. Moreover, for each subset A ⊂ [K] we set:

ηA1 := min
k∈A

Dk
1 , ηA0 := min

j /∈A
Dj

0,

and, following the convention that the minimum over the empty set is ∞, we define: η∅1 = η
[K]
0 :=∞.

Known number of signals

We will first show that the gap rule, defined in (2.4), is asymptotically optimal with respect to class Pm,

where 1 ≤ m ≤ K − 1. In order to do so, we start with an upper bound on the expected sample size of this

procedure.

Lemma 2.1. Suppose that assumption (2.23) holds. Then, for any A ∈ Pm, as c→∞ we have

EA[TG] ≤ c

ηA1 + ηA0
+O

(
m(K −m)

√
c
)
.

Proof. Fix A ∈ Pm. For any c > 0 we have TG ≤ T ′G, where T ′G is defined in (2.7), and it is the first time

that all m(K −m) processes of the form λk − λj with k ∈ A and j /∈ A exceed c. Due to condition (2.23),

each λk−λj with k ∈ A and j /∈ A is a random walk under PA with positive drift Dk
1 +Dj

0 and finite second

moment. Therefore, from Lemma 2.4 it follows that as c→∞:

EA[T ′G] ≤ c
(

min
k∈A,j /∈A

(Dk
1 +Dj

0)

)−1

+O
(
m(K −m)

√
c
)
,

and this completes the proof, since mink∈A,j /∈A(Dk
1 +Dj

0) = ηA1 + ηA0 .

The next theorem establishes the asymptotic optimality of the gap rule.

Theorem 2.4. Suppose assumption (2.23) holds and let the threshold c in the gap rule be selected according
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to (2.6). Then for every A ∈ Pm, we have as α, β → 0

EA[TG] ∼ | log(α ∧ β)|
ηA1 + ηA0

∼ inf
(T,d)∈∆α,β(Pm)

EA[T ].

Proof. Fix A ∈ Pm. If thresholds are selected according to (2.6), then from Lemma 2.1 it follows that as

α, β → 0

EA[TG] ≤ | log(α ∧ β)|
ηA1 + ηA0

+O
(
m(K −m)

√
| log(α ∧ β)|

)
. (2.24)

Therefore, it suffices to show that the lower bound in Theorem 2.3 agrees with the upper bound in (2.24) in

the first-order term as α, β → 0. To see this, note that for any C ∈ Pm such that C 6= A we have C \ A 6= ∅

and A \ C 6= ∅, and consequently

γA,C(α, β) = ϕ(α, β) ∨ ϕ(β, α).

This means that the numerator in (2.20) does not depend on C. Moreover, if we restrict our attention to

subsets in Pm that differ from A in two streams, i.e., subsets of the form C = A∪ {j} \ {k} for some k ∈ A

and j /∈ A, for which ∑
i∈A\C

Di
1 +

∑
i∈C\A

Di
0 = Dk

1 +Dj
0,

then we have

min
C∈Pm,C6=A

 ∑
i∈A\C

Di
1 +

∑
i∈C\A

Di
0

 ≤ min
k∈A,j /∈A

[
Dk

1 +Dj
0

]
= ηA1 + ηA0 .

By the last inequality and Theorem 2.3 we obtain the following non-asymptotic lower bound, which holds

for any α, β such that α+ β < 1:

inf
(T,d)∈∆α,β(Pm)

EA[T ] ≥ max{ϕ(α, β), ϕ(β, α)}
ηA1 + ηA0

.

By (2.22), we have as α, β → 0

max{ϕ(α, β), ϕ(β, α)} = | log(α ∧ β)| (1 + o(1)).

Consequently,

inf
(T,d)∈∆α,β(Pm)

EA (T ) ≥ | log(α ∧ β)|
ηA1 + ηA0

(1 + o(1)),
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which completes the proof.

Remark 2.2. It is interesting to consider the special case of identical hypotheses, in which fk1 = f1 and

fk0 = f0, and consequently Dk
1 = D1 and Dk

0 = D0 for every k ∈ [K]. Then, ηA1 = D1 and ηA0 = D0

for every A ⊂ [K], and from Theorem 2.4 it follows that the first-order asymptotic approximation to the

expected sample size of the gap rule (as well as to the optimal expected sample size within ∆α,β(Pm)),

| log(α ∧ β)|/(D1 + D0), is independent of the number of signals, m. We should stress that this does not

mean that the actual performance of the gap rule is independent of m. Indeed, the second term in the

right-hand side of (2.24) suggests that the smaller m(K − m) is, i.e., the further away the proportion of

signals m/K is from 1/2, the smaller the expected sample size of the gap rule will be. This intuition will be

corroborated by the simulation study in Section 2.6 (see Figure 2.2).

Lower and upper bounds on the number of signals

We will now show that the gap-intersection rule, defined in (2.12), is asymptotically optimal with respect to

class P`,u for some 0 ≤ ` < u ≤ K. As before, we start with establishing an upper bound on the expected

sample size of this rule.

Lemma 2.2. Suppose that assumption (2.23) holds. Then, for any A ∈ P`,u we have as a, b, c, d→∞

EA[TGI ] ≤


max

{
a/ηA0 , c/(ηA0 + ηA1 )

}
(1 + o(1)) if |A| = `

max
{
a/ηA0 , b/ηA1

}
+O(K

√
a ∨ b) if ` < |A| < u

max
{
b/ηA1 , d/(ηA0 + ηA1 )

}
(1 + o(1)) if |A| = u

Furthermore, if c− a = O(1) and d− b = O(1), then

EA[TGI ] ≤


a/ηA0 +O((K − `)

√
a) if |A| = `

b/ηA1 +O(u
√
b) if |A| = u

(2.25)

Proof. Fix A ∈ P`,u. By the definition of the stopping time TGI ,

EA[TGI ] ≤ min {EA[τ1],EA[τ2],EA[τ3]} .

Suppose first ` < |A| < u and observe that τ2 ≤ τ ′2, where τ ′2 is defined in (2.15). Under condition (2.23),

for every k ∈ A and j /∈ A, −λj and λk are random walks with finite second moments and positive drifts
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Dj
0 and Dk

1 , respectively. Therefore, from Lemma 2.4 we have that

EA[τ ′2] ≤ max
{
a/ηA0 , b/ηA1

}
+O(K

√
a ∨ b).

Suppose now that |A| = ` and observe that τ1 ≤ τ ′1, where

τ ′1 := inf{n ≥ 1 : −λj(n) ≥ a, λk(n)− λj(n) ≥ c for every k ∈ A, j /∈ A},

where −λj and λk − λj are random walks with finite second moments and positive drifts Dj
0 and Dk

1 +Dj
0,

respectively. The result follows again from an application of Lemma 2.4. If in addition we have that

c− a = O(1), then τ1 ≤ τ ′′1 , where

τ ′′1 := inf{n ≥ 1 : −λj(n) ≥ a, λk(n) ≥ c− a for every k ∈ A, j /∈ A}.

Therefore, the second part of the lemma follows again from an application of Lemma 2.4.

The next theorem establishes the asymptotic optimality of the gap-intersection rule.

Theorem 2.5. Suppose that assumption (2.23) holds and let the thresholds in the gap-intersection rule be

selected according to (2.14). Then for any A ∈ P`,u, we have as α, β → 0

EA[TGI ] ∼ inf
(T,d)∈∆α,β(P`,u)

EA[T ]

∼


max

{
| log β|/ηA0 , | logα|/(ηA0 + ηA1 )

}
if |A| = `

max
{
| log β|/ηA0 , | logα|/ηA1

}
if ` < |A| < u

max
{
| logα|/ηA1 , | log β|/(ηA0 + ηA1 )

}
if |A| = u

.

Proof. Fix A ∈ P`,u. We will prove the result only in the case that |A| = `, as the other two cases can be

proved similarly. If thresholds are selected according to (2.14), then from Lemma 2.2 it follows that

EA[TGI ] ≤ max

{
| log β|
ηA0

,
| logα|
ηA0 + ηA1

}
(1 + o(1)).

Thus, it suffices to show that this asymptotic upper bound agrees asymptotically, up to a first order,

with the lower bound in Theorem 2.3. Indeed, if C is a subset in P`,u that has one more stream than A, i.e.,
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C = A ∪ {j} for some j /∈ A, then

γA,C(α, β)∑
i∈A\C D

i
1 +

∑
i∈C\AD

i
0

=
ϕ(α, β)

Dj
0

.

Further, consider C = A ∪ {j}/{k} ∈ P`,u for some k ∈ A and j /∈ A, then

γA,C(α, β)∑
i∈A\C D

i
1 +

∑
i∈C\AD

i
0

=
max{ϕ(α, β), ϕ(β, α)}

Dk
1 +Dj

0

.

Therefore, from (2.3) it follows that for every α, β such that α+ β < 1

inf
(T,d)∈∆α,β(P`,u)

EA[T ] ≥ max
k∈A,j /∈A

max

{
ϕ(α, β)

Dj
0

,
max{ϕ(α, β), ϕ(β, α)}

Dk
1 +Dj

0

}

= max

{
ϕ(α, β)

ηA0
,
ϕ(β, α)

ηA1 + ηA0

}
.

From (2.22) it follows that as α, β → 0

inf
(T,d)∈∆α,β(Pl,u)

EA[T ] ≥ max

{
| log β|
ηA0

,
| logα|
ηA1 + ηA0

}
(1 + o(1)),

which completes the proof.

2.5.3 The case of no prior information

Recall that when we set ` = 0 and u = K, the gap-intersection rule reduces to the intersection rule, defined

in (2.9). Therefore, setting ` = 0 and u = K in Theorem 2.5 we immediately obtain that the intersection

rule is asymptotically optimal in the case of no prior information, i.e., with respect to class P0,K ; this is

itself a new result to the best of our knowledge. However, a more surprising corollary of Theorem 2.5 is that

the intersection rule, which does not use any prior information, is asymptotically optimal even if bounds on

the number of signals are available, when the following conditions are satisfied:

(i) the error probabilities are of the same order of magnitude, in the sense that | logα| ∼ | log β|,

(ii) the hypotheses are identical and symmetric, in the sense that Dk
1 = Dk

0 = D for every k ∈ [K].

On the other hand, a comparison with Theorem 2.4 reveals that, even in this special case, the intersection

rule is never asymptotically optimal when the exact umber of signals is known in advance, in which case it

requires roughly twice as many observations on average as the gap rule for the same precision level. The

following corollary summarizes these observations.
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Corollary 2.1. Suppose that assumption (2.23) holds and that the thresholds in the intersection rule are

selected according to (2.10). Then, for any A ⊂ [K] we have as α, β → 0

EA[TI ] ≤ max

{
| logα|
ηA1

,
| log β|
ηA0

}
+O(K

√
| log(α ∧ β)|). (2.26)

Further, the intersection rule is asymptotically optimal in the class ∆α,β(P0,K), i.e., as α, β → 0

EA[TI ] ∼ max

{
| logα|
ηA1

,
| log β|
ηA0

}
∼ inf

(T,d)∈∆α,β(P0,K)
EA[T ].

In the special case that | logα| ∼ | log β| and Dk
1 = Dk

0 = D for every k ∈ [K],

EA[TI ] ∼
| logα|
D

∼ inf
(T,d)∈∆α,β(P`,u)

EA[T ] for every A ∈ P`,u,

EA[TI ] ∼
| logα|
D

∼ 2 inf
(T,d)∈∆α,β(Pm)

EA[T ] for every A ∈ Pm,

for every 0 ≤ ` < u ≤ K and 1 ≤ m ≤ K − 1.

Remark 2.3. Corollary 2.1 implies that, in the special symmetric case that | logα| ∼ | log β| and Dk
1 =

Dk
0 = D, prior lower and upper bounds on the true number of signals do not improve the optimal expected

sample size up to a first-order asymptotic approximation. However, a comparison between the second-order

terms in (2.25) and (2.26) suggests that such prior information does improve the optimal performance, an

intuition that will be corroborated by the simulation study in Section 2.6 (see Figure 2.2).

Remark 2.4. In addition to the intersection rule, De and Baron [17] proposed the “incomplete rule”,

(Tmax, dmax), which is defined as

Tmax := max{σ1, . . . , σK} and dmax := (d1
max, . . . , d

K
max),

where for every k ∈ [K] we have

σk := inf
{
n ≥ 1 : λk(n) 6∈ (−a, b)

}
, dkmax :=


1, if λk(σk) ≥ b

0, if λk(σk) ≤ −a
. (2.27)

According to this rule, each stream is sampled until the corresponding test statistic exits the interval (−a, b),

independently of the other streams. It is clear that, for the same thresholds a and b, Tmax ≤ TI . Moreover,

with a direct application of Boole’s inequality, as in De and Baron [17], it follows that selecting the thresholds
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Figure 2.1: The x-axis is | log10(PA(A . d))|. The y-axis is the relative error of the estimate of the familywise
type-I error, PA(A . d), that is the ratio of the standard deviation of the estimate over the estimate itself.
Each curve is computed based on 100, 000 realizations.

according to (2.10) guarantees the desired error control for the incomplete rule. Therefore, Corollary 2.1

remains valid if we replace the intersection rule with the incomplete rule.

2.6 Simulation study

2.6.1 Description

In this section we present a simulation study whose goal is to corroborate the asymptotic results and insights

of Section 2.5 in the symmetric case described in Corollary 2.1. Thus, we set K = 10 and let fki = N (θi, 1)

for each k ∈ [K], i = 0, 1, where θ0 = 0, θ1 = 0.5, in which case Dk
0 = Dk

1 = D = (1/2)(θ1)2 = 1/8, and the

distribution of λk under Hk
1 is the same as −λk under Hk

0 . Furthermore, we set α = β. This is a convenient

setup for simulation purposes, since the expected sample size and the two familywise errors of each proposed

procedure are the same for all scenarios with the same number of signals, i.e. for all A’s with the same size.

For any user specified level α, we have two ways to determine the critical value of each procedure.

First, we can use upper bound on the error probability to compute conservative threshold ((2.6) for the gap

rule, and (2.14) for the gap-intersection rule). Second, we can apply the importance sampling technique

of Section 2.4 to determine non-conservative threshold, such that the maximal familywise type I error

probability is controlled exactly at level α. As we see in Figure 2.1, the relative errors of the proposed Monte

Carlo estimators, even for error probabilities of the order 10−8, are smaller than 1.5% for the gap rule, 8%

for the gap-intersection rule, 1% for the intersection rule.
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Gap rule

First, we consider the case in which the number of signals is known to be equal to m (P = Pm) for

m ∈ {1, . . . , 9}, and we can apply the corresponding gap rule, defined in (2.4). Due to the symmetry of our

setup, the expected sample size EA[TG] and the error probability PA(dG 6= A) are the same for A ∈ Pm and

A ∈ PK−m; thus, it suffices to consider m in {1, . . . , 5} , and an arbitrary A ∈ Pm for fixed m.

We start with non-conservative critical value determined by Monte Carlo method. For each m ∈ {1, 3, 5}

and some A ∈ Pm, we consider α’s ranging from 10−2 to 10−8. For each such α, we compute the threshold

c in the gap-rule that guarantees α = maxA∈Pm PA(dG 6= A), and then the expected sample size EA[TG]

that corresponds to this threshold. In Figure 2.2a we plot EA[TG] against | log10(α)| when m = 1, 3, 5. In

Table 2.1a we present the actual numerical results for c = 10.

In Figure 2.2a we also plot the first-order asymptotic approximation to the optimal expected sample size

obtained in Theorem 2.4, which in this particular symmetric case takes the form | logα|/(2D) = 4| logα|.

From our asymptotic theory we know that the ratio of EA[TG] over this quantity goes to 1 as α → 0, and

this convergence is illustrated in Figure 2.2b.

Further, in Figure 2.3a we present for the case P = P3 the expected sample size of the gap rule when

its threshold is given by the explicit expression in (2.6), and compare it with the corresponding expected

sample size that is obtained with the sharp threshold, which is computed via simulation.

Gap-intersection rule

Second, we consider the case in which the number of signals is known to be between 3 and 7 (P = P`,u = P3,7),

and we can apply the gap-intersection rule, defined in (2.12). Due to the symmetry of the setup and

Lemma 2.2, we set a = b and c = d = b+ log(u) = b+ log(7).

As before, we consider α’s ranging from 10−2 to 10−8. For each such α, we obtain the threshold b

such that maxA PA(A . dGI) = α, where the maximum is taken over A ∈ P`,u, and then compute the

corresponding expected sample size EA[TGI ] for every A ∈ P`,u. In Figure 2.2c we plot EA[TGI ] against

| log10(α)| for |A| = 3 and 5, since by symmetry EA[TGI ] is the same for |A| = k and 10− k, and the results

for |A| = 4 and 5 were too close. This is also evident from Table 2.1b, where we present the numerical

results for b = 10. In the same graph we also plot the first-order asymptotic approximation to the optimal

performance obtained in Theorem 2.5, which in this case is | logα|/D = 8| logα|. By Theorem 2.5, we know

that the ratio of EA[TGI ] over 8| logα| goes to 1 as α→ 0, which is corroborated in Figure 2.2d.
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Intersection versus incomplete rule

Finally, we consider the case of no prior information (P = P0,10), in which we compare the intersection

rule with the incomplete rule. This is a special case of the previous setup with ` = 0 and u = K, but now

the expected sample size (for both schemes) is the same for every subset of signals A, which allows us to

plot only one curve for each scheme in Figure 2.2e (non-conservative critical value is used). In the same

graph we also plot the first-order approximation to the optimal performance, | logα|/D = 8| logα|, whereas

in Figure 2.2f. we plot the corresponding normalized version.

Further, in Figure 2.3b we present the expected sample size of the intersection rule when its threshold is

given by the explicit expression in (2.14), and compare it with the corresponding expected sample size that

is obtained with the sharp threshold, which is computed via simulation.

2.6.2 Results

There are a number of conclusions that can be drawn from the presented graphs. First of all, from Figure 2.2a

it follows that the gap rule performs the best when there are exactly m = 1 or 9 signals, whereas its

performance is quite similar for m = 3, 4, 5. As we mentioned before, this can be explained by the fact that

the second term in the right-hand side in (2.24) grows with m(K −m).

Second, from Figure 2.2c we can see that the gap-intersection rule performs better in the boundary cases

that there are exactly 3 or 7 signals than in the case of 5 signals, which can be explained by the second order

term in (2.25).

Third, from Figure 2.2e we can see that the intersection rule is always better than the incomplete rule,

although they share the same prior information.

Fourth, from the graphs in the second column of Figure 2.2 we can see that all curves approach 1, as

expected from our asymptotic results; however, the convergence is relatively slow. This is reasonable, as we

do not divide the expected sample sizes by the optimal performance in each case, but with a strict lower

bound on it instead.

Fifth, comparing Figure 2.2a with Figure 2.2c and 2.2e, we verify that knowledge of the exact number

of signals roughly halves the required expected sample size in comparison to the case that we only have a

lower and an upper bound on the number of signals.

Finally, we see by Tables 2.1a and 2.1b that the upper bounds (2.5) and (2.13) on the error probabilities

are very crude. Nevertheless, from Figure 2.3a and 2.3b, we observe that using these conservative thresholds

in the design of the proposed procedures leads to bounded performance loss as the error probabilities go to

0 relative to the case of sharp thresholds, obtained via Monte Carlo simulation. This is expected, as the
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expected sample size scales with the logarithm of the error probabilities.

m PA(dG 6= A) EA(TG) Upper bound
1 5.041E-05 (3.101E-07) 64.071 (0.157) 4.086E-4
3 6.034E-05 (5.343E-07) 78.386 (0.157) 9.534E-4
5 6.145E-05 (5.859E-07) 81.070 (0.156) 1.135E-3

(a) P = Pm. (TG, dG) with c = 10.

|A| PA(A . dGI) EA(TGI) Upper bound
3 3.653E-05 (5.447E-07) 142.173 (0.264) 4.540E-04
4 3.144E-05 (2.189E-07) 152.873 (0.264) 4.281E-04
5 2.621E-05 (1.825E-07) 152.895 (0.263) 3.891E-04
7 3.104E-07 (1.340E-08) 142.363 (0.270) 2.724E-04

(b) P = P3,7. (TGI , dGI) with b = 10.

Table 2.1: The standard error of the estimate is included in the parenthesis. The upper bound is on the
error control given by (2.5) for the first table and by (2.13) for the second.

2.7 Conclusions

We considered the problem of simultaneously testing multiple simple null hypotheses, each of them against a

simple alternative, in a sequential setup. That is, the data for each testing problem are acquired sequentially

and the goal is to stop sampling as soon as possible, simultaneously in all streams, and make a correct

decision for each individual testing problem. The main goal of this Chapter was to propose feasible, yet

asymptotically optimal, procedures that incorporate prior information on the number of signals (correct

alternatives), and also to understand the potential gains in efficiency by such prior information.

We studied this problem under the assumption that the data streams for the various hypotheses are

independent. Without any distributional assumptions on the data that are acquired in each stream, we

proposed procedures that control the probabilities of at least one false positive and at least one false negative

below arbitrary user-specified levels. This was achieved in two general cases regarding the available prior

information: when the exact number of signals is known in advance, and when we only have an upper and

a lower bound for it. Furthermore, we proposed a Monte Carlo simulation method, based on importance

sampling, that can facilitate the specification of non-conservative critical values for the proposed multiple

testing procedures in practice. More importantly, in the special case of i.i.d. data in each stream, we were

able to show that the proposed multiple testing procedures are asymptotically optimal, in the sense that

they require the minimum possible expected sample size to a first-order asymptotic approximation as the

error probabilities vanish at arbitrary rates.

These asymptotic optimality results have some interesting ramifications. First of all, they imply that any
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Figure 2.2: The x-axis in all graphs is | log10(α)|. In the first column, the y-axis denotes the expected
sample size under PA that is required in order to control the maximal familywise type I error probability
exactly at level α. The dash-dot lines in each plot correspond to the first-order approximation, which is
also a lower bound, to the optimal expected sample size for the class ∆α,α(P); due to symmetry, this lower
bound does not depend on |A| in each setup. In the second column, we normalize each curve by its
corresponding lower bound.
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The dashed line uses the upper bound on the error probability to get conservative critical value, while the
solid line uses the Monte Carlo approach to determine non-conservative threshold such that the maximal
familywise type I error is controlled exactly at level α.

refinements of the proposed procedures, for example using a more judicious choice of alpha-spending and

beta-spending functions, cannot reduce the expected sample size to a first-order asymptotic approximation.

Second, they imply that bounds on the number of signals do not improve the minimum possible expected

sample size to a first-order asymptotic approximation, apart from a very special case. On the other hand,

knowledge of the exact number of signals does reduce the minimum possible expected sample size to a first

order approximation, roughly by a factor of 2. These insights were corroborated by a simulation study, which

however also revealed the limitations of a first-order asymptotic analysis and emphasized the importance of

second-order terms.

To our knowledge, these are the first results on the asymptotic optimality of multiple testing procedures,

with or without prior information, that control the familywise error probabilities of both types. However,

there are still some important open questions that remain to be addressed. Do the proposed procedures

attain, in the i.i.d. setup, the optimal expected sample size to a second-order asymptotic approximation as

well? Does the first-order asymptotic optimality property remain valid for more general, non-i.i.d. data in

the streams? While we conjecture that the answer to both these questions is affirmative, we believe that the

corresponding proofs require different techniques from the ones we have used in the current Chapter.

There are also interesting generalizations of the setup we considered in this Chapter. For example, it is

interesting to consider the sequential multiple testing problem when the goal is to control generalized error

rates, such as the false discovery rate [6], instead of the more stringent familywise error rates. Another

interesting direction is to allow the hypotheses in the streams to be specified up to an unknown parameter,
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or to consider a non-parametric setup similarly to Li et al. [40]. Finally, it is still an open problem to design

asymptotically optimal multiple testing procedures that incorporate prior information on the number of

signals when it is possible and desirable to stop sampling at different times in the various streams.

2.8 Two lemmas

2.8.1 An information-theoretic inequality

In the proof of Theorem 2.3 we use the following, well-known, information-theoretic inequality, whose proof

can be found, e.g., in Tartakovsky et al. [71] (Chapter 3.2).

Lemma 2.3. Let Q,P be equivalent probability measures on a measurable space (Ω,G) and recall the function

ϕ defined in (2.19). Then, for every A ∈ G we have

EQ

[
log

dQ

dP

]
≥ ϕ (Q(A),P(Ac)) .

2.8.2 A lemma on multiple random walks

For the proof of Lemmas 2.1 and 2.2 we need an upper bound on the expectation of the first time that

multiple random walks, not necessarily independent, are simultaneously above given thresholds. We state

here the corresponding result in some generality.

Thus, let L ≥ 2 and suppose that for each l ∈ [L] we have a sequence of i.i.d. random variables,

{ξln, n ∈ N}, such that µl = E[ξl1] > 0 and Var[ξl1] <∞. For each l ∈ [L], let

Sln =
n∑
i=1

ξli, n ∈ N

be the corresponding random walk. Here, no assumption is made on the dependence structure among these

random walks. For an arbitrary vector (a1, . . . , aL), consider the stopping time

T = inf
{
n ≥ 1 : Sln ≥ al for every l ∈ [L]

}
.

The following lemma provides an upper bound on the expected value of T . The proof is identical to the one

in Theorem 2 in Mei [47]; thus we omit it. We stress that although the theorem in the reference assumes

independent random walks, exactly the same proof applies to the case of dependent random walks.
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Lemma 2.4. As a1, . . . , aL →∞,

E[T ] ≤ max
l∈[L]

(
al
µl

)
+O

∑
l∈[L]

√
al
µl

 ≤ max
l∈[L]

(
al
µl

)
+O

(
L
√

max
l∈[L]
{al}

)
.
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Chapter 3

Sequential multiple testing with
generalized error metrics

3.1 Introduction

1 In the early development of multiple testing, the focus was on procedures that control the probability of at

least one false positive, i.e., falsely rejected null [28, 29, 46]. As this requirement can be prohibitive when the

number of hypotheses is large, the emphasis gradually shifted to the control of less stringent error metrics,

such as (i) the expectation [8] or the quantiles [36] of the false discovery proportion, i.e., the proportion of

false positives among the rejected nulls, and (ii) the generalized familywise error rate, i.e., the probability of

at least k ≥ 1 false positives [30, 36]. During the last two decades, various procedures have been proposed

to control the above error metrics [9, 27, 59, 60]. Further, the problem of maximizing the number of true

positives subject to a generalized control on false positives has been studied in [37, 55, 69, 70], whereas in

[14] the false negatives are incorporated into the risk function in a Bayesian decision theoretic framework.

In this Chapter, we consider the same sequential multiple testing setup as in Chapter 2, but instead

focus on two related, yet distinct, generalized error metrics. The first one is a generalization of the usual

mis-classification rate [39, 45], where the probability of at least k ≥ 1 mistakes, of any kind, is controlled.

The second one controls generalized familywise error rates of both types [3, 19], i.e., the probabilities of at

least k1 ≥ 1 false positives and at least k2 ≥ 1 false negatives.

Various sequential procedures have been proposed recently to control such generalized familywise error

rates [3, 5, 7, 17, 18, 19]. To the best of our knowledge, the efficiency of these procedures is understood only

in the case of classical familywise error rates, i.e., when k1 = k2 = 1. Specifically, in the case of independent

streams with i.i.d. observations, an asymptotic lower bound was obtained in [66] for the optimal expected

sample size (ESS) as the error probabilities go to 0, and was shown to be attained, under any signal

configuration, by several existing procedures. However, the results in [66] do not extend to generalized error

metrics, since the technique for the proof of the asymptotic lower bound requires that the probability of not

identifying the correct subset of signals goes to 0. Further, as we shall see, existing procedures fail to be

1This chapter is based on my publication [67].
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asymptotically optimal in general under generalized error metrics.

The lack of an optimality theory under such generalized error control implies that it is not well under-

stood how the best possible ESS depends on the user-specified parameters. This limits the applicability of

generalized error metrics, as it is not clear for the practitioner how to select the number of hypotheses to be

“sacrificed” for the sake of a faster decision.

In this Chapter, we address this research gap by developing an asymptotic optimality theory for the

sequential multiple testing problem under the two generalized error metrics mentioned above. Specifically,

for each formulation we characterize the optimal ESS as the error probabilities go to 0, and propose a novel,

feasible sequential multiple testing procedure that achieves the optimal ESS under every signal configuration.

These results are established under the assumption of independent data streams, and require that the log-

likelihood ratio statistic in each stream satisfies a certain Strong Law of Large Numbers. Thus, even in

the case of classical familywise error rates, we extend the corresponding results in [66] by relaxing the i.i.d.

assumption in each stream.

Finally, whenever sequential testing procedures are utilized, it is of interest to quantify the savings in

the ESS over fixed-sample size schemes with the same error control guarantees. In the case of i.i.d. data

streams, we obtain an asymptotic lower bound for the gains of sequential sampling over any fixed-sample

size schemes, and also characterize the asymptotic gains over a specific fixed-sample size procedure.

In order to convey the main ideas and results with the maximum clarity, we first consider the case that

the local hypotheses are simple, and then extend our results to the case of composite hypotheses. Thus, the

remainder of the Chapter is organized as follows: in Section 3.2 we formulate the two problems of interest in

the case of simple hypotheses. The case of generalized mis-classification rate is presented in Section 3.3, and

the case of generalized familywise error rates in Section 3.4. In Section 3.5 we present two simulation studies

under the second error metric. In Section 3.6 we extend our results to the case of composite hypotheses. We

conclude and discuss potential extensions of this Chapter in Section 3.7. From Section 3.8-3.14, we present

proofs, more simulation studies and a detailed analysis of the case of composite hypotheses. For convenience,

we list in Table 3.1 the procedures that are considered in this Chapter.

3.2 Problem formulation

Consider independent streams of observations, Xj := {Xj(n) : n ∈ N}, where j ∈ [J ] := {1, . . . , J} and

N := {1, 2, . . .}. For each j ∈ [J ], we denote by Pj the distribution of Xj and consider two simple hypotheses
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Procedure Metric Section Main results Conditions for AO
Sum-Intersection† GMIS 3.3.1 Thrm 3.3 (3.8)

Leap† GFWER 3.4.2 Thrm 3.6 (3.8)
Asym. Sum-Intersection† GFWER 3.4.1 Cor 3.2 (3.8) + (3.11) + (3.12)

Intersection both 3.2.2 Cor 3.1/ 3.2 (3.8) + (3.11) / (3.12)
MNP (fixed sample) both 3.2.3 Thrm 3.4/ 3.7 Not optimal

Table 3.1: Procedures marked with † are novel. Procedures in bold font are asymptotically optimal (AO)
without requiring special structure. GMIS is short for generalized mis-classification rate, and GFWER for
generalized familywise error rates.

for it,

Hj
0 : Pj = Pj

0 versus Hj
1 : Pj = Pj

1. (3.1)

We denote by PA the distribution of (X1, . . . , XJ) when A ⊂ [J ] is the subset of data streams with signal,

i.e., in which the alternative hypothesis is correct. Due to the assumption of independence among streams,

PA is the following product measure:

PA :=

J⊗
j=1

Pj ; Pj =


Pj0, if j /∈ A

Pj1, if j ∈ A.
(3.2)

Moreover, we denote by F jn the σ-field generated by the first n observations in the j-th stream, i.e.,

σ(Xj(1), . . . , Xj(n)), and by Fn the σ-field generated by the first n observations in all streams, i.e.,

σ(F jn, j ∈ [J ]), where n ∈ N.

Assuming that the data in all streams become available sequentially, the goal is to stop sampling as soon

as possible, and upon stopping to solve the J hypothesis testing problems subject to certain error control

guarantees. Formally, a sequential multiple testing procedure is a pair δ = (T,D) where T is an {Fn}-

stopping time at which sampling is terminated in all streams, and D an FT -measurable, J-dimensional

vector of Bernoullis, (D1, . . . , DJ), so that the alternative hypothesis is selected in the j-th stream if and

only if Dj = 1. With an abuse of notation, we also identify D with the rejected nulls, i.e., the subset of

streams in which the alternative hypothesis is selected upon stopping, i.e., {j ∈ [J ] : Dj = 1}.

We consider two kinds of error control, which lead to two different problems. Their main difference is

that the first one does not differentiate between false positives, i.e., rejecting the null when it is correct, and

false negatives, i.e., accepting the null when it is false. Specifically, in the first one we control the generalized

mis-classification rate, i.e., the probability of committing at least k mistakes, of any kind, where k is a

user-specified integer such that 1 ≤ k < J . When A is the true subset of signals, a decision rule D makes at
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least k mistakes, of any kind, if D and A differ in at least k components, i.e., |A 4 D| ≥ k, where for any

two sets A and D, A 4 D is their symmetric difference, i.e. (A\D)∪ (D\A), and | · | denotes set-cardinality.

Thus, given tolerance level α ∈ (0, 1), the class of multiple testing procedures of interest in this case is

∆k(α) :=

{
(T,D) : max

A⊂[J]
PA(|A 4 D| ≥ k) ≤ α

}
.

Then, the first problem is formulated as follows:

Problem 3.1. Given a user-specified integer k in [1, J), find a sequential multiple testing procedure that (i)

controls the generalized mis-classification rate, i.e., it can be designed to belong to ∆k(α) for any given α,

and (ii) achieves the smallest possible expected sample size,

N∗A(k, α) := inf
(T,D)∈∆k(α)

EA[T ],

for every A ⊂ [J ], to a first-order asymptotic approximation as α→ 0.

In the second problem of interest in this work, we control generalized familywise error rates of both

types, i.e., the probabilities of at least k1 false positives and at least k2 false negatives, where k1, k2 ≥ 1 are

integers such that k1 + k2 ≤ J . When the true subset of signals is A, a decision rule D makes at least k1

false positives when |D \ A| ≥ k1 and at least k2 false negatives when |A \D| ≥ k2. Thus, given tolerance

levels α, β ∈ (0, 1), the class of procedures of interest in this case is

∆k1,k2
(α, β) := {(T,D) : max

A⊂[J]
PA(|D \A| ≥ k1) ≤ α and

max
A⊂[J]

PA(|A \D| ≥ k2) ≤ β}.
(3.3)

Then, the second problem is formulated as follows:

Problem 3.2. Given user-specified integers k1, k2 ≥ 1 such that k1 + k2 ≤ J , find a sequential multiple

testing procedure that (i) simultaneously controls generalized familywise error rates of both types, i.e., it

can be designed to belong to ∆k1,k2(α, β) for any given α, β ∈ (0, 1), and (ii) achieves the smallest possible

expected sample size,

N∗A(k1, k2, α, β) := inf
(T,D)∈∆k1,k2

(α,β)
EA[T ],

for every A ⊂ [J ], to a first-order asymptotic approximation as α and β go to 0, at arbitrary rates.
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3.2.1 Assumptions

We now state the assumptions that we will make in the next two sections in order to solve these two

problems. First of all, for each j ∈ [J ] we assume that the probability measures Pj0 and Pj1 in (3.1) are

mutually absolutely continuous when restricted to F jn, and we denote the corresponding log-likelihood ratio

(LLR) statistic as follows:

λj(n) := log
dPj1
dPj0

(F jn), for n ∈ N.

For A,C ⊂ [J ] and n ∈ N we denote by λA,C(n) the LLR of PA versus PC when both measures are restricted

to Fn, and from (3.2) it follows that

λA,C(n) := log
dPA
dPC

(Fn) =
∑

j∈A\C

λj(n)−
∑

j∈C\A

λj(n). (3.4)

In order to guarantee that the proposed multiple testing procedures terminate almost surely and satisfy the

desired error control, it will suffice to assume that

Pj1

(
lim
n→∞

λj(n) =∞
)

= Pj0

(
lim
n→∞

λj(n) = −∞
)

= 1 ∀ j ∈ [J ]. (3.5)

In order to establish an asymptotic lower bound on the optimal ESS for each problem, we will need the

stronger assumption that for each j ∈ [J ] there are positive numbers, Ij1 , I
j
0 , such that the following Strong

Law of Large Numbers (SLLN) hold:

Pj1

(
lim
n→∞

λj(n)

n
= Ij1

)
= Pj0

(
lim
n→∞

λj(n)

n
= −Ij0

)
= 1. (3.6)

When the LLR statistic in each stream has independent and identically distributed (i.i.d.) increments, the

SLLN (3.6) will also be sufficient for establishing the asymptotic optimality of the proposed procedures.

When this is not the case, we will need an assumption on the rate of convergence in the SLLN (3.6).

Specifically, we will need to assume that for every ε > 0 and j ∈ [J ],

∞∑
n=1

Pj1

(∣∣∣λj(n)

n
− Ij1

∣∣∣ > ε

)
<∞,

∞∑
n=1

Pj0

(∣∣∣λj(n)

n
+ Ij0

∣∣∣ > ε

)
<∞. (3.7)

Condition (3.7) is known as complete convergence [31], and is a stronger assumption than (3.6), due to the

Borel-Cantelli lemma. This condition is satisfied in various testing problems where the observations in each

data stream are dependent, such as autoregressive time-series models and state-space models. For more

36



details, we refer to [71, Chapter 3.4].

To sum up, the only distributional assumption for our asymptotic optimality theory is that the LLR

statistic in each stream

either has i.i.d. increments and satisfies the SLLN (3.6),

or satisfies the SLLN with complete convergence (3.7).

(3.8)

Remark 3.1. If (3.6) (resp. (3.7)) holds, the normalized LLR, λA,C(n)/n, defined in (3.4), converges

almost surely (resp. completely) under PA to

IA,C :=
∑
i∈A\C

Ii1 +
∑

j∈C\A

Ij0 . (3.9)

The numbers IA,C and IC,A will turn out to determine the inherent difficulty in distinguishing between

PA and PC and will play an important role in characterizing the optimal performance under PA and PC

respectively.

3.2.2 The Intersection rule

To the best of our knowledge, Problem 3.2 has been solved only under the assumption of i.i.d. data streams

and only in the case of classical error control, that is when k1 = k2 = 1 [66]. An asymptotically optimal

procedure in this setup is the so-called “Intersection” rule, δI := (TI , DI), proposed in [17, 18], where

TI := inf
{
n ≥ 1 : λj(n) 6∈ (−a, b) for every j ∈ [J ]

}
,

DI :=
{
j ∈ [J ] : λj(TI) > 0

}
,

(3.10)

and a, b are positive thresholds. This procedure requires the local test statistic in every stream to provide

sufficiently strong evidence for the sampling to be terminated. The Intersection rule was also shown in [19]

to control generalized familywise error rates, however its efficiency in this setup remains an open problem,

even in the case of i.i.d. data streams. Our asymptotic optimality theory in the next sections will reveal that

the Intersection rule is asymptotically optimal with respect to Problems 3.1 and 3.2 only when the multiple

testing problem satisfies a very special structure.

Definition 3.1. We say that the multiple testing problem is

(i) symmetric, if for every j ∈ [J ] the distribution of λj under Pj0 is the same as the distribution of −λj

under Pj1,
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(ii) homogeneous, if for every j ∈ [J ] the distribution of λj under Pji does not depend on j, where i ∈ {0, 1}.

It is clear that when the multiple testing problem is both symmetric and homogeneous, we have

Ij0 = Ij1 = I for every j ∈ [J ]. (3.11)

In the next sections we will show that the Intersection rule is asymptotically optimal for Problem 3.1 when

(3.11) holds, whereas its asymptotic optimality with respect to Problem 3.2 will additionally require that

the user-specified parameters satisfy the following conditions:

k1 = k2 and α = β. (3.12)

3.2.3 Fixed-sample size schemes

Let ∆fix(n) denote the class of procedures for which the decision rule depends on the data collected up to

a deterministic time n, i.e.,

∆fix(n) := {(n,D) : D ⊂ [J ] is Fn-measurable}.

For any given integers k, k1, k2 ≥ 1 with k, k1 + k2 < J and α, β ∈ (0, 1), let

n∗(k, α) := inf
{
n ∈ N : ∆fix(n)

⋂
∆k(α) 6= ∅

}
,

n∗(k1, k2, α, β) := inf
{
n ∈ N : ∆fix(n)

⋂
∆k1,k2(α, β) 6= ∅

}
,

(3.13)

denote the minimum sample sizes required by any fixed-sample size scheme under the two error metrics of

interest. In the case of i.i.d. observations in the data streams, we establish asymptotic lower bounds for the

above two quantities as the error probabilities go to 0. To the best of our knowledge, there is no fixed-sample

size procedure that attains these bounds. For this reason, we also study a specific procedure that runs a

Neyman-Pearson test at each stream. Formally, this procedure is defined as follows:

δNP (n, h) := (n,DNP (n, h)), DNP (n, h) := {j ∈ [J ] : λj(n) > nhj}, (3.14)

where h = (h1, . . . , hJ) ∈ RJ and n ∈ N, and we will we refer to it as multiple Neyman-Pearson (MNP) rule.

In the case of generalized mis-classification rate, we characterize the minimum sample size required by this
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procedure,

nNP (k, α) := inf{n ∈ N : ∃ h ∈ RJ , δNP (n, h) ∈ ∆k(α)},

to a first-order approximation as α → 0. In the case of generalized familywise error rates, for simplicity of

presentation we further restrict ourselves to homogeneous, but not necessarily symmetric, multiple testing

problems, and characterize the asymptotic minimum sample size required by the MNP rule that utilizes the

same threshold in each stream, i.e.,

n̂NP (k1, k2, α, β) := inf{n ∈ N : ∃h ∈ R, δNP (n, h1J) ∈ ∆k1,k2
(α, β)},

where 1J ∈ RJ is a J-dimensional vector of ones.

3.2.4 The i.i.d. case

As mentioned earlier, our asymptotic optimality theory will apply whenever condition (3.8) holds, thus,

beyond the case of i.i.d. data streams. However, our analysis of fixed-sample size schemes will rely on large

deviation theory [20] and will be focused on the i.i.d. case. Thus, it is convenient to introduce some relevant

notations for this setup.

Specifically, when for each j ∈ [J ] the observations in the j-th stream are independent with common

density f j relative to a σ-finite measure νj , the hypothesis testing problem (3.1) takes the form

Hj0 : f j = f j0 versus Hj1 : f j = f j1 , (3.15)

and Ij1 , I
j
0 correspond to the Kullback-Leibler divergences between f j1 and f j0 , i.e.,

Ij1 =

∫
log
(
f j1/f

j
0

)
f j1 dν

j , Ij0 =

∫
log
(
f j0/f

j
1

)
f j0 dν

j . (3.16)

In this case, each LLR statistic λj has i.i.d. increments, and (3.8) is satisfied as long as Ij1 and Ij0 are both

positive and finite. For each j ∈ [J ], we further introduce the convex conjugate of the cumulant generating

function of λj(1)

z ∈ R→ Φj(z) := sup
θ∈R

{
zθ −Ψj(θ)

}
, where Ψj(θ) := log Ej0

[
eθλ

j(1)
]
. (3.17)

The value of Φj at zero is the Chernoff information [20] for the testing problem (3.15), and we will denote
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it as Cj , i.e., Cj := Φj(0).

Finally, we will illustrate our general results in the case of testing normal means. Hereafter, N denotes

the density of the normal distribution.

Example 3.1. If f j0 = N (0, σ2
j ) and f j1 = N (µj , σ

2
j ) for all j ∈ [J ], then

λj(1) = θ2
j

(
Xj(1)/µj − 1/2

)
, where θj := µj/σj .

Consequently the multiple testing problem is symmetric and

Ij := Ij0 = Ij1 = θ2
j/2, Φj(z) = (z + Ij)2/(4Ij) for any z ∈ R. (3.18)

3.2.5 Notation

Finally, we collect some notations that will be used extensively throughout the Chapter: CJk denotes the

binomial coefficient
(
J
k

)
, i.e., the number of subsets of size k from a set of size J ; a∨ b represents max{a, b};

x ∼ y means that limy x/y = 1 and x(b) = o(1) that limb x(b) = 0. N := {1, 2, . . .}, [J ] := {1, . . . , J}. For

any two sets A,B, A 4 B is the symmetric difference, (A \B) ∪ (B \A), and | · | denotes set-cardinality.

3.3 Generalized mis-classification rate

In this section we consider Problem 3.1, and carry out the following program: first, we propose a novel

procedure that controls the generalized mis-classification rate. Then, we establish an asymptotic lower

bound on the optimal ESS and show that it is attained by the proposed scheme. As a corollary, we show

that the Intersection rule is asymptotically optimal when (3.11) holds. Finally, we make a comparison with

fixed-sample size procedures in the i.i.d. case (3.15).

3.3.1 Sum-Intersection rule

In order to implement the proposed procedure, which we will denote δS(b) := (TS(b), DS(b)), we need at

each time n ∈ N prior to stopping to order the absolute values of the local LLR statistics, |λj(n)|, j ∈ [J ]. If

we denote the corresponding ordered values by

λ̃1(n) ≤ . . . ≤ λ̃J(n),
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we can think of λ̃1(n) (resp. λ̃J(n)) as the least (resp. most) “significant” local test statistic at time n, in

the sense that it provides the weakest (resp. strongest) evidence in favor of either the null or the alternative.

Then, sampling is terminated at the first time the sum of the k least significant local LLRs exceeds some

positive threshold b, and the null hypothesis is rejected in every stream that has a positive LLR upon

stopping, i.e.,

TS(b) := inf

n ≥ 1 :

k∑
j=1

λ̃j(n) ≥ b

 , DS(b) :=
{
j ∈ [J ] : λj(TS(b)) > 0

}
.

The threshold b is selected to guarantee the desired error control. When k = 1, δS(b) coincides with the

Intersection rule, δI(b, b), defined in (3.10). When k > 1, the two rules are different but they share a similar

flavor, since δS(b) stops the first time all sums of the form
∑
j∈A |λj(n)|, with A ⊂ [J ] and |A| = k, are

simultaneously above b. For this reason, we refer to δS(b) as Sum-Intersection rule. Hereafter, we will

typically suppress the dependence of δS(b) on threshold b in order to lighten the notation.

3.3.2 Error control of the Sum-Intersection rule

For any choice of threshold b, the Sum-Intersection rule clearly terminates almost surely, under every signal

configuration, as long as condition (3.5) holds. In the next theorem we show how to select b to guarantee the

desired error control. We stress that no additional distributional assumptions are needed for this purpose.

Theorem 3.1. Assume (3.5) holds. For any α ∈ (0, 1) we have δS(bα) ∈ ∆k(α) when

bα = | log(α)|+ log(CJk ). (3.19)

Proof. The proof can be found in Section 3.9.1.

The choice of b suggested by the previous theorem will be sufficient for establishing the asymptotic

optimality of the Sum-Intersection rule, but may be conservative for practical purposes. In the absence of

more accurate approximations for the error probabilities, we recommend finding the value of b for which

the target level is attained using Monte Carlo simulation. This means simulating off-line, i.e., before the

sampling process begins, for every A ⊂ [J ] the error probability PA(|A 4 DS(b)| ≥ k) for various values

of b, and then selecting the value for which the maximum of these probabilities over A ⊂ [J ] matches the

nominal level α.

This simulation task is significantly facilitated when the multiple testing problem has a special structure.

If the problem is symmetric, for any given threshold b the error probabilities coincide for all A ⊂ [J ], and thus
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it suffices to simulate the error probability under a single measure, e.g., P∅. If the problem is homogeneous,

the error probabilities depend only on the size of A, not the actual subset. Thus, it suffices to simulate

the above probabilities for at most (J + 1) configurations. Similar ideas apply in the presence of block-wise

homogeneity.

Moreover, it is worth pointing out that when b is large, we can apply importance sampling techniques to

simulate the corresponding “small” error probabilities, similarly to [65].

3.3.3 Asymptotic lower bound on the optimal performance

We now obtain an asymptotic (as α→ 0) lower bound on N∗A(k, α), the optimal ESS when the true subset

of signals is A, for any given k ≥ 1. When k = 1, from [72, Theorem 2.2] it follows that such a lower bound

is given by | log(α)|/minC 6=A IA,C , where IA,C is defined in (3.9). Thus, the asymptotic lower bound when

k = 1 is determined by the “wrong” subset that is the most difficult to be distinguished from A, where the

difficulty level is measured by the information numbers defined in (3.9).

The techniques in [72] require that the probability of selecting the wrong subset goes to 0, thus, they do

not apply to the case of generalized error control (k > 1). Nevertheless, it is reasonable to conjecture that

the corresponding asymptotic lower bound when k > 1 will still be determined by the wrong subset that is

the most difficult to be distinguished from A, with the difference that a subset will now be “wrong” under

PA if it differs from A in at least k components, i.e., if it does not belong to

Uk(A) := {C ⊂ [J ] : |A 4 C| < k}.

This conjecture is verified by the following theorem.

Theorem 3.2. If the SLLN (3.6) holds, then for any A ⊂ [J ], as α→ 0,

N∗A(k, α) ≥ | log(α)|
DA(k)

(1− o(1)), where DA(k) := min
C 6∈Uk(A)

IA,C . (3.20)

The proof in the case of the classical mis-classification rate (k = 1) is based on a change of measure from

PA to PA∗ , where A∗ is chosen such that (i) A is a “wrong” subset under PA∗ , i.e., A 6= A∗ and (ii) A∗ is

“close” to A, in the sense that IA,A∗ ≤ IA,C for every C 6= A (see, e.g., [72, Theorem 2.2]).

When k ≥ 2, there are more than one “correct” subsets under PA. The key idea in our proof is that for

each “correct” subset B ∈ Uk(A) we apply a different change of measure PA → PB∗ , where B∗ is chosen

such that (i) B is a “wrong” subset under PB∗ , i.e., B /∈ Uk(B∗), and (ii) B∗ is “close” to A, in the sense
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that IA,B
∗ ≤ IA,C for every C /∈ Uk(A). The existence of such B∗ is established in Section 3.9.2, and the

proof of Theorem 3.2 is carried out in Section 3.9.3.

3.3.4 Asymptotic optimality

We are now ready to establish the asymptotic optimality of the Sum-Intersection rule by showing that it

attains the asymptotic lower bound of Theorem 3.2 under every signal configuration.

Theorem 3.3. Assume (3.8) holds. Then, for any A ⊂ [J ] we have as b→∞ that

EA[TS(b)] ≤ b

DA(k)
(1 + o(1)). (3.21)

When in particular b is selected such that δS ∈ ∆k(α) and b ∼ | log(α)|, e.g. as in (3.19), then for every

A ⊂ [J ] we have as α→ 0

EA [TS ] ∼ | logα|
DA(k)

∼ N∗A(k, α).

Proof. If (3.21) holds and b is such that δS ∈ ∆k(α) and b ∼ | log(α)|, then δS attains the asymptotic lower

bound in Theorem 3.2. Thus, it suffices to prove (3.21), which is done in the Section 3.9.4.

The asymptotic characterization of the optimal ESS, N∗A(k, α), illustrates the trade-off among the ESS,

the number of mistakes to be tolerated, and the error tolerance level α. Specifically, it suggests that, for

“small” values of α, tolerating k− 1 mistakes reduces the ESS by a factor of DA(k)/DA(1), which is at least

k for every A ⊂ [J ]. To justify the latter claim, note that if we denote the ordered information numbers

{Ij1 , j ∈ A} ∪ {I
j
0 , j /∈ A} by Ĩ(1)(A) ≤ . . . ≤ Ĩ(J)(A), then

DA(k) =

k∑
j=1

Ĩ(j)(A).

In the following corollary we show that the Intersection rule is asymptotically optimal when (3.11) holds,

which is the case for example when the multiple testing problem is both symmetric and homogeneous.

Corollary 3.1. (i) Assume (3.5) holds. For any α ∈ (0, 1) we have δI(b, b) ∈ ∆k(α) when b is equal to

bα/k, where bα is defined in (3.19).

(ii) Suppose b is selected such that δI(b, b) ∈ ∆k(α) and b ∼ | logα|/k, e.g., as in (i). If (3.8) holds, then

EA [TI ] ≤
| logα|
kDA(1)

(1 + o(1)).
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If also (3.11) holds, then for any A ⊂ [J ] we have as α→ 0 that

EA [TI ] ∼
| logα|
kI

∼ N∗A(k, α).

Proof. The proof can be found in Section 3.9.5.

Remark 3.2. When (3.11) is violated, the Intersection rule fails to be asymptotically optimal. This will be

illustrated with a simulation study in Section 3.8.2.

3.3.5 Fixed-sample size rules

Finally, we focus on the i.i.d. case (3.15) and consider procedures that stop at a deterministic time, selected

to control the generalized mis-classification rate. We recall that Cj is the Chernoff information in the jth

testing problem, and we denote by B(k) the sum of the smallest k local Chernoff informations, i.e.,

B(k) :=

k∑
j=1

C(j),

where C(1) ≤ C(2) ≤ . . . ≤ C(J) are the ordered values of the local Chernoff information numbers Cj , j ∈ [J ].

Theorem 3.4. Consider the multiple testing problem with i.i.d. streams defined in (3.15) and suppose that

the Kullback-Leibler numbers in (3.16) are positive and finite. For any user-specified integer 1 ≤ k ≤ (J+1)/2

and A ⊂ [J ], we have as α→ 0

DA(k)

B(2k − 1)
(1− o(1)) ≤ n∗(k, α)

N∗A(k, α)
≤ nNP (k, α)

N∗A(k, α)
∼ DA(k)

B(k)
.

Proof. The proof can be found in Section 3.9.6.

Remark 3.3. Since any fixed time is also a stopping time, the lower bound is relevant only when DA(k) >

B(2k − 1) for some A ⊂ [J ].

We now specialize the results of the previous theorem to the testing of normal means (a Bernoulli example

is presented in the Section 3.9.7). In Example 3.1 we saw that in the Gaussian case Cj = Ij/4 for every

j ∈ [J ], which implies DA(k) = 4B(k) for every A ⊂ [J ], and by Theorem 3.4 it follows that

nNP (k, α) ∼ 4N∗A(k, α) ∀ A ⊂ [J ].
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That is, for small values of α, the ESS increases by roughly a factor of 4 when utilizing the MNP rule, instead

of the proposed asymptotically optimal Sum-Intersection rule. From Theorem 3.4 it also follows that for

any A ⊂ [J ] we have

lim inf
α→0

n∗(k, α)

N∗A(k, α)
≥ 4B(k)

B(2k − 1)
.

If in addition the hypotheses have identical information numbers, i.e., (3.11) holds, this lower bound is

always larger than 2, which means that any fixed-sample size scheme will require at least twice as many

observations as the Sum-Intersection rule, for small error probabilities.

3.4 Generalized familywise error rates of both kinds

In this section we study Problem 3.2. While we follow similar ideas and the results are of similar nature as

in the previous section, the proposed procedure and the proof of its asymptotic optimality turn out to be

much more complicated.

To describe the proposed multiple testing procedure, we first need to introduce some additional notations.

Specifically, we denote by

0 < λ̂1(n) ≤ . . . ≤ λ̂p(n)(n)

the order statistics of positive LLRs at time n, {λj(n) : λj(n) > 0, j ∈ [J ]}, where p(n) is the number of

strictly positive LLRs at time n. Similarly, we denote by

0 ≤ λ̂
1
(n) ≤ . . . ≤ λ̂

q(n)
(n)

the order statistics of the absolute values of non-positive LLRs at time n, i.e., {−λj(n) : λj(n) ≤ 0, j ∈ [J ]},

where q(n) := J − p(n). We also adopt the following convention:

λ̂j(n) =∞ if j > p(n), and λ̂
j
(n) =∞ if j > q(n). (3.22)

Moreover, we use the following notation

λîj(n)(n) := λ̂j(n), ∀ j ∈ {1, . . . , p(n)},

λîj(n)(n) := −λ̂
j
(n), ∀ j ∈ {1, . . . , q(n)},
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for the indices of streams with positive and non-positive LLRs at time n, respectively. Thus, stream î1(n)

(resp. î1(n)) has the least significant positive (resp. negative) LLR at time n.

3.4.1 Asymmetric Sum-Intersection rule

We begin by modifying the stopping rule, but not the decision rule, of the Sum-Intersection procedure

(Subsection 3.3.1), in order to account for the asymmetry in the error metric that we consider in this

section. This suggests a procedure δ0(a, b) = (τ0, D0) that stops as soon as the following two conditions are

satisfied simultaneously: (i) the sum of the k1 least significant positive LLRs is larger than b > 0, and (ii)

the sum of the k2 least significant negative LLRs is smaller than −a < 0. Formally,

τ0 := inf

n ≥ 1 :

k1∑
j=1

λ̂j(n) ≥ b and

k2∑
j=1

λ̂
j
(n) ≥ a

 ,

D0 :=
{
j ∈ [J ] : λj(τ0) > 0

}
=
{̂
i1(τ0), . . . , îp(τ0)(τ0)

}
,

(3.23)

Similarly to the Sum-Intersection rule, this procedure, to which we refer as asymmetric Sum-Intersection

rule, does not require strong evidence from every individual stream in order to terminate sampling. Indeed,

upon stopping there may be insufficient evidence for the hypotheses that correspond to the k1 − 1 least

significant positive statistics and the k2− 1 least significant negative statistics, making them the anticipated

false positives and false negatives, respectively, which we are allowed to make.

We will see that while the asymmetric Sum-Intersection rule can control generalized familywise error

rates of both types, it will not in general be asymptotically optimal. To understand why this is the case, let

A denote true subset of streams with signals and suppose that there is a subset B of ` streams with noise,

i.e., B ⊂ Ac with |B| = `, such that ` < k1 and

Ij1 � Ii10 � Ii20 , ∀ j ∈ A, i1 ∈ Ac \B, i2 ∈ B,

i.e., the hypotheses in streams with signal are much easier than in streams with noise, and the hypotheses

in B are much harder than in the other streams with noise. In this case, the first stopping requirement in

τ0 will be easily satisfied, but not the second one, since the streams in B will slow down the growth of the

sum of the k2 least significant negative LLRs.

These observations suggest that, in the above scenario, the performance of δ0 can be improved if we

essentially “give up” the testing problems in B, in the sense that we presume that we make ` < k1 false

positives for testing problems in B. This can be achieved by (i) ignoring the ` least significant negative
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statistics in the second stopping requirement of τ0, and asking the sum of the next k2 least significant

negative statistics to be small upon stopping, and (ii) modifying the decision rule to reject the nulls not

only in streams with positive LLR, but also in the ` streams with the least significant negative LLRs upon

stopping.

However, if we modify the decision rule in this way, we have spent from the beginning ` of the k1−1 false

positives we are allowed to make. This implies that we need to also modify the first stopping requirement

in τ0 and ask the sum of the k1 − ` least significant positive LLRs to be large upon stopping.

If we denote by δ̂` := (τ̂`, D̂`) the procedure that incorporates the above modifications, then

τ̂` := inf

n ≥ 1 :

k1−`∑
j=1

λ̂j(n) ≥ b and

`+k2∑
j=`+1

λ̂
j
(n) ≥ a

 ,

D̂` := {̂i1(τ̂`), . . . , îp(τ̂`)(τ̂`)}
⋃
{̂i1(τ̂`), . . . , î`(τ̂`)},

where we omit the dependence on a, b in order to lighten the notation.

By the same token, if there are ` < k2 streams with signal in which the testing problems are much harder

than in other streams, it is reasonable to expect that δ0 may be outperformed by a procedure δ̂` := (τ̂ `, D̂`),

where

τ̂ ` := inf

n ≥ 1 :

`+k1∑
i=`+1

λ̂i(n) ≥ b and

k2−`∑
j=1

λ̂
j
(n) ≥ a


D̂` := {̂i`+1(τ̂ `), . . . , îp(τ̂`)(τ̂ `)}.

Figure 3.1 provides a visualization of these stopping rules.

Figure 3.1: Set J = 7, k1 = 3, k2 = 2. Suppose at time n, p(n) = 4, q(n) = 3. Each rule stops when the
sum of the terms with solid underline exceeds b, and at the same time the sum of the terms with dashed
underline is below −a. Upon stopping, the null hypothesis for the streams in the bracket are rejected. Note
that by convention (3.22), λ̌4(n) =∞, which makes the stopping rule τ̂2 have only one condition to satisfy.
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3.4.2 The Leap rule

The previous discussion suggests that the asymmetric Sum-Intersection rule, defined in (3.23), may be

significantly outperformed by some of the procedures, {δ̂`, 0 ≤ ` < k1} and {δ̂`, 1 ≤ ` < k2}, under some

signal configurations, when the multiple testing problem is asymmetric and/or inhomogeneous. In this

case, we propose combining the above procedures, i.e., stop as soon as any of them does so, and use the

corresponding decision rule upon stopping. If multiple stopping criteria are satisfied at the same time, we

then use the decision rule that rejects the most null hypotheses.

Formally, the proposed procedure δL := (TL, DL) is defined as follows:

TL := min

{
min

0≤`<k1

τ̂`, min
1≤`<k2

τ̂ `

}
,

DL :=

 ⋃
0≤`<k1,τ̂`=TL

D̂`

 ⋃  ⋃
1≤`<k2,τ̂`=TL

D̂`

 ,

(3.24)

and we refer to it as “Leap rule”, because δ̂` (resp. δ̂`) “leap” across the ` least significant negative (resp.

positive) LLRs.

3.4.3 Error control of the Leap rule

We now show that the Leap rule can control generalized familywise error rates of both types.

Theorem 3.5. Assume (3.5) holds. For any α, β ∈ (0, 1) we have that δL ∈ ∆k1,k2
(α, β) when the thresholds

are selected as follows:

a = | log(β)|+ log(2k2CJk2
), b = | log(α)|+ log(2k1CJk1

). (3.25)

Proof. The proof can be found in Section 3.10.1.

The above threshold values are sufficient for establishing the asymptotic optimality of the Leap rule,

but may be conservative in practice. Thus, as in the previous section, we recommend using simulation to

find the thresholds that attain the target error probabilities. This means simulating for every A ⊂ [J ] the

error probabilities of the Leap rule, PA(|DL(a, b) \A| ≥ k1) and PA(|A \DL(a, b)| ≥ k2), for various pairs of

thresholds, a and b, and selecting the values for which the maxima (with respect to A) of the above error

probabilities match the nominal levels, α and β, respectively.

As in the previous section, this task is facilitated when the multiple testing problem has a special

structure. Specifically, when it is symmetric and the user-specified parameters are selected so that α = β

48



and k1 = k2, i.e., when condition (3.12) holds, then we can select without any loss of generality the thresholds

to be equal (a = b). If the multiple testing problem is homogeneous, the discussion following Theorem 3.1

also applies here.

3.4.4 Asymptotic optimality

For any B ⊂ [J ] and 1 ≤ ` ≤ u ≤ J , we denote by

I(1)
1 (B) ≤ . . . ≤ I(|B|)

1 (B)

the increasingly ordered sequence of Ij1 , j ∈ B, and by

I(1)
0 (B) ≤ . . . ≤ I(|B|)

0 (B)

the increasingly ordered sequence of Ij0 , j ∈ B, and we set

D1(B; `, u) :=

u∑
j=`

I(j)
1 (B), where I(j)

1 (B) =∞ for j > |B|,

D0(B; `, u) :=

u∑
j=`

I(j)
0 (B), where I(j)

0 (B) =∞ for j > |B|.

The following lemma provides an asymptotic upper bound on the expected sample size of the stopping

times that compose the stopping time of the Leap rule.

Lemma 3.1. Assume (3.8) holds. For any A ⊂ [J ] we have as a, b→∞

EA[τ̂`] ≤ max

{
b(1 + o(1))

D1(A; 1, k1 − `)
,

a(1 + o(1))

D0(Ac; `+ 1, `+ k2)

}
, 0 ≤ ` < k1,

EA[τ̂ `] ≤ max

{
b(1 + o(1))

D1(A; `+ 1, `+ k1)
,

a(1 + o(1))

D0(Ac; 1, k2 − `)

}
, 0 ≤ ` < k2.

Proof. The proof can be found in Section 3.10.2.

If thresholds are selected according to (3.25), then the upper bounds in the previous lemma take the

following form

L̂A(`;α, β) := max

{
| logα|

D1(A; 1, k1 − `)
,

| log β|
D0(Ac; `+ 1, `+ k2)

}
for ` < k1,

L̂A(`;α, β) := max

{
| logα|

D1(A; `+ 1, `+ k1)
,

| log β|
D0(Ac; 1, k2 − `)

}
for ` < k2,
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and from the definition of Leap rule in (3.24) it follows that as α, β → 0 we have EA[TL] ≤ LA(k1, k2, α, β) (1+

o(1)), where

LA(k1, k2, α, β) := min

{
min

0≤`<k1

L̂A(`;α, β) , min
0≤`<k2

L̂A(`;α, β)

}
. (3.26)

In the next theorem we show that it is not possible to achieve a smaller ESS, to a first-order asymptotic

approximation as α, β → 0, proving in this way the asymptotic optimality of the Leap rule.

Theorem 3.6. Assume (3.8) holds and that the thresholds in the Leap rule are selected such that δL ∈

∆k1,k2
(α, β) and a ∼ | log(β)|, b ∼ | log(α)|, e.g. according to (3.25). Then, for any A ⊂ [J ] we have as

α, β → 0,

EA [TL] ∼ LA(k1, k2, α, β) ∼ N∗A(k1, k2, α, β).

Proof. In view of the discussion prior to the theorem, it suffices to show that for any A ⊂ [J ] we have as

α, β → 0 that

N∗A(k1, k2, α, β) ≥ LA(k1, k2, α, β) (1− o(1)).

For the proof of this asymptotic lower bound we employ similar ideas as in the proof of Theorem 3.2 in the

previous section. The change-of-measure argument is more complicated now, due to the interplay of the two

kinds of error. We carry out the proof in Section 3.10.4.

Remark 3.4. When k1 = k2 = 1, the asymptotic optimality of the Intersection rule was established in [66]

only in the i.i.d. case. Since the Leap rule coincides with the Intersection rule when k1 = k2 = 1, Theorem

3.6 generalizes this result in [66] beyond the i.i.d. case.

We motivated the Leap rule by the inadequacy of the asymmetric Sum-Intersection rule, δ0, in the

case of asymmetric and/or inhomogeneous testing problems. In the following corollary we show that δ0 is

asymptotically optimal when (i) condition (3.11) holds, which is the case when the multiple testing problem

is symmetric and homogeneous, and also (ii) the user-specified parameters are selected in a symmetric way,

i.e., when (3.12) holds. In the same setup we establish the asymptotic optimality of the Intersection rule,

δI , defined in (3.10).

Corollary 3.2. Suppose (3.8), (3.11), (3.12) hold and consider the asymmetric Sum-Intersection rule δ0(b, b)

with b = bα and the Intersection rule δI(b, b) with b = bα/k1, where ba is defined in (3.19) with k = k1. Then
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δ0, δI ∈ ∆k1,k1(α, α), and for any A ⊂ [J ] we have as α→ 0 that

EA [τ0] ∼ EA [TI ] ∼
| log(α)|
k1I

∼ N∗A(k1, k1, α, α).

Proof. The proof can be found in Section 3.10.5.

Remark 3.5. In Section 3.5.2 we will illustrate numerically that when condition (3.11) is violated, both δ0

and δI fail to be asymptotically optimal.

3.4.5 Fixed-sample size rules

We now focus on the i.i.d. case (3.15) and consider procedures that stop at a deterministic time, which is

selected to control the generalized familywise error rates.

For simplicity of presentation, we restrict ourselves to homogeneous testing problems, i.e., there are

densities f0 and f1 such that

f j0 = f0, f j1 = f1 for every j ∈ [J ]. (3.27)

This assumption allows us to omit the dependence on the stream index j and write I0 := Ij0 , I1 := Ij1

and Φ := Φj , where Φj is defined in (3.17). Moreover, we can apply the MNP rule, (3.14), without loss of

generality, with the same threshold for each stream.

We further assume that user-specified parameters are selected as follows

k1 = k2, α = βd for some d > 0, (3.28)

and that for each d > 0 there exists some hd ∈ (−I0, I1) such that

Φ(hd)/d = Φ(hd)− hd. (3.29)

When d = 1, condition (3.28) reduces to (3.12) and hd is equal to 0. However, when d 6= 1, we allow for an

asymmetric treatment of the two kinds of error.

Theorem 3.7. Consider the multiple testing problem (3.27) and assume that the Kullback-Leibler numbers

in (3.16) are positive and finite. Further, assume that (3.28) and (3.29) hold. Then as β → 0,

d (1− o(1))

(2k1 − 1)Φ(hd)
≤ n∗(k1, k1, β

d, β)

| log(β)|
≤ n̂NP (k1, k1, β

d, β)

| log(β)|
∼ d

k1Φ(hd)
.
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Proof. The proof is similar to that of Theorem 3.4, but it requires a generalization of Chernoff’s lemma [20,

Corollary 3.4.6] to account for the asymmetry of the two kinds of error. This generalization is presented in

Lemma 3.15 and more details can be found in Section 3.10.6.

Theorem 3.7, in conjunction with Theorem 3.6, allows us to quantify the performance loss that is induced

by stopping at a deterministic time. To be more specific, we specialize the comparison in the case of testing

the normal means (Example 3.1). By (3.18) we have I = I1 = I0 and that for any d ≥ 1

hd =

√
d− 1√
d+ 1

I, Φ(hd) =
d

(1 +
√
d)2
I,

and by Theorem 3.6 it follows that as β → 0,

N∗A(k1, k1, β
d, β) ∼ LA(k1, k1, β

d, β) ≤ L̂A(0;βd, β) =


| log(β)|
k1I , if |A| < k1

d| log(β)|
k1I , if |A| ≥ k1.

When in particular d = 1, for any A ⊂ [J ] we have

2N∗A(k1, k1, β, β)(1− o(1)) ≤ n∗(k1, k1, β, β)

≤ n̂NP (k1, k1, β, β) ∼ 4N∗A(k1, k1, β, β),

which agrees with the corresponding findings in Subsection 3.3.5.

3.5 Simulations for generalized familywise error rates

In this section we present two simulation studies that complement our asymptotic optimality theory in

Section 3.4 for procedures that control generalized familywise error rates. The goal of the first study is to

compare the proposed Leap rule (3.24) with the Intersection rule (3.10) and the asymmetric Sum-Intersection

rule (3.23), in a symmetric and homogeneous setup where conditions (3.11) and (3.12) hold and all three

procedures are asymptotically optimal. The goal of the second simulation study is to compare the same

procedures when condition (3.11) is slightly violated, and only the Leap rule enjoys the asymptotic optimality

property.

In both studies we consider the testing of normal means (Example 3.1), with σj = 1 for every j ∈ [J ].

This is a symmetric multiple testing problem, where the Kullback-Leibler information in the j-th testing

problem is Ij = µ2
j/2. Moreover, we assume that condition (3.12) holds, i.e., α = β and k1 = k2. This

52



implies that we can set the thresholds in each sequential procedure to be equal, i.e., a = b, and as a result

the two types of generalized familywise error rates will be the same. Finally, in both studies we include the

performance of the fixed-sample size multiple Neyman-Pearson (MNP) rule (3.14), for which the choice of

thresholds depends crucially on whether the problem is homogeneous or not.

In what follows, the error probability (Err) means the generalized familywise error rate of false posi-

tives (3.3), i.e., the maximum probability of k1 false positives, with maximum being taken over all signal

configurations. Thus, Err does not depend on the true subset of signals A ⊂ [J ].

3.5.1 Homogeneous case

In the first simulation study we set µj = 0.25 for each j ∈ [J ]. In this homogeneous setup, the expected

sample size (ESS) of all procedures under consideration depend only on the number of signals, and we can

set the thresholds in the MNP rule, defined in (3.14), to be equal to 0. Moreover, it suffices to study the

performance when the number of signals is no more than J/2. We consider J = 100 in Figure 3.2 and J = 20

in Figure 3.3.

In Figure 3.2a, we fix k1 = 4 and evaluate the ESS of the Leap rule for four different cases regarding the

number of signals. We see that, for any given Err, the smallest possible ESS is achieved in the boundary

case of no signals (|A| = 0). This is because some components in the Leap rule only have one condition to

be satisfied in the boundary cases (e.g. τ̂2 in Figure 3.1).

In Figure 3.2b, we fix the number of signals to be |A| = 50 and evaluate the Leap rule for different

values of k1. We observe that there are significant savings in the ESS as k1 increases and more mistakes are

tolerated.

In Figure 3.2c and 3.2d, we fix k1 = 4 and compare the four rules for |A| = 0 and 50, respectively.

In this symmetric and homogeneous setup, where (3.11) and (3.12) both hold, we have shown that all

three sequential procedures are asymptotically optimal. Our simulations suggest that in practice the Leap

rule works better when the number of signals, |A|, is close to 0 or J , but may perform slightly worse than

the asymmetric Sum-Intersection rule, δ0, when |A| is close to J/2.

In Figure 3.2c, 3.2d and 3.3a, we also compare the performance of the Leap rule with the MNP rule.

Further, in Figure 3.2e, 3.2f, 3.3b and 3.3c, we show the sampling distribution of the stopping time of the

Leap rule at particular error levels. From these figures we can see that the best-case scenario for the MNP

is when both the number of hypotheses, J , and the error probabilities, Err, are large. Note that this does

not contradict our asymptotic analysis, where J is fixed and we let Err go to 0.
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(a) Leap rule: k1 = 4
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(b) Leap rule: |A| = 50
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(c) k1 = 4, |A| = 0
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(d) k1 = 4, |A| = 50
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(e) k1 = 4, |A| = 0,Err = 5%
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Figure 3.2: Homogeneous case: J = 100, k1 = k2. In (a)-(d), the x-axis is | log10(Err)| and the y-axis is
the ESS under PA. In (e) and (f) are the sample distribution of the stopping time of the Leap rule with
Err = 5%.
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(b) k1 = 2, |A| = 10,Err = 5%
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Figure 3.3: Homogeneous case: J = 20, k1 = 2. In (a), the x-axis is | log10(Err)| and the y-axis is the ESS
under PA. In (b) and (c) are the sampling distribution of the stopping time of the Leap rule with Err = 5%
and 1%.
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3.5.2 Non-homogenous case

In the second simulation study we set J = 10, µj = 1/6, j = 1, 2, µj = 1/2, j ≥ 3, so that the first two

hypotheses are much harder than others. Specifically, Ij = 1/72 for j = 1, 2, and Ij = 1/8 for j ≥ 3.

When the true subset of signals is A∗ = {6, · · · , 10}, the optimal asymptotic performance, (3.26), is equal

to 8| log(Err)|. In Figure 3.4a, we plot the ESS against | log10(Err)|, and the ratio of ESS over 8| log(Err)|

in Figure 3.4b. For the (asymptotically optimal) Leap rule, this ratio tends to 1 as α→ 0. In contrast, the

other rules have a different “slope” from the Leap rule in Figure 3.4a, which indicates that they fail to be

asymptotically optimal in this context.

Finally, we note that in such a non-homogeneous setup, the choice of thresholds for the MNP rule (3.14)

is not obvious. We found that instead of setting hj = 0 for every j ∈ [J ], it is much more efficient to take

advantage of the flexibility of generalized familywise error rates, as we did in the construction of the Leap

rule in Subsection 3.4.2, and set h1 = −∞, h2 = ∞ and hj = 0 for j ≥ 3. This choice “gives up” the first

two “difficult” streams by always rejecting the null in the first one and accepting it in the second. The error

constraints can then still be met as long as we do not make any mistakes in the remaining “easy” streams.

In fact, we see that while the MNP rule behaves significantly worse than the asymptotically optimal Leap

rule, it performs better than the Intersection rule, which “insists” on collecting strong enough evidence from

each individual stream.
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Figure 3.4: Non-homogeneous case: J = 10, k1 = k2 = 2, A∗ = {6, · · · , 10}. The x-axis in both graphs is
| log10(Err)|. The y-axis in (a) is the ESS under PA∗ , and in (b) is the ratio of the ESS over 8| log(Err)|.
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3.6 Extension to composite hypotheses

We now extend the setup introduced in Section 3.2, allowing both the null and the alternative hypothesis

in each local testing problem to be composite. Thus, for each j ∈ [J ], the distribution of Xj , the sequence

of observations in the j-th stream, is now parametrized by θj ∈ Θj , where Θj is a subset of some Euclidean

space, and the hypothesis testing problem in the j-th stream becomes

Hj0 : θj ∈ Θj
0 versus Hj1 : θj ∈ Θj

1,

where Θj
0 and Θj

1 are two disjoint subsets of Θj . When A ⊂ [J ] is the subset of streams in which the

alternative is correct, we denote by ΘA the subset of the parameter space Θ := Θ1 × . . . × ΘJ that is

compatible with A, i.e.,

ΘA := {(θ1, . . . , θJ) ∈ Θ : θj ∈ Θj
1 ⇔ j ∈ A}.

We denote by Pjθj the distribution of the j-th stream when the value of its local parameter is θj . Moreover,

we denote by PA,θ the underlying probability measure when the subset of signals is A and the parameter

is θ = (θ1, . . . , θJ) ∈ ΘA, and by EA,θ the corresponding expectation. Due to the independence across

streams, we have PA,θ = P1
θ1 ⊗ . . .⊗ PJθJ .

Our presentation in the case of composite hypotheses will focus on the control of generalized familywise

error rates; the corresponding treatment of the generalized mis-classification rate will be similar. Thus,

given k1, k2 ≥ 1 and α, β ∈ (0, 1), the class of procedures of interest now is:

∆comp
k1,k2

(α, β) := {(T,D) : max
A, θ

PA,θ(|D \A| ≥ k1) ≤ α and

max
A, θ

PA,θ(|A \D| ≥ k2) ≤ β},

and the goal is the same as the one in Problem 3.2 with N∗A(k1, k2, α, β) being replaced by

N∗A,θ(k1, k2, α, β) := inf
(T,D)∈∆comp

k1,k2
(α,β)

EA,θ[T ],

and the asymptotic optimality being achieved for every A ⊂ [J ] and θ ∈ ΘA.

3.6.1 Leap rule with adaptive log-likelihood ratios

The proposed procedure in this setup is a modification of the Leap rule (3.24), where the local LLR statistics

are replaced by statistics that account for the composite nature of the two hypotheses. To be more specific,
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for every j ∈ [J ] and n ∈ N we denote by `j(n, θj) the log-likelihood function (with respect to some σ-finite

measure νjn) in the j-th stream based on the first n observations, i.e.,

`j(n, θj) := `j(n− 1, θj) + log
(
pjθj (X

j(n) |F jn−1)
)

; `j(0, θj) := 0,

where pjθj (X
j(n) |F jn−1) is the conditional density of Xj(n) given the previous n− 1 observations in the j-th

stream. Moreover, for every stream j ∈ [J ] and time n ∈ N we denote by `ji (n) the corresponding generalized

log-likelihood under Hj
i, i.e.,

`ji (n) := sup
{
`j(n, θj) : θj ∈ Θj

i

}
, i = 0, 1.

Further, at each n ∈ N, we select an Fn-measurable estimator of θ, θ̂n = (θ̂1
n, . . . , θ̂

J
n) ∈ Θ, and define the

adaptive log-likelihood statistic for the j-th stream as follows:

`j∗(n) := `j∗(n− 1) + log

(
pj
θ̂jn−1

(Xj(n) |F jn−1)

)
; `j∗(0) = 0, (3.30)

where θ̂0 := (θ̂1
0, . . . , θ̂

J
0 ) ∈ Θ is some deterministic initialization. The proposed procedure in this context

is the Leap rule (3.24), where each LLR statistic λj(n) is replaced by the following adaptive log-likelihood

ratio:

λj∗(n) :=


`j∗(n)− `j0(n), if `j0(n) < `j1(n) and `j0(n) < `j∗(n)

−(`j∗(n)− `j1(n)), if `j1(n) < `j0(n) and `j1(n) < `j∗(n)

undefined, otherwise ,

(3.31)

with the understanding that there is no stopping at time n if λj∗(n) is undefined for some j. Clearly, large

positive values of λj∗ support Hj
1, whereas large negative values of λj∗ support Hj

0. We denote this modified

version of the Leap rule by δ∗L(a, b) = (T ∗L, D
∗
L).

In the next subsection we establish the asymptotic optimality of δ∗L under general conditions. In Sec-

tion 3.11.5 we discuss in more detail the above adaptive statistics, as well as other choices for the local

statistics. In Section 3.11.4 we demonstrate with a simulation study that if we replace the LLR λj by the

adaptive statistic λj∗ (3.31) in the Intersection rule (3.10) and the asymmetric Sum-Intersection rule (3.23),

then these procedures fail to be asymptotically optimal even in the presence of special structures. Finally,

we should point out that the gains over fixed-sample size procedures will also be larger compared to the case
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of simple hypotheses, as sequential methods are, by definition, adaptive to the true parameter.

3.6.2 Asymptotic optimality

First of all, for each j ∈ [J ] we generalize condition (3.7) and assume that for any distinct θj , θ̃j ∈ Θj there

exists a positive number Ij(θj , θ̃j) such that

1

n

(
`j(n, θj)− `j(n, θ̃j)

) Pj
θj

completely
−−−−−−−−−−→

n→∞
Ij(θj , θ̃j). (3.32)

Second, we require that the null and alternative hypotheses in each stream are separated, in the sense

that if for each j ∈ [J ] and θj ∈ Θj we define

Ij0(θj) := inf
θ̃j∈Θj1

Ij(θj , θ̃j) and Ij1(θj) := inf
θ̃j∈Θj0

Ij(θj , θ̃j), (3.33)

then we assume that

Ij0(θj) > 0 ∀ θj ∈ Θj
0 and Ij1(θj) > 0 ∀ θj ∈ Θj

1. (3.34)

Finally, we assume that for each j ∈ [J ] and ε > 0,

∞∑
n=1

Pjθj

(
`j∗(n)− `j1(n)

n
− Ij0(θj) < −ε

)
<∞ for every θj ∈ Θj

0,

∞∑
n=1

Pjθj

(
`j∗(n)− `j0(n)

n
− Ij1(θj) < −ε

)
<∞ for every θj ∈ Θj

1.

(3.35)

We now state the main result of this section, the asymptotic optimality of δ∗L under the above conditions.

The proof is presented in Section 3.11.

Theorem 3.8. Assume (3.32), (3.34) and (3.35) hold. Further, assume the thresholds in the Leap rule are

selected such that δ∗L(a, b) ∈ ∆comp
k1,k2

(α, β) and a ∼ | log(β)|, b ∼ | log(α)|, e.g. according to (3.25). Then, for

any A ⊂ [J ] and θ ∈ ΘA, we have as α, β → 0,

EA,θ [TL] ∼ LA,θ(k1, k2, α, β) ∼ N∗A,θ(k1, k2, α, β),

where LA,θ(k1, k2, α, β) is a quantity defined in Section 3.11.1 that characterizes the asymptotic optimal

performance.
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While conditions (3.32) and (3.34) are easily satisfied and simple to check, the one-sided complete con-

vergence condition (3.35) is not as apparent. It is known [71, p. 278-280] that when θ̂jn is selected to be

the Maximum Likelihood estimator (MLE) of θj , condition (3.35) is satisfied when testing a normal mean

with unknown variance, as well as when testing the coefficient of a first-order autoregressive model. In

Section 3.12 we further show that condition (3.35) is satisfied when (i) the data in each stream are i.i.d.

with some multi-parameter exponential family distribution, and (ii) the null and the alternative parameter

spaces are compact.

3.7 Conclusion

In this Chapter we have considered the sequential multiple testing problem under two error metrics. In

the first one, the goal is to control the probability of at least k mistakes, of any kind. In the second one,

the goal is to control simultaneously the probabilities of at least k1 false positives and at least k2 false

negatives. Assuming that the data for the various hypotheses are obtained sequentially in independent

streams, we characterized the optimal performance to a first-order asymptotic approximation as the error

probabilities vanish, and proposed the first asymptotically optimal procedure for each of the two problems.

Procedures that are asymptotically optimal under classical error control (k = 1, k1 = k2 = 1) were found to

be suboptimal under generalized error metrics apart from very special cases. Moreover, in the case of i.i.d.

data streams, we quantified the asymptotic savings in the expected sample size relative to fixed-sample size

procedures.

There are certain questions that remain open. First, we conducted a first-order asymptotic analysis,

ignoring higher-order terms in the approximation to the optimal performance. The latter however appears

to be non-negligible in practice(see Figure 3.4b). Thus, it is an open problem to obtain a more precise

characterization of the optimal performance, as well as to examine whether the proposed rules enjoy a

stronger optimality property. Second, the number of streams is treated as constant in our asymptotic

analysis, but can be very large in practice. It is interesting to consider an enhanced asymptotic regime, where

the number of streams also goes to infinity as the error probabilities vanish. Third, although simulation

techniques can be used to determine threshold values that guarantee the error control, it is desirable to have

closed-form expressions for less conservative threshold values.

There are several generalizations. One direction is to relax the assumption that the streams corresponding

to the different testing problems are independent. Another direction is to allow for early stopping in some

streams, in which case the goal is to minimize the total number of observations in all streams. Finally, it is
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interesting to study FDR-type error control.

3.8 Simulations for generalized mis-classification rate

In this section, we present two simulation studies that complement our asymptotic optimality theory for

procedures that control the generalized mis-classification rate (Section 3.3). Specifically, our goal is to

compare the proposed Sum-Intersection rule and the Intersection rule in two setups. The first one is a

symmetric and homogeneous setup, in which (3.11) holds and both rules are asymptotically optimal. The

second one is a non-homogeneous setup, where the condition (3.11) is (slightly) violated and the Intersection

rule fails to be asymptotically optimal. In each setup, we also include the performance of the multiple

Neyman-Pearson rule (MNP) (3.14), which is a fixed-sample size procedure.

For these comparisons, we consider the testing of normal means, introduced in Example 3.1. As discussed

in Example 3.1, this problem is symmetric. As a result, we set h = 0 in the MNP rule (3.14), and further

the performance of each rule under consideration is the same for any subset of signals. Thus we do not need

to specify the actual subset of signals.

3.8.1 Homogeneous case

We set in Example 3.1 µj = 0.25, σj = 1 for j ∈ [J ]. We consider J = 100 in Figure 3.5 and J = 20 in

Figure 3.6.

In Figure 3.5a, we study the performance of the Sum-Intersection rule for different values of k. We

observe that there are significant savings in the ESS as k increases and more mistakes are tolerated. In

Figure 3.5b, we compare the three rules for k = 4. Although both sequential rules enjoy the asymptotic

optimality property in this setup, we observe that the Sum-Intersection rule outperforms the Intersection

rule in terms of ESS.

In Figure 3.5b and 3.6a, we also compare the Sum-Intersection rule with the MNP rule. Further, in

Figure 3.5c, 3.6b and 3.6c, we show the sampling distribution of the Sum-Intersection at particular error

levels. From these figures, we observe that the advantage of sequential procedures over the MNP rule is

significant if J is not too large or Err is small.
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Figure 3.5: Homogeneous case: J = 100. In (a) and (b), the x-axis is | log10(Err)| and the y-axis represents
the ESS. In (c), we study the sample distribution of the stopping time of the Sum-Intersection rule with
Err = 5%.
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Figure 3.6: Homogeneous case: J = 20. In (a), the x-axis is | log10(Err)| and the y-axis represents the ESS.
In (b) and (c), we study the sample distribution of the stopping time of the Sum-Intersection rule with
Err = 5% and 1%.
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3.8.2 Non-homogeneous case

Second, we set J = 10, k = 2 and

f j0 = N (0, 1) ∀ j ∈ [J ], f j1 =


N (1/6, 1) if j = 1

N (1/2, 1) if j ≥ 2

.

In this second setup, we have injected a slight violation of homogeneity. All testing problems are identical

apart from the first one, which is much harder than the other ones. Indeed, Ij0 = Ij1 = Ij , where Ij = 1/72

for j = 1, and Ij = 1/8 for j ≥ 2. Since k = 2, the optimal asymptotic performance in this problem is

determined by the two most difficult hypotheses and is equal to 7.2| log(Err)|. In Figure 3.7a we plot the

expected sample size(ESS) against | log10(Err)| and in Figure 3.7b we plot the ratio of ESS over 7.2| log(Err)|.

We observe that this ratio tends to 1 for the asymptotically optimal Sum-Intersection rule, whereas this

is not the case for the other two rules. In particular, as predicted by Theorem 3.4, the ratio for the MNP

rule tends to 4.
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Figure 3.7: Non-homogeneous case: J = 10, k = 2. The x-axis in both graphs is | log10(Err)|. The y-axis is
the corresponding ESS in (a), and is the ratio of the ESS over 7.2| log(Err)| in (b).

3.9 Proofs regarding the generalized mis-classification rate

3.9.1 Proofs of Theorem 3.1

Proof. It suffices to show that for any b > 0 and A ⊂ [J ] we have

PA(|A 4 DS(b)| ≥ k) ≤ CJk e−b.
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Fix A ⊂ [J ] and b > 0. Observe that the event {|A 4 DS | ≥ k} occurs if and only if there exist B1 ⊂ A and

B2 ⊂ Ac such that |B1|+ |B2| = k and the following event occurs:

Γ(B1, B2) :=
{
Di
S = 0, Dj

S = 1, ∀ i ∈ B1, j ∈ B2

}
.

Since there are CJk such pairs, due to Boole’s inequality it suffices to show that the probability of each of

these events is bounded by e−b. To this end, fix B1 ⊂ A,B2 ⊂ Ac such that |B1| + |B2| = k and consider

the set C = (A \B1) ∪B2. Then, with the change of measure PA → PC , we have

PA(Γ(B1, B2)) = EC
[
exp

{
λA,C(TS)

}
; Γ(B1, B2)

]
. (3.36)

For i ∈ B1 we have Di
S = 0, which implies λi(TS) ≤ 0, and for j ∈ B2 we have Dj

S = 1, which implies

λj(TS) > 0. Thus, on the event Γ(B1, B2),

λA,C(TS) =
∑
i∈B1

λi(TS)−
∑
j∈B2

λj(TS)

= −
∑
i∈B1

|λi(TS)| −
∑
j∈B2

|λj(TS)| ≤ −
k∑
i=1

λ̃i(TS) ≤ −b,
(3.37)

where the first equality is due to (2.3), the first inequality follows from the definition of λ̃i’s, and the second

from the definition of the stopping time TS . Thus, the proof is complete in view of (3.36).

3.9.2 An important Lemma

The following lemma is crucial in establish Theorem 3.2.

Lemma 3.2. Let A,B ⊂ [J ]. Then there exists B∗ ⊂ [J ] such that

(i) B /∈ Uk(B∗), (ii) IA,B
∗
≤ DA(k).

To show Lemma 3.2, we start with a lemma about sets.

Lemma 3.3. Let A,B,Γ ⊂ [J ]. There exists B∗ ⊂ [J ] such that

A 4 B∗ ⊂ Γ ⊂ B 4 B∗
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Proof. Define the following disjoint sets:

B1 = B ∩ Γ, B2 = Bc ∩ Γ, A1 = A ∩ Γc, A2 = Ac ∩ Γc

Clearly, Γ = B1 ∪B2, and Γc = A1 ∪A2. Let B∗ = B2 ∪A1.

On one hand, if j ∈ B1, then j ∈ B and j 6∈ B∗; if j ∈ B2, then j 6∈ B and j ∈ B∗. It implies

Γ = B1 ∪B2 ⊂ B 4 B∗.

On the other, if j ∈ A1, then j ∈ A and j ∈ B∗; if j ∈ A2, then j 6∈ A and j 6∈ B∗. Thus Γc = A1 ∪A2 ⊂

(A 4 B∗)c, which implies A 4 B∗ ⊂ Γ.

Now we are ready to prove Lemma 3.2.

Proof. Let C∗ 6∈ Uk(A) such that DA(k) = IA,C∗ and set Γ = A 4 C∗. Then, clearly |Γ| ≥ k. By Lemma

3.3, there exists a set B∗ ⊂ [J ] such that

A 4 B∗ ⊂ Γ = A 4 C∗ ⊂ B 4 B∗.

From the second inclusion it follows that |B 4 B∗| ≥ |Γ| ≥ k, which proves (i). From the first inclusion it

follows that A \B∗ ⊂ A \ C∗ and B∗ \A ⊂ C∗ \A, therefore from (2.3) we conclude that

IA,B
∗

=
∑

i∈A\B∗
Ii1 +

∑
j∈B∗\A

Ij0 ≤
∑

i∈A\C∗
Ii1 +

∑
j∈C∗\A

Ij0 = IA,C
∗
,

which proves (ii).

3.9.3 Proof of Theorem 3.2

Proof. Fix A ⊂ [J ], k ∈ [J ], and set

`α := | log(α)|/DA(k), α ∈ (0, 1).

By Markov’s inequality, for any stopping time T , α ∈ (0, 1) and q > 0,

EA[T ] ≥ q`α PA(T ≥ q`α).
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Thus, it suffices to show for every q ∈ (0, 1) we have

lim inf
α→0

inf
(T,D)∈∆k(α)

PA(T ≥ q`α) ≥ 1, (3.38)

as this will imply lim infα→0N
∗
A(k, α)/`α ≥ q, and the desired result will follow by letting q → 1.

In order to prove (3.38), let us start by fixing arbitrary α, q ∈ (0, 1) and (T,D) ∈ ∆k(α). Then,

1− α ≤ PA(D ∈ Uk(A)) =
∑

B∈Uk(A)

PA(D = B). (3.39)

Now, consider an arbitrary B ∈ Uk(A), and let B∗ ⊂ [J ] be a set that satisfies the two conditions in Lemma

3.2. Then, |B∗ 4 B| ≥ k, and consequently

PB∗(D = B) ≤ α. (3.40)

We can now decompose the probability PA(D = B) as follows:

PA
(
λA,B

∗
(T ) < log

( η
α

)
;D = B

)
+ PA

(
λA,B

∗
(T ) ≥ log

( η
α

)
;D = B

)
,

where η is an arbitrary constant in (0, 1). We denote the first term by I and second by II. For the first term,

by a change of measure PA → PB∗ we have

I = EB∗
[
exp{λA,B

∗
(T )} ; λA,B

∗
(T ) < log

( η
α

)
, D = B

]
≤ η

α
PB∗(D = B) ≤ η,

where the second inequality follows from (3.40). For the second term, we have

II ≤ PA

(
T ≤ q | logα|

DA(k)
, λA,B

∗
(T ) ≥ log

( η
α

))
+ PA(T ≥ q`α, D = B).

By construction, B∗ satisfies IA,B∗ ≤ DA(k); thus the first term in the right-hand side is bounded above by

εα,B∗ := PA

(
T ≤ q | logα|

IA,B∗
, λA,B

∗
(T ) ≥ | logα|+ log(η)

)
.
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Due to the SLLN (3.6), we have

PA

(
lim
n→∞

λA,B
∗
(n)

n
= IA,B

∗
)

= 1.

Therefore, by Lemma 3.13, it follows that εα,B∗ → 0 as α→ 0.

Putting everything together we have

PA(D = B) ≤ η + εα,B∗ + PA(T ≥ q`α, D = B),

and summing over B ∈ Uk(A) we obtain

PA(D ∈ Uk(A)) ≤ |Uk(A)|η + εα + PA(T ≥ q`α, D ∈ Uk(A))

≤ |Uk(A)|η + εα + PA(T ≥ q`α),

where εα :=
∑
B∈Uk(A) εα,B∗ → 0 as α→ 0. Due to (3.39), we have

PA(T ≥ q`α) ≥ 1− α− εα − |Uk(A)|η.

Since (T,D) ∈ ∆k(α) is arbitrary and α ∈ (0, 1) also arbitrary, taking the infimum over (T,D) and letting

α→ 0 we obtain

lim inf
α→0

inf
(T,D)∈∆k(α)

PA(T ≥ q`α) ≥ 1− |Uk(A)|η.

Finally, letting η → 0 we obtain (3.38), which completes the proof.

3.9.4 Proof of Theorem 3.3

The following fact about set operations will be needed:

Let A,B ⊂ [J ] and C = A 4 B . Then A 4 C = B. (3.41)

Proof. Fix A ⊂ [J ] and consider the stopping time

TA(b) := inf
{
n ≥ 1 : λA,C(n) ≥ b ∀C /∈ Uk(A)

}
.
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Under the conditions of the lemma, from Lemma 3.14 in the Section it follows that b→∞ we have

EA[TA(b)] ≤ b (1 + o(1))

DA(k)
.

Thus, it suffices to show that TS(b) ≤ TA(b) for any given b > 0. In what follows, we fix b > 0 and suppress

the dependence on b. By the definition of the Sum-Intersection rule, it suffices to show that

∑
i∈B
|λi(TA)| ≥ b, ∀ B ⊂ [J ] : |B| = k. (3.42)

To this end, fix B ⊂ [J ] with |B| = k and set C = A 4 B. Then, from (3.41) we have that B = A 4 C.

Since |B| ≥ k, it follows that C 6∈ Uk(A), and by the definition of TA we have λA,C(TA) ≥ b. As a result,

b ≤ λA,C(TA) =
∑
i∈A\C

λi(TA)−
∑

j∈C\A

λj(TA)

≤
∑

i∈A 4 C

|λi(TA)| =
∑
i∈B
|λi(TA)|.

The proof is complete in view of (3.42).

3.9.5 Proof of Corollary 3.1

Proof. Fix A ⊂ [J ]. For (i) it suffices to show that for any b > 0

PA(|A 4 DI(b, b)|) ≤ CJk e−kb.

The proof is identical to that of Theorem 3.1 as long as we replace the inequalities in (3.37) by

−
∑
i∈B1

|λi(TI)| −
∑
j∈B2

|λj(TI)| ≤ −kb.

In order to prove (ii), setting k = 1 in Theorem 3.3 we have as b→∞

EA[TI(b, b)] ≤
b (1 + o(1))

minC 6=A IA,C
. (3.43)

If condition (3.11) is satisfied, then minC 6=A IA,C = I. Therefore, if b ∼ | logα|/k, from (3.43) we have that

as α→ 0

EA [TI ] ≤
| logα|
kI

(1 + o(1)).
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Further, this asymptotic upper bound agrees with the asymptotic lower bound in (3.20), since DA(k) = kI

when condition (3.11) holds. Thus, the proof is complete.

3.9.6 Proof of Theorem 3.4

Proof. Since k ≤ (J + 1)/2 is fixed, we write n∗(α) (resp. nNP (α)) for n∗(k, α) (resp. nNP (k, α)) for

simplicity. By Theorem 3.3, for any A ⊂ [J ],

N∗A(k, α) ∼ | logα|
DA(k)

, as α→ 0. (3.44)

(i) Let us first focus on n∗(α). By its definition (3.13), there exist some

D∗(α) ∈ ∆fix(n∗(α)) ∩∆k(α).

Denote P the probability measure for data in all streams. For any A ⊂ [J ] with |A| = 2k−1, we consider

the following simple versus simple problem:

H′0 : P = P∅ vs. H′1 : P = PA, (3.45)

where PA is defined in (3.2). Consider the following procedure for (3.45):

D̄∗(α) =


0 if |D∗(α)| < k

1 if |D∗(α)| ≥ k
.

Then by definition of D∗(α), we have

P∅(D̄
∗(α) = 1) = P∅(|D∗(α)| ≥ k) ≤ α,

PA(D̄∗(α) = 0) = PA(|D∗(α)| < k) ≤ α,

where the second inequality uses the fact that |A| = 2k − 1. Thus

1

n∗(α)
log(α) ≥ 1

n∗(α)
log

(
1

2
P∅(D̄

∗(α) = 1) +
1

2
PA(D̄∗(α) = 0)

)
.
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By Chernoff’s lemma 3.15,

lim inf
α→0

1

n∗(α)
log

(
1

2
P∅(D̄

∗(α) = 1) +
1

2
PA(D̄∗(α) = 0)

)
≥ −ΦA(0)

where ΦA(0) := supθ∈R

{
− log

(
E∅

[
eθλ

A,∅(1)
])}

. Due to independence,

ΦA(0) = sup
θ∈R

∑
j∈A
− log

(
Ej0

[
eθλ

j(1)
]) ≤∑

j∈A
Φj(0).

As a result, we have

lim inf
α→0

1

n∗(α)
log(α) ≥ −

∑
j∈A

Φj(0) = −
∑
j∈A
Cj ,

By maximizing the lower bound over A ⊂ [J ] with |A| = 2k − 1, we have

lim inf
α→0

n∗(α)

| log(α)|
≥ 1∑2k−1

j=1 C(j)
,

which, together with (3.44), completes the proof of (i).

(ii) Now let us focus on nNP (α). By definition, there exists some h̃ ∈ RJ such that

(nNP (α), D̃(α)) ∈ ∆k(α), where D̃(α) := DNP (nNP (α), h̃).

Denote

pj := Pj0(D̃j(α) = 1) = Pj0

(
1

nNP (α)
λj(nNP (α)) > h̃j

)
qj := Pj1(D̃j(α) = 0) = Pj1

(
1

nNP (α)
λj(nNP (α)) ≤ h̃j

)

For any A1, A2 ⊂ [J ] such that A1 ∩A2 = ∅ and |A1 ∪A2| = k,

α ≥ PA1

(
∩j∈A1

{D̃j(α) = 0}
⋂
∩i∈A2

{D̃i(α) = 1}
)

=
∏
j∈A1

qj
∏
i∈A2

pi,

α ≥ PA2

(
∩j∈A1

{D̃j(α) = 1}
⋂
∩i∈A2

{D̃i(α) = 0}
)

=
∏
j∈A1

pj
∏
i∈A2

qi.
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Since A1, A2 are arbitrary, we have for any A ⊂ [J ] with |A| = k

α ≥
∏
j∈A

max{pj , qj},

which implies that

log(α) ≥
∑
j∈A

max{log(pj), log(qj)} ≥
∑
j∈A

log(
1

2
pj +

1

2
qj).

Thus again by Chernoff’s Lemma 3.15,

lim inf
α→0

1

nNP (α)
log(α) ≥ −

∑
j∈A

Φj(0).

Maximizing the lower bound over A ⊂ [J ] with |A| = k, we have

lim inf
α→0

nNP (α)

| log(α)|
≥ 1∑k

j=1 C(j)
.

By the same argument, if we choose h̃ = 0, the equality is achieved. Then the proof of (ii) is complete in

view of (3.44).

3.9.7 Bernoulli example under the generalized mis-classification rate

For simplicity, let us assume that for each j ∈ [J ], {Xj(n) : n ∈ N} are i.i.d. Bernoulli random variables,

and the hypotheses are homogeneous. Thus, we assume that there exists some constant p ∈ (0, 1/2) such

that for each j ∈ [J ],

Hj0 : Pj0(Xj(1) = 1) = p versus Hj1 : Pj1(Xj(1) = 1) = 1− p := q.

In this case, I = Ij0 = Ij1 = H(p), where H(x) := x log( x
1−x ) + (1− x) log(1−x

x ). Further,

Φ(0) = sup
θ∈R

{
− log(pθq1−θ + p1−θqθ)

}
= log

1

2
√
p(1− p)

.

By Theorem 3.4, for any A ⊂ [J ],

lim inf
α→0

n∗(k, α)

N∗A(k, α)
≥ kH(p)

(2k − 1)Φ(0)
, lim
α→0

nNP (k, α)

N∗A(k, α)
=
H(p)

Φ(0)
.
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In Figure 3.8, we plot H(p)/Φ(0) as a function of p.

Figure 3.8: The plot for H(p)/Φ(0) as a function of p

3.10 Proofs regarding the generalized familywise error rates

3.10.1 Proof of Theorem 3.5

The goal in this subsection is to show that for any a, b > 0 and A ⊂ [J ] we have

PA(|DL \A| ≥ k1) ≤ Q(k1) e−b, PA(|A \DL| ≥ k2) ≤ Q(k2) e−a,

where Q(k) = 2kCJk . We start with a lemma that shows how to select the thresholds for procedures δ̂`,

0 ≤ ` < k1 and δ̂`, 0 ≤ ` < k2.

Lemma 3.4. Assume that (3.5) holds. Fix A ⊂ [J ]. Let B1 ⊂ Ac with |B1| = k1, and B2 ⊂ A with

|B2| = k2.

(i) Fix any 0 ≤ ` < k1. For any event Γ ∈ Fτ̂` , we have

PA(B1 ⊂ D̂`) ≤ Ck1

` e
−b, PA(B2 ⊂ D̂c

` , Γ) ≤ e−aPA\B2
(Γ).

(ii) Fix any 0 ≤ ` < k2. For any event Γ ∈ Fτ̂` , we have

PA(B1 ⊂ D̂`, Γ) ≤ e−bPA∪B1(Γ), PA(B2 ⊂ D̂
c

`) ≤ C
k2

` e
−a.

71



Proof. We will only prove (i), since (ii) can be shown in a similar way. Fix 0 ≤ ` < k1. By definition, D̂`

rejects the nulls in the ` streams with the least significant non-positive LLR, in addition to the nulls in the

streams with positive LLR. Thus,

{B1 ⊂ D̂`} ⊂
⋃

M⊂B1,|M |=k1−`

ΠM , where ΠM := {λj(τ̂`) > 0 ∀j ∈M}.

With a change of measure from PA → PC , where C = A ∪M , we have

PA(ΠM ) = EC
[
exp{λA,C(τ̂`)}; ΠM

]
= EC

exp

−∑
j∈M

λj(τ̂`)

 ; ΠM

 .
By the definition of τ̂`, on the event ΠM we have

∑
j∈M λj(τ̂`) ≥ b. Thus PA(ΠM ) ≤ e−b. Since the number

of such M is no more than Ck1

` , the first inequality in (i) follows from Boole’s inequality.

On the other hand, we observe that on the event {B2 ⊂ D̂c
`}, we have

∑
j∈B2

λj(τ̂`) ≤ −a.

Thus with a change of measure from PA → PA\B2
, we have

PA(B2 ⊂ D̂c
` , Γ) ≤ EA\B2

exp

∑
j∈B2

λj(τ̂`)

 ; Γ

 ≤ e−aPA\B2
(Γ),

which completes the proof.

Proof of Theorem 3.5. We will only establish the upper bound for PA(|A \ DL| ≥ k2), since the other

inequality can be established similarly. Observe that

{|A \DL| ≥ k2} ⊂
⋃

B⊂A:|B|=k2

{B ⊂ Dc
L}.

Since the union consists at most CJk2
events, by Boole’s inequality, it suffices to show that the probability of

each event is upper bounded by 2k2e−a. Fix an arbitrary B ⊂ A with |B| = k2. Further observe that

{B ⊂ Dc
L} ⊂ ∪

k1−1
`=0 Γ̂B,`

⋃
∪k2−1
`=1 Γ̌B,`, where

Γ̂B,` := {B ⊂ D̂c
`} ∩ {DL = D̂`}, Γ̂B,` := {B ⊂ D̂

c

`}.
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By Boole’s inequality it follows that PA(B ⊂ Dc
L) is upper bounded by

k1−1∑
`=0

PA(Γ̂B,`) +

k2−1∑
`=1

PA(Γ̌B,`) ≤
k1−1∑
`=0

e−aPA\B(DL = D̂`) +

k2−1∑
`=1

Ck2

` e
−a

≤ e−a + e−a

(
k2−1∑
`=1

Ck2

`

)
≤ 2k2e−a,

where the first inequality follows from Lemma 3.4, and the second from the fact that {DL = D̂`} are disjoint

events. Thus, the proof is complete.

3.10.2 Proof of Lemma 3.1

Proof. We will only prove the inequality for τ̂`, as the proof of the inequality for τ̂ ` is similar. Fix A and

0 ≤ ` < k1. We introduce the following classes of subsets

M1 = {B ⊂ A : |B| = k1 − `},

M0 =
{
B ⊂ Ac : |B| = k2, Ii0 ≥ I

(`+1)
0 (Ac) ∀ i ∈ B

}
.

Clearly, we have τ̂` ≤ τ ′, where

τ ′ := inf{n ≥ 1 : min
B∈M1

∑
i∈B

λi(n) ≥ b and min
B∈M0

∑
j∈B

λj(n) ≤ −a,

min
i∈A

λi(n) > 0 and max
j /∈A

λj(n) < 0}.

Thus, by an application of Lemma 3.14, we have

EA[τ ′] ≤ max

{
b

minB∈M1

∑
j∈B I

j
1

,
a

minB∈M0

∑
j∈B I

j
0

}
(1 + o(1)).

By definition, for any B1 ∈M1 and B0 ∈M0, we have

∑
j∈B

Ij1 ≥ D1(A; 1, k1 − `),
∑
j∈B

Ij0 ≥ D0(Ac; 1 + `, k2 + `)

therefore we conclude that

EA[τ ′] ≤ max

{
b

D1(A; 1, k1 − `)
,

a

D0(Ac; 1 + `, k2 + `)

}
(1 + o(1)),
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which proves the inequality for τ̂`.

3.10.3 An important lemma

In this subsection, we establish a lemma that is critical in establishing the lower bound in Theorem 3.6. To

state the result, let us denote by

Uk1,k2
(A) = {C ⊂ [J ] : |C \A| < k1 and |A \ C| < k2}, (3.46)

the collection of sets that are “close” to A, according to the generalized familywise error rates. Since k1, k2

are fixed integers, for simplicity of notations, we write in this subsection

L(A;α, β) for LA(k1, k2, α, β).

Lemma 3.5. Let A ⊂ [J ], B ∈ Uk1,k2
(A), and α, β > 0.

1. If |B| ≥ k1 and |Bc| ≥ k2, then there exists B∗1 , B
∗
2 ⊂ [J ] such that

(i) |B \B∗1 | = k1, |B∗2 \B| = k2, (ii)
| log(α)|
IA,B∗1

∨ | log(β)|
IA,B∗2

≥ L(A;α, β)

2. If |B| < k1, then there exists B∗2 ⊂ [J ] such that

(i) |B∗2 \B| = k2, (ii)
| log(β)|
IA,B∗2

≥ L(A;α, β).

3. If |Bc| < k2, there exists B∗1 ⊂ [J ] such that

(i) |B \B∗1 | = k1, (ii)
| log(α)|
IA,B∗1

≥ L(A;α, β).

The proof relies on the following two lemmas.

Lemma 3.6. Let G ⊂ A ⊂ F ⊂ [J ]. Denote s1 = |A \G| and s2 = |F c|. Then for any integer n, we have

D1(G, 1, n) ≤ D1(A, 1 + s1, n+ s1),

D0(F \A, 1, n) ≤ D0(Ac, 1 + s2, n+ s2)
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Proof. Let’s start with the first inequality. We can assume n ≤ |G|, since otherwise both sides are equal to

∞.

Fix some 1 ≤ i ≤ n. Then clearly the ith smallest element in {Ij1 : j ∈ G} is no larger than the

(i + |A \ G|)th element in {Ij1 : j ∈ A}. Thus the first inequality follows from the definition of the D1

function.

For the second inequality, it follows from the previous argument by replacing G by F \A, A by Ac, and

Ij1 by Ij0 .

Lemma 3.7. Let `1, `2 be two non-negative integers such that `1 < k1 and `2 < k2. Then for any A ⊂ [K],

and α, β > 0, we have

| log(α)|
D1(A, 1 + `2, k1 − `1 + `2)

∨ | log(β)|
D0(Ac, 1 + `1, k2 − `2 + `1)

≥ L(A;α, β).

Proof. Let’s consider the case that `1 ≥ `2. When `1 ≤ `2, the result can be proved in a similar way. Thus,

denote ` = `1 − `2. Then

| log(α)|
D1(A, 1 + `2, k1 − `1 + `2)

∨ | log(β)|
D0(Ac, 1 + `1, k2 − `2 + `1)

=
| log(α)|

D1(A, 1 + `2, k1 − l)
∨ | log(β)|
D0(Ac, 1 + `+ `2, k2 + `)

≥ | log(α)|
D1(A, 1, k1 − `)

∨ | log(β)|
D0(Ac, 1 + `, k2 + `)

= L̂A(`;α, β) ≥ L(A;α, β)

where the last line used the definition of L̂A and L.

With above two lemmas, we’re ready to present the proof of Lemma 3.5. We illustrate the intuition of

the following proof in Figure 3.9.

Proof. Fix A and B ∈ Uk1,k2(A). By definition of the class Uk1,k2(A),

`1 := |B \A| < k1, `2 := |A \B| < k2.

First, consider the case that |B| ≥ k1, which implies |A ∩ B| ≥ k1 − `1. Thus we can find Γ1 ⊂ A ∩ B
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such that

Γ1 = k1 − `1,
∑
i∈Γ1

Ii1 = D1(A ∩B, 1, k1 − `1)

Let’s consider B∗1 := A \ Γ1; it’s easy to see

A \B∗1 = Γ1, B \B∗1 = Γ1 ∪ (B \A)

Thus, |B \B∗1 | = k1; further, viewing A ∩B as G in the Lemma 3.6, and since `2 = |A \B|, we have

IA,B
∗
1 =

∑
i∈Γ1

Ii1 = D1(A ∩B, 1, k1 − `1) ≤ D1(A, 1 + `2, k1 − `1 + `2).

Second, consider the case that |Bc| ≥ k2, which implies |Ac∩Bc| ≥ k2−`2. Thus there exists Γ2 ⊂ Ac∩Bc

such that

Γ2 = k2 − `2,
∑
j∈Γ2

Ij0 = D0(Ac ∩Bc, 1, k2 − `2)

Let’s consider B∗2 := A ∪ Γ2; it’s easy to see

B∗2 \A = Γ2, B∗2 \B = Γ2 ∪ (A \B)

Then |B∗2 \B| = k2. further, viewing A ∪ (Ac ∩Bc) as F in the Lemma 3.6, and since `1 = |B \ A| = |F c|,

we have

IA,B
∗
2 =

∑
j∈Γ2

Ij0 = D0(Ac ∩Bc, 1, k2 − `2) ≤ D0(Ac, 1 + `1, k2 − `2 + `1)

It remains to show B∗1 and B∗2 satisfy the property (ii) in each case.

Case 1: |B| ≥ k1 and |Bc| ≥ k2. By construction of B∗1 and B∗2 , we have

| log(α)|
IA,B∗1

∨ | log(β)|
IA,B

∗
2

≥ | log(α)|
D1(A, `2 + 1, `2 + k1 − `1)

∨ | log(β)|
D0(Ac, `1 + 1, `1 + k2 − `2)

≥ L(A;α, β)

where the last inequality is due to Lemma 3.7.
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Figure 3.9: The solid area are the streams with signal. The whole set [J ] is partitioned into four disjoint
sets: A \B, A ∩B, B \A, Ac ∩Bc. If B ∈ Uk1,k2(A), then `1 < k1 and `2 < k2.

Case 2: |B| < k1, which implies the following:

|A| = |A \B|+ |A ∩B| = `2 + |B| − `1 < `2 + k1 − `1

and thus D1(A, `2 + 1, `2 + k1 − `1) =∞. As a result,

| log(β)|
IA,B

∗
2
≥ | log(α)|
D1(A, `2 + 1, `2 + k1 − `1)

∨ | log(β)|
D0(Ac, `1 + 1, `1 + k2 − `2)

≥ L(A;α, β)

where the last inequality is again due to Lemma 3.7.

Case 3: |Bc| < k2. It can be proved in the same way as in case 2.

3.10.4 Proof of Theorem 3.6

As explained in the discussion following Theorem 3.6, it suffices to show that for any A ⊂ [J ], as α, β → 0,

N∗A(k1, k2, α, β) ≥ LA(k1, k2, α, β) (1− o(1)).

Since k1, k2 are fixed integers, for simplicity of notations, we write in this subsection

L(A;α, β) for LA(k1, k2, α, β).

Proof. Fix A ⊂ [J ]. By the same argument as in the proof of Theorem 3.2, it suffices to show for every
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q ∈ (0, 1) we have:

lim inf
α,β→0

inf
(T,D)∈∆k1,k2

(α,β)
PA (T ≥ qL(A;α, β)) ≥ 1.

Fix q ∈ (0, 1) and let (T,D) be any procedure in ∆k1,k2
(α, β). Then, by the definition of the class

Uk1,k2
(A) in (3.46) we have

1− (α+ β) ≤ PA (D ∈ Uk1,k2
(α, β)) =

∑
B∈Uk1,k2

(α,β)

PA(D = B).

Fix B ∈ Uk1,k2(α, β), and let η > 0. First, we assume that |B| ≥ k1 and |Bc| ≥ k2. Then PA(D = B) is

upper bounded by I + II, where

I = PA
(
λA,B

∗
1 (T ) < log(

η

α
), D = B

)
+ PA

(
λA,B

∗
2 (T ) < log(

η

β
), D = B

)
II = PA

(
λA,B

∗
1 (T ) ≥ log(

η

α
), λA,B

∗
2 (T ) ≥ log(

η

β
), D = B

)
,

where the sets B∗1 and B∗2 are selected to satisfy the conditions in Case 1 of Lemma 3.5. Then, |B \B∗1 | ≥ k1

and |B∗2 \B| ≥ k2, and consequently

PB∗1 (D = B) ≤ α and PB∗2 (D = B) ≤ β.

Thus, by change of measure PA → PB∗1 and PA → PB∗2 , we have

PA
(
λA,B

∗
i (T ) < log

( η
α

)
, D = B

)
≤ η, for i = 1, 2

which shows that I ≤ 2η. Moreover, it is obvious that

II ≤εBα,β + PA(T ≥ qL(A;α, β), D = B), where

εBα,β := PA

(
T < qL(A;α, β), λA,B

∗
1 (T ) ≥ log

( η
α

)
, λA,B

∗
2 (T ) ≥ log

(
η

β

))
.

But by the construction of B∗1 and B∗2 we have

L(A;α, β) ≤ `α,β :=
| log(α)|
IA,B∗1

∨ | log(β)|
IA,B∗2

,
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consequently

εBα,β ≤ PA

(
T < q`α,β , λA,B

∗
1 (T ) ≥ log

( η
α

)
, λA,B

∗
2 (T ) ≥ log

(
η

β

))
,

and from Lemma 3.13 it follows that εBα,β goes to 0 as α, β → 0.

Putting everything together, we have

PA(D = B) ≤ 2η + εBα,β + PA(T ≥ qL(A;α, β), D = B). (3.47)

In a similar way we can show that equation (3.47) remains valid when |B| < k1 or |Bc| < k2. Thus summing

over B ∈ Uk1,k2
(A) we have

PA(D ∈ Uk1,k2
(A)) ≤ 2Qη + εα,β + PA(T ≥ qL(A;α, β), D ∈ Uk1,k2

(A)),

where Q = |Uk1,k2
(A)| is a constant, and εα,β =

∑
B∈Uk1,k2

(A) ε
B
α,β . Since each summand goes to 0, we have

εα,β → 0 as α, β → 0. Therefore,

PA(T ≥ qL(A;α, β)) ≥ 1− (α+ β)− 2Qη − εα,β

The proof is complete after taking the infimum over the class ∆k1,k2
(α, β), letting α, β → 0 and letting

η → 0.

3.10.5 Proof of Corollary 3.2

Proof. The error control for δ0 follows by setting ` = 0 in Lemma 3.4. The error control for the Intersection

rule δI can be established by a simple modification of the proof of Lemma 3.4. If assumptions (3.11) and

(3.12) hold, then from (3.26) it follows that for every A ⊂ [J ] we have

LA(k1, k1, α, α) =
| log(α)|
k1I

.

Further, setting ` = 0 for τ0, and k = 1 for TI in the first inequality of Lemma 3.1, we have as b→∞

EA [τ0(b, b)] ≤ b

k1I
(1 + o(1)), EA [τI(b, b)] ≤

b

I
(1 + o(1)).
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Thus, if b is selected as in the statement of the corollary, then the quantity LA(k1, k1, α, α) provides an

asymptotic power bound for both EA [τ0] and EA [τI ]. Thus, the proof is complete.

3.10.6 Proof of Theorem 3.7

Proof. Since k1, d are fixed, we write n∗(β) and n̂(β) for n∗(k1, k1, β
d, β) and n̂NP (k1, k1, β

d, β) respectively

for simplicity.

(i) Let us first focus on n∗(β). By its definition (3.13), there exists some

D∗(β) ∈ ∆fix(n∗(β)) ∩∆k1,k1
(βd, β).

Fix any A ⊂ [J ] such that |A| = 2k1 − 1. Denote P the probability measure for data in all streams, and

consider the simple versus simple testing problem (3.45) and the procedure D̃∗(β) :=


0 if |D∗(β)| < k1

1 if |D∗(β)| ≥ k1

.

Then by definition of D∗(β), we have

P∅(D̃
∗(β) = 1) = P∅(|D∗(β)| ≥ k1) ≤ α = βd,

PA(D̃∗(β) = 0) = PA(|D∗(β)| < k1) ≤ β,

Then by the generalized Chernoff’s Lemma 3.15,

lim inf
β→0

1

n∗(β)
log(β) ≥ lim inf

β→0

1

n∗(β)
log

(
1

2
P

1/d
∅ (D̃∗(β) = 1) +

1

2
PA(D̃∗(β) = 0)

)
≥ −ΦA(h̃Ad )

d
.

where h̃Ad is a solution to ΦA(z)/d = ΦA(z)− z, and for any z ∈ R

ΦA(z) := sup
θ∈R

zθ −∑
j∈A

log
(
Ej0

[
eθλ

j(1)
])

= sup
θ∈R

{
zθ − |A| log

(
E1

0

[
eθλ

1(1)
])}

= |A|Φ(
z

|A|
).

Here, the second equality is due to homogeneity (3.27). By definition (3.29), Φ(hd)/d = Φ(hd)− hd, which

implies

ΦA(|A|hd)/d = ΦA(|A|hd)− (|A|hd).
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Thus h̃Ad = |A|hd, and

ΦA(h̃Ad )/d = |A|Φ(hd)/d =
2k1 − 1

d
Φ(hd).

which completes the proof of (i).

(ii) Let us now focus on n̂(β). By definition, there exists hβ ∈ R such that

(n̂(β), D̂(β)) ∈ ∆k1,k1
(βd, β), where D̂(β) := DNP (n̂(β), hβ1J),

where 1J ∈ RJ is a vector of all ones. Due to homogeneity (3.27), denote

pβ := P1
0(D̂1(β) = 1) = P1

0

(
1

n̂(β)
λ1(n̂(β)) > hβ

)
qβ := P1

1(D̂1(β) = 0) = P1
1

(
1

n̂(β)
λ1(n̂(β)) ≤ hβ

)

For any A ⊂ [J ] such that |A| = k1(= k2),

βd ≥ P∅

(
∩j∈A{D̃(α)j = 1}

)
= (pβ)k1 , β ≥ P[J]

(
∩j∈A{D̃(α)j = 0}

)
= (qβ)k1 ,

which implies that

1

n̂(β)

log(β)

k1
≥ 1

n̂(β)
log

(
1

2
p

1/d
β +

1

2
qβ

)
.

Then again by the generalized Chernoff’s lemma 3.15, we have

lim inf
β→0

n̂(β)

| log(β)|
=

d

k1Φ(hd)
.

Further, the same argument shows that the equality is obtained with h = hd, which completes the proof of

(ii).

3.11 Sequential multiple testing with composite hypotheses

In this section, we prove Theorem 3.8 in Section 3.6. We first establish a universal asymptotic lower bound

on the expected sample size of procedures that control generalized familywise error rates under composite

hypotheses (Subsec. 3.11.1). Then, we show that this lower bound is achieved by the Leap rule with the
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adaptive log-likelihood statistics in (3.31) (Subsec. 3.11.2 and 3.11.3). Further, we demonstrate via numerical

study that in the composite case, the Intersection rule (3.10) and the asymmetric Sum-Intersection rule (3.23)

with the adaptive statistics fail to achieve asymptotic optimality (Subsec. 3.11.4). We conclude this section

with discussions on the adaptive statistics and alternative local test statistics (Subsec. 3.11.5).

3.11.1 Lower bound on the expected sample size

Fix any A ⊂ [J ] and θ = (θ1, . . . , θJ) ∈ ΘA.

Case 1: Assume for now that the infima in (3.33) are attained, i.e., there exists θ̃ = (θ̃1, . . . , θ̃J) ∈ ΘAc

such that

Ij1(θj) = Ij(θj , θ̃j) for any j ∈ A,

Ij0(θj) = Ij(θj , θ̃j) for any j ∈ Ac.

Any procedure (T,D) ∈ ∆comp
k1,k2

(α, β) controls the generalized familywise error rates below α and β when

applied to the multiple testing problem with the following simple hypotheses for each stream:

Hj
′

0 : θj
′

= θj versus Hj
′

1 : θj
′

= θ̃j , j ∈ [J ],

where we write θj
′

for the generic local parameter in j-th stream to distinguish it from the j-th component

of θ.

Then, under assumptions (3.32) and (3.34), by Theorem 3.6 we have

lim inf
α∧β→0

N∗A,θ(k1, k2, α, β)/LA,θ(k1, k2, α, β) ≥ 1, (3.48)

where

LA,θ(k1, k2, α, β) := min

{
min

0≤`<k1

L̂A,θ(`;α, β) , min
0≤`<k2

L̂A,θ(`;α, β)

}
,

L̂A,θ(`;α, β) := max

{
| log(α)|

D1(A,θ; 1, k1 − `)
,

| log(β)|
D0(Ac,θ; `+ 1, `+ k2)

}
,

L̂A,θ(`;α, β) := max

{
| log(α)|

D1(A,θ; `+ 1, `+ k1)
,

| log(β)|
D0(Ac,θ; 1, k2 − `)

}
,

D1(A,θ; `, u) =
u∑
j=`

I(j)
1 (A,θ), D0(Ac,θ; `, u) =

u∑
j=`

I(j)
0 (Ac,θ),

(3.49)
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and

I(1)
1 (A,θ) ≤ . . . ≤ I(|A|)

1 (A,θ)

is the increasingly ordered sequence of {Ij1(θj), j ∈ A}, and

I(1)
0 (Ac,θ) ≤ . . . ≤ I(|Ac|)

0 (Ac,θ)

is the increasingly ordered sequence of {Ij0(θj), j ∈ Ac}. As before, the convention is that

I(k)
1 (A,θ) =∞ if k > |A|, I(k)

0 (Ac,θ) =∞ if k > |Ac|.

Case 2: In general, the infima in (3.33) are not attained. However, under the separability assump-

tion (3.34), for any ε > 0 there exists θ̃ε = (θ̃1
ε , . . . , θ̃

J
ε ) ∈ ΘAc such that

Ij(θj , θ̃jε) ≤ (1 + ε) Ij1(θj) for any j ∈ A,

Ij(θj , θ̃jε) ≤ (1 + ε) Ij0(θj) for any j ∈ Ac.

Applying again Theorem 3.6 to the following multiple testing problem with simple hypotheses:

Hj
′

0 : θj
′

= θj versus Hj
′

1 : θj
′

= θ̃jε , j ∈ [J ],

we have

lim inf N∗A,θ(k1, k2, α, β)/LA,θ(k1, k2, α, β) ≥ 1/(1 + ε).

Since ε is arbitrary, (3.48) still holds.

Above discussions leads to the following theorem.

Theorem 3.9. If (3.32) and (3.34) hold, then (3.48) holds for every A ⊂ [J ] and θ ∈ ΘA.

3.11.2 Error control of the Leap rule with adaptive log-likelihood ratios

We start with the following observation.
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Lemma 3.8. Fix A ⊂ [J ], θ = (θ1, . . . , θJ) ∈ ΘA. For each j ∈ [J ],

Ljn := exp
(
`j∗(n)− `j(n, θj)

)
, n ∈ N

is an {Fn}-martingale under PA,θ with expectation 1.

Proof. By definition,

Ljn = Ljn−1 ·
pj
θ̂jn−1

(
Xj(n)|F jn−1

)
pjθj

(
Xj(n)|F jn−1

) .

Clearly, Ljn ∈ Fn for any n ∈ N. Further, since θ̂jn−1 ∈ Fn−1,

EA,θ

 pjθ̂jn−1

(
Xj(n)|F jn−1

)
pjθj

(
Xj(n)|F jn−1

)
∣∣∣∣∣∣∣Fn−1

 =

∫ pj
θ̂jn−1

(
z|F jn−1

)
pjθj

(
z|F jn−1

) pjθj

(
z|F jn−1

)
= 1,

which implies EA,θ[Ljn|Fn−1] = Ljn−1. Further, since θ̂0 is deterministic, EA,θ[Lj1] = 1, which completes the

proof.

By Lemma 3.8 and due to independence across streams, for any subset M ⊂ [J ], there exists a probability

measure QA,θ,M such that for any n ∈ N,

dQA,θ,M
dPA,θ

(Fn) =
∏
j∈M

exp
(
`j∗(n)− `j(n, θj)

)
. (3.50)

Next, we establish the error control of the Leap rule with adaptive log-likelihood ratios. The proof is

almost identical to Theorem 3.5.

Theorem 3.10. Assume (3.33) and (3.34) hold. For any α, β ∈ (0, 1) we have that the Leap rule δ∗L(a, b) ∈

∆comp
k1,k2

(α, β) when the thresholds are selected as follows:

a = | log(β)|+ log(2k2CJk2
), b = | log(α)|+ log(2k1CJk1

).

Proof. Just as the proof of Theorem 3.5 in Section 3.10.1 follows directly from Lemma 3.4, by exactly the

same argument, the above result follows from the next Lemma.

Lemma 3.9. Assume (3.33) and (3.34) hold. Fix A ⊂ [J ], θ = (θ1, . . . , θJ) ∈ ΘA. Let B1 ⊂ Ac with

|B1| = k1, and B2 ⊂ A with |B2| = k2.
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(i) Fix any 0 ≤ ` < k1. For any event Γ ∈ Fτ̂` , we have

PA,θ(B1 ⊂ D̂∗` ) ≤ Ck1

` e
−b, PA,θ(B2 ⊂ (D̂∗` )c, Γ) ≤ e−aQA,θ,B2

(Γ).

(ii) Fix any 0 ≤ ` < k2. For any event Γ ∈ Fτ̂` , we have

PA,θ(B1 ⊂ D̂
∗
` , Γ) ≤ e−bQA,θ,B1

(Γ), PA,θ(B2 ⊂ (D̂
∗
` )
c) ≤ Ck2

` e
−a.

Proof. The proof is similar to that of Lemma 3.4. We only indicate the differences by working out the first

inequality in (i).

As in the proof of Lemma 3.4, by definition, D̂∗` rejects the nulls in the ` streams with the least significant

non-positive LLR, in addition to the nulls in the streams with positive LLR. Thus,

{B1 ⊂ D̂∗` } ⊂
⋃

M⊂B1,|M |=k1−`

ΠM , where ΠM := {λj∗(τ̂`) > 0 ∀j ∈M},

and by Boole’s inequality, it suffices to show that PA,θ(ΠM ) ≤ e−b for any M ⊂ B1 with |M | = k1 − `.

By definition, for any j ∈M ⊂ B1 ⊂ Ac, since θj ∈ Θj
0,

`j0(n) ≥ `j(n, θj) for any n ∈ N.

Then, by the definition of the adaptive log-likelihood ratio statistics (3.31), we have

ΠM ⊂

∑
j∈M

(
`j∗(τ̂`)− `

j
0(τ̂`)

)
≥ b

 ⊂
∑
j∈M

(
`j∗(τ̂`)− `j(τ̂`, θj)

)
≥ b

 .

By the above observation, the definition of QA,θ,M (3.50), and likelihood ratio identity, on the event ΠM ,

dQA,θ,M
dPA,θ

(Fτ̂`) ≥ eb,

and the proof is complete by changing the measure from PA,θ to QA,θ,M .
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3.11.3 Asymptotic optimality of the Leap rule with adaptive log-likelihood

ratios

The asymptotic optimality follows after we establish an upper bound on the expected sample size of the

Leap rule. The following result is similar to Lemma 3.1.

Lemma 3.10. Assume (3.34) and (3.35) hold. For any A ⊂ [J ] and θ ∈ ΘA, as a, b→∞,

EA,θ[τ̂`] ≤ max

{
b(1 + o(1))

D1(A,θ; 1, k1 − `)
,

a(1 + o(1))

D0(Ac,θ; `+ 1, `+ k2)

}
, 0 ≤ ` < k1,

EA,θ[τ̂ `] ≤ max

{
b(1 + o(1))

D1(A,θ; `+ 1, `+ k1)
,

a(1 + o(1))

D0(Ac,θ; 1, k2 − `)

}
, 0 ≤ ` < k2.

where the denominators are defined in (3.49).

Proof. Under the assumption (3.35), the proof is the same as that for Lemma 3.1 in Subsection 3.10.2.

Now Theorem 3.8 follows from Theorem 3.9, Lemma 3.10 and Lemma 3.10.

3.11.4 Simulations for composite case

We consider a “homogeneous” multiple testing problem on the normal means with known variance. Specif-

ically, we assume that for each j ∈ [J ], the sequence of observations in the j-th stream, {Xj(n) : n ∈ N},

are i.i.d. with common distribution N (θj , 1), and for a given constant µ > 0, that does not depend on j, we

want to test

Hj0 : θj ≤ 0 versus Hj1 : θj ≥ µ. (3.51)

Instead of the Lebegure measure on the real line, we chose N (0, 1) as our reference measure. Then, for

each j ∈ [J ] we have

`j(n, θj) = n

(
θj X

j
(n)− 1

2
(θj)2

)
, where X

j
(n) :=

1

n

n∑
i=1

Xj(i). (3.52)

Further, for any θj , θ̃j , we have Ij(θj , θ̃j) = 1
2 (θj − θ̃j)2, and

Ij0(θj) =
1

2
(θj − µ)2 for θj ≤ 0, Ij1(θj) =

1

2
(θj)2 for θj ≥ µ.

Clearly, the null and the alternative hypotheses are separated in the sense of (3.34). Further, the condi-

tion (3.32) is satisfied due to [31].

86



The adaptive log-likelihood process (3.30) for the j-th stream in this context takes the following form:

`j0 = 0, and for n ≥ 1,

`j∗(n) =

n∑
i=1

(
Xj(i) θ̂ji−1 −

1

2
(θ̂ji−1)2

)
. (3.53)

If we choose to use the maximum likelihood estimators {θ̂n} in above definition, i.e., θ̂jn = X
j
(n), the

one-sided complete convergence condition (3.35) is established in [71] (Page 278-279). Thus by Theorem 3.8,

the Leap rule is asymptotically optimal in this setup.

To distinguish from the simulations in the simple versus simple setup, we refer to the Leap rule with

adaptive statistics as “Leap*” rule. We will compare the Leap* rule with the following procedures:

1. Asymmetric Sum-Intersection* rule: replace the log-likelihood ratio statistics λj(n), in the definition

of the asymmetric Sum-Intersection rule (3.23), by the adaptive version λj∗(n) (3.30).

2. Intersection* rule: replace the log-likelihood ratio statistics λj(n), in the definition of the Intersection

rule (3.10), by the adaptive version λj∗(n) (3.30).

3. MNP rule: for a fixed-sample size n, in each stream, we run the Neyman-Pearson rule with the same

threshold h > 0, which is the most powerful test for each stream due to monotone likelihood ratio

property. Formally,

δNP (n, h) := (n,DNP (n, h)), DNP (n, h) := {j ∈ [J ] : X
j
(n) > h},

For simulation purpose, we assume that the tolerance on the two types of mistakes are the same in the

sense that (3.12) holds. As in Section 3.6, we denote the true parameter as (A,θ), where θ = (θ1, . . . , θJ) ∈

ΘA.

Thresholds selection via simulation

For each j ∈ [J ] and θj ≤ 0 the distribution of {λj∗(n) : n ∈ N} under Pjµ−θj is the same as the distribution

of {−λj∗(n) : n ∈ N} under Pjθj . Since (3.12) holds, we should equate the thresholds a and b in the Leap*

rule. Further, we only need to focus on the generalized familywise error rate of Type I.

For a fixed parameter a (= b), we use simulation to find out the maximal probability of the Leap* rule

committing k1 false positive mistakes, i.e.

max
(A,θ):A⊂[J],θ∈ΘA

PA,θ(|D∗L \A| ≥ k1).
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Then we try different values for a and select the one for which the above quantity is equal to α. Note that

the maximum is over θ ∈ Θ. However, for θj ≤ θ̃j , {λj∗(n) : n ∈ N} under Pθ̃j is stochastically larger than

{λj∗(n) : n ∈ N} under Pθj , in the sense that for any n ∈ N and x ∈ R,

Pjθj (λ
j
∗(n) ≤ x) ≥ Pj

θ̃j
(λj∗(n) ≤ x).

As a result, the maximal probability is achieved by the boundary cases, i.e., θ ∈ {0, µ}J .

The same discussion applies to the other two sequential procedures. For the MNP rule, (3.12) implies

that h = 1
2µ, and for a fixed n, the maximal probability of making k1 false positives is also achieved by

θ ∈ {0, µ}J .

Practical considerations

The first few estimators of θ will typically be quite noisy, since they are estimated based on only a few

observations. However, from (3.30) or (3.53) we observe that their effect will persist. Thus, in practice it

is preferable to take an initial sample of fixed size, say n0, and use these observations only to obtain good

initial estimates of the unknown parameter.

Specifically, we assume that for each j ∈ [J ], Xj(−n0), . . . , Xj(−1) are i.i.d. with distribution N (θj , 1),

and we define for n ≥ 0 the following maximum likelihood estimator

θ̂jn :=

∑−1
i=−n0

Xj(i) +
∑n
i=1X

j(i)

n0 + n
,

which includes the initial samples. The definitions of the log-likelihood process (3.52) and the adaptive

log-likehood process (3.53) remain unchanged. By taking an initial sample of fixed size, the asymptotic

expected sample size of the Leap* rule is not affected. Further, if we enlarge the σ-field by including the

initial samples, i.e.,

F̃n := Fn ∨ σ
(
Xj(i) : j ∈ [J ], i ∈ {−n0, . . . ,−1}

)
,

then the key Lemma 3.8, used to establish the error control of Leap* rule, still holds. Thus, taking an initial

sample does not affect the asymptotic optimality of the Leap* rule.

Simulation results

We consider the problem (3.51) with J = 20, µ = 0.2, k1 = k2 = 2 and the initial sample size n0 = 10.

Based on the previous discussion, we set a = b for the sequential methods. For a fixed threshold a, we use
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simulation to find out the maximal probability (over θ ∈ Θ) of committing k1 false positives (Err), and the

expected sample size (ESS) under a particular PA,θ, where A = {1, . . . , 10} and

θ = (θ1, . . . , θJ), θj =


0.7 if j = 1, . . . , 10

−0.3 if j = 11, . . . , 19

0 if j = 20

. (3.54)

For the MNP rule, we set h = 1
2µ, and use simulation to find out the maximal probability of committing

k1 false positives for each fixed n ∈ N. The results are shown in Figure 3.10.

From Figure 3.10, we observe that the other procedures have a different “slope” compared to the asymp-

totically optimal Leap* rule, which indicates that they fail to be asymptotically optimal. Further, since

sequential methods are adaptive to the true θ, the gains over fixed-sample size procedures increase as θ is

farther from the boundary cases.
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Figure 3.10: The testing problem (3.51) with J = 20, µ = 0.2, k1 = k2 = 2 and the initial sample size
n0 = 10. The x-axis in both graphs is | log10(Err)|. The y-axis is the corresponding ESS under θ given
by (3.54). The second figure plots two of the lines in the first figure. Note that for the sequential procedures,
the initial sample size n0 is added to the ESS.

3.11.5 Discussion on the local test statistics

When there is only one stream (i.e. J = 1), the adaptive log-likelihood ratio statistic (3.31) was first

proposed in [58] in the context of power one tests, and later extended by [54] to sequential multi-hypothesis

testing. There are two other popular choices for the local test statistics in the case of composite hypotheses.

The first one is to follow the approach suggested by Wald [75] and replace λj(n) in the Leap rule (3.24)
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by the following mixture log-likelihood ratio statistic:

log

(∫
Θj1

exp
(
`(n, θj)

)
ωj1(dθj)∫

Θj0
exp (`(n, θj)) ωj0(dθj)

)
,

where ωj0, ω
j
1 are two probability measures on Θj

0 and Θj
1 respectively. The second is to replace λj(n) in the

Leap rule (3.24) by the generalized log-likelihood ratio (GLR) statistic ̂̀j1(n)− ̂̀j0(n). When there is only one

stream (i.e. J = 1), the corresponding sequential test has been studied in [43] for one-parameter exponential

family, in [15] for multi-parameter exponential family, and in [38] for separate families of hypotheses.

We have chosen the adaptive log-likelihood ratio statistics (3.31) in this Chapter mainly because they

allow for explicit and universal error control. Indeed, with this choice of statistics, the upper bounds on

the error probabilities rely on a change-of-measure argument, in view of Lemma 3.8, whereas this argument

breaks down when we use GLR or mixture statistics.

3.12 Sequential testing of two composite hypotheses in

exponential family

In this section, we show that (3.35) holds if each stream has i.i.d. observations from an exponential fam-

ily distribution, both the null and alternative parameter spaces are compact, and the maximal likelihood

estimator is used in the adaptive log-likelihood statistics (3.31). Note that (3.35) is a condition on each

individual stream, thus in this section we drop the superscript j.

Let {Xn : n ∈ N} be a sequence of i.i.d. random vectors in Rd with common density

pθ(x) = exp
(
θTx− b(θ)

)
with respect to some measure ν, where superscript T means transpose. We assume that the natural parameter

space

Θ := {θ ∈ Rd :

∫
pθ(x)ν(dx) <∞}

is an open subset of Rd. For any θ, θ̃ ∈ Θ, the Kullback-Leibler divergence between pθ and pθ̃ is denoted by

I(θ, θ̃) := Eθ

[
log

pθ(X1)

pθ̃(X1)

]
= (θ − θ̃)T∇b(θ)− (b(θ)− b(θ̃)),
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where ∇ stands for the gradient. We denote by {`(n, θ) : n ∈ N} the log-likelihood process:

`(n, θ) :=

n∑
i=1

log pθ(Xi) =

n∑
i=1

(θTXi − b(θ)) for n ∈ N.

We assume that Θ0,Θ1 are two disjoint, compact subsets of Θ, and denote by

θ̂n := arg max
θ∈Θ0∪Θ1

`(n, θ)

the maximum likelihood estimator based on the data up to time n over the set Θ0 ∪ Θ1. Picking any

deterministic θ̂0 ∈ Θ, we define

`∗(n) :=

n∑
i=1

log pθ̂i−1
(Xi) =

n∑
i=1

(θ̂Ti−1Xi − b(θ̂i−1)) for n ∈ N.

The main result of this subsection is summarized in the following theorem.

Theorem 3.11. Let θ ∈ Θ1 and set I(θ) := infθ0∈Θ0
I(θ, θ0). Then, for any ε > 0,

∞∑
n=1

Pθ

(
`∗(n)− `0(n)

n
− I(θ) < ε

)
<∞,

where `0(n) := supθ0∈Θ0
`(n, θ0).

Proof. Observe that for any θ0 ∈ Θ0,

`∗(n)− `(n, θ0) = `∗(n)− `(n, θ) + `(n, θ)− `(n, θ0)− nI(θ, θ0) + nI(θ, θ0),

which implies that

`∗(n)− `0(n) = `∗(n)− `(n, θ) + inf
θ0∈Θ0

(`(n, θ)− `(n, θ0)− nI(θ, θ0) + nI(θ, θ0))

≥ `∗(n)− `(n, θ) + inf
θ0∈Θ0

(`(n, θ)− `(n, θ0)− nI(θ, θ0)) + nI(θ).

As a result, it suffices to show that

1

n
(`∗(n)− `(n, θ)) Pθ completely−−−−−−−−−→

n→∞
0, (3.55)

1

n
inf

θ0∈Θ0

(`(n, θ)− `(n, θ0)− nI(θ, θ0))
Pθ completely−−−−−−−−−→

n→∞
0, (3.56)
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which are the content of the next two lemmas.

Remark 3.6. The sequence in (3.55) concerns the behavior of the maximal likelihood estimator for the

exponential family distribution, while the sequence in (3.56) concerns the uniform behavior over Θ0.

Lemma 3.11. For any θ ∈ Θ, as n→∞, 1
n (`∗(n)− `(n, θ)) converges completely to zero under Pθ.

Proof. Since Θ0 and Θ1 are compact, there exists K > 0 such that

max{‖θ̃‖, I(θ, θ̃)} < K for any θ̃ ∈ Θ0 ∪Θ1,

where we use ‖·‖ to denote the Euclidean distance.

Observe that 1
n (`∗(n)− `(n, θ)) = 1

nMn − 1
nRn, where

Mn := `∗(n)− `(n, θ) +

n∑
i=1

I(θ, θ̂i−1) =

n∑
i=1

(θ̂i−1 − θ)T (Xi −∇b(θ)),

Rn :=

n∑
i=1

I(θ, θ̂i−1)

Denote Fn := σ(X1, . . . , Xn) the σ-field generated by the first n observations. Then {Mn : n ∈ N} is

an {Fn}-martingale, since E[X1] = ∇b(θ) due to the property of the exponential family and θ̂n−1 ∈ Fn−1.

Further, the martingale difference sequence {(θ̂i−1 − θ)T (Xi − ∇b(θ)) : i ∈ N} is bounded in Lp for any

p > 2. Indeed, by Cauchy-Schwarz inequality,

sup
i∈N

E|(θ̂i−1 − θ)T (Xi −∇b(θ))|p ≤ (2K)pE‖X1 −∇b(θ)‖p <∞.

Then by [68], we conclude 1
nMn converges completely to zero under Pθ.

It remains to show that 1
nRn converges completely to zero under Pθ. Fix any ε > 0. Since I(θ, θ̃) is

continuous in θ̃, there exists δ > 0 such that if ‖θ̃ − θ‖ ≤ δ, I(θ, θ̃) ≤ ε/2. Define three random times

η1 := sup{n ∈ N : | 1
n
Rn| > ε},

η2 := sup{n ∈ N : |I(θ, θ̂n)| > ε/2}, η3 := sup{n ∈ N : ‖θ̂n − θ‖ > δ}

By Theorem 5.1 in [54], there exist constant c1 and c2 such that Pθ(η3 > n) ≤ c1 exp(−c2n) for any n ∈ N.

In particular,

Eθ[η3] <∞.
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Clearly, η2 ≤ η3, which implies that Eθ[η2] <∞. We next show that η1 ≤ 2εKη2. Indeed, for n ≥ 2Kη2/ε,

| 1
n
Rn| ≤

1

n

 η2∑
i=1

I(θ, θ̂i−1) +

n∑
i=η2+1

I(θ, θ̂i−1)

 ≤ Kη2 + ε/2 ∗ n
n

≤ ε.

Thus Eθ[η1] <∞, which implies 1
nRn converges to zero quickly. (See Chapter 2.4.3 in [71] for formal definition

of quick convergence.) Due to Lemma 2.4.1 in [71], quick convergence implies complete convergence, and

thus 1
nRn converges to zero completely.

Lemma 3.12. Assume the conditions in Theorem 3.11 hold. Then

1

n
inf

θ0∈Θ0

(`(n, θ)− `(n, θ0)− nI(θ, θ0))
Pθ completely−−−−−−−−−→

n→∞
0.

Proof. By definition, we have

1

n
inf

θ0∈Θ0

(`(n, θ)− `(n, θ0)− nI(θ, θ0)) =
1

n
inf

θ0∈Θ0

n∑
i=1

(θ − θ0)T (Xi −∇b(θ))

= inf
θ0∈Θ0

(θ − θ0)T (
1

n

n∑
i=1

(Xi −∇b(θ))).

Denote θj , θ0,j , Xi,j and ∇jb(θ) the jth dimension of the Rd vectors θ, θ0, Xi and ∇b(θ). Since Θ0,Θ1 is

compact, there exists K > 0 such that

|θj |, |θ0,j | ≤ K, for any 1 ≤ j ≤ d, θ0 ∈ Θ0.

By triangle inequality,

∣∣∣∣ 1n inf
θ0∈Θ0

(`(n, θ)− `(n, θ0)− nI(θ, θ0))

∣∣∣∣ ≤ 2K

d∑
j=1

∣∣∣∣∣ 1n
d∑
i=1

(Xi,j −∇jb(θ))

∣∣∣∣∣ .
But for each 1 ≤ j ≤ d, since Eθ[X

2
i,j ] <∞, by [31],

1

n

d∑
i=1

(Xi,j −∇jb(θ))
Pθ completely−−−−−−−−−→

n→∞
0,

which completes the proof.
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3.13 Two renewal-type lemmas

In this section, we present two renewal-type lemmas about general discrete stochastic process, which may

be of independent interest.

Lemma 3.13. Let {ξi(n) : n ∈ N} (i = 1, 2) be two stochastic processes on some probability space (Ω,F ,P).

Suppose that for some positive µ1, µ2,

P

(
lim
n→∞

1

n
ξi(n) = µi

)
= 1 for i = 1, 2.

Let c be a fixed constant. Then for any random time T , and any q ∈ (0, 1),

lim
b→∞

P

(
T ≤ q b

µ1
, ξ1(T ) ≥ b+ c

)
= 0, (3.57)

lim
a, b→∞

P

(
T ≤ q( a

µ1

∨ b

µ2
), ξ1(T ) ≥ a+ c, ξ2(T ) ≥ b+ c

)
= 0. (3.58)

Proof. Since c is fixed, we assume c = 0 without loss of generality. Denote Nb = bq b
µ1
c, and εq = 1

q − 1 > 0.

Notice that P(T ≤ q b
µ1
, ξ1(T ) ≥ b) is upper bounded by

P

(
max

1≤n≤Nb
ξ1(n) ≥ b

)
≤ P

(
1

Nb
max

1≤n≤Nb
ξ1(n) ≥ (1 + εq)µ1

)
→ 0

where the convergence follows directly from Lemma A.1 of [25]. Thus the proof of (3.57) is compelte.

For the second part, assume (3.58) doesn’t hold. Then there exists some ε > 0, and a sequence (an, bn)

with an →∞, bn →∞ such that

pn := P

(
T ≤ q(an

µ1

∨ bn
µ2

), S1(T ) ≥ an, S2(T ) ≥ bn
)
≥ ε for n ∈ N.

We can assume an/µ1 ≥ bn/µ2 for any n ∈ N, since otherwise we can take a sub-sequence, and the following

argument will still go through. Thus,

ε ≤ pn ≤ P

(
T ≤ q an

µ1
, S1(T ) ≥ an

)
,

which contradicts with (3.57). Thus the proof is complete.

Remark 3.7. Note that in (3.58), there is no restriction on the way a, b approaching infinity.

The next lemma provides an upper bound on the expectation of the first time when multiple processes
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simultaneous cross given thresholds.

Lemma 3.14. Let L ≥ 2 and {ξ`(n) : n ∈ N}`∈[L] be L stochastic processes on some probability space

(Ω,F ,P). Define the stopping time

ν(~b) := inf{n ≥ 1 : ξ`(n) ≥ b` for every ` ∈ [L]}

where ~b = {b1, . . . , bL}. Then for some positive µ1, . . . , µL, we have

E[ν(~b)] ≤ max
`∈[L]

{
b`
µ`

}
(1 + o(1)) as min

`∈[L]
{b`} → ∞ (3.59)

if one of the following conditions holds: (i). For each ` ∈ [L] and any ε > 0,

∞∑
n=1

P

(∣∣ 1
n
ξ`(n)− µ`

∣∣ ≥ ε) <∞.

(ii). For each ` ∈ [L], {ξ`(n) : n ∈ N} has independent and identically distributed increment, and

P

(
lim
n→∞

1

n
ξ`(n) = µ`

)
= 1.

Proof. Denote N(~b) = max`∈[L] {b`/µ`}, and ~bmin = min{b1, . . . , bL}.

First, assume condition (i) holds. Fix ε ∈ (0, 1), and denote Nε(~b) =
⌊
N(~b)/(1 − ε)

⌋
. By definition of

ν(~b), we have

{ν(~b) > n} ⊂
⋃
`∈[L]

{ξ`(n) < b`}

By Boole’s inequality, for n > Nε(~b),

P(ν(~b) > n) ≤
∑
`∈[L]

P(ξ`(n) < b`) ≤
∑
`∈[L]

P

(
1

n
ξ`(n) <

b`

Nε(~b) + 1

)

≤
∑
`∈[L]

P

(
1

n
ξ`(n) < (1− ε)µ`

)

≤
∑
`∈[L]

P

(∣∣ 1
n
ξ`(n)− µ`| > εµ`

)
,
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where we used the fact that n ≥ Nε(~b) + 1 ≥ N(~b)
1−ε ≥

b`
(1−ε)µ` . Thus

E[ν(~b)] =

∫ ∞
0

P(ν(~b) > t) dt ≤ Nε(~b) + 1 +
∑

n>Nε(~b)

P(ν(~b) > n)

≤ Nε(~b) + 1 +
∑
`∈[L]

∑
n>Nε(~b)

P

(∣∣ 1
n
ξ`(n)− µ`

∣∣ > εµ`

)

Due to condition (i), we have

lim sup
~bmin→∞

E[ν(~b)]

N(~b)
= lim sup

~bmin→∞
(1− ε)E[ν(~b)]

Nε(~b)
≤ 1− ε

Since ε ∈ (0, 1) is arbitrary, (3.59) holds.

Now assume that condition (ii) holds. Clearly, ν(~b) ≥ ν`(b`), where

ν`(b`) := inf{n ≥ 1 : ξ`(n) ≥ b`} for ` ∈ [L].

Due to condition (ii), we have

lim inf
b`→∞

ν(~b)

b`/µ`
≥ lim

b`→∞

ν`(b`)

b`/µ`
= 1 for ` ∈ [L],

which implies lim inf~bmin→∞ ν(~b)/N(~b) ≥ 1. On the other hand, by the definition of ν(~b), there exists `′ ∈ [L]

such that

ξ`′(ν(~b)− 1) < b`′ ⇐⇒
ξ`′(ν(~b))− b`′

ν(~b)µ`′
≤ ξ`′(ν(~b))− ξ`′(ν(~b)− 1)

ν(~b)µ`′
.

Taking the minimum on the l.h.s., and maximum on the right, we have

min
`∈[L]

ξ`(ν(~b))− b`
ν(~b)µ`

≤ max
`∈[L]

ξ`(ν(~b))− ξ`(ν(~b)− 1)

ν(~b)µ`
.

which implies

N(~b)

ν(~b)
= max

`∈[L]

b`

ν(~b)µ`
≥ min

`∈[L]

ξ`(ν(~b))

ν(~b)µ`
−max
`∈[L]

ξ`(ν(~b))− ξ`(ν(~b)− 1)

ν(~b)µ`

where the last term will goes to 1 as ~bmin → ∞ due to condition (ii). Thus, lim inf N(~b)/ν(~b) ≥ 1 as

~bmin → ∞, which together with previous reverse inequality, shows that ν(~b)/N(~b) → 1 almost surely as
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~bmin →∞. Thus, the proof would be complete if we can show the following:

(∗) C1 =

{
ν(~b)

N(~b)
: b1, . . . , bL > 0

}
is uniformly integrable

Define µmax = max{µ1, . . . , µL} > 0, bmax = max{b1, . . . , bL} and

ν′(c) = inf{n ≥ 1 : ξ` ≥ c for every ` ∈ [L]} for c > 0.

By Theorem 3 of [24], C2 = {ν′(c)/c : c > 0} is uniformly integrable. Observe that

ν(~b) ≤ ν′(bmax) , N(~b) ≥ bmax
µmax

⇒ ν(~b)

N(~b)
≤ µmax

ν′(bmax)

bmax
∈ µmax C2.

Since µmax is a constant, C1 is dominated by a uniformly integrable family. Thus condition (∗) holds, and

the proof is complete.

3.14 Generalized Chernoff’s lemma

In this section, we present a generalization to the Chernoff’s Lemma that allows for different requirements

on Type I and II errors. Consider the following simple versus simple testing problem: let {Xn, n ∈ N} be a

sequence of independent random variables with common density f relative to some σ-finite measure ν, and

for some densities f0 and f1,

H0 : f = f0 vs. H1 : f = f1.

Let Sn be the class of Fn-measurable random variables taking value in {0, 1}, where Fn = σ(X1, . . . , Xn).

For any procedure Dn ∈ Sn, denote

pn(Dn) := P0(Dn = 1), qn(Dn) := P1(Dn = 0),

where Pi is the probability measure under Hi for i = 1, 2. Further, denoting Y := f1(X1)/f0(X1), we define

Φ(z) := sup
θ∈R

{
zθ − log

(
E0[Y θ]

)}
, I0 := E0[− log(Y )], I1 := E1[log(Y )],

with the possibility that either I0 or I1 assumes ∞. We assume that there exists hd ∈ (−I0, I1) such that

Φ(hd)/d = Φ(hd)− hd.
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In particular, if d = 1, we can set hd = 0.

Lemma 3.15. (Generalized Chernoff’s Lemma) For any d > 0,

lim
n→∞

inf
Dn∈Sn

1

n
log
(
p1/d
n (Dn) + qn(Dn)

)
= −Φ(hd)

d
.

Remark 3.8. When d = 1, since we can select hd = 0, it reduces to Chernoff’s Lemma [20, Corollary

3.4.6]. For d 6= 1, the proof is essentially the same, and we present it here for completeness.

Proof of Lemma 3.15. Let us first fix n. Denote λ(n) :=
∑n
i=1 log f1(Xi)

f0(Xi)
. By the Neyman-Pearson Lemma,

it suffices to consider the tests of Neyman-Pearson form. Thus, if we denote

δn(h) := 1 if and only if
1

n
λ(n) ≥ h,

then we have

inf
Dn∈Sn

log
(
p1/d
n (Dn) + qn(Dn)

)
= inf
h∈R

log
(
p1/d
n (δn(h)) + qn(δn(h))

)
Since pn(δn(h)) is decreasing in h and qn(δn(h)) increasing in h, for any h ∈ R, either pn(δn(h)) ≥

pn(δn(hd)) or qn(δn(h)) ≥ qn(δn(hd)). Thus

inf
Dn∈Sn

log
(
p1/d
n (Dn) + qn(Dn)

)
≥ log min

{
p1/d
n (δn(hd)), qn(δn(hd))

}

By the Theorem 3.4.3 of [20], as n→∞,

1

n
log(p1/d

n (δn(hd))→ −
Φ(hd)

d
,

1

n
log(qn(δn(hd)))→ −(Φ(hd)− hd).

Thus by definition of hd and sending n→∞,

lim inf
n→∞

inf
Dn∈Sn

1

n
log(p1/d

n (Dn) + qn(Dn)) ≥ −Φ(hd)

d
.

Clearly, the equality is attained by the Neyman-Pearson rule with threshold hd, i.e., δn(hd), which completes

the proof.
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Chapter 4

Change acceleration and detection

4.1 Introduction

1 The goal in the problem of quickest (or sequential) change detection (QCD) is to minimize some metric

of detection delay, while controlling some metric of the false-alarm rate. In non-Bayesian formulations of

this problem, the mechanism that triggers the change is considered to be completely unknown or at most

partially known [48], and a worst-case analysis is adopted [42, 56]. In the Bayesian QCD, the change-point

is assumed to be a random variable with given prior distribution; thus, the change mechanism in this setup

is known and exogenous to the collected observations [48, 62, 63, 74].

In the current QCD framework, it is neither permissible nor relevant to influence the change-point.

However, in certain applications the change corresponds to a desirable event that we want to not only

quickly and reliably detect, but also accelerate. Specifically, the development of intelligent tutoring systems

and e-learning environments in recent years has provided powerful instructive and assessment tools [2, 77, 78].

A major statistical problem in this context is to combine these tools efficiently in order to help a student

master the skill of interest fast, and at the same time to minimize the delay in detecting mastery of the

skill. Motivated by such applications, in this Chapter we propose a generalization of the Bayesian QCD

problem whose key ingredients are (i) an experimental design aspect that influences the change-point and

(ii) a minimization of the total expected time.

Specifically, we assume that at any given time we select a treatment (or experiment, or stimulus, de-

pending on the application) among a number of options, and observe a response to it. Then, based on the

already collected responses up to this time, we need to decide whether to stop and declare that the change

has occurred, or to continue the process, in which case we have to decide the treatment for the next time-

period. Therefore, in addition to a stopping rule, we also need to determine a rule for sequentially assigning

treatments. We define the optimal procedure, consisting of a treatment assignment rule and a stopping rule,

as the one that minimizes the average total number of responses subject to a constraint on the probability

1This chapter is based on my research posted on arXiv: Y. Song and G. Fellouris, “Change acceleration and detection”,
arXiv:1710.00915.
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of false alarm, i.e., stopping before the change has occurred. Since the average total number of responses is

(roughly) the sum of the expected time until the change happens and the expected detection delay, we refer

to this problem as change acceleration and detection.

When there is only one treatment, i.e., without the experimental design aspect, this problem reduces to

the Bayesian QCD problem [62, 74], where the goal is to find a stopping rule that minimizes the expected

detection delay, while controlling the false alarm probability. When there are multiple treatments that not

only determine the distribution of the responses before and after the change, but also affect the change-point

itself, the treatment assignment rule plays a critical role in both accelerating and detecting the change, and

the heart of the proposed problem is to resolve the trade-off between these two goals optimally.

A related problem is that of “sequential design of experiments”, also known as “active hypothesis testing”

or “controlled sensing” [12, 16, 49, 50]. However, the experimental design in this literature does not influence

the true hypothesis, which does not change over time. Another relevant problem is the so-called “(partially

observable) stochastic shortest path” problem [11, 52, 53], where the goal is to perform a series of actions

in order to drive a (controlled) Markov chain to a certain absorbing state with the minimum possible cost.

However, the target state in this context is assumed to be observable, i.e. the change-point is not latent,

and thus there is no detection task involved.

We now state the main results of this Chapter. When the conditional probability that the change happens

at some time (given that it has not happened yet) depends only on the current treatment, the proposed

problem can be embedded into the framework of Markov Decision Processes (MDP) [10]. Under this simple

change-point model, to which we refer as Markovian, we generalize the classical optimality result of Bayesian

QCD [62] by showing that it is optimal to stop at the first time the posterior probability process, associated

with the optimal assignment rule, exceeds a threshold (Section 4.3). However, the optimal assignment rule is

obtained numerically via dynamic programming; thus, it does not provide any insights into how treatments

are selected, whereas its implementation suffers from several computational issues.

Due to the restrictive modeling assumptions and computational difficulties of the MDP framework, in

this Chapter we propose an intuitive scheme that is inspired by mastery learning theory in psychometrics [13]

and is consistent with educational practice (Section 4.4). Specifically, we start with a “training” stage during

which we assign a treatment that is “good” (in a sense to be specified) for accelerating the change. The

training stage is stopped as soon as the posterior probability that the change has already occurred exceeds

some threshold. When this happens, we switch to an “assessment” stage where we assign a treatment that

is “good” (again in a sense to be specified) at detecting the change. This assessment stage is stopped as

soon as either the posterior probability process exceeds a larger threshold, or a different test statistic that
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tends to increase before the change-point exceeds a different threshold. In the former case, we terminate

and declare that the change has occurred. In the latter, we switch back to a training stage and repeat the

previous process until termination.

The proposed procedure has three free parameters (thresholds), for which we propose explicit values.

Specifically, one of them is determined by the false alarm constraint, whereas the other two are selected in

order to minimize an upper bound on the expected sample size of the proposed scheme. This upper bound

applies for a general class of change-point models, beyond the Markovian case (Section 4.5). In this general

framework, we show that the resulting procedure is asymptotically optimal, in the sense that it achieves

the optimal expected sample size up to a first-order approximation as the false alarm probability vanishes

(Section 4.6).

Therefore, the implementation and asymptotic optimality of the proposed procedure are not limited to

the Markovian change-point model, as it is the case for the computation of the optimal solution using the

MDP framework. We also argue that the proposed procedure is preferable for practical purposes even in

the Markovian case. Indeed, its parameters are determined analytically, whereas the computation of the

optimal procedure via dynamic programming requires extensive simulations. Moreover, a simulation study

in the Markovian setup (Section 4.7) shows that its performance is very close to the optimal, suggesting that

any inflicted performance loss relative to the optimal in this setup is minimal.

The structure of the remainder of the Chapter is as follows. In Section 4.2 we formulate the proposed

problem. In Section 4.3 we describe a dynamic programming solution under the Markovian change-point

model. In Section 4.4 we introduce the proposed scheme. In Section 4.5 we discuss an asymptotic framework

that gives rise to a general class of change-point models. In Section 4.6 we show how to specify the thresholds

of the proposed scheme, and establish its asymptotic optimality. We present a simulation study in Section 4.7

and conclude in Section 4.8. Omitted proofs are presented in the Section 4.9.

4.2 Problem formulation

Let (Ω,F ,P) be a probability space hosting a discrete-time stochastic process {Lt, t = 0, 1 . . .}. This process

represents the state evolution of some system and takes values in the binary set {0, 1} such that LΘ+t = 1

for every t ≥ 0, where

Θ ≡ inf{t ≥ 0 : Lt = 1}; (inf ∅ =∞).

That is, Θ is the time at which an irreversible change occurs, and we refer to it as the change-point. We

assume that the process {Lt} is latent, and thus the change-point cannot be observed. In order to infer
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it, at each time t ≥ 1 we select a treatment, Xt, and observe a response, Yt, to it. Specifically, we assume

that there is a finite number of available treatments, say K, and that each Xt is determined based on the

observed responses up to time t−1. Thus, each Xt is a [K]-valued, Ft−1–measurable random variable, where

[K] ≡ {1, . . . ,K} and Ft is the σ-algebra generated by the observed responses up to time t, i.e.,

Ft ≡ σ(Ys, 1 ≤ s ≤ t), t ≥ 1; F0 ≡ {∅,Ω}.

Our key assumption is that the unobserved change-point can be inferred by the observed responses and

influenced by the treatment assignment rule, X ≡ {Xt, t ≥ 1}.

4.2.1 Response model and change-point model

We start with the response model. Each response is assumed to take values in some Polish space Y and to

be conditionally independent of the past given the current state of the system and the current treatment.

Specifically, for each x ∈ [K] there are (known) densities fx and gx with respect to some σ-finite measure µ

on B(Y) so that for every t ≥ 1 we have

Yt | Xt = x, Lt = i, Ft−1, {Ls}0≤s≤t−1 ∼


fx, i = 0

gx, i = 1.

That is, gx (resp. fx) is the density of a response to treatment x after (resp. before) the change. For each

x ∈ [K] we assume that the following conditions hold for the log-likelihood ratios of the response densities:

∫
Y

(
log

gx
fx

)2

gx dµ <∞ and Ix ≡
∫
Y

(
log

gx
fx

)
gx dµ > 0,∫

Y

(
log

fx
gx

)2

fx dµ <∞ and Jx ≡
∫
Y

(
log

fx
gx

)
fx dµ > 0.

(4.1)

As a result, the Kullback-Leibler divergences, Ix and Jx, between the response densities gx and fx are

positive and finite for each x ∈ [K].

Remark 4.1. A common response space to all treatments is assumed without loss of generality. Indeed, if

Yx is the response space to treatment x ∈ [K], then we can set Y = Y1 × . . . × YK and a response y ∈ Yx

to treatment x can be replaced by a new response (y∗1 , . . . , y
∗
x−1, y, y

∗
x+1, . . . , y

∗
K) ∈ Y, where each y∗z is an

arbitrary fixed response in Yz for z ∈ [K].

We now turn to the change-point model. We denote by π0 the probability that the change has occurred

102



before observing any response and by Πt the conditional probability that the change happens at time t ≥ 1,

i.e.,

π0 ≡ P(L0 = 1),

Πt ≡ P(Lt = 1 |Lt−1 = 0,Ft−1) = P(Θ = t |Θ ≥ t, Ft−1), t ≥ 1.

We assume that Πt depends only on the assigned treatments, X1, . . . , Xt, in the sense that there exists a

function πt : [K]t → [0, 1] such that

Πt = πt(X1, . . . , Xt), t ≥ 1.

Therefore, the change-point model is determined by the prior probability π0 and the transition functions

{πt, t ≥ 1}.

Remark 4.2. The simplest change-point model arises when the transition probability at each time depends

only on the current treatment, in the sense that for each x ∈ [K] there is some constant px ∈ [0, 1] so that

πt(x1, . . . , xt−1, x) = px (4.2)

for every (x1, . . . , xt−1) ∈ [K]t−1 and t ≥ 1. We will refer to (4.2) as the Markovian change-point model.

The postulated response and change-point models determine the evolution of the pair {Lt, Yt, t ≥ 1}

given the response densities {fx, gx, x ∈ [K]}, the transition functions {πt, t ≥ 0}, and the treatment

assignment rule X = {Xt, t ≥ 1}.

Figure 1.2 provides a graphical illustration of the proposed model. Moreover, since Y is a Polish space,

there exists some measurable function h and two independent sequences, {Ut} and {Vt}, of independent,

uniformly distributed in (0, 1) random variables on (Ω,F ,P) such that for every t ≥ 1 we have:

Lt = 1{Lt−1 = 1}+ 1{Lt−1 = 0, Ut ≤ Πt} and Yt = h(Xt, Lt, Vt), (4.3)

where L0 ≡ 1{U0 ≤ π0} and 1{·} is the indicator function [32, Lemma 3.22].

Remark 4.3. In this context, the change point, Θ, depends on the treatment assignment rule, X , and we

will write ΘX to emphasize this dependence. Similarly, we will write Πt(X ) and Lt(X ) without emphasizing

that Πt and Lt depend only on the treatments assigned up to time t, X1, . . . , Xt, not the whole sequence of

assigned treatments.
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4.2.2 Problem Formulation

The problem we consider is to first accelerate the change and then detect it as quickly as possible. Thus, an

admissible procedure is a pair (T,X ), where X = {Xt, t ≥ 1} is an adaptive treatment assignment rule, which

determines how to assign the treatments, and T a stopping rule, which determines when to stop and declare

that the change has occurred. Formally, T is an {Ft}–stopping time, i.e., {T = t} ∈ Ft for every t ≥ 0,

and Xt is a [K]–valued, Ft−1–measurable random variable for t ≥ 1, recalling that {Ft} is the filtration

generated by the observed responses.

We denote by C the class of all such pairs (T,X ). When T stops before the change-point ΘX induced by

X , a “false alarm” occurs. We are interested in procedures that control the probability of false alarm below

a user-specified tolerance level α ∈ (0, 1), and denote by Cα the corresponding class, i.e.,

Cα ≡ {(T,X ) ∈ C : P(T < ΘX ) ≤ α and P(T <∞,ΘX <∞) = 1} .

The problem then is to find a procedure in Cα that achieves the minimum possible expected sample size in

this class,

inf
(T,X )∈Cα

E [T ] . (4.4)

Remark 4.4. The expected time until stopping, E[T ], can be decomposed as follows:

E[(T −ΘX )+] + E[ΘX ] − E[(T −ΘX )−]. (4.5)

The first term is the average detection delay, which is the object of interest in the Bayesian QCD problem,

the second term is the expected number of observations until the change, whereas the third one is negligible

when α is small. Therefore, minimization of the total expected sample size requires an “acceleration” of the

change, in addition to a minimization of the detection delay, which is the reason why we refer to this problem

as “change acceleration and detection”.

Remark 4.5. All results in this Chapter can be established with minor modifications in the case that the

problem is to minimize the sum of the first two terms in (4.5).

Remark 4.6. When K = 1, there is no experimental design aspect, and the change-point is not affected

by the observations. Thus, we recover the Bayesian QCD problem [62, 74], where the objective is to find a
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stopping rule that minimizes the average detection delay in Cα, i.e., a stopping rule in Cα that achieves

inf
T∈Cα

E[(T −Θ)+]. (4.6)

4.2.3 Posterior odds and Shiryaev rules

We close this section by introducing some quantities and stating some related preliminary results that will

be used throughout the Chapter.

For an assignment rule X , we denote by Γt(X ) the posterior odds that the change has already occurred

at time t ≥ 0, i.e.,

Γt(X ) ≡ P(Lt(X ) = 1 | Ft)
P(Lt(X ) = 0 | Ft)

, t ≥ 1; Γ0(X ) ≡ π0

1− π0
. (4.7)

Moreover, we denote by {Γ̂t(X ) : t ≥ 0} the posterior probability process that the change has already

occurred, i.e.,

Γ̂t(X ) ≡ P(Lt(X ) = 1|Ft) =
Γt(X )

1 + Γt(X )
, t ≥ 0.

We denote by TX (b) the first time the posterior odds process exceeds some fixed threshold b > 0, i.e.,

TX (b) = inf{t ≥ 0 : Γt(X ) ≥ b}, (4.8)

where threshold b is determined by the false alarm constraint, α. This stopping rule has been studied

in the absence of experimental design (K = 1), where the transition functions {πt} reduce to transition

probabilities.

Specifically, when the change-point has a (zero-modified) geometric distribution, i.e., there are p, q ∈ (0, 1)

so that π0 = q and πt = p for t ≥ 1, [62] showed that TX (b) is optimal, in the sense that it achieves (4.6)

when b is chosen so that the probability of false alarm is equal to α. Further, it has been shown by [74] that

TX (b) achieves (4.6) up to a first-order asymptotic approximation as α→ 0 when the sequence of transition

probabilities, {πt}, converges as t→∞ to some p ∈ (0, 1) (in Cesàro sense).

In what follows, we refer to TX as the Shiryaev (stopping) rule associated with the treatment assignment

rule X . The next Lemma shows that, for any assignment rule X , (X , TX (b)) belongs to Cα when we set

b = (1−α)/α. Moreover, it suggests an efficient way to compute its false alarm probability via Monte Carlo

simulation. We state this result in greater generality needed for the subsequent development. The proofs of

the next two lemmas can be found in Section 4.9.1.

Lemma 4.1. Let X be a treatment assignment rule and let S be an {Ft}-stopping time such that P(S <
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∞) = 1. Then,

P(S < ΘX |FS) =
1

1 + ΓS(X )
.

Hence, if P(ΓS(X ) ≥ b) = 1 for some positive b, then

P(S < ΘX ) = E
[
1− Γ̂S(X )

]
= E

[
1

1 + ΓS(X )

]
≤ 1

1 + b
.

The next Lemma shows that the posterior odds process admits a recursive form, an important property

for both analysis and practical implementation.

Lemma 4.2. Fix an assignment rule, X . Then, for any t ≥ 1 we have

Γt(X ) = (Γt−1(X ) + Πt(X ))
Λt(X )

1−Πt(X )
, where Λt(X ) ≡ gXt(Yt)

fXt(Yt)
. (4.9)

Hereafter, we may omit the argument X to lighten the notation when there is no danger of confusion.

4.3 Exact optimality in the Markovian case

In this section we obtain a procedure that is optimal, in the sense that it achieves (4.4) for any given

tolerance level α, under the Markovian change-point model (4.2). Specifically, we generalize the optimality

result in [62] by showing that the optimal stopping rule in this setup is of the form (4.8). However, the

optimal assignment rule does not have an explicit form and its computation suffers from several issues. This

approach is based on standard dynamic programming arguments [10], which are outlined below.

4.3.1 The main steps

Step 1. We first introduce a new objective function. Suppose that the cost is c > 0 for each treatment

and 1 for a false alarm. We denote by π the prior belief P(L0 = 1), and write Pπ and Eπ to emphasize this

dependence. Then, the expected cost of a procedure (T,X ) ∈ C is

Jc(π;T,X ) ≡ cEπ[T ] + Pπ(ΘX = 0) = Eπ
[
c T + 1− Γ̂T

]
,

where the second equality is due to Lemma 4.1. For each π ∈ [0, 1] we denote by J∗c (π) the infimum over all

admissible procedures, i.e.,

J∗c (π) = inf
(T,X )∈C

Jc(π;T,X ). (4.10)
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Note that the posterior probability process {Γ̂t : t ≥ 0} is a sufficient statistic for the hidden process

{Lt : t ≥ 0} [10], and that under (4.2), in view of recursion (4.9), we have the following recursion for

posterior probability process: Γ̂0 = π, and for t ≥ 1,

Γ̂t = ψ(Γ̂t−1, Xt, Yt) where ψ(z, x, y) ≡ ( z + px(1− z) )gx(y)

φ(y; z, x)

and φ(y; z, x) ≡ ( z + px(1− z) )gx(y) + (1− px)(1− z)fx(y).

(4.11)

In addition, the conditional density of Yt given Ft−1 is φ(y; Γ̂t−1, Xt) (see Section 4.9.2 for a proof).

Step 2. Denote by J the space of non-negative functions on [0, 1], i.e., J ≡ {J, J : [0, 1]→ [0,∞]}, and

define an operator Tc : J → J as follows: for any J ∈ J and z ∈ [0, 1] we set

Tc(J)(z) ≡ min

{
1− z, c+ min

x∈[K]

∫
J(ψ(z, x, y))φ(y; z, x)µ(dy)

}
. (4.12)

Since the cost at each stage is positive, from standard dynamic programming theory [10, 34], it follows

that the optimal cost function satisfies the Bellman equation, and can be computed by repeated application

of the above operator:

Tc(J∗c ) = J∗c , and lim
t→∞

T
⊗
t

c (0)(z) = J∗c (z) for any z ∈ [0, 1], (4.13)

where 0 is the zero function in J , and T
⊗
t

c (·) is the operator on J obtained by composing Tc with itself

for t times.

Step 3. After solving J∗c , an optimal procedure (T ∗c ,X ∗c ), in the sense of achieving (4.10), is given by

the following [10, 34]:

T ∗c = inf{t ≥ 0 : 1− Γ̂t ≤ J∗c (Γ̂t)},

X∗t,c = arg min
x∈[K]

∫
J∗c (ψ(Γ̂t−1, x, y))φ(y; Γ̂t−1, x)µ(dy) for t ≥ 1.

Intuitively, J∗c (z) is the optimal “cost to go” if the current posterior probability is z. Thus, we should

terminate the process the first time t that the stopping cost 1 − Γ̂t does not exceed J∗c (Γ̂t); otherwise, we

should continue with the treatment that minimizes the optimal, expected future cost.
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Step 4. For a given tolerance level α ∈ (0, 1), if c(α) is selected such that

P
(
T ∗c(α) < ΘX∗

c(α)

)
= α, (4.14)

then the pair (T ∗c(α),X
∗
c(α)) achieves (4.4), and thus is optimal for the problem of interest in this work.

The next theorem shows that the optimal stopping rule, T ∗c , is the Shiryaev rule associated with X ∗c , i.e.,

TX∗c in the notation of (4.8). The proof is similar to that in the Bayesian QCD problem with a zero-modified

geometric prior [62], and can be found in the Section 4.9.2.

Theorem 4.1. For any c > 0 there exists constant bc ∈ [0, 1] such that

T ∗c = inf{ t ≥ 0 : Γ̂t(X ∗c ) ≥ bc } = inf{ t ≥ 0 : Γt(X ∗c ) ≥ bc/(1− bc) }.

4.3.2 Criticism

The approach described in this section can only be applied in the special case of the Markovian change-point

model (4.2), which may be realistic for certain applications, but inappropriate for others. However, even

under this particular model, this approach has several shortcomings: (i) in the repeated application of the

operator Tc, defined in (4.12), we have to discretize the state space [0, 1], and use interpolation to evaluate

the integrand; (ii) the integral in (4.12) may be difficult to compute when the density φ, defined in (4.11),

has a complex form; (iii) in order to find the value of c(α) for which the false alarm constraint (4.14) is

satisfied, we need to numerically compute (T ∗c ,X ∗c ) for a wide range of values of c, and then compute for

each of them the associated probability of false alarm via simulation; (iv) we do not have an explicit form

for the optimal assignment rule X ∗c , and thus there is no intuition about how treatments are selected.

This motivates us to propose in the next section a different procedure, whose design does not require

any computational effort and whose performance achieves the optimal, in an asymptotic sense, but under a

general framework that includes the Markovian change-point model (4.2).

4.4 A procedure inspired by mastery learning theory

4.4.1 Motivation and main idea

The proposed procedure is inspired by a pedagogical theory and approach known as mastery learning [13],

according to which every student is able to master a skill given sufficient time and appropriate instruction.
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This theory suggests training a student until there is evidence of mastery, and then assessing whether this

has indeed happened. In the case of a negative assessment, the process of training/assessing is repeated

until there is a positive assessment that the student has mastered the skill and is ready to move onto more

advanced skills.

In this section we propose a procedure that is motivated by this idea. In order to describe it, let us assume

(a bit vaguely for now, but see (4.23) for a precise definition) that treatment 1 is “good” at accelerating

the change and that treatment K is “good” at detecting the change. Then, we propose starting with a

training stage, where treatment 1 is assigned continuously in order to trigger the change as fast as possible.

When we accumulate a fair amount of evidence suggesting that the change has already happened, we switch

to an assessment stage, where treatment K is continuously assigned in order to quickly confirm or reject

this hypothesis. If the data from the assessment stage suggest that the change has indeed happened, we

terminate and declare that the change has occurred. Otherwise, we switch back to a training stage and the

previous process is repeated until termination. We illustrate the main idea of this procedure in Fig 4.1, and

continue with its formal definition.

Figure 4.1: An illustration of the main idea of the proposed procedure.

4.4.2 Definition

We define a stage as a block of consecutive time instants at which the same treatment is assigned. We set

S0 ≡ 0 and for each n ≥ 1 we denote by Sn the time that represents the end of the nth stage, and by An

the treatment assigned in this stage. We say that the nth stage, (Sn−1, Sn], is a training stage if An = 1,

and an assessment stage if An = K.

A training stage together with its subsequent assessment stage are said to form a cycle, so that the mth

cycle is (S2m−2, S2m], where m ≥ 1. The proposed procedure terminates at the end of a cycle and we denote

by N the number of cycles until stopping.
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Then, the proposed procedure is defined as follows:

X̃t ≡


1, if t ∈ (S2m−2, S2m−1] for some m ∈ N

K, if t ∈ (S2m−1, S2m] for some m ∈ N
, for every t ≥ 1,

T̃ ≡S2N .

(4.15)

It remains to specify the random times {Sn} that determine the duration of each stage, as well as the

number of cycles until stopping, N . In order to do so, we need to address two questions. First, how to

measure the amount of evidence supporting that the change has happened? Second, how to determine in

the assessment stage that the change has not happened, in order to switch back to the training stage? For

the first question, we introduce the following random time

σ(t; b) ≡ inf{s ≥ 1 : Γt+s ≥ b}. (4.16)

This is the number of observations required after time t by the posterior odds process (4.7), associated with

the proposed assignment rule, to cross some threshold b. For the second question we introduce the random

time

τ(t; d) = inf

s ≥ 1 :

s∏
j=1

fK(Yt+j)

gK(Yt+j)
≥ d

 . (4.17)

This is a one-sided Sequential Probability Ratio Test (SPRT) of Lt = 0 against Lt = 1 under treatment

K if the change cannot happen in assessment stages. However, the change may in general occur during an

assessment stage, and this fact leads to a considerably more complicated analysis.

We now define recursively the times {Sn} with S0 = 0. Thus, at the end of the m− 1th cycle, S2m−2, we

start a new training stage during which we run the change-detection procedure (4.16) with some threshold

b1 so that

S2m−1 = S2m−2 + σ(S2m−2; b1).

After this time, we start an assessment stage during which we run the same change-detection procedure (4.16)

with some larger threshold bK > b1, and at the same time the one-sided SPRT (4.17). The assessment stage

is stopped as soon as one of the two rules stops. That is,

S2m = S2m−1 + σ(S2m−1; bK) ∧ τ(S2m−1; d),
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where x ∧ y = min(x, y). More compactly, for each stage n ≥ 1 we have

Sn = Sn−1 +


σ(Sn−1; b1), n is odd

σ(Sn−1; bK) ∧ τ(Sn−1; d), n is even.

(4.18)

Finally, we define N as the first cycle in which the the change-detection rule stops earlier than the one-sided

SPRT in the assessment stage, i.e.,

N ≡ inf {m ≥ 1 : σ(S2m−1; bK) ≤ τ(S2m−1; d)}

= inf{m ≥ 1 : ΓS2m
≥ bK}.

(4.19)

The proposed procedure (X̃ , T̃ ) is completely determined by (4.15)–(4.19), and is illustrated graphically

in Figure 4.2. In the following sections, we explain how to select the treatments in the training and assessment

stages, and also how to determine thresholds b1, bK , d in terms of the tolerance level α.

Remark 4.7. In view of the second equality in (4.19), the proposed stopping rule, T̃ , resembles the Shiryaev

rule with threshold bK that is associated with X̃ (recall (4.8)). The only difference is that the latter allows

for termination at the end of a training stage, which happens if the posterior odds process at this time is

not only larger than b1, but also larger than bK . This will be unlikely when bK is much larger than b1. In

any case, these two stopping rules have the same asymptotic properties. We preferred to work with T̃ simply

because it is more intuitive and reasonable from a practical point of view to stop at the end of an assessment

stage.

4.5 The asymptotic framework

In this section we introduce a general class of change-point models for which we will be able to design the

proposed scheme in the previous section, and eventually establish its asymptotic efficiency as the tolerance

level α→ 0.

Notations. x = o(y) is short for lim(x/y) = 0, x = O(y) for lim sup(x/y) < ∞, x ≥ y(1 + o(1)) for

lim inf(x/y) ≥ 1, x ≤ y(1 + o(1)) for lim sup(x/y) ≤ 1, and x ∼ y for lim(x/y) = 1.
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Figure 4.2: A simulation run of the proposed procedure. The circles correspond to training stages, and the
crosses to assessment stages. The solid line is the logarithm of the posterior odds process, and the dashed
line is the logarithm of the SPRT statistic in (4.17). In training stages, we assign treatment 1, wait until the
posterior odds to cross b1, and then switch to an assessment stage. In assessment stages, we assign treatment
K, and run both the detection rule (4.16) with parameter bK and the testing rule (4.17) with parameter
d. If the testing rule stops earlier, as in the second stage of this figure, we switch back to a training stage.
Otherwise, we terminate the process as in the fourth stage of this figure, where T̃ = S4. Note that in this
example there is no false alarm.

4.5.1 Parametrizing the transition functions by the tolerance level

Recall the decomposition (4.5) of the expected sample size E[T ] of some pair (T,X ) ∈ Cα. Due to the

false alarm constraint, the third term will be negligible as the tolerance level α goes to 0. The first term

corresponds to the average detection delay and goes to infinity as α→ 0. The second term is the expected

time of change and will remain constant, thus asymptotically negligible relative to the first term, if it is

independent of α.

Therefore, in order to conduct a more general and relevant asymptotic analysis, we need to allow the

second term to go to infinity as well, maybe even faster than the first term. Thus, in what follows we

parametrize the transition functions {πt} by α, and allow them to vanish as α → 0. To emphasize this

parametrization, we write πt( · ;α) instead of πt( · )

4.5.2 An asymptotically Markovian change-point model

In view of this enhanced asymptotic regime, we can reformulate the Markovian change-point model (4.2)

as follows: for each x ∈ [K] and α ∈ (0, 1) there exists px(α) ∈ [0, 1] such that for every t ≥ 1 and

x1, . . . , xt−1 ∈ [K] we have

πt(x1, . . . , xt−1, x;α) = px(α), (4.20)
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where px(α) may go to 0 as α→ 0. However, we will be able to analyze the proposed procedure for a more

general class of change-point models, in which (4.20) is only required to hold approximately for large values

of t, in the sense that

sup
α>0

sup
z∈[K]t−1

|πt(z, x;α)− px(α)| −→ 0 as t→∞. (4.21)

This assumption is in the spirit of those imposed on the prior distribution of the change-point in the

asymptotic analysis of the Bayesian QCD problem [74]. In view of the results in this literature, it is not

surprising that px(α) plays a role in characterizing the detection power of treatment x.

4.5.3 Characterizing treatment quality

For each x ∈ [K] we set

Dx(α) ≡ Ix + | log(1− px(α))|,

where Ix is the Kullback-Leibler information number in (4.1). Moreover, for each x ∈ [K] we denote by

λx(α) the expected time of the change when only treatment x is assigned. Specifically, we denote by (x) the

assignment rule under which only treatment x is assigned, i.e. (x) ≡ {Xt = x : t ≥ 1}. Then,

λx(α) ≡ E[Θ(x)] =

∞∑
t=0

P(Θ(x) > t) =

∞∑
t=1

t∏
s=0

(1− πs(x, . . . , x;α)). (4.22)

Without loss of generality, relabeling the treatments if necessary, we assume that

λ1(α) = min
x∈[K]

λx(α) and DK(α) = max
x∈[K]

Dx(α). (4.23)

This clarifies how the treatments are selected in the proposed procedure in Section 4.4.

Remark 4.8. In the case of the Markovian change-point model (4.20) we have λx(α) = 1/px(α) and

consequently p1(α) = maxx∈[K] px(α), i.e., the treatment assigned in the training stages is the one with the

highest transition probability.

4.5.4 Additional assumptions

Finally, we need two technical assumptions. First, we assume that treatment 1 has non-trivial transition

probability whenever it is assigned. To be more precise, let ζx(α) denote the smallest possible transition
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probability whenever treatment x is assigned, i.e.,

ζx(α) ≡ inf
t≥0

inf
z∈[K]t

πt+1(z, x;α). (4.24)

We allow ζ1(α) to vanish as α→ 0 as long as this does not happen very fast, in the sense that

| log(ζ1(α))| = o(| log(α)|), (4.25)

which also implies that ζ1(α) > 0 for small values of α. We stress that we do not impose such requirement

on other treatments. Thus, the transition probability may even be always 0 whenever a different treatment

is assigned.

Second, we assume that all transition probabilities are bounded away from 1, which essentially implies

that it is not possible to “force” the change. Specifically, let π∗t (α) denote the maximum possible transition

probability at time t, i.e.,

π∗0(α) ≡ π0(α), π∗t (α) ≡ max
z∈[K]t

πt(z;α), t ≥ 1. (4.26)

Then, we assume that there is a universal constant δ ∈ (0, 1) such that

sup
α∈(0,1)

sup
t≥0

π∗t (α) ≤ 1− δ. (4.27)

Remark 4.9. Conditions (4.25) and (4.27) essentially exclude trivial cases. Under the Markovian change-

point model (4.20), they are equivalent to

| log(p1(α))| = o(| log(α)|), (4.28)

sup
α∈(0,1)

p1(α) < 1, (4.29)

and when the transition probabilities do not depend on α, i.e., under (4.2), they only require that p1 is not

equal to 0 or 1.

4.5.5 The smallest possible change-point

From (4.23) it follows that, for any given α, λ1(α) is the smallest expected time of the change under static

assignment rules where the same treatment is always assigned. In general, it may be possible to accelerate

the change further using a non-static assignment rule. To establish a lower bound, we denote by Θ∗(α) the
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change-point that corresponds to the maximum transition probabilities in (4.26), i.e.,

Θ∗(α) ≡ inf{t ≥ 1 : L∗t = 1}, where L∗0 ≡ 1{U0 ≤ π∗0(α)} and

L∗t = 1{L∗t−1 = 1}+ 1{L∗t−1 = 0, Ut ≤ π∗t (α)} for t ≥ 1.

(4.30)

Comparing (4.30) with (4.3) we conclude that for any assignment rule X and tolerance level α ∈ (0, 1), we

have ΘX (α) ≥ Θ∗(α), and consequently E[ΘX (α)] ≥ λ∗(α), where λ∗(α) is the the expected value of Θ∗(α),

i.e.,

λ∗(α) ≡ E[Θ∗(α)] =

∞∑
t=0

P(Θ∗(α) > t) =

∞∑
t=1

t∏
s=0

(1− π∗s (α)). (4.31)

4.6 The main result

In this section we state and outline the proof of the main result, which is the asymptotic optimality of the

proposed procedure, with an appropriate selection of thresholds, under a large class of change-point models.

First of all, from Lemma 4.1 it follows that an appropriate selection of bK alone can guarantee the false

alarm constraint. Specifically, for any given α ∈ (0, 1) we have (T̃ , X̃ ) ∈ Cα when

bK = (1− α)/α. (4.32)

Given this choice for bK , the other two thresholds will be selected in order to minimize (an upper bound on)

the expected sample size of the proposed scheme. Specifically, we will set

b1 =
1/ζ1(α) + log(bK)/DK(α)

1/D1(α)− 1/DK(α)
, d = b1

1/ζ1(α) + log(bK)/DK(α)

1/IK + 1/JK
. (4.33)

The following theorem is the main theoretical result of this work.

Theorem 4.2. Suppose that the response model satisfies (4.1), and that the change-point model satisfies

(4.21), (4.25), (4.27).

(i) As α→ 0,

inf
(T,X )∈Cα

E [T ] ≥
(
λ∗(α) +

| log(α)|
DK(α)

)
(1 + o(1)). (4.34)

(ii) If the thresholds b1, bK , d of (T̃ , X̃ ) are selected according to (4.32)–(4.33), then (T̃ , X̃ ) ∈ Cα for any

given α ∈ (0, 1), and as α→ 0 we have

E[T̃ ] ≤
(
λ1(α) +

| log(α)|
DK(α)

)
(1 + o(1)). (4.35)
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Proof. We will outline the proof of (4.34) in Subsection 4.6.1 and the proof of (4.35) in Subsection 4.6.2.

A comparison of (4.34) and (4.35) reveals that (T̃ , X̃ ) achieves the smallest possible expected sample size

up to a first-order asymptotic approximation as α→ 0 under the additional assumption that

either (i) λ1(α) ∼ λ∗(α) or (ii) λ1(α) = o(| log(α)|), (4.36)

that is when the expected time of change when only treatment 1 is assigned is either (i) of the same order

as the expectation of the smallest possible change-point, or (ii) negligible compared to the optimal expected

detection delay. This is the content of the following corollary.

Corollary 4.1. If the response model satisfies (4.1) and the change-point model satisfies (4.21), (4.25),

(4.27), (4.36), then as α→ 0

E[T̃ ] ∼ λ1(α) +
| log(α)|
DK(α)

∼ inf
(T,X )∈Cα

E[T ]. (4.37)

We now specialize our results to the case of the Markovian change-point model, using the Remark 4.9.

Corollary 4.2. Suppose that the response model satisfies (4.1) and consider the Markovian change-point

model (4.20). Then, the asymptotic optimality property (4.37) holds if conditions (4.28) and (4.29) are

satisfied.

Remark 4.10. When (4.28) does not hold, asymptotic optimality is achieved by the static assignment rule

(1) and its associated Shiryaev rule, T(1).

The following corollary states the asymptotic optimality of the proposed procedure under the original

Markovian model, (4.2).

Corollary 4.3. Suppose that the response model satisfies (4.1) and consider the Markovian change-point

model (4.2). The asymptotic optimality property (4.37) holds as long as the (constant) transition probability

of treatment 1, p1, is not equal to 0 or 1.

4.6.1 Asymptotic lower bound on the optimal performance

In this subsection we establish the asymptotic lower bound (4.34) for the expected sample size of any pair

(T,X ) in Cα. In view of the asymptotic framework described in Section 4.5, the change-point ΘX induced

by X depends on α. However, we will simply write ΘX instead of ΘX (α) to lighten the notation. Thus, for
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any pair (T,X ) in Cα we have

E [T ] ≥ E [T ;T ≥ ΘX ] = E [ΘX ; T ≥ ΘX ] + E
[
(T −ΘX )+

]
,

which implies that the infimum in (4.4) is lower bounded by

inf
(T,X )∈Cα

E [ΘX ;T ≥ ΘX ] + inf
(T,X )∈Cα

E
[
(T −ΘX )+

]
. (4.38)

Therefore, it suffices to lower bound each of the two infima in (4.38). The first one represents the smallest

possible average number of observations until the change when there is no false alarm. Not surprisingly,

it will be lower bounded by λ∗(α), defined in (4.31), up to an asymptotically negligible term. The second

one refers to the best possible average detection delay, which is the criterion of interest in the Bayesian

QCD problem. However, existing results from this literature [74] do not apply to our setup due to the

presence of an adaptive experimental design aspect. Therefore, the asymptotic lower bound for the second

term in (4.38) is a novel result, for which we need to combine ideas from Bayesian QCD and sequential

experimental design [16].

We now state the asymptotic lower bound for each term in (4.38).

Lemma 4.3. (i) If (4.25) holds, then as α→ 0

inf
(T,X )∈Cα

E [ΘX ;T ≥ ΘX ] ≥ λ∗(α)− o(1).

(ii) If further (4.1), (4.21), (4.27) hold, then as α→ 0

inf
(T,X )∈Cα

E
[
(T −ΘX )+

]
≥ | log(α)|

DK(α)
(1 + o(1)).

Proof. (i) Consider an arbitrary pair (T,X ) ∈ Cα. From the definition of Θ∗ in (4.30) it follows that

ΘX ≥ Θ∗, and consequently

E[ΘX ;T ≥ ΘX ] ≥ E[Θ∗; T ≥ ΘX ] = λ∗(α)− E[Θ∗; T < ΘX ].

It now remains to show that the second term in the lower bound vanishes as α → 0. By an application of
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the Cauchy-Schwarz inequality and the definition of Cα it follows that

E[Θ∗;T < ΘX ] ≤
√

E [(Θ∗)2] P(T < ΘX ) ≤
√

E [(Θ∗)2] α.

By the definition of ζ1(α) in (4.24) it follows that Θ(1) is stochastically dominated by a geometric random

variable with parameter ζ1(α). Therefore, by assumption (4.25) we obtain

E[(Θ∗)
2] ≤ E[(Θ(1))

2] ≤ 2/ (ζ1(α))
2

= o(1/α),

which completes the proof.

(ii) Fix ε, α ∈ (0, 1) and define

mε,α ≡ b(1− ε) | log(α)|/DK(α)c, (4.39)

where bzc is the largest integer that does not exceed z. For any (T,X ) ∈ Cα, by Markov’s inequality we have

1

mε,α
E
[
(T −ΘX )+

]
≥ P(T ≥ ΘX +mε,α)

= P(T ≥ ΘX )− P(ΘX ≤ T < ΘX +mε,α)

≥ 1− α− P(ΘX ≤ T < ΘX +mε,α),

where the last inequality follows by the definition of Cα. Therefore, it suffices to show that for any ε ∈ (0, 1)

we have

P(ΘX ≤ T ≤ ΘX +mε,α) ≤ δε(α), (4.40)

where δε(α) does not depend on (T,X ) and vanishes as α→ 0. Indeed, (4.40) implies

inf
(T,X )∈Cα

E
[
(T −ΘX )+

]
≥ mε,α(1− α− δε(α)),

and the result then follows if we divide both sides by | log(α)|/DK(α), let α→ 0, and then ε→ 0.

Inequality (4.40) essentially says that, with high probability, the detection delay of a procedure in Cα

cannot be smaller than mε,α. In order to explain the idea behind the proof of this claim, let RΘX
T denote the

“likelihood ratio” statistic at time T in favor of the hypothesis that the change occurred at time ΘX against

that the change has not happened at time T (this is defined formally in the Section). We will show that

with high probability, (i) RΘX
T cannot be smaller than (roughly) 1/α, because in this case the probability of
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false alarm is not controlled below α, and (ii) RΘX
T cannot be larger than (roughly) 1/α, because there is

not sufficient time for this statistic to grow that fast if the detection delay is at most mε,α. Specifically, in

Section 4.9.3 we show that for any given ε ∈ (0, 1) we have

P
(

ΘX ≤ T < ΘX +mε,α, R
ΘX
T < α−(1−ε2)

)
≤ δ′ε(α), (4.41)

P
(

ΘX ≤ T < ΘX +mε,α, R
ΘX
T ≥ α−(1−ε2)

)
≤ δ′′ε (α), (4.42)

where δ′ε(α) and δ′′ε (α) do not depend on (T,X ) and go to 0 as α→ 0, which clearly implies (4.40).

4.6.2 Upper bound on the performance of proposed procedure

We now explain why we select the thresholds b1 and d according to (4.33) for the proposed procedure (T̃ , X̃ ),

defined in Section 4.4, and establish the asymptotic upper bound (4.35).

Lemma 4.4. Suppose that (4.1), (4.21), (4.25), (4.27) hold. As α→ 0 and min{b1, bK , d} → ∞ we have

E[T̃ ] ≤ U(b1, bK , d) (1 + o(1)),

where U(b1, bK , d) is defined as follows:

(
λ1(α) +

log(bK)

DK

)
+

(
1

ζ1(α)
+

log(bK)

DK(α)

)(
1

b1
+

1

d

)
+
| log(ζ1(α))|

D1(α)

+ log(b1)

(
1

D1(α)
− 1

DK(α)

)
+

log(d)

b1

(
1

IK
+

1

JK

)
.

Remark 4.11. As discussed earlier, threshold bK is selected according to (4.32) in order to guarantee the

false alarm control. Given this value for bK , we select b1 and d to optimize the asymptotic upper bound

U(b1, bK , d), which leads to the threshold values suggested in (4.33) (see more details in Section). With this

selection of thresholds, we have

U(b1, bK , d) ∼ λ1(α) +
| log(α)|
DK(α)

.

Outline of the proof for Lemma 4.4. We observe that

S2N =

∞∑
m=1

(∆S2m−1 + ∆S2m) 1{N≥m},

where ∆Sn ≡ Sn − Sn−1 is the duration of nth stage, and recall that N , defined in (4.19), is the number of
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cycles until stopping. Since {N ≥ m} ∈ FS2m−2 ⊂ FS2m−1 , from the law of iterated expectation,

E[T̃ ] =

∞∑
m=1

E
[
E[∆S2m−1|FS2m−2 ] + E[∆S2m|FS2m−1 ]; N ≥ m

]
. (4.43)

The first step then is to establish a non-asymptotic upper bound on the conditional expected length,

E[∆Sn|FSn−1
], of each stage n, which is done in Lemma 4.6. These bounds are deterministic and do not

depend on the cycle index m, which implies that the resulting upper bound for E[T̃ ] is proportional to the

expected number of cycles, E[N ]. In Lemma 4.5 we establish a non-asymptotic upper bound on E[N ]. The

combination of these two bounds leads to the conclusion after letting α → 0. The detailed arguments and

the proofs of these lemmas are presented in the Section 4.9.4.

We start with a lemma that provides a non-asymptotic upper bound on E[N ], which does not require

any assumption on the change-point model.

Lemma 4.5. Assume (4.1) holds. For any b1, d > 1, and n ≥ 1,

P(N > n) ≤ ηn, where η ≡ 1/b1 + 1/d.

Consequently, E[N ] ≤ 1 + η/(1− η) and E[N ]→ 1 as b1 ∧ d→∞.

Proof. See Section 4.9.5.

Since P(N > 1) ≤ 1/b1 + 1/d, this lemma implies that for large values of b1 and d we will typically

have only one cycle with high probability. This suggests that we need a stronger upper bound for the first

training stage than the remaining ones.

Lemma 4.6. Assume (4.1), (4.21) and (4.27) hold. For any ε > 0 there exists a positive constant Cε such

that for any b1, bK , d > 0, α ∈ (0, 1), m ∈ N we have

(i) E
[
∆S2m−1 | FS2m−2

]
≤
(

1

ζ1(α)
+

log(b1) + | log(ζ1(α))|
D1(α)

+ Cε

)
(1 + ε),

with 1/ζ1(α) replaced by λ1(α) when m = 1, and

(ii) E[∆S2m|FS2m−1
] ≤

(
log(bK/b1)

DK(α)
+

log(d)

b1

(
1

IK
+

1

JK

)
+ Cε

)
(1 + ε).

Proof. See Section 4.9.6.
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Remark 4.12. The duration of an assessment stage depends heavily on whether the change has already

occurred at the end of the previous training stage. If the change has indeed happened, we would expect the

change-detection rule to stop earlier than the testing rule; otherwise, we would expect the stopping to be

triggered by the testing rule. This observation suggests the following decomposition for E[∆S2m|FS2m−1 ],

E
[
∆S2m 1{LS2m−1

=1}|FS2m−1

]
+ E

[
∆S2m 1{LS2m−1

=0}|FS2m−1

]
,

and that we need to bound each term separately.

4.7 Simulation study

In this section we illustrate the proposed procedure and our asymptotic results in a simulation study with

K = 3 treatments under the Markovian change-point model (4.2). Specifically, we assume that the responses

are Bernoulli random variables such that for every x ∈ [3] and t ≥ 1 we have

P(Yt = 1|Xt = x, Lt = 1) = 1− fx, P(Yt = 1|Xt = x, Lt = 0) = fx,

where {fx, x ∈ [3]} are real numbers in (0, 1). Moreover, we set π0 = 0 and assume that the transition

probability of each treatment x, px, does not depend on the tolerance level α. The response and transition

probabilities, {fx, px : x ∈ [3]}, are presented in Table 4.1.

We can see that treatment 1 is the best for accelerating the change (see also Remark 4.8), whereas

treatment 3 is the best for detecting the change. However, while it is possible to assign exclusively treatment

1 or 2, this is not the case for treatment 3, because its transition probability is zero.

The proposed procedure (Section 4.4) uses treatment 1 in training stages and treatment 3 in assessment

stages, and we will refer to it as (1, 3). From Corollary 4.3 it follows that this procedure is asymptotically

optimal. It is also interesting to point out that using treatment 2, instead of 1, in the training stages also

leads to an asymptotically optimal procedure, since the transition probability of treatment 2 is also positive

and independent of α. We will refer to this procedure as (2, 3).

x ∈ [3] fx px Dx
1 0.45 0.1 0.125
2 0.35 0.05 0.237
3 0.25 0 0.549

Table 4.1: Response densities and transition probabilities for the three treatments.

Under the Markovian change-point model (4.2), we can also implement the optimal procedure, (T ∗c ,X ∗c ),
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described in Section 4.3. Since the response space Y in this study is {0, 1}, the integration in the operator

Tc, defined in (4.12), becomes a summation. Thus, the main challenge in the practical implementation of

this approach is the computation of the constant c(α) for which (4.14) holds, i.e., for which the false alarm

constraint is satisfied with equality. To this end, we simulate the false alarm probability of (T ∗c ,X ∗c ) for the

following values of c

c ∈ {a · 10−b : a = 1, . . . , 9, and b = 2, . . . , 9}.

Then, for any given α ∈ (0, 1) we select c(α) to be the number in the above set with the largest error

probability that does not exceed α.

Therefore, in our simulation study we compare the following procedures:

• the optimal procedure obtained via dynamic programming, (T ∗c ,X ∗c ),

• the proposed procedures, (i, 3), where i ∈ {1, 2}, with thresholds selected according to (4.32)-(4.33),

• the procedures with a static design, (i), where i ∈ {1, 2}, and its associated Shiryaev stopping rule (4.8)

with threshold b = (1− α)/α.

α 0.05 1E-2 1E-3 1E-5
Err ESS Err ESS Err ESS Err ESS

optimal 0.026 21.5 9.8E-3 23.8 9.9E-4 28.3 9.6E-6 36.9
(1,3) 0.037 22.1 5.6E-3 26.9 6.9E-4 31.1 8.5E-6 39.9
(2,3) 0.027 32.8 7.0E-3 36.3 6.8E-4 41.1 6.7E-6 49.9
(1) 0.044 27.0 8.8E-3 39.9 8.8E-4 58.3 8.8E-6 95.0
(2) 0.038 32.4 7.5E-3 40.1 7.5E-4 49.9 7.4E-6 69.4

Table 4.2: Given target level α, we first determine the thresholds for each procedure, and then simulate the
actual error probability (Err), and the expected sample size (ESS).

The results are summarized in Table 4.2 and Fig 4.3. In Table 4.2 we present the expected sample

size (ESS) and the actual error probabilities (Err) of the above procedures for different target values of

α. In Fig 4.3a we plot ESS against − log10(Err) for each procedure, whereas in Fig 4.3b we normalize

the ESS, dividing it by the associated asymptotic lower bound in (4.34), which in this context is equal

to 10 − log10(Err)/D3. These error probabilities were computed via the simulation method suggested in

Lemma 4.1, which allowed us to set α as small as 10−7.

As expected by Lemma 4.1, from Table 4.2 we observe that all procedures control the false alarm

probability below the target level. For procedures (1) and (2) that employ a static design, we also observe

that the ratio of the actual error probability (Err) against its target level α remains roughly constant. This

finding is not surprising, as from non-linear renewal theory [76], the overshoot of a perturbed random walk
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Figure 4.3: In (a), we vary the thresholds of each procedure, and plot | log10(Err)| vs ESS. In (b), we
normalized the ESS by the asymptotic lower bound.

crossing threshold b has a limiting distribution as b → ∞. On the other hand, we do not observe a similar

behavior for the proposed procedure.

From Table 4.2 we also observe that the performance of the proposed procedure, (1, 3), is very close to

that of the optimal (T ∗(cα),X ∗(cα)). Indeed, when α = 5%, the Err and ESS of the two procedures were

roughly the same. For α equal to 1% or smaller, the Err of the optimal scheme was almost equal to α, unlike

that of (1, 3), and the resulting optimal ESS was consistently (roughly) 3 observations smaller than that of

(1, 3). Note that the performance of (1, 3) in Table 4.2 was obtained by simply plugging-in the threshold

values (4.32)–(4.33), whereas the implementation of the optimal scheme required extensive simulations.

The gap between the performance of (1, 3) and the optimal scheme is further reduced, compared to

that in Table 4.2, when both procedures are designed to have the same error probability, as depicted in

Figure 4.3. Further, the gap in Figure 4.3 remains constant for small error probabilities. It suggests that the

proposed procedure may enjoy an even stronger form of asymptotic optimality than the first-order property

we established in this work.

From Table 4.2 and Figure 4.3a we also observe that procedure (2, 3) consistently requires on average

roughly 10 more samples than procedure (1, 3). This is essentially the additional time required for the change

under treatment 2 compared to treatment 1. As a result, the curve of (2,3) in Figure 4.3a is essentially parallel

to that of (1,3), and its curve in Figure 4.3b converges to 1. On the other hand, the curves in Figure 4.3b

that correspond to the “static” designs (1) and (2) do not converge to 1, which implies that these procedures

fail, as expected, to be asymptotically optimal.
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4.8 Conclusion

Motivated by applications in intelligent tutoring systems and e-learning environments, this Chapter proposes

a generalization of the Bayesian QCD problem, where the goal is to not only detect the change as quickly

as possible, but also accelerate it via adaptive experimental design.

Specifically, it is assumed that the sequentially collected observations are responses to treatments selected

in real time. The response to each treatment has a different distribution before and after the change-point,

and the change-point is influenced by the assigned treatments. The problem is to find a treatment assignment

rule and a stopping rule that minimize, subject to a false alarm constraint, the expected total number of

observations.

We obtained an exact solution to the proposed problem, via a dynamic programming approach, under the

Markovian change-point model. While the optimal stopping rule admits an explicit form, this is not the case

for the optimal assignment rule, whose (numerical) computation can be time-consuming and challenging.

Thus in this Chapter we proposed an intuitive procedure that is easy to implement and asymptotically

optimal for a large class of change-point models. Moreover, a simulation study in the Markovian case

suggests that the proposed procedure is very close to the optimal.

We conclude with directions of further study: calibration of the change-point model and response models

in particular applications, design and analysis of procedures that require limited information regarding

the change-point and/or response models, study of the corresponding problem in the finite-horizon setup,

extension to the case of multiple change-points.

4.9 Proofs

In this section, we present the omitted proofs.

4.9.1 Proofs regarding the posterior odds

Proof of Lemma 4.1. For any t ≥ 0, by definition, we have

P(Lt = 0|Ft) =
1

1 + Γt
.
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Then for any B ∈ FS , we have B ∩ {S = t} ∈ Ft, and thus

P(LS = 0, B) =

∞∑
t=0

P(Lt = 0, S = t, B) =

∞∑
t=0

E [P(Lt = 0|Ft);S = t, B]

=

∞∑
t=1

E

[
1

1 + Γt
;S = t, B

]
= E

[
1

1 + ΓS
;B

]
,

which completes the proof by the definition of conditional expectation.

The proof of Lemma 4.2 relies on the next Lemma, which is also crucial in establishing lower bound later.

Thus, we set Λ0(X ) ≡ 1, and recall the definition of Λt(X ) for t ≥ 1 in Lemma 4.2. We denote

Rst (X ) ≡ Πs(X )

t∏
j=s

Λj(X )

1−Πj(X )
, for t ≥ s ≥ 0. (4.44)

The following lemma states that Rst (X ) can be interpreted as the “likelihood ratio” between the hypothesis

ΘX = s versus ΘX > t.

Lemma 4.7. Fix integers t ≥ s ≥ 0 and an assignment rule X . For any non-negative measurable function

u : (Yt,B(Yt))→ [0,∞], we have

E [u(Y1, . . . , Yt); ΘX = s] = E [u(Y1, . . . , Yt) R
s
t (X ); ΘX > t] .

Proof. We will only prove the case where t ≥ s ≥ 1, and other cases can be proved similarly.

Denote y1:t = (y1, . . . , yt). Since X is an assignment rule, there exists a sequence of measurable function

{xj : j ≥ 1}, such that Xj = xj(Y1:j). For any non-negative measurable function u : Yt → R, by an iterated

conditioning argument we have

E [u(Y1:t); Θ = s] =

∫
u(y1:t)πs

s−1∏
i=0

(1− πi)
s−1∏
i=1

fxi(yi)

t∏
j=s

gxj (yj) dµ
t(y1:t),

E [u(Y1:t); Θ > t] =

∫
u(y1:t)

t∏
i=0

(1− πi)
t∏
i=1

fxi(yi) dµ
t(y1:t),

where we drop the arguments of {πt} and {xt} to simplify the notation. Since u(·) is arbitrary, in view of

the definition (4.44) of Rst , we have

E [u(Y1:t); Θ = s] = E [u(Y1:t)R
s
t ; Θ > t] .

which completes the proof.
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Proof of Lemma 4.2. In view of Lemma 4.7 and the definition (4.44) of Rst , we have for any B ∈ Ft,

E [Lt = 1;B] =

t∑
s=0

P(B,Θ = s) =

t∑
s=0

E [Rst ; B,Θ > t]

= E

[
t∑

s=0

Rst ; B,Lt = 0

]
= E

[
P(Lt = 0|Ft)

t∑
s=0

Rst ; B

]
.

Thus by the definition of conditional expectation, we have

P(Lt = 1|Ft) = P(Lt = 0|Ft)
t∑

s=0

Rst .

Thus in view of the definition (4.7) of the posterior odds, we have

Γt =

t∑
s=0

Rst =

t∑
s=0

Πs

t∏
j=s

Λj
1−Πj

Then simple algebra shows that the statistics {Γt, t ≥ 0} admit the recursive form (4.9).

4.9.2 Proofs regarding the dynamic programming approach

Proof of the conditional density in (4.11). Fix some t ≥ 1. For any B ∈ B(Y), we have

P(Yt ∈ B|Ft−1) = P(Yt ∈ B,Lt = 1, Lt−1 = 1|Ft−1)

+ P(Yt ∈ B,Lt = 1, Lt−1 = 0|Ft−1) + P(Yt ∈ B,Lt = 0, Lt−1 = 0|Ft−1).

Denote the three terms on the right hand side by I, II, and III. Then

III =

∫
B

fXt(y)P(Lt = 0, Lt−1 = 0|Ft−1)µ(dy)

=

∫
B

fXt(y)(1− pXt)P(Lt−1 = 0|Ft−1)µ(dy)

=

∫
B

fXt(y)(1− pXt)(1− Γ̂t−1)µ(dy).

By similar argument, we have

I =

∫
B

gXt(y)Γ̂t−1 µ(dy), II =

∫
B

gXt(y)pXt(1− Γ̂t−1)µ(dy).

Combining three terms, we have P(Yt ∈ B|Ft−1) =
∫
B
φ(y; Γ̂t−1, Xt)µ(dy), which completes the proof.
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The proof of Theorem 4.1 relies on the following Lemma.

Lemma 4.8. For any c > 0, J∗c is a concave function on [0, 1].

Proof. Since point-wise limit operation preserves concavity, in view of (4.13), it suffices to show that if

J ∈ J is concave, so is Tc(J). Since point-wise minimum and integration operations preserve concavity and

z 7→ (1 − z) is a concave function, in view of the definition (4.12) of Tc, it suffices to show that for any

x ∈ [K], y ∈ Y and concave function J ∈ J , the following function is concave:

z 7→ J(ψ(z, x, y))φ(y; z, x) for z ∈ [0, 1]. (4.45)

With x and y fixed, to simplify notation, denote ξ(z) ≡ (z + px(1 − z))gx(y), and thus by (4.11), ψ(z) =

ξ(z)/φ(z).

Pick any 0 ≤ z1 ≤ z2 ≤ 1, γ ∈ (0, 1). Denote z′ = γz1 + (1− γ)z2. Then

ξ(z′) = γξ(z1) + (1− γ)ξ(z2), φ(z′) = γφ(z1) + (1− γ)φ(z2).

By concavity of J , we have

γJ

(
ξ(z1)

φ(z1)

)
φ(z1) + (1− γ)J

(
ξ(z2)

φ(z2)

)
φ(z2)

= φ(z′)

(
γφ(z1)

φ(z′)
J

(
ξ(z1)

φ(z1)

)
+

(1− γ)φ(z2)

φ(z′)
J

(
ξ(z2)

φ(z2)

))
≤ φ(z′)J

(
γξ(z1) + (1− γ)ξ(z2)

φ(z′)

)
= φ(z′)J

(
ξ(z′)

φ(z′)

)
,

which implies the concavity of (4.45), and thus completes the proof.

Proof of Theorem 4.1. From the definition of T ∗c , it has the following equivalent form:

T ∗c = inf{t ≥ 0 : Γ̂t ∈ Bc}, where Bc = {z ∈ [0, 1] : J∗c (z)− (1− z) ≥ 0}.

By Lemma 4.8, J∗c is concave, and thus so is z 7→ J∗c (z)− (1−z), which implies that the set Bc is convex,

and thus is an interval in [0, 1]. Due to concavity, J∗c is continuous, which implies that Bc is a closed interval.

Clearly, J∗c (1) = 0, and thus 1 ∈ Bc and Bc is of form [bc, 1] for some bc ∈ [0, 1], which completes the

proof.
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4.9.3 Proofs in Subsection 4.6.1

Due to the assumption (4.27) and from the definition (4.23), we have that for any α > 0,

0 < I∗ ≤ DK(α) ≤ I∗ + | log(δ)| <∞, where I∗ = max
x∈[K]

Ix. (4.46)

Further, recall the definition of Rst in (4.44) and mε,α in (4.39).

Proof of (4.41) in Lemma 4.3. Fix (T,X ) ∈ Cα and write Θ instead of ΘX for simplicity of notation. By

definition, P(T < Θ) ≤ α. Observe that

∆ ≡ P
(

Θ ≤ T < Θ +mε,α, R
Θ
T < α−(1−ε2)

)
=

∞∑
s=0

s+mε,α−1∑
t=s

P
(
T = t, Rst < α−(1−ε2), Θ = s

)
.

For any t ≥ s, {T = t} and Rst are both Ft measurable. By Lemma 4.7,

P
(
T = t, Rst < α−(1−ε2), Θ = s

)
= E

[
Rst ; T = t, Rst < α−(1−ε2), Θ > t

]
≤ α−(1−ε2) P(T = t,Θ > t).

Putting these together, we obtain

∆ ≤ α−(1−ε2)
∞∑
s=0

s+mε,α−1∑
t=s

P(T = t,Θ > t)

≤ α−(1−ε2)mε,α

∞∑
t=0

P(T = t,Θ > t)

= α−(1−ε2)mε,α P(T < Θ) ≤ αε
2

mε,α,

and the upper bound goes to 0 as α→ 0, since due to (4.46),

mε,α ≤
| log(α)|
DK(α)

≤ | log(α)|
I∗

= o(αε
2

).

In the remainder of this section, we focus on the proof of (4.42) in Lemma 4.3. We start with a few
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observations. First, we set

Λ̂0 ≡ log(Λ0) = 0, Λ̂t ≡ log(Λt) = log

(
gXt(Yt)

fXt(Yt)

)
for t ≥ 1,

where {Λt : t ≥ 1} are defined in (4.9) and Λ0 = 1.

Note that the treatments and the responses start from time 1, and X0 is undefined. We further define

X0 ≡ 0, I0 ≡ 0.

Note that Xt ∈ [K] for any t ≥ 1, and Ix is defined in (4.1) for x ∈ [K].

Lemma 4.9. Assume (4.1) holds. Fix any assignment rule X , and we write Θ for ΘX for simplicity of

notation. For any integer t ≥ 0, we have

E

[(
Λ̂Θ+t − IXΘ+t

)2
]
≤ V ∗ <∞, where

V ∗ = max
x∈[K]

{Vx} and Vx =

∫
Y

(
log

gx
fx
− Ix

)2

gxdµ.

(4.47)

Proof. Observe that the quantity of interest is equal to the following

∞∑
s=0

K∑
x=0

E

[(
Λ̂s+t − IXs+t

)2

; Θ = s,Xs+t = x

]

≤
∞∑
s=0

K∑
x=0

P(Θ = s,Xs+t = x) E

[(
Λ̂s+t − Ix

)2

|Θ = s,Xs+t = x

]

≤ V ∗
∞∑
s=0

K∑
x=0

P(Θ = s,Xs+t = x) = V ∗,

where we used the fact that Ls+t = 1 on the event {Θ = s}.

Let us denote

Ht ≡ σ(Us, Vs : 0 ≤ s ≤ t), for t ≥ 0, (4.48)

which includes all the randomness in the dynamic system (4.3) up to time t. Although {Ht} is not observable,

it serves as a convenient analytic device. Clearly, Ft ⊂ Ht, and thus any {Ft}-stopping time is {Ht}-stopping

time. Also, ΘX is an {Ht}-stopping time.

Lemma 4.10. Assume (4.1) holds. Fix any assignment rule X , and we write Θ for ΘX for simplicity of
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notation. Then the process

MΘ+t ≡
Θ+t∑
j=Θ

(
Λ̂j − IXj

)
: t ≥ 0

 (4.49)

is a square integrable martingale w.r.t. {HΘ+t : t ≥ 0}.

Proof. Adaptivity is obvious and square integrability is established in Lemma 4.9. For any t ≥ 1, in view

of (4.3) and since LΘ+t = 1, we have

YΘ+t = h(XΘ+t, 1, VΘ+t).

Since Θ+t−1 is an {Ht}-stopping time, by Lemma 4.15, VΘ+t is independent ofHΘ+t−1, and has distribution

Unif(0, 1). Since XΘ+t ∈ HΘ+t−1, we have

E
[
Λ̂Θ+t − IXΘ+t |HΘ+t−1

]
=

∫
Y

log

(
gXΘ+t

fXΘ+t

)
gXΘ+tdµ− IXΘ+t = 0,

which completes the proof.

Next we study the behavior of above martingale.

Lemma 4.11. Fix any assignment rule X , and we write Θ for ΘX for simplicity of notation. Consider the

process {MΘ+t : t ≥ 0} defined in (4.49). Then, for any ε > 0 we have

P

(
1

m
max

0≤t<m
MΘ+t ≥ ε

)
≤ V ∗

ε2m
,

where V ∗ <∞ are defined in (4.47).

Proof. Observe that z 7−→ z2 is a convex function and {MΘ+t : t ≥ 0} is a square integrable {HΘ+t}-

martingale. Thus by Doob’s inequality, we have

P

(
1

m
max

0≤t<m
MΘ+t ≥ ε

)
≤ P

(
max

0≤t<m
(MΘ+t)

2 ≥ ε2m2

)
≤ E[(MΘ+m−1)2]

ε2m2
.

By properties of square-integrable martingale and the Lemma 4.9,

E[(MΘ+m−1)2] =

m−1∑
s=0

E

[(
Λ̂Θ+s − IXΘ+s

)2
]
≤ mV ∗,

which completes the proof.
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We can finally complete the proof of Lemma 4.3 by establishing (4.42).

Proof of (4.42) in Lemma 4.3. Pick any (T,X ) ∈ Cα and write Θ for ΘX . Observe that

P(Θ ≤ T < Θ +mε,α, R
Θ
T ≥ α−(1−ε2))

≤ P

(
max

0≤t<mε,α
logRΘ

Θ+t ≥ (1− ε2) | log(α)|
)

≤ P

(
1

mε,α
max

0≤t<mε,α
logRΘ

Θ+t ≥ (1 + ε)DK(α)

)
.

Next, by the definition of logRΘ
Θ+t in (4.44) it follows that

logRΘ
Θ+t = −| log ΠΘ|+

Θ+t∑
j=Θ

(
Λ̂j − IXj

)
+

Θ+t∑
j=Θ

(
| log(1−Πj)|+ IXj

)
≤MΘ+t +

Θ+t∑
j=Θ

(
| log(1−Πj)|+ IXj

)
.

By assumption (4.27), we have for any j ≥ 0

| log(1−Πj)|+ IXj ≤ | log(δ)|+ I∗ <∞,

Due to assumptions (4.21) and (4.27), there exists some t0 such that for any j ≥ t0, and α > 0,

| log(1−Πj)|+ IXj ≤ (1 + ε/2) (| log(1− pXj (α))|+ IXj )

≤ (1 + ε/2) DK(α).

Therefore, by these two observations it follows that for any α > 0,

Θ+t∑
j=Θ

(
| log(1−Πj)|+ IXj

)
≤

t0−1∑
j=0

+

Θ+t∑
j=max{t0,Θ}

(| log(1−Πj)|+ IXj
)

≤ t0 (| log(δ)|+ I∗) + t(1 + ε/2)DK(α).

Note that the first term in the upper bound does not depend on α; thus, for sufficiently small α we have

t0 (I∗ + | log(δ)|) ≤ (ε/4)mε,α DK(α),
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and consequently

logRΘ
Θ+t ≤MΘ+t + (ε/4)mε,α DK(α) + t(1 + ε/2)DK(α),

which implies that for any t < mε,α

1

mε,α
logRΘ

Θ+t ≤
1

mε,α
MΘ+t + (1 + 3ε/4)DK(α).

Thus, by Lemma 4.11 it follows that there exists some constants C such that

P

(
1

mε,α
max

0≤t<mε,α
logRΘ

Θ+t ≥ (1 + ε)DK(α)

)
≤ P

(
1

mε,α
max

0≤t<mε,α
MΘ+t ≥

εDK(α)

4

)
≤ P

(
1

mε,α
max

0≤t<mε,α
MΘ+t ≥

εI∗

4

)
≤ C

mε,α
,

which completes the proof.

4.9.4 Proof of Lemma 4.4

We first finish the proof of Lemma 4.4 using Lemma 4.5 and 4.6.

Proof of Lemma 4.4. Fix some ε > 0. In view of (4.43) and by Lemma 4.6, there exists some constant Cε

such that

E[T̃ ]

1 + ε
≤ λ1(α) +

1

ζ1(α)
(E[N ]− 1) +

log(b1) + | log(ζ1(α))|
D1(α)

E[N ]

+

(
log(d)

b1
(

1

IK
+

1

JK
) +

log(bK/b1)

DK(α)

)
E[N ] + Cε.

= λ1(α) +
log(bK)

DK(α)
+

(
1

ζ1(α)
+

log(bK)

DK(α)

)
(E[N ]− 1) +

| log(ζ1(α))|
D1(α)

E[N ]

+ log(b1)

(
1

D1(α)
− 1

DK(α)

)
E[N ] +

log(d)

b1

(
1

IK
+

1

JK

)
E[N ] + Cε.

Then by Lemma 4.5, as α→ 0, which implies min{b1, bK , d} → ∞, we have

lim sup
E[T̃ ]

U(b1, bK , d)
≤ 1 + ε.

Since ε > 0 is arbitrary, the proof of the first part is complete.
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Now, plugging the thresholds (4.33) and (4.32) into U(b1, bK , d) and due to assumption (4.25), we have

as α→ 0

λ1(α) +
log(bK)

DK(α)
∼ λ1(α) +

| log(α)|
DK(α)

,(
1

ζ1(α)
+

log(bK)

DK(α)

)(
1

b1
+

1

d

)
= O(1),

| log(ζ1(α))|
D1(α)

= o(| log(α)|), log(b1) = o(| log(α)|), log(d) = o(b1).

where the third and fourth terms used assumption (4.25). Thus

U(b1, bK , d) ∼ λ1(α) +
| log(α)|
DK(α)

.

Discussion of (4.33). Note that bK = α/(1 − α) is fixed. Elementary calculus shows that for any fixed

x, y > 0, we have

arg min
z

{x
z

+ y log(z)
}

=
x

y
. (4.50)

Then for fixed b1, we would choose

d = b1
1/ζ1(α) + log(bK)/DK(α)

1/IK + 1/JK

Plugging in the above choice, and keeping the dominant terms related to b1, we are left with

(
1

ζ1(α)
+

log(bK)

DK(α)

)
1

b1
+ log(b1)

(
1

D1(α)
− 1

DK(α)

)
,

where we ignored log(d)/b1 term, since it is dominated by the first term above (as α → 0). Then again

by (4.50), we would select b1 as in (4.33).

4.9.5 Proof of Lemma 4.5

We start with two observations that will be used repeatedly. By the definition (4.18) of {Sn}, the posterior

odds exceeds threshold b1 at the end of a training stage. Thus, by Lemma 4.1 we can control the conditional

probability that the change has not happened at the end of a training stage. Specifically, for any m ≥ 1,

ΓS2m−1 ≥ b1 and P
(
LS2m−1 = 0|FS2m−1

)
≤ 1

1 + b1
≤ 1

b1
. (4.51)
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Second, if the change has already occurred at the end of a training stage, then with high probability we

terminate the process at the next assessment stage. This is formalized in the following Lemma.

Lemma 4.12. For any integer m ≥ 1, we have

P(B2m, LS2m−1 = 1|FS2m−1) ≤ 1/d,

where B2m ≡ {τ(S2m−1, d) ≤ σ(S2m−1, bK)}.

Proof. Let us fix m ≥ 1, and write S for S2m−1 for simplicity. Further, let us introduce the following system

and its associated “stopping” rule:

Y ′t ≡ h(K, 1, VS+t) for t ≥ 1, τ ′ ≡ inf

t ≥ 1 :
t∏

j=1

fK(Y ′j )

gK(Y ′j )
≥ d

 .

where {Vt : t ≥ 1} appear in (4.3).

Observe that on the event {LS = 1}, we have

YS+t = h(XS+t, 1, VS+t) = h(K, 1, VS+t) = Y ′t for 1 ≤ t ≤ S2m − S.

Further, on the event B2m, we have S2m − S = τ(S, d). Thus

τ(S, d) = τ ′, on the event B2m ∩ {LS = 1}.

Finally, observe that

P(B2m, LS = 1|FS) = P(B2m, LS = 1, τ(S, d) <∞|FS)

= P(B2m, LS = 1, τ ′ <∞|FS)

≤ P(LS = 1, τ ′ <∞|FS)

= E[P(τ ′ <∞|HS); LS = 1|FS ],

where {Ht : t ≥ 0} is defined in (4.48). By Lemma 4.15, {Y ′t , t ≥ 1} are independently and identically

distributed (i.i.d.) with common density gK , and are independent of HS . Thus, by Lemma 4.17,

P(τ ′ <∞|HS) ≤ 1/d,
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which completes the proof.

Remark 4.13. In the above proof, for each fixed m, we introduced a hypothetical system {Y ′t : t ≥ 1} that

is closely related to the actual responses after time S2m−1, i.e. {YS2m−1+t : t ≥ 1}, associated with X̃ . The

advantage of the hypothetical system is that {Y ′t , t ≥ 1} is i.i.d., whereas {YS2m−1+t, t ≥ 1} is not i.i.d. even

on event that {LS2m−1
= 1}, since the assigned treatments will vary in training and assessment stages.

We are now ready to prove Lemma 4.5.

Proof of Lemma 4.5. For any integer m ≥ 1 we have

P(N > m) = P(N > m− 1, B2m) = E[P(B2m|FS2m−1
);N > m− 1],

where B2m is defined in Lemma 4.12. By (4.51) and Lemma 4.12, we have

P(B2m|FS2m−1) ≤ P(B2m, LS2m−1 = 1|FS2m−1) + P(LS2m−1 = 0|FS2m−1)

≤ 1/d+ 1/b1 ≡ η.

Then the proof is complete by telescoping argument.

4.9.6 Proof of Lemma 4.6

In this subsection we prove Lemma 4.6, which establishes non-asymptotic upper bounds on the conditional

expected length E[∆Sn|Fn−1] of each stage n of the proposed procedure, (T̃ , X̃ ). The main idea of this

proof is to introduce, for each stage, hypothetical systems that are coupled with the original system, i.e.,

the system {Πt, Lt, Xt, Yt,Γt : t ≥ 1} associated with the proposed assignment rule X̃ .

Thus, for any integer n ≥ 1, we set xn = 1 if n is odd and xn = K if n is even, and define {Πn
t , L

n
t , Y

n
t ,Γ

n
t :

t ≥ 1} to be a system that describes the hypothetical evolution of the transition probability, the latent state,

the response, and the posterior odds of the original system after time Sn−1 if we only assign treatment xn

afterwards. Specifically, if we write S for Sn−1 for simplicity, then we define Ln0 ≡ LS , Γn0 ≡ ΓS and for each
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t ≥ 1,

Πn
t ≡ πS+t(X1, . . . , XS , xn, . . . , xn),

Lnt ≡ 1{Lnt−1 = 1}+ 1{Lnt−1 = 0, Unt ≤ Πn
t },

Y nt ≡ h(xn, L
n
t , V

n
t ),

Γnt ≡ (Γnt−1 + Πn
t )

gxn(Y nt )

(1−Πn
t )fxn(Y nt )

,

(4.52)

where (Unt , V
n
t ) ≡ (US+t, VS+t) is the same “noise” that drives the original system after time S (see (4.3)).

Then the evolution of the hypothetical system coincides in part with the nth stage of the original system, in

the sense that for any 1 ≤ t ≤ Sn − Sn−1,

(ΠS+t, LS+t, XS+t, YS+t,ΓS+t) = (Πn
t , L

n
t , xn, Y

n
t ,Γ

n
t ). (4.53)

Furthermore, for each n ≥ 1 we denote Θn to be the “change-point” of the above nth hypothetical system,

and ρn the required time, after the change-point, for the process {Γnt : t ≥ 1} to cross threshold bxn .

Specifically, for each n ≥ 1,

Θn ≡ inf{t ≥ 1 : Lnt = 1}, ρn ≡ inf{t ≥ 0 : ΓnΘn+t ≥ bxn}, (4.54)

where ρn is well defined only on the event {Θn <∞}.

In order to upper bound the length of assessment stages, we will introduce another hypothetical system.

Thus, for each even n ≥ 1 we define

Ŷ nt ≡ h(K, 0, V nt ) for t ≥ 1,

τn ≡ inf

t ≥ 1 :

t∑
j=1

log

(
fK(Ŷ nj )

gK(Ŷ nj )

)
≥ log(d)

 ,
(4.55)

where {V nt : t ≥ 1} is the same “noise” that drives the original system after time Sn−1 (see (4.3)). Then for

any t ≤ (Θn − 1) ∧ (Sn − Sn−1), we have

Ŷ nt = h(K, 0, V nt ) = h(XSn−1+t, LSn−1+t, VSn−1+t) = YSn−1+t, (4.56)

and for any t ≤ (Θn − 1),

Ŷ nt = h(K, 0, V nt ) = Y nt . (4.57)
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Note that compared to the original system, system (4.52) is simpler in that the treatments are fixed,

whereas system (4.55) is even simpler in that both treatments and the latent state is fixed. The next

Lemma shows that the length of each stage is bounded above by quantities of the hypothetical systems

(4.52) and (4.55).

Lemma 4.13. (i) For each n ≥ 1, we have

∆Sn ≤ Θn + ρn 1{Θn<∞}.

(ii) If n is even, we also have

∆Sn ≤ τn + ρn 1{Θn≤τn<∞}.

Proof. (i) For each n ≥ 1, we define σn to be the first time the process Γn exceeds threshold bxn , i.e.,

σn ≡ inf{t ≥ 1 : Γnt ≥ bxn}.

In view of the definition of ρn in (4.54), we have σn ≤ Θn + ρn 1{Θn<∞}, thus it suffices to show that

∆Sn ≤ σn. If the stopping in nth stage is triggered by the detection rule, i.e. ΓSn ≥ bxn , then we have

∆Sn = σn due to (4.53). Otherwise, the posterior odds of the original system does not cross bK in the nth

stage, and thus again due to (4.53), we have ∆Sn < σn. In any case, we have ∆Sn ≤ σn, and the proof is

complete.

(ii) Consider some even number n. We focus on the event that {τn <∞}, since otherwise (ii) holds trivially.

On the event that {τn < Θn}, in view of (4.55) and (4.56), the nth stage of original system must have

stopped by the time Sn−1 + τn, i.e.,

∆Sn ≤ τn on the event {τn < Θn}.

Then, together with (i) we have

∆Sn = ∆Sn1{τn<Θn} + ∆Sn1{Θn≤τn}

≤ τn1{τn<Θn} + (Θn + ρn)1{Θn≤τn}

≤ τn1{τn<Θn} + (τn + ρn)1{Θn≤τn} = τn + ρn1{Θn≤τn},

which completes the proof of (ii).
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The next Lemma shows how to upper bound the stopping rule ρn, defined in (4.54), associated with the

hypothetical system (4.52). Recall the definition (4.48) of {Ht : t ≥ 0}

Lemma 4.14. Suppose that (4.1), (4.21) and (4.27) hold. Fix any ε > 0. There exists some constant Cε > 0

such that the following two hold.

(i) For any n ≥ 1, on the event {Θn <∞},

ρn ≤ inf{t ≥ 0 : Znt ≥ log(bxn)− log(ΓnΘn−1 + Πn
Θn) + Cε},

where {Znt : t ≥ 0} is a process after the change-point Θn:

Znt ≡
Θn+t∑
s=Θn

[
log

(
gxn(Y ns )

fxn(Y ns )

)
+ | log(1− pxn(α))| − εIxn

1 + ε

]
for t ≥ 0.

(ii) Fix n ≥ 1, and set Zn−1 = 0. On the event {Θn <∞}, {Znt −Znt−1 : t ≥ 0} is a sequence of i.i.d. random

variables that is independent of HSn−1+Θn−1, that has positive first moment Dxn(α)− εIxn/(1 + ε), and that

has finite second moment which only depends on the parity of n.

Remark 4.14. In view of (i) in the above lemma, to get a further upper bound on ρn, we have to get a lower

bound on the term log(ΓnΘn−1 + Πn
Θn), which will be dealt with separately conditioned on different events.

Proof. (i) From the definition (4.54) of ρn, it suffices to show that there exists Cε > 0 such that for any

n ≥ 1 and t ≥ 0,

log(ΓnΘn+t) ≥ Znt + log(ΓnΘn−1 + Πn
Θn)− Cε. (4.58)

By applying telescoping argument to the recursion (4.52) of {Γnt : t ≥ 0},

log ΓnΘn+t ≥
Θn+t∑
s=Θn

(
log

(
gxn(Y ns )

fxn(Y ns )

)
+ | log(1−Πn

s )|
)

+ log(ΓnΘn−1 + Πn
Θn).

Then, in order to prove (4.58) it suffices to show that there exists Cε > 0 such that for any t ≥ 0, n ≥ 1, we

have

Θn+t∑
s=Θn

| log(1−Πn
s )| ≥

Θn+t∑
s=Θn

(
| log(1− pxn(α))| − εIxn

1 + ε

)
− Cε. (4.59)

Now, by assumption (4.21) and (4.27), | log(1− px(α))| ≤ | log(δ)| for any x ∈ [K] and α > 0, and there
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exists some integer sε > 0 such that for any s ≥ sε, α > 0, and x ∈ [K]

sup
z∈[K]s−1

| log(1− πs(z, x;α))− log(1− px(α))| < εIx
1 + ε

.

Thus, if we set Cε = sε| log(δ)|, we have

Θn+t∑
s=Θn

| log(1− pxn(α))| ≤

sε−1∑
s=0

+

Θn+t∑
s=max{sε,Θn}

 | log(1− pxn(α))|

≤ Cε +

Θn+t∑
s=Θn

(
| log(1−Πn

s )|+ εIx
1 + ε

)
,

which clearly implies (4.59) and thus completes the proof of (i).

(ii). In view of (4.52) and by definition of Θn, we have for t ≥ 0,

Y nΘn+t = h(xn, L
n
Θn+t, V

n
Θn+t) = h(xn, 1, V

n
Θn+t).

Due to Lemma 4.15, we have that

{V nΘn+t : t ≥ 0} = {VSn−1+Θn+t : t ≥ 0}

are independent, uniformly distributed in (0, 1) random variables, that are independent of HSn−1+Θn−1. As

a result, {Y nΘn+t : t ≥ 1} is a sequence of i.i.d. random variables, that is independent of HSn−1+Θn−1 and

that has common density gxn . Thus the proof is complete by Lemma 4.9.

With above preparations, we can finally prove (i) and (ii) in Lemma 4.6.

Proof of Lemma 4.6(i). Consider the case (i) where n is odd and xn = 1. We will only show the first claim,

since the second can be proved by the same argument, and by using the definition (4.22) of λ1(α).

By definition (4.24), we have for any α > 0,

log(ΓnΘn−1 + Πn
Θn) ≥ log(Πn

Θn) ≥ log(ζ1(α)).

Thus by Lemma 4.13(i) and 4.14(i), we have ∆Sn ≤ Θn + ρ̃n, where

ρ̃n ≡ inf{t ≥ 0 : Znt ≥ log(b1) + | log(ζ1(α))|+ Cε}.
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By the definition (4.24) of ζ1(α), given FSn−1 , Θn is dominated by a geometric random variable with

parameter ζ1(α), and thus E[Θn|FSn−1
] ≤ 1/ζ1(α). Since FSn−1

⊂ HSn−1+Θn−1, and due to Lemma 4.14(ii)

and 4.16, there exists some constant C ′ε , such that for any b1, α and odd n ≥ 1

E[ρ̃n|FSn−1
] ≤ log(b1) + | log(ζ1(α))|+ C ′ε

D1(α)− εI1/(1 + ε)

≤ log(b1) + | log(ζ1(α))|+ C ′ε
D1(α)

(1 + ε)

which completes the proof of (i).

Proof of Lemma 4.6(ii). Now we consider the case (ii) where n is even and xn = K. Recall Remark 4.12.

Notice that on the event {LSn−1 = 1}, we have Θn = 1. Further by (4.51) and the definition (4.52), on

the event {LSn−1
= 1},

b1 ≤ ΓSn−1
= Γn0 = ΓnΘn−1 ⇒ log(ΓnΘn−1 + Πn

Θn) ≥ log(b1).

Thus, by Lemma 4.13(i) and 4.14(i), on the event {LSn−1
= 1}, we have

∆Sn ≤ 1 + inf{t ≥ 0 : Znt ≥ log(bK)− log(b1) + Cε},

and then due to Lemma 4.14(ii) and 4.16, there exists some constant C ′ε such that for any bK , b1, α > 0, and

even n ≥ 1,

E[∆Sn|HSn−1
] ≤ log(bK/b1) + C ′ε

DK(α)
(1 + ε).

Since {LSn−1
= 1} ∈ HSn−1

and FSn−1
⊂ HSn−1

, and by the law of iterated expectation, we have for any

bK , b1, α > 0, and even n ≥ 1,

E[∆Sn1{LSn−1
=1}|FSn−1

]

1 + ε
≤ P(LSn−1 = 1|FSn−1)

(
log(bK/b1) + C ′ε

DK(α)

)
. (4.60)

Now, we focus on the event {LSn−1 = 0}, and will apply part (ii) of Lemma 4.13. On the event {Θn ≤ τn},

by definition (4.55), we have
Θn−1∏
j=1

fK(Ŷ nj )

gK(Ŷ nj )
< d,
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thus, due to (4.52) and (4.57),

ΓnΘn−1 ≥ Γn0

Θn−1∏
j=1

gK(Y nj )

fK(Y nj )
= Γn0

Θn−1∏
j=1

gK(Ŷ nj )

fK(Ŷ nj )
≥ b1/d.

which implies that on the event {Θn ≤ τn <∞} we have

log(ΓnΘn−1 + Πn
Θn) ≥ log(b1/d).

Then, due to Lemma 4.13(ii) and 4.14(i) we have

∆Sn ≤ τn + ρ̂n1{Θn≤τn<∞},

where ρ̂n ≡ inf{t ≥ 0 : Znt ≥ log(bK)− log(b1/d) + Cε}.

Due to Lemma 4.15, {Ŷ nt : t ≥ 1} is a sequence of i.i.d. random variables with common density fK ,

that is independent of HSn−1
. Further, recall the discussion on {Znt : t ≥ 0} in Lemma 4.14(ii). Then by

Lemma 4.16 and the law of iterated expectation, there exists some C ′ε such that for any even n ≥ 2, and

α > 0,

E[τn1{LSn−1
=0}|FSn−1

]

1 + ε
≤ P(LSn−1

= 0|FSn−1
)

log(d) + C ′ε
JK

,

E[ρ̂n1{Θn≤τn, LSn−1
=0}|FSn−1 ]

1 + ε
≤ P(LSn−1

= 0|FSn−1
)

log(bK/b1) + log(d) + C ′ε
DK(α)

.

which implies (increasing C ′ε if necessary) that

E[∆Sn1{LSn−1
=0}|FSn−1 ]

1 + ε

≤ P(LSn−1
= 0|FSn−1

)
log(bK/b1)

DK(α)
+

log(d)

b1

(
1

IK
+

1

JK

)
+ C ′ε.

(4.61)

Finally, combining (4.60) and (4.61), we finish the proof of (ii) in Lemma 4.6.

4.9.7 Additional lemmas

The following lemma is widely known and its proof can be found, e.g., in Theorem 4.1.3 of [23].

Lemma 4.15. Let {Wt, t ≥ 0} be a sequence of independently and identically distributed Rd-valued random

variables (d being an integer), and denote {Gt = σ(Ws : 0 ≤ s ≤ t), t ≥ 0} its natural filtration. Let S be an

{Gt}-stopping time such that P(S < ∞) = 1. Then {WS+t, t ≥ 1} is independent of GS, and has the same
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distribution as {Wt, t ≥ 0}.

The following result is non-asymptotic, and is due to [41].

Lemma 4.16. Let {Zt, t ≥ 1} be independently and identically distributed random variables, and {St ≡∑t
s=1 Zs, t ≥ 1} the associated random walk. Denote T (b) the first time that {St} crosses some threshold b,

i.e.

T (b) = inf{t ≥ 1 : St > b}.

Assume that E[(Z+
1 )2] <∞ and E[Z1] > 0. Then for any b > 0, we have

E[T (b)] ≤ b+ E[(Z+
1 )2]/E[Z1]

E[Z1]
.

The following lemma regarding the “one-sided” sequential probability ratio test follows directly from

Wald’s likelihood ratio identity [75].

Lemma 4.17. Let f and g be two densities on measurable space (Y,B(Y)) relative to some measure µ, and

{Yt, t ≥ 1} be a sequence of independent random variables with common density g. Further, define for any

d > 0,

τ(d) ≡ inf

{
t ≥ 1 :

t∏
s=1

f(Ys)

g(Ys)
≥ d

}
.

Then P(τ(d) <∞) ≤ 1/d.
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