
c© 2018 Mathew Potok

SAFE REINFORCEMENT LEARNING: AN OVERVIEW, A HYBRID
SYSTEMS PERSPECTIVE, AND A CASE STUDY

BY

MATHEW POTOK

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Professor Sayan Mitra

ABSTRACT

Reinforcement learning (RL) is a general method for agents to learn optimal

control policies through exploration and experience. Due to its generality, RL

can generate novel policies that may not be easily expressed with rules-based

strategies or traditional control techniques. Over the years since its inception,

RL has been able to solve increasingly more challenging control problems,

from GridWorld to Go. Despite these impressive results, the successes of RL

have been predominantly limited to systems with discrete environments and

agents, particularly video and board games.

A key barrier to using RL in safety-critical cyber-physical system appli-

cations is not only transferring these results to continuous domains but also

ensuring that a notion of ‘safety’ is upheld during the learning process. This

thesis highlights some of the recent contributions in safe learning and presents

a framework, FoRShield, for learning safe policies of a control system with

nonlinear dynamics. The framework develops a generic hybrid systems model

for online RL. The model is used to formalize a shield that can filter unsafe

action choices and proved feedback to the underlying RL system.

The thesis presents a concrete approach for computing the shield utiliz-

ing existing reachability analysis tools. The feasibility of this approach is

illustrated against a case study with a quadcopter that uses RL to discover

a safe and optimal plan for a dynamic fire-fighting task. The approach is

realized as an open-source framework, FoRShield. The framework is imple-

mented in Python in a modular fashion to allow for testing of a variety of

algorithms. Our particular implementation utilizes the Actor-Critic algo-

rithm to learn policies. The experiments show that interesting fire-fighting

strategies can be safely learned for a discrete environment with 232 states

and a 9-dimensional plant model using a standard laptop computer.

ii

To my wife and parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to express my special appreciation and thanks to my adviser,

Professor Sayan Mitra, for advising me through both my undergraduate and

graduate research. Working with him through all these years has provided

many exciting opportunities and has opened countless more. His guidance

and patience have helped me tremendously to grow as student and researcher.

Many thanks to all the members of our research group past and present:

Parasara Sridhar Duggirala, Zhenqi Huang, Ritwika Ghosh, Chuchu Fan,

Yixiao Lin, Bolun Qi, Hussein Sibai, and Nicole Chan. There were many

discussions between us, friendly and serious, that livened up the atmosphere

in the office and provided much food for thought. You all helped make the

office in CSL feel like my second home.

I would like to thank other collaborators with whom I have worked through-

out my university journey, particularly: Professor Mahesh Viswanathan and

Suket Karanwat with Rational CyPhy; Professor Sibin Mohan and Chien-

Ying Chen with SDCWorks; and Professor Sanjay Patel and Professor Yuting

Chen for the special privileges as an undergraduate TA.

I am indebted to my parents for their unconditional love and dedication.

They have provided me with a fantastic opportunity, one that was not readily

available to them. Extraordinary thanks to my wife, Ge Yu, for her love

and support. She brightened many of my days and provided much-needed

encouragement.

Finally, I would like to acknowledge the support of Boeing and the National

Science Foundation for supporting this and other works.

iv

CONTENTS

Chapter 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Thesis Overview . 3
1.3 Contributions . 5
1.4 Organization . 5

Chapter 2 RELATED WORK ON SAFE RL 6
2.1 Background . 6
2.2 Recent History of AI . 8
2.3 Shield Learning . 9
2.4 Sketching . 11

Chapter 3 LEARNING-BASED CONTROL SYSTEMS MODEL . . 14
3.1 Agent, Environment, and Planner 15
3.2 Environment and Agent Updates 15
3.3 Shield and Learner . 16
3.4 System-level Hybrid Automaton 16
3.5 Semantics and Safety . 19

Chapter 4 FIRE-FIGHTING CASE STUDY 21
4.1 Drone (Agent) Model . 21

Chapter 5 FORSHIELD FRAMEWORK 26
5.1 Algorithm for Shield . 26
5.2 Faster Unsound Approaches 28
5.3 Shield and Learner Implementation Pragmatics 29

Chapter 6 EXPERIMENTAL RESULTS AND IMPLEMENTA-
TION DETAILS . 30
6.1 Scenarios . 30
6.2 Experimental Results . 34
6.3 Implementation Details . 36

Chapter 7 CONCLUSION AND FUTURE WORK 41

REFERENCES . 43

v

Chapter 1

INTRODUCTION

1.1 Motivation

The field of AI, particularly machine learning (ML) and reinforcement learn-

ing (RL), has enjoyed exponential investment and growth in the past few

years. We now interact with numerous AI algorithms every day through

email spam filters, recommendations systems, news curation applications,

etc. Slowly, these AI algorithms are encroaching into the territory of cyber-

physical systems (CPS) products such as critical infrastructures, robotics,

supply chain, aviation, and most notably self-driving cars.

Almost all car manufacturers these days along with numerous other large

companies and start-ups are either developing autonomous vehicle capabili-

ties in-house or creating partnerships to gain access to such capabilities. A

subset of these companies have developed viable prototypes and have started

testing them out in the real-world. Testing autonomous vehicle prototypes

outside of simulation environments and in the real-world offers a wealth of

information, but there are enormous consequences when these autonomous

systems fail. Two notable accidents [1, 2] resulted in fatalities and even par-

tially halted any further testing in the real-world [3]. Although the use of

AI black boxes in fully autonomous vehicles and cyber-physical systems in

general may provide many potential benefits to humanity, the challenges of

safety and security are yet to be met.

As an increasing number of cyber-physical systems begin to either incorpo-

rate or replace existing modules with AI modules, methodologies to formally

reason about these modules become crucial. A key challenge in applying

AI, whether it be ML or RL, to CPS products lies in specifying a degree

of correctness for the system and verifying that this correctness holds. The

processes utilized for developing, training, and updating AI modules are rad-

1

ically different from those used for traditional software and cyber-physical

systems. Not surprisingly, the traditional tool-chains and methodologies do

not suit AI algorithms and modules particularly well.

At the traditional methodologies end of the spectrum, the approaches rely

heavily on formulating well-defined mathematical models to reason about

various properties of systems. These carefully crafted mathematical models

are subjected to model checking and to theorem provers to mathematically

guarantee that certain properties have been met. Even though such rigorous

approaches yield definite results, creating mathematical formulations may

not be a straightforward process.

The other end of the spectrum relies on the ‘brute force’ approach where

a system is exhaustively tested against all possible cases. This approach will

also certify a truth, but is severely limited by the size of the set of cases.

Current verification strategies for AI modules seem to have opted for this

approach. As a case in point, several autonomous vehicle manufacturers

announced the total miles logged by their vehicles as a proof of safety of

their autonomous systems [4, 5]. Although total logged miles may seem

a good indicator of safety through the lenses of arguments such as PAC

learning, “when a metric is used as a target, it ceases to be a good metric”

[6]. Such simple metrics make it easy to judge the approximate safety of

AI modules in general, but fail to quantify the true safety of the system.

Certain companies like Righthook.io make claims such as “11,000,000,000

miles are needed to reach statistical confidence an autonomous vehicle has

exceeded human driving by 20%” [7]. Yet, considering the numbers logged

by manufacturers and the performance of their autonomous vehicles, these

claims of super-human driving ability are comically meaningless. The brute

force approach provides a quick way to analyze AI modules but in the end,

“program testing can be used very effectively to show the presence of bugs

but never to show their absence” [8].

Currently, the technical challenges of verifying AI modules are being ad-

dress by two broad research efforts. The first effort targets analysis and

verification of individual AI modules. For example, neural network (NN)

image classifiers show promise on real-world data sets [9] but they are known

to be fundamentally fragile to adversarial examples [10]. There is a growing

body of research on testing networks and hardening them against adversarial

example attacks [10].

2

The second line of research addresses the problem of end-to-end testing and

verification systems that use AI modules. In [11], the authors make a case

for using the system-level specifications for guiding the search for adversarial

examples in ML. A fault injection-based resiliency assessment system for

autonomous vehicles is presented in [12]. Along similar lines, [13] presents

a fault injection framework to assess the resilience of openpilot [14], under

different environmental conditions and sensor faults.

1.2 Thesis Overview

The major contributions of this thesis fall into the latter category of address-

ing the holistic verification of AI modules. Our work considers system-level

safety verification of a CPS in which a key decision making module is de-

veloped (trained) with RL. We present a framework, FoRShield, that uses

the Actor-Critic RL algorithm to simultaneously verify the actions of an

agent with continuous dynamics in a discrete environment. The framework

relies on a generic hybrid model of a control system that is defined by a

learned high-level planner through RL and an underlying low-level controller

for achieving the individual decisions suggested by the planner. The hybrid

formalism enables us to clearly specify the semantics of the overall system and

helps identify the information flow through the different modules involved.

Our problem setting involves a hierarchical control system: a low-level

controller drives the system to near-term goals or waypoints, and a high-

level controller or planner chooses the sequence of goals to accomplish a

longer term mission. We consider situations, where existing control design

techniques (for example, PID, LQR, MPC, etc.) are adequate for designing

the low-level controller, but the design for the planner is challenging. This is a

common scenario where the planner has to optimize for multiple objectives to

accomplish the overall mission and simultaneously adhere to the constraints

imposed by the low-level planner.

The hybrid model formulation is used to define a shield, a protective struc-

ture that can filter unsafe action choices both online throughout the learning

process and offline during execution. Additionally, the shield provides feed-

back to the RL algorithm by penalizing it for selecting unsafe actions with a

very negative reward. If there exist safe paths in the environment, then the

3

system is guaranteed to converge to a policy with no unsafe actions.

The continuous agent and the environment together form the MDP of the

RL problem. The dynamics of the continuous agent are used by the shield

to verify that proposed actions are safe with respect to the environment. An

overview of the complete framework is presented in Figure 1.1. Additionally,

we present a method to reuse reachability analysis computations for agents

with translation invariant dynamics.

Figure 1.1: Illustration of modules in an RL-based control system and the
information flow between them

We evaluate FoRShield against a case study of autonomous drone fire fight-

ing. The drone in the case study is defined by a 9-dimensional continuous

dynamics model derived from [15]. In the case study, the objective of the

drone is to extinguish a fire within a grid environment as efficiently as pos-

sible while minimizing the spread of fire and the chances of collision with

obstacles. To this end, the high-level planner has to decide the location and

direction for approaching the fire (which may change over time); it has to

choose sources for collecting water and schedule collection; it has to avoid

obstacles.

Finally, we compare our shield against two baseline methods and demon-

strate that our framework is capable of learning safe and near optimal fire-

fighting policies for an agent with continuous nonlinear dynamics. In the

various scenarios we tested, the policies learned by the agents through our

framework were guaranteed to be safe and prevented the agent from entering

any unsafe states

4

1.3 Contributions

The contributions of this thesis are:

1. An up-to-date literature review of research in the areas related to safe

AI and formal verification in the AI community

2. A framework that formalizes RL-based control systems as hybrid sys-

tems

3. A proposal for shields for non-linear plant models and deep-learning-

based RL algorithms in conjunction with existing hybrid verification

techniques

4. An experimental feasibility test of our approach on an interesting case

study

5. An implementation of the framework available on request

1.4 Organization

The remainder of the thesis is organized as follows. A survey of recent con-

tributions in the area of safe RL is presented in Chapter 2. Chapter 3 intro-

duces a framework for modeling systems as a hybrid automaton. Chapter 4

presents the fire-fighting case study. Our implementation of the shield us-

ing reachability analysis along with the FoRShield framework is introduced in

Chapter 5. The experimental results and implementation details are outlined

in Chapter 6. Lastly, Chapter 7 concludes the thesis and suggests possible

future lines of research.

5

Chapter 2

RELATED WORK ON SAFE RL

In this chapter, we present an short overview of safe RL works related to our

framework FoRShield. Section 2.1 provides definitions of concepts that will

be used in the literature survey and in later chapters. Section 2.2 recounts

the recent history of AI and how it evolved into its current state. Sections

2.3 and 2.4 each cover a unique approach to safe RL and describe several

works based on that approach.

2.1 Background

A probability distribution over a finite set X is a function µ : X → [0, 1] ⊆ R
with

∑
x∈X µ(x) = µ(X) = 1. The set of all distributions on X is denoted

by Distr(X).

A Markov decision process (MDP) is a tuple M = 〈S, sI ,A,P ,R〉 where

1. s ∈ S is a finite set of states

2. sI is the set of initial states

3. a ∈ A is the finite set of states

4. P : S ×A → Distr(S) is a state transition probability function

5. R : S ×A× S → R is an immediate reward function.

Reinforcement learning (RL) is a class of algorithms that allows agents

in a particular and possibly unknown environment to learn optimal policies

through trial and error by maximizing (or minimizing) a predefined reward

(or cost) function. Environments in RL are typically formulated as MDPs.

The agent and the environment interact with each other in a cyclical fashion.

At a particular time t, the agent observes the state of the environment st ∈ S

6

and chooses an action at ∈ A. The environment evolves to state st+1 ∈ S with

probability P(st+1|st, at) and returns an immediate reward R(st, at, st+1).

The agent utilizes the immediate returned reward to compute the cumulative

total return R =
∑T

t=0 γrt where γ ∈ [0, 1] is a discount factor used to control

the influence of future immediate rewards. By maximizing the expectation of

the total return, maxπ∈Π Eπ[R], the agent is able to learn an optimal policy

π∗ from the set of all policies π ∈ Π : S → A.

The most basic RL algorithms, policy iteration and value iteration, utilize

tables to store a value for either each state or each state-action pair defined

by an MDP. These algorithms iteratively recompute each of the values in the

table according to an update function until all the values converge to some

constant. However, for certain problems whose MDPs contain extremely

large state-spaces, it may be prohibitive or infeasible to create enormous

tables. An alternative to using tables is to use function approximators as

estimators for the values of either states or state-action pairs [16]. Function

approximators such as neural networks can achieve performance similar to

that of tabular methods while using significantly less memory. The class of

RL algorithms that utilize neural function approximators is called deep RL

(DRL).

Neural networks (NNs) are universal function approximators that are formed

by creating a network of consecutively layered neurons. Given a function

y = f(x), NNs are able to model y = g(x) such that g(x) ≈ f(x). Input

is fed into the network via the input layer. The input layer passes on the

input to the hidden layer(s) where it is processed by a system of weighted

connections. The final hidden layer is linked to an output layer which yields

the final output. Each layer in the network yields a vector of values, i.e.

yi = σi(Wixi + bi) where i refers to the ith layer in the network, xi is the

output from the previous layer, Wi are the weights of the neurons in the

layer, bi is the bias, and σi is the activation function. Every neuron in a

layer contains an activation function whose primary function is make an NN

nonlinear. There is a wide variety of activation functions to chose from, and

different layers in the network may use different activation functions.

The backpropagation algorithm is a gradient descent method used to train

a network of neurons through the use of gradients [17]. A loss function is

defined at the output layer that compares the actual output of the network

with an actual output. As the results of the loss function are distributed

7

backwards throughout the network’s layers, the weights on the connections

between neurons of neighboring layers are updated accordingly.

Safe RL can generally be defined as a “process of learning policies that

maximize the expectation of the return in problems in which it is important

to ensure reasonable system performance and/or respect safety constraints

during the learning and/or deployment processes” [18]. It is a similar ap-

proach to RL except it considers additional safety constraints and strives to

find optimal policies that satisfy these constraints. Policies learned through

safe RL should be verifiable and certifiable for critical systems such as CPS.

2.2 Recent History of AI

Starting in the early 2000s, the AI community underwent a resurgence as

some important hurdles were overcome and more powerful hardware became

readily available. One such major hurdle was the vanishing gradient descent

problem [19] which prevents the earlier layers of deeper neural networks from

receiving the back-propagated error and updating the weights of these layers

in a meaningful way. It was discovered [20, 21] that this was not a funda-

mental problem with neural networks; rather it was an issue with applying

gradient based learning methods to some classes of activation functions such

as sigmoid and tanh. Moreover, the creation of extremely large data sets

such as ImageNet [22] allowed researchers to focus on optimization problems

rather than tedious data collection, and provided a baseline against which

everyone could compare their results. Competitions sponsored by prominent

conferences around these data sets promoted healthy competition among re-

searches and brought about noteworthy architectures like AlexNet [23], VGG

[24], GoogleNet [25], and ResNet [26], each contributing new techniques to

the proverbial AI table.

These breakthroughs in the machine learning community, particularly re-

garding image tasks, enabled impressive results in other AI communities such

as reinforcement learning. The application of deep neural networks as func-

tion approximators coupled with asynchronous RL algorithms and significant

compute power allowed researchers to solve a suite of Atari games with scores

better than those of human counterparts [27]. These new methodologies were

applied to increasingly complicated games involving much larger state spaces

8

and requiring strategies spanning extended time horizons such as Go [28],

DotA [29], StarCraft [30]. The learned agents in the first two listed game

environments were able to compete and even defeat the top-ranked profes-

sional players. As a real-time strategy game, StarCraft can be considered

one of the hardest environments in the video game domain. There has been

some initial progress creating modest agents, but new advancements will be

required to conquer this game along with a few other remaining bastions.

Even though impressive results have been achieved year after year in the AI

communities, most of the previously mentioned approaches have forgone up-

holding safety constraints. Notably, neural networks have been shown to be

susceptible to adversarial attacks. These attacks modify the input in imper-

ceptible ways such that a human cannot distinguish between the original and

modified versions. However, deep learning algorithms will incorrectly classify

the modified examples with high probabilities [31]. Similarly, this oversight

is evident in reinforcement learning where agents are repeatedly exposed to

dangerous conditions during the training process. Such exposure may not

always be feasible to agents situated outside sand-boxed game environments

where mistakes are inconsequential. Furthermore, there are no guarantees

that agents trained in this fashion will not violate some constraints. As more

AI works are integrated into safety-critical systems, it becomes a necessity

that there exist methods for verifying AI black boxes and ensuring that off-

the-shelf AI components meet predefined specifications.

Several comprehensive surveys detail the recent literature for safe AI [18,

32, 33]. This chapter seeks to complement these works with a brief survey

of safe reinforcement learning literature, particularly detailing works most

similar to our approach described in later chapters.

2.3 Shield Learning

One approach to safe RL is to limit the actions of an agent to only a safe

subset and utilize RL to learn a safe policy. A shield is such a construct

that determines which set of actions is safe. The works below present several

approaches to synthesizing shields.

In [34], the authors propose an approach for learning optimal policies while

enforcing safety properties expressed in temporal logic, particularly linear

9

temporal logic (LTL). The work introduces shield learning, a learning strat-

egy augmented by a synthesized reactive system that prevents an agent from

executing unsafe actions in an environment. The shield is inserted into the

traditional RL setting loop in one of two suggested positions. In the first

position, the shield reduces the complete action set at each state to those

actions that are definitely safe. In the second position, the shield monitors

an agent’s selected actions and corrects them if necessary. To synthesize a

shield, the product is taken between a provided safety specification formu-

lated in LTL and an abstraction of the environment to construct a notion of

a game that is similar to that of an MDP. This construction is then used to

learn safe optimal policies. One downside of this approach is that it relies

on an omniscient model to determine the set of unsafe states at each state.

Such an all-knowing model may not be readily available or even feasible.

An alternative approach to shield construction is proposed by the authors

of [35] who consider the notion of a scheduler to limit the action set of an

agent. The objective is to find a optimal scheduler that satisfies the spec-

ified safety constraints and that simultaneously minimizes (or maximizes)

the expected cost (reward) to reach a goal state. Specifications are encoded

as temporal logic constraints in the form of probabilistic computation tree

login (PCTL) properties and are a combination of a reachability property,

P≤λ(�T), and an expected cost property, E≤κ(�G). The reachability prop-

erty upper-bounds the probability of eventually reaching a set of states T to

be ≤ λ. Similarly, the expected cost property upper-bounds the expected

cost of eventually reaching the set of states G. Given these safety proper-

ties, the paper describes an algorithm for finding a safe optimal policy as

follows. First, the environment MDP in conjunction with the reachability

property is reformulated into an SMT encoding. Next, this SMT encoding is

passed into an SMT solver to synthesize a safe permissive scheduler which is

actually a subset of the original environment MDP that adheres to the reach-

ability property. Then, traditional RL algorithms are run on this sub-MDP

to discover safe policies. Finally, the resultant expected cost is compared

against the specified expected cost to see whether an optimal policy has

been discovered. If not, another SMT encoding is formulated that excludes

the previous schedulers. Although this approach can output safe policies, it

essentially boils down to a brute-force method that will try a copious num-

ber of schedulers. The authors briefly acknowledge this incremental nature

10

of their algorithm and suggest possible improvements.

The above authors expand on their work in [36] and apply their work to

the more complicated problem of PAC-man. The major differences between

this work and the previous work is synthesis of the shield. A similar reach-

ability property is considered as before, P≥λ(�T), but it lower-bounds the

probability of eventually reaching the set of states T . To synthesize a shield,

an action-valuation is evaluated for every action in every state to determine

the maximal probabilities of satisfying the safety property. Such a formula-

tion may not be tractable, so the authors limit the probability computation

to a finite horizon. Given the complete set of probabilities, a subset of the

environment MDP can be formulated that satisfies the reachability property.

The authors implement their algorithm and experiment against the PAC-man

environment. Even though the implemented approach was unable to guar-

antee complete safety, it was able to decrease training times by preventing

the agent from dying as often as it would without the presence of a shield.

2.4 Sketching

Rather than synthesizing shields that can reduce the complete set of actions

to a subset of safe actions, sketching approaches can synthesize a policy di-

rectly in a human-readable output. The outputs generated through sketching

can be verified with established traditional verification methodologies.

Such an approach is considered by the authors of [37] who propose VIPER,

an algorithm that combines ideas from model compression and imitation

learning to learn decision tree policies through policy extraction. The bene-

fits of decisions tree are that they are nonparametric so they are capable of

representing complex policies comparable to those of deep neural networks

(DNNs) and they are efficiently verifiable through existing methodologies.

The extraction technique utilizes imitation learning of high-performing DNN

policies to guide the training, particularly DAGGER [38]. The reason for gen-

erating decision tree policies through supervised learning rather than direct

learning is that DNNs are better regularized and easier to train, especially

with gradient descent methods. To leverage both the action and cumulative

reward output by a DNN, the authors extend DAGGER to Q-DAGGER and

additionally modify Q-DAGGER to output decision tree policies in VIPER.

11

The output policies can then be verified with methodologies such as sum-of-

squares (SOS) or satisfiability (SAT) optimization.

Another sketching approach is outlined in [39]. The authors propose

a learning framework called programmatically interpretable reinforcement

learning (PIRL). This framework is parameterized by a high-level program-

ming language for policies whose semantics consist of atoms and sequences

of atoms. The suggested language may be represented compactly and canon-

ically to facilitate searching over the space of programs. To find an optimal

program, the authors first utilize deep reinforcement learning to find a policy

that will serve as an approximation for searching for a programmatic pol-

icy. The algorithm then uses an imitation learning approach to iteratively

searches through a set of program templates with the use of Bayesian opti-

mization to find optimal parameters for the templates and generates a pool

of template candidates. These candidates are simulated against the environ-

ment and the total rewards are gathered. This procedure will iterate until

none of the candidates return a higher reward than the current maximum.

The authors test their framework against a few classic control problems in RL

and TORCS, a driving simulator, and verify that the generated policies ad-

here to their defined safety specifications. A domain expert may be required

to develop the programming language constructs from which the generated

policies will be formulated and to guide the learning process.

The author’s of [40] build upon the two works introduced above by wrap-

ping them inside a overarching framework, mixed optimization scheme for

reinforcement learning (MORL), for synthesizing policies with repairing ca-

pabilities. To synthesize an optimal policy, the framework first starts with

an initial policy π0 and uses synthesis techniques similar those discussed

previously to learn a symbolic representation of a learned policy as a pro-

gram P0. With this programmatic representation, it is possible to perform

program repair either manually by a human expert or automatically using

safety specification constraints to remove or add certain behaviors. The re-

paired program P ′0 is then transferred into an improved policy π′0 that is

further improved with standard gradient descent. Once a minima is reached,

the policy π′0 becomes π0 for the next iteration if necessary. The complete

procedure can be visualized as πt → Pt → P ′t → π′t → πt+1 where t is the

loop counter. The MORL framework improves on the above works by uti-

lizing repetitive optimization of programs to converge to optimal solution.

12

However, it may be vulnerable to converging to less optimal solutions if the

repaired programs are worse then the original generated program.

13

Chapter 3

LEARNING-BASED CONTROL SYSTEMS
MODEL

We consider a system consisting of an agent acting on an environment based

on the directions of a (high-level) planner . The planner’s mission is to drive

the environment to a target state by setting intermediate goals for the agent.

The planner will be learned using RL. The agent has a (low-level) controller

that can achieve any of these intermediate goals chosen by the planner. In the

example fire-fighting application we discuss in Chapter 4, the agent is a drone

that moves in a 3D world to collect and deploy water; the environment is a

2D map of a spreading wildfire, water sources, and possibly other obstacles

available from sensors. The planner’s mission is to douse the fire, and to this

end it sets goals for the drone to move and collect and deploy water.

In order to learn a planner online, we will use a learner and a shield. The

shield forward analyzes a goal proposed by the planner to evaluate whether

it is safe to pursue from the current state of the agent. The learner uses this

output from the shield and the state to update the planner.

In the rest of this chapter, we develop a complete formal model of the

hybrid system parameterized by all these components—agent, environment,

shield, learner, and planner. Each planner goal is considered as a separate

mode in the hybrid automaton. In every mode, the agent state evolves

according to a differential equation (determined by the low-level controller).

There are three types of discrete transitions. First, the environment state

is updated periodically independent of the agent (env transitions). Second,

when the agent achieves a goal, the environment, the agent, the planner, and

the goal are updated (pln transitions). If the goal is not safe, immediately,

the planner gets updated and a new safe goal is set by the new planner (repln

transition). This last type of transition may occur several times before a safe

goal is found. Figure 1.1 shows the key pieces of the hybrid automaton.

14

3.1 Agent, Environment, and Planner

Formally, let Sa = Rn be the continuous state space of the agent for some

n ∈ N, and let Oa be the set of observable states of the agent. Let Obs :

Sa → Oa and Obs−1 : Oa → 2Sa be the (invertible) state observation map

and its inverse.

Let Se be the discrete state space of the environment (as sensed by the

agent). We define O = Oa × Se to be the set of observable states.

Let G be the finite set of modes or goals that can be chosen by the planner.

A planner is a function Pl : O × G → G that maps an observed state of

the agent, an observed state of the environment (as seen by the agent), and

a (current) goal to a new goal. We imagine this to be a complicated function

that is going to be learned using RL with runtime state observations. We

denote the set of all possible planners by P .

As we shall see in Section 3.4, the state space of the hybrid automaton

describing the overall system will be Q = Sa × Se × G⊥ × P , where G⊥ =

G ∪ {⊥}. The ⊥ value will indicate that a goal has not been decided by the

planner. For a state q ∈ Q, we denote the first, second, third, and fourth

elements by q.Sa, q.Se, q.G, q.P , respectively. We call q a system state. A

(bounded) trajectory ξ for Q is a map from an interval of [0, T] to Q, for

some T ≥ 0. We denote its domain by ξ.dom, its first state ξ(0) by ξ.fstate,

and its last state ξ(T) by ξ.lstate. A trajectory ξ with ξ.dom = [0, 0] is called

a point trajectory.

3.2 Environment and Agent Updates

The environment of the agent evolves dynamically independent of the agent,

but its effects are seen by the agent through periodically updating sensors.

These updates are captured by a (possibly nondeterministic) function En :

Se → 2Se , which we call the environment update function.

A guard Grd : G → 2Sa maps each goal g ∈ G to a set of agent states

that correspond to accomplishing that goal. An agent-environment joint

update function AE : Sa × Se × G → Sa × Se gives the (joint) new state

of the environment and the agent after the agent accomplishes a goal. As

the name suggests, only this function captures the interactions of the agent

15

and the environment. For example, when the fire-fighting drone arrives at a

fire location and deploys water, this function updates the water-level in the

drone and also updates the environment with a new (lower) level of fire.

3.3 Shield and Learner

The system-level requirements are specified by two sets: a mission target set

S∗e ⊆ Se and a set of unsafe states U ⊆ Sa × Se. U ′ is the lifting of U to Q.

That is, q ∈ U ′ iff q.(Sa × Se) ∈ U . We will write U instead of U ′ when the

type is clear from context.

With a fixed unsafe set U , a shield takes as input a current (observed)

state of the agent, state of the environment, and a candidate planned goal,

and decides whether or not this goal is a safe one to pursue for the agent.

Thus, the shield is a function of the type, Sh : O ×G→ {safe, unsafe}.
A learner updates the current planner with a new planner based on the

current observed state (of agent and environment) and the current goal, with

the objective of achieving mission target while preserving safety. Thus, it is

a function of the type Le : P ×O ×G⊥ → P .

3.4 System-level Hybrid Automaton

Given all of the above sets and maps, now we are ready to define the hybrid

automaton that describes the behavior of the overall system.

Definition 1. Given all the functions introduced in the previous section, the

hybrid automaton describing the system is a 4-tuple H = 〈Q,Θ,D, T 〉 that

is defined as follows:

(i) Q = Sa × Se ×G⊥ × P is the state space of the automaton.

(ii) Θ ⊆ Q is the set of initial states.

(iii) T is a set of trajectories for Q. Along any trajectory ξ ∈ T , the

environment state, the planner, and the goal remain constant and only

the agent state evolves continuously.

16

(iv) D ⊆ Q × {env, pln, repln} × Q is the set of discrete transitions. A

(q, `, q′) ∈ D iff one of the following conditions hold:

(a) (environment transition) If ` = env and time-elapsed in q1 since the

last environment transition is τ then a transition is enabled. The

post-state of the transition updates q′.Se ∈ En(q.Se), and all other

components, remain unchanged, i.e., q′.Sa = q.Sa, q
′.G = q.G, and

q′.Pl = q.Pl.

(b) (planner transition) If ` = pln, q.G 6=⊥ and q.Sa ∈ Grd(q.G), a

transition is enabled. The agent and environment states get up-

dated: (q′.Sa, q
′.Se) = AE(q.Sa, q.Se, q.G). Moreover, the planner

gets updated as:

q′.Pl = Le(q.Pl,Obs(q.Sa), q.Se, q.G).

Let o′a = Obs(q′.Sa) and g = q′.Pl(o′a, q
′.Se, q.G). If Sh(o′a, q

′.Se, g) =

safe, then q′.G = g. Otherwise q′.G =⊥.

(c) (re-plan transition) If ` = repln and q.G =⊥, a transition is en-

abled. The agent and environment states stay constant. Let oa =

Obs(q.Sa), then the planner gets updated as:

q′.Pl = Le(q.Pl, oa, q.Se,⊥),

Let g = q′.Pl(oa, q.Se,⊥). If Sh(oa, q.Se, g) = safe, the goal is up-

dated as q′.G = g. Otherwise, the goal is kept ⊥.

A few remarks on Definition 1. First, discrete state space and periodic up-

date model for the environment is an abstraction of sensing and perception

modules of the agent. These modules collect and fuse information, possi-

bly from distributed sensors, and present a view of the environment to the

decision-making modules in the agent, namely the planner.

Second, for any trajectory ξ ∈ T , the goal, planner, and environment re-

main constant. That is, at any time t ∈ dom(ξ), ξ(t).G = ξ(0).G, ξ(t).Pl =

ξ(0).Pl, ξ(t).Se = ξ(0).Se, and ξ(t).Sa changes continuously with time. In

special cases, we may assume that the ξ(t).Sa is a solution of a known dif-

ferential equation. That is, for a given starting state q0 ∈ Q with q0.G 6=⊥,

1This is checked with a timer variable that is omitted in the definition.

17

the function ξ(·).Sa satisfies the differential equation:

d

dt
(ξ(t).Sa) = fq0.G(ξ(t).Sa), (3.1)

with ξ(0).Sa = q0.Sa. The dynamics of the low-level controller may depend

on the chosen goal, and hence, the right-hand side of the ODE (3.1) depends

on q0.G.

Definition 2. A hybrid automaton of Definition 1 is said to be goal-tracking

if for each g ∈ G, for every trajectory ξ ∈ T with ξ(0).G = g, there exists a

time T ∗ such that ξ(T ∗).Sa ∈ Grd(g) and for all t > T ∗, ξ(t).Sa ∈ Grd(g).

The goal tracking property ensures that once a goal g ∈ G is set by the

planner, the low-level controller of the agent drives the agent state sa to the

corresponding set Grd(g).

The final remark is about the transitions. There are three types of discrete

transitions in the hybrid automaton of Definition 1. All of these types of

transitions are mutually exclusive and urgent; that is, at most one of them is

enabled in any given state, and they do indeed occur as soon as they become

enabled [41].

First, environment transitions (env) are enabled every τ > 0 time, and

when the transition occurs, the discrete state of the environment se is up-

dated, possibly nondeterministically, according to the environment update

function En.

Second, planner transitions (pln) are enabled at a state q iff q.G 6=⊥ and

q.Sa ∈ Grd(q.G). The state of the environment and the agent get updated,

possibly nondeterministically, according to the joint update function AE.

Furthermore, the learner Le updates the planner based on the current ob-

served state and the achieved goal. If the new planner q′.Pl provides a safe

goal g ∈ G for the new state, the goal gets updated to g. Otherwise, the goal

gets updated to ⊥ to indicate further updates for the planner are needed.

These updates would be handled by the third type.

Third, re-plan transitions (repln) are enabled at a state q iff q.G =⊥. The

environment and agent states do not change. The aim of this transition is to

update the planner to provide a safe goal for the current state. Hence, the

planner gets updated by Le. Then, its goal g for the current observed state

is checked if safe by Sh. If safe, the goal gets updated to g. Otherwise, it

18

stays ⊥ to allow further updates of the planner until one with a safe goal is

reached.

3.5 Semantics and Safety

The semantics of our hybrid model is defined in the usual fashion [42, 43].

An execution fragment of H is an alternating sequence of trajectories and

transition labels, α = ξ0`1ξ1`2 . . . ξk, where each ξi ∈ T , `i ∈ {env, pln, repln}
and (ξi.lstate, `i+1, ξi+1.fstate) ∈ D. The first state of an execution is defined

as α.fstate = ξ0.fstate. An execution fragment α is an execution if it starts

from the initial set, that is, α.fstate ∈ Θ. An execution fragment is closed if

it is a finite sequence and all the trajectories have finite domain. Since we

are interested in bounded time analysis, we only consider closed executions

of H in this paper. The duration of a (closed) execution fragment α, denoted

by α.dur , is the sum of the duration ocf all its trajectories. The last state

of a closed trajectory α = ξ0`1 . . . ξk, is the last state of the last trajectory

ξk in α, that is, α.lstate = ξk.lstate. Notice that some trajectories may be

of duration 0 or equivalently, a sequence of action can occur in 0 time. In

fact, in the H automaton defined above, a pln action may be followed by a

sequence of repln actions, in 0 time. Nevertheless, we can define α(t), that

is, the state of H at time t, where 0 ≤ t ≤ α.dur in the standard way as

α′.lstate where α′ is the longest prefix of α with duration t [43].

A state q ∈ Q is reachable from a set of states Q0 ⊆ Q if there exists a

closed execution fragment α such that α.fstate ∈ Q0 and α.lstate ∈ Q. The

set of all reachable states from Q0 is denoted by ReachH(Q0). For ReachH(Θ)

we simply write ReachH or Reach. A state q is reachable within time T ≥
0 from Q0 if there exists a closed execution fragment α with α.dur ≤ T ,

α.fstate ∈ Q0, and α.lstate ∈ Q. The bounded time reachable sets from Q0

and Θ within time bound T , are defined analogously and are denoted by

ReachH(Q0, T) and ReachH(Θ, T), or in the latter case simply by Reach(T).

Problem Statement. We say that H achieves its mission S∗e if for each

execution α there is a time t∗ such that for all t ≥ t∗, α(t).Se ∈ S∗e . We say

H is safe with respect to U if (ReachH(Θ).Sa,ReachH(Θ).Se) ∩ U = ∅.

19

Given all parameters of the hybrid system H except Sh and Le, and given

the requirements (S∗e , U), our goal is to design a learner Le and a shield Sh,

such that the resulting H is safe and achieves its mission.

There are several other performance-related requirements we would like

the Sh and Le to have2 For example, Sh should be computationally effective,

as it is called in run-time whenever a new goal is chosen by the planner, and

Le should be able to give another planner that provides a safe goal if the

previous planner goal was not safe. In other words, it should not have many

repln transitions.

2The solution proposed in this paper does not address this wish list of performance
requirements.

20

Chapter 4

FIRE-FIGHTING CASE STUDY

We consider the fire-fighting case study briefly mentioned in the introduction

(Figure 4.1). The agent being controlled is a drone described by continuous-

time dynamics. Its mission is to extinguish a forest fire that is sensed as a

2-dimensional grid-world environment. The drone has a water tank of limited

capacity and therefore has to incrementally douse the fire by flying between

a water source(s) and locations currently aflame, all the while avoiding ob-

stacles scattered around in the environment.

We would like to use reinforcement learning for computing a high-level

planner for the drone. We assume that the drone has a low-level controller

that satisfies the tracking property (Definition 2), that is, it can effectively

track the goals set by the planner within some tolerance.

4.1 Drone (Agent) Model

The drone is a quadcopter that has been outfitted with a water tank of

limited capacity. Its flight dynamics adhere to those outlined in [15, 44] and

are described below.

4.1.1 Drone dynamics model

The drone’s state space is Sa = R9 × {Emp,Full}. Let r = [x, y, z]T be the

position of the center of mass in R3, ṙ its velocity, r̈ its acceleration, m the

mass, c the gravitational acceleration, e3 = [0, 0, 1]T , φ the roll angle, θ the

pitch angle, ψ the yaw angle, w ∈ {Emp,Full} the state of the water tank if its

empty or full, γ the thrust input, and ω = [ωx, ωy, ωz]
T the body rotational

rates control input. The drone state vector would be sa = (r, ṙ, θ, φ, ψ, w)

and its control input would be (γ, ω). Its dynamics then follows the following

21

differential equation:

r̈ = ce3 +
1

m
Je3γ,

where J is the rotation matrix from the body frame to the world frame and

is defined as follows:

J =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 ,
and cθ and sθ correspond to cos θ and sin θ, respectively. Moreover,

φ̇

θ̇

ψ̇

 =


1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)

ω.
The control input is the sum of a feed-forward and feed-back control inputs

described below.

4.1.2 Feed-forward controller

As stated in [15], the drone dynamics are differentially flat with flat out-

put η = [rᵀ, ψᵀ]ᵀ. That means that the state q and the control (γ, ω) can

be represented as an algebraic function of [η, η̇, η̈,
...
η]. Given a three times

differentiable desired trajectory ηd = [rᵀd, ψ
ᵀ
d]

ᵀ ∈ C3 that we want the drone

state to follow, one can derive the feed-forward controller to get:

γff = −m ‖r̈d − ce3‖ , and
ω1,ff

ω2,ff

ω3,ff

 =


1 0 sin(θd)

0 cos(φd) sin(φd) cos(θd)

0 − sin(φd) cos(φd) cos(θd)

 ,
where θd = atan2(βa, βb), φd = atan2(βc,

√
(β2

a + β2
b)), βa = ẍd cos(ψd) −

ÿd sin(ψd), βb = −z̈d + c, and βc = ẍd sin(ψd) + ÿd cos(ψd) [15]. The desired

trajectory is computed based on the drone initial state sa ∈ Sa and its goal

state s′a ∈ Sa.

22

4.1.3 Feed-back controller

The feed-forward controller designed using differential flatness may not be

sufficient as there may be modeling and tracking errors. These would be han-

dled using a feed-back controller that aims to minimize the distance between

the desired and actual trajectories. The components are as follows:

γfb = Kp〈Je3, rd − r〉+Kd〈Je3, ṙd − ṙ〉, and
ω1,fb

ω2,fb

ω3,fb

 = Kp


φd − φ

θd − θ

ψd − ψ

 +Kd


φ̇d − φ̇

θ̇d − θ̇

ψ̇d − ψ̇

 + K̄p


yd − y

xd − x

0

 ,
The control input would be [γff + γfb , ωff + ωfb].

In summary, once a goal state is chosen, a desired trajectory to get there

from the current state is computed, and the dynamics become autonomous

till reaching the goal state as the controller can be considered part of the

dynamics. Finally, the water tank state w has zero dynamics.

Figure 4.1: Illustration of fire-fighting scenario

23

4.1.4 Environment Model

The environment is modeled as a 2-dimensional grid with n cells over a

bounded rectangle (see Figure 6.1). For a 4 × 4 environment n = 16. Each

of the n cells can be in one of eight discrete states (as sensed by the drone,

for instance through satellite imaging):

• FIRE{1,2,3,4} - currently on fire at one of four intensities

• UNLIT{5} - not currently on fire but may catch on fire

• EXTINGUISHED{6} - extinguished fire that cannot be ignited

• OBSTACLE{7} - any type of obstacle for the drone

• WATER{8} - source of water

Hence, the environment state space is Se = [8]n.

Now we describe the environment transition function En. Only a cell with

a FIRE or UNLIT state would change state either because of fire propagation

or because of water thrown by the drone. The fire propagates in the grid

as a 2-dimensional convolution between a 2-dimensional kernel, called an

influence matrix, and the environment. The influence matrix models an

exogenous input like wind and is unknown to learner and the shield, but

its effect on the state can be observed by the learner. More precisely, the

environment update function En is defined as follows: At each cell in the

environment, if it has a state of 5 or less, its updated state is the sum of

the point-wise product between the influence matrix centered at it and the

states of the cells of the environment while considering the state of any cell

with a state larger than 4 as zero. Cells with states larger than 5 are kept

unchanged.

In this thesis, we implemented our approach to only handle static obstacles;

however, moving obstacles with (possibly nondeterministic) models could

also be captured in En.

4.1.5 The System as a Hybrid Automaton

In this section, we will define all the sets and maps of the hybrid automaton

H in Definition 1 for this case study except Sh and Le, which will be discussed

separately in Chapter 5.

24

First, each grid cell of the environment is considered a goal. Hence, the

goal set G is [n]. Moreover, the observation map Obs : Sa → Oa := [n] ×
{Emp,Full} maps any drone state sa ∈ Sa to the cell in the environment grid

that the drone is currently in and its water tank state. The set of planners P
we consider is the set of all functions (to be implemented as neural networks)

that take as input the observed drone state oa ∈ Oa and the state of the

environment se ∈ Se and output a cell in [n] that the drone should go to.

This set of planners ignores the current goal from the computation of a new

one. We will further restrict this set to be networks with fixed architecture

in Section 6.3. Overall, the state space of H is Q = R9 × {Emp,Full} × [n]×
{[n] ∪ ⊥} × [n]× P .

The Grd is defined as follows: For each goal/cell g ∈ G, Grd(g) is an

axis-parallel hyperrectangle in R9×{Emp,Full} with the first two dimensions

being a rectangle centered around the center of the corresponding cell.

The agent-environment joint update function AE is defined as follows: If

the cell is a source of water, w gets mapped to Full while the environment

state does not change. If the drone has w = Full and it resides in a cell with

a state of FIRE of intensity larger than 1, w gets mapped to Emp and the

cell fire intensity is decreased by 1. If instead the cell has a fire intensity of

1, it gets mapped to EXTINGUISHED state. For all other states, neither

the drone nor the environment state changes. The initial set of states Θ is

the set of all states with sa ∈ ∪g∈GGrd(g) and an environment state se with

a single cell with a FIRE state and at least one source of water.

25

Chapter 5

FORSHIELD FRAMEWORK

In this chapter, we describe our approach FoRShield for implementing Sh and

Le. There are two main challenges that an implementation of a Sh should

tackle: (a) the agent has continuous-time possibly nonlinear dynamics as

the drone of Section 4.1, and (b) many states of the agent map to the same

observed state.

A shield Sh when called on an observed state o ∈ O and a goal g ∈ G

should check if any execution fragment of H (continuous dynamics of the

agent and the discrete dynamics of the environment) can lead to unsafe states

(U), starting from any state in Obs−1(o), and anytime before the fragment

reaches Grd(g).

5.1 Algorithm for Shield

Let Q0 ⊆ Q and assume that all q ∈ Q0 have q.G = g, for some g ∈
G. The set of reachable states by executions starting from Q0 till the

first planner transition, i.e., till all executions reach Grd(g), is denoted by

GoalReachH(Q0, g). If the set of agent states Qa,0 in Q0 is compact, there

exists a T > 0 such that all executions starting from Q0 would have reached

their first pln transition. Then, ReachH(Q0, T) ⊇ GoalReachH(Q0). Note that

GoalReachH(Q0) does not depend on the planner part of the states and all

of its states have the same goal. Only the environment and agent states are

the important information that are sought from computing such a set. More-

over, the dynamics of the agent and the environment are independent from

each other in this set since they are only updated in a pln transition. Hence,

one can compute the set of reachable states by the agent independently from

those of the environment.

We introduce our approach that implements the Sh using reach set com-

26

putation. For any oa ∈ Oa, se ∈ Se, g ∈ G, and p ∈ Pl, let Q0 be the set of all

states q with q.Sa ∈ Obs−1(oa), q.Se = Se, q.G = g, and arbitrary planners.

To check the safety of having goal g at observed state (oa, se), one would com-

pute GoalReachH(Q0). If it intersects U , it would return unsafe resembling

the goal is unsafe. Otherwise, it would return safe. However, computing

reach sets in all forms is computationally hard in general. Fortunately, there

are several libraries and tools that can robustly over-approximate bounded

time reach sets for nonlinear and hybrid models [45, 46, 47, 48, 49, 50, 51].

Sh would over-approximate computations of GoalReachH(Q0) by computing

over-approximations of bounded time reach sets using such tools.

Algorithm 1 Sh implementation

1: input: oa ∈ Oa, se ∈ Se, g ∈ G
2: Fix arbitrary p ∈ P
3: Q0 ← Obs−1(oa)× {se} × {g}, {p}
4: R← Compute over-approximation of GoalReachH(Q0)

5: if R ∩ U = ∅ then

6: return safe

7: else

8: return unsafe

9: end if

As stated in Theorem 1, it can be shown that the hybrid system with a Sh

implemented as above is safe.

Theorem 1. If Sh in H implemented as in Algorithm 1 and initially the

goal is safe, that is, for all q ∈ Θ, Sh(Obs(q.Sa), q.Se, q.G) = safe, then the

overall hybrid system H is safe (with respect to U).

Proof. The bounded-time reachable set computation tool used in FoRShield

is assumed to be sound. In other words, the set it computes should contain

all states that can be reached in the bounded time. Using FoRShield, every

goal executed by H is safe. FoRShield ensures that all possible executions

given the current observed state will reach the Grd of the approved goal

without intersecting with U . Consider any execution α of H. There will be

no state in the prefix of α before the first pln transition that intersects U

by the assumption of the theorem that Sh returned safe and FoRShield over-

approximates the reach set till reaching the first pln transition. By induction

27

on the pln transitions of α, consider any such transition and assume that there

was no state reached by α before that belongs to U . Then, if Sh returned

safe on the proposed goal by the new planner, there will be no state reached

by α that belongs to U till the next pln transition by the assumption that

the computed set by FoRShield solver over-approximates the reach set till the

goal is achieved. If it returned unsafe, the goal would be set to ⊥. Moreover,

a sequence of repln transitions would occur till a planner that provides a goal

that is checked by Sh to be safe is reached. During these transitions, the

agent and environment state would not change. Hence, it will be safe by the

induction assumption. Once the planner with the checked goal to be safe is

reached, the execution will be safe till the next pln transition by, again, the

fact that the computed set by FoRShield over-approximates the actual reach

set.

5.2 Faster Unsound Approaches

We introduce two alternative approaches that are computationally more ef-

ficient but less accurate than Algorithm 1. These alternatives will serve as

baseline comparison points for our experiments.

• Sim. Given an observed agent state oa ∈ Oa, environment state se ∈ Se,
and a goal g ∈ G, we choose an arbitrary sa ∈ Obs−1(oa). Then, we

forward simulate (Sim) the state using E for the environment state and

by solving the O.D.E in Equation 3.1 till it reaches Grd(g) or U for the

agent state. If U has been reached, Sh reports unsafe, otherwise, safe.

• Line. Given the current agent state sa choose an arbitrary s′a ∈ Grd(g)

and connect sa and s′a by a straight line. The environment state is still

evolved using E . If the straight line along with the environment state

intersects U , Sh would report unsafe, otherwise, safe.

Both approaches are not sound: they may report safe for unsafe execu-

tions and vice versa. However, they are usually much faster than computing

reachsets.

28

5.3 Shield and Learner Implementation Pragmatics

FoRShield can be implemented in two ways. The first way aims to improve

time efficiency at run time. FoRShield would do all the computations offline.

Specifically, for any pair of goals g, g′ ∈ G, an over-approximation of the

GoalReach with initial set of the agent being Grd(g) and goal being g′ is

computed offline. Also, for each initial goal in Θ, an over-approximation

for the reach set with initial set being the set of states in Θ with that goal

is computed. All the results of the computations are cached. During run

time, whenever Sh is called, FoRShield would propagate the dynamics of the

environment using E and use the corresponding cached reach tube of the

agent to check if they intersect U .

The second way is the default way. No computations happen offline. In-

stead, whenever Sh is called, FoRShield would compute the reach tube of the

agent dynamics and propagate the environment dynamics using E and then

checks the intersection with U .

Furthermore, for the Le end, we would design a reward function that maps

the observed state and goal to a scalar. Then, we use a reinforcement learn-

ing algorithm to update the current planner based on the reported reward.

In repln transitions, a −∞ reward is reported so that ln would change the

planner to not choose that goal again since it is unsafe.

29

Chapter 6

EXPERIMENTAL RESULTS AND
IMPLEMENTATION DETAILS

In this chapter, we present the experimental results and discuss the imple-

mentation of FoRShield. Section 6.1 presents five different instances of the

fire-fighting case study introduced in Chapter 4. Experimental results of

the application of FoRShield to all the scenarios are discussed in Section 6.2.

Lastly, the implementation for FoRShield is detailed in Section 6.3.

6.1 Scenarios

Each of the five scenarios tested against FoRShield is described below.

6.1.1 Scenario 1

In the scenario illustrated in Figure 6.1, the drone starts out in the upper

left-hand corner of the 4 × 4 environment at (0, 0). There is a water source

located in the upper right-hand corner at (0, 3). There is a single stationary

fire of intensity 4 in the lower left-hand corner at (3, 0). A single obstacle

stands in the direct path between the water source and the fire at (1, 2). To

solve this scenario, the drone has to learn how to avoid the obstacle in at

least one additional step.

30

Figure 6.1: Scenario 1

6.1.2 Scenario 2

This scenario, illustrated in Figure 6.2, is the same as Scenario 1 but now

the initial fire of intensity 4 at (3, 0) spreads rightward across the bottom.

The ideal solution to this scenario is to put out the fire that will spread to

(3, 1) to prevent the fire from spreading further and incrementally put out

the original fire.

Figure 6.2: Scenario 2

31

6.1.3 Scenario 3

In the scenario illustrated in Figure 6.3, the drone starts out in the upper

left-hand corner of the 4 × 4 environment at (0, 0). There is a single water

source located in the upper right-hand corner at (0, 3). There is a single

stationary fire of intensity 4 at (3, 2) surrounded by multiple obstacles that

block the direct path between the fire and the water. This scenario is similar

to Scenario 1 but requires either 2 or 3 hops between the fire and the water

depending on the dynamics of the agent.

Figure 6.3: Scenario 3

6.1.4 Scenario 4

In the scenario illustrated in Figure 6.4, the drone starts out in the upper left-

hand corner of the 4×4 environment at (0, 0). There is a single water source

located in the upper right-hand corner at (0, 3). There is a fire of intensity 4

at (3, 2) that spreads leftward across the bottom row. This scenario is a more

complicated version of Scenario 2 because similar to Scenario 3, it requires

extra actions by the agent each time it moves between the fire and water.

The best solution to this scenario is for the drone to again put out the fire

that spreads to (3, 1) first to prevent the fire from spreading to (3, 0) and

then incrementally put out the original fire at (3, 2).

32

Figure 6.4: Scenario 4

6.1.5 Scenario 5

In the scenario illustrated in Figure 6.5, the drone starts out in the upper

left-hand corner of the 4 × 4 environment at (0, 0). There is a single water

source located in the upper right-hand corner at (0, 3). There are three

obstacles that line the rightmost column underneath the water source. A fire

of intensity 4 starts at (1, 2) and spreads in two directions, downward and

leftward. This is by far the most complicated scenario with the largest state

space because the majority of cells may be affected by the fire spread. The

optimal solution is to put out the spreading fire at (1, 1) and (2, 2) first to

prevent the fire from spreading to any other cells and then incrementally put

out the original fire.

33

Figure 6.5: Scenario 5

6.2 Experimental Results

We evaluated the FoRShield approach presented in Chapters 3 and 5 against

five instances of the fire-fighting case study described in Chapter 4. For each

of the instances, we compare FoRShield with two other methods introduced

in Section 5.2, to demonstrate the efficacy of FoRShield in controlling a drone

safely around obstacles and achieving the mission target.

The data from these experiments are shown in Tables 6.1 and 6.2. All

experiments were run on a laptop equipped with an Intel Core i5-6200U

CPU and 8 GBs of RAM. The key observations from these experiments are

as follows.

Table 6.1: Run-time results across different scenarios using FoRShield (FSh),
line simulation (Line), and forward simulation (Sim)

Experiments

Scenarios
Verification time (hh:mm:ss) Training time (hh:mm:ss)

Line Sim FSh Line Sim FSh

Scenario 1 00:07:57 00:05:35 00:21:40 01:16:16 00:54:43 02:09:41

Scenario 2 02:36:58 09:56:31 00:21:40 15:42:58 15:29:51 05:05:29

Scenario 3 01:45:39 01:42:50 00:21:16 02:14:13 02:03:22 08:54:06

Scenario 4 03:40:38 03:02:17 00:07:16 07:32:20 04:13:00 04:42:26

Scenario 5 - - 00:12:44 - - 187:02:49

34

Table 6.2: Trajectory and verification results across different scenarios
using FoRShield (FSh), line simulation (Line), and forward simulation (Sim)

Experiments

Scenarios
Total verifications Unsafe verifications Unsafe trajectories

Line Sim FSh Line Sim FSh Line Sim FSh

Scenario 1 26431 18809 256 4334 2851 132 34 20 0

Scenario 2 575934 487482 256* 52878 9301 132* 3560 361 0

Scenario 3 68929 56071 256 14343 10452 195 2792 1136 0

Scenario 4 244611 136335 256 15682 11080 156 4 397 0

Scenario 5 - - 256 - - 109 - - 0

Learned planners are near-optimal. Across all the scenarios except

for the last one, FoRShield learned near-optimal planners if not an optimal

planner, completing the mission target of putting out the fire in the shortest

time possible. In fact, both the unsound strategies, Line and Sim, also found

near optimal planners. The scenarios used in these experiments are small

enough that the optimality of the strategies can be derived empirically, but

these results will carry-over to more complicated scenarios as well. In order

for the RL algorithm to maximize the total reward per episode, it inherently

needs to converge to a policy with minimal time.

The introduction of a fire propagating in two directions in Scenario 5

greatly increased the state space of the problem. In Scenario 1, the complete

state space is 5×42×2 = 160 where 5 is the number of states the burning cell

may take, 42 for the current location of the agent in the environment, and 2

to indicate whether the agent has any water. In contrast, in Scenario 5, the

state space blows up to slightly less than 59 × 42 × 2 = 62, 500, 000 due to

the increase in cells that may catch fire. Due to the predefined episode limit,

the agent was unable to learn a viable policy to extinguish a fire; however,

if the agent was allowed to train sufficiently longer, it would have definitely

discovered an optimal policy as indicated by the increase in rewards over the

training period.

Execution of Line against Scenario 5 was attempted but the learning pro-

cess eventually halted as it became stuck in particular episode and did not

make any progress after one day. Due to this issue, Sim was not run against

Scenario 5. Even though neither of these strategies were tested, it can be

expected that similar results would be achieved as prior scenarios.

35

Safe RL with FoRShield is feasible. FoRShield always performed the

smallest number of verifications and encountered the minimal number of un-

safe verifications because it cached its reach-set computations, whereas Line

and Sim are necessarily online methods and verified every action the agent

performed. Additionally, as expected, FoRShield completely eliminated the

risk of the agent ever performing any unsafe actions during training while

this was not the case for Line and Sim where multiple unsafe actions were

taken.

FoRShield’s total running time decreases with scenario complexity.

The verification running time of FoRShield remains mostly constant across

all the scenarios. The decrease in verification time for later scenarios can

be attributed to an increase in unsafe cells which reduces the number of

times refinement computations are necessary. Compared to the Line and Sim

strategies, FoRShield tends to be slower for simpler scenarios where verify-

ing the environment takes longer than just running verifications online with

each action execution, but this trend reverses for more complex examples

where many more actions are performed. By caching its verification results,

FoRShield just does simple look-ups to check whether a particular action is

safe to execute.

In general, it is difficult to make any comparisons in training time across

the three strategies because the time is highly correlated with initialization

of the networks which is random. This may explain the enormous differences

in training times particularly in Scenarios 2 and 3. In order to make a fair

comparison, it would be necessary to rerun all the strategies for each of the

Scenarios multiple times.

6.3 Implementation Details

The FoRShield framework—the shield, environment, agent, and learner—

is implemented in Python and uses a variety of modules such as Numpy,

TensorFlow, and OpenAI Gym to name a few. FoRShield and the Sim method

both utilize DryVR [52] as a verification back-end to simulate the continuous

dynamics of the drone model while Line uses a simple intersection algorithm.

The fire-fighting environment and learner were both derived from existing

36

implementations and modified accordingly for the specific requirements of

the framework.

For all our experiments, the learner is an instance of an actor-critic al-

gorithm. Our implementation of the algorithm uses two separate networks,

one each for the actor and the critic. Both the actor and critic networks are

described in more detail below.

The actor network is a 4-layered fully connected neural network with 256

nodes in the first hidden layer, 128 nodes in the second hidden layer, 64

nodes in the third hidden layer and a variable number of nodes in the output

depending on the dimensions of the environment. Each of the hidden layers

is equipped with the ReLu function and the output layer utilizes the softmax

function. Given an environment of size (r × c), the output layer has a total

of r+ c nodes of which r nodes correspond to selecting a particular row and

c nodes correspond to selecting a particular column. Each set of r and n

nodes utilizes its own softmax function to compute a particular coordinate

destination that the agent should navigate to.

The critic network is a 3-layered fully connected neural network with 128

nodes in the first hidden layer, 64 nodes in the second hidden layer, and a

single node in the output layer. Each of the hidden layers is equipped with

the ReLu function, and the output layer uses a plain linear function.

To create a modular system, the framework separates each of the major

components into individual modules that are linked together in the experi-

ment section.

Figure 6.6: Modular software architecture

Similar to the pre- and post- placements of the shield in [34], the veri-

fication of the environment can happen in three distinct locations: before

(pre-), during (peri-), or after (post-) the training of the fire-fighting pol-

icy by the agent. In the above experiments, the FSh approach utilized the

37

pre-verification algorithm while Line and Sim utilized the peri-verification al-

gorithm. Following are a brief explanation and diagram for each algorithm.

6.3.1 Pre-verification Algorithm

In this setup shown in Figure 6.7, the environment is verified beforehand and

the results are cached into either a data-structure or file. During training,

only a simple lookup is required to get the results.

Figure 6.7: Diagram of the pre-verification algorithm

Suppose that at time t, the algorithm has just completed a single iteration

of training and is about to begin the next one. The training loop then runs

as follows:

1. The state at time t, st, is fed into the actor network.

2. The actor network processes st and proposed an action at that is sent

to the environment.

3. The environment checks whether the proposed action is safe against

cached verification results. If the action is safe, it is executed and the

environment is updated accordingly; otherwise no action is taken and a

large negative reward is output. In either case, the environment returns

the next state st+1 and the reward rt to the critic.

38

4. The critic computes an advantage at using st, st+1, and rt. This ad-

vantage is used to compute the loss function to update both the actor

and critic networks.

6.3.2 Peri-verification Algorithm

In this setup shown in Figure 6.8, the environment is verified online during

training. Each time the agent proposes an action, the action will first be

verified to check its safety.

Figure 6.8: Diagram of peri-verification algorithm

Suppose that at time t, the algorithm has just completed a single iteration

of training and is about to begin the next one. The training loop then runs

as follows:

1. The state at time t, st, is fed into the actor network.

2. The actor network processes st and proposes an action at that is sent

to DryVR to verify whether the action is safe.

3a. If DryVR verifies the proposed action to be unsafe, a large negative

reward is passed to the environment.

39

3b. If DryVR verifies the proposed action to be safe, the action passes

through to the environment.

4. In either of the previous cases, the environment returns the next state

st+1 and the reward rt to the critic.

5. The critic computes an advantage at using st, st+1, and rt. This ad-

vantage is used to compute the loss function to update both the actor

and critic networks.

6.3.3 Post-verification Algorithm

In this setup shown in Figure 6.9, a policy is first learned by the agent. Once

the full training phase has completed, the resultant policy is verified to check

whether it violates any safety constraints. If any action is unsafe, that action

is marked as unsafe and the agent will relearn a completely new policy.

Figure 6.9: Diagram of post-verification algorithm

Suppose that at time t, the algorithm has just finished verifying a policy

and determined that the policy is unsafe.

1. A policy is learned in the training phase similarly as in pre-verification

but the only cached verification results are the concatenations of the

previous results from the verification phase.

2. Once a policy has been learned in the training phase, it is passed to the

verification phase to check whether any of the actions in the policy vio-

late any safety constraints. If so, then violating action will be recorded

in the cached results and a new policy will be learned with new addi-

tion in mind; otherwise, the algorithm will terminate and output the

learned policy.

40

Chapter 7

CONCLUSION AND FUTURE WORK

As machine learning becomes an integral part of CPS products, it will become

necessary to develop methods for specifying hard safety constraints that these

systems must not violate and for verifying their correctness. Researchers have

started focusing their attention on this issues as outlined in the first chapter.

In this thesis, we introduced FoRShield, a step toward realizing such meth-

ods. FoRShield is a framework for learning safe and near-optimal policies,

particularly for agents with nonlinear continuous dynamics. We developed a

formal specification of this framework and illustrated its use in a fire-fighting

case study. Our experiments demonstrate that FoRShield is a viable approach

capable of functioning in environments with large state spaces. We have pre-

liminary results showing that FoRShield can discover nontrivial strategies for

putting out a moving fire around obstacles.

There are multiple directions to explore within the FoRShield framework.

The first is to improve the learning algorithm to be able to handle more com-

plex environments. Although the current implementation is able to handle

relatively complex environments as demonstrated in the experiments, it takes

a long time to learn optimal policies. The second direction is to increase the

complexity of the discrete environment dynamics to include events such as the

depletion of water source(s) and movement of obstacles. Along these lines,

the formal framework can be extended to handle environments that evolve

according to continuous dynamics rather than just the discrete ones. Such

a modeling scheme would allow us to capture more real-world scenarios. A

third direction is to study strategies for coordinating multiple agents toward

a shared mission target. Developing safe coordination techniques would be

applicable to examples such as intersection crossings of autonomous vehicles

with minimal wait time.

A closely related research direction that is worth exploring is multi-objective

reinforcement learning (MoRL). In MoRL, agents attempt to learn policies

41

that necessarily optimize for multiple, possibly contradicting, objectives. De-

pending on the problem, safe RL can be framed as a MoRL problem, where

the agent is trying to maximize its safety (or alternatively, minimize its risk)

while simultaneously maximizing some reward. Current MoRL theories can-

not handle objectives that are non-linearly related and can only handle linear

combinations of multiple objectives. Any developments in this area would

be a boon for RL, particularly safe RL.

42

REFERENCES

[1] D. Wakabayashi, “Self-driving uber car kills pedestrian in ari-
zona, where robots roam,” https://www.nytimes.com/2018/03/19/
technology/uber-driverless-fatality.html.

[2] “Tesla car that crashed and killed driver was running on autopi-
lot, firm says,” https://www.theguardian.com/technology/2018/mar/
31/tesla-car-crash-autopilot-mountain-view.

[3] “Uber halts self-driving car tests after death,” https://www.bbc.com/
news/business-43459156.

[4] “Waymo’s self-driving cars have traveled 8 million
miles on public roads,” https://fortune.com/2018/07/20/
waymo-self-driving-cars-8-million-miles/.

[5] “Tesla reaches 10 billion electric miles with a global fleet
of half a million cars,” https://electrek.co/2018/11/16/
tesla-fleet-10-billion-electric-miles/.

[6] http://www.businessdictionary.com/definition/Goodharts-law.html.

[7] https://righthook.io/.

[8] E. W. Dijkstra, “On the reliability of programs,” https://www.cs.utexas.
edu/users/EWD/transcriptions/EWD03xx/EWD303.html, 2005.

[9] “Full self-driving hardware on all cars,” https://www.tesla.com/
autopilot, 2018.

[10] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[11] T. Dreossi, S. Jha, and S. A. Seshia, “Semantic adversarial deep learn-
ing,” arXiv preprint arXiv:1804.07045, 2018.

[12] S. Jha, S. S. Banerjee, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,
“Avfi: Fault injection for autonomous vehicles,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W). IEEE, 2018, pp. 55–56.

43

[13] A. H. M. Rubaiyat, Y. Qin, and H. Alemzadeh, “Experimental re-
silience assessment of an open-source driving agent,” arXiv preprint
arXiv:1807.06172, 2018.

[14] “Ghostriding for the masses.” https://comma.ai/.

[15] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning
of quadrotor dynamics using barrier certificates,” arXiv preprint
arXiv:1710.05472, 2017.

[16] V. A. Papavassiliou and S. Russell, “Convergence of reinforcement learn-
ing with general function approximators,” in IJCAI, 1999, pp. 748–757.

[17] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural Networks for Perception. Elsevier, 1992, pp. 65–93.

[18] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” Journal of Machine Learning Research, vol. 16, no. 1,
pp. 1437–1480, 2015.

[19] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,”
Diploma, Technische Universität München, vol. 91, no. 1, 1991.

[20] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics, 2010, pp.
249–256.

[21] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-
ence on Machine Learning (ICML-10), 2010, pp. 807–814.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009. IEEE Conference on. Ieee, 2009,
pp. 248–255.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolu-
tions,” in Computer Vision and Pattern Recognition (CVPR), 2015.

44

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, p. 529, 2015.

[28] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[29] OpenAI, “Openai five,” https://blog.openai.com/openai-five/, 2018.

[30] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser et al.,
“Starcraft ii: A new challenge for reinforcement learning,” arXiv
preprint arXiv:1708.04782, 2017.

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[32] P. Van Wesel and A. E. Goodloe, “Challenges in the verification of rein-
forcement learning algorithms,” 2017, NASA Langley Research Center.

[33] W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton, X. Yang,
J. Rosenfeld, and T. T. Johnson, “Verification for machine learning, au-
tonomy, and neural networks survey,” arXiv preprint arXiv:1810.01989,
2018.

[34] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” arXiv preprint
arXiv:1708.08611, 2017.

[35] S. Junges, N. Jansen, C. Dehnert, U. Topcu, and J.-P. Katoen, “Safety-
constrained reinforcement learning for MDPs,” in International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2016, pp. 130–146.

[36] N. Jansen, B. Könighofer, S. Junges, and R. Bloem, “Shielded decision-
making in MDPs,” arXiv preprint arXiv:1807.06096, 2018.

[37] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement
learning via policy extraction,” arXiv preprint arXiv:1805.08328, 2018.

45

[38] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the Fourteenth International Conference on Artificial Intelligence and
Statistics, 2011, pp. 627–635.

[39] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Pro-
grammatically interpretable reinforcement learning,” arXiv preprint
arXiv:1804.02477, 2018.

[40] S. Bhupatiraju, K. K. Agrawal, and R. Singh, “Towards mixed optimiza-
tion for reinforcement learning with program synthesis,” arXiv preprint
arXiv:1807.00403, 2018.

[41] B. Gebremichael and F. Vaandrager, “Specifying urgency in timed I/O
automata,” in Software Engineering and Formal Methods, 2005. SEFM
2005. Third IEEE International Conference on. IEEE, 2005, pp. 64–73.

[42] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “The theory
of timed I/O automata,” Synthesis Lectures on Distributed Computing
Theory, vol. 1, no. 1, pp. 1–137, 2010.

[43] S. Mitra, “A verification framework for hybrid systems,” Ph.D. disser-
tation, Massachusetts Institute of Technology, Cambridge, MA 02139,
September 2007.

[44] D. Zhou and M. Schwager, “Vector field following for quadrotors using
differential flatness,” 2014 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6567–6572, 2014.

[45] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An ana-
lyzer for non-linear hybrid systems,” in Computer Aided Verification,
ser. Lecture Notes in Computer Science, N. Sharygina and H. Veith,
Eds. Springer Berlin Heidelberg, 2013, vol. 8044, pp. 258–263.

[46] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable veri-
fication of hybrid systems,” in CAV, 2011, pp. 379–395.

[47] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DryVR: Data-driven
verification and compositional reasoning for automotive systems,” in
International Conference on Computer Aided Verification. Springer,
2017, pp. 441–461.

[48] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2e2: a
verification tool for stateflow models,” in International Conference on
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2015, pp. 68–82.

46

[49] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in C.A.V., 2010.

[50] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reachabil-
ity analysis of piecewise-linear dynamical systems,” in Hybrid Systems:
Computation and Control, ser. LNCS, B. Krogh and N. Lynch, Eds., vol.
1790. Hybrid Systems: Computation and Control, 2000, pp. 20–31.

[51] S. Kong, S. Gao, W. Chen, and E. M. Clarke, “dReach: δ-reachability
analysis for hybrid systems,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
2015, pp. 200–205.

[52] C. Fan, B. Qi, and S. Mitra, “Data-driven formal reasoning and their ap-
plications in safety analysis of vehicle autonomy features,” IEEE Design
& Test, vol. 35, no. 3, pp. 31–38, 2018.

47

