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ABSTRACT

This thesis examines the problem of community detection in a new random

graph model, which is a generalization of preferential attachment graphs.

This model has some features that are more realistic than those of the often-

studied stochastic block model (SBM). A message passing algorithm for com-

munity detection is derived, and multiple simulation results are shown that

demonstrate the efficacy of the algorithm. The algorithm is based on certain

asymptotic properties unique to this model. These properties, some of which

were discovered as part of this work, prove to be useful for other purposes

as well, which are described in this thesis. In particular, a theoretical per-

formance analysis is given for a simple, hypothesis-testing based community

recovery algorithm. This thesis opens avenues to further theoretical analy-

sis of this model, and takes a step toward developing community detection

algorithms with strong theoretical foundations that work well on real-world

networks.
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CHAPTER 1

INTRODUCTION

Community detection, a.k.a. graph clustering, is the task of identifying clus-

ters of vertices in a given graph such that vertices are more densely connected

within a group than across groups. Posed in this manner, it is an unsu-

pervised learning problem, much like clustering in a Euclidean space. The

problem arises in many data mining applications, where the data is in the

form of a network. The prototypical example of community detection is that

of identifying groups of like-minded people in a social network (for exam-

ple, distinguishing between people practicing science, arts or business). This

information would be of use for sociological studies, and also for commer-

cial exploitation by social media companies. In some cases, the underlying

network may have many vertices that do not belong to any cluster. For ex-

ample, in a citation network, the set of papers on community detection form

a densely clustered subgroup among all papers with the phrase “community

detection”, where the outliers are papers that simply mention the term in

passing. The popular review article by Fortunato [1] lists many applications,

and also gives examples of popular data sets.

Figure 1.1: The task of community detection: separating groups of vertices
into densely connected subgroups (figure from [2])
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Figure 1.2: A social network formed from a single person’s friends, with
communities marked in colors; friends from school, friends from college,
spouse’s friends, etc. (figure from [3])

Because of its practical interest, a vast number of algorithms have been

proposed for community detection. To analyze the performance of these

algorithms, improve them, and eventually specify optimal algorithms requires

mathematical modeling and probabilistic reasoning. Community detection is

therefore of interest from a theoretical standpoint, and is a topic of research in

both theoretical computer science as well as statistics. The recent review by

Moore [4] explains the different viewpoints adopted by different fields. In this

work, we adopt an approach that is more popular in the statistics community,

which is to study random graph models with planted communities.

1.1 Random graph models

There are two advantages of adopting a random graph model. First, the

model specifies the ground truth community structure, which allows us to

evaluate the performance of any algorithm in terms of the number of ver-

tices that were correctly classified. (In contrast, the min-bisection formula-

tion does not lead to this natural error metric.) Such data is typically not

available for practical data sets. Second, if one is able to show that an al-
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gorithm achieves a certain performance with high probability (w.h.p.), then

that characterizes the algorithm’s performance for a large number of graphs

(the typical graphs of the model). This is another desirable property, that

gives some performance guarantee on unseen graphs.

The described advantages also come with its set of disadvantages. An

algorithm that is shown to be optimal for a certain random graph model

may not work well for a graph generated by a different model. In practice,

there is no concrete way to determine whether a given graph was generated

according to a random graph model or not. There are two ways to tackle

this problem: Develop algorithms that are robust to variations in the model,

or study random graph models that are more realistic.

1.1.1 Stochastic block model

By far, the most popular (as well as the simplest) random graph model with

planted communities is the stochastic block model (SBM). To generate a

graph with two equal-sized communities, one begins with a set of n vertices,

and randomly assigns a label ` P t1, 2u to every vertex. Having assigned the

labels, between any two pairs, an edge is placed with probability p if the two

vertices have the same label, and probability q if the vertices have different

labels. Usually, we choose p ą q to reflect the fact that entities (people) in

the same community are more likely to be connected/linked than those in

different communities. A description of the general SBM with any number

of communities of possibly different sizes is given in [2]. Given the model,

one can generate graphs that have an inherent community structure in them.

The task of community detection is to recover the labels from the graph.

The SBM has been analyzed extensively in the literature. Many different

algorithms have been proposed, many of which have theoretical guarantees

of exactly recovering the communities with high probability for large graphs

(e.g., [5], [6]). We review some of these algorithms in Section 1.2.

1.1.2 Preferential attachment graphs

The preferential attachment (PA) random graph model was proposed by

Barabasi and Albert in [7] as a more realistic model of real-world networks
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than the Erdos-Renyi model. It describes a random graph that grows with

time, as new vertices are added sequentially. At every stage, the new ver-

tex chooses a fixed number of neighbors to attach to, within the existing

graph (say m). A probability distribution over the vertices is constructed

such that the probability of choosing any vertex is proportional to its de-

gree. The neighbors are then chosen by sampling with replacement from this

distribution m times.

A striking feature of this model is that the graphs have a heavy-tailed

degree sequence (in the asymptotic limit). This feature is absent in the

Erdos-Renyi model. Loosely speaking, this means that there exist a few

vertices whose degree is much larger than the average degree. Such a feature

is indeed exhibited in real-world networks such as the web, or in citation

networks/social networks. This can be intuitively understood as a fallout

of the rich-get-richer phenomenon in the model; vertices that have a high

degree at a certain instance are more likely to attract newer vertices than

others, and hence their degree is likely to grow even further. This property

was first proven rigorously in [8], and is also explained in detail in the book

by Van Der Hofstad [9].

1.1.3 Preferential attachment graphs with planted
communities

Much like an Erdos-Renyi graph, the SBM does not have a heavy-tailed

degree distribution. In order to develop community detection algorithms

that are likely to succeed in real-world networks, it is necessary to study

models that have more realistic features. With this aim, we study a model

that incorporates community structure within PA graphs, in much the same

way as the SBM incorporates communities within Erdos-Renyi graphs. Such

a model was first proposed by Jordan in [10], in the context of geometric

random graphs. The problem of community detection was not studied in

this paper. This is the problem that we study in this thesis.
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1.2 Algorithms for community detection

In this section, we briefly describe a few algorithms that have been proven

to work well for community detection in the SBM.

1.2.1 Semi-definite programming

Given a graph generated according to a particular model, the task of finding

the labels of the vertices (communities) is an inference problem. The edges

(i.e., the graph) is the observed data, and the labels are the unknown pa-

rameters, with known prior distribution. In such a scenario, to minimize the

probability of error, the best technique is to use the MAP estimator. For

any problem, finding the MAP estimator is an optimization problem. For

the case of two equal-sized communities, the MAP estimator is the same as

finding the minimum bisection of the graph (to partition the vertices into

two equal sets such that the number of edges across the sets is minimized).

This is well known to be an NP-hard problem. However, it is possible to

re-write the problem as a real-valued optimization problem, and then relax

certain constraints so as to make it a semi-definite program. Semi-definite

programs can be solved in polynomial time. Hajek et al. [5] show that the

convex relaxation is tight, and gives exact recovery whenever it is statistically

possible.

1.2.2 Spectral methods

The key idea behind spectral methods (for the SBM) is that the expected

value of the adjacency matrix of the graph has a low-rank structure, and

whose principal components give information about the communities. The

expected adjacency matrix is thus the signal of interest. The actual adjacency

matrix is treated as a perturbed version of its expected value. In other words,

the true adjacency matrix is the sum of its expected value and a noisy matrix.

Loosely speaking, if the noise levels are not too high, the eigenvectors of the

perturbed matrix should be close to the eigenvectors of the clean signal, and

should thus contain sufficient information about the communities. See [11]

as an example of work done along this direction.
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1.2.3 Belief propagation

Belief propagation is a general technique/algorithm to solve inference prob-

lems, especially when there are many latent random variables involved. The

algorithm is best known in the context of probabilistic graphical models,

where random variables are denoted by edges of a “factor graph”, and de-

pendencies between them are represented via edges. The algorithm takes

advantage of the conditional independence between the random variables,

in order to compute the MAP estimator efficiently. The algorithm is guar-

anteed to converge to the best estimator if the underlying graph is a tree.

In the context of community detection, the given graph itself captures the

underlying dependencies in the following manner: the label of one vertex in-

fluences (and is influenced by) the number of neighbors it has and the labels

of its neighbors, but is conditionally independent of any other vertex label

given the labels of its neighbors. Belief propagation algorithms can also be

theoretically analyzed, as shown in [12].
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CHAPTER 2

THE RANDOM GRAPH MODEL

We begin this chapter by describing the generative random graph model that

we study: preferential attachment graphs with planted communities. This

model was first proposed by Jordan in [10]. We first describe the model in

the most general setting, where it may include any finite number of com-

munities, possible of unequal size. We then describe the parameters for two

special cases that are most studied in the literature; that of two equal-sized

communities and that of a single community with outliers. Having described

the model, we present a fundamental property about the model that greatly

simplifies subsequent analysis. This result is also from the paper by Jordan

[10]. Finally, we describe and analyze the “degree-growth process”, which

serves as a tool for community detection as well as to describe the degree

sequence of the graph.

2.1 Model description

The random graph model that we study describes the growth of a labeled,

directed graph with time. Equivalently, the model describes a sequence of

directed graphs tGt : t P Nu and labels t`t : t P Nu. Gt`1 is built by adding a

new vertex and a few connecting edges to Gt, in much the same manner as

in the original preferential attachment graph. The only difference is in the

manner in which the neighbors of the new vertex are chosen. To describe the

evolution of this process more precisely, we need the following parameters:

• r ě 1: number of possible labels; labels are selected from rrs

• ρ = pρ1, . . . , ρrq: probability vector for selection of labels of added

vertices

• m ě 1: out degree of each vertex
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• β P Rrˆr: matrix of strictly positive affinities for vertices of different

labels; βuv is the affinity of a new vertex with label u to an existing

vertex of label v

• t0 ě 1: initial time

• Gt0 “ pVt0 , Et0q: initial directed graph with Vt0 “ rt0s and mt0 directed

edges

• T ě t0: final time

Given the labeled graph Gt, the graph Gt`1 is constructed as follows:

1. The vertex t ` 1 is added and its label `t`1 is randomly selected from

rrs using distribution ρ, independently of Gt.

2. The m vertices in Vt “ rts are selected using sampling with replacement

according to a distribution ft on rts. The distribution ft is proportional

to the degree of the vertices and is weighted based on the affinity matrix

β (this is the key difference from the standard preferential attachment

model).

3. The m directed edges are added, with tails at vertex t ` 1 and with

heads attached to the vertices chosen in step 2.

Figures 2.1-2.3 provide an illustration for these three steps.

In this model, vertices are referred to by their time of arrival. Let τ be

some vertex in the graph, and consider a time point t ě τ . Let the degree

of τ at time t be denoted by Y τ
t . When vertex t ` 1 arrives, each edge

from t ` 1 attaches to vertex τ with probability proportional to Y τ
t β`t`1`τ .

Therefore, the number of edges from vertex t ` 1 to τ is a random variable

with distribution:

L
`

# edges between pt` 1, τq|Gt, `r1,t`1s

˘

“ Binom

ˆ

m,
β`t`1`τY

τ
t

ř

τ 1 β`t`1`τ 1
Y τ 1
t

˙

(2.1)

L stands for probability law or probability distribution.

Remark 1. For concreteness, one may assume that the initial graph has one

vertex with m self-loops, and its label is chosen randomly with distribution ρ.

However, all the asymptotic results are independent of the initial graph.
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Figure 2.1: New vertex arrives

Figure 2.2: Label is randomly assigned to the new vertex

Figure 2.3: New vertex attaches to existing vertices using preferential
attachment rule
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A graph with two equal-sized communities can be created by choosing the

parameters r “ 2, ρ “ p0.5, 0.5q, β “

«

b 1

1 b

ff

, where b ą 1. The parameter

m dictates the sparsity of the graph, and can be an arbitrary finite number

(usually chosen to be much smaller than the size of the graph, T ).

A graph with a single community with outliers can be created by choosing

the parameters r “ 2, β “

«

b 1

1 1

ff

, where b ą 1. The parameter ρ dictates

the size of the community. As above, the parameter m dictates the sparsity

of the graph.

Having described the model, we move on to studying its characteristics.

As mentioned earlier, the above model has features of both the PA model

and the SBM. Thus, two properties that we expect in the model are:

1. a heavy-tailed degree sequence, like the PA model

2. existence of algorithms that (at least) partially recover the communi-

ties, as in the SBM

The heavy-tailed degree sequence property was proven in [10]; we only

quote the result here and give empirical evidence in Section 2.5. This thesis

focuses on the community detection aspect. We develop a message passing

algorithm for community detection, and demonstrate empirically that it per-

forms partial recovery. The algorithm and its derivation is given in Chapter

4, and the simulation results are given in Chapter 5. Before we proceed,

however, we discuss a few basic results in the rest of this chapter that prove

useful for further analysis.

2.2 Half-edges and their convergence

To analyze preferential attachment graphs, it is helpful to have a notion of

a “half-edge” (see, e.g., [8]). In any graph, each edge is composed of two

half-edges, one attached to each vertex the edge is incident on. Therefore,

the degree of a vertex is the number of half-edges attached to it. In the

PA model, the affinity to larger degree vertices can be viewed in terms of a

tendency of an existing half-edge to attract newer half-edges. At every epoch,

there are m new half-edges. Every incoming half-edge has an equal affinity
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toward existing half-edges. In other words, it chooses a partner half-edge

uniformly at random (with probability 1{2mt).

In preferential attachment graphs with labels, each half-edge inherits the

label of the vertex it is incident upon. Given the labels, the affinity between

half-edges is no longer uniform; they are weighted by a factor βuv, where

u, v are the labels of the new and existing half-edges respectively (hence β

is called the affinity matrix). Moreover, the exact probability of attachment

depends upon how many half-edges of each type there are at that point of

time, which makes analysis difficult.

Suppose the labels of all vertices of Gt are known. Let the fraction of half-

edges with label v in Gt be ηv,t. The probability that an incoming half-edge

with label u attaches to an existing half-edge with label v is θu,v,t
mt

, where

θu,v,t “
βuv

2
ř

v1 βuv1ηv1,t
(2.2)

This follows from the following analysis:

ÿ

τ 1Prts

βu`1τY
τ 1

t “
ÿ

v1Prrs

βuv1

¨

˝

ÿ

τ 1Prts

Y τ 1

t 1`τ 1“v1

˛

‚« p2mtq
ÿ

v1Prrs

βuv1ηv1

Although the above expression is complex, it simplifies significantly in the

asymptotic limit, due to the following result, originally given in [10]:

Proposition 1 (convergence of fraction of half-edges).

ηv,t
a.s.
ÝÝÑ η˚v @ v P rrs

where η˚ ” tη˚v uvPrrs is a probability vector that is determined based on the

parameters ρ, β. (The exact characterization of η˚v is given in [13].)

As an immediate corollary, we have that for large t, the probability that

an incoming half-edge with label u attaches to an existing half-edge of label

v is approximately θu,v
mt

, where

θu,v fi
βu,v

2
ř

v1Prrs βu,v1η
˚
v

(2.3)

and is independent of the labels of the other vertices. This setting is now
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very similar to the PA model, with θu,v replacing 1{2. The parameters θu,v

in this model play a similar role to the parameters pu,v in the SBM.

A rigorous proof of Proposition 1 is given by Jordan [10]. Here, we just give

the outline of the proof. It is shown that the vector tηv,tuvPrrs varies with time

according to a stochastic approximation scheme with decreasing step-sizes.

The stochastic approximation scheme is viewed as a noisy discretization of

an appropriate ordinary differential equation (ODE) [14]. It is shown in [10]

that the underlying differential equation has a unique, globally asymptot-

ically stable (GAS) equilibrium, by constructing an appropriate Lyapunov

function. The convergence of the underlying ODE implies convergence of the

stochastic approximation recursion [14].

2.3 The degree growth process

In this section, we study the degree growth process, i.e., the growth of the

degree of a fixed vertex in the graph with time. Due to the time-evolutionary

nature of the model, the degree is best described as a random process, rather

than a random variable. Obtaining the distribution (or probabilistic descrip-

tion) of the degree of a vertex allows us to establish both the properties

mentioned above:

1. Degree sequence: Characterizing the degree sequence of graph GT is

equivalent to calculating the probability of a vertex picked uniformly

at random among rT s has degree greater than k, for each k. To get this

figure, it is useful to know the probability of the degree of each vertex

τ being greater than k. Studying the degree-growth process gives us

this probability.

2. Community detection: If the time of arrival of a vertex is known,

then the degree of a vertex is simply dependent upon its label. If the

distributions of the degree for different labels are well separated, one

can infer the labels by observing the degree. This is true for the model

of a single community with outliers (but not the case of two equal-sized

communities). Knowing the exact distribution of the degree allows us

to formulate a hypothesis testing problem.
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Having motivated the study of the degree-growth process, we now define

it formally.

Definition 1 (The degree growth process). Given a vertex τ with τ ě t0`1,

consider the process pYt : t ě τq, where Yt is the degree of vertex τ at time t.

Thus Yτ “ m. The conditional distribution (i.e. probability law) of Yt`1´ Yt

given pYt, ηt, `τ “ v, `t`1 “ uq is given by:

LpYt`1 ´ Yt|Yt, ηt, `τ “ v, `t`1 “ uq “ binom

ˆ

m,
θu,v,tYt
mt

˙

(2.4)

where θu,v,t is given by (2.2). It follows that, given pYt, ηt, `τ “ vq, the con-

ditional distribution of Yt`1 ´ Yt is a mixture of binomial distributions with

selection probability distribution ρ:

LpYt`1 ´ Yt|Yt, ηt, `τ “ vq “
ÿ

uPrrs

ρubinom

ˆ

m,
θu,v,tYt
mt

˙

(2.5)

The above probability law essentially follows by rewriting (2.1) using the

notion of half-edges introduced above:

L
`

# edges between pt` 1, τq|Gt, `r1,t`1s

˘

“ binom

ˆ

m,
θu,v,tYt
mt

˙

(2.6)

From Proposition 1, we see that in the asymptotic limit, the parameters

θu,v,t converge to θu,v. Moreover, for large t, the quantity θu,v
mt

is really small.

A binomial random variable with a small p parameter takes values either

0 or 1 with high probability, and can thus be approximated by a Bernoulli

random variable of the same mean. With these considerations, we see that:

LpYt`1 ´ Yt|Yt, ηt, `τ “ vq “
ÿ

uPrrs

ρubinom

ˆ

m,
θu,v,tYt
mt

˙

(2.7)

«
ÿ

uPrrs

ρubinom

ˆ

m,
θu,vYt
mt

˙

«
ÿ

uPrrs

ρuBer

ˆ

θu,v
dτ ptq

t

˙

“ Ber

ˆ

θv
dτ ptq

t

˙

(2.8)

where θv fi
ř

uPrrs ρuθu,v. We see that the degree-growth process has a simple
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probability law in the asymptotic regime.

In Proposition 3 of [13], the above approximation is made more precise.

This is stated in terms of the total variation distance between the actual

degree-growth process and an idealized version of it going to zero in the

asymptotic limit. We first define a random process rY that is an idealized

variation of Y obtained by replacing ηt by the constant vector η˚ and allowing

jumps of size one only.

Definition 2. The process rY has parameters τ,m, and ϑ, where τ is the

initial time, m is the initial state, and ϑ ą 0 is a rate parameter. The

process rY is a time-inhomogeneous Markov process with initial value m. rY

is defined as follows: for t ě τ and y such that ϑy
t
ď 1, we require

prYt`1 ´ rYt|rYt “ yq
d.
“ Ber

ˆ

ϑy

t

˙

(2.9)

We have the following coupling result.

Proposition 2. Suppose τ, T Ñ 8 such that T ą τ and T {τ is bounded.

Fix v P rrs. Then

dTV ppYrτ,T s|`τ “ vq, rYrτ,T spθvqq Ñ 0 (2.10)

From Proposition 2, we infer that the degree growth process is essentially a

time-inhomogeneous Markov process in the asymptotic limit. It is interesting

to note that the degree growth process depends on m only via its initial

condition. The state may either increase by 1, or stay the same at any point

of time. The parameter θv gives us the rate of growth or the “jump rate” of

this process. The larger this parameter, the larger is the rate at which the

degree of vertex τ grows. This property is useful for community detection,

as explained in Section 1.2.

Remark 2. The line of arguments leading to (2.8) can also incorporate par-

tial or complete information about other vertex labels. Suppose, from some

other considerations, we know that the distribution of `t`1 is rρ. Then this

distribution may be used in place of ρ in (2.8). We do not use this property

here, but it is used in formulating the message passing algorithm later.
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2.4 The Z-process

The process rY can be thought of a discrete time birth process with activa-

tion time τ and birth probability at a time t proportional to the number of

individuals. However, the birth probability (or birth rate) per individual,
θu,v
t

, has a factor 1
t
, which tends to decrease the birth rate per individual.

This makes the process difficult to analyze. By a simple time-scaling, we can

obtain a process with constant birth rate. The scaling involves considering

the process pYes : s ě 0q. The intuition behind the scaling is the following:

the graph of the function log t has slope 1{t. By scaling the horizontal axis

exponentially, we obtain the function logpetq “ t, which has a constant slope

1.

Definition 3 (Z-process). The process Z “ pZs : s ě 0q is a continuous time

pure birth Markov process with initial state Z0 “ m and birth rate ϑk in state

k, for some ϑ ą 0. The process Z represents the total number of individuals

in a continuous time branching process beginning with m individuals activated

at time 0, such that each individual spawns another at rate ϑ.

Definition 4. Let qYt “ Zlnpt{τq for integers t ě τ

The following proposition, proven in [13], shows that rY and qY are asymp-

totically equivalent in the sense of total variation distance.

Proposition 3. For any ϑ ą 0,

dTV

´

rYrτ,T spϑq, qYrτ,T spϑq
¯

Ñ 0 (2.11)

Propositions 2 and 3 allow us to map many properties about the Z-process

to the degree-growth process. We illustrate this by calculating the distribu-

tion of the degree of any vertex τ at time T .

We first establish the following useful fact about the Z-process.

Proposition 4. For fixed s, Zs has the negative binomial distribution

negbinompm, e´sϑq. In other words, its marginal probability distribution

pπnps, ϑ,mq : n P Nq is given by

πnps, ϑ,mq “

ˆ

n´ 1

m´ 1

˙

e´mϑsp1´ e´ϑsqn´m for n ě m (2.12)
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In particular, taking m “ 1 shows πps, ϑ, 1q is the geometric distribution

with parameter e´ϑs, and hence, mean eϑs.

Proof. We prove the result only for m “ 1. For m ě 2, the process Z has the

same distribution as the sum of m independent copies of Z with m “ 1. The

negative binomial distribution is also the sum of m independent geometric

distributions, from which the result follows.

We shall prove that πips, ϑ, 1q “ e´ϑsp1´ e´ϑsqi´1 by induction on i.

Induction base: From Definition 3, we see that the time stayed in state i is

a random variable with distribution Exppλiq. Therefore, π1ps, ϑ, 1q “ e´ϑs,

since it is the probability that the system was in state 1 for time more than

s.

Induction step: For i ą 1, πips, ϑ, 1q increases by the influx from state i´1

and decreases by the outflux from state i.

dπips, ϑ, 1q

ds
“ ´iϑπips, ϑ, 1q ` pi´ 1qϑπi´1ps, ϑ, 1q ; πip0q “ 0

πips, ϑ, 1q “

ż s

0

e´iϑps´τqpi´ 1qϑπi´1pτ, ϑ, 1qdτ

By the induction hypothesis, πi´1ps, ϑ, 1q “ e´ϑsp1 ´ e´ϑsqi´2. Performing a

change of variables τ Ñ eϑτ ´ 1 in the integral above gives us the necessary

expression for πiptq.

We now have the following corollary from Proposition 4:

Corollary 1. For T ą τ ąą 1, LpY τ
T |`τ “ vq « NegBinom

`

m, pT {τqθv
˘

.

2.5 Asymptotic degree distribution

A second limit result we restate from [10] concerns the empirical degree

distribution for the vertices with a given label. For v P rrs and integers

n ě m and T, let:

• HvpT q denote the number of vertices with label v in GT

• N v
npT q denote the number of vertices with label v and with degree n in

GT
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• P v
n pT q “

Nv
npT q

HvpT q
denote the fraction of vertices with label v that have

degree n in GT

Proposition 5 (Limiting empirical degree seq. for a given label [10]). Let

n ě m and v P rrs be fixed. Then limTÑ8 P
v
n pT q “ pnpθv,mq almost surely,

where

pnpθ,mq “
Γ
`

1
θ
`m

˘

Γpnq

θΓpmqΓ
`

n` 1
θ
` 1

˘

—

«

Γ
`

1
θ
`m

˘

θΓpmq

ff

1

n
1
θ
`1

(2.13)

Proposition 5 is illustrated by plotting the degree distribution of a graph

with the structure of a single community with outliers. To illustrate some

interesting features, we plot the degree distribution of vertices in the commu-

nity and outside separately, in Figures 2.4 and 2.5 respectively. The param-

eters chosen are m “ 1, b “ 4, T “ 10, 000, ρ “ p0.5, 0.5q. In such a setting,

the average degree of the graph is 2. As expected, we do see that there are

vertices of both types with degrees much higher than the average degree.

Further, we also see that vertices within the community have a higher degree

on average than vertices outside the community. It is precisely this property

that is exploited in the degree thresholding algorithm described in Chapter

3.
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Figure 2.4: Degree distribution within community

Figure 2.5: Degree distribution among outliers
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CHAPTER 3

COMMUNITY DETECTION
ALGORITHMS-BINARY HYPOTHESIS

TESTING

In this chapter, we formulate the problem of community detection as a statis-

tical inference problem. The labels on the vertices are the hidden variables,

and the observed data is the graph, from which the labels must be inferred.

Although, in principle, one can write down the likelihood of observing a given

graph for every possible sequence of vertex labels, t`tu
T
t“1 this expression is

immensely complex. It is thus infeasible to optimize over the set of possible

vertex labels and find the maximum aposteriori probability (MAP) estima-

tor. We thus settle for other estimators that are easier to compute. These

estimators are shown to be MAP estimators for certain simpler problems.

One simplification is to decouple the inference problem for different ver-

tices. This simplifies the problem immensely, since instead of optimizing

over rT possible choices, one only has to optimize over r choices. A second

simplifying technique is to perform the inference based only on observing a

small neighborhood of the vertex, instead of the whole graph. This allows us

to have a simple expression for the likelihood of the observation, conditioned

on the label.

For concreteness, consider the model of a single community with outliers,

where θ1 ą θ2 (the label 1 indicates that the vertex is in the community).

Consider any vertex τ s.t. 1 ăă τ ă T with `τ “ v. The number of children

of τ has distribution „ NegBinom
`

m, pT {τqθv
˘

as seen from Corollary 1.

Thus, observing the number of children gives some information about the

label v; the larger the number of children, the more likely it is that the

vertex belongs to the community.

In fact, using the results from Chapter 2, we can compute the likelihood

of observing the entire degree-growth process of any vertex τ . This allows

us to calculate the MAP estimator of the vertex label based on additional

information of which vertices attached to τ . This idea is presented in more

detail in the rest of this chapter.
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The algorithms presented in this chapter can be used, in principle, to

perform community detection for any set of parameters ρ, β, as long as θv ‰

θv1 for v ‰ v1. However, for brevity, we focus only on the case of a single

community with outliers. Note that these algorithms cannot be used to

identify labels in a graph with equal-sized communities.

To comply with standard notations of binary hypothesis testing, we slightly

change our notation:

• `τ “ 1: Vertex is in the community

• `τ “ 0: Vertex is an outlier

3.1 Binary hypothesis testing

Let 1 ăă τ ă T be integers. Consider the problem of estimating `τ given

observation of a random object O. For instance, the object could be the

degree of vertex τ in GT , or it could be the set of children of τ in GT , or it

could be the entire graph. We have two hypotheses about the label `τ :

H1 : `τ “ 1

H0 : `τ “ 0

The prior probabilities are π1 “ ρ and π0 “ 1 ´ ρ respectively. We seek

to calculate the MAP estimator, which is a decision rule that minimize the

average error probability, pe fi π1pe,1 ` π0pe,0, where pe,v is the conditional

probability of error given Hv is true.

For binary hypothesis testing, the MAP estimator can be expressed in

terms of thresholding either the log-belief ratio ξ or the log-likelihood ratio

Λ:

pτMAP “ 1tξą0u “ 1tΛąlnpπ0{π1qu

ξ fi ln
P tH1|Ou
P tH0|Ou

Λ fi ln
ppO|H1q

ppO|H0q

Algorithm C The first recovery algorithm we describe, Algorithm C (“C”

for “children”), is to let O denote the set of children, Bτ “ tt1, . . . , tnu,

of vertex τ in GT . This is equivalent to observing of Yrτ,T s. Given Bt “
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tt1, . . . , tnu with τ`1 ď t1 ă ¨ ¨ ¨ ă tn ď T , let yBτ
rτ,T s denote the corresponding

degree evolution sample path: yBτt “ m` |Bτ X rτ, ts| for τ ď t ď T .

Proposition 2 allows us to approximate the probability of observing a sam-

ple path of Y with the probability of observing the same sample path of rY .

P pBτ “ tt1, . . . , tnuq “ P pYrτ,T s “ yBτrτ,T sq

« P prYrτ,T s “ yBτrτ,T sq

“
ź

tPrτ`1,T szBτ

ˆ

1´
yBτt´1θ

˚
v

t´ 1

˙

ź

tPBτ

yBτt´1θ
˚
v

t´ 1

so the log-likelihood ratio for observation rYrτ,T s “ yBτ
rτ,T s is

ΛC
“ n ln

θ˚1
θ˚0
`

ÿ

tPrτ`1,T szBτ

ln

ˆ

1´
yBτt´1θ1

t´ 1

˙

´ ln

ˆ

1´
yBτt´1θ0

t´ 1

˙

Algorithm C for estimating `v is to perform the likelihood ratio test using

ΛC . Using the approximation lnp1 ` sq “ s and approximating the sum by

an integral, we find

ΛC
« n ln

θ1

θ0

´ pθ1 ´ θ0q

ż T

τ

yBτt
t
dt

“ n ln
θ1

θ0

´ pθ1 ´ θ0q

˜

m lnpT {τq `
ÿ

tPBτ

lnpT {tq

¸

(3.1)

Algorithm C is similar to performing hypothesis testing based on O “

Zr0,s̄s, where s̄ “ lnpT {τq. Let fCZ pρ, θ1, θ0,m, s̄q denote the resulting average

error probability pe. This quantity is estimated Section 3.2.

Algorithm DT The second recovery algorithm we describe, Algorithm DT

(“DT” for “degree thresholding”), is to let O denote the number of children

of vertex τ in GT . Equivalently, O denotes the observation of YT .

Here too, using Proposition 3, we approximate the distribution of YT by

that of qYT , which has the negbinom
`

m, pτ{T qθv
˘

distribution under Hv for

v P t0, 1u. The log-likelihood ratio in this case, given the number of children
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is n, is

ΛDT
“ ´mpθ1 ´ θ0q lnpT {τq ` pn´mq ln

ˆ

1´ pτ{T qθ1

1´ pτ{T qθ0

˙

Algorithm DT for estimating `v is to perform the likelihood ratio test using

ΛDT , or in other words, the MAP decision rule based on O “ YT . This is

similar to performing hypothesis testing based on O “ Zs̄, where s̄ “ lnpT {τq

(because qYT “ Zs̄). Let fDTZ pρ, θ1, θ0,m, s̄q denote the resulting average error

probability pe. It is clear that we expect fDTZ ě fCZ , as Algorithm C is based

on more information.

3.2 Hypothesis testing for Z

We consider here the binary hypothesis testing problem based on observation

of Zr0,lnpT {τqs such that under Hv it has rate parameter ϑ “ θv for v P t0, 1u.

To this end, we derive the likelihood ratio.

Suppose ts1, . . . , snu Ă p0, s̄s such that 0 ă s1 ă ¨ ¨ ¨ ă sn and s̄ “ lnT {τ .

Since the inter-jump periods are independent (exponential) random variables,

the likelihood of s1, . . . , sn being the jump times during r0, s̄s under hypoth-

esis Hv, is the product of the likelihoods of the observed inter-jump periods,

with an additional factor of the likelihood of not seeing a jump in the last

interval:
˜

n´1
ź

i“0

θvpm` iqe
´θvpm`iqpsi`1´siq

¸

e´θvpn`mqps̄´snq

Thus, the log-likelihood ratio for observing this is (letting s0 “ 0):

ΛZ
“ n ln

θ1

θ0

´ pθ1 ´ θ0q

˜

ms̄`
n
ÿ

i“1

ps̄´ siq

¸

(3.2)

(With si “ lnpti{τq, (3.2) is the same as (3.1), although in (3.1) the variables

ti are supposed to be integer valued.) Let As̄ fi pms̄`
řn
i“1ps̄´ siqq . Note

that As̄ is the area under the trajectory of Zr0,s̄s. Moreover, n ` m is the

value of Zs̄. So the log-likelihood ratio is given by

ΛZ
“ pZs̄ ´mq ln

θ1

θ0

´ pAs̄qpθ1 ´ θ0q (3.3)
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which is a linear combination of Zs̄´m and As̄. Thus, the MAP decision rule

has a simple form. Let fCZ pρ, θ1, θ0,m, s̄q denote the average error probability

pe for the MAP decision rule based on observation of Zr0,s̄s.

There is apparently no closed-form expression for the distribution of ΛZ ,

so computation of fCZ pρ, θ1, θ0,m, s̄q requires Monte Carlo simulation or some

other numerical method. A closed-form expression for the moment generating

function of ΛZ is given in the following proposition, which can be used to

bound the probability of error. The proof of Proposition 6 is given in [13].

Proposition 6. The joint moment generating function of Zs and As is given

as follows, where Eλ,m r¨s denotes expectation assuming the parameters of Z

are λ,m :

ψλ,mpu, v, sq fi Eλ,m
“

euZs`vAs
‰

“

˜

epv´λqs`u

1` λeu

v´λ
p1´ epv´λqsq

¸m

(3.4)

Proposition 6 can be used to bound pe as follows. By a standard result in

the theory of binary hypothesis testing, the probability of error for the MAP

decision rule is bounded by

π1π0ρ
2
B ď pe ď

?
π1π0ρB (3.5)

where the Bhattacharyya coefficient (or Hellinger integral) ρB is defined by

ρB “ E
“

eΛ{2
ˇ

ˇH0

‰

, and π1 and π0 are the prior probabilities on the hypotheses.

The proposition with λ “ θ0, u “ 1
2

lnpθ1{θ0q, v “ ´
θ1´θ0

2
, and s “ s̄ yields

ρB,C “ Eλ,m
“

eupZs´mq`vAs
‰

“ ψλ,mpu, v, sqe
´mu

“

˜

e´pθ1`θ0qs̄{2

1´ 2
?
θ1θ0

θ1`θ0
p1´ e´pθ1`θ0qs̄{2q

¸m

Here we wrote ρB,C to denote it as the Bhattacharyya coefficient for Algo-

rithm C (for the large T limit). Using this expression in (3.5) provides upper

and lower bounds on pe “ fCZ pρ, θ1, θ0,m, s̄q.

For the sake of comparison, we note that the Bhattacharyya coefficient

for the hypothesis testing problem based on qYT alone, i.e. Algorithm DT, is
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easily found to be

ρB,DT “

˜

e´pθ1`θ0qs̄{2

1´
a

p1´ e´θ1s̄qp1´ e´θ0s̄q

¸m
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CHAPTER 4

MESSAGE PASSING

In this chapter, we describe how Algorithm C (the MAP rule given children)

can be extended to a message passing algorithm. The message passing algo-

rithm performs better than Algorithm C in recovering the labels of a graph

with a single community with outliers, as each vertex takes into account more

information than just its set of children. Further, message passing allows

us to recover planted communities in graphs with equal-sized communities,

which is impossible via Algorithms C and DT.

4.1 Overview

In Algorithm C, it was assumed that there was no prior information about

the labels of any of the vertices. Here, information about a vertex label

means a distribution of the vertex label that is not the prior distribution

(this includes knowing the vertex label exactly). Message passing extends

Algorithm C to take into account information about the children’s labels.

In addition, it takes into account any information about the parents’ labels.

Intuitively, having more information about one’s neighbors’ labels allows one

to compute a better estimate of one’s own label, as they are correlated.

In Chapter 3, we showed that Algorithm C gives some information about

a vertex’s label. If this information is passed on to the vertex’s parent (as a

message), the parent can form a better estimate of its own label. Messages

from one vertex to another are posterior distributions of the sender’s vertex

label (or equivalent information). In effect, the parent vertex observes the

graph up to a depth of two. Upon iterating, each vertex sees a larger portion

of the graph at every step, ultimately observing the whole graph. In the

rest of this chapter, we make the above notions precise. We discuss what

the messages mean, how they are computed and sent from one vertex to the
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other, and make clear why indeed the extra information is useful for better

inference.

We describe the algorithm for the case of two possible labels for a general

2 ˆ 2 matrix β with positive entries, and fixed m ě 1. The algorithm can

be extended for the case of more than two communities, as shown in [13].

For binary valued random variables, distributions can be inferred from log-

likelihood ratios, which is a compact representation (a scalar instead of a

two-dimensional vector). Thus, all messages are represented here as log-

likelihood ratios.

In general, a message passing algorithm on any graph is an iterative algo-

rithm where vertices in the graph send “messages” to their neighbors based

on messages that they receive in the previous iteration. Specific to the appli-

cation at hand, messages are ascribed a certain meaning, and are computed

accordingly. Message passing algorithms are generally used to solve infer-

ence problems in a factor graph (or more generally, a probabilistic graphical

model) (see, e.g., [15]). A factor graph is a graphical representation of the

joint distribution of multiple random variables, that takes into account the

dependence (and conditional independence) conditions among the random

variables. The advantage of this representation is that the marginal distri-

bution (or marginal conditional distribution) of any random variable can be

computed efficiently via a particular form of message passing called belief

propagation. In belief propagation, the messages in every iteration can be

thought of as a particular distribution.

For community detection, the message passing algorithm is similar to

belief propagation, except for the fact that one does not construct a fac-

tor graph. The algorithm is run on the given graph itself, as the depen-

dence/independence conditions are well represented by the given graph. In

the rest of this section, we state and then derive a principled message passing

algorithm for inferring the label of each vertex, given the graph. Throughout

the remainder of this section, let pV,Eq be a fixed instance of the random

graph, pVT , ET q, with two communities and known parameters m,β, ρ, to, Gto ,

and T . The message passing algorithm is run on this graph, with the aim of

calculating Λτ for 1 ď τ ď T, where for each τ , Λτ is a log-likelihood ratio:

Λτ fi ln
P tET “ E|`τ “ 1u

P tET “ E|`τ “ 0u
(4.1)
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Then we can calculate the maximum likelihood (ML) and maximum a pos-

teriori probability (MAP) estimators of the label of a vertex τ as prescribed

in Chapter 3. This estimator gives us the smallest probability of error in

inferring each vertex.

Remark 3. Note that this does not give us an estimator that gives us the

smallest error of getting the entire set of vertices correct. See [2] for a detailed

discussion on the best estimators for exact recovery versus partial recovery.

4.2 Algorithm

A complete specification of a message passing algorithm includes specification

of the following elements:

1. initial messages

2. mappings from messages received at a vertex to messages sent by the

vertex

3. timing of message passing and termination criterion

4. mappings from messages received at a vertex to the output log-likelihood

vector of the vertex

In this section, we specify the equations for elements (1), (2), and (4). A

discussion on element (3) is given in the chapter on simulations (Chapter 5).

To specify these equations, we need the following notation. Given vertices τ

and τ0, we say τ is a child of τ0, and τ0 is a parent of τ , if τ ě maxtτ0, tou`1,

and there is an edge from τ to τ0. It is assumed that the known initial graph

Gto is arbitrary, i.e., they are not placed according to particular model. Thus,

for the inference problem at hand, the edges in Gto are not relevant beyond

the degrees that they imply for the vertices in Gto .

Let Bτ denote the children of τ in GT and ℘τ the parents of τ. So ℘τ “ H

if τ ď to and Bτ Ă tto ` 1, . . . , T u. Let ντÑτ0 denote a message passed from

child to parent, and µτ0Ñτ denote a message passed from parent to child.
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The functions gcp : R ÞÑ R and gpc : R ÞÑ R are defined as follows (here

“cp” denotes child to parent, and “pc” denotes parent to child):

gcppνq “ ln

ˆ

eνρ θ1,1 ` p1´ ρqθ0,1

eνρ θ1,0 ` p1´ ρqθ0,0

˙

´ ln
θ1

θ0

for ν P R

gpcpµq “ ln

ˆ

eµρ θ1,1 ` p1´ ρqθ1,0

eµρ θ0,1 ` p1´ ρqθ0,0

˙

for µ P R

where θu,v and θv are defined in Section 2.2.

For convenience, we repeat the expression in (3.1) for the log-likelihood

ratio based on observation of children, for any vertex τ :

λCτ “ |Bτ | ln
θ1

θ0

` pθ1 ´ θ0q

˜

d0pτq ln
τ _ to
T

`
ÿ

tPBτ

ln
t

T

¸

(4.2)

where τ _ to “ maxtτ, tou and d0pτq is the initial degree of vertex τ , defined

to be the degree of τ in Gto if τ ď to and d0pτq “ m otherwise. This slight

modification from (3.1) takes into account the fact that an initial vertex’s

degree growth process starts effectively at time to, and such a vertex can

have arbitrary initial degree, not necessarily m.

The message passing equations are given as follows:

ντÑτ0 “ λCτ `
ÿ

tPBτ

gcppνtÑτ q `
ÿ

τ1P℘τztτ0u

gpcpµτ1Ñτ q (4.3)

µτ0Ñτ “ λCτ0 `
ÿ

tPBτ0ztτu

gcppνtÑτ q `
ÿ

τ1P℘τ0

gpcpµτ1Ñτ q ´ ln
θ1

θ0

(4.4)

Λτ “ λCτ `
ÿ

tPBτ

gcppνtÑτ q `
ÿ

τ0P℘τ

gpcpµτ0Ñτ q (4.5)

with the initial conditions:

ντÑτ0 “ λCτ µτ0Ñτ “ λCτ0 ´ ln
θ1

θ0

(4.6)

The message passing equations are written as if there are no parallel edges

in pV,Eq. While the fraction of edges that are parallel to other edges will be

small for large T , they are permitted. The convention used in the message

passing algorithm is that Bτ and ℘τ are to be considered as multisets, so

that if a vertex appears with some multiplicity in one of those sets, then the

corresponding term in the summations will be appearing the corresponding
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number of times. The initial conditions given by (4.15) are chosen to mimic

the scenario of Algorithm C, where no messages are received.

Essentially, each vertex assimilates all the incoming messages to form an

estimate of its own log-likelihood ratio. It then passes this quantity to all

of its neighbors (with a small modification), so that they may use this in-

formation in their own likelihood calculations. The modification is to not

include information gained from one neighbor in the message being sent to

that neighbor. This form of the messages appears naturally in deriving the

messages assuming the graph is a tree, and is a useful heuristic even in loopy

message passing.

4.3 Derivation

Instead of deriving the message passing algorithms as stated above, we shall

state and derive them in a slightly different form. The advantage of this

alternative form is that the derivation becomes much more intuitive. The

only price we pay is that of additional notation. Following the derivation,

we show how the alternate form of the messages is equivalent to the original

form presented in equations (4.3) - (4.5).

In what follows, message passing equations are stated and derived for the

special case m “ 1, with the initial graph Gto consisting of a single vertex

(i.e. to “ 1) with a self-loop. In that case, the graph pV,Eq is a tree (ignoring

any self-loops among the initial vertices) so the message passing algorithm

is conceptually simpler. Equations (4.3) - (4.5) for any finite m ě 1 are

simply taken to have the same form as for m “ 1 on the grounds that loopy

message passing is obtained by using the same equations as for message

passing without loops.

A second major difference from the equations given in Section 4.2 is that

here, the messages are vectors in R2, rather than scalar quantities. This is

because the earlier set of messages were interpreted as log-likelihood ratios,

while here, the messages are simply log-likelihoods.
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4.3.1 Alternate form

Let the notation of Bτ, ℘τ be the same as before. We abuse notation by

redefining certain quantities differently than before as follows:

gcppνqpvq “ ln

¨

˝

ÿ

uPrrs

eνpuqρu
θu,v
θv

˛

‚ for ν P Rr (4.7)

gpcpµqpuq “ ln

¨

˝

ÿ

vPrrs

eµpvqρv
θu,v
θv

˛

‚ for µ P Rr (4.8)

λCτ pvq “ |Bτ | ln θv ` θv

˜

d0pτq ln
τ _ to
T

`
ÿ

tPBτ

ln
t

T

¸

(4.9)

The new message passing iterative equations are given by

ντÑτ0 “ λCτ `
ÿ

tPBτ

rνtÑτ (4.10)

µτ0Ñτ “ λCτ0 `
ÿ

tPBτ0ztτu

rνtÑτ0 ` rµτ1Ñτ0 (4.11)

rντÑτ0 “ gcppντÑτ0q (4.12)

rµτ0Ñτ “ gpcpµτ0Ñτ q (4.13)

Λτ “ λCτ `
ÿ

tPBτ

rνtÑτ ` rµτ0Ñτ (4.14)

with the initial conditions:

rντÑτ0 “ 0 rµτ0Ñτ “ 0 (4.15)

or equivalently

ντÑτ0 “ λCτ µτ0Ñτ “ λCτ0 (4.16)

Note that the above are vector equations; they are to be interpreted as per-

forming the same operation component-wise.

The initial conditions are chosen such that the initial value of Λτ “ λCτ .

That is, the first step of message passing is equivalent to performing Algo-

rithm C.
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4.3.2 Derivation of alternate form

Conceptually, we view the entire graph as the collection of children sets of

different vertices. As before, Bτ denotes the children set of τ . Bτ is a random

quantity, while Bτ “ tt1, . . . , tnu is an event. Let Dτ denote the set of all

descendants of τ in the given graph. This includes the observation that

Bτ “ tt1, . . . , tnu, Bt1 “ tt1,1, . . . , t1,n1u, and so on. The entire graph is thus

represented by D1.

To derive the above recursion, we first define the quantities ν, µ, rν, rµ,Λ to

be appropriate log-likelihoods. Equations (4.10) - (4.14) then follow from the

relation among these log-likelihood quantities.

The aim of message passing is to calculate the log-likelihood ratio of each

vertex’s label upon observing the whole graph. Thus, we define Λτ as

Λτ pvq fi lnP tD1|`τ “ vu (4.17)

Using the following identity:

P tD1|`τ “ vu “ P tD1zDτ |`τ “ vuP tDτ |`τ “ vu

“ P tD1zDτ |`τ “ vuP tBτ |`τ “ vu
ź

tPBτ

P tDt|`τ “ v, Bτu

and the definitions:

rµτ0Ñτ pvq fi lnP tD1zDτ |`τ “ vu (4.18)

rνtÑτ pvq fi lnP tDt|`τ “ v, Bτu (4.19)

we get

Λτ “ λCτ `
ÿ

tPBτ

rνtÑτ ` rµτ0Ñτ

which is (4.14).
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An expression for rνtÑτ is obtained as follows:

erνtÑτ pvq “ P tDt|`τ “ v, Bτu

“
ÿ

uPrrs

P tDt|`τ “ v, `t “ u, BτuP t`t “ u|Bτ, `τ “ vu

“
ÿ

uPrrs

P tDt|`t “ uu
P tBτ |`τ “ v, `t “ uuP t`t “ u|`τ “ vu

P tBτ |`τ “ vu

“
ÿ

uPrrs

P tDt|`t “ uu
θu,v
θv
ρu (4.20)

Define νtÑτ as

νtÑτ puq fi lnP tDt|`t “ uu (4.21)

Plugging this definition into (4.20), we obtain (4.12):

rνtÑτ pvq “ ln

¨

˝

ÿ

uPrrs

eνtÑτ puq
θu,v
θv
ρu

˛

‚

From the definition of νtÑτ , and the following identity:

P tDτ |`τ “ vu “ P tBτ |`τ “ vu
ź

tPBτ

P tDt|`τ “ v, Bτu

we get (4.10):

νtÑτ “ λCτ `
ÿ

tPBτ

rνtÑτ

Next, we derive an expression for rµτ0Ñτ , i.e., (4.13).
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We know that

P tD1zDτ |`τ “ vu “
ÿ

v1

P tD1zDτ |`τ “ v, `τ0 “ v1uP t`τ0 “ v1u

“
ÿ

v1

P tD1zDτ |`τ “ v, `τ0 “ v1u θv1

θv,v1

θv,v1

θv1
ρv1

“
ÿ

v1

eµτ0Ñτ pv
1q θv,v1

θv1
ρv1

ñ rµτ0Ñτ pvq “ ln

˜

ÿ

v1

eµτ0Ñτ pv
1q ρv1

θv,v1

θv1

¸

(4.22)

In deriving (4.22), we have used the following definition of µτ0Ñτ :

µτ0Ñτ pv
1
q fi ln

P tD1zDτ |`τ “ v, `τ0 “ v1u θv1

θv,v1
(4.23)

For this definition to be precise, we need to show that
PtD1zDτ |`τ“v,`τ0“v

1uθv1
θv,v1

is independent of v. This is shown below. In parallel,

we derive an expression for µτ0Ñτ .

P tD1zDτ |`τ “ v, `τ0 “ v1u

“ P tD1zDτ0 |`τ “ v, `τ0 “ v1uP tDτ0zDτ |`τ “ v, `τ0 “ v1u

“ P tD1zDτ0 |`τ “ v, `τ0 “ v1uP tBτ0|`τ “ v, `τ0 “ v1u

ˆ
ź

t1PBτ0ztτ0u

P tDt1 |`τ0 “ v1, Bτ0u (4.24)

We know:

P tD1zDτ0 |`τ “ v, `τ0 “ v1u “ P tD1zDτ0 |`τ0 “ v1u “ erµτ1Ñτ pv
1q

P tBτ0|`τ “ v, `τ0 “ v1u θv1

θv,v1
“ P tBτ0|`τ0 “ v1u “ eλ

τ0
C

P tDt1 |`τ0 “ v1, Bτ0u “ erνt1Ñτ0 pv
1q

Combining these into (4.24), we get:

P tD1zDτ0 |`τ “ v, `τ0 “ v1u
θv1

θv,v1
“ erµτ1Ñτ pv

1qeλ
τ0
C

ź

t1PBτ0ztτ0u

erνt1Ñτ0 pv
1q (4.25)
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Taking the logarithm of (4.25), we get

µτ0Ñτ “ λτ0C ` rµτ1Ñτ `
ÿ

t1PBτ0ztτ0u

rνt1Ñτ0pv
1
q

which is (4.11). This completes the derivation of (4.10) - (4.14).

4.3.3 Deriving the original message passing equations

To get the scalar message passing Equations (4.3) - (4.5), we subtract the

second component of the vector equations from the first component. This

operation indicates that we are working with log-likelihood ratios, instead

of log-likelihoods. In particular, the following quantities are now interpreted

as:

Λτ “ ln
P tD1|`τ “ 1u

P tD1|`τ “ 0u
(4.26)

ντÑτ0 “ ln
P tDτ |`τ “ 1u

P tDτ |`τ “ 0u
(4.27)

µτ0Ñτ “ ln
P tD1zDτ |`τ “ 0, `τ0 “ 1u

P tD1zDτ |`τ “ 0, `τ0 “ 0u

θ1

θ0

θ0,0

θ0,1

(4.28)

The quantities rµ, rν are done away with, by substituting (4.12) and (4.13)

in (4.10) and (4.11).

Lastly, we sightly modify the definition of µ:

µτ0Ñτ “ ln
P tD1zDτ |`τ “ 0, `τ0 “ 1u

P tD1zDτ |`τ “ 0, `τ0 “ 0u

θ0,0

θ0,1

(4.29)

This modification is to let µ be as close as possible to a log-likelihood ratio,

without depending upon the label of τ (one could condition on `τ “ 1 as

well). This modification leads to a slight modification of gpc, and the adding

of the term ln θ1
θ0

in (4.4).

4.4 Derivation discussion

The aim of message passing is to calculate Λτ (as defined in (4.1)) for every

vertex τ . However, it is computationally hard to compute Λτ exactly, even
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for the case m “ 1. On making some assumptions about the distribution

of the graph and about conditional dependencies, the computation becomes

more efficient. These assumptions do not hold for any finite-sized graph, but

they are good approximations for large graphs.

Conceptually, we view the entire graph as being generated by a set of

degree-growth processes. The initial vertex start their degree-growth pro-

cesses at time to. Thereafter, every vertex that arrives starts its own degree-

growth process, depending only on its label, but independent of other pro-

cesses. This point of view allows us to make some principled assumptions

that follow.

• Distribution of Bτ : We assume that the distribution of a children set

is according to the law of the process qY :

P tBτ “ tt1, . . . , tnu|`τ “ vu “ n! θnv

˜

τ _ to
T

ˆ
ź

tPBτ

t

T

¸θv

Accordingly, given the children set Bτ , the log-likelihood ratio of the

vertex label is given by λCτ .

• Dependence of Bτ on other labels: We assume that the distribution

of the children set depends on the labels of only those vertices in the

children set, i.e.:

P tBτ “ tt1, . . . , tnu|`τ “ v, `τ 1 “ uu

“

#

P tBτ “ tt1, . . . , tnu|`τ “ vu θ˚u,v{θ
˚
v if τ 1 P Bτ

P tBτ “ tt1, . . . , tnu|`τ “ vu if τ 1 R Bτ

This implies that the posterior distribution of `τ 1 given `τ and Bτ is

given by:

P t`τ 1 “ u|`τ “ v, Bτu “
P tBτ |`τ “ v, `τ 1 “ uuP t`τ 1 “ u|`τ “ vu

P tBτ |`τ “ vu

“

#

θuvρu
θv

if τ 1 P Bτ

ρu if τ 1 R Bτ

• Dependence of one children set on another: Given the labels

of two vertices τ1, τ2, the distribution of Bτ1 is independent of Bτ2.
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However, if one (or both) of the labels are not known, Bτ1 may convey

information on Bτ2 (and vice versa). The exact dependence is seen via

an appropriate use of Bayes’ rule and the two points given above.
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CHAPTER 5

SIMULATIONS

In this chapter, we present numerical results of the algorithms described in

Chapters 3 and 4. For graphs with a single community with outliers, we run

the following algorithms:

• Degree Thresholding (DT)

• Maximum Likelihood based on children (abbreviated as “Children” or

C)

• Message Passing (MP)

For the case of two communities, we present simulation results of message

passing alone. In this case, the algorithm requires initialization with the

labels of few of the vertices. This aspect is also discussed.

5.1 Single community with outliers

We simulate the case of a single community with outliers with the following

parameters:

• T = 10,000

• β “

˜

4 1

1 1

¸

• m “ 5

• ρ “ p0.5, 0.5q

The values of θ for these parameters are: pθ1 “ 0.61, θ2 “ 0.37q.

For each of the algorithms DT, C and MP, we display the probability of

error in recovering the label of vertex τ , Pepτq, as a function of τ (see Figures
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5.1, 5.2 and 5.3 respectively). Each plot is an average over 1000 random

graphs. From the analysis of Chapters 3 and 4, we expect that this quantity

would depend only on τ{T ; hence, we scale the axis accordingly. We also

plot the probability of error of type 1 and type 0 (as discussed in Chapter

3) for each of the algorithms. Finally, we compare these three algorithms in

Figure 5.4, from which we see two trends:

• Algorithm C performs significantly better than Algorithm DT for ver-

tices that arrived earlier τ{T ă 0.1. This is expected because Algorithm

C uses more information than Algorithm DT. For vertices that arrived

later, the degree growth process (effectively, the Z ´ process) does not

run long enough to extract extra information.

• Algorithm MP performs much better than Algorithm C for vertices

that arrived later τ{T ą 0.1. This is because the extra information

provided by the parent’s label is very useful when the duration of the

degree-growth process is short.

Figure 5.1: Performance of Algorithm DT
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Figure 5.2: Performance of Algorithm C

Figure 5.3: Performance of Algorithm MP
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Figure 5.4: Comparison of different community detection algorithms

5.2 Two equal-sized communities

The case of two equal-sized communities poses an interesting case, as nei-

ther Algorithm C nor DT gives any information. This is because the degree

growth process of every vertex has identical distribution, irrespective of their

label. If we run the message passing algorithm with the initialization pro-

posed above, we do not get any information about the communities either.

This is because message passing builds upon information provided by Algo-

rithm C.

One method to overcome this problem is to initialize message passing with

the labels of a few of the vertices. This is known as semi-supervised learning,

where the labels of some samples are known, but is unknown for most of the

others. It is useful to initialize with the labels of the first few vertices. Since

these vertices are likely to have very high degrees, the information about

their label propagates to many vertices quickly. In subsequent iterations, the

effect of this initial seed reduces, as every application of the function gp¨q

reduces the magnitude of the messages. Owing to the nature of the graph,

most vertices are within a small distance from the initial vertices, and hence

are affected by the seed.

In simulations, we find that initializing with 10 vertices work well. How-

ever, it is possible that a large fraction of these vertices are of a single type
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(say 8/10 are of type 1). In this case, we introduce a balancing factor to

reduce the intensity of the messages of the dominant type. This ensures

convergence to a solution with roughly equal number of labels of each type.

The simulations shown in Figure 5.5 are for the following parameters:

• T = 10,000

• β “

˜

4 1

1 4

¸

• m “ 5

• ρ “ p0.5, 0.5q

Figure 5.5: Performance of message passing in recovering two equal-sized
communities. The performance plot of 100 random graphs are shown, and
the average performance is depicted by the bold blue curve.

From Figure 5.5, we observe that message passing successfully recovers all

the first 100 vertex labels 98% of the time, and on average, makes an error

on 5%.
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CHAPTER 6

CONCLUSION

In this thesis, we have presented a study of community detection in preferen-

tial attachment graphs. This study of a popular statistical problem on a new

model proved to be an exciting area of research, as it provided a fertile ground

for many new ideas, and also brought together interesting concepts from the

SBM and the PA model. The random graph model was introduced, and

some basic properties were examined. The degree-growth process, a novel

viewpoint of tracking the time-evolution of the graph, was presented and a

precise asymptotic characterization of the process was given. This analysis

was then used to develop a hypothesis testing based algorithm for commu-

nity recovery, for which an upper bound on the probability of error was given.

The principles behind this algorithm were then extended to develop a mes-

sage passing algorithm that runs on the graph to be clustered. The message

passing algorithm was shown to have better performance for recovering a

single planted community, and also gave a method to recover two equal-sized

planted communities. These points were illustrated by simulations.

The thesis does not give a theoretical performance guarantee for the mes-

sage passing algorithm. This remains an open question. The thesis also does

not examine other algorithms for community detection, like SDP relaxations

or spectral methods. We hope this shall be studied in the future. Finally, it

is important to study when community recovery is and is not information-

theoretically feasible.
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