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Abstract

This thesis develops a framework for performing robust design optimization of objective functions constrained
by differential, algebraic, and integral constraints. A successive parameter continuation method combined
with polynomial chaos expansions is used to locate stationary points. The use of such an expansion provides
the benefit of being able to directly drive the mean and variance of a given response function (or an objective
function that uses them) during continuation. A toolbox capable of constructing polynomial chaos expansions
for system response functions evaluated on boundary value problems has been developed for this work. Its
use is demonstrated and results are compared to analytically derived solutions of a linear, harmonically
forced oscillator. The robust design optimization method is then applied a harmonically forced nonlinear

oscillator.
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Chapter 1

Introduction

Uncertainty is an ever-present reality in physical systems. Attempts to capture the effects of this reality
in mathematical models is referred to as uncertainty quantification. The sources of uncertainty in a model
are, of course, extremely varied. For example, if the model characterizes behavior of a product in a high-
volume manufacturing environment, then the exact value of a given model parameter (e.g., material property,
damping coefficient, material thickness, etc.) cannot be known for each realization of the product (at least
not within typical cost constraints). Even if all parameters inherent to a design are known exactly, there
still exists uncertainty in its eventual application. Examples include seismic loading of a structure [I] or
underfoot conditions of an off-road vehicle [2].

It is a typical goal of engineering problems to seek solutions that are optimal in some sense. Examples
include using the least amount of fuel to get from point A to point B or designing the strongest structure for
a given weight restriction. This thesis will concern itself with robust constrained design optimization, which
seeks optimal solutions in the presence of uncertainty, as well as equality constraints that must be satisfied
by the design variables. It describes a method for solving such optimization problems that combines a
continuation method for satisfying constraints and polynomial chaos expansions for approximating statistical
moments.

The remainder of Chapter 1 covers preliminary material and terminology used throughout the thesis and
is organized as follows. Section 1 includes a brief overview of the concepts of optimization, uncertainty quan-
tification, and optimization under uncertainty. Section 2 discusses numerical and computational methods

used in the thesis. Section 3 provides an outline of the remaining chapters of the thesis.

1.1 Optimization under Uncertainty

1.1.1 Optimization

The goal of an optimization problem is to seek extremal values (maxima or minima) of an objective function

f:+ X — R where X is the design variable space. Considering only the case of minimization (and noting



that maximization of f is merely the minimization of the related objective function f* = —f). An optimal

solution z* € S on a set S C X satisfies the condition
f@®) < f(x)Vx € S. (1.1)

The case where S = X indicates that there are no restrictions on the possible solutions and corresponds to
a problem of unconstrained optimization. The optimization problems of interest in this thesis, however, are
described by a theory of constrained optimization since the selection of x is limited to a proper subset of X
through the enforcement of constraints. Points in S are referred to as feasible points.

In addition to the constrained vs. unconstrained classification, optima can also be classified as global
or local. Global optima satisfy equation for all x in S. A local optimum, on the other hand, satisfies
equation [I.I] only a sufficiently small subset U of S containing z*. In this thesis, locally optimal solutions
in the presence of constraints will be sought using the successive parameter continuation method outlined

in Chapter

Constrained Optimization

As mentioned above, constrained optimization limits the set of feasible points to those which satisfy one
or more constraint relations that have been applied to the variables describing a problem. Examples of
constraints in an engineering context would be a restriction on the cost of a product, enforcement of a
physical law that relates two quantities, or a requirement that a stress value remain below a failure threshold.
As these descriptions imply, constraints can be either equality constraints or inequality constraints. A typical

equality constrained optimization problem is given by
min f (z), s.t.g(x)=0 (1.2)
xr

with objective function f and constraint function g : X — R™. The method of Lagrange multipliers can be
used for solving these types of problems by combining the objective function and constraints into a single
Lagrangian

Lz, A) = f(x) = Ag(x), (1.3)

where A\ € R™ are Lagrange multipliers for the m constraint equations in g. In the special case that X = R",

the first order necessary conditions for an optimal solution are then obtained by differentiating £ (x, \) with



respect to both x and A and setting the results equal to 0:

Vil (z,A) = fo(x) —Ags(z) =0, (1.4)

ViL(z,A)=g(z) =0. (1.5)

A critical point occurs at values of x and A that satisfy these n 4+ m equations. It is worth mentioning
that critical points for inequality constrained optimization problems must satisfy the more general Karush-
Kuhn-Tucker (KKT) conditions [3]. However, this thesis will focus only on equality constrained problems,

specifically those constrained by boundary-value problems as well integral and algebraic conditions.

1.1.2 Robust Design

Traditional means of dealing with uncertainty come in the form of engineering safety factors or worst case
design. A safety factor is a hedge against modeling errors arising either from the parametric uncertainty
discussed above, from unmodeled phenomena, or from any other possible source. Worst case design assumes
bounds on some sources of uncertainty and then designs for the case that most adversely affects a design’s
performance. For parametric uncertainty in a manufacturing context the worst case limits could be enforced
through an end-of-line inspection process. These methods are more conservative and while they can pro-
vide higher certainty of product success, they typically come at the expense of additional cost or reduced
performance.

More modern techniques for designing around uncertainties take advantage of statistical methods and
probability. Early statistical methods for evaluating a design’s robustness include Design of Experiments
(DOE) and Taguchi’s extensions of those techniques. In general, Taguchi’s methods seek to systematically
explore the design space to highlight sources of variation and, if possible, eliminate them. If elimination of
such sources is not possible, then modifications to the design are sought to reduce the effect of variation on
the final design. An overview of some technical aspects of the Taguchi method as well as other methods of
robust design are provided in [4].

It should be noted that while the early focus of Taguchi’s methods dealt with actual physical experiments,
it is common now for the experiment to be a numerical simulation of a physical phenomenon [5]. This has
the advantage of exploring the design space in a faster, more affordable way. A reduced set of physical

experiments can still be performed to validate the results of the numerical simulation.



1.1.3 Robust Design Optimization

With the knowledge that uncertainty is unavoidable, it is natural to seek optimal solutions that account for
uncertainty. This is referred to as Optimization Under Uncertainty (OUU). One popular approach to OUU

is called Robust Design Optimization (RDO) [6]. A typical formulation of an RDO problem is given by

min F (Mf (d,p), 0% (d,p)>,
s.t Gi (pg, (d,p), 02, (d,p)) <0,i=1,2...m,
Prd; min < di <dimaz] > Pi, 1 =1,2,...nq,
where d € R™ is a vector of decision variables able to be set by the designer, and p € R™ are additional
problem parameters (possibly random variables) out of the designer’s control. Because of the stochastic
nature of the inputs, the objective function f is a random variable and the robust objective function F' is a
function of the mean uy and variance 0']2c of the objective function.
The robust constraint functions GG; depend on the statistical moments of the original constraint functions

g: (also random variables). Methods for handling robust constraints of the form of G; will be discussed as part
of this thesis for the equality constrained case. The last set of constraints in the problem description impose
probabilistic allowable bounds on the decision variables. Constraints of this type will not be considered in

this thesis.

1.2 Numerical and Computational Methods

1.2.1 Polynomial Chaos Expansion

It is clear that to solve an RDO problem, statistical moments of an objective function (and possibly con-
straints) must be calculated. In the absence of a statistical distribution for the objective function, calculat-
ing the moments requires numerical approximation. Taylor expansions are one option [4], but they are not
well-suited to highly nonlinear problems or problems with large variability in the inputs [5]. Monte Carlo
simulation is another option, but this converges to the true values of the statistical moments at a rate of
O (1/y/n) for sample size n [{]. The computational expense can be prohibitive for complicated numerical
models.

In this thesis, the method of Polynomial Chaos Expansion (PCE) [8] will be used. PCE considers a
function of random variable(s) (called a response function), which is assumed to have finite variance, and

writes this in terms of an expansion in orthogonal polynomials. Let the function r depend on a set of



deterministic variables p and a set of random variables £&. Then, a PCE expansion is given by

r(p, &) = a;(p) i (€). (1.6)
1=0

The «;’s are expansion coefficients that depend only on the deterministic variables, while the ¥;’s are
orthogonal polynomial basis functions that depend only on the random variables.

One advantage of approximating statistical moments using PCE is that for properly chosen basis func-
tions, the error convergence is exponential [8]. This typically means fewer evaluations of a numerical model
relative to other methods like Monte Carlo simulation. Another advantage is that the statistical moments
of the expansion have simple closed forms that make it possible to incorporate them into the successive
parameter continuation method outlined in Chapter

Drawbacks to PCE arise when the number of random variables becomes large. Implementations like
the one outlined in Chapter [3| require exponentially increasing numbers of evaluations for higher stochastic
dimension. Another issue is that if the coefficients are time-varying, the convergence rate of the expansion
can degrade over long time intervals [9, [10]. There are methods to mitigate (though not eliminate) both of
these concerns. These include sparse quadrature methods [I1] and structured sampling regression methods
[12] for higher dimensionality, and adaptive methods in time for long durations of integration [I3] [10].

A more thorough introduction to PCE will be provided in Chapter [3] It will be formulated in a way that
allows for solutions to robust design optimization to be performed with the successive parameter continuation

optimization method discussed in Chapter

1.2.2 Quadrature

Successful implementation of a PCE routine relies on the selection of appropriate numerical integration
rules and corresponding orthogonal polynomial basis functions to maintain optimal convergence rates of the
expansions [8], so some discussion of these rules is warranted. Quadrature rules approximate an integral as

the weighted sum of evaluations of the integrand:
b b n
/ g () d:r:/ w(z) f(z)de Y wif (x;). (1.7)
a a i=1

The integrand g in (1.7)) has been factored into a weight function w () (possibly equal to 1) and a function
f. The optimally accurate choice of nodes x; and weights w; for a numerical quadrature rule is dependent
on the form of the weight function.

Gaussian quadrature rules approximate an integrand as a polynomial function (though the interpolant



is not explicitly constructed). A Gaussian quadrature rule is characterized by a choice of nodes and weights
such that an n-th order rule can exactly integrate a polynomial function of order 2n — 1. Gauss rules offer
the maximal order and highest accuracy for a given number of integration nodes [1].

The formulation of Gaussian quadrature rules is closely tied to the theory of orthogonal polynomials
and node-weight schemes are typically named for the polynomial set to which they are associated [14]. For
example, Legendre polynomials are orthogonal with respect to the weight function w (z) = 1, so the Gauss
quadrature rule developed using that weight function can be referred to as a Gauss-Legendre rule. Similarly,
Hermite polynomials are orthogonal with respect to w (x) = e=e’/ 250 a quadrature rule using that weight
function is referred to as a Gauss-Hermite quadrature rule. Algorithms exist for generating node and weight

schemes for various orthogonal polynomials [I5].

1.2.3 Continuation

Continuation methods start with a known solution to a problem and seek nearby approximate solutions
to form a family of solutions. In [16], a common formulation of continuation problems is developed. The
continuation zero problem ®(u) = 0 is defined in terms of ® : R” — R™, with n > m > 1 and a set
continuation variables u. The components of ® are called zero functions. If the Jacobian of ® with respect
to the continuation variables is full rank at a known solution, then, for n > m, all solutions near the known
solution lie on a unique (n — m)-dimensional manifold and every point on this manifold near the known
solution is a solution to the zero problem.

The extended continuation problem F' (u, ) = 0 in terms of continuation variables uw and continuation

parameters 4 € R” is given in terms of the mapping

F s . (1.8)

The components of ¥ are referred to as monitor functions and are some nonlinear functions of the continu-
ation variables whose values are tracked by the continuation parameters u.

The notion of inactive and active continuation parameters is arrived at by splitting the continuation
parameters p into pup and py where I C {1,2,...7} is an index set with cardinality |I] < n —m and J is
the complement of I'in {1,2,...7}. The inactive continuation parameters yy have their values fixed during

continuation at py = py, and thus impose additional constraints on the continuation variables. The solution



u*, then, must satisfy the reduced continuation problem

P (u 0
w = (1.9)
Uy (u) — pg 0
The restricted continuation problem is given by
F(u,p1) |p=py = 0. (1.10)

If the Jacobian of the restriction with respect to u and py at a known solution is full rank, the corresponding

solution manifold is (n — m — |I|)-dimensional.

1.2.4 The Computational Continuation Core and Toolboxes

Several software packages exist that specialize in continuation. These include AUTO [17], MatCont [18], and
€coCo [16]. coco stands out by providing support for a staged construction approach to defining continuation
problems wherein larger problems are built up from smaller ones.

In coco both monitor functions and zero functions are added to a continuation problem structure via
the core constructor coco_add_func. The construction of more complicated problem structures, like those
required for the discretization of an ODE, can be generalized and packaged in a coco toolbox. Toolbox
constructors act as wrapper functions, setting up toolbox-specific data structures and making embedded
calls to coco_add_func and other cOCO core functions. The work in this thesis is enabled by coco and the
toolboxes " co11” and "bvp’ which provide support for continuing solutions of ordinary differential equations
and boundary-value problems, respectively. Additionally, the "uq’ toolbox for performing uncertainty quan-
tification of boundary-value problems is developed for the investigations in this thesis. Those seeking more
information on continuation or COCO in general (including its many existing toolboxes and core functions)

are referred to the text [I6] and the tutorials available in the coco Sourceforge repository [19].

1.3 Thesis Outline

The remainder of this document will develop the equations required to solve robust design optimization
problems in the presence of boundary-value problem constraints using numerical continuation.
Chapter [2| shows how to find candidate solutions of optimization problems using a method of numerical

continuation. Necessary conditions are formulated and solved in stages. To illustrate the method, an



optimization problem with linear periodic dynamic constraints is solved using both analytical and numerical
means.

Chapter [3| outlines the PCE method and discusses the necessary zero and monitor functions needed to
calculate the expansion as part of a continuation problem in cOCO. A toolbox constructor is introduced
that enables numerical approximation of the coefficients of expansions for response functions associated
with boundary-value problems. The numerical method is applied to a linear periodic dynamic system with
uncertainty and the results are compared to an analytical solution.

Chapter [4] combines the work of the previous two chapters, showing that the equations required for robust
design optimization in the presence of dynamic constraints fit within the framework of Chapter

Chapter [5| applies the robust design optimization formulation to a harmonically forced Duffing oscillator
with periodic boundary conditions. Convergence of the statistical moments approximated by the PCE is
briefly discussed. Finally, the effects of the relative weighting of the statistical moments in a robust objective

function is investigated.



Chapter 2

Optimization with Dynamic
Constraints

The goal of this chapter is to derive first order optimality conditions for an objective function constrained
by a finite-dimensional boundary-value problem as well as integral and algebraic constraints. Additionally,
a method for finding a stationary point through successive continuation is discussed. The chapter begins
with an example problem in terms of an objective function constrained by a linear, periodic boundary-
value problem. An analytical solution is found using the successive continuation method. The optimality

conditions and solution method are then generalized for use in later chapters.

2.1 A Motivating Example

This section closely follows the approach to optimization illustrated in Section 8 of [20]. Consider the

harmonically forced, damped linear oscillator with periodic boundary conditions given by

#1(t) = 2a(t), (2.1)
ia(t) = cos (t + ) — wa(t) — ks (1), (2.2)
21(0) = 21(27) (2.3)
22(0) = z2(27) (2.4)

We seek a stiffness, k, and phase angle, ¢, that correspond to a stationary point of the implicitly defined
objective function x1(0) (the example in [20] considers the same boundary-value problem, but seeks an

optimum of x5 (0)). To that end, consider the Lagrangian

2w
L (.T(t) ) k7 ¢7 My gy 15 A(t) ; Abmnkvnqﬁvnl) = p1 + / )‘1 (t) (xl(t) - Ig(t)) dt
0

2m

+ ; Ao (t) (&2(t) + x2(t) + kx1(t) — cos (t + @) dt + Ape,1 (21(27) — 21(0)) (2.5)

FApe,2 (22(21) — 22(0)) + 18 (k — pr) + g (0 — pg) +m1 (21(0) — 1) .



The objective function has been replaced by the parameter p; and the original objective function x; (0) is
treated as equality constrained to the new parameter p;. Necessary conditions for a stationary point are

obtained by letting the variation of the Lagrangian equal zero for arbitrary variations of its arguments. Here,

27
5L = b + / (63 () (E1(£) — a(t)) + At (£) (81 (1) — bra(1))) dt
—|—/ i ((5/\2 (t) (J?Q(t) + .Iz(t) + kxl(t) — COS (t + (b))
0
+ 2o (£) (s () + 62(¢) + Sk (£) + kdwr (t) + sin (¢ + 6)56)) dt
+6)\bc,1 (1‘1 (271') — X (0)) + )\bc,l ((5.%1 (27T) — 01 (0)) (26)
+5)\bc,2 (SCQ (27T) — X9 (0)) + )\bc,Q (§x2 (27T) - 5%2 (0))
+0my (k — pi) + 00y (6 — pg) + 6m (21 (0) — i)

+ni (0k — dpr) + g (¢ — bpe) +m (621 (0) — dpr) -

The di and d&o variations in [2:6] are not independent of the other variations. To get an independent set of

variations, integration by parts is used on the corresponding terms:

o i )\1 (t) (S.Z‘l(t) dt = /\1 (27‘1’) (5371 (27‘[’) — )\1 (0) (51‘1(0) — ) " ).\1(75) (51‘1(0 dt, (27)

/2‘” )\2 (t) (5.’E2(t) dt = )\2(271’) (51}2(27'() - )\2(0) (51’2(0) - /QW )\Q(t) (5!172(t) dt. (28)
0 0

In order for the condition £ = 0 to be true for arbitrary variations of the arguments of £, the coefficients
of each independent variation must equal zero. To that end, (2.7) and (2.8) are substituted into (2.6)) and

the coefficients of each independent variation are collected and set equal to zero, giving the following system

10



of equations:

SAi(t) : iy (1) — za(t) = 0, (2.9)
Sho(t) : da(t) + mo(t) + kxy (t) — cos (t+ ¢) = 0, (2.10)
SXper : 21 (27) — 21 (0) = 0, (2.11)
SXpes : 22 (27) — 22 (0) = 0, (2.12)
onp - k— =0, (2.13)

ong : ¢ — pg =0, (2.14)

ony 21 (0) — p1 =0, (2.15)
Sz (t) : —Ai(t) 4 kAo (t) = 0, (2.16)
dxo(t) : —Xa(t) + Aa(t) — A1 (t) = 0, (2.17)
dx1(0) : =21 (0) +m + Ape1 =0, (2.18)
6x5(0) : ~A2 (0) + Ape2 = 0, (2.19)
Sz (27) : A1 (27) = Apes = 0, (2.20)
b9 (27) : A2 (27) — Apea = 0, (2.21)
ok - /O T s () 2 (£) db 47 = 0, (2.22)

3¢ /0% sin (t 4+ @) A2 (t) dt +ng = 0, (2.23)

and 1 —m =0, iz =0, and ny = 0 (for dp1, duk, and duy, respectively). The above system of equations
can be split between — and —. The first set arises from variations with respect to the
Lagrange multipliers, A1, A2, Ape, 1g, Mk, and 71. It is made up the original boundary-value problem and
additional equations that introduce continuation parameters. This first system can be solved independently
of the second set equations. The latter equations arise from variations with respect to the variables in the
original problem and depend on the solution of the original system (through and ) and the
vanishing of 7, and ng. It is worth noting that because the objective function is here treated as a constraint,
the adjoint system (2.16)-(2.23) is satisfied by the trivial solution where all Lagrange multipliers equal zero.

Equations (2.9)-(2.23) combined with 1, — 1 = 0, nx — vk = 0, 7y — v = 0 represent an extended con-
tinuation problem in the continuation variables (z(t), k, @, A(t) ; Aoc, M1, Mk, M) and continuation parameters

(115 Py By V15 Viey V). Equations (2.9)-(2.14) and (2.16)-(2.19) can be used to solve for z1(t), xz2(t), k, ¢,

A (8), A2(t); Abe,1s Abe,2, Mks Mg in terms of 71, pg, and pg. Notably, since only periodic solutions for z; (¢)

11



and x5 (t) are sought, the focus is on solutions particular to the harmonic forcing function (and linearity)

that are of the form

x1(t) = Asin(t) + B cos(t). (2.24)

The values of A and B can be determined through the method of undetermined coefficients by substituting

(2.24) into (2.9) and (2.10). After substitution of the solution into (2.13]) and (2.14), the resulting periodic

solutions to the original ODE system are given by

(. — 1) cos (t + pg) + sin (£ + pg)

21 (t) = 1 , (2.25)
. _ — (e — 1) sin (t + pg) + cos (t + pg)
2 (1) e 111 . (2.26)

It follows from ([2.16])-(2.19) that

A\ (t) . et/z V1 — 4/,Lk (771 + )\bc’1> cosh (%\/ 1— 4//“{; t) - (771 - 2,U/Ic/\bc,2 + )\bc,l) sinh (%\/ 1-— 4/Lk t)
1 - )
V31— 4
(2.27)
N (t) = et/2 (Abe,2 = 2 (M + Ape,1)) sinh (/T = dpg t) + Ape,2v/T — dpg cosh (2T =g t) .
V1—=4py
(2.28)
The boundary conditions (2.20))-(2.21)) imply that
— (e™(1 — 4pk) + /T =gy sinh (/T = 4p,) + (4pr — 1) cosh (m/T = dpy;)) (2.20)
bt 2(4p — 1) (cosh(m) — cosh (my/T—4puy)) ’ '
inh 1-4
Mooz = — i sinh (T = 4ji) (2.30)

VT =4, (cosh () — cosh (my/T = 4p))
Substituting (2.29)-(2.30) and /iy = v/1 — 4k into (2.27)-(2.28) then yields

MO = — (sinh (ﬁgt

) — fir; cosh (%) +em (sinh %" (2m — t) + fig, cosh %" (2r — t)))

2fi, (cosh(m) — cosh(mjix))

(sinh (%) + €™ sinh ’12—’“ (2r — t))
g (cosh(m) — cosh(mfix))

mez ", (2.31)

Ao () = — nez ™. (2.32)
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Finally, the integrals in (2.22)-(2.23)) can be evaluated to give the following expressions for n; and 74:

m (20 — 1) sin(pg) + (s = 2)pu; cos(p4))
((pe — 1) +1)? ’

M= —

(1 — pg) sin(pg) + cos(pg))
(e —1)2 +1 '

Ny =
The remaining equations are then given by

(pu — 1) cos (pg) + sin (pg)
(ux —1)*+1
~m(2(uk — 1) sin(ug) + (e — 2)pu cos(pg)) U =0
(e —1)2 +1)° ’
M1 (1 — pe) sin(pg ) + cos(pg))
(e —1)2+1

7,“1:03

—l/¢:0,

m—vy=0.

(2.33)

(2.34)

(2.35)
(2.36)
(2.37)

(2.38)

These are 4 equations in 7 unknowns (@1, fk, e, M1, V1, Vi, Ve), S0 fixing pe and setting v, = 0 (which

satisfies the necessary condition for ;) results in three possible one-dimensional solution manifolds. The

first is given by

(e — 1) cos (pg) + sin (ug)
(us —1)*+1

= ’n1:y1:y¢:0

(2.39)

and corresponds to the trivial solution for all Lagrange multipliers. The other two solutions can be identified

by solving (2.36]) for u and substituting the result into the remaining equations to yield

1, . 1541
i = 1= tam (1) = sec (g) ,ji = 5 (sin (1g) = 1)1 = v1,v5 = - cos (1)

and

1 . 1%
e = 1= tan (j1g) + sec (15, 1 = 5 (sin (s9) + 1), = v1, 05 = 03 119)

which intersect the trivial manifold at

1, .
e = 1= tan (sg) — se¢ (19) i = 5 (510 (1) = 1), 11 = 11 = vy = 0

13
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and

1, .
pe =1 —tan (ug) +sec(ug) , 1 = 5(sin (pg) +1),m =1 =vp =0, (2.43)

respetively. These points are stationary points of u; evaluated along the first manifold. Interestingly, the

second set of manifolds include points with v; = 1, namely

1, . 1
e =1 —tan (ug) — sec (pe) , p1 = §(sm (g) = 1),m =1, vy = 5 cos (1) (2.44)
and
L, . 1
i = 1 tan sg) € (s1g) .y = £(sin stg) + 1), 70 = 1,y =+ cos (). (2.45)

Each of these points lies on a one-dimensional manifold parameterized by jt4. The final necessary condition
ny = 0 is satisfied when 14 takes on values of 5 along the first manifold and —7 along the second manifold.
The resulting optimal stiffness value is given by py = 1.

As a final step in this analysis the Lagrange multipliers Ayc 1 and Apc 2 can now be calculated. While they
are of no practical interest to the solution, they do provide another point of comparison for the numerical

solution later in the chapter. Substitution into (2.29))-(2.30)) yields

3e™ + /3 sin (\/gw) — 3cos (\/371')
6 cos (V/3m) — 6 cosh()
Ny = sin (\/577)
@ V3 (cos (\/§7T) — COSh(ﬂ'))

Abe1 = ~ —1.0088, (2.46a)

~ 0.039412. (2.46b)

2.2 Adjoint Derivation

To generalize the successive continuation method of seeking optimal solutions in the previous section, consider

the following optimization problem with algebraic, differential, and integral constraints:

minimize: F = &(T, z(0),z(T),p) + fOT g(t,z(t),p)dt
subject to:  @(t) — f(t,x(t),p) =0, B(T,z(0),z(T),p) =0, fOT h(t,z(t),p)dt = 0.

Note that the objective function(al) maps the time-dependent function z(t) to a scalar. Here, the objective
function consists of two parts. The function ® operates on the boundary values of z, interval length T', and
problem parameters p. The second term integrates the function g over the entire trajectory.

As discussed in Section [[.I.1] the method of Lagrange multipliers applied to an equality constrained
optimization problem is associated with the formulation of a Lagrangian. The vanishing of the first order

variations of this Lagrangian under variation of each of its arguments generates a system of equations, the

14



solutions of which correspond to potential extrema of F. Following [21], the Lagrangian for the above

optimization problem is given by

L (T7 Z‘(t) s Py U1y U2, )‘l(t) 7A2a )\3a 7717772) = M1

T T
+/ M (#) (i”(t)ff(t,x(t),p))dHA?B(T,x(O),x(T),p)+A3/ h(t,z(t),p)dt
0 0

T
+m (‘P(T,x(o),I(T),p)Jr/O g(t,x(t),p)dtu1> +m5 (p—p2), (247)

where the \;’s and 7);’s are Lagrange multipliers. Note that p; is here treated as the objective function while
the original objective function has, in effect, been converted to a constraint on the problem. Similar to the
example in the previous section, this results in adjoint equations that are linear in the Lagrange multipliers
and simplifies the task of satisfying them at the outset of the optimization method.

Rescaling time by the transformation {t = Tt |7 € [0,1]} results in

L(T,&(7),p, g1, 2y M (T) ,>\2,)\3,771,7]2) =

“

[

5\?(7’) (@' (1) =T f(T1,%(7),p))dr + A2 B(T,%(0),Z(1),p) + X3 (T/o h(TT,%(T),p) d’7'>

o (@(T@w),w),p) i / g(TT,az(Tm)dT—m) ol (- pa), (248)

where Z (1) = 2 (t (7)) and Ay (1) = Ay (£(7)). Proceed to consider partial variations of the Lagrangian in

1' under variations in each of its arguments. For oM (1), the corresponding partial variation is given by:
1 ~
/ 55T (7) (& (1) — T f (T7,3 (1) ,p)) dr. (2.49)
0
The partial variation corresponding to §\s is given by
6A3 B(T,%(0),%(1),p). (2.50)
The partial variation corresponding to dAs 1 is given by

SAs <T /0 (T i) dr) . (2.51)
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The partial variation corresponding to 7 is given by
1
om (9(1:50).30) + T [ 9T 3(0) p)dr ~ ) (2.52)
0
The partial variation corresponding to 07 is given by
3 (p— p2) - (2.53)
The partial variation corresponding to Z’' () is given by
1 ~
/ M (ry o3 () dr. (2.54)
0
However, the variation of &’ (7) is not independent of the other variations. Integration by parts gives
~ 1 ~7
M1y 6z (1) — M (0) 62 (0) — / ML (1) 0% () dr. (2.55)
0
The partial variation corresponding to §Z (7) (including the result of (2.55))) then becomes
1, ~
/ <_>‘1T (T) - TX{ (7_) f,i (TTa ‘%(T)ap) + T>‘3h,5c (TTv i’(’]’),p) + T7719,55 (TT7 j(7—)727)) 0x (T) dTa (256)
0

where subscripts preceded by a comma indicate partial differentiation corresponding to the sub-scripted

variable. The partial variation corresponding to 0 (0) (including the result of (2.55)) gives
(<37 (O)+ N Bago) (1.3 (0).3 (1) ) + m® o) (7.3 (0)..3 (1) 1)) 03 (0). (257)
The partial variation corresponding to 6z (1) (including the result of (2.55))) gives

(3 (1) + M By (T, (0), 7 (1) ) +m® a1y (T, (0),3 (1)) 65 (1) (2.58)

16



The partial variation corresponding to §7 is given by

(/\2TB,T (T,z(0),z(1),p) + m®r (T,2(0),Z(1),p)
+ /0 ( — S\le (N (f(Tr,2,p) +T7f (T7,2,p)) + A3 (W (T7,%,p) + TThy (TT,Z,p))

+m (g (T7,%,p) + Ty (TT,%,p)) )m) 5T. (2.59)

The partial variation corresponding to dp is given by

(ﬂg + A3 B, (T,%(0),2(1),p) +m®, (T,2(0), 2 (1), p)
1
+ / ( - 5‘? (T) Tf,p (TT, i'7p) + )‘3Th,;l) (TT7 f,p) + ang,p (TTv i'ap) )d’r> 5]9 (260)
0

Additional variations corresponding to du; and dus are given by (1 — 1) duq and nadue, respectively.

To ensure that the variation of the Lagrangian is zero for arbitrary variations of its arguments, the
coefficient for each individual variation must equal zero. The solution approach, inspired by [22], involves
first satisfying the system of equations corresponding to setting the coefficients in — equal to zero
and then satisfying those associated with du; and dus through successive continuation steps.

It is worth noting that, without the du; variation equations, the adjoint system is homogeneous and
completely satisfied by the trivial solution A; = 0 and 7; = 0. The constraints on the 7;’s are satisfied as
part of a sequence of continuation steps that first locates a local extremum of the objective function along
a l-dimensional solution manifold with the trivial solution for the Lagrange multipliers. This point also
marks an intersection of the solution manifold with a branch of solutions along which non-zero A;’s and
7;’s are possible. The solution method continues along this second branch of solutions until n; = 1, which
makes the variation corresponding to du; equal to zero. From here, the value of 7, is held fixed at 1 and the
remaining duo coeflicient equations are satisfied by performing continuation until all the elements of 7, have
been driven to zero. When the elements of 7, equal zero, the system is at a stationary point. Additional
evaluations can be conducted at this point to further characterize this point as either an extremum or a

saddle point.
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2.3 Numerical Continuation

Using the above analytical derivation as a guide, we seek a numerical approximation to the example discussed
in Section Making use of the software package cOCO and its *co11’ toolbox mentioned in Section [1.2.4
the system of equations — are added to a continuation problem. A successful initial run marks a
fold point of the objective function as a branch point (these points are located only approximately during
numerical continuation). From the branch point, subsequent continuation runs allow for the satisfaction of
the necessary conditions 71 = 1, mi = 7y = 0 resulting in optimal parameter and Lagrange multiplier values
that match the analytical results.

The vector fields and Jacobians of the original and adjoint differential equations are encoded in "co11’
compatible MATLAB functions included in Appendix[A] The boundary conditions for the original and adjoint
system (as well as their Jacobians) and stationarity constraints and are encoded as COCO
compatible zero functions also provided in Appendix [A]

The ode_isol2co11 constructor is used to add both the original and adjoint differential equations to the
continuation problem structure, and the coco_add_glue function is used to enforce equality of the problem
parameters in the differential equations. The coco_add_func utility function is used to add the boundary
conditions and stationarity constraints to the continuation problem structure, and the objective function is
associated to an initially inactive continuation parameter with a call to the coco_add_pars utility function.
The following call to the COCO entry point function denotes u1, k, m, and 7y ("mul’, 'k’, 'etal’, and
"eta_phi’, respectively, in the MATLAB extract) as active continuation parameters and performs continuation

along a 1-dimensional solution manifold for p; between 0.1 and 2.

>> bdl = coco(prob, "init’, [], 1, {'mul’, ’'k’, ’etal’, ’'eta_phi’}, {[0.1 21});

The result of the call is shown below. The event identifiers Fp and Bp in the output show that a fold point

in the objective function and branch point have been approximately detected by coco.

STEP DAMP ING NORMS COMPUTATION TIMES

IT SIT GAMMA [1dl] [1El] 11Ul F(x) DF(x) SOLVE

0 5.43e-04 1.lee+01 0.0 0.0 0.0

1 1 1.00e+t00 9.02e-04 1.63e-08 1.1l6et01 0.0 0.0 0.0

2 1 1.00e+00 6.33e-08 9.68e-16 1.16e+01 0.0 0.1 0.0
STEP TIME [1U]| LABEL TYPE mul k etal eta_phi
0 00:00:00 1.1600e+01 1 EP 2.9998e-01 4.0003e+00 0.0000e+00 0.0000e+00
10 00:00:01 1.4153e+01 2 1.8249e-01 6.2907e+00 0.0000e+00 0.0000e+00
20 00:00:01 1.8212e+01 3 1.2077e-01 9.1579e+00 0.0000e+00 0.0000e+00
27 00:00:02 2.0883e+01 4 EP 1.0000e-01 1.0899%e+01 0.0000e+00 0.0000e+00
STEP TIME [1Ull LABEL TYPE mul k etal eta_phi
0 00:00:02 1.1600e+01 5 EP 2.9998e-01 4.0003e+00 0.0000e+00 0.0000e+00
10 00:00:03 1.1020e+01 6 4.6851e-01 2.4400e+00 0.0000e+00 0.0000e+00
15 00:00:04 1.1345e+01 7 FP 5.0000e-01 2.0000e+00 0.0000e+00 0.0000e+00
15 00:00:04 1.1346e+01 8 BP 5.0000e-01 1.9992e+00 0.0000e+00 0.0000e+00
20 00:00:04 1.1888e+01 9 4.4686e-01 1.6169e+00 0.0000e+00 0.0000e+00
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30 00:00:05 1.2511e+01 10 1.3116e-01 1.1335e+00 0.0000e+00 0.0000e+00
31 00:00:05 1.2524e+01 11 EP 1.0000e-01 1.1010e+00 0.0000e+00 0.0000e+00

From here, the ode_BP2co11 constructor is used to initialize a new problem structure from the solution
identified as a branch point in the previous continuation run. The constructor additionally orients the initial
tangent vector to facilitate the switch to the solution branch where the Lagrange multipliers can take on non-
trivial values. The boundary conditions, stationarity constraints, gluing conditions, and problem parameter
assignment are added in a similar fashion to the first continuation run and the following call to the coco
entry point function is used to drive 7; from 0 to 1 while allowing 11, k, and 14 to vary. The Lagrange

multipliers which have been encoded as active continuation parameters are also displayed.

>> bd2 = coco(prob, ’'etal’, [], 1, {’etal’, 'mul’, 'k’, ’'eta_phi’, ’'1la3’, ’'lad4’}, {[0 11});

The resulting output is shown below. The columns have been split across multiple lines to show that the

Lagrange multipliers are taking on non-zero values along this solution branch.

STEP TIME [1U] | LABEL TYPE etal mul k
0 00:00:00 1.1346e+01 1 EP 0.0000e+00 5.0000e-01 1.9992e+00
1 00:00:00 1.1346e+01 2 BP 1.3216e-08 5.0000e-01 1.9992e+00
10 00:00:01 1.2070e+01 3 EP 1.0000e+00 5.0000e-01 2.0000e+00
STEP eta_phi la3 la4d

0 0.0000e+00 0.0000e+00 0.0000e+00
1 -6.6135e-09 -1.3137e-08 -3.7283e-10
10 -5.0000e-01 -9.9392e-01 -2.8173e-02

A new problem structure is initialized from the terminal point of the previous run with the ode_co112co11
constructor. Supporting equations (boundary conditions, stationarity, etc.) were again added to the contin-
uation problem structure. The following call to the COCO entry point function releases 74, 11, k, and ¢, and
additionally displays the Lagrange multipliers Apc1 and Ape2 (“1a3” and ’1a4’, respectively) for comparison

to the analytical result.

>> bd3 = coco(prob, 'opt’, [], 1, {’eta_phi’, 'mul’, 'k’, ’'phi’, ’"la3’, ’"lad’}, {[]1, [0.3 1.51});

STEP DAMP ING NORMS COMPUTATION TIMES
IT SIT GAMMA [ 1dl | [T£]] [ 1Tl | F(x) DF (x) SOLVE
0 5.39%e-06 1.20et01 0.0 0.0 0.0
1 1 1.00e+00 5.39%9e-06 7.25e-10 1.20e+01 0.0 0.0 0.0
2 1 1.00e+00 8.02e-09 9.32e-11 1.20e+01 0.0 0.0 0.0
STEP TIME | 1Tl | LABEL TYPE eta_phi mul k phi
0 00:00:00 1.2029%e+01 1 EP -5.0000e-01 5.0000e-01 2.0000e+00 -2.5490e-08
20 00:00:02 1.3667e+01 3 OPT 0.0000e+00 1.0000e+00 1.0000e+00 1.5708e+00
100 00:00:09 3.8721e+01 4 EP 4.9925e-01 5.2742e-01 5.3410e-02 3.0867e+00
STEP la3 la4d

0 -9.9392e-01 -2.8173e-02
20 -1.0088e+00 3.9412e-02
100 -3.4900e+00 -2.6366e+00
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Figure 2.1: A graphical representation of the results of continuation. The point labeled ‘Branch Point’
denotes the approximate location of an intersection of two one-dimensional manifolds.

Continuation identifies the optimal point (where g = 0), labeled opT, to be ¢ = 1.5708 ~ T as was found
in the analytical solution. The columns for 1a3 and 1a4 in the cOCO output show that their values in the
run labeled opT also match the analytical results for Apc1 and Apc 2.

Figure offers a visualization of the path taken to the optimal point during the continuation runs.
The starting point for continuation is on the bottom right of the figure at (k,¢) = (4,0). Continuation in
the direction of reducing k is where cOCO identified the Branch Point, and the dotted line is the tertiary
solution branch along which the optimal solution is identified.

As has been mentioned, the Lagrange multipliers remain at (Apc,1, Abe,2) = (0,0) for the duration of the
first continuation run. The continuation path that takes 7; from 0 to 1 is displayed as a solid line in Figure
and during this step of the continuation process, the Lagrange multipliers take on non-zero values. The

optimal point is also highlighted.

2.4 Concluding Remarks

This chapter discussed a method of identifying stationary points of constrained optimization problems
through successive continuation and demonstrated its use on a linear ODE example. The example was
solved both analytically and with the numerical continuation package COCO. A general set of equations and

procedure were outlined for identifying stationary points of problems constrained by differential, algebraic,
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Figure 2.2: Evolution of Lagrange multipliers during continuation.

and integral constraints. The results of this derivation is that the adjoint equations for nonlinear systems
need not be constructed for specific problems as has been done in this chapter. They can be derived in all
generality and then specialized for a given problem [2I]. In fact, a 2017 release of cOCO has implemented
construction of adjoint equations for optimization in the presence of particular classes of constraints. Later

chapters will make use of this functionality.
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Chapter 3

Polynomial Chaos Expansion

In this chapter, the focus is on calculating statistical moments of responses of systems constrained by finite
dimensional boundary-value problems with parametric uncertainty using the method of Polynomial Chaos
Expansion (PCE). The necessary equations for generating a PCE will be derived in a manner suitable for
inclusion in a numerical continuation routine. In subsequent chapters the successive parameter continuation
approach to optimization from Chapter 2| will be combined with the work in this chapter in pursuit of robust

optima identified through numerical continuation.

3.1 Motivating Example

Consider the periodic boundary-value problem

i = T, (3.1)
By = cos (Wt + ¢) — 9 — Ky, (3.2)
21 (0) = 21 (27/w), (3.3)
22 (0) = a5 (27 w) (3.4)

in terms of the displacement and velocity of a harmonically excited linear oscillator. This system differs from
— in two ways. First, the deterministic stiffness & is replaced by a normally distributed random
variable K ~ N (,uk, 0,%). (We assume that the values of puy, and oy, are such that the probability of negative
values is negligible.) Second, the forcing frequency is given by w in . The maximal displacement is
the system response of interest, and its mean and variance will be calculated as functions of the forcing

frequency for comparison to a PCE approximation.
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The steady-state solution to the ODE is given by

(K — w?) cos(wt + ¢) + wsin(wt + )
(K —w?)? 4 w?

—w (K — w?) sin(wt + ¢) 4+ w? cos(wt + ¢)

(K —w?)® + w?

T (t,K,w,¢) = ) (35)

T2 (thvwaQS) =

. (3.6)

The phase variable ¢ may be constrained so that the initial position represents the sought response function.

To that end, set t = 0 and find the value of ¢ such that x5 (0) = 0. The resulting phase angle is given by

¢ = tan! ( wa2> + wZ. The maximum displacement as a function of stiffness and forcing frequency is

then given by the random variable

1

Xlo(K7UJ) =

)

: (3.7)
(K — w?)? + w?

Expressions for the mean px, , and variance 0%, of X1, (K,w) as functions of w can be found directly

from their definitions in terms of the expectation operator E [-]:

7(k7‘“k)2

i 1 e >
s ) = EXrg (K] = [ N v K 5)
0%,y () = B [(X10 (K,w))*] = (B X1 (K,w)])* =
2 [ —(kop)? —(k—pg)? 2

[e's) 202 0o 202
/ ! © L k- / ! SR (3.9)
> (k —w?)® + w? v 27aj —o0 \/(k — w?)? 4 w2 V2mo?

After substituting values of py = 3 and o = 0.2, numerical integration is used to evaluate (3.8]) and (3.9) at
various frequencies. The resulting frequency sweeps of the mean and variance of z; o are shown in Figures
and Figure shows the mean plus/minus three times the standard deviation as a function of

frequency.
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Figure 3.3: Mean and mean +/- three standard deviation curves as calculated from the analytical expressions

in and .

3.1.1 PCE Approximation

This section will work through the PCE approximation for the motivating example. The more general theory

will be explained in the subsequent sections. Consider the transformation
K = pi + o€ = 3+ 0.2&, (3.10)

where &, ~ N (0,1) and K is expressed in terms of the specific numerical values for py and o from the

previous section. The maximal displacement random variable X ¢ in terms of & is given by substituting

into

1

. (3.11)
V(@+026) - w2)? w2

Xl,O (wa gk) =

To approximate the mean and variance of (3.7)) using PCE, first write (3.11]) as a series expansion in the

basis of polynomials ¥; that depend on the random variable &, with coeflicients «; that depend on the
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deterministic variable w:

X1.0 (w, &) Zaz (3.12)

For example, truncating the expansion after four terms and choosing the probabilist’s Hermite polynomials

given by

Uo (&) = 1, W1 (§) = &k, V2 (&) = \7 (& —1),05 (&) = % (& — 3¢) (3.13)

as basis function yields

s (w)

X0 (w, &) ~ ap(w) + a1 (w) 5 (&G-1)+ O‘:’;/(g) (& —3¢) . (3.14)

The Hermite polynomials are an orthonormal basis under the inner product

(W, (&), 05 (6) = / (60 W5 () \/;T

& (3.15)

Taking the inner product of both sides of (3.12)) with each ¥; gives the following system of equations

2

/ X1,0(w, &) ¥ (fk)\ﬁ

&, = o () i > 0. (3.16)

This remains true for ¢ < 3 if the right-hand side of is substituted for z1 o (w, & ). Each such integral can
be approximated numerically using a Gauss-Hermite numerical integration scheme. The MATLAB function
for determining the weights and nodes for this quadrature rule up to order m is as follows (which uses the

eigenvalue algorithm given in [14]).

1 function [nds, wts] = gauss_hermite_nodes (m)
2 num = (l:m-1)’;

3 g = sqgrt (num) ;

4 = diag(g,1)+diag(g,-1);

5 [w, x] = eig(J);

6 [nds, idx] = sort(diag(x));

7 nds = nds’;

8 wts = sqrt (2+xpi)*w(l,:)."2;

9 wts = wts (idx)/ (sqrt (2*pi));

10 end
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To four decimal places, the nodes and weights for a 4th-order Gauss-Hermite integration rule are

(€k,1,£k,2,£k,3,£k,4)—(2.3344 —0.7420 0.7420 2.3344>, (3.17)

(wk,l,wk,z,wk,s,wk,4)—<0.0459 0.4541 0.4541 0.0459)- (3.18)

For i =0,...,3, the integral in is then approximated by

Yo (€k1) Yo (€k2) Yollks) Yo(ka)| (wr O 0 0 1,0 (W, &k,1) ap (w)
Uy (k) Wi (k2) Wi(€rs) Yi(&ka) 0 w2 0 O 21,0 (W,&k2) | | ea(w) (3.19)
Uy (€r1) W2 (€r2) VY2 (&r3) Yo (Eka) 0 0 wz O r10 (W, &k,3) s (w)
U3 (€k1) V3 (€k2) Vs (€ks) s (Eka) 0 0 0 wy) \w1po(w,&ka) as (w)
which, after substituting values for the nodes and weights, becomes
-1
o7y} (w) 0.0459 0.4541 0.4541 0.0459 V(2.5331—w?)2+w?
1
ay (w) _ —0.1071 —-0.3369 0.3369 0.1071 V(25516—07) 102 ‘ (3.20)
as (W) 0.1443 —0.1443 —0.1443 0.1443 —L
V/(3.1484—w?)% +w?
ag (w) —0.1071  0.3369 —0.3369 0.1071 1

\/ (3.4669—w?)? +w?

As shown later in this chapter, the mean and variance of the truncated expansion are given by «g (w) and
Zle a? (w). Figures and ﬁ show the comparison with the analytical results obtained previously. The
solid line in each figure is the previously calculated analytical result and the circles are the approximations
at selected frequency values. Figure shows the mean +/- 3 standard deviation plot with samples used
in the approximation at selected forcing frequencies.

The agreement in the results provides confidence that the expansion has sufficiently converged with the
chosen polynomial degree and integration order. However, experimentation with these orders could show
acceptable convergence to the analytical results already at lower order. One must take care to choose an
integration scheme of high enough order to accurately integrate the products of orthogonal polynomials. An
n-th order Gaussian quadrature rule is able to provide exact results for polynomials up to degree 2n—1. The
highest order polynomial product in the above expansion is 6 (the square of ¥3). The 4" order integration
scheme is accurate up to 7" degree polynomials, so accuracy of the numerical integration is sufficient for
this example. It is possible that additional terms in the polynomial expansion are needed to accurately

approximate the statistical moments.
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Analytical Results
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Figure 3.4: Frequency sweep of the mean value of the maximal displacement for the linear ODE with a
normally distributed stiffness, K ~ N (3,0.22). Mean values approximated by a third-order polynomial
chaos expansion are shown as circles at various frequency values.
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Figure 3.5: Frequency sweep of the variance of the maximal displacement for the linear ODE with a normally
distributed stiffness, K ~ N (3,0.22). Variance values approximated by a third-order polynomial chaos
expansion are shown as circles at various frequency values.
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Figure 3.6: Frequency sweep of mean and mean +/- 3 standard deviation curves with samples used to
calculate the polynomial chaos expansion coefficients overlaid.

3.2 PCE Background

In general, the choice of basis polynomials ¥; in depends on the underlying distribution of the random
variables €. Xiu and Karniadakis [§] generalized the method of homogeneous chaos of Wiener [23] and found
optimally convergent polynomial chaos basis functions for several well-known probability distributions. They
additionally discussed methods for handling random variables of arbitrary distributions. Table outlines
the optimally convergent basis functions for a few common continuous distribution types. Weight functions

for additional density functions can be found in [24] or [§].

Distribution Type Density Function Polynomial Basis Weight function = Support
—¢2 2
Normal \/%eT5 Hermite éeTﬁ [—00, 0]
Uniform z Legendre z -1,1]
Exponential et Laguerre et [0, o0]

Table 3.1: Correspondence between probability density function and the orthogonal weight function for
selected distributions and orthogonal polynomials [24]

It can be seen in Table that the weight function is identical in form to the density function. The
choice of polynomial basis functions influences the convergence of the error of the expansion. The optimal

basis is one whose weight function corresponds to the density function of the random variable. With this
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choice, error convergence is exponential [g].
The general theory of Xiu and Karniadakis [§] concerns basis functions that are orthogonal under the

inner product defined by
(F9) = [ 19 pe (e (3:21)
Q

with pg representing the distribution-dependent weight function (from Table[3.1]or [24,[8]) and € determined

by the support of the density function. Specifically
<\I/i, \I/j> = Céij (322)

where ¢ € R and d;; is the Kronecker delta function. It is always possible to choose ¢ = 1 by a suitable
normalization.

Polynomial chaos expansions are also available for higher-dimensional stochastic parameter spaces where
&= (&,&,...&). The corresponding theory reduces to the one-dimensional case when the random variables

are independent. The form of the expansion (1.6]) is unchanged, but the basis polynomials are given by

U; (&) =it (&) ¥52 (&) .. vk (&), (3.23)

where 1% represents the k’th-degree univariate polynomial function of &; and there exists some mappin
J g y J g

(k1,ka,...ks) — i [13]. The expansion coefficients are then determined by evaluating the multiple integral

o (p) = /Q ~-~/er<p,£> U, (61, o E0) pey (62) s pe. (€4) des, (3.24)

where pg, pe, - . . pe, is the multivariate probability density function pe.

The random variables in a PCE are typically understood to be standardized random variables. The
meaning of standardized for the random variable depends on the distribution. For a normal random variable,
it assumes a mean value of 0 and standard deviation of 1. For a uniform distribution it assumes a lower
limit of -1 and upper limit of 1. If the random variables are not independent or standardized at the outset,
then a (possibly nonlinear) transformation to a new set of random variables must be sought to get them into

independent, standardized form [25].
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3.3 PCE Construction

The computational task in constructing a PCE is the determination of the expansion coefficients a;. As a
first step, the expansion is truncated to a finite number of terms NV; and the inner product (3.21)) is taken

of both sides with each basis function in the truncated expansion

Nye—1
(r(p,&),¥;(§) = < > ai(p) (€)Y, (§)> ,J=0...N;— 1. (3.25)

=0

Due to the orthogonality of the basis functions, the inner product on the right hand side of (3.25)) is zero for

all but the j’th term of the expansion which allows for the coefficient o; to be isolated

0,
a; = (r (p, 527 J (f)) (3.26)

(U3 (©))
If, in addition to being orthogonal, the basis functions are also normalized, then the denominator of ([3.26)
equals 1. In the univariate case, the expansion coefficient can now be approximated using the following

numerical quadrature

M
0= [ 10w ©) pe @ S wir 0.6 ¥, (). (3:27)

where orthonormality of the basis functions is assumed here and going forward. Quadrature in the multi-
variate case will be discussed in more detail in later sections.

For the case when £ € R, the basis polynomials ¥; are univariate and the expansion order N; represents
the maximum polynomial degree in the expansion. In the multivariate case, the so-called total-order expan-
ston involves products of univariate polynomials such that the sum of the degree of individual polynomials
does not exceed a defined total order P,. As an example, consider the case where ¢ € R? and P, = 2, and let
w;? be the k’th-degree univariate polynomial function of &; as in . The multivariate basis polynomials
are then given by

Vo= URuRuY . Wi=ulRR, o= uRuleS. Wo=uRuSul. W= vlubg,
Vo= iUl Wo = uRURUl, r=uRBUS. Wu=uRuBul. W = ufuud
The number of terms in a total-order expansion is given by

_
N = (3.28)

Other methods of expansion exist (like a tensor product of univariate polynomial orders [24]), but total-order
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expansions will be used in this thesis.

3.3.1 Numerical Quadrature

In one stochastic dimension, £ € R, the quadrature weights w; and node locations §; in are determined
by Gaussian quadrature rules for the corresponding weight functions. For example, for a uniform distribution,
the Gauss-Legendre (weight function ps = 1/2) quadrature weights and nodes are used. Similarly, for a
normal distribution, the probabilist’s Gauss-Hermite weights and nodes are used.

For higher dimension, £ € R®, the integration is performed over the support of each stochastic variable
as shown in . The most straightforward method for approximating the multivariate inner product
in is to use a tensor product of one-dimension quadrature rules [24]. To that end, let M; be the
integration order for the j’th stochastic parameter. The total number of terms in the numerical integration

is then
M =] M. (3.29)

M;

Further, define {ﬁj(-kj )} to be the quadrature nodes for the j'th stochastic parameter. The Cartesian
1

=

product given by
{dkl)}Ml X oo X {ggks)}Ms (3.30)

k=1 k=1
contains every point in the stochastic input space where the response function r and basis functions ¥ must
be evaluated for the numerical quadrature. The quadrature weights are created through a tensor product of

the weights for one-dimensional quadrature rules
Wy Q- @ ws (3.31)

where w; is the 1 x M; vector of quadrature weights for the j’th stochastic parameter.
Let \I/]E = (\1151), e @§M)), where \Ilg-k) represents the evaluation of the j’th basis function at the k’th
point in the Cartesian product (3.30). Similarly, define the M x 1 column vector of response function

evaluations rz as follows:

T1,

T2,

(3.32)

\3
[1]
Il

M
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The k’th entry of r= represents the response function evaluated at the k’th point in the Cartesian product
(3-30). Finally, define the M x M matrix W by applying the vec operator followed by the diag operator (as
defined in [16]) to the weights in (3.31)):

wy 0 ... 0
0 Wy ... 0

W = diag (vec (w1 @ - @ws)) = | ‘ . . (3.33)
0 0 W

For j <= M, the coefficient «; is then approximated by the product

UEWr=. (3.34)

7 =

All of the expansion coefficients can be approximated simultaneously by constructing the N; x M matrix ¥

whose rows are \IJJE for j=0... Ny —1:

a~PWrs. (3.35)

A drawback of this scheme is that for high stochastic dimension, the required response function evaluations
(M in total) may be large in number. It is for this reason that the straightforward application of PCE

outlined here is ideally suited to problems with low stochastic dimension.

3.3.2 Construction Summary
The steps of constructing the PCE can now be summarized as follows:

1. Choose a polynomial order P; and integration orders M; for j = 1...s. For accuracy of the quadrature

rule ensure that 2P, < 2M — 1.
2. Choose polynomial basis functions appropriate to the random variable distributions.
3. Determine the quadrature nodes and weights for each stochastic dimension.

4. If the stochastic dimension is greater than one, construct a Cartesian product of quadrature nodes and

tensor product of integration nodes and compute the matrices ¥ and W.

5. If necessary, transform the standardized quadrature nodes to their locations in the true stochastic

parameter space.
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6. Evaluate the response function at each transformed quadrature node and construct the response func-

tion vector r=.
7. Determine the values of the expansion coefficients using (3.35]).

In the absence of some adaptive algorithm, numerical experiments must be conducted that vary P; and the

M;’s until an acceptable level of convergence is observed in the coeflicients of the PCE.

3.4 Statistical Moments of the PCE

In this section the closed forms of the first two statistical moments of a PCE will be derived. The expected

value of the response function is given by

Ny—1 Ny—1
pur =Er] = /Qrpgdf z/ﬂ (Z aﬂl@) pedé = Z (/Q ai‘l/ipgdf)
i=0

i=0
Ny—1

:Oéo/ \Ifopgdg—F Z
Q

i=1

Ni—1
(Oéi /Q \I/ipgdﬁ) = <1, \I/0> + Z (Oéi <1, ‘I/1>) = ag, (3.36)

i=1

where ¥y = 1 and the orthonormality of the basis functions have been exploited. The variance can also be

calculated directly using

o =5[] - B 1) = [ peds — ([ rpcac)
Ny—1 2 Ne—1 2 Ne—1 Ne—1
m/ﬂ <Z a\I!> pedé — (/Q <Z aqf> pgdf) = (Z a$> —ag= Y o, (3.37)
1=0 =0 =1

=0

where, again, orthonormality of the basis functions has been exploited to eliminate integrals of cross products

that occur when squaring the truncated expansion.

3.5 PCE Boundary Value Continuation Problem

Consider a response function r similar in form to the objective function F' in the optimization formulation
of Section 2.2

T
r(T,z(t),p) :rbc(T,x(O),x(T),p)—i—/o Tint (2 (), p) dt (3.38)

In this thesis, x (t) will be restricted to functions that satisfy the boundary value problem

T — f (tvxap) = 07 fbc (Ta .Z‘(O) 7$(T) 7p) =0. (339)
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In order to construct a PCE of the response function, first split the parameters p into deterministic parameters

Pa € R< and stochastic parameters P € R?:

T
r (T,mapda P) = Tbe (Ta z (0) y L (T) yPd, P) + / Tint (xapd7 P) dta (340)
0

z—f(tz,pa, P) =0, foo(T,2(0),2(T),ps, P) = 0. (3.41)

Assuming that the distributions of the individual P; are known, independent, and characterized by distri-

bution parameters 6;, it follows that:
{P; = Vi(0;,8) =0}, (3.42)

for some transformation functions V; and standardized random variables £;. As a result, the response
function 7 in (3.40) is an implicitly defined random variable. An example of (3.42)) can be seen in ([3.10)

where 0, = (pg, ok)-

M;
As in Section [3.3.1} let Mj, {fj(k)}k , and w; be the integration order, standardized random variable
=1

quadrature nodes, and quadrature weights, respectively, for the stochastic parameter P;. Applying the

transformation lj to each quadrature node results in S = 22:1 M; total equations:

{{P;’“) v (0,6)) - O}kM-l} ' (3.43)

J=1

The Cartesian product of transformed quadrature node locations

{Pl(kl)}j:lzl X oo X {p(ks)}Ms (3.44)

represent points in the parameter space where the response function must be evaluated and, consequently,
the two-point boundary value problem ([3.39)) must be solved to construct the PCE. This can be structured

into a single continuation problem by seeking M smooth curves that satisfy

{j;@ _f (t,x(“,pd,P(i)) - 0}:, (3.45)

{he (1.29(0), 29 (1), pa. PO) = O}Zl . (3.46)

The P® in (3.45) and (3.46) represent points in the Cartesian product (3.44).
The evaluation of the response function (3.38)) on each trajectory segment is done with the following zero

35



function

M
T
{Tbc (Tvx(l) (0) 7x(l) (T) , Pd, P(l)) +/ Tint (x(l)7pd7p(l)) — T = 0} (347)

0 i=1

where the r; are continuation variables that make up the entries of r=z in (3.32)). The equation
a—PWrg = (3.48)
in the N; x 1 vector of continuation variables a imposes a constraint on the PCE coefficients. The equations

ag — by =0, (3.49)

N¢—1
( > a§> —02=0 (3.50)

i=1

associate the PCE coefficients with the mean and approximate variance of the response function. The

equations

pr — pp =0, (3.51)

02— py =0 (3.52)

imply that the continuation parameters p,, and p, track the value of the mean and approximate variance of

the response function.

3.6 The ‘uq’ toolbox

This section will discuss the 7ug’ toolbox implemented as part of this thesis. The toolbox provides con-
structors for two-point boundary value problems with parametric uncertainty that perform the following

tasks:

1. Generate quadrature nodes and weights for user-specified values of maximum polynomial degree P;

and integration orders Mj, j = 1..s for arbitrary stochastic dimension s.
2. For s > 1, construct the Cartesian product of and tensor product of integration weights .
3. Construct the weighted matrix of basis polynomials W and store it for use during continuation.
4. Generate initial guesses for each sample trajectory through successive continuation runs.

5. Create gluing conditions for deterministic parameters.
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6. Link stochastic parameters in each trajectory to the transformed standardized random variables.
7. Provide capability for automating the evaluation of a response function on each segment.

8. Construct a PCE for a given response function and determine its first two statistical moments.

3.6.1 A Generalized Constructor

The example problems in this thesis take advantage of two general purpose constructors, ug_isol2bvp_sample
and ug_BP2bvp. The ug_isol2bvp_sample constructor takes an initial solution guess for a boundary value
problem, generates trajectory segment instances for each integration node of the PCE, and then enforces
necessary gluing conditions for deterministic parameters. The ug BP2bvp takes an identified branch point
from a previous continuation run and reinitializes the sample so that the initial tangent vectors are aligned
to facilitate switching to the new branch. They take advantage of existing COCO toolbox constructors like
ode_coll2coll, ode_isol2bvp and ode_BP2coll where appropriate. The ug_isol2bvp_sample constructor is

shown here:
function prob = ug_isol2bvp_sample (prob, oid, varargin)

1
2
3 tbid = coco_get_id(oid, "uq’);

4 str = coco_stream(varargin{:});

5 temp_str = coco_stream(varargin{:});

6 temp_prob2 = ode_isol2bvp (prob, tbid, str);

7 [args, opts] = uqg_parse_str(str);

8 bvp_id = coco_get_id(tbid, ’"bvp’);

9 bc_data = coco_get_func_data (temp_prob2, bvp_id, ’data’);

10

11 data = bvp_uqg_init_data(bc_data, oid);

12 data = ug_init_data(prob, data, args, opts);

13 data = ug_bvp_gen_samples (data, prob, temp_str);

14

15 [prob, datal] = ug_bvp_add_samples (prob, data, bc_data, args);

16 psi_mat = ug_make_psi_mat (data.nds_grid, data.uq.Pt, data.spdists);
17 data.wtd_psi_mat = psi_matxdiag(data.wts);

18

19 prob = ug_add_sample_nodes (prob, data, args);
20

21 end

The constructor operates on a continuation problem structure prob, a string identifier oid, and a variable
length sequence of additional arguments. It returns a modified continuation problem structure containing
a collection of linked boundary-value problem instances. The data in varargin is stored in two variables
as stream objects through the utility function coco_stream. The first, str, is used for the main problem
construction task and the other, temp_str, is used in the successive continuation steps that generate tra-
jectory segments in the ug bvp_gen_samples function (described further in the next section). The function
ugq_parse_str (line 7 in ug_isol2bvp_sample) splits the PCE specific user inputs into args and opts data

structures as shown below.
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1 function [ugdata, opts] = uqg_parse_str(str)

2

3 grammar = /SPNAMES SPDIST SPDP [DPARNAMES] [OPTS]’;

4 args_spec = {

5 " SPNAMES’, ’'cell’, ' {str}’, ’ spnames’, {}, "read’, {}
6 ’SPDIST’, ’'cell’, ' ({str}’, ’spdists’, {}, "read’, {}
7 ! SPDP’, 'y " [num]’, " spdp’, {}, "read’, {}
8 'DPARNAMES’, ’cell’, '{str}’, "dpdtpars’, {}, "read’, {}
9 }i

10
11 opts_spec = {

12 ’-add-adjt’, ’addadijt’, false, ’'toggle’, {}
13 }i
14
15 [ugdata, opts] = coco_parse(grammar, args_spec, opts_spec, str);
16

17 end

The field spnames stores a cell array of strings that correspond to parameter names designated as stochas-
tic. The spdists field stores the distribution type specified for each stochastic parameter. Normal and
uniform distributions are supported for the code in this thesis and are identified by a cell array contain-
ing entries of 'Normal’ and ’Uniform’. The field spdp contains a numerical array of stochastic parameter
distribution parameters. For normal random variables, the expected distribution parameters are the mean
and standard deviation stored in a numerical array as follows: [mu, sigma]. For uniform random variables,
the expected distribution parameters are a lower and upper limit stored in a numerical array as follows:
[lo, up]. If multiple parameters are identified as stochastic, then the distribution parameter arrays must
be vertically stacked, e.g., [[mul, sigmall; [mu2,sigma2]].

The final field dpdtpars identifies deterministic problem parameters that have been identified as varying
between trajectory segments. They will be allowed to differ between segments, so no gluing conditions will
be enforced on these parameters. An example of this type of parameter is the phase angle ¢ in . In
order to ensure that x1(0) equals the maximal displacement for different values of K, the phase angle must
be different for different trajectories.

The optional argument -add-adjt, when present, sets the field addadit to true and causes the constructor
to add the adjoint equations required for optimization during problem construction. This functionality
triggers the execution of existing adjoint constructors available in coco like adjt_isol2co11l. Additional
explanation is provided in Chapter [

The function bvp_ug_init_data (line 11 in uq_isol2bvp_sample) transfers data generated by the ode_iso12bvp
constructor that is also necessary for the ug_isol2bvp_sample constructor to the data structure. The function
ug_init_data (line 12 in ug_isol2bvp_sample) uses the spnames, spdists, and spdp fields to generate indices
that separate deterministic parameters from stochastic parameters. Deterministic parameters are further

separated between parameters shared by all segments and parameters unique to each segment (as identified
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through the dpdtpars field).

The maximum integration orders M; for each stochastic dimension and maximum polynomial order F;
default to values of 4 (for all j) and 3, respectively, for the toolbox. However, they can be specified by the
user through use of the coco_set function as follows:

>> prob = coco_set (prob, ’'ug’, 'M’, M, 'Pt’, Pt);

where the variables M and pt store the desired values. If the stochastic dimension is greater than 1 and
different integration orders are desired for each dimension, the variable m can be set as an array of integers.
If m is a single integer, the integration orer is assumed be identical in all stochastic dimensions. This line of
code must be executed before a call to the constructor.

The values of m and pt along with the information in the spnames, spdists, and spdp fields are used by the

M;
ug_init_data function to generate standardized random variables, {gg’“f’} , and integration weights, w;,

for each random variable. The standardized node locations for each random variable are stored in an array
M;

in the st_nds field of the data structure. The transformed node locations, {Pi(ki)} , are calculated and

k

=

stored in the nds field of the data structure. The Cartesian product of transformed node locations given in
(3.44) is generated and stored in the nds_grid field of the data structure. The tensor product of integration

weights given in (3.31) is calculated and stored in the wts field of the data structure.

3.6.2 Sample Trajectory Generation

An initial solution guess must be provided to COCO at each integration node. Given an initial solution of
the deterministic problem for some choice of parameters, a solution at each integration node can be
found through a series of continuation runs along 1-dimensional branches in the stochastic parameter space.

This is illustrated for a problem with s = 2 in Fig. The tuple (p1, p2) represent a realization of the
random variables P; and P, for which a solution to is known. Solutions for each instance of the two-
point boundary value problem represented by and can be generated from this initial solution.
The function ug_bvp_gen_samples (line 13 in ug_isol2bvp_sample) performs this sequence of continuation
runs.

Starting at (p1,p2), the arrows extending to the points marked by diamonds represent an initial continu-

Mo
ation run in P, to the sample locations {PQ(kz) }k . From each diamond, the horizontal arrows extending
a=1
My
to the points marked by circles represent additional continuation runs in P; to the values {Pl(kl)} . The
ki=1

set of circles in Figure cover all points in the Cartesian product given by (3.44). In a problem with
higher stochastic dimension, the continuation runs would continue until all integration nodes in (3.44)) were

reached.
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Figure 3.7: Successive continuation runs along 1-dimensional manifolds to generate initial solution guesses
for the boundary-value problem associated with the integration nodes of the polynomial chaos expansion.

Because the stochastic parameters are treated as continuation variables, the sample of points in the
stochastic parameter space will update (through ) if a distribution parameter 6 is allowed to vary
during continuation. Structuring the problem in this way allows continuation in the distribution parameters,
and thus enables the successive parameter continuation optimization method in Chapter [2] to find optimal
distribution parameters if desired (an example of this will be shown in the following chapter).

The function ug_bvp_gen_samples only generates the trajectory segments. The subsequent call to the
function uq_bvp_add_samples (line 15 in ug_isol2bvp_sample) cycles through solution data created by the
function ugq_bvp_gen_samples and uses the existing ode_col12coll constructor to add the sample trajectories
to the problem instance. The function stores identifiers for each added collocation problem instance in
the sids field of the data structure. The function ug_bvp_add_samples also closes each ’col1’ instance by
applying the specified boundary conditions and introducing gluing conditions between the parameters for
different segments.

The weighted matrix of orthogonal basis polynomial evaluations W is then generated and added to
the data structure in the wtd_psi_mat field. This is done after the integration nodes are added because the
order in which COCO reaches the integration nodes is not specified. The order of the trajectory segments

is determined after the fact and the wts and nds_grid fields are reordered as necessary. This ensures
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proper alignment between rows in the ¥ matrix, the integration weights, and the response values calculated
from trajectory segments. It is worth noting that for fixed integration order M and maximum polynomial
order, P;, the matrix product YW does not change. Therefore, this calculation occurs during the problem
construction and does not have to be performed again.

The final call in the constructor to uq_add_sample_nodes (line 19 in ug_isol2bvp_sample) adds the variable
transformations defined in to the continuation problem structure. The finalized data structure for
the generated sample is stored with the zero function that enforces equality of the stochastic parameters in
the collocation segments with the random variable locations that result from the transformation equation
(3.43). Response functions that are later added to the continuation problem structure reference this data

structure.

3.6.3 Adding Response Functions

The ug toolbox also includes the ug_coll_add_response function. The function takes in an existing continu-
ation problem structure prob, a string identifier oid for a previously added collection of trajectories, a string
identifier ria for the response function, and a variable number of additional arguments depending on the
type of response function to be added. The constructor can add a response function of either of the forms
The O Tipg in . Due to linearity of the expectation operator, the moments of a sum of the two types
(like that given in ) could be evaluated by adding them together in a separate function after each has
been added to the continuation problem structure.

The function returns a modified continuation problem instance that includes added zero functions for
the response evaluations (|3.47)), polynomial chaos coefficient evaluations , and statistical moments of
the response function (and corresponding inactive continuation parameters to track the values) (3.4943.52)).

The source code for this function can be found in Appendix [B]

3.6.4 Example Execution

This section show an example command line execution that uses the ug toolbox to find solutions to the
example in Section [3.I] and generates frequency sweeps of the mean and variance, respectively. An initial
solution guess is first generated using MATLAB’S ode45 solver. Then an empty continuation problem structure

is initialized and various options are set with calls to coco_set.

>> p0 = [3;0;1];

>> [T, x0] = o0de45(Q@(t,x) linode(t, x, p0), [0 20xpil, [1; 01);

>> [t0, x0] = oded5(@(t,x) linode(t, x, p0), [0 2xpi], [x0(end,:)"]);
>> prob = coco_prob();

>> prob = coco_set (prob, ’'ode’, ’autonomous’, false);

>> prob = coco_set (prob, ’'coll’, ’'NTST’, 15, "NCOL’, 4);
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>> prob = coco_set (prob, ’'cont’, ’PtMX’, 1500, 'h’, 0.5, "h_max’, 10);

The arguments required for initializing a boundary-value problem with the 'bvp’-toolbox are provided in

the same format already required by coco.

>> coll_args = {@linode, @linode_dx, @linode_dp, @linode_dt, t0, x0, pO0};

>> pnames = {’'k’,’phi’, 'om’};

>> bvp_args = {@fbc_x10, @Jbc_x10};

The uq_args variable below contains data required for the ug_isol2bvp_sample constructor. Note that ¢
(represented with parameter name ’phi’ in the script) is identified as a deterministic parameter whose value

can differ between samples to allow for the satisfaction of a velocity constraint that ensures that the initial

position corresponds to the maximal displacement for each individual sample.

>> ug_args = {{’k’"}, {'Normal’}, [[3, 0.2]]1, {'phi’}};
>> prob = ug_isol2bvp_sample (prob, ’orig’, coll_args{:}, pnames, bvp_args{:}, ug_args{:});

As shown in the screen extract below, the call to uq_isol2bvp_sample results in a continuation run to locate
sample trajectories that will be used to construct the polynomial chaos expansion coefficients. The solutions

of interest are labeled ug in the output.

STEP DAMP ING NORMS COMPUTATION TIMES
IT SIT GAMMA [1dal| [1E]] [0 F(x) DF(x) SOLVE
0 2.00e-01 8.57e+00 0.0 0.0 0.0
1 1 2.33e-01 2.06e+00 1.54e-01 8.58e+00 0.0 0.0 0.0
2 1 3.27e-01 1.49e+00 1.04e-01 8.60e+00 0.0 0.0 0.0
3 1 5.12e-01 9.66e-01 5.25e-02 8.61e+00 0.0 0.0 0.0
4 1 1.00e+00 4.62e-01 7.22e-03 8.61et00 0.0 0.0 0.0
5 1 1.00e+t00 2.34e-02 1.16e-07 8.60e+00 0.0 0.1 0.0
6 1 1.00e+00 3.75e-07 1.52e-15 8.60e+00 0.0 0.1 0.0
STEP TIME [ 1Ul| LABEL TYPE k phi
0 00:00:00 8.5970e+00 1 EP 3.0000e+00 4.6365e-01
3 00:00:00 8.6121e+00 2 UQ 2.8516e+00 4.9519e-01
4 00:00:00 8.7387e+00 3 UQ 2.5331e+00 5.7797e-01
4 00:00:00 8.7552e+00 4 EP 2.5078e+00 5.8562e-01
STEP TIME [1Ull LABEL TYPE k phi
0 00:00:01 8.5970e+00 5 EP 3.0000e+00 4.6365e-01
3 00:00:01 8.6046e+00 6 UQ 3.1484e+00 4.3564e-01
4 00:00:01 8.6832e+00 7 UQ 3.4669e+00 3.8513e-01
4 00:00:01 8.6962e+00 8 EP 3.5016e+00 3.8029e-01

Response functions evaluated on the generated sample are added with a call to the uq_col1_add_response
function as shown below. This call establishes equations for evaluating PCE coefficients and the statistical
moments of the expansion as well. Construction in this fashion allows for multiple response functions to be

evaluated on a single sample.

>> prob = ug_coll_add_response (prob, ’orig’, ’resp’, 'bv’, @x10, @x10_du, @x10_dudu);

The first argument to this function is the continuation problem structure, the second is the sample which

the response function will be evaluated on, and the third is a name for the response function. The argument
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'bv’ tells the constructor that the response function is evaluated on the boundary values of the trajectories,
and the remaining arguments are the function handles for the response function and its first two derivatives.

Finally, the following call to the COCO entry point function results in a 1-dimensional manifold of solutions
by releasing the forcing frequency. The inactive continuation parameters orig.resp.mean and orig.resp.var
are also released and represent the mean and approximate variance of the response function added in the

call to uq_coll_add_response.

>> ug_bd = coco(prob, ’freq sweep’, [], 1, {‘om’, ’'orig.resp.mean’, ’'orig.resp.var’}, [0.001, 1000]);

The results are shown in Figs. [3:4] and [3:6] which were created from data generated using this script.

3.7 Concluding Remarks

This chapter outlined the equations necessary for calculating approximations of the statistical moments of
a response function evaluated on solutions to a finite-dimensional boundary value problem with parametric
uncertainty using the method of Polynomial Chaos Expansions. The ability of the PCE to accurately
approximate statistical moments was demonstrated using a linear ODE example. A toolbox capable of
creating a sample of trajectory segments to construct the expansion as part of a numerical continuation

scheme was also described.
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Chapter 4

Optimization Under Uncertainty
(OUU)

The successive parameter continuation optimization technique in Section can be used to seek solutions
to Robust Design Optimization (RDO) problems constrained by boundary-value problems by using the PCE
formulation outlined in Section This will be made apparent in this chapter through derivation of the
necessary variations of a robust objective function and the PCE equations outlined in the previous chapter.
An example problem seeking an optimal distribution parameter as part of a robust design optimization

problem will be shown.

4.1 A Motivating Example

Consider again the harmonically forced linear oscillator with normally distributed stiffness given in ((3.1))-(3.4))

with fixed forcing frequency w = 1:

iy = 29, (4.1)
iy = cos (t + ¢) — w9 — K, (4.2)
21 (0) =z, (27) , (4.3)
2 (0) = a5 (27) . (4.4)

Let K ~ N(,uk,OQQ) and impose the condition that ¢ be chosen to ensure x2(0) = 0. A value of py is

sought that maximizes the robust objective function
F=pu, — 30, (4.5)
where p, and o, are the mean and standard deviation of the response function

r=x1(0). (4.6)
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As before, due to the imposed phase condition, the response function will correspond to the maximal
displacement of the periodic trajectory.

From the earlier result in Chapter [3] the initial position of the trajectory is given by

21,0(K) = 21(0, K) = ;, (4.7)

(K—-1)7%+1
where w = 1 has been substituted into (3.7). The objective function written in terms of the definitions of

mean and variance is as follows

Fm) = [ n0(0) el o) d

-3 (/Do (w1.0(k))? pxc (ks 1) e — (/DQ z1,0(k) pK(k;uk)dk)2> (4.8)

—00 —0o0

where

—(k—np)?
e 2(0.2)2

pi (ks ) = W (4.9)

is the probability density function for K. Using standard methods from calculus, a critical point of F' with
respect to uy occurs when % = 0. Using numerical quadrature the derivative of has been evaluated
several values for y, and the results plotted in Figure[4.1] The derivative crosses the horizontal axis at uy = 1
with a negative slope indicating that the resulting stationary point is a maximum. Figure shows the
actual value of the robust objective function as a function of uj; and confirms that the identified stationary
point is a maximum of the robust objective function.

This results is also apparent by inspection of the integrands of the derivative (ZTF’C. The expression 1}

is even about K = 1. The derivative of pg (k; ux) with respect to ug

(k — )  =lemw)®

e 2(0.2)2

(0.2)3v/27 ’

(4.10)

is the product of an even exponential term and odd linear term (both about py). Thus their product is
odd about k = 1 when pg = 1. The product of (4.7) and (4.10) is then odd when pu; = 1. As a result, the

integrals

/ 21.0(k) C;%:dk (4.11)

45



0.6

Rate of change of objective function u, — 30,

-0.6

L L 1
10
Mean Stiffness, p

Figure 4.1: The derivative of the objective function (4.5)) with respect to py as a function of y. The optimal
mean stiffness is identified as 1.

and

[ h (z1.0(k))* %:dk (4.12)

are zero when pr = 1. At least one of 1} or ) is present in every term of % meaning that the

derivative is zero when g = 1, confirming the result that the objective function is at a critical value when

pe =1

4.2 Robust Design Optimization with PCE

Consider the optimization problem

minimize: F (,ur, af) ,
subject to:  Z(t) — f (t,z(t),p, P) =0,

B (T,l‘(O),JT(T),p, P) =0,
/Th(t,a:(t),p,P)dt =0,
0

(P —V;(0;,8)=0}_,,
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Figure 4.2: The robust objective function 1} value plotted against the value of .

where s is the number of s

of the mean and standard

tochastic variables in the problem. The robust objective function F' is a function

deviation of the response function

T
r(T,z(t) ,pa, P) = rve (T, 2 (0) , 2 (T) ,pa, P)) + /0 Tint ((t) , pa, P) dt. (4.13)

In order to apply the PCE

set of equations

approximation to the above robust optimization problem, consider the expanded

{;‘M —f (t,x“)(t) ,pd,P(i)) =0} . (4.14)

{B (T,x“) (0, 29(T), p, P(i)> — 0}‘ , (4.15)
. v

{/ h (t,x“) ), p, P“')) dt = 0} : (4.16)
0 i=1

{{Pj“ v (05,6") = o}:_l}zl . (4.17)

As before, the P(®) represent points in the Cartesian product (3.44). The ¢ (1) are the corresponding points in

the standardized random

variable space. To simplify the representation of (4.17) in the adjoint formulation,

let 0 = (01,...,05) and V* (0,£9) be the vector-valued function whose j'th entry is equal to V; <9j,£§i)).
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Equation (4.17)) can then be rewritten as

[P0 v+ (9.69) = O}M (4.18)

i=1

Save for the introduction of new parameters 6 these equations are equivalent to those for which variations
were derived in the Chapter[2] The remaining equations to calculate the expansion coefficients and moment

approximations are repeated here from Chapter [3}

M
T
{Tbc (Tvx(l) (0) ’:L'(Z) (T) , Dd,s P(Z)> +/ Tt,int (x(l)apdv P(l)) — Ty = 0} 9 (419)

0 i=1

oa—PWrz =0, (4.20)

ag — pr =0, (4.21)

( 2 a?) —o2=0. (4.22)

i=1

As in Chapter [3| the vectors r= and « in (4.2]) are vectors whose entries are as follows

1 Qo

ﬁ
iy
Il
Q
I

M aN,—1

After a transformation of the time parameter ({t = T'7 : 7 € [0, 1]}) that was also done in Chapter [2/and
addition of continuation variables uq, 2, 3, pa, and ps to track the values of the robust objective function,

problem parameters pg, distribution parameters #, response function mean, and response function variance,
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respectively, the Lagrangian corresponding to (4.14)-(4.22) equals

£ (T7i’(l)(’r) 3o 7‘%(M)(7_) yPd, Pa 9,#1,/12,/13,#47/%, 5‘9)(7—) PR S‘SM)(T) )

)\gl)7 v /\éM)’)\él)7 .. -a)‘Z(’)M)v)‘Ell)7 .- -7)‘ELM)a)‘él)7 .. 'a)‘(5]vj)a )‘67>‘7a)‘8a771a7727773a774a775) =

" +§; </01 (:\gi)(T))T (f/(i)(ﬂ -Tf (TT,i(i)(T) ,pd,P(i))> dr
=) 5 (15005900 P0) (T/ b (39 (0) pa, PO) dT) (4.23)
0

+ )\4(11) <rbC (Ta ‘%(Z) (O) 9 ‘%(Z)(l) 7pdv P(Z)) + T/ Tint (:’E(Z)(T) 7pd7 P(Z)> dT - ri)
0

- (A@)T (P(i) Ve (a,g(z))) ) +AF (@ —®Wrz) + A (a0 — ) + A (JVZI a? - a$>

i=1

+m (F (pr,07) — pa) + 03 (pa— p2) + 13 (0 — ps) +ma (e — p1a) + 15 (07 — pis) -

Variations are taken with respect to each argument. Note that the £(?’s are fixed for a given problem. Thus
they do not appear in the list of arguments for the Lagrangian and no variations need to be taken with

respect to them. The variations with respect to the M /\gi) (7)’s result in the following M expressions:

M

1 ) T ) _ )
{ / ((w)(r)) (5;'@)(7) Ty (TT, #9(r), pa, Pm)) dr} : (4.24)
0 i=1
The variations with respect to the M )\g)’s result in the following M expressions:
N\ T ‘ ‘ . M
{((»gw) (B (T, #(0),29(1), pa, P@))} . (4.25)
i=1

The variations with respect to the M )\g)’s result in the following M expressions:

{5A§,j> <T / h (TT,gz“)(T) : pd,P@)) dT)} . (4.26)
0 i=1

The variations with respect to the M /\ff)’s result in the following M expressions:

{Mf@ (rbc (7.890)89(0) pa, PO) +T [ 1 (59(7) s PO) dr - r<i>) } SNCEY
0 i=1

49



The variation with respect to the M )\g)’s result in the following M expressions:

O\" (pt ML
{() (P -7 (0.50))} (1.28)
i=1
The variation with respect to \g is given by
AL (o — OW7). (4.29)
The variation with respect to A7 is given by
5)\7 (Oéo - ,ur) . (430)

The variation with respect to \g is given by

N,—1
SAs ( > ai- o§> . (4.31)

i=1

The variation with respect to 7; is given by

om (F (pr, 07) = pa) - (4.32)

The variation with respect to 7y is given by

o3 (pa — p2) - (4.33)
The variation with respect to 73 is given by

3 (0 — p3) - (4.34)
The variation with respect to 74 is given by

ona (pr — pa) - (4.35)
The variation with respect to 75 is given by

ns (o7 — ps) - (4.36)
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As in Chapter [2] setting the coefficients of the variations with respect to the Lagrange multipliers given in
(4.24)-(4.36) equal to zero returns the original system.

Variations with respect to the variables in the original system are now considered. Variations with
respect to the M /() (7)’s result in M equations. As was done in Chapter [2 integration by parts is used

on variations with respect to &'(*) (1) and the result is substituted into the appropriate locations:

M

{ /0 1 (30m) 67 0) dr}i_l -

{(xg“(m)Tzsas(i)u)—(xgﬂ(()))T(saz@(O)— / 1 (x;@(T))Ta;a(i)(r)dT} . (4.37)
=1

0

The variations with respect to the M #(*)(7)’s result in the following M expressions:

L (- (606) =1 (096) a0 (17.3960) s 0)
M

+TAh 0 (TT, 7D (1), pa, PW) + A P 0 (:z@') (1), P, P<i>) 52 (1) >dT} (4.38)

i=1

where the coefficients of 629 (1) in 1D have been inserted. The result is M ODEs in the 5\?) (7) variables.

The variations with respect to the M #(*)(0)’s result in the following M expressions:

{(- (00)" + (39) B (2590201 0, P0)
M

+ )\z(li)rbc,fc(i)(o) (T7 i(l)(o) vi'(l)(]-) »y Pds P(z)) )6'%(1)(0) } (439)

i=1

where the coefficient of §#(V(0) in (4.37) has been inserted. These represent M boundary conditions for the
ODEs in (4.38)). The variations with respect to the M #(*)(1)’s result in the following M expressions:

{PW) + (8) By (£:590),200) . 0)
M

+ 2 e sy (T,89(0),39(1), pa, PO) >6o~c<i><1> } (4.40)

i=1

where the coefficient of #()(1) in (4.37) has been inserted. These represent M additional boundary conditions
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for the ODEs in (4.38). The variations with respect to T' gives the following equations

(i </01 (_ (;\%’) (T))T (f (TT,j;(i)(T) ,pd,P(i)> Y Trfy (TT7j(i)(T) o P(i)>)

i=1

—|—)\gi) (h (TT, @ (1), pa, P(i)) +T7h, (TT7 i(i)(r) , Pd, P(i)>>

. . . ~ N\ T . . .
0 71t (T7,59(7) ,pa, PV )ch) + (A7) B (1.29(0),29(1) . pa, PV) (4.41)
e (1,89(0),39(1), pa, PO) ) oT.
The variations with respect to pg gives the following equations
M 1 <@, N\ _ .
i+ (7 [ (= (W) s (17.890) 0. P)
i=1 0

AR (T7,80(7) 20 PO) 4+ A in s (30(7) 9, PO) (4.42)

O i i i i = (i = (i i
+ (M) By (1,390),30(1) ,pa, PO) + My, (T,50(0),30(1) ,pa, PO) ))m

The variations with respect to the M P(®)’s gives the following M equations

{ (T/O1 (_ (;\gi) <T))Tf,13 (TT,jT(i) () ,pd7P(i))
i (Tﬂg}(i)(r) b P(i)) + A i (i(i)(r) 7Pd,P(i)> )dT (4.43)

<N T A , , : _ , . , ,
+ (A7) B (1.89(0),59001) ,pa, PO) + A 1ep (T,59(0),20(1) ,pa, PO) + Aé”) 6P“>}
The variation with respect to 6 is given by
M 4 '
(nST = > vi(6.69) Ag”) 56, (4.44)
i=1

For the variations with respect to the expansion coefficients c, first define the vector v € RNt and matrix

V e RN+xNt a9 follows:

1 0 0 0
0 01 ... 0

v=1| |, V=1 |- (4.45)
0 0 0 1
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The variations with respect to o can then be written as
(MG + Mv+2Xsa” Va) da. (4.46)
The variation with respect to rz is given by

(=M1 = AETW) o7z, (4.47)

where \; € RM is a column vector whose i’th entry is )\Ef). The variation with respect to u, is given by

(mFpu, — Az 4 n4) Spir. (4.48)
The variation with respect to o2 is given by
(771F03 —Ag+ ’175) (50’3 (449)

Additionally, the variations with respected to 1, po, and ps are given by (1 —ny)dp1, 03 dpa, nddus,
n¥ Spgand nd 6us. The adjoint system is constructed by setting the values of the coefficients of —
equal to zero.

The PCE-specific equations do not change the approach to seeking stationary values. The trivial solution
for the Lagrange multipliers still satisfies the adjoint equations, so starting from an initial solution of the
original system of equations and the trivial solution of the adjoint system, continuation is performed in
pursuit of a fold point for u; (which is located approximately by coco). The fold point will also approxi-
mately coincide with the location of a branch point identified by coco. From the branch point, continuation
is performed along a secondary branch until 7; equals 1. Along this secondary branch, the values of the
Lagrange multipliers are able to take on nontrivial values. In subsequent continuation steps, the value of 7;

remains at 1 and elements of 73, 13, 14, and 715 are successively driven to zero.

4.3 Adjoint Construction

The addition of the adjoints for the equations that make up a sample of trajectory segments in the ug’
toolbox is triggered by the inclusion of the ’-add-adjt’ optional argument in the constructor call. The
optional argument triggers straightforward calls to the coco_add_adjt function and existing constructors of

relevant toolboxes (namely ’co11 and "bvp’ ). The following snippet of code is taken from a portion of the
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constructor code that handles addition of deterministic parameters and shows a representative example for

how adjoints are added.

1 if data.addadjt

2 adj_s_idxi = adj_s_idx{i};

3 if isfield(args, ’'run’) && isfield(args, ’lab’)

4 chart = coco_read_solution(args.run, args.lab, ’‘chart’);

5 cdata = coco_get_chart_data(chart, ’lsol’);

6 [chart, lidx] = coco_read_adjoint (sfid, args.run, args.lab, ’chart’, ’lidx’);
7 10 = chart.x;

8 if add_t10

9 tl0 = cdata.v(lidx);

10 end

11 else

12 10 = zeros([fxd_p_idx,11);

13 end

14 if add_t10

15 prob = coco_add_adjt (prob, sfid, ’'aidx’, [adj_s_idxl(fxd_p_idx); adj_s_idxi(fxd_p_idx)],
16 7107, 10, 'tl107, t10);

17 else

18 prob = coco_add_adjt (prob, sfid, ’'aidx’, [adj_s_idxl (fxd p_idx); adj_s_idxi(fxd_p_idx)],
19 7107, 10);

20 end

21 end

A few things are worth pointing out in the above excerpt. First, the optional argument ’-add-adjt’
sets the addadjt field of data to true and thus results in the execution of the above snippet. Second, if the
arguments passed to the function that contains this code include a previous run name and label (stored in
args.run and args.label), the constructor will use these arguments to read data from the previous run and
initialize the adjoint variables (lines 3-10). If these arguments are not included, the adjoint variables are
left to their default values of zero (line 12), and the candidate tangent direction is not passed to the adjoint
constructor. If the previous run represents a branch point, the add_t10 flag is set to 1 and the tangent
direction is also read and eventually passed to the adjoint constructor (lines 8-9 and 14-16). The purpose of
doing so is to facilitate branch switching, a critical part of the optimization method outlined in Chapter [2}
The above code makes use of the coco_read_solution, coco_get_chart_data, and coco_read_adjoint utility
functions available in cOCoO for collecting the necessary data.

A call to the function ug_col1_add_response_adjoint adds the adjoint equations for response functions. It
takes in a continuation problem structure prob, a string identifier oid for a collection of trajectory segments,
and a string identifier rid for an existing response function. It optionally take two additional arguments: a
previous continuation run name and number. If these are passed, the data is read from the previous run and
the tangent directions of the Lagrange multipliers are oriented to facilitate branch switching, as necessary.
If these are not passed, the values are initialized to zero. The function returns the modified continuation
problem instance prob with adjoint equations added for the response function, its expansion coefficients, and
its statistical moments.

As a final observation related to the adjoint construction, as shown in Chapter [2] the sequence of con-
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tinuation runs to satisfy the first-order optimality conditions require that certain Lagrange multipliers be
released during continuation. The equations added for uncertainty quantification will increase the number
of Lagrange multipliers for the stochastic parameters. For stochastic parameters, there will be a Lagrange
multiplier for each distribution parameter (the n3’s in the general formulation), so one must keep this in

mind when releasing parameters.

4.4 Linear Example

The following numerical example shows how to use the successive continuation method for identifying an
optimal distribution parameter. Consider again the harmonically forced, damped, linear oscillator with

normally distributed stiffness K from earlier in this chapter.

T (4.50)
g = cos (t + ¢) — a2 — Ky, (4.51)
1 (0) = a1 (27) , (4.52)
5 (0) = x5 (27). (4.53)

Recall that while the variance is specified, the mean of the stiffness is considered variable K ~ N (uk, 0.22).
The phase variable ¢ will again be assigned to ensure that the initial position corresponds to the maximal

displacement for each individual trajectory. The robust objective function is given by
F (,uT, af) = Wy — 30, (4.54)

where

r =x1(0), (4.55)

and seeks to maximize the lower bound of a 30 confidence interval for the maximal displacement.

4.4.1 Numerical Simulation

The initial command line sequence is identical to the example in Section [3.6.4 and will not be shown again.
The assignment shown below of the arguments for the 'ug’ toolbox, however, highlights the addition of the
optional argument ’ -add-adjt’ described in Section [4.3]

>> ug_args = {{’k’}, {’Normal’}, [[3, 0.2]], {’phi’}, ’'-add-adijt’};
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>> prob

ug_isol2bvp_sample (prob_init,

"orig’,

coll_args{:},

pnames,

bvp_args{:}, ug_args{:});

The following commands add the sample and response function as before and add the adjoint of the response

function.

>> prob

>> prob

Finally,

ug_coll_add_response (prob,

ug_coll_add_response_adjoint (prob,

'orig’,

"resp’,

orig’,

"ov’,

@x10, @x10_du,

"resp’);

@x10_dudu) ;

the robust objective function is added by first collecting the necessary indices for the mean and

variance variables and then adding rdo as an inactive monitor function in line with the requirements for the

adjoint optimization. The adjoint indices are then collected and the coco_add_adjt constructor is called to

finish the problem definition.

>> response_id = coco_get_id(’orig’,

>> mean_idx

>> var_idx

>> prob

[mean_idx;var_idx]);

coco_add_func (prob,

>> mean_aidx

>> var_aidx

>> prob

coco_add_adijt (prob,

coco_get_func_data (prob,

coco_get_adjt_data (prob,

coco_get_func_data (prob,

"rdo’,

coco_get_adjt_data (prob,

"rdo’,

'uq’, 'responses’);
coco_get_id(response_id, ’resp’, 'mean’), ’'uidx’);
coco_get_id(response_id, ’resp’, ’'variance’), ’'uidx’);
@rdo, @rdo_dU, @rdo_dudu, [], ’"inactive’, ’'rdo’, ’uidx’,
coco_get_id(response_id, ’'resp’, 'mean’), ‘axidx’);
coco_get_id(response_id, ’resp’, ’‘variance’), "axidx’);

'd.rdo’,

raidx’,

[mean_aidx;var_aidx]);

The call to the COCO entry point function then seeks a fold point in the objective function which will also

be a branch point allowing for switching to a secondary branch with non-trivial Lagrange multipliers.

>> ug_bd = coco(prob, ’rdo’,

'd.om’,

"d.sig.k’},

{[1,[1e=3,1e3]});

[ 1,

{’"rdo’,

'mu.k’,

"d.rdo’,

"orig.resp.mean’, ’'orig.resp.var’,

The following partial output from the continuation sequence shows the location of the fold point and branch

point. The continuation parameters orig.resp.mean, orig.resp.var, d.om, and d.sig.k are also required to

be released to allow for a 1-dimensional solution manifold, but their columns are not shown.

STEP
IT SIT
0
STEP
0 00
10 00
20 00
30 00
40 00
49 00
STEP
0 00
10 00
20 00
22 00
22 00
30 00
33 00

DAMP ING
GAMMA

TIME

:00:
:00:
:00:
:00:
:00:
:00:

00
03
07
10
12
15

TIME

:00:
:00:
:00:
:00:
:00:
:00:
:00:

15
18
21
23
23
25
27

W N~ oN

NDNNDDNDNDDNDDND P

[1dl |

LUl

.8847e+01
.4552e+01
.6930e+01
.8642e+02
.8627e+02
.7438e+02

[0l

.8847e+01
.0775e+01
.1709e+01
.1717e+01
.1717e+01
.1230e+01
.0870e+01

NORMS
[EL]
1.93e-14
LABEL TYPE
1 EP
2
3
4
5
6 EP
LABEL TYPE
7 EP
8
9
10 BP
11 FP
12
13 EP

[ SRR N

o~ W W ooy Ww

COMPUTATION TIMES
SOLVE
0.0 0.0

[1U]] F (%)
1.88e+01 0.0

rdo

.4059%9e-01
.8933e-01
.4215e-02
.0275e-02
.3151e-02
.0039%e-02

rdo

.4059%e-01
.4639%e-01
.9996e-01
.0961e-01
.0961e-01
.5878e-01
.9014e-01
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mu.k
.0000e+00
.5068e+00
.2979%e+01
.9705e+01
.6431e+01
.0000e+02

mu.k
.0000e+00
.5916e+00
.0704e+00
.0000e+00
.9995e-01
.3168e-01
.0000e-01

O O O o oo

O O OO o oo

d.rdo

.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00

d.rdo

.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00



A second continuation problem instance is initiated from the approximate branch point by a call to the
constructor ug_BP2bvp which, like its counterparts ode_BP2co11 and ode_BP2col1, aligns the initial predictor
guess for the equations it adds to facilitate switching branches as mentioned in Section The 7 -add-adjt’
optional argument is again passed to include the adjoint equations in the problem instance. The optional ar-
gument ’ -add-resp’ tells the constructor to include previously added response functions to the continuation

problem structure.

>> prob = prob_init;

>> prob = ug_BP2bvp (prob, ’orig’, ’'rdo’, BPLab(l), ’'-add-adjt’, ’'-add-resp’);

The robust objective function is manually added back the continuation problem structure. Its adjoint is also
manually added by reading the solution data for initial conditions and tangent vectors then providing this

information to the coco_add_adjt constructor.

>> mean_idx = coco_get_func_data (prob, coco_get_id(response_id, ’resp’, ’'mean’), ’uidx’);
>> var_idx = coco_get_func_data(prob, coco_get_id(response_id, ’resp’, ’'variance’), 'uidx’);
>> prob = coco_add_func(prob, ’rdo’, @rdo, @rdo_dU, @rdo_dudu, [], ’inactive’, ’'rdo’,

"uidx’, [mean_idx;var_idx]);

>> mean_aidx = coco_get_adjt_data(prob, coco_get_id(response_id, ’'resp’, 'mean’), ’‘axidx’);

>> var_aidx = coco_get_adjt_data(prob, coco_get_id(response_id, ’'resp’, ’variance’), ’axidx’);
>> chart = coco_read_solution(’rdo’, BPLab(l), ’‘chart’);

>> cdata = coco_get_chart_data(chart, ’"lsol’);

>> [chart, lidx] = coco_read_adjoint (’rdo’, ’rdo’, BPLab(l), ’chart’, ’lidx’);

>> 10 = chart.x;

>> t10 = cdata.v(lidx);

’

>> prob = coco_add_adjt (prob, ’'rdo’, ’'d.rdo’, "aidx’, [mean_aidx;var_aidx], ’10’, 10, 't1l0’, tl1l0);

The call shown below to the COCO entry point function results in a sequence of continuation steps whose
terminal point satisfies the first-order necessary conditions. The COCO output is again truncated.

>> ug_bd = coco(prob, ’'rdo.switch’, [], 1, {’d.rdo’, 'mu.k’, ’"rdo’, 'orig.resp.mean’,

'orig.resp.var’, ‘d.om’, ’‘d.sig.k’}, [0,1]1);

STEP TIME [1Ul| LABEL TYPE d.rdo mu. k rdo
0 00:00:00 2.1717e+01 1 EP 0.0000e+00 1.0000e+00 9.0962e-01
10 00:00:01 4.4429e+01 2 6.1761e-01 1.0000e+00 9.0962e-01
13 00:00:02 6.6409e+01 3 EP 1.0000e+00 1.0000e+00 9.0962e-01

As can be seen from the output, the satisfaction of the first-order necessary conditions results in an optimal

mean stiffness of pp = 1 as anticipated from the earlier analytical results.
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4.5 Concluding Remarks

This chapter derived first-order optimality conditions for a system of equations that included a PCE ap-
proximation of the statistical moments of a response function. The conditions did not materially deviate
from the format in Chapter [2] and so the successive continuation method for seeking optimal solutions was
still valid. The method of constructing the adjoint equations for the " uq’ toolbox was briefly discussed, and
an example script was shown that located a stationary point of a robust objective function with respect to
a distribution parameter of a stochastic input parameter. The following chapter takes the method outlined

in this chapter and applies it to a nonlinear example.

58



Chapter 5

OUU for a Duffing Oscillator

This chapter considers a robust design optimization problem for a harmonically forced Duffing oscillator.
It is well-known that for sufficiently large forcing amplitude the harmonically excited Duffing oscillator
exhibits hysteresis in its steady-state frequency response as shown in Figure As a result, the Duffing
oscillator has been used as a lumped parameter model for certain classes of MEMS sensors that exhibit
hysteretic frequency responses [26]. Though recent studies have sought to exploit the dynamics of nonlinear
systems [27, 28], in many cases it is still generally desirable to try and mitigate the effects of nonlinearity.
In [29], the transition amplitude to bistability for a beam system with hardening nonlinearity was sought
by approximately locating fold points with pairs of linked orbits and driving their frequency difference to
a sufficiently small value. A similar procedure will be used here to locate an approximate cusp for the
Duffing oscillator. The robust design optimization method from Chapter 4] will then be used to locate a
combination of mass and stiffness that maximizes a function of the mean and standard deviation of the
response amplitude in the presence of an uncertain nonlinear stiffness. During the optimization procedure,
the forcing amplitude will be adjusted to keep the frequency response curve at the approximate transition

to bistability.
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Response Amplitude, R

Figure 5.1: Hysteresis in the frequency response of a Duffing oscillator with a hardening nonlinearity.

5.1 Problem Formulation

The steady state dynamics of the Duffing oscillator are described by the following differential equation and

periodic boundary conditions:

.Cbl = T2, (51)

To = % (Acos (z3) — cxs — kzy — aaf), (5.2)

.’tg = w, (53)

x1 (2m) = 21 (0), (5.4)

X2 (27T) = T2 (O) y (55)

x3 (2m) = x3 (0) + 27. (5.6)

The phase condition

22(0) =0 (5.7)
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ensures that the initial position of the periodic orbit is an extremum. For sufficiently small values of the
forcing amplitude, the frequency response curve will be single-valued. The objective function, will seek to
maximize the resonant peak of the response amplitude R while staying (approximately) at the transition
point to bistability through an appropriate choice of A, k and m. For the purpose of illustration, the linear

stiffness and mass parameters are constrained to lie on a circle of radius p centered at (ko, mg)

(k —ko)® + (m —mg)® = p°. (5.8)

Due to compactness of the set of possible k and m, the Extreme Value Theorem ensures that a maximum
and minimum exist somewhere along the circle.
Following the example in [29], the fold points and resonant peak of the frequency response curve are

approximated using pairs of linked orbits. The expanded system

T14 = T2, (5.9)

Tp = % (Acos (x3:) — crgi — kwy; — ax? ), (5.10)

T3, = wi, (5.11)

21, (27) = 21, (0) (5.12)
T2, (27) = 22, (0), (5.13)
x3,; (2m) = 23, (0) + 2, (5.14)
22 (0) = 0, (5.15)

for i = 1...5 allows for two orbits to approximate the response peak and three to approximate the pair of

fold points. Imposing

W1 — W2 = €y, (516)

T (0) — I (0) = O7 (517)
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allows for z1 1 (0) to approximate the resonant peak for sufficiently small €,,. The constraints

w3 —wq =0, (5.18)
wy —ws =0, (5.19)
23 (0) — 24 (0) = er, (5.20)
24 (0) — 5 (0) = €g. (5.21)

manipulate the shape of the frequency response curve by forcing orbits 3-5 to share the same frequency but
only have a small difference e in their initial position. This condition is satisfied during continuation by
allowing the forcing amplitude to vary. The intent is that this will keep the system near the transition to a
bistable frequency response curve. However, reducing ez and ¢, degrades the conditioning of the numerical
problem, so, as a practical matter, eg and €, cannot be made arbitrarily small. Additionally, without a
constraint on the curvature of the response curve at these points, it is possible that the true fold points
could still be significantly separated. No additional constraints are added to address this, rather, it will be
a known deficiency and the shape of the response curve will be checked visually.

A parametric uncertainty is introduced by treating the damping coefficient ¢ as a uniform random variable
with lower limit ¢; and upper limit c¢,:

c~Ue,ey). (5.22)

Using the PCE approximation outlined in Chapter [3] this means that there will be M samples of the system
— each with identical parameters save for ¢ which will instead be replaced by ¢, for the k’th sample
and A whose value will adjust to satisfy the approximate cusp conditions in and .

The random variable passed to the PCE basis functions must be in a standard form &. ~ U (—1,1). The
transformation

e= s((euta)+(ew— ) &) (5.23)

in terms of the standardized uniform variable returns the non-standard random variable c¢. Following the
guidance from Table Gauss-Legendre integration nodes on the interval [—1, 1] will be used to construct

the PCE. The deterministic objective function

r==xi1 (O) (524)
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will be evaluated at each sample. Extremal values of the robust objective function
F=u—o, (5.25)

are sought, where p,- and o, are the mean and standard deviation of the response function, respectively. As

outlined in Chapter [3] these statistical moments will be approximated through the construction of a PCE.

5.2 ’"uq’-Toolbox Limitations

The constructors used in Chapter |3| and |4] allow for samples of the five periodic orbits in — to be
added to the same continuation problem through repeated calls to ug_isol2bvp or ug_bvp2bvp. However, a
difficulty arises when imposing constraints between the multiple orbits that make up a single sample. Namely,
the forcing amplitude must be different at each sample to satisfy and . They do not fit into
the class of dependent parameters discussed in Chapter [3| because the constraints that drive the difference
between samples are external to the boundary-value problem definition. Addressing this deficiency in the
existing toolbox is left to future development.

As a result, at each stage of the optimization process, the periodic orbits, parameter constraints,
and adjoints will be added through direct calls to existing cOCO functions and toolbox constructors like
ode_isol2bvp, coco_add_glue, and adjt_isol2bvp. Some of the utility functions embedded in the "ug’ con-
structors are used in this example. Namely, the same data structure used in the constructor will be generated
and used to generate integration nodes, ¢, and link these nodes to distribution parameters. Additionally, the

PCE statistical moment approximations will be calculated using functions developed for the "ug’ toolbox.

5.3 Problem Initialization

The specific parameters values chosen for this numerical experiment are summarized in Table[5.1] The values
for A, m, and k are merely starting points and vary during continuation. Their values in the table represent
those used to generate the initial periodic solution for the Duffing oscillator.

Figure shows graphically the sequence of continuation runs used to achieve the starting point for
optimization under uncertainty. Starting from an initial solution that satisfies the differential equation and
periodic boundary constraints (Fig. , a continuation run in the initial velocity is executed with a single
orbit until the phase condition is satisfied (Fig. . Second, a frequency sweep is performed and,

using the coco_add_event function, two points with equal amplitude are labeled px and three points with
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Parameter Value | Parameter Value
m 1 k 2
«@ 0.5 A 0.5
C 0.1 Cy 0.5
mo 2 k‘o 2
p 1 € le-2
€ER le-2

Table 5.1: Parameter Values

equal frequency encompassing both fold points are labeled om (Fig. [5.2cd). The results from this frequency
sweep are used in three different continuation runs.

The first run approximates the resonant peak. Orbits labeled px are added to a single continuation
problem, the constraint is added as a zero function, and is added as a monitor function with
an associated inactive continuation parameter €,. Gluing conditions are applied to enforce equality of the
parameters in the two orbits (except forcing frequency). Continuation is performed in ¢, until its value
matches that given in Table [5.1] (Fig. [5.2d)).

The second run approximately locates the top fold point. The orbits labeled om are added to a continuation
problem, constraints are added as zero functions, and a monitor function is added for with the
associated inactive continuation parameter e ;. Gluing conditions are applied to enforce equality of the
parameters in the three orbits. Continuation is performed in € 1 (also releasing the shared forcing frequency)
until the value of eg ; matches the value of €g given in Table (Fig. .

The third run collects all five orbits (px and om) into the same continuation problem, adding (5.16)-(5.20)
(the values of €, and €g 1 are fixed in this run). A monitor function with inactive continuation parameter
€r.2, and gluing conditions are added to enforce equality of the parameters in the five orbits (w1, we, and ws
are not glued together). Continuation is performed in eg 2 and the parameters A, wy, and ws are released
to allow for the satisfaction of the applied constraints on the problem (Fig. |5.2f). Figure shows the
resulting five orbits (solid gray markers) that will act as approximations to the true peak and fold points.
The figure also shows that while the curvature of the frequency response curve was not constrained, the

separation of the true fold points appears sufficiently small.

5.4 Robust Design Optimization

After the completion of the runs in the previous section, all five orbits satisfying (5.8)-(5.21]) are collected
into a single problem instance for the robust design optimization. The information required for uncertainty

quantification is generated by sorting arguments that were stored in the ug_args variable in Section [3.6.4]
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between an arguments data structures, args, and options data structures opts.
>> args = struct();

>> args.spdists = {’Uniform’};

>> args.spnames = {’c’};

>> args.spdp = [0.1, 0.5];

>> args.dpdtpars = {’A’};

>> opts=struct () ;

>> opts.addadijt = 1;
The data structure for the PCE creation (in particular the integration nodes for the damping coefficient) is

generated by the ug_init_data function in the following segment of code.

>> bvp_id = coco_get_id(’PK1’, ’'bvp’);

>> bc_data = coco_get_func_data(prob, bvp_id, ’‘data’);

>> ug_data = bvp_ug_init_data(bc_data, ’"PK1l’);

>> ug_data = ug_init_data(prob, ug_data, args, opts);

A one dimensional continuation run is executed in ¢ and the solution points corresponding to the integration
nodes (stored in nds field of the ug_data structure) are marked with the label uvg by the coco_add_event
function.

>> prob = coco_add_event (prob, 'UQ’, ’'c’, ug_data.nds);

>> bd = coco(prob, run_name, [], 1, {’c’, 'om’, "A’},[0.1,0.5]);

The below extract shows the result of starting the run from a nominal value of 0.2 for ¢ with A and w;

released.
STEP TIME [|Ul| LABEL TYPE c om A
0 00:00:00 2.7071e+03 1 EP 2.0000e-01  1.5701e+00  3.6408e-01
10 00:00:02 2.7072e+03 2 1.6561le-01  1.5412e+00 2.6609e-01
20 00:00:04 2.7073e+03 3 UQ 1.2777e-01  1.5100e+00  1.7438e-01
20 00:00:04 2.7073e+03 4 1.2610e-01  1.5086e+00 1.7072e-01
28 00:00:06 2.7074e+03 5 EP 1.0000e-01  1.4873e+00 1.1781le-01
STEP TIME [|U]| LABEL TYPE c om A
0 00:00:06 2.7071e+03 6 EP 2.0000e-01  1.5701e+00  3.6408e-01
10 00:00:07 2.7071e+03 7 UQ 2.3200e-01  1.5973e+00 4.6796e-01
10 00:00:07 2.7071e+03 8 2.3526e-01  1.6001e+00  4.7922e-01
20 00:00:09 2.7070e+03 9 2.7829e-01  1.6373e+00  6.4048e-01
30 00:00:10 2.7070e+03 10 3.2142e-01  1.6753e+00  8.2590e-01
40 00:00:11 2.7069e+03 11 3.6426e-01 1.7138e+00 1.0348e+00
41 00:00:12 2.7069e+03 12 UQ 3.6800e-01  1.7171e+00  1.0542e+00
50 00:00:13 2.7069e+03 13 4.0656e-01  1.7524e+00 1.2663e+00
60 00:00:14 2.7069e+03 14 4.4813e-01  1.7910e+00  1.5196e+00
66 00:00:15 2.7069e+03 15 UQ 4.7223e-01  1.8138e+00 1.6787e+00
70 00:00:16 2.7069e+03 16 4.8886e-01  1.8295e+00  1.7939e+00
73 00:00:16 2.7069e+03 17 EP 5.0000e-01  1.8402e+00 1.8736e+00

Next, the labeled solutions are extracted from the previous run and added to a new continuation problem in-
stance (again with the required parameter gluing conditions and constraints). During problem construction,

the indices for the z; (0) are collected in variables r_idx for passing to the response function. Additionally,
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at this stage of the problem construction, the adjoint equations are added to the system with calls to either
coco_add_adjt or through an appropriate adjoint constructor for the 'bvp’ toolbox.

After the orbits are added, the following sequence of code uses information stored in the previously
constructed data structure ugq data to build the weighted matrix of basis polynomial evaluations, W,
shown in (the full source code for the ug_make_psi_mat is available in Appendix .

In the following code snippet, the variable indices for the parameters in one of the peak approximating
orbits (which have been stored during problem construction) are added to the ug_data structure in the
s_idx field. The parameter adjoint indices were similarly collected and are stored in the adj_s_idx field.
The ug_add_sample_nodes function then uses these indices to handle the addition of the parameters gluing
conditions and the linking of PCE integration nodes to the distribution parameters a; and «a,, described in

B-42).

>> psi_mat = ug_make_psi_mat (ug_data.nds_grid, ug_data.uq.Pt, uqg_data.spdists);
>> ug_data.wtd_psi_mat = psi_matxdiag(uq_data.wts);

>> ug_data.s_idx = pkl_par_idx;

>> ug_data.adj_s_idx = pkl_par_aidx;

>> ug_data.addadjt=1;

The response function ([5.24)) is added to the problem by first generating a vector of initial response function
values and a vector of indices of the response peak approximant. The initial response function values are
pre-multiplied by YW to generate an initial guess for the PCE coefficients. The adjoint is added after

collecting appropriate adjoint indices. Initial guesses for the Lagrange multipliers are zero.

>> igs = zeros (ugq_data.nsamples, 1);
>> idx = zeros(l, ug_data.nsamples);
>> for i=1l:uqg_data.nsamples
igs (i) = r_igs{i};
idx (1) = [r_idx{i}];
end
>> alpha_ig = ug_data.wtd_psi_matxigs;
>> response_id = 'resp’;
>> prob = coco_add_func (prob, response_id, @resp_pce, @resp_pce_dU, @resp_pce_dUudUu,
ug_data, ’zero’, ’'uidx’, idx(:), ’'u0’, alpha_ig);
>> aidx = zeros(l, ug_data.nsamples);
>> for i=1l:uqg_data.nsamples
aidx (i) = [r_aidx{i}];
end

>> prob = coco_add_adjt (prob, response_id, ’'aidx’, aidx(:), '10’, zeros(size(alpha_iqg)));
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The initial guesses for the PCE coefficients along with the indices for the coefficient variables are also used
when adding the mean and variance functions below. The source code for the mean and variance functions
ugq_pce_mean and uq_pce_var and their respective derivatives are provided in Appendix |B] The adjoints use
the corresponding adjoint indices and again have zeros for the initial guesses.
>> mean_id = coco_get_id(response_id, ’'pce_mean’);
>> prob = coco_add_func(prob, mean_id, @uqg_pce_mean, @ug_pce_mean_dU,

@Quqg_pce_mean_dudU, ug_data, ’'zero’, ’uidx’, alpha_idx, ’'u0’, alpha_ig(l));
>> prob = coco_add_adjt (prob, mean_id, ’aidx’, alpha_aidx, "10’, 0);
>> var_id = coco_get_id(response_id, ’pce_variance’);
>> prob = coco_add_func(prob, var_id, @Qug_pce_variance, @ug_pce_variance_dU,

@Quqg_pce_variance_duUdU, uqg_data, ’zero’, ’'uidx’, alpha_idx, 'u0’, sum(alpha_ig(2:end)."2));

>> prob = coco_add_adjt (prob, var_id, ’'aidx’, alpha_aidx, ’"10’, 0);

The objective function ([5.25) and its adjoint are added in the following extract.

>> obj_id = ’obj’;

>> mean_idx = coco_get_func_data (prob, mean_id, ’uidx’);

>> var_idx = coco_get_func_data(prob, var_id, ‘uidx’);

>> prob = coco_add_func (prob, obj_id, @obj, @obj_du, @obj_dudu, [],

>> ’inactive’, obj_id, ’‘uidx’, [mean_idx(end); var_idx(end)]);

>> dobj_id = coco_get_id(’d’, obj_id);

>> mean_aidx = coco_get_adjt_data(prob, mean_id, ’‘axidx’);

>> var_aidx = coco_get_adjt_data(prob, var_id, ’'axidx’);

>> prob = coco_add_adjt (prob, obj_id, dobj_id, ’'aidx’, [mean_aidx(end); var_aidx(end)]);

In the initial phase of the optimization, a fold point is sought in the robust objective function value along
the k-m constraint circle. To that end, a 1-dimensional continuation run is initiated by releasing the inactive
continuation parameter corresponding to the robust objective function and its adjoint and the parameters
k and m (to allow for satisfaction of constraint [5.8)). Additionally, the forcing amplitudes A*) (the forcing
amplitude of the k’th sample in the PCE) and the forcing frequency for the first and third periodic orbits

k k . . .

(wi ) and wé ), the approximate peak and cusp frequency in the k’th sample, respectively) are also released
to allow for satisfaction of the constraints on the frequency response curve. The Lagrange multipliers for

the inactive parameters (except for k and m) are also released. The result of the continuation run is shown

graphically in Figure[5.3 and in the below screen output from coco.

STEP DAMP ING NORMS COMPUTATION TIMES

IT SIT GAMMA [1dl| [1ET] [0 F(x) DF(x) SOLVE

0 8.08e-07 5.41e+03 0.1 0.0 0.0
STEP TIME [1Ul| LABEL TYPE obj k m d.obj
0 00:00:49 5.4141e+03 1 EP 1.1025e+00 2.0000e+00 1.0000e+00 0.0000e+00
10 00:02:49 5.4135e+03 2 9.3722e-01 1.3063e+00 1.2797e+00 0.0000e+00
20 00:05:12 5.4137e+03 3 7.4766e-01 1.0972e+00 2.4300e+00 0.0000e+00
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Figure 5.3: The result of the 1-D continuation run in the objective function. The fold point corresponding
to the maximum value is marked by the gray filled circle in each figure.

26 00:07:16 5.4138e+03 4 BP 7.4668e-01 1.1487e+00 2.5247e+00 0.0000e+00
26 00:07:45 5.4138e+03 5 FP 7.4668e-01 1.1487e+00 2.5247e+00 0.0000e+00
30 00:08:48 5.4138e+03 6 7.4712e-01 1.1903e+00 2.5869e+00 0.0000e+00
40 00:10:53 5.4140e+03 7 7.5584e-01 1.3893e+00 2.7919e+00 0.0000e+00
50 00:13:00 5.4145e+03 8 EP 8.5908e-01 2.5151e+00 2.8572e+00 0.0000e+00
STEP TIME [1Ul|l LABEL TYPE obj k m d.obj
0 00:13:35 5.4141e+03 9 EP 1.1025e+00 2.0000e+00 1.0000e+00 0.0000e+00
10 00:15:41 5.4143e+03 10 1.1209e+00 2.2508e+00 1.0320e+00 0.0000e+00
20 00:17:29 5.4144e+03 11 1.1219e+00 2.3104e+00 1.0494e+00 0.0000e+00
24 00:19:13 5.4144e+03 12 BP 1.1219e+00 2.3280e+00 1.0553e+00 0.0000e+00
24 00:19:42 5.4144e+03 13 FP 1.1219e+00 2.3280e+00 1.0553e+00 0.0000e+00
30 00:21:18 5.4144e+03 14 1.1212e+00 2.3936e+00 1.0807e+00 0.0000e+00
40 00:23:37 5.4146e+03 15 1.0395e+00 2.9416e+00 1.6633e+00 0.0000e+00
50 00:26:01 5.4142e+03 16 EP 7.7428e-01 1.6551e+00 2.9387e+00 0.0000e+00

Two approximate fold points are marked rp along the sweep. The marked points also correspond with
approximate branch points marked sp. The marked points coincide with the objective function minimum
and maximum along the closed k-m circle.

From the fold point that corresponds with the maximum, a new continuation run is initiated to drive the
value of the Lagrange multiplier associated with objective function (the n; variable from Chapter [2]) from 0
to 1. The problem construction is nearly identical to the setup for the initial sweep in the fold parameters.
The key difference is that the tangent direction for the adjoint functions are collected from the previous run
and the new run uses these values as the initial direction for continuation. The goal is to converge to a
secondary manifold where the Lagrange multipliers are able to take on nonzero values. The screen output

below shows the result of this run. The Lagrange multiplier associated with the objective function is driven
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Figure 5.4: Convergence of the mean and variance of the response function for varying integration order and
polynomial degree

to one while the Lagrange multiplier corresponding to the nonlinear stiffness d.alpha changes to nontrivial

values during continuation.

STEP TIME [ 1T | LABEL TYPE d.obj k m obj

0 00:01:36 5.4144e+03 1 EP 0.0000e+00 2.3280e+00 1.0553e+00 1.1219e+00

10 00:03:49 5.4148e+03 2 7.2560e-02 2.3280e+00 1.0553e+00 1.1219e+00

15 00:05:42 5.4949e+03 3 EP 1.0000e+00 2.3280e+00 1.0553e+00 1.1219e+00
STEP d.alpha

0 0.0000e+00
10 8.1372e-02
15 1.1214e+00

Since the nonlinear stiffness « is not allowed to vary in this example, its corresponding Lagrange multiplier
need not be driven to zero. Therefore, with the value of Lagrange multipliers for & and m at zero (they
were never released, and therefore remain at zero) and d.obj at 1, the first order optimality conditions are

satisfied and the value of the objective function is thus at a locally optimal value.

5.5 Convergence of the PCE

The results in the preceding sections were arrived at using an integration order M of 4 and polynomial degree
P, of 3 (see Section . It is good practice to confirm that these values result in sufficient convergence
of the statistical moments. To check this, the initial value of the mean and variance will be checked at all
combinations of M =1...6 and P, =2...6. P, =1 is not tested as the variance requires at least two terms
in the expansion to be calculated. The results of this evaluation are shown in Figure [5.4f The mean value
converges quickly and is independent of the value of P; (the mean only use the first expansion coefficient).
The variance plot shows that for M < 4 the numerical error associated with an insufficient quadrature rule

causes poor results for P, > 2. The gray dots in both sub-figures of Figure are at (M, P;) = (4,3).
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Figure 5.5: Maximum value of the objective function for n = 0...6. The point of minimum variance
of the response function (i.e. the maximum of —c) is marked with an open circle

5.6 The effect of Variance on the Robust Optimal solution

One can imagine situations where a designer is more risk averse to variation in a performance metric and
may want to maximize the lower bound of a higher sigma level robust objective function (|5.25)). This section

will briefly show the result of considering the following alternative objective function
F = p,. — no, (5.26)

for sigma levels of n = 0...6. Figure[5.5shows the location of the maximum value of the objective function
for progressively increasing values of n. The values for the objective function at these locations are also

summarized in Table For n = 0 (i.e. only the mean value is considered), the maximum lies in the lower

n 0 1 2 3 4 5 6
w—no | 148 | 1.12 | 0.77 | 0.42 | 0.12 | -0.14 | -0.39

Table 5.2: Maximum Values for progressively increasing n

right of the circle, and increasing the value of n shifts the maximum counterclockwise around the constraint
circle. As n increases, the maximum value of the objective function approaches the location of minimum

variance which is marked with an open circle in Figure |5.5
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5.7 Concluding Remarks

This chapter demonstrated the use of the optimization under uncertainty formulation outlined in Chapter
for a more complicated problem for which the developed toolbox constructors were not well-suited. Instead
of a single boundary-value problem, each sample represents five linked periodic orbits. This gives a nod to
more complicated problems that the tools developed for this thesis could be used to solve. Additionally,
convergence of the statistics that were used in the robust design optimization function was demonstrated. A

brief investigation into the effect of varying sigma levels for the robust objection function was also shown.
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Chapter 6

Conclusions and Future Work

The work outlined in this document provides a framework for performing uncertainty quantification as
part of a numerical continuation routine using Polynomial Chaos Expansion. An implementation has been
created for use with the continuation package coco in MATLAB. Additionally, the uncertainty quantification
has been combined with an existing optimization technique to allow for solving Robust Design Optimization
problems with dynamic constraints. Also of note is that due to the use of the PCE technique to approximate
the mean and variance, those parameters can be directly manipulated by the continuation algorithm as was
done in pursuit of fold points in Chapters 4] and |5l Finally, this work has shown that the developed toolbox
matches analytical results in a linear case and has shown an example application to the approximate analysis
of a cusp bifurcation for a nonlinear oscillator. The library (and all code used to run examples in this thesis)
is available on the University of Illinois gitlab server in the following repository: https://gitlab.engr.

illinois.edu/jcandrsn/coco_ug_toolbox| (see the ‘thesis’ branch of the repository).

6.1 Future Work

The code developed as part of this thesis represents a working toolbox capable of solving a variety of
problems. However, there are, of course, plenty of areas for improvement and further development. A few

of these areas of improvement are listed here.

6.1.1 Distribution Types

The current toolbox supports the use of random variables that follow normal and uniform distributions.
The addition of other distribution types would require inclusion of an appropriate routine for calculating
integration weights and nodes based on the integration rules listed in Table and references [24] and [§].
For the more common distribution types such routines are generally available and straightforward to code
(see [15] and [14]).

Additionally, the constructor code would need to be extended to handle the new distribution types
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including the input format of the distribution parameters and the transformations from an appropriate
standardized random variable to a more general random variable. It happens to be the case that normal and
uniform distributions both have two distribution parameters. If a distribution type with a different number
of parameters were added, the constructor would need modified. A MATLAB cell array would be well-suited
to this task, and should include some way to identify the meaning of the parameter (as opposed to the

current implementation which requires the numerical value of the moments to be in a particular order).

6.1.2 Sparse Integration

As noted in Chapter |3] the PCE method is ideally suited to a low stochastic dimension due to the curse
of dimensionality. The implemented integration routines for this thesis use a tensor product integration
scheme that is particularly affected by this issue. Future development may consider incorporating sparse
grid integration for the PCE coefficients. For a given set of integration nodes, successive 1D continuation

could still be used to locate initial solutions for the integration scheme.

6.1.3 Adaptivity

The choice of integration order and polynomial degree for the PCE implementation is currently determined
during problem construction and not adjusted during continuation. It is up to the user to perform numerical
experiments to ensure that the statistical moments have converged (as was done in Section . One could
imagine adaptively determining these orders based on a defined convergence criterion. This would potentially
be challenging for the integration order and would benefit greatly from a nested integration scheme so that
increasing integration order does not imply throwing away all of the existing samples in favor of a new set
of nodes.

In addition to integration order and polynomial degree, the convergence of the PCE approximation is
dependent on the choice of basis functions. It is possible for an initially optimal set of basis functions to
lose their optimality as the output distribution of the response function deviates from the distribution of the
stochastic input variables. For larger problems, it would be ideal to be able to detect when this is occurring
and initialize a new weighted ¥ matrix and integration nodes. The trade-off is between the computational
cost of such reinitialization and the cost of carrying longer PCE expansions (greater P; value) that are
required when convergence is no longer optimal.

A more immediate modification is updating the existing code base with appropriate remesh functions.
This would allow the functions in the "ugq’ toolbox to take advantage of the ’col1’ toolboxes existing

adaptive remeshing routines for the temporal discretization. In this thesis, relatively high discretization
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orders were used to work around the lack of adaptive remeshing. Allowing the toolbox to determine the

necessary discretization would lead to more efficient and accurate computation.

6.1.4 Integral Response Functions

The form of the integral response function, 7i, in Chapters [3] and ] did not include an explicit dependence
on time. The evaluation functions for integral response functions were not encoded in such a way that
they could handle explicit time dependence. Future work could modify the functions uq_col1_add_response,
ug_coll_add_response_adjoint, and the relevant functions they call to recognize whether the vector field is
autonomous or non-autonomous and evaluate the integral appropriately.

Additionally, none of the examples in this thesis demonstrated the functionality of the integral response
function. Future work could explore relevant examples that involve such a response function (e.g. maximizing

the power of periodic which is related to the integral of the signal squared).

6.1.5 Coupled Boundary-Value Problems

Each sample in the example of Chapter [5]| consisted of five coupled boundary-value problems. This could
not be directly handled by the toolbox discussed in Chapter [3] so these were added and coupled to one
another manually. Future development could streamline construction of such coupled problems and reduce
the potential for error when writing the coupling equations.

This issue could be addressed through further generalization of sample construction. If an entire con-
tinuation problem instance were passed to a constructor, it could perform 1D continuation of the entire
problem and mark integration nodes as appropriate. Such a constructor would be able to handle arbitrary
constraints between variables. The constructor would additionally need to return a separate continuation

problem instance that included all of the previously added functions duplicated at each integration node.

6.1.6 Robust Constraints

There are two types of constraints in the robust optimization formulation of Section that were not

mentioned in Chapters [3lor [l The first constraint type given by

G (:uga Jg) <0

can be handled by the methods outlined in Chapter [3| (and the ’ugq’ toolbox) if they are strictly equality

constraints. Such constraints place restrictions on the statistical moments of a function g. In this case a

(0]



separate PCE can be constructed for the function g to approximate ug and o, using uq_coll_add_response
and the constraint can then be applied to the resulting continuation variables for the mean and variance of
the constraint function. Like the response functions used in the objective function, the form of the response
function for the constraint must be of the form shown in .

The second constraint type

Pr [ps,min S Ds S ps,max] 2 P

imposes probabilistic restrictions on the values of the statistical parameters. Constraints of this type were
not included for two reasons. First, inequality constraints were not considered as part of the optimization
formulation in Chapter [2| Second, this type of constraint requires evaluation of failure probabilities and not
just statistical moments. Inequality constraints of this form could potentially be handled by the methods
outlined in [30] or [3T]. Additionally, [32] outlines a method for approximating failure probabilities and
their derivatives with respect to problem parameters. Implementing code to handle inequality constraints

on failure probabilities, however, is considered outside the scope of the present work.

6.2 Concluding Remarks

The examples shown in this thesis represent a small class of possible applications. The ’ug’-toolbox code
is viewed to be relevant to design problems where parametric variation exists and is likely to affect design
performance metrics. The ability of this code to directly vary an objective function in search of optimal

statistical moments is believed to be particularly useful.
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Appendix A

Optimization Code

This appendix contains functions necessary for the numerical investigation conducted in Chapter [2]

Vectorized, "co11’ compatible MATLAB vector field and Jacobians for the original and adjoint systems:

1 function y = linode(t, x, p)
2

3 x1 = x(1,:);

4 x2 = x(2,:);

5 k =p(l,:);

6 phi = p(2,:);

7

8 y(l,:) = x2;

9 y(2,:) = cos(t + phi) - x2 - k.xx1;
10

11 end

1 function J = linode_dx(t, x, p)
2

3 x1 = x(1,:);

4 k =p(,:);

5

6 J = zeros(2,2,numel (x1));

7 J(1,2,:) 1;

8 J(2,1,:) = -k;

9 J(2,2,:) = -1;

10

11 end

1 function J = linode_dp(t, x, p)
2

3 x1 = x(1,:);

4 phi = p(2,:);

5

6 J = zeros(2,2,numel (x1));

7 J(2,1,:) = —-x1;

8 J(2,2,:) = —-sin(t + phi);

9
10 end

1 function J = linode_dt (t, x, p)
2

3 x1 = x(1,:);

4 phi =p(2,:);

5

6 J = zeros(2,numel (x1));

7 J(2,:) = —-sin(t + phi);

8

9 end

1 function y = adj_F(t, la, p)
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lal
laz

la(l,:);
la(2,:);

k =p(l,:);

v(l,:) = k.xla2;
v(2,:) = laz - lal;

© 003U WN

o
=]
0
=}
Q.

function J = adj_F_dU(t, la, p)
k =p(l,:);

eros (2,2,numel (t));
1) = ki

i) = -1
,t

) = 1;

= Z
(1,2
(2,1
2,2

J
J
J
J(

© 00U WN

"
[}

end

function J = adj_F_dp(t, la, p)
la2 = la(2,:);
J = zeros(2,2,numel (la2));

J(1,1,:) = la2;

© 00 O Uk WN

end

function J = adj_F_dt(t, la, p)
lal = la(l,:);

J = zeros (2,numel (1lal));

N O U WN

end

Functions for the boundary conditions and stationarity constraints in a COCO compatible zero function

format.

1 function [data, y] = linode_bc (prob, data, u)
2

3 x0 = u(l:2);

4 x1 = u(3:4);

5 TO = u(5);

6 T = u(o);

7

8 y = [x0 - x1; TO; T-2xpi];

9

10 end

1 function [data, J] = linode_lbc_du(prob, data, u)
2

3 J=1011, o0 -1, 0, 0, O0;

4 o, 1, o0, -1, 0, O;

5 o, o, 0 O 1, O0;

6 6, o 0, O, 0, 11I;

7

8 end
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function [data, y] = adj_F_bc(prob, data, u)
la0 = u(l:2);
lal = u(3:4);
TO = u(5);
T = u(6);
la3 = u(7);
lad = u(8);
etal = u(9);
y = [-1la0(1l) + la3 + etal;
-1a0(2) + la4;
lal(l) - la3;
lal(2) - la4;
TO; T-2+pil;
end
function [data, J] = adj_F_bc_du(prob, data,
J=[-1, 0 O O O o0 1, 0, 1;
o, -1, o, o0, 0, O 0, 1, O0;
o, ©o0 1, o0 0 O, -1, O, O;
OI or Ol l/ Or Ol OI _ll 0;
o, 6 o0 0 1, 0, 0, O, 0;
o, o0 0 0 ©0 1, 0, 0, O0];
end
function [data, y] = stationarity(prob, data,

dim = data.coll_seg.maps.xbp_shp(2);

x1lbp = u(l:dim);

la2bp = u(dim+1l:2xdim) ;

T = u(end-4);

k = u(end-3);

phi = u(end-2);

eta_k = u(end-1);

eta_phi = u(end);

% Numerical Integration

dim = data.coll_seg.int.dim;

u)

u)

W = data.coll_seg.maps.W(l:dim:end, l:dim:end);

ka = repmat (data.coll_seg.mesh.ka, [data.coll_seg.int.NCOL,1]);

ka = ka(:);

tcn = data.coll_seg.mesh.tcn;
w = data.coll_seg.mesh.gwt’;
N = data.coll_seg.maps.NTST;

yl_int
y2_int

y = [yl_int + eta_k;
y2_int + eta_phil;

end

(0.5+T/N) % ((Wxla2bp) . (Wxx1bp) . *ka)’ «w;
(0.5%T/N) % (sin (Txtcn+phi) . (Wxla2bp) . xka) ' *w;

function [data, J] = stationarity_du(prob, data,

dim = data.coll_seg.maps.xbp_shp(2);
x1lbp = u(l:dim);

laZ2bp = u(dim+l:2xdim);

T = u(end-4);

phi = u(end-2);

dim = data.coll_seg.int.dim;
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10
11
12
13
14
15
16
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w =

ka =

ka = ka(:);

tcn
N:

% Jacobians of portions of the Numerical Integration
[(0.5*T/N) * ((W."2)*diag (la2bp))’ * (ka.x*w),

J_u

J_la

fds

sdf

J_p

data.coll_seg.mesh.gwt’;
W = data.coll_seg.maps.W(l:dim:end,
repmat (data.coll_seg.mesh.ka, [data.coll_seg.int.NCOL,1]);

data.coll_seg.mesh.tcn;
data.coll_seg.maps.NTST;

zeros (size (x1lbp))1’;

l:dim:end) ;

= [(0.5*T/N) * ((W." 2)*diag (x1lbp))’ * (ka.xw),

(0.5+T/N) % (diag (sin (T*tcn+phi) . xka) *W) " xw]’;

= [0,

O’

0;

(0.5+T/N) » ((Wx1la2bp) .*cos (T«tcn + phi) .xka)’ *w];

J_eta = eye(2);

[ (0.5/N) % ( (Wxx1bp) . * (Wxla2bp) .*ka) ' *w; .
(0.5/N) » ((fds + sdf)  ((Wxla2bp) .xka))’ *w];

% Combining into Full Jacobian

J =

end

I:J—u’

J_1la,

J_T, J_p,

J_etal;

(0.5+T/N) »diag(cos (Txtcn+phi) ) «diag(tcn) ;
diag(sin(T*tcn+phi));
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Appendix B

‘uq’ Toolbox Code

B.1 Sample Construction

The code in this section implements generalized constructors for equations that define a sample of linked
boundary value problems (and their adjoints). Functions called by the constructors are included in the order

that they are called.

B.1.1 Construction from an Initial Solution

1 function prob = ug_isol2bvp_sample (prob, oid, varargin)
2

3 tbid = coco_get_id(oid, ’'uqgq’);

4 str = coco_stream(varargin{:});

5 temp_str = coco_stream(varargin{:});

6 temp_prob2 = ode_isol2bvp (prob, tbid, str);

7 [args, opts] = uqg_parse_str(str);

8

bvp_id = coco_get_id(tbid, ’"bvp’);
9 bc_data = coco_get_func_data (temp_prob2, bvp_id, ’data’);

11 data = bvp_ug_init_data(bc_data, oid);
12 data = ug_init_data(prob, data, args, opts);
13 data = ug_bvp_gen_samples (data, prob, temp_str);

15 [prob, datal = ug_bvp_add_samples (prob, data, bc_data, args);
16 psi_mat = ug_make_psi_mat (data.nds_grid, data.uq.Pt, data.spdists);
17 data.wtd_psi_mat = psi_matxdiag(data.wts);

18

19 prob = ug_add_sample_nodes (prob, data, args);

20

21 end

1 function [ugdata, opts] = ug_parse_str(str)

2

3 grammar = /SPNAMES SPDIST SPDP [DPARNAMES] [OPTS]’;

4 args_spec = {

5 " SPNAMES’, ’'cell’, ' {str}’, " spnames’, {}, "read’, {}
6 ’SPDIST’, ’'cell’, ' {str}’, ’spdists’, {}, "read’, {}
7 ! SPDP’, "'y " [num]’, ! spdp’, {}, "read’, {}
8 'DPARNAMES’, ’cell’, ' {str}’, "dpdtpars’, {}, "read’, {}
9 }i

10

11 opts_spec = {

12 " -add-adijt’, ’addadijt’, false, 'toggle’, {}

13 bi

14

15 [ugdata, opts] = coco_parse (grammar, args_spec, opts_spec, str);

16

83



end
function data = bvp_ug_init_data(src_data, oid, varargin)
data.oid = oid;

fields = varargin;
for i=1l:numel (fields)
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data.pnames
data.xdim = size(src_data.bvp_bc.x0_idx, 1)
data.pdim

field = fields{i};
if isfield(src_data, field)
data. (field) = src_data. (field);
else
data. (field) = struct();
end

end

src_data.pnames;

size(src_data.bvp_bc.p_idx, 1);

end

tbid = coco_get_id(data.oid, "uq’);
data.ug = ug_get_settings (prob, tbid, struct())
fields = fieldnames (args);
for i = l:numel(fields)
data. (fields{i}) = args. (fields{i});
end

if ischar(data.spnames)
data.spnames = cellstr(data.spnames);
data.spdists = cellstr(data.spdists);
end
data.s = length(data.spnames);

’

function data = ug_init_data (prob, data, args, opts)

’

data.sp2p_idx = ismember (data.pnames, data.spnames) ;
data.dpar_idx = ismember (data.pnames, data.dpdtpars);

p_in_sp = ismember (data.spnames, data.pnames);
if numel (data.ug.M) ==

data.ug.M = repelem(data.uq.M, data.s);
end

data.Nt = factorial (data.s + data.uq.Pt)/...

((factorial (data.s)) * (factorial (data.uqg.Pt)));

[nds, wts, i1dx] = ug_gauss_nodes (data.uq.M, data.s, data.spdists);

data.wts = wts;
data.idx = idx;
data.nsamples = numel (data.wts);

if sum(p_in_sp) < data.s
not_in_p = data.spnames("p_in_sp);
not_in_p string = strtrim(sprintf (’

err_string = sprintf ([’Parameter(s) {
"problem instance’],
assert (sum(p_in_sp) == data.s, err_string)

end

data.st_nds = nds’;
data.nds = nds’;
data.nds_grid = data.nds(data.idx);
if data.s ==

data.nds_grid = data.nds_grid’;
end

data.sample_par_idx = zeros(size(data.nds));

not_in_p_string(l:end-1));

data.normal_par_idx = strcmpi(’normal’, data.spdists);
data.normal_nds_idx = repelem(data.normal_par_idx, data.uqg.M);
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data.uq.M);

"Numerical Integration Order’
"Max Polynomial Order for Polynomial Chaos Expansion’

data.num_normals = nnz(data.normal_par_ idx);
data.uniform_par_idx = strcmpi(’uniform’, data.spdists);
data.uniform_nds_idx = repelem(data.uniform_par_idx,
data.num_uniforms = nnz(data.uniform par_idx);
if opts.addadjt
data.addadjt = 1;
data.adjt_sample_par_idx = zeros(size(data.nds));
else
data.addadjt = 0;
end
data = ug_gen_nds (data);
end
function [ug, spec] = ug_get_settings (prob, tbid, uq)
spec = { 'M’, " [int]’, 4, ’'read’, {},
'pPt’, 'int’, 3, ’'read’, {},
i
ug = coco_parse_settings (prob, spec, uqg, tbid);
end

function [nds, wts, idx] = ug_gauss_nodes(m, n, type)
if ischar (type)
type = cellstr(type);
end
assert (numel (m)
"either be 1

"or equal to n

| | numel (m) == n,

assert (numel (type) == 1 || numel (type)
"type must either be 1
"or equal to n
single_integration_node =
ifn>1
if numel (m)==1
ifm
single_integration_node =
end
m =
end

== n,

false;

true;

repmat (m, 1, n);

if numel (type)==1
type = repmat (type,
end
end

1, n);

idx = cellfun(@(x) 1:x, num2cell (m),
combinations = cell(l, numel (idx));
[combinations{:}] = ndgrid(idx{:});
combinations = cellfun(@(x) x(:), combinations,
idx = [combinations{:}]’;
os = cumsum (max (idx’)’);
idx = idx + repmat ([0;os(l:end-1)],1,size(idx,2));
nds = cell(l, n);
wts = cell(l, n);
if single_integration_node
nds = 0;
wts = 1;
else
for

’uniformoutput’,

i=1l:n
switch lower (type{i})
case lower ({’Legendre’,’Le’
[nds{i}, wts{i}]
case lower ({’Hermite’,’He’,’'HeN’,

,"LeN’, ’'Uniform’

’Normal’,

85
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(specified quadrature order for each variable)’])

’uniformoutput’,

= gauss_legendre_nodes (m

[/ Number of entries for m must

’

[/ Number of entries for '
(equal distribution for all variables)
(specified quadrature order for each variable)’])

false);

, 'UT})
(1))
TN’ })

false);
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end
nds
wts
wts

end

end

function [nds,

num (l:m-1)";

g = num.xsqgrt(l./ (4xnum."2-1));

J = -diag(g,1)-diag(g,-1);

[w,

nds = diag(x)’;

wts (2+«w(l,:).72)/2;

end

function gauss_hermite_nodes (m
num =

end

gauss_hermite_nodes (m
warning (strcat (' Specified Type not supported, Providing’, ...
' weights and nodes for Gauss-Legendre’, ...

quadrature’))
gauss_legendre_nodes (m

prod(wts (idx),

gauss_legendre_nodes (m)

g = sqgrt (num) ;

J = diag(g,1l)+diag(g,-1);

[w, x] = eig(J);

[nds, idx] = sort(diag(x));

nds = nds’;

wts = sqgrt (2xpi)*w(l,:)."2;

wts = wts(idx)/ (sqrt (2+pi));
end

function data = ug_gen_nds (data)
if data.num_normals > 0
mu = data.spdp(data.normal_par_idx,1)

7
sig = data.spdp(data.normal_par_idx,2);

mu_rep = repelem(mu, data.uqg.M(data.normal_par_idx));

end

if data.num_uniforms > 0
data.spdp(data.uniform_par_idx, 1)
data.spdp (data.uniform_par_idx, 2);

sig_rep = repelem(sig, data.ug.M(data.normal_par_idx));

if size(mu_rep, 1)

end

data.nds (data.normal_nds_idx)
mu_rep + sig_rep.xdata.st_nds(data.normal_nds_idx) ;

lo_gt_up

sig_rep = sig_rep’;

if nnz(lo_gt_up) "= 0
uniform rv_names = data.spnames (data.uniform par_idx);
bad_data_entries = uniform rv_names (lo_gt_up);
bad_data_string = strtrim(sprintf (’
assert (nnz (lo_gt_up) == 0,
["First distribution parameter for uniform random variables’
" must be smaller than second parameter. Check values for’
!’ parameters: {
end
lo = data.spdp(data.uniform par_ idx,1);
hi = data.spdp(data.uniform par_idx, 2);
lo_rep = repelem(lo, data.uqg.M(data.uniform par_idx));
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up_rep = repelem(hi, data.ug.M(data.uniform par_idx));
if size(lo_rep,1l) ==
lo_rep = lo_rep’;
up_rep = up_rep’;
end
data.nds (data.uniform_nds_idx) =
((up_rep - lo_rep)/2).»data.st_nds(data.uniform nds_idx)
+ (up_rep + lo_rep)/2;
end
end
function data = ug_bvp_gen_samples (data, prob, str)
tbid = coco_get_id(data.oid, "uq’);
num_pars = numel (data.spnames) ;
runs_per_parameter = cumprod([l,data.ugq.M(l:end-1)1);
total_runs = sum(runs_per_parameter) ;
run_names = cell(l, total_runs);
prob_init = coco_prob();
for setting={’autonomous’, ’vectorized’}
value = coco_get (prob, ’"ode’, setting{:});
if “isempty (value)
prob_init = coco_set (prob_init, ’ode’, setting{:}, value);
end
end
for setting={’NCOL’, ’'NTST’, ’'var’}
value = coco_get (prob, ’coll’, setting{:});
if “isempty (value)
prob_init = coco_set (prob_init, ’coll’, setting{:}, value);
end
end
pnum = 1;
k =1;
while pnum <= num_pars
temp_bds = cell(l, runs_per_parameter (pnum)) ;
idx = false(l, num_pars);
idx (pnum) = true;
idx = repelem(idx, data.uqg.M);
vals = data.nds (idx);
low = min(vals);
high = max(vals);
msg = sprintf (’\n
tbid, data.spnames{pnum}) ;
fprintf (msg)
if pnum ==
run_names{k} = [tbid, ’_samples_p’, int2str(pnum), ’_run’,
temp_prob2 = prob_init;
temp_prob2 = ode_isol2bvp (temp_prob2, ’sample’, str);
[T, opts] = ug_parse_str(str);
pnames = {data.spnames{pnum}, data.pnames{data.dpar_idx}};
if opts.addadijt
temp_prob2 = adjt_isol2bvp (temp_prob2, ’sample’);
dnames = coco_get_id(’d’, data.pnames( data.dpar_idx));
pnames = {pnames{:}, dnames{:}};
end
temp_prob2 = coco_add_event (temp_prob2, ’'UQ’,
data.spnames{pnum}, vals);
temp_bds{1l} = coco(temp_prob2, run_names{k}, [], 1, pnames,
[low, highl);
k = k+1;
else
run_count = 1;
for run=1:runs_per_parameter (pnum-1)
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end

for

end

labs = coco_bd_labs (bds{run}, ’'UQ’");
for lab = labs

run_names{k} = [tbid, ’'_samples_p’, int2str (pnum),
’ _run’, int2str (run_count)];
previous_run_name = [tbid, ’_samples_p’,
int2str (pnum-1), ’_run’, int2str(run)];

temp_prob2 = prob_init;
temp_prob2 = ode_bvp2bvp (temp_prob2, ’sample’,
previous_run_name, lab);
pnames = {data.spnames{pnum}};
pnames = {pnames{:}, data.pnames{data.dpar_idx}};
if opts.addadit
temp_prob2 = adjt_bvp2bvp (temp_prob2, ’sample’,
previous_run_name, lab);
dnames = coco_get_id(’d’, data.pnames);

pnames = {pnames{:}, dnames{:}};
end
pnames = {pnames{:}, data.spnames{l:pnum-1}};

temp_prob2 = coco_add_event (temp_prob2, ’UQ’,
data.spnames{pnum}, vals);

temp_bds{run_count} = coco(temp_prob2, run_names{k},
1, pnames,
[low,
highl]);
run_count = run_count + 1;
k = k+1;
end

end
end
bds = temp_lbds;
pnum = pnum+l;

i=1: (numel (run_names) - runs_per_parameter (end))
try
rmdir (["data/’, run_names{i}], ’'s’)
catch
end

data.sample_run_names = run_names (end-runs_per_parameter (end)+1l:end);

end

function [prob, datal = uqg_bvp_add_samples (prob, data, bc_data, args)

[prob, data] = ug_coll_add_samples (prob, data);
[prob, datal] = ug_bvp_close_samples (prob, data, bc_data, args);
end

function [prob, data] = ug_coll_add_samples (prob, data)

tbid = coco_get_id(data.oid, "uq’);
reorder_idx = zeros(size(data.wts));
run_count = 1;

run_names = data.sample_run_names;
data.sids = cell(l, data.nsamples);
ndvals = data.nds(data.idx);

if size(ndvals,2) ==

end
for

ndvals = ndvals’;

i=1:numel (run_names)

bd = coco_bd_read(run_names{i});
labs = coco_bd_labs(bd, 'UQ");
for lab=labs
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sol = coll_read_solution(’sample.bvp.segl’, run_names{i}, lab);
p_rep = repmat (sol.p(data.sp2p_idx), 1, prod(data.uqg.M, 2));
nd_diff = sum((ndvals - p_rep)."2,1);
reorder_idx (run_count) = find(nd_diff==min(nd_diff));
sample_name = coco_get_id(tbid, sprintf (' sample
prob = ode_coll2coll (prob, sample_name, run_names{i}, ’sample.bvp.segl’, lab);
if data.addadijt
prob = adjt_coll2coll (prob, sample_name, run_names{i}, ’'sample.bvp.segl’, lab);
end
data.sids{run_count} = sample_name;
run_count = run_count+1;
end
end
data.xdim = size(sol.xbp, 2);

data.pdim = size(sol.p, 1);

data.idx = data.idx(:, reorder_idx);

data.wts = data.wts(reorder_idx);
data.nds_grid = data.nds_grid(:, reorder_idx);
data.reorder_idx = reorder_idx;

for i=1:numel (run_names)

try
rmdir ([’data/’, run_names{i}], ’'s’)
catch
end
end
end
function [prob, datal = ug_bvp_close_samples (prob, data, bc_data, args)
if nargin < 4
args = {};
end
bc = bc_data.bvp_bc;
nsamples = data.nsamples;
s_idx = cell(l, nsamples);

fxd_p_idx = and("data.sp2p_idx, “data.dpar_idx);
frd_p_idx = and("data.sp2p_idx, data.dpar_idx);
has_unique_deterministic_parameters = sum(frd_p_idx) > 0;
if has_unique_deterministic_parameters

ung_p_idx = cell(l, nsamples);
end
add_tl1l0 = 0;

if isfield(args, ’'run’) && isfield(args, ’lab’)

chart = coco_read_solution(args.run, args.lab, ’chart’);
if strcmpi (chart.pt_type, ’"BP’)
add_tl0 = 1;
end
end
for i=l:nsamples

fid = coco_get_id(data.sids{i}, ’'bc’);

coll_id = coco_get_id(data.sids{i}, ’coll’);

[fdata, uidx] = coco_get_func_data(prob, coll_id, ’data’, ’uidx’);
maps = fdata.coll_seg.maps;

TO_idx = uidx(maps.T0_idx);

T_idx = uidx(maps.T_idx);

x0_idx = uidx (maps.x0_idx);

x1_idx = uidx(maps.x1l_idx);
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39 s_idx{i} = uidx(maps.p_idx);

40 if has_unique_deterministic_parameters

41 ung_p_idx{i} = uidx(maps.p_idx(frd_p_idx));

42 end

43

44 uidx = [TO_idx; T_idx; x0_idx; x1_idx; s_idx{i}];

45 prob = coco_add_func(prob, fid, @F, @DF, @DDF, bc_data, ’zero’,
46 fuidx’, uidx);

47 prob = coco_add_slot (prob, fid, @coco_save_data, bc_data, ’save_full’);
48

49 if data.addadjt

50 if isfield(args, ’'run’) && isfield(args, ’'lab’)

51 chart = coco_read_solution(args.run, args.lab, ’‘chart’);
52 cdata = coco_get_chart_data(chart, ’lsol’);

53 [chart, 1lidx] = coco_read_adjoint (fid, args.run, args.lab,
54 chart’, "1lidx’);

55 10 = chart.x;

56 if add_t10

57 tl0 = cdata.v(lidx);

58 end

59 end

60

61 [fdata, aidx] = coco_get_adjt_data(prob, coll_id, ’'data’, "axidx’);
62 opt = fdata.coll_opt;

63 TO_idx = aidx(opt.TO0_idx);

64 T_idx = aidx(opt.T_idx);

65 x0_idx = aidx(opt.x0_idx);

66 x1_idx = aidx(opt.xl_idx);

67 adj_s_idx{i} = aidx(opt.p_idx);

68 if has_unique_deterministic_parameters

69 adj_ung p_idx{i} = aidx(opt.p_idx(frd_p_idx));

70 end

71

72 aidx = [TO_idx; T_idx; x0_idx; x1_idx; adj_s_idx{i}];

73 if isfield(args, ’'run’) && isfield(args, ’'lab’)

74 if add_t10

75 prob = coco_add_adjt (prob, fid, ’aidx’, aidx, "10’, 10, ’"t1l0’, tl1l0);
76 else

7 prob = coco_add_adjt (prob, fid, ’aidx’, aidx, "10’, 10);
78 end

79 else

80 prob = coco_add_adjt (prob, fid, ’aidx’, aidx);

81 end

82 end

83 end

84 data.s_idx = s_idx;

85 s_idxl = s_idx{1l};

86 if data.addadijt

87 data.adj_s_idx = adj_s_idx;
88 adj_s_idxl = adj_s_idx{1l};

89 end

90

91 if sum(fxd_p_idx) > 0

92 for i=2:nsamples

93 s_idxi = s_idx{i};

94

95 sfid = coco_get_id(bc.fid, sprintf (’shared

96

97 prob = coco_add_glue (prob, sfid, s_idxl(fxd_p_idx), s_idxi (fxd_p_idx));
98

99 if data.addadjt

100 adj_s_idxi = adj_s_idx{i};

101 if isfield(args, 'run’) && isfield(args, ’lab’)

102 chart = coco_read_solution(args.run, args.lab, ’‘chart’);
103 cdata = coco_get_chart_data(chart, ’lsol’);

104 [chart, 1lidx] = coco_read_adjoint (sfid, args.run, args.lab,
105 "chart’, ’1idx’);

106 10 = chart.x;

107 if add_tl10

108 tl0 = cdata.v(lidx);
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109 end

110 else

111 10 = zeros([fxd_p_idx,11);

112 end

113 if add_tl10

114 prob = coco_add_adjt (prob, sfid,

115 raidx’, [adj_s_idxl(fxd_p_idx); adj_s_idxi (fxd_p_idx)],
116 r107, 10,

117 7t£10’, tl10);

118 else

119 prob = coco_add_adjt (prob, sfid,

120 raidx’, [adj_s_idxl(fxd_p_idx); adj_s_idxi (fxd_p_idx)],
121 7107, 10);

122 end

123 end

124 end

125 end

126

127 if “isempty(data.pnames) && sum(fxd_p_idx) > 0
128 pfid = coco_get_id(bc.fid, ’shared_pars’);
129 prob = coco_add_pars (prob, pfid, s_idxl (fxd_p_idx),

130 data.pnames (fxd_p_idx)) ;

131 if data.addadjt

132 if isfield(args, ’'run’) && isfield(args, ’'lab’)

133 chart = coco_read_solution(args.run, args.lab, ’‘chart’);
134 cdata = coco_get_chart_data(chart, ’lsol’);

135 [chart, 1lidx] = coco_read_adjoint (pfid, args.run, args.lab,
136 "chart’, ’'1lidx’);

137 10 = chart.x;

138 if add_t10

139 tl0 = cdata.v(lidx);

140 prob = coco_add_adjt (prob, pfid,

141 coco_get_id(’d’, data.pnames (fxd_p_idx)),

142 faidx’, adj_s_idx1 (fxd_p_idx),

143 r107, 10,

144 7t£10’, tl1l0);

145 else

146 prob = coco_add_adjt (prob, pfid,

147 coco_get_id(’d’, data.pnames (fxd_p_idx)),

148 faidx’, adj_s_idxl (fxd_p_idx),

149 7107, 10);

150 end

151 else

152 prob = coco_add_adjt (prob, pfid,

153 coco_get_id(’d’, data.pnames (fxd_p_idx)), "aidx’,
154 adj_s_idx1l (fxd_p_idx));

155 end

156 end

157 end

158

159 if “isempty(data.pnames) && sum(frd_p_idx) > 0
160 ung_p_idx = cell2mat (ung_p_idx)’;

161 pnames = ug_get_sample_par_names (data.pnames (frd_p_idx), l:nsamples);
162 pfid = coco_get_id(bc.fid, ’'unique_pars’);

163 prob = coco_add_pars (prob, pfid, ung_p_idx, pnames, "active’);
164 if data.addadjt

165 adj_ung p_idx = cell2mat (adj_ung p_idx);

166 if isfield(args, ’'run’) && isfield(args, ’'lab’)

167 chart = coco_read_solution(args.run, args.lab, ’‘chart’);
168 cdata = coco_get_chart_data(chart, ’'lsol’);

169 [chart, 1lidx] = coco_read_adjoint (pfid, args.run, args.lab,
170 ’chart’, ’'1lidx’);

171 10 = chart.x;

172 if add_t10

173 tl0 = cdata.v(lidx);

174 prob = coco_add_adjt (prob, pfid,

175 coco_get_id(’'d’, pnames),

176 faidx’, adj_ung _p_idx,

177 r107, 10, .

178 7t£10’, tl10);
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else

prob = coco_add_adjt (prob, pfid,
coco_get_id(’d’, pnames),
’aidx’, adj_ung p_idx,

7107, 10);
end
else

prob = coco_add_adjt (prob, pfid,

faidx’, adj_ung_p_idx);

end
end
end

end

function [data, y] = F(prob,
bc = data.bvp_bc;

TO = u(bc.T0_idx);

T = u(bc.T_idx);

x0 = u(bc.x0_1idx) ;

x1 = u(bc.x1_idx);

p = u(bc.p_idx);

args = {70, T, x0, x1, p};
y = data.fhan(data, args{bc.

end

data, u)

nargs+l:end});

function [data, J] = DF (prob, data, u)

bc = data.bvp_bc;

TO = u(bc.TO0_idx);
T = u(bc.T_idx);
x0 = u(bc.x0_1idx);
x1 = u(bc.x1_idx);
p = u(bc.p_idx);

args = {T0, T, x0, x1, p};

J = data.dfdxhan(data, args{bc.nargs+l:end});

coco_get_id(’d’,

J = [zeros(size(J,1l), bc.nargsxnumel (T0)), J];
end
function [data, dJ] = DDF (prob, data, u)

bc = data.bvp_bc;

TO = u(bc.TO0_idx);
T = u(bc.T_idx);
x0 = u(bc.x0_1idx);
x1 = u(bc.x1_idx);
p = u(bc.p_idx);

args = {T0, T, x0, x1, p};

dJ = data.dfdxdxhan(data, args{bc.nargs+l:end});

if bc.nargs
dJ_tmp = zeros(size(dJ, 1),
dJ_tmp (:,numel (TO)+1:end,
dJ = dJ_tmp;

end

end

numel (u), numel (u));

numel (TO)+1:end)

= dJ;
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function [names_out] = ug_get_sample_par_ names (names, idx)

names_out = {};

if ischar (names)
names = cellstr (names);
end

for i=1:numel (idx)
for name=names
n = sprintf ('
names_out = {names_out{:} n};
end
end
end

function psi = ug_make_psi_mat (sample, max_order, poly_type)

sample = sample’;

if nargin < 3
poly_type = ’Legendre’;
end

n = size(sample,?2);
ps = cell(l,n);
for k = 1:n
ps{k} = O:max_order;
end
grid_cells = cell(size(ps));

[grid_cells{:}] = ndgrid(ps{:});
grids = zeros(n, numel (grid_cells{1l}));
for i=1:n
grids (i, :) = reshape(grid_cells{i},1,[]);

end

idx = sum(grids,l) <= max_order;

grids = grids(:, idx)’;
[7,1idx] = sort(sum(grids,2));
grids = grids(idx, :);

idx = max_orderx(0: (n-1)) + (l:n);
idx = grids + repmat (idx,size(grids,1),1);

[dl, d2] = size(sample);
[d3, d4] = size (idx);

psi = ug_orthogonal_poly_vals (sample, poly_type,
psi = permute (psi, [1,3,2]1);

psi = reshape(psi, [], d2x (max_order+l));

psi = psi(:,idx)’;

psi = reshape(psi,d3,d4,dl);

psi = prod(psi,?2);

psi = permute (psi, [3,1,2]);

psi = psi’;

function psi = ug_orthogonal_poly_vals(x, types,

[M, s] = size(x);

psi = zeros (M, s, max_order+l);
psi(:,:,1) = 1;

psi(:,:,2) = x;

if nargin < 4
norm = 1;
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end

if ischar (types)
types = repmat (cellstr (types), 1,
end

s);

wts = ones (M, s, max_order+l);
for j=1:s
type = types{j};
switch type
case {’Legendre’,
if norm
wts(:, 3,
else

"Le’, ’'Uniform’}

end
if max_order==
psi = psi(:,:,1);
else
for i=3: (max_order+l)
n = 1i-2;
psi(:,3J,1) =
end
end

((2*n+1) *x (:

case {’Hermite’,
if norm
wts(:,3J,:) =
else

’He’, ’"Normal’}

end
if max_order==
psi = psi(:,:,1);
else
for i=3: (max_order+l)
psi(:
end
end
end
end
psi = wts.xpsi;
end

function prob = ugq_add_sample_nodes (prob, data,

if nargin < 3
args = {};
end

add_tl1l0 = 0;

if isfield(args, ’'run’) && isfield(args,
chart = coco_read _solution(args.run,
if strcmpi (chart.pt_type, ’'BP’)
add_tl1l0 = 1;
end
end

if data.num_normals > 0
muid = coco_get_id(data.oid, ’'mus’);
sigid = coco_get_id(data.oid, ’sigs’);
mu = data.spdp(data.normal_par_idx,1)
sig = data.spdp(data.normal_par_idx, 2

normal_names = data.spnames (data.normal_par_idx);

munames =
signames =

strcat (mu.’, normal_names);
strcat ('sig.’,

;3,1 = x(:,3) .*psi(:,3,1-1)

)i

normal_names) ;

;) = repmat (sqgrt (2% (0:max_order)+1),

;J) «*psi(:,3,1-1)

repmat (sqgrt (factorial (0:max_order)) .

M, 1);

- nxpsi(:,3,1-2))/ (n+l);

-1, M, 1);

(1-2)*psi(:,3,1-2);

args)

’lab’)
args.lab,
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prob = coco_add_pars (prob, muid, munames, mu);
prob = coco_add_pars (prob, sigid, signames, siq);
muidx = coco_get_func_data (prob, muid, "uidx’);
sigidx = coco_get_func_data(prob, sigid, ’uidx’);
normal_sample_id = coco_get_id(data.oid, ’'normal_sample’);
prob = coco_add_func(prob, normal_sample_id, @ug _normal_sample,
@Qug_normal_sample_dU, Qug_normal_sample_dudU, data, ’zero’,
fuidx’, [muidx;sigidx], ’"u0’, data.nds(data.normal_nds_idx));
if data.addadijt
if isfield(args, 'run’)
chart = coco_read_solution(args.run, args.lab, ’‘chart’);
cdata = coco_get_chart_data(chart, ’1lsol’);
[mu_chart, mu_lidx] = coco_read_adjoint (muid, args.run, args.lab,
"chart’, ’1idx’);
mu_10 = mu_chart.x;
[sig_chart, sig_lidx] = coco_read_adjoint (sigid, args.run, args.lab,
’chart’, ’1idx’);
sig_10 = sig_chart.x;
[norm_chart, normal_lidx] = coco_read_adjoint (normal_sample_id, args.run, args.lab,
’chart’, ’1lidx’);
norm_10 = norm_chart.x;
if add_t10
mu_tl0 = cdata.v(mu_lidx);
sig_tl0 = cdata.v(sig_lidx);
norm_tl0 = cdata.v(normal_lidx);
end
else
mu_10 = zeros(size(mu));
sig_10 = zeros(size(siqg));
norm_10 = zeros(size(data.normal_nds_idx’"));
end
if add_t10
prob = coco_add_adjt (prob, muid, coco_get_id(’d’, munames),
710", mu_10, "t10’, mu_tl10);
prob = coco_add_adjt (prob, sigid, coco_get_id(’d’, signames),
710", sig_10, 'tl0’, sig_t10);
amuidx = coco_get_adjt_data(prob, muid, ’"axidx’);
asigidx = coco_get_adjt_data (prob, sigid, ’axidx’);
prob = coco_add_adjt (prob, normal_sample_id, ’aidx’,
[amuidx; asigidx], "10’, norm_10, ’"tl10’, norm_t10);
else
prob = coco_add_adjt (prob, muid, coco_get_id(’d’, munames),
710", mu_10);
prob = coco_add_adjt (prob, sigid, coco_get_id(’d’, signames),
7107, sig_10);
amuidx = coco_get_adijt_data(prob, muid, ’"axidx’);
asigidx = coco_get_adjt_data(prob, sigid, "axidx’);
prob = coco_add_adjt (prob, normal_sample_id, ’aidx’,
[amuidx; asigidx], "10’, norm_10);
end
end
uidx = coco_get_func_data(prob, normal_sample_id, ’‘uidx’);
data.sample_par_idx(data.normal_nds_idx) =
uidx ((2+«data.num_normals+1l) :end);
if data.addadijt
aidx = coco_get_adjt_data(prob, normal_sample_id, ’axidx’);
data.adjt_sample_par_idx(data.normal_nds_idx) =
aidx ((2+«data.num_normals+1l) :end) ;
end
end
if data.num_uniforms > 0

upid = coco_get_id(data.oid, "up’);

loid = coco_get_id(data.oid, ’'1lo’);
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96 lo = data.spdp(data.uniform par_ idx,1);
97 up = data.spdp(data.uniform par_idx,2);

98

99 uniform names = data.spnames (data.uniform par_ idx);

100 lonames = strcat(’lo.’, uniform_names);

101 upnames = strcat (‘up.’, uniform_names);

102

103 prob = coco_add_pars (prob, loid, lonames, 1lo);

104 prob = coco_add_pars (prob, upid, upnames, up);

105

106 loidx = coco_get_func_data (prob, loid, ’uidx’);

107 upidx = coco_get_func_data(prob, upid, ‘uidx’);

108 uniform_sample_id = coco_get_id(data.oid, ’"uniform_sample’);
109

110 prob = coco_add_func (prob, uniform_ sample_id, @ug_uniform_sample,
111 @ug_uniform_sample_dU, @ug_uniform_sample_dUdU, data, ’=zero’,
112 "uidx’, [loidx;upidx], ’'u0’, data.nds(data.uniform_nds_idx));
113

114 if data.addadijt

115 if isfield(args, ’run’)

116 chart = coco_read_solution(args.run, args.lab, ’‘chart’);
117 cdata = coco_get_chart_data(chart, ’1lsol’);

118 [lo_chart, lo_lidx] = coco_read_adjoint (loid, args.run,

119 args.lab, ’chart’, ’1lidx’);

120 lo_10 = lo_chart.x;

121

122 [up_chart, up_lidx] = coco_read_adjoint (upid, args.run,

123 args.lab, ’chart’, ’1lidx’);

124 up_10 = up_chart.x;

125

126 [unif_chart, unif_lidx] = coco_read_adjoint (uniform_sample_id,
127 args.run, args.lab, ’‘chart’, ’'lidx’);

128 unif_10 = unif_chart.x;

129 if add_tl10

130 lo_tl1l0 = cdata.v(lo_1lidx);

131 up_tl0 = cdata.v(up_lidx);

132 unif_tl0 = cdata.v(unif_1lidx);

133 end

134 else

135 lo_10 = zeros(size(lo));

136 up_1l0 = zeros(size(up));

137 unif_10 = zeros(size(data.uniform_nds_idx"));

138 end

139 if add_t1l0

140 prob = coco_add_adjt (prob, loid, coco_get_id(’d’, lonames),
141 710", lo_10, "tl1l0’, lo_tl10);

142 prob = coco_add_adjt (prob, upid, coco_get_id(’d’, upnames),
143 710", up_10, "t10’, up_tl0);

144 aloidx = coco_get_adjt_data(prob, loid, ’"axidx’);

145 aupidx = coco_get_adjt_data(prob, upid, ’'axidx’);

146 prob = coco_add_adjt (prob, uniform_sample_id, ’"aidx’,

147 [aloidx; aupidx], "10’, unif 10, ’'t10’, unif_t10);

148 else

149 prob = coco_add_adjt (prob, loid, coco_get_id(’d’, lonames),
150 7107, lo_10);

151 prob = coco_add_adjt (prob, upid, coco_get_id(’d’, upnames),
152 710", up_10);

153 aloidx = coco_get_adjt_data(prob, loid, "axidx’);

154 aupidx = coco_get_adjt_data(prob, upid, "axidx’);

155 prob = coco_add_adjt (prob, uniform_sample_id, ’‘aidx’,

156 [aloidx; aupidx], 10", unif_10);

157 end

158 end

159 uidx = coco_get_func_data (prob, uniform sample_id, ’uidx’);

160 data.sample_par_idx(data.uniform_nds_idx) =

161 uidx ((2+«data.num_uniforms+1) :end);

162 if data.addadijt

163 aidx = coco_get_adjt_data(prob, uniform_sample_id, ’axidx’);
164 data.adjt_sample_par_idx(data.uniform_nds_idx) =

165 aidx ((2+«data.num_uniforms+1) :end);
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end

end

seg2ndsid = coco_get_id(data.oid, '
seg_par_idx = cell2mat (data.s_idx);
seg_par_idx = seg_par_idx(data.sp2p_idx,

seg_par_idx = seg_par_idx(:);

seg2ndsidx = [seg_par_idx;

prob = coco_add_func (prob,
@ug_seg_to_nds_dudu, data, ’zero’

pnames =

nds2smplid = coco_get_id(data.oid,

prob = coco_add_pars (prob,

if data.addadjt
adjt_seg_par_idx =
adijt_seg_par_idx =
adjt_seg_par_idx =

cell2mat (data.

if isfield(args,
chart =
cdata =
[s2n_chart, s2n_lidx] =
’chart’, ’1lidx’);
s2n_10 = s2n_chart.x;
[n2s_chart, n2s_lidx] =
"chart’, ’1lidx’);
n2s_10 = n2s_chart.x;

"run’)

if add_tl10
s2n_t10 = cdata.v(s2n_lidx);
prob = coco_add_adjt (prob,
faidx’, [adjt_seg_par_idx;
710", s2n_10,
"t£10", s2n_tl10);

n2s_tl0 = cdata.v(n2s_1lidx);

prob = coco_add_adjt (prob,
faidx’, adjt_seg_par_idx,
710", n2s_10,
"t10", n2s_t10);

else

prob = coco_add_adjt (prob,
faidx’, [adjt_seg_par_idx;
7107, s2n_10);

prob = coco_add_adjt (prob,
raidx’,
r107,
end
else
prob =
[adjt_seg_par_idx;
prob = coco_add_adjt (prob,
faidx’, adjt_seg_par_idx);
end
end

n2s_10);

coco_add_adijt (prob,

end

function [data, y] =

mu = u(l:data.num_normals);

ug_get_sample_par_names (data.pnames (data.sp2p_idx),

nds2smplid,

adjt_seg_par_idx(data.sp2p_idx,
adjt_seg_par_idx(:);

coco_read_solution(args.run,
coco_get_chart_data (chart,
coco_read_adjoint (seg2ndsid,

coco_read_adjoint (nds2smplid,

nds2smplid,

nds2smplid,
adjt_seg_par_idx, ...

seg2ndsid,
data.adjt_sample_par_idx]);
nds2smplid,

ug_normal_sample (prob, data,

uqg.s_par_glue’);

D)

data.sample_par_idx];
seg2ndsid, @Qug_seg_to_nds,

Qug_seg_to_nds_du,
, 'uidx’, seg2ndsidx);

l:data.nsamples) ;
"ug.nds2samples’) ;

seg_par_idx, pnames, ’active’);

adj_s_idx);
$) i

args.lab, ’chart’);
"1lsol’);

args.run, args.lab,

args.run, args.lab,

seg2ndsid,

data.adjt_sample_par_idx],

coco_get_1id(’d’,pnames),

seg2ndsid, ..

data.adjt_sample_par_idx],

coco_get_id(’d’,pnames),

raidx’,

coco_get_id(’d’,pnames),

u)

sig = u(data.num_normals+l:2xdata.num normals);

transformed_node_locations =

mu_rep = repelem(mu,

u(2+«data.num_normals+1l:end);

data.uqg.M(data.normal_par_idx));
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sig_rep = repelem(sig, data.uqg.M(data.normal_par_ idx));

if size(mu_rep,1l) ==
mu_rep = mu_rep’;
sig_rep = sig_rep’;
end

st_nds = data.st_nds(data.normal_nds_idx) ;
vals = mu_rep + sig_rep.*st_nds;

y = vals - transformed_node_locations;

end

function [data, J] = ug_normal_sample_dU(prob, data, u)
numnodes = numel (u) - 2*data.num_normals;

num_us = size(u, 1);

J = zeros (numnodes, num_us) ;

J_spdp = ones (numnodes/data.num_normals, 2);

J_spdp(:,2) = data.st_nds(l:numnodes/data.num_normals) ;

J_spdp(:,1) = 1;
start_nodes = 2xdata.num_normals + 1;

J(:, l:data.num_normals) = kron(eye(data.num normals), J_spdp(:,1));

J(:, data.num_normals+l:2+data.num _normals) = kron(eye (data.num_normals), J_spdp(:,2));
J(:, start_nodes:end) = -eye (numnodes);

end

function [data, dJ] = ug_normal_sample_dUdU (prob, data, u)

numnodes = numel (u) - 2*data.num_normals;

num_us = size(u, 1);

dJ = zeros (numnodes, num_us, nhum_us) ;

end

function [data, y] = ug_ uniform sample (prob, data, u)

lo = u(l:data.num _uniforms);
hi = u(data.num _uniforms+l:2xdata.num_uniforms);

transformed_node_locations = u(2+xdata.num_uniforms+1l:end);

lo_rep = repelem(lo, data.uqg.M(data.uniform par_idx));
up_rep = repelem(hi, data.ug.M(data.uniform par_idx));

if size(lo_rep,1l) == 1
lo_rep = lo_rep’;
up_rep = up_rep’;
end
st_nds = data.st_nds(data.uniform nds_idx);

vals = (up_rep.x* (st_nds+1l)+lo_rep.* (l-st_nds))/2;

y = vals - transformed_node_locations;

end

function [data, J] = ug_uniform_sample_dU(prob, data, u)
numnodes = numel (u) - 2xdata.num_uniforms;

num_us = size(u, 1);

J = zeros (numnodes, num_us) ;

J_spdp = ones (numnodes/data.num_uniforms, 2);
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J_spdp(:,1) = (l-data.st_nds(l:numnodes/data.num uniforms))/2;
(1+data.st_nds (1:numnodes/data.num _uniforms))/2;

J_spdp (:,2)

start_nodes = 2xdata.num_uniforms + 1;

J(:, l:data.num_uniforms) = kron (eye(data.num _uniforms), J_spdp(:,1));
J(:, data.num_uniforms+l:2xdata.num_uniforms) = kron(eye (data.num_uniforms),
J(:, start_nodes:end) = -eye (numnodes) ;

end

function [data, dJ] = ug_ uniform_sample_dUdU (prob, data, u)

numnodes = numel (u) - 2xdata.num_uniforms;

num_us = size(u, 1);

dJ = zeros (numnodes, num_us, num_us);

end

function [data, y] = ug_seg_to_nds(prob, data, u)

seg_pars = u(l:numel (data.idx));

nds_start = numel (data.idx) + 1;
node_pars = u(nds_start:end);
node_pars = node_pars (data.idx) ;
node_pars = node_pars(:);

y = seg_pars - node_pars;

end

function [data, J] = ug_seg_to_nds_du(prob, data, u)

negs = data.idx+numel (data.idx);

negs = negs(:);

i = repmat (1:numel (data.idx), [1,2]);

3 = [l:numel (data.idx), negs’];

v = [ones(l,numel (data.idx)), -ones(1l,numel (data.idx))];

J = sparse (i, j, Vv);

end

function [data, dJ] = ug_seg_to_nds_dudu(prob, data, u)
dJ = zeros (numel (data.idx), numel (u), numel (u));

end

function prob = ug_BP2bvp (prob, sid, varargin)

grammar = 'RUN [SOID] LAB [OPTS]’;

args_spec = {
"RUN’, ’'cell’, ’{str}’, "run’, {}, "read’, {}
’SOID’, rr, 'str’, ’'soid’, sid, ’"read’, {}
"LAB’, rr, 'num’, 'lab’, [1, 'read’, {}

}i

opts_spec = {
' -add-adjt’, "addadjt’, false, ’'toggle’, {}
" -add-resp’, ’'addresp’, false, 'toggle’, {}
i

[args, opts] = coco_parse(grammar, args_spec,
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15 opts_spec, varargin{:});

16

17 responses = ug_get_responses(args.run);

18

19 data = coco_read_solution(responses{l}, args.run,
20 args.lab, ’'data’);

21

22 switch data.response_type

23 case 'bv’

24 fields = {’response_type’, ’rhan’, ’'drduhan’,

25 "drduduhan’, ’resp’};

26 case ’'int’

27 fields = {’response_type’, ’rhan’, ’'drdxhan’,

28 "drdphan’, ’drdxdxhan’, ’drdpdphan’,

29 "drdxdphan’, ’'resp’};

30 end

31 data = rmfield(data, fields);

32

33 Dbc_data = coco_read_solution(coco_get_id(sid, ’'ug.samplel.bc’),
34 args.run, args.lab, ’‘data’);

35

36 if data.num_normals > 0

37 muid = coco_get_id(sid, 'mus’);

38 mu_chart = coco_read_solution(muid, args.run, args.lab, ’chart’);
39 mus = mu_chart.x;

40 sigid = coco_get_id(sid, ’sigs’);

41 sig_chart = coco_read_solution(sigid, args.run, args.lab, ’chart’);
42 sigs = sig_chart.x;

43 data.spdp(data.normal_par_idx,:) = [mus, sigs];

44 end

45

46 if data.num_uniforms > 0

47 lsid = coco_get_id(sid, '1lo’);

48 lo_chart = coco_read_solution(lsid, args.run, args.lab, ’chart’);
49 los = lo_chart.x;

50 upid = coco_get_id(sid, "up’);

51 up_chart = coco_read_solution(upid, args.run, args.lab, ’‘chart’);
52 ups = up_chart.x;

53 data.spdp(data.uniform par_idx, :) = [los, ups];

54 end

55

56 data = ug_gen_nds(data);

57 [prob, data] = ug_BP2bvpsamples (prob, data, bc_data, args, opts);
58 psi_mat = ug_make_psi_mat (data.nds_grid, data.uq.Pt, data.spdists);
59 data.wtd_psi_mat = psi_matxdiag(data.wts);

60

61 prob = ug_add_sample_nodes (prob, data, args);

62

63 if opts.addresp

64 for i=1:numel (responses)

65 data = coco_read_solution(responses{i},

66 args.run, args.lab, ’‘data’);

67

68 switch data.response_type

69 case 'bv’

70 r = data.rhan;

71 dr = data.drduhan;

72 ddr = data.drduduhan;

73 resp_args = {data.response_type, r, dr, ddr};
74 case 'int’

75 r = data.rhan;

76 drdx = data.drdxhan;

7 drdp = data.drdphan;

78 drdxdx = data.drdxdxhan;

79 drdpdp = data.drdxdphan;

80 drdxdp = data.drdpdphan;

81 resp_args = {data.response_type, r,...
82 drdx, drdp, drdxdx, drdpdp, drdxpdp};
83 end

84 r = strsplit (responses{i}, ’.uqg.responses.’);
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rid = strsplit(r{2}, ".7);
rid = rid{1l};
prob = ug_coll_add_response (prob, sid, rid, resp_args{:});
if opts.addadijt
prob = ug_coll_add_response_adjoint (prob, sid, rid, args);
end
end
end

end

function responses = ug_get_responses (varargin)

switch numel (varargin)
case 1
sid = "7;
runid = varargin{l};
case 2
sid = varargin{l};
runid = varargin{2};
otherwise
error ('Expected 1 or 2 input arguments: Sample ID (optional),
end

data = coco_read_solution(runid, 1, ’'data’);
resp_idx = strfind(data(:,1), coco_get_id(sid, ’ug.responses’));

responses = {};

for i=l:numel (resp_idx)

Run ID

if “isempty (resp_idx{i})
responses = {responses{:}, data{i,1}};

end
end
end
function [prob, datal = ug BP2bvpsamples (prob, data, bc_data, args,
[prob, data] = uqg_BP2collsamples (prob, data, args, opts);
[prob, data] = ug_bvp_close_samples (prob, data, bc_data, args);
end
function [prob, data] = ug BP2collsamples (prob, data, args, opts)

if nargin < 4

opts = {};
opts.addadjt=0;
end
reorder_idx = zeros(size (data.wts));

for sample_count = l:numel (data.sids)

prob = ode_BP2coll (prob, data.sids{sample_count}, args.run, args.lab);

if opts.addadijt
prob = adjt_BP2coll (prob, data.sids{sample_count}, args.run,
end

sol = coll_read_solution(data.sids{sample_count}, args.run, args.lab);

ndvals = data.nds (data.idx);
if size(ndvals,2) ==
ndvals = ndvals’;
end
p_rep = repmat (sol.p(data.sp2p_idx), 1, prod(data.uqg.M, 2));
nd_diff = sum((ndvals - p_rep)."2,1);
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24 reorder_idx (sample_count) = find(nd_diff==min(nd_diff));

25 end

26

27 data.idx = data.idx(:, reorder_idx);

28 data.wts = data.wts(reorder_idx);

29 data.nds_grid = data.nds_grid(:, reorder_idx);
30 data.reorder_idx = reorder_idx;

31

32 end

B.2 Response Functions

The functions in this section support addition of response functions and their adjoints. Functions called by

the constructors are included in the order that they are called.

B.2.1 Response Function Construction

1 function prob = uqg_coll_add_response (prob, oid, rid, varargin)

2

3

4 err_string = [’Expected either ’"'bv’’’,

5 " or '’"int’’ for fourth argument entry’];

6

7 if ischar(varargin{l})

8 if strcmp(varargin{l}, ’'bv’) || strcmp(varargin{l}, ’'int’)

9 response_type = varargin{l};
10 else

11 assert (strcmp (varargin{l}, 'bv’) || strcmp(varargin{l}, ’"int’), err_string);
12 end

13 else
14 assert (ischar (varargin{l}), err_string);
15 end

16
17 if strcmp (response_type,’int’)

18 grammar = 'R [DRDX [DRDP [DRDXDX [DRDXDP [DRDPDP]]]]] [OPTS]’;
19 args_spec = {
20 'R’, rr, raQr, ’rhan’, [1, "read’, {}
21 ’"DRDX’, rr,o relreyr, ’drdxhan’, [1, "read", {}
22 ’DRDP’, rr, TeIL1, "drdphan’, [1, "read’, {}
23 ' DRDXDX' , rr, '@I[]", 'drdxdxhan’, [1, 'read’, {}
24 " DRDXDP’ , rr, '@|[]", 'drdxdphan’, [1, 'read’, {}
25 ' DRDPDP’ , rr, '@I[1", 'drdpdphan’, [1, '"read’, {}
26 }i
27 elseif strcmp(response_type,’ bv’)
28 grammar = 'R [DRDU [DRDUDU]] [OPTS]’;
29 args_spec = {
30 'R", rr, rer, "rhan’, [1, "read’, {}
31 'DRDU’ , rr,o el "drduhan’, [1, "read’, {}
32 "DRDUDU’ , rr, '@|[1", ’drduduhan’, [1, "read’, {}
33 bi
34 end
35
36 [args, "] = coco_parse(grammar, args_spec, {}, varargin{2:end});
37

38 seg2ndsid = coco_get_id(oid, ’uqg.s_par_glue’);
39 ug_data = coco_get_func_data(prob, seg2ndsid, ’'data’);
40 ug_data.response_type = response_type;

42 names = fieldnames (args);
43 for i=1:numel (names)

44 ug_data. (names{i}) = args. (names{i});
45 end
46

102



47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

© 00O U WN

L e O S T
© 00 3O Uk W~ O

ug_data = ug_coll_response_get_idx (prob, ug _data);

u = prob.efunc.x0 (ug_data.resp.uidx);
[T, r] = ug_response_evaluation(prob, ug_data, u);
alpha_ig = ug_data.wtd_psi_matxr;

response_id = coco_get_id(oid, ’'uqgq’, ’'responses’);
pce_id = coco_get_id(response_id, rid, ’'pce’);

if strcmp(ug_data.response_type, "bv’)
prob = coco_add_func(prob, pce_id,
@ug_pce_coefficients, @Qug _pce_ coefficients_dU,
@ug_pce_coefficients_dudy,
uq_data, 'zero’, ’uidx’, ...
ug_data.resp.uidx, ’'u0’, alpha_iqg);
elseif strcmp(ug_data.response_type, ’'int’)

prob = coco_add_func (prob, pce_id,
@Qug_pce_coefficients, Qug_pce_coefficients_dU,
ug_data, ’zero’, ’uidx’, ...
ug_data.resp.uidx, ’'u0’, alpha_iqg);
end
prob = coco_add_slot (prob, pce_id, @coco_save_data, ug_data, ’'save_full’);

alpha_idx = coco_get_func_data (prob, pce_id, ’'uidx’);

alpha_idx = alpha_idx (end-uq_data.Nt+1l:end);

mean_id = coco_get_id(response_id, rid, ’'pce_mean’);
prob = coco_add_func (prob, mean_id,
@Qug_pce_mean, @Quqg_pce_mean_dU, Quqg_pce_mean_dudu, ...
ug_data, ’zero’, ’'uidx’, alpha_idx, 'u0’, alpha_ig(l));

mean_par_id = coco_get_id(response_id, rid, ’'mean’);

mean_idx = coco_get_func_data(prob, mean_id, ’uidx’);

mean_name = coco_get_id(ug_data.oid, rid, ’'mean’);

prob = coco_add_pars (prob, mean_par_id, mean_idx(end), mean_name);

var_id = coco_get_id(response_id, rid, ’'pce_variance’);

prob = coco_add_func (prob, var_id,
@Qug_pce_variance, @Quqg_pce_variance_dU, @ug_pce_variance_dudy, ...
ug_data, ’zero’, ’'uidx’, alpha_idx, ’"u0’, sum(alpha_ig(2:end).”2));

var_par_id = coco_get_id(response_id, rid, ’‘variance’);

var_idx = coco_get_func_data(prob, var_id, ‘uidx’);

var_name = coco_get_id(ug_data.oid, rid, ’'var’);

prob = coco_add_pars (prob, var_par_id, var_idx(end), var_name);

end
function data = ug_coll_response_get_idx(prob, data)
if strcmp(data.response_type,’int’)
data = ug_int_coll_response_get_idx (prob, data);
elseif strcmp(data.response_type,’bv’)
data = ug_bv_coll_response_get_idx(prob, data);
end
end

function data = ug bv_coll_response_get_idx(prob, data)
nsamples = data.nsamples;

fdata = coco_get_func_data(prob, coco_get_id(data.sids{1l}, ’‘coll’),
"data’);

data.resp.uidx = zeros(nsamples, 2 + 2xfdata.xdim + fdata.pdim);

for i=l:nsamples

103



20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84

[uidx, fdata] = coco_get_func_data (prob,
coco_get_id(data.sids{i}, "coll’), ’'uidx’, ’data’);
maps = fdata.coll_seg.maps;
data.resp.uidx (i, 1) = uidx(maps.T0_idx);
data.resp.uidx(i,2) = uidx(maps.T_idx);
data.resp.uidx (i, 3:2+fdata.xdim) = uidx (maps.x0_idx) ;
data.resp.uidx (i, 2+fdata.xdimt+l:2+2+fdata.xdim)
data.resp.uidx (i, 2+2+xfdata.xdim+l:2+2+fdata.xdim+fdata.pdim)
end
data.resp.uidx = data.resp.uidx’;

data.resp.uidx = data.resp.uidx(:);

data.resp.nargs = (nargin(data.rhan)==5);
end
function data = ug_int_coll_response_get_idx (prob,

nsamples = data.nsamples;

T_idx = cell(l, nsamples);
xbp_idx = cell(l, nsamples);
p_idx = cell(l, nsamples);

data.resp.T_idx = ones(nsamples,1);
data.resp.xcn_idx = ones (nsamples,?2);
data.resp.xbp_idx = ones(nsamples,2);
data.resp.p_1idx = ones (nsamples, 2);
adjt_size = 0;
for i=l:nsamples

[uidx, fdata] = coco_get_func_data (prob,

coco_get_id(data.sids{i}, "coll’), ’'uidx’, ’data’);

maps = fdata.coll_seg.maps;
data.resp.T_idx (i) = 1i;
data.resp.xcn_idx (i, 2) = size(maps.W,1);
data.resp.xbp_idx (i, 2) = size(maps.W,2);
data.resp.p_idx(i,2) = size(maps.p_idx,1);

adjt_size = adjt_size + 1 + size(maps.W,1l) + size(maps.p_idx,1);

T_idx{i} = uidx(maps.T_idx);
xbp_idx{i} = uidx (maps.xbp_idx) ;
p_idx{i} = uidx(maps.p_idx);

end

data.resp.xcn_idx(:,2) = cumsum(data.resp.xcn_idx(:,2));
data.resp.xcn_idx(2:end, 1) = data.resp.xcn_idx(2:end,1l) + data.resp.xcn_idx(l:end-1,2);
data.resp.xcn_idx = data.resp.xcn_idx + data.resp.T_idx(end);

data.resp.adjt_size = adjt_size;

data.resp.xbp_idx(:,2) = cumsum(data.resp.xbp_idx(:,2));

data.resp.xbp_idx(2:end,1l) = data.resp.xbp_idx(2:end,1l) + data.resp.xbp_idx(l:end-1,2);
data.resp.xbp_idx = data.resp.xbp_idx + data.resp.T_idx(end);

data.resp.p_idx(:,2) = cumsum(data.resp.p_idx(:,2));

data.resp.p_idx(2:end, 1) = data.resp.p_idx(2:end, 1)

data.resp.uidx = vertcat(T_idx{:}, xbp_idx{:}, p_idx{:});

end

function [data, r] = ug_response_evaluation(prob, data,
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uidx (maps.x1l_idx) ;
uidx (maps.p_1idx) ;

+ data.resp.p_idx(l:end-1,2);
data.resp.p_adjt_idx = data.resp.p_idx + data.resp.xcn_idx(end);
data.resp.p_idx = data.resp.p_idx + data.resp.xbp_idx(end);



20

if s
fo

en
else

trcmp (data.response_type, ’'int’)
r i=1:data.nsamples
T = u(data.resp.T_idx (i, 1));

x = u(data.resp.xbp_idx (i, 1) :data.resp.xbp_idx(i,end));
p = u(data.resp.p_idx (i, 1) :data.resp.p_idx(i,end));

fdata = coco_get_func_data (prob,
coco_get_id(data.sids{i}, "coll’), ’'data’);

if i == 1
rl = int_resp(data, fdata, T, x, p);
r = zeros(size(rl,2), data.nsamples);

r(:,1) = rl;
else
r(:,1i) = int_resp(data, fdata, T, x, p);
end
d
if strcmp(data.response_type, "bv’)

xdim = data.xdim;

pdim = data.pdim;
ns = data.nsamples;
nu = 2 + 2+xdim + pdim;
idx = reshape(l:nu*ns, [], ns);
TO = u(idx(1l,:));
T = u(idx(2,:));
x0 = u(idx(3:2+xdim, :));
x1l = u(idx(3+xdim:2x (1+xdim), :));
o) = u(idx (3+2*xdim:end, :));
args = {T0, T, x0, x1, p};
r = data.rhan(data, args{data.resp.nargs + l:end});
end
r =r1r’";
end

function r = int_resp(ug_data, fdata, T, x, p)

maps
int
XX
pp

= fdata.coll_seg.maps;
= fdata.coll_seg.int;

reshape (maps.W*x, maps.x_shp);
= repmat (p, maps.p_rep);

resp = uqg_data.rhan(xx, pp);

wtsl

r =

end

= repmat (int.wt’, [maps.NTST,1]);

T/ (2+*maps.NTST) xresp*wtsl;

function r = int_resp_nu(ug_data, fdata, T, x, p)

maps

= fdata.coll_seg.maps;

mesh = fdata.coll_seg.mesh;

Xcn
pp

rcn
rcn

r =

end

= reshape (maps.Wxx, maps.x_shp);
= repmat (p, maps.p_rep);

= ug_data.rhan(xcn, pp);

= mesh.gka.x*rcn;

(0.5%T/maps.NTST) »mesh.gwt*rcn’ ;
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1 function [data, y] = ug_pce_coefficients (prob, data, u)

2

3 [T, r] = ug_response_evaluation (prob, data, u);

4

5 alphas = u(end-data.Nt+l:end);

6 R = data.wtd_psi_matxr;

7

8 y = alphas - R;

9

10 end

1 function [data, J] = uqg_pce_coefficients_dU(prob, data, u)
2

3

4 [T, dr] = ug_response_Jacobian (prob, data, u);

5

6 J = [dr,

7 speye (data.Nt) ];

8

9 end

1 function [data, J] = ug_response_Jacobian (prob, data, u)
2

3 if strcmp(data.response_type, ’int’)

4

5 J = zeros (prod(data.uq.M), data.resp.p_idx(end));

6

7 for i=data.nsamples:-1:1

8 T = u(data.resp.T_1idx (i, 1));

9 x = u(data.resp.xbp_idx (i, 1) :data.resp.xbp_idx (i, end));
10 p = u(data.resp.p_idx (i, 1) :data.resp.p_idx(i,end));
11 fdata = coco_get_func_data (prob,

12 coco_get_id(data.sids{i}, "coll’), ’'data’);

13 [J_T, J_xbp, J_p] = int_resp_du(data, fdata, T, x, p);
14

15 J(i, 1) = J_T;

16 J(i, data.resp.xbp_idx (i, 1) :data.resp.xbp_idx(i,2)) = J_xbp;
17 J(i, data.resp.p_idx(i,1):data.resp.p_idx(i,2)) = J_p;
18 end

19

20 J = -lxdata.wtd_psi_mat=J;

21

22 elseif strcmp(data.response_type, "bv’)

23

24 xdim = data.xdim;

25 pdim = data.pdim;

26 ns = data.nsamples;

27 nu = 2 + 2+*xdim + pdim;

28

29 idx = reshape(l:nu*ns, [], ns);

30 TO = u(idx(1l,:));

31 T = u(idx(2,:));

32 x0 = u(ldx(3 2+xdim, :));

33 x1l = u(idx(3+xdim:2x (1+xdim), :));

34 o) = u(idx (3+2xxdim:end, :));

35

36 args = {T0, T, x0, x1, p};

37 J = data.drduhan(data, args{data.resp.nargs + l:end});
38 rows = repelem(l:ns, 1, nu);

39 cols = 1l:ns+*nu;

40 J = sparse(rows, cols, J);

41 J = -lxdata.wtd_psi_mat«J;

42

43 end

44 end

45

46 function [J_T, J_xbp, J_p] = int_resp_du(ug _data, fdata, T, x, p)
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maps = fdata.coll_seg.maps;

int = fdata.coll_seg.int;

xx = reshape (maps.Wxx, maps.x_shp);

pp = repmat (p, maps.p_rep);

wtsl = repmat (int.wt’, [maps.NTST,1]);

wts2 = diag(kron (ones(l,maps.NTST), kron(int.wt, ones(1l,
resp = ug_data.rhan(xx, pp);

drdx = ug_data.drdxhan (xx, pp);

drdp = ug_data.drdphan (xx, pp);

int.dim))));

J_T = 1/ (2+maps.NTST) xresp*wtsl;

J_xbp = T/ (2+maps.NTST) «drdx (:)’ »wts2+maps.W;

J_p = T/ (2*maps.NTST) xdrdp (:) " *kron (wtsl, eye (maps.pdim)) ;
end

function [J_T, J_xbp, J_pl] = int_resp_du_num(uq_data, fdata,

maps = fdata.coll_seg.maps;
mesh = fdata.coll_seg.mesh;

xx = reshape (maps.Wxx, maps.x_shp);
pp = repmat (p, maps.p_rep);

gcn = ug_data.rhan(xx, pp);
gcn = mesh.gka.*gcn;

gdxcn = ug_data.drdxhan (xx, pp);
gdxcn = mesh.gdxka.xgdxcn;

gdxcn = sparse (maps.gdxrows, maps.gdxcols, gdxcn(:));

gdp = ug_data.drdphan (xx, pp);

gdp = mesh.gdpka.*xgdp;

gdprows = kron(ones (maps.pdim, 1), l:maps.p_rep(2));
gpdcols = kron(ones (maps.p_rep),l:maps.pdim) ;

gdp = sparse(gdprows, gpdcols, gdp(:));

J_T = (0.5/maps.NTST) *mesh.gwt*gcn’ ;

J_xbp = (0.5+%T/maps.NTST) sxmesh.gwt+gdxcn+maps.W;

J_p = (0.5%T/maps.NTST) xmesh.gwt*gdp;

end

function [data, dJ] = uqg_pce_coefficients_dUdU (prob, data,

xdim = data.xdim;

pdim = data.pdim;

ns = data.nsamples;

nu = 2 + 2+xdim + pdim;

dJ = zeros(ns, ns*nu + data.Nt,
data.nsamples*nu + data.Nt);

idx = reshape(l:nu*ns, [], ns);

TO = u(idx(1,:));

T = u(idx(2,:));

x0 = u(ldx(3 2+xdim, :));

x1 = u(idx (3+xdim:2* (1+xdim), :));
o) = u(idx (3+2xxdim:end, :));

args = {T0, T, x0, x1, p};

drdudu = data.drduduhan (data,
args{data.resp.nargs + l:end});
for i=l:data.nsamples
idxl = (i-1) *nu+l;
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24 idx2 = i*nu;

25 dJ(i,idx1:1dx2,idx1:idx2) = reshape (drdudu(:,:,1),
26 [1, nu, nul);

27 end

28

29 dJ = -lxdata.wtd_psi_mat*reshape(dd, ns, []);

30 dJ = reshape(dJ, data.Nt, nsxnu + data.Nt, ns*nu + data.Nt);
31

32 end

1 function [data, y] = ug_pce_mean(prob, data, u)
2

3 alphal0 = u(l);

4 mu = u(end);

5 y = mu - alphaO;

6

7

end

1 function [data, J] = ug_pce_mean_ dU(prob, data, u)
2

3 J = zeros(size(u'));

4 J(1) = -1;

5 J(end) = 1;

6

7

end

1 function [data, dJ] = ug_pce_mean_dUdU (prob, data, u)
2
3 dJ = zeros(l, numel (u), numel (u));
4
5

end

1 function [data, y] = ug_pce_variance (prob, data, u)
2

3 alphas = u(l:end-1);

4 alphas = reshape(alphas, [], data.Nt);

5 wvariance = u(end);

6

7 y = variance - sum(alphas(:,2:end)."2,2);

8

9 end

1 function [data, J] = ug_pce_variance_dU(prob, data, u)
2

3 J = zeros(l, numel (u));

4 J(2:end-1) = -2*u(2:end-1);

5 J(end) = 1;

6

7 end

1 function [data, dJ] = ug_pce_variance_dUdU (prob, data, u)
2

3 dJ = zeros(l, numel (u), numel (u));

4 dJ(l, 2:end-1, 2:end-1) = -2«eye(data.Nt - 1);

5

6 end

B.2.2 Response Function Adjoint Construction
1 function prob = ug_coll_add _response_adjoint (prob, oid, rid, varargin)
2
3 if nargin < 4
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args = struct();

else
args = varargin{l};
end
response_id = coco_get_id(oid, ’'ug’, ’'responses’);

pce_id = coco_get_id(response_id, rid, ’'pce’);
ug_data = coco_get_func_data(prob, pce_id, ’'data’);

add_t10 = 0;

if isfield(args, ’run’)

chart = coco_read_solution(args.run, args.lab, ’chart’);
cdata = coco_get_chart_data(chart, ’"1lsol’);
[chart, 1lidx] = coco_read_adjoint (pce_id, args.run, args.lab, ...
"chart’, ’1lidx’);
10 = chart.x;
if strcmpi (chart.pt_type, BP’)
t1l0 = cdata.v(lidx);
add_tl1l0 = 1;
end
else
10 = zeros(ug_data.Nt,1);
end
if strcmp(ug_data.response_type, ’int’)

aTidx = cell (ugq_data.nsamples,l);
axidx = cell (ug_data.nsamples,1);
apidx = cell (uq_data.nsamples,1);
for i=1l:ug_data.nsamples
coll_id = coco_get_id(ug_data.sids{i}, ’coll’);

[adata, aidx] = coco_get_adjt_data(prob, coll_id, ’'data’, "axidx’);
aTidx{i} = aidx(adata.coll_opt.T_idx);
axidx{i} = aidx(adata.coll_opt.xcn_idx);
apidx{i} = aidx(adata.coll_opt.p_idx);
end

aTidx = cell2mat (aTidx) ;
axidx = cell2mat (axidx) ;
apidx = cell2mat (apidx) ;

aidx = [aTidx;axidx;apidx];
if add_tl10
prob = coco_add_adjt (prob, pce_id,
@Qug_pce_coefficients_adjoint,
@ug_pce_coefficients_adjoint_dU, ug_data,
"aidx’, aidx, ’10’, 10, 't10’, t10);
else
prob = coco_add_adjt (prob, pce_id,
@Qug_pce_coefficients_adjoint,
@ug_pce_coefficients_adjoint_dU, ug_data,
raidx’, aidx, "10’, 10);
end

elseif strcmp (ug_data.response_type, 'bv’)

nsamples = ug_data.nsamples;

xdim = ug_data.xdim;

pdim = uqg_data.pdim;

aidx = zeros(nsamples, 2 + 2%xdim + pdim);
x0end = 2+xdim;

xlend = 2+2+xdim;

pend = 2+2*xdimtpdim;

for i=l:nsamples
[axidx, adata] = coco_get_adjt_data (prob,
coco_get_id(ug_data.sids{i}, ’'coll’), ’axidx’, ’'data’);
maps = adata.coll_opt;
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aidx (i, 1) = axidx (maps.TO0_idx);
aidx (i, 2) = axidx(maps.T_idx);
aidx (i, 3:x0end) = axidx (maps.x0_idx) ;
aidx (i, x0end+l:xlend) = axidx(maps.xl_idx);
aidx (i, xlend+1l:pend) = axidx (maps.p_idx);
end
aidx = aidx’;
aidx = aidx(:);
if add_tl10
prob = coco_add_adjt (prob, pce_id, ’"aidx’,
aidx, ’10’, 10, ’'tl0’, t10);
else
prob = coco_add_adjt (prob, pce_id, ’"aidx’,
aidx, 10", 10);
end
end
dalpha_aidx = coco_get_adjt_data(prob, pce_id, "axidx’);

dalpha_aidx = dalpha_aidx(end-ug_data.Nt+l:end);

mean_id = coco_get_id(response_id, rid, ’'pce_mean’);
mean_par_id = coco_get_id(response_id, rid, ’'mean’);

if isfield(args, ’run’)
chart = coco_read_solution(args.run, args.lab, ’chart’);
cdata = coco_get_chart_data(chart, ’'1lsol’);

[mean_chart, mean_lidx] = coco_read_adjoint (mean_id, args.run,
args.lab, ’‘chart’, ’'1lidx’);
mean_10 = mean_chart.x;

[mean_par_chart, mean_par_lidx] = coco_read_adjoint (mean_par_id,
args.run, args.lab, ’chart’, ’1lidx’);
mean_par_10 = mean_par_chart.x;

if add_tl0
mean_t1l0 = cdata.v (mean_lidx) ;
mean_par_tl0 = cdata.v(mean_par_1lidx);
end
else
mean_10 = 0;
mean_par_10 = 0;
end

if add_t10
prob = coco_add_adjt (prob, mean_id, ’aidx’, dalpha_aidx,
10", mean_10, "t10’, mean_t10);
else
prob = coco_add_adjt (prob, mean_id, ’aidx’, dalpha_aidx,
710, mean_10);
end
mean_aidx = coco_get_adijt_data (prob, mean_id, ’axidx’);
mean_name = coco_get_id(uq_data.oid, rid, ’'mean’);
dmean = coco_get_id(’d’, mean_name);

if add_tl10

prob = coco_add_adjt (prob, mean_par_id, dmean, ’aidx’, mean_aidx(end), ...

710", mean_par_10, ’'tl0’, mean_par_tl1l0);
else

prob = coco_add_adjt (prob, mean_par_id, dmean, ’aidx’, mean_aidx(end), ...

10", mean_par_10);
end

var_id = coco_get_id(response_id, rid, ’'pce_variance’);
var_par_id = coco_get_id(response_id, rid, ’‘variance’);

if isfield(args, ’run’)

chart = coco_read_solution(args.run, args.lab, ’chart’);
cdata = coco_get_chart_data(chart, ’'1lsol’);
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144

145 [var_chart, var_lidx] = coco_read_adjoint (var_id, args.run,
146 args.lab, ’chart’, ’'1lidx’);
147 var_10 = var_chart.x;
148
149
150 [var_par_chart, var_par_lidx] = coco_read_adjoint (var_par_id,
151 args.run, args.lab, ’chart’, ’1lidx’);
152 var_par_10 = var_par_chart.x;
153 if add_tl10
154 var_tl1l0 = cdata.v(var_1idx);
155 var_par_tl0 = cdata.v(var_par_1lidx);
156 end
157 else
158 var_10 = 0;
159 var_par_10 = 0;
160 end
161
162 if add _tl0
163 prob = coco_add_adjt (prob, var_id, ’aidx’, dalpha_aidx,
164 10", wvar_10, ’'tl10’, wvar_tl1l0);
165 else
166 prob = coco_add_adjt (prob, var_id, ’'aidx’, dalpha_aidx,
167 r10’, var_10);
168 end
169 var_aidx = coco_get_adjt_data(prob, var_id, ’axidx’);
170 var_name = coco_get_id(ug_data.oid, rid, ’wvar’);
171 dvar = coco_get_id(’d’, var_name);
172 if add_t10
173 prob = coco_add_adjt (prob, var_par_id, dvar, ’aidx’, var_aidx(end),
174 710", var_par_10, ’"tl0’, var_par_t10);
175 else
176 prob = coco_add_adjt (prob, var_par_id, dvar, ’"aidx’, var_aidx(end),
177 710", var_par_10);
178 end
179
180 end
1 function [data, J] = uqg_pce_coefficients_adjoint (prob, data, u)
2
3 [T, dr] = ug_int_response_adjoint_evaluation (prob, data, u);
4
5 J = [dr,
6 speye (data.Nt) ];
7
8 end
1 function [data, J] = ug_pce_coefficients_adjoint_dU(prob, data, u)
2
3 J = zeros(data.Nt, data.resp.p_adjt_idx(end) + data.Nt,
4 data.resp.p_idx(end) + data.Nt);
5 [, ddr] = ug_int_response_adjoint_Jacobian (prob, data, u);
6
7 J(:, l:data.resp.p_adjt_idx(end), l:data.resp.p_idx(end)) = ddr;
8
9 end
1 function [data, J] = ug_int_response_adjoint_evaluation (prob, data, u)
2
3 J = zeros(data.nsamples, data.resp.adjt_size);
4
5 for i=l:data.nsamples
6 T = u(data.resp.T_idx(i,1));
7 x = u(data.resp.xbp_idx (i, 1) :data.resp.xbp_idx (i, end));
8 p = u(data.resp.p_idx(i, 1) :data.resp.p_idx(i,end));
9
10 fdata = coco_get_func_data (prob,
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en
J
end

func

maps =

int

XX
Pp

wtsl

resp
drdx
drdp

end

func
maps
mesh

XX =

pp

gcn
gcn

gdxc
gdxc

gdp =

gdp
gdpr
gpdc
gdp
J_T
J_xc

J_p

end

func

dJ = zeros (prod(data.uqg.M), data.resp.p_adijt_idx(end), data.resp.p_idx(end));

fo

coco_get_id(data.sids{i}, "coll’), ’'data’);

[J_T, J_xcn, J_p] = int_resp_adjoint (data, fdata, T, x, p);

J(i, i) = J_T;

J(i, data.resp.xcn_idx(i,1):data.resp.xcn_idx(i,2)) = J_xcn;
J(i, data.resp.p_adjt_idx(i, 1) :data.resp.p_adjt_idx(i,2)) = J_p;
d

= —-lxdata.wtd_psi_mat*J;

tion [J_T, J_xcn, J_p] = int_resp_adjoint (ug_data, fdata, T,

fdata.coll_seg.maps;
= fdata.coll_seg.int;

reshape (maps.W*x, maps.x_shp);
= repmat (p, maps.p_rep);

= repmat (int.wt’, [maps.NTST, 1]);

= ug_data.rhan(xx, pp);
= ug_data.drdxhan (xx, pp);
= ug_data.drdphan (xx, pp);

= 1/ (2+maps.NTST) xresp*wtsl;
n = T/ (2*maps.NTST) »drdx (:)"’;
= T/ (2*maps.NTST) xdrdp (:) " *kron (wtsl, eye (maps.pdim)) ;

tion [J_T, J_xcn, J_p] = int_resp_adjoint_nu(ug_data, fdata,
= fdata.coll_seg.maps;
= fdata.coll_seg.mesh;

reshape (maps.W*x, maps.x_shp);
= repmat (p, maps.p_rep);

= ug_data.rhan(xx, pp);
= mesh.gka.xgcn;

n = uqg_data.drdxhan (xx, pp);
n = mesh.gdxka.*gdxcn;

ug_data.drdphan (xx, pp);

= mesh.gdpka. *gdp;

ows = kron (ones (maps.pdim,1l), l:maps.p_rep(2));
ols = kron(ones (maps.p_rep),l:maps.pdim);

= sparse (gdprows, gpdcols, gdp(:));

(0.5/maps.NTST) smesh.gwt*gcn’ ;
n = (0.5+T/maps.NTST) xgdxcn (:) ;
= (0.5%T/maps.NTST) xmesh.gwt*gdp;

Xy

TV

tion [data, dJ] = ug_int_response_adjoint_Jacobian (prob, data,

r i=data.nsamples:-1:1

T = u(data.resp.T_1idx(i,1));

x = u(data.resp.xbp_idx (i, 1) :data.resp.xbp_idx (i, end)) ;

p = u(data.resp.p_idx (i, 1) :data.resp.p_idx(i,end));

fdata = coco_get_adjt_data (prob,
coco_get_id(data.sids{i}, "coll’), ’'data’);

[dJ_T, dJ_xcn, dJ_p] = adj_int_obj_du(data, fdata, T, x, p);

djg(i, i, i) =dJ_T(1,1,1);
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J_T_xbp_idx = 1 + (l:size(fdata.coll_seg.maps.W, 2));

dJ(i, i, data.resp.xbp_idx (i, 1) :data.resp.xbp_idx(i,2)) = dJ_T(1,1,J_T_xbp_idx);
dJd(i, i, data.resp.p_idx (i, 1) :data.resp.p_idx(i,2)) = dJ_T(1,1, (J_T_xbp_idx (end)
dJ(i, data.resp.xcn_idx(i,1l):data.resp.xcn_idx(i,2), i) = dJ_xcn(l, :, 1);

dJ (i, data.resp.xcn_idx(i, 1) :data.resp.xcn_idx(i,2),
data.resp.xbp_idx (i, 1) :data.resp.xbp_idx(i,2)) =
dJ_xcn(l, :, J_T_xbp_idx);

dJ(i, data.resp.xcn_idx (i, 1) :data.resp.xcn_idx(i,2),
data.resp.p_1idx (i, 1) :data.resp.p_idx(i,2)) =
dd_xcn(l, :, (J_T_xbp_idx(end) + 1):end);

dJ(i, data.resp.p_adjt_idx(i,1l) :data.resp.p_adjt_idx(i,2), 1) = di_p(1,

dJ (i, data.resp.p_adjt_idx(i, 1) :data.resp.p_adjt_idx(i,2),
data.resp.xbp_idx (i, 1) :data.resp.xbp_idx(i,2)) =
di_p(l, :, J_T_xbp_idx);

dJ (i, data.resp.p_adjt_idx(i, 1) :data.resp.p_adjt_idx(i,2),
data.resp.p_1idx (i, 1) :data.resp.p_idx(i,2)) =

dJ_p(l, :, (J_T_xbp_idx(end) + 1):end);
end
sz = size(dJd);
dJ = data.wtd_psi_mat*reshape (dJ, data.nsamples, []);
dJ = -lxreshape(dJ, [size(data.wtd_psi_mat, 1), sz (2:end)]);
end

function [dJ_T, dJ_xcn, dJ_p] = adj_int_obj_du(ug_data, fdata, T, x, p)

maps = fdata.coll_seg.maps;
int = fdata.coll_seg.int;

NCOL = int.NCOL;
NTST = maps.NTST;
xdim = int.dim;
pdim = maps.pdim;

wtsl = repmat (int.wt’, [maps.NTST,1]);

xx = reshape (maps.Wxx, maps.x_shp);
pp = repmat (p, maps.p_rep);

dcn = size(maps.W,1);

dbp = size(maps.W,2);

ddrdxdx = ug_data.drdxdxhan (xx, pp);

ddrdxdp = ug_data.drdxdphan (xx, pp);

drdx = ug_data.drdxhan (xx, pp);

J_xcn_T = 1/ (2+*maps.NTST) xdrdx (:) ;

J_xcn_xbp = sparse (maps.fdxrows, maps.fdxcols, ddrdxdx(:))xmaps.W;
J_xcn_xbp = T/ (2xmaps.NTST) xJ_xcn_xbp;

J_xcn_p = (T/(2+maps.NTST) ) xsparse (maps.fdprows, maps.fdpcols, ddrdxdp(:));
dJ_xcn = [J_xcn_T, J_xcn_xbp, J_xcn_p]l;

dJ_xcn = reshape (full (dJ_xcn), [1, size(dJ_xcn,1l),size(dJ_xcn,2)]);

dim = maps.x_shp(l);

xcnnum = maps.x_shp(2);

xcndim = maps.x_shp (1) *maps.x_shp(2);

drdx_rows = repmat (reshape (l:xcnnum, [1 xcnnum]), [dim 17]);
drdx_cols = repmat (1l:xcndim, [1 17);

drdx_2 = sparse (drdx_rows, drdx_cols, drdx(:))*maps.W;

drdp = ug_data.drdphan (xx, pp);

J_T_T = 0;

J_T_xbp = 1/ (2*maps.NTST) xdrdx_2’ xwtsl;

J_T_xbp = J_T_xbp’;

J_ T p = 1/ (2*maps.NTST) »drdp (:)’ *kron (wtsl, eye (maps.pdim) ) ;

dJ_T = [J_T_T, J_T_xbp, J_T_pl;
dJ_T = reshape(dJ_T, [1l, size(dJ_T,1),size(dd_T,2)1);
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84

85 J_p_xcn = permute (ddrdxdp, [1, 3 ,2, 4]);

86 J_p_xcn = reshape(J_p_xcn, [maps.pdim, prod(maps.x_shp)]);

87 J_p_xcn = (T/(2+maps.NTST))*J_p_xcn.*repelem(wtsl’, maps.pdim, maps.x_shp(l));
88 J_p_xbp = J_p_xcnxmaps.W;

89 J_p_p = ug_data.drdpdphan (xx, pp);

90 w = kron(wtsl, eye(maps.pdim~2));

91 J_p_p = reshape ((T/(2+*maps.NTST))+J_p_p(:)’*w, maps.pdim, maps.pdim);
92

93 dd_p = [J_T_p’" J_p_xbp J_p_pl;

94 dJ_p = reshape(full(dJd_p), [1, size(dd_p,1l),size(dd_p,2)]1);

95

96 end

97

98 function [dJ_T, dJ_xcn, dJ_p] = adj_int_obj_du_nu(ug_data, fdata, T, x, p)
99

100 fdata = adj_obj_init_data(fdata);

101 maps = fdata.coll_seg.maps;

102 int = fdata.coll_seg.int;

103

104 NCOL = int.NCOL;

105 NTST = maps.NTST;

106 xdim = int.dim;

107 pdim = maps.pdim;

108

109 wtsl = repmat (int.wt’, [maps.NTST,1]);
110

111 xx = reshape (maps.Wxx, maps.x_shp);
112 pp = repmat (p, maps.p_rep);

113

114 dcn = size(maps.W,1);

115 dbp = size(maps.W,2);

116

117 ddrdxdx = ug_data.drdxdxhan (xx, pp);
118 ddrdxdp = ug_data.drdxdphan(xx, pp);

119 drdx = ug_data.drdxhan (xx, pp);

120

121 J_xcn_T = 1/ (2+*maps.NTST) xdrdx (:) ;

122 J_xcn_xbp = sparse (maps.fdxrows, maps.fdxcols, ddrdxdx(:))*maps.W;
123 J_xcn_xbp = T/ (2+*maps.NTST) «xJ_xcn_xbp;

124 J_xcn_p = (T/(2+maps.NTST)) xsparse (maps.fdprows, maps.fdpcols, ddrdxdp(:));
125

126 dJ_xcn = [J_xcn_T, J_xcn_xbp, J_xcn_pl;

127 dJ_xcn = reshape (full (dJ_xcn), [1, size(dJ_xcn,1l),size(dJ_xcn,2)]1);
128

129 dim = maps.x_shp(l);

130 xcnnum = maps.x_shp(2);

131 xcndim = maps.x_shp (1) *maps.x_shp(2);

132 drdx_rows = repmat (reshape (l:xcnnum, [l xcnnum]), [dim 1]);
133 drdx_cols = repmat (l:xcndim, [1 11);

134 drdx_2 = sparse(drdx_rows, drdx_cols, drdx(:))s*maps.W;

135 drdp = ug_data.drdphan(xx, pp);

136

137 J_T_T = 0;

138 J_T_xbp = 1/ (2*maps.NTST) xdrdx_2’ xwtsl;

139 J_T_xbp = J_T_xbp’;

140 J_T_p = 1/ (2+*maps.NTST) xdrdp (:) " *kron (wtsl, eye (maps.pdim)) ;
141

142 dJ_T = [J_T_T, J_T_xbp, J_T_pl;

143 dJ_T = reshape(dJ_T, [1, size(dJ_T,1),size(dJ_T,2)1);

144

145 J_p_xcn = permute (ddrdxdp, [1, 3 ,2, 4]);

146 J_p_xcn = reshape (J_p_xcn, [maps.pdim, prod(maps.x_shp)]);

147 J_p_xcn = (T/(2*maps.NTST)) «J_p_xcn.*repelem(wtsl’, maps.pdim, maps.x_shp(l));
148 J_p_xbp = J_p_xcn*maps.W;

149 J_p_p = ug_data.drdpdphan (xx, pp);

150 w = kron(wtsl, eye(maps.pdim”2));

151 J_p_p = reshape ((T/ (2*maps.NTST))+J_p_p(:)’*w, maps.pdim, maps.pdim);
152

153 dJ_p = [J_T_p’ J p_xbp J p_pl;
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154 dJ_p = reshape(full(dJd_p), [1, size(dJ_p,1l),size(dd_p,2)]1);
155

156 end

157

158 function [data, J] = adj_objhan_du(prob, data, u)
159

160 pr = data.pr;

161 maps = pr.coll_seg.maps;

162 mesh = pr.coll_seg.mesh;
163 opt = pr.coll_opt;
164

165 T = u(maps.T_idx);

166 x = u(maps.xbp_idx);

167

168 xcn = reshape (maps.W*x, maps.x_shp);
169

170 gdxdxcn = pr.ghan_dxdx(xcn);
171 gdxdxcn = mesh.gdxdxka.*gdxdxcn;

172 gdxdxcn = sparse (opt.gdxdxrowsl, opt.gdxdxcolsl, gdxdxcn(:))*maps.W;
173 J = (0.5xT/maps.NTST) «sparse (opt .gdxdxrows2, opt.gdxdxcols2,
174 gdxdxcn (opt .gdxdxidx), opt.dJrows, opt.dJcols);

175

176 gdxcn = pr.ghan_dx(xcn) ;

177 gdxcn = mesh.gdxka.*gdxcn;

178 J = J + (0.5/maps.NTST) »sparse (opt.gdxdTrows, opt.gdxdTcols,
179 gdxcn(:), opt.dJrows, opt.ddcols);

180

181 gdxcn = mesh.gwt*sparse (maps.gdxrows, maps.gdxcols, gdxcn(:))*maps.W;
182 J = J + (0.5/maps.NTST) xsparse (opt .gdTdxrows, opt.gdTdxcols,
183 gdxcn(:), opt.dJrows, opt.ddcols);

184

185 J = J + sparse (opt.gdpdprows, opt.gdpdpcols, ones(1l,3)/5,
186 opt.dJrows, opt.dJcols);

187

188 end

189

190 function data = adj_obj_init_data(fdata)

191

192 data.coll_seg = fdata.coll_seg;

193 data.ghan = @ghan;

194 data.ghan_dx
195 data.ghan_dxdx
196

197 seg = fdata.coll_seg;

198 maps = seg.maps;

199 int = seg.int;

200

201 NCOL = int.NCOL;

202 NTST = maps.NTST;

203 xdim = int.dim;

204 pdim = maps.pdim;

205

206 rows = NCOL#NTSTxkron(0: (xdim-1), ones(1l,xdim));
207 opt.gdxdxrowsl = repmat (rows, [l NCOL*NTST]) +

208 kron (1:NCOL*NTST, ones(l,xdim"2));

209 cols = reshape (1:xdimx*NCOL*NTST, [xdim NCOL«xNTST]) ;
210 opt.gdxdxcolsl = repmat (cols, [xdim 1]);

@ghan_dx;
@ghan_dxdx;

211

212 step = l+xdimx (0:NCOL-1);

213 step = repmat (step(:), [l xdim]) + repmat (0:xdim-1, [NCOL 1]);

214 step = repmat (step(:), [l xdimx (NCOL+1)]) +

215 (xdim*NCOL*NTST+2+pdim) xrepmat (0:xdim* (NCOL+1)-1, [xdim#«NCOL 1]);
216 step = repmat (step(:), [1 NTST]) +

217 (xdim*NCOL+xdim* (NCOL+1) * (xdim*NCOL*NTST+2+pdim) ) *. ..

218 repmat (0:NTST-1, [xdim”2xNCOL«* (NCOL+1) 17]);
219 opt.gdxdxcols2 = step(:);
220 opt.gdxdxrows2 = ones (xdim”2x*NCOL«* (NCOL+1) *NTST, 1);

221
222 step = 1:NCOL;
223 step = repmat (step(:), [l xdim]) + NTSTx*NCOL*repmat (0:xdim-1, [NCOL 1]);
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224 step = repmat (step(:), [l xdimx (NCOL+1)]) +

225 xdim*NTST+*NCOLxrepmat (0:xdim* (NCOL+1)-1, [xdim#«NCOL 1]);

226 step = repmat (step(:), [1 NTST]) + (NCOL+xdim”2+NTST*NCOL* (NCOL+1)) ...
227 repmat (0:NTST-1, [xdim”2+NCOLx (NCOL+1) 17);

228 opt.gdxdxidx = step(:);

229

230 opt.gdxdTrows = ones (xdim*NTSTxNCOL, 1);

231 opt.gdxdTcols = (xdimx*NCOL*NTST+2+pdim) *xdim* (NCOL+1) «NTST +

232 (1:xdim*NTST*NCOL) "’ ;

233

234 opt.gdTdxcols = NTST*NCOLxxdim+2 +

235 (xdim*NTST+*NCOL+2+pdim) » (0:xdimx (NCOL+1) «NTST-1)";
236 opt.gdTdxrows = ones (xdimx (NCOL+1) *NTST, 1);

237

238

239 opt.gdpdprows = ones(3,1);

240 opt.gdpdpcols = (NTSTxxdimxNCOL+2+pdim) * (xdimx (NCOL+1) «NTST+2) +
241 XAim#NTST+*NCOL+2+[1 NTST*xdimxNCOL+2+pdim+2 2% (NTSTx*xdim*NCOL+2+pdim)+3]1";
242

243 opt.dJrows = 1;

244 opt.dJdcols = (xdim*NTST+*NCOL+2+pdim) % (xdim*NTST (NCOL+1) +2+pdim) ;
245

246 data.coll_opt = opt;

247

248 data = coco_func_data (data);

249

250 end
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