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ABSTRACT

As a special kind of “big data”, text data can be regarded as data reported by human
sensors. Since humans are far more intelligent than physical sensors, text data contains
directly useful information and knowledge about the real world, making it possible to make
predictions about real-world phenomena based on text. As all application domains involve
humans, text-based prediction has widespread applications, especially for optimization of
decision making.

While the problem of text-based prediction resembles text classification when formulated
as a supervised learning problem, it is more challenging because the variable to be predicted
is generally not directly mentioned in the text data and thus there is a “semantic gap”
between the target variable and the surface features that are often used for representing text
data in conventional approaches. How to bridge such a gap is a key technical challenge,
but has not been well studied in the existing work. In this thesis, we propose to leverage
the increasingly available knowledge graphs on the Web to bridge this gap. We propose
to bridge this gap by using knowledge graph to make text representation more focused on
elements in a knowledge graph that are relevant to the prediction task. We mainly focus on
two a family of text-based prediction — entity-centric classification and regression where the
response variable can be treated as an attribute of a group of central entities.

As a form of knowledge representation, knowledge graphs have widespread applications
in information retrieval, text mining, and natural language processing. Many knowledge
graphs have been constructed and applied to diverse, real-world applications. The knowl-
edge graph can help to enhance the interpretability of the textual information from the
perspective of predictive analytics, and hence discovers more effective features. Despite the
great success made in the application of knowledge graph in various domains, one of the main
deficiencies of many existing works is that the knowledge graph applied in the application
is pre-constructed, which remains unchanged when applied to very different specific appli-
cation tasks. Such a static task-independent knowledge graph, while useful, is non-optimal
for any specific application due to the unnecessary cost from processing large amounts of
non-relevant knowledge as well as the insufficient coverage of task-specific knowledge.

To address this limitation, we propose to construct a task-aware knowledge graph (TAKG)
which would only contain the relevant knowledge to a particular task and absorb additional
relevant knowledge from the data used in a particular task. We present a general formal

framework for constructing a task-aware knowledge graph, develop specific algorithms for
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constructing a task-aware knowledge graph for entity-centric prediction in both knowledge-
based and task-dependent ways, and apply it to a movie review categorization task.

We propose two methods to expand the knowledge graph. One is to discover new entities
and relations by a jointly embedding model which learns embedding vector for each entity
and relation. In this way, the specific relationships in a finer-granularity that is pre-defined
by the knowledge graph can be identified between related entities. An alternative way is
to use more general word relations, e.g., paradigmatic and syntagmatic relation to expand
the knowledge graph by including loosely related entities. Both methods work under certain
circumstances, but the former one is helpful in a wider range of applications.

We also make a systematic study of knowledge graph assisted feature engineering. We
propose several different ways to construct knowledge graph-based features and investigate
their performance in multiple real applications. Our study shows that different types of ap-
plication may favor different ways of constructing knowledge graph-based features. We find
that the coverage of the knowledge graph is important. If it cannot provide sufficient back-
ground knowledge, the effectiveness of the knowledge graph-based features will be impacted.
Besides, the generated knowledge graph-based features can sometimes be very noisy, espe-
cially when the correlation between text and the response variables are weak. To distinguish
the signal features from the noise, we propose a two-stage filtering method to further prune
the features. Our experiment result shows that the pruned knowledge graph-based features
have strong predictive power, which again confirms that leveraging text data is promising

for real-world phenomenon prediction.
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CHAPTER 1: INTRODUCTION

Text data, broadly including all kinds of natural language text produced by humans (e.g.,
web pages, social media, email messages, news articles, government documents, and scientific
literature), have been growing dramatically recently. As a special kind of big data, text data
can be regarded as data generated by “human sensors” about our world, which is often much
more informative and useful compared to the data generated by physical sensors due to the
fact that humans are far more intelligent. This creates great opportunities for applying
computational methods to mine big text data to discover all kinds of useful knowledge
and support many data analytics applications, such as intelligent information system to
accelerate biomedical discovery, improve homeland security, enable social media monitoring,
and assist decision making in general.

Among many applications of text data mining, prediction of interesting variables based
on relevant text data is especially interesting because it allows decision makers to “see”
patterns behind data that they would otherwise not be able to see or easily see, thus leading
to better decision making. For example, while non-text data may (indirectly) suggest a
particular trend that consumers tend to like a particular feature of a product, product reviews
may directly report such preferences by consumers. Since humans are involved in every
application domain, text-based prediction has applications in virtually all the application
domains. By exploiting the power of text information, it can help a variety of downstreaming
applications, such as election forecast [1, 2|, prediction of produce sales [3, 4], box office
revenue [5].

While the formulation of a text-based prediction problem resembles a normal text clas-
sification problem, especially when we formulate both as a supervised learning problem,
text-based prediction is generally much more challenging than a normal text classification
task such as topic categorization or sentiment analysis because the attribute value to be
predicted is in general not directly derivable from the text data and the correlation between
the text input and the response variable can be very weak. For example, in the task of
movie revenue prediction, text information such as movie reviews only delivers week signals.
It is hard for both machine and human being to directly infer the revenue performance by
reading the reviews. Previous studies showed that sentiment analysis is helpful for the task,
but revenue performance is not only determined by people’s opinion towards it. Another
example is to predict election results, sentiment is also important, but it is not sufficient to
only use the sentiment polarities to make accurate prediction. We need to dig into more de-

tails from the text information. The challenge is that raw text is often too noisy. Sometimes



a large part of a document is not relevant at all, and only a few snippets are relevant to the
response variables we want to infer. The response variables are not directly mentioned or
easily derivable from the text in many cases. That is, there is often a semantic gap between
the attribute value to be predicted and the surface lexical features we can extract from the
text data. How to bridge such a gap is a key technical challenge, but has not been well
studied in the literature. In this thesis, we propose to leverage the increasingly available
knowledge graphs on the Web to bridge this gap.

To understand why knowledge graph can help bridge the gap, we can analyze the chal-
lenge in text-based prediction of attribute values of entities from two perspectives — feature
generation and feature generalization.

For feature generation, the most popular method is to use text-level surface lexical features
(e.g., words or phrases). However, one problem with such surface lexical features is that the
free-form of text contains much redundancy or noise, and lacks semantic discrimination.
Deeper semantic feature representation of documents is needed to enable interpretation the
text information for prediction purpose. For instance, if we want to classify online movie
reviews collected from social media according to the movies that are being reviewed, we can
find that it is easy to infer the movie label when people are talking about the directors or
actors/actresses. Such kind of background knowledge can help a lot to identify the movie
labels, but may not be easily deducible by only using surface lexical features. Another
example of the semantic gap can be shown in movie revenue prediction task, which is to
predict the box office revenue of movies. Discussion about the performance of actor/actress,
impression of the director, and fondness of the story are all informative signals for the
prediction task that can be discovered from the text data. Such a finer-grained analysis,
however, would require additional knowledge on a deeper semantic layer (e.g., recognition of
directors, actors/actresses and authors) which can not be fully satisfied by using word-level
or phrase-level features. The main motivation for our work is to use a knowledge graph to
bridge such a gap.

For feature generalization, a commonly-used type of features that are applicable to mul-
tiple applications is the intermediate features extracted from the text data. For example,
sentiment polarity is a widely-used feature in many applications such as movie revenue
prediction, election forecast. Though such intermediate features are extracted from text
automatically and shown to be effective to a variety of applications, they are not universally
applicable to every text-based prediction task. Intermediate features usually rely on some
pre-set assumptions. Once the pre-set assumptions do not hold any more, we need to create
new intermediate features. Since it is infeasible to exhaust all possibly useful intermediate

features, constructing intermediate features is not an optimal solution to represent the text



data for making accurate prediction in all scenarios. To construct features that are not only
effective to facilitate precise prediction but also interpretable and generalizable, we again
propose to exploit knowledge graph. By identifying what kind of information is relevant
to the task based on the background knowledge acquired from a knowledge graph, we can
extract more relevant semantic content from the text, and consequently better capture the
correlation between the text and the target variable that is to be predicted. The constructed
features are derived from human knowledge provided by the knowledge graph, they are in-
terpretable and can help to explore patterns behind the text data from the perspective of
predicting real-world phenomena. Besides, the knowledge graph-based features do not de-
pend on pre-set assumptions, thus are more generalizable for various applications in diverse
domains.

Among all kinds of applications of text-based prediction, a large number of them are
entity-based where the variables to be predicted are the attribute values of a set of entities.
We refer to this type of prediction problem as entity-centric prediction, and the involved
entities are called central entities. For example, predicting the rating of restaurants based
on socially-generated comments, predicting the sales performance of products from con-
sumer feedback, and predicting the revenue of movies based on reviews are all examples of
entity-centric prediction. In this thesis, we mainly focus on entity-centric prediction, where
knowledge graph can serve as a natural bridge to connect the textual information and the
target variables. Target variables are associated with a group of central entities. Even
though it is not clear how the target variables are related to the textual information, we
can assume that information related to the central entities is latently related to the target
variables in a certain way. We can easily extract information related to the central entities
from the background text with the help of knowledge graph. In this way, the correlation
between text and response can be better captured.

We propose to generate knowledge graph-based features to represent text data for entity-
centric prediction tasks, and how to obtain the best-fit knowledge graph for a particular task
is also an essential problem. Constructing a large knowledge graph has been traditionally
labor-intensive. With the arrival of information age, a large amount of digital text is easily
available on the Internet, which makes it possible to construct a very large knowledge graph
automatically or semi-automatically by using information extraction techniques. As a result,
a large number of knowledge graphs have been created and widely used in many text-
related applications, such as WordNet [6], DBpedia [7], Freebase [8], YAGO [9], NELL [10],
PROSPERA [11], DeepDive [12] and Knowledge Vault [13]. The growth of knowledge graphs
available in the public domain makes such an approach especially appealing since as we have

more knowledge graphs, our approach would also potentially become even more powerful.



There are extensive studies on applying knowledge graph in text-based prediction tasks
and demonstrating the value of knowledge graph in those real applications [1], [2], [3], [5],
[4]. In spite of great success achieved so far, the power of knowledge graph is still not fully
exploited. One of the main reasons is that the construction and the application of knowledge
graph are disjoint from each other — once a knowledge graph has been built, it tends to remain
unchanged during its use in many different applications and cannot assimilate new useful
knowledge from text data used in a particular application. As shown in Figure 1.1a, in the
existing applications, knowledge graph is typically used as a knowledge resource fed into the
application, but receives no feedback from it.

We argue that such a feedback process is generally necessary because a pre-constructed
generic knowledge graph, no matter how large it is, would unlikely be able to fully cover
all the knowledge needed in all kinds of application tasks; indeed, it is impossible to build
a knowledge graph that encompasses the entire knowledge of human language even though
theoretically such a “universal” knowledge graph exists. Another problem with directly
using a pre-constructed generic knowledge graph without adaptation is that the knowledge
graph contains large amounts of non-relevant knowledge to a particular task, which not only
causes unnecessary computation, but also can be even “distracting” for a particular task
(e.g., causing overfitting when used in a supervised learning program).

To incorporate such task-based feedback and prune any non-relevant knowledge in a
generic knowledge graph, we propose to construct a task-aware knowledge graph (TAKG)
which would only contain the relevant knowledge to a particular task and assimilate addi-
tional relevant knowledge from the data used in a particular task. In this way, we can build a
knowledge graph that is customized to the specific entity-centric prediction problem, which
not only provides the best support to the task but is also potentially helpful for similar tasks
in the same domain.

The construction of knowledge graph can be considered as a process of encoding useful
information from text into a graph structure which determines the semantics or domain-
specific roles of words or phrases, while the application of knowledge graph in text-related
applications is more like a reverse operation which decodes information embedded in the
text with the help of a knowledge graph. The task-aware knowledge graph we propose in
this thesis bridges the gap in the existing work between the construction and application of
knowledge graph to allow for a potentially iterative process for constructing an increasingly
relevant and complete knowledge graph customized toward optimizing the performance of
a specific task. As shown in Figure 1.1b, feedback from the task is utilized to improve the
knowledge graph in the construction of task-aware knowledge graph, and the knowledge

graph and the task can mutually benefit from each other.
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Figure 1.1: (a) Common way of applying knowledge graph. (b) Construction and application
of task-aware knowledge graph
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Figure 1.2: (a) An example of generic knowledge graph. (b) An example of how a task-aware
knowledge graph is constructed

As an example, consider the task to annotate movie reviews with the movies being re-
viewed, which is a text classification task with movies as class labels. Part of a generic
knowledge graph that can be used to solve this problem is shown in Figure 1.2a which
includes movie entities and their relations with other kinds of entities. If we find that re-
lations such as “ProducedBy” and attributes of movie entities such as “Budget” are not
very useful or even bring in noise sometimes for the task, we can remove them from the
knowledge graph. By trimming the knowledge graph, we obtain a more relevant and less
noisy task-aware knowledge graph customized for our task. Besides, we can also discover
new knowledge from the text data in our task (i.e., reviews), such as extracting new entities
and relations, finding more attributes of entities. For example, we find a review “City of
Stars is my favorite song in La La Land”, indicating that “City of Stars” is a song of “La

La Land” which is unknown to the knowledge graph. Then we can expand the task-aware



knowledge graph with this new knowledge. Such an expanded task-aware knowledge graph
would then enable us to use “City of Stars” as a clue to annotate the review where this song
is mentioned with the correct label “La La Land.”

This example shows that in general the construction of a task-aware knowledge graph
would include (1) trimming a large generic knowledge graph (to remove noise and increase
efficiency) and (2) expanding it with any new knowledge that can be extracted from the text
data used in a particular task. The process can also be repeated multiple times to iteratively
adapting the knowledge graph to optimize the performance of a task.

In this thesis, we provide a formal definition of task-aware knowledge graph and propose
a general formal framework for constructing a task-aware knowledge graph that supports
both trimming and expanding a knowledge graph. A knowledge graph is composed of a set
of entities and relations between them. The basic structure of a task-aware knowledge graph
is similar, but it differs from a generic knowledge graph in that a task-aware knowledge
graph also carries information about the relevance or usefulness of an entity or relation
from the perspective of a particular task. The framework thus includes a task awareness
measurement function, which measures the relevance of entities and relations to a task and
guides the construction algorithm to find the precisely-targeted knowledge needed in a task.

While customized generation of knowledge graph is in general helpful for any applications,
as an initial study of task-aware knowledge graph, we are particularly interested in those
application tasks involving entity-centric prediction. The benefit of a knowledge graph for
entity-centric prediction task is easy to obtain and construction of a task-aware knowledge
graph for such tasks is more tractable. The constructed task-aware knowledge graph provides
the better assistance to the specific entity-centric prediction task compared to a generic
knowledge graph or a domain knowledge graph, as it is enhanced by learning new knowledge
from its application in the task.

With entity-centric text prediction tasks in mind, we systematically study effectiveness of
task-aware knowledge graph for such tasks. We follow the proposed general framework and
develop new algorithms for constructing a task-aware knowledge graph for entity-centric
prediction in both knowledge-based and task-dependent ways. The construction of task-
aware knowledge graph can start from either an existing generic knowledge graph or a
pre-generated seed knowledge graph which mainly contains the central entities. Trimming
of the knowledge graph is done based on the task awareness measurement. The task-aware
knowledge graph would be expanded if the coverage of the knowledge is not large enough
and new relevant knowledge is available in the background text data. The expansion is
data-dependent and only focuses on entities or relations with high task awareness, thus

assimilating the relevant knowledge very efficiently and avoiding the completion of the whole



generic knowledge graph. The trimming and expansion can be carried out in turn repeatedly
until the coverage is sufficient and the noise is ignorable.

When we get a task-aware knowledge graph specifically constructed for an entity-centric
prediction task, the next question is how such a knowledge graph can help to optimize the
performance in the task. This question is twofold: whether a knowledge graph (including a
task-aware knowledge graph) is helpful at all; if so, how to leverage the knowledge graph to
benefit the task.

To answer these two questions, we first study how a knowledge graph can be used to
construct features for two representative tasks, classification and regression, and show that
whether the idea of using knowledge graph is appealing. Our study shows that a generic
knowledge graph is beneficial in general for some easier tasks like entity-centric classification.
But it doesn’t always help, especially when the task is very difficult and the gap is large.
One limitation of the generic knowledge graph we observed in these experiments is that the
knowledge graph does not provide sufficient background knowledge needed in the task. To
see whether the extension of coverage is important, which is one of our main motivations
to construct a task-aware knowledge graph, we propose an efficient algorithm to discover
both paradigmatic and syntagmatic relations from the text corpora and use both relations
to expand the knowledge graph. These are two fundamental relations between words based
on their co-occurrence. Different from the well-organized relations provided by a knowledge
graph, paradigmatic and syntagmatic relation can tell user some hint about there may exist a
certain type of “vague” connection between two words. Even though they are not categorized
into the pre-defined relation types, they can still help to find more relevant entities. We find
that when the coverage is enlarged, even though by more general relationships rather than
the pre-defined finer-granularity relationships in a knowledge graph, the performance the
performance is significantly improved, indicating that constructing a customized knowledge
graph with sufficient coverage is necessary. Paradigmatic and syntagmatic relations can work
very well to help us to find good features in general. However, they are not powerful enough
when more accurate relations in finer granularity are needed, and a task-aware knowledge
graph which can discover more accurate relations would be a better choice in this case.

To find a better way to leverage knowledge graph in entity-centric prediction tasks, we
systematically study knowledge graph-based feature construction for entity-centric predic-
tion applications. We propose several ways to construct the knowledge graph-based features
and compare their performance in different kinds of real-world applications. We find that
entity-based features can work very well in some cases. However, when the semantic gap
between the text and the response is larger, the problems become much more challenging

and additional information from the local structure of the knowledge graph is needed. For



example, to exploit text data in more challenging tasks such as predicting product sales
or movie revenue from online reviews, we propose to construct explanatory path-based fea-
tures based on the knowledge graph. The explanatory path-based features especially benefit
from task-aware knowledge graph, because task-aware knowledge graph not only enlarges
the coverage but also organizes the newly discovered knowledge in a disciplinary way.

To show the effectiveness of the proposed methods, we study one case of entity-centric
classification. We propose to define the task awareness measurement function based on the
relatedness of entities/relations/ attributes to the central entities, as well as some statistical
analysis based on the co-occurrence between features and the central entities. The trimming
of the knowledge graph can then be done according to the estimated task awareness values.
The knowledge graph is then expanded by discovering new entities and relations based on
the jointly embedding model and finding unknown aliases from the training examples. Our
evaluation results show that the best way to construct the knowledge graph-based features for
the entity-centric classification problem is to represent documents by the entities mentioned
in it along with the context information. The trimming and the expansion of the knowledge
graph both help to improve the performance, but the expansion is more helpful since the
coverage problem impact the overall performance significantly.

Second, we study another case, of entity-centric regression. We use the same way to
construct the task-aware knowledge graph as for the entity-centric classification task because
to identify which text snippets is relevant to the central entity is usually the primary step to
identify informative text information. Our study shows that when mapping the entity into
its path to the central entities in the knowledge graph which explain the relationship between
them, the features work better than using individual entities as features. In those path-based
features, background knowledge is embedded in the feature space, which makes the features
customizable to different types of entities. Meanwhile, the features are not limited to the
existing entities and can also be generalized to unseen data, allowing it to better handle the
emerging entities. Though the generated features are useful in general, they can be very noisy
in some regression task especially when the correlation between the text and the response
variables are really weak. To solve the problem, a two-step filtering approach is applied
to further reduce the noise. In the first step, a t-statistic based measure is used to select
potentially better-performing features. Features that work well on all the corresponding
entities are likely to have high t-stats value and would be favored. In the later stage, we use
the mixed-effect model to analyze where the impact of a feature comes from, which helps to
further reduce noisy features. We evaluate the proposed method on two realistic scenarios of
predicting revenues of unseen movies based on movie reviews. The experiment results show

that our method is effective for finding good features, which helps to improve the prediction



accuracy significantly. The proposed method can also help reveal interesting interpretable
features that can help explain changes of values of the target variable.

To summarize, the main contributions of this thesis include: (1) We systematically studied
the knowledge graph-assistant feature engineering in text-based prediction. We presented
several ways to construct the knowledge graph-based features and investigated their perfor-
mance in different tasks. (2) We introduced the concept of task-aware knowledge graph and
proposed a general framework for constructing and applying the task-aware knowledge graph
to text-based prediction. We showed an instantiation of how to prune the knowledge graph
to reduce noise and how to expand the knowledge graph to enlarge coverage in some spe-
cific types of applications. (3) We introduced a family of text-based prediction tasks called
entity-centric prediction tasks and systematically studied effectiveness of many methods of
constructing features for such tasks by leveraging knowledge graph. (4) We proposed and
studied two general ways to expand knowledge graph. Experimental results show that both
approaches are effective. Generally, when the coverage of the central entities in the existing
generic knowledge graph is good enough, finding new entities and relations by the jointly
embedding model is more promising. While when the coverage of the central entities is poor,
making use of more general relations such as paradigmatic and syntagmatic relations is more
beneficial. (5) We proposed task-specific instantiations of the general task-aware knowledge
graph framework for two representative entity-centric tasks and show that task-aware knowl-
edge graph not only substantially outperform task-independent knowledge graph but also
even comparable to the manually-created features which are elaborately designed for the
task.

This thesis is organized as follows:

Chapter 2 briefly reviews the literature.

Chapter 3 systematically studies knowledge graph-assistant feature engineering in entity-
centric prediction tasks.

Chapter 4 introduces the method to expand knowledge graph by paradigmatic and syn-
tagmatic relations, and examine whether the expansion can produce additional benefit.

Chapter 5 proposes a general framework to construct task-aware knowledge graph.

Chapter 6 instantiates the general framework proposed in Chapter 5 in entity-centric
classification.

Chapter 7 presents how to exploit the task-aware knowledge graph constructed in Chap-
ter 6 in another type application of entity-centric prediction — entity-centric regression. A
two-stage filtering method is proposed to select the knowledge graph-based features.

Chapter 8 concludes this thesis and discusses the future work.



CHAPTER 2: LITERATURE REVIEW

Construction of knowledge graph has received great attention from both academia and
industry ever since the knowledge graph theory was introduced. Early work usually in-
volved much human effort like ontologies in different languages (e.g., the early version of
WordNet [6]). Expert-edited knowledge graph is of high quality, but the construction and
maintenance are very expensive and labor-intensive, making it not scalable.

The automatic construction of knowledge graph helps solve those problems and thus has
become increasingly popular. Due to the rapid development of related techniques such as
text mining and natural language processing, recent years have witnessed a proliferation
of large-scale or even web-scale knowledge graphs being generated in an automatic way.
Semi-structured text data such as Wikipedia infobox is widely used in the construction of
knowledge graph. For example, DBpedia [7], Freebase [8] and YAGO [9] are all built from
such kind of semi-structured text data.

Though semi-structured text data is better organized which is easier to exploit, a much
richer resource still lies in the unstructured free-form text data. If we can make use of
the free-form text data, we can leverage the entire web to construct a powerful knowledge
graph. A lot of existing work has been explored in this direction. For example, NELL [10],
PROSPERA [11], DeepDive [12] and Knowledge Vault [13] are all generated from the entire
web and they do not require the data source to be structured.

Besides the generic knowledge graph, extensive effort has also been devoted to the con-
struction of domain knowledge. For example, social domain knowledge graphs that can dis-
cover emerging entities [14]; health knowledge graph built from electronic medical records [15]
and web source [16]; enterprise knowledge graph that provides useful information about com-
panies [17]; knowledge graph for technical and scientific domain [18], [19]; and knowledge
graph for mobile apps [20]. Compared to the generic knowledge graphs, the domain knowl-
edge graph can provide tailored background knowledge in a particular domain. However,
they are domain-oriented rather than task-oriented, which can not guarantee the coverage
of the background knowledge in a random task even in the specific domain. For example,
a knowledge graph constructed for the movie domain is still not likely to includes all the
aliases of all the movies and other relevant entities in an arbitrary document, especially when
the language is quite informal (e.g. reviews from tweets and other web forums).

There is also exploration of new schema of knowledge graph, such as event-centric knowl-
edge graph [21, 22], visual knowledge graph that contains both visual and textual entities [23],

temporal knowledge graph which learns dynamic representation of entities over time [24].
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These new schemas are not limited to text representations. Rather than representing the
relations between entities in a static network, they also explored the possibility of taking
multi-media information as supplement or even as the key points, as well as the possibility
of using dynamic network to timely update the network structure in a much more flexible
way.

Both the expert-edited and the automatically-generated knowledge graphs are important
resources to help machines acquire human knowledge; they are widely used in many real-
world applications such as question answering [25, 26|, opinion mining [27, 28] and query
expansion [29, 30].

Though great achievement has been made, the construction and application of knowl-
edge graph in real applications are far from optimal. Most existing knowledge graphs are
generated for all purposes, but not designed to provide customized knowledge for a specific
task. Their construction is thus not task-dependent and generally cannot fully satisfy the
knowledge need in a particular task. Compared to the construction of existing knowledge
graphs, the way we generate a task-aware knowledge graph is not only task-oriented but also
enables the knowledge graph to learn new knowledge from the application. Conceptually,
what we propose is to tightly integrate construction of a relevant knowledge graph to a task
and its application in the task, thus enabling exploitation of feedback from task performance
to iteratively optimize the knowledge graph for the particular task.

Note that the construction of task-aware knowledge graph is not incompatible with the
traditional way of generating a general knowledge graph. Both schema-less and pattern-
based methods that are used for the construction of general knowledge graph can also be
utilized in the expansion step of constructing a task-aware knowledge graph. Knowledge
graph completion and relation extraction methods [31, 32, 33] can also be used to enhance
the task-aware knowledge graph when the coverage of the existing knowledge graph is not
enough. Besides, existing general knowledge graphs can be utilized to initialize the task-
aware knowledge graph to provide basic background knowledge.

Knowledge graph is leveraged to benefit a variety of applications, among which text-based
prediction is a representative one. Text-based prediction is a powerful tool to predict real-
world phenomenon from text data. It has been explored in many practical applications such
as election result prediction ([1, 2]), health research ([34, 35]) and product sales prediction
([3, 5, 4]). However, the existing methods have not fully exploited knowledge graph to
construct effective and interpretable features for prediction.

Free-form text is sometimes not informative enough for complex prediction tasks, and
semi-structured text is more popularly used as a result. For example, hashtag and user

information are useful features when leveraging tweets [2]. Another widely-used intermediate
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feature from free text is sentiment. For example, a study has shown that the movie revenue
performance is somehow correlated with sentiment polarity of the reviews [36]. Such kinds of
meta features or intermediate features inferred from free text can be useful for a certain type
of task. However, they are not universally applicable to different domains. For example,
sentiment could be a powerful feature for sales prediction but it may not work so well for
health decision-making system. Besides, manually designed features need to be carefully
selected in advance and it is hard to exhaust all kinds of useful features by hand. Compared
to most of the existing methods, our method discovers correlation between features and
response in an automatic way and can leverage the increasingly available knowledge graph
resources.

As an important method of knowledge representation, knowledge graph has been widely
used in various text mining applications, such as document similarity computation [37, 38],
topic discovery [39, 40], opinion mining [27, 28] and information retrieval [41, 42]. Back-
ground knowledge provided by KGs can be leveraged in various ways. Taking document
representation as an example, it can be enriched by knowledge graphs at either entity level
(e.g. [43]) or sub-graph level (e.g. [37, 41]). In this thesis, we make use of both entity-level
and relation-level knowledge and incorporate it with contextual information. This is espe-
cially helpful when the correlation between the textual information and the response variable
is weak, which requires a tight collaboration of local context with background knowledge.

The proposed method mainly focuses on finding better features for entity-centric text re-
gression applications. However, The proposed two-stage filtering algorithm is generalizable
to any text-based prediction tasks. An important complementary way to enhance the perfor-
mance is to improve the regression model itself. When the response is continuous variable,
linear regression is typically employed. One problem with linear regression model is that the
correlation between the output response and the input features is much more complex and
non-linear model might be more proper [44]. The improvement of learning model can always
be in parallel with generation of better features, and the combination of them would be ben-
eficial in general for all kinds of applications. Our method can thus be potentially combined

with many different regression models to support a variety of real-world applications.
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CHAPTER 3: KNOWLEDGE GRAPH-BASED FEATURE ENGINEERING
IN ENTITY-CENTRIC PREDICTION

3.1 INTRODUCTION

Most explicit knowledge is stored in the form of unstructured textual information, which
makes the organizing, analyzing and exploiting of the ever growing documents on the In-
ternet a challenging and vitally important problem. These text mining and management
applications usually include the procedure of preprocessing, featurization and finally being
casted as an unsupervised or supervised learning problem which produces some response
variables according to the text input. In this procedure, feature engineering is critical to the
performance of many applications. Lexical, syntactic and semantic features have thus been
studied in previous studies.

Lexical features like bag of words have achieved great success in many text mining and
management tasks and become the most popular way for text representation. In a variety
of text-based tasks, lexical features are powerful in the detection of correlation between
the text content and the response variable. For instance, sentimental words indicate the
sentiment polarity in the task of analyzing the sentiment of natural language text, and
topic words differentiate thematic categorization of news article about business, technology,
entertainment, etc.

Though lexical features have been shown to be effective and robust, they have their limita-
tion of modeling the textual information accurately. On one hand, they ignore the syntactic
information. The structure of natural language, though not necessarily helpful in some cases,
is needed in many tasks such as non-native text analysis where the syntactic structure helps
to understand how the speakers construct their sentences [45].

On the other hand, lexical features are not able to capture the semantic relation between
words. For example, they are not able to distinguish synonyms, which makes the corre-
sponding dimensions non-orthogonal in the feature space. To solve this problem, a common
solution is to represent the documents by low-dimensional vectors in a latent semantic space
such as topic space and word2vec embedding space. The latent semantic space captures
the semantic relations among words, thus models the textual information more accurately,
especially when diversified vocabulary is used to express similar content.

Though syntactic and semantic features can break through the limitation to some extent,
they are still not capable of dealing with more challenging tasks where response variables
cannot be directly derivable from the text. Syntactic information is helpful for understanding

the language structure, but is lack of deeper semantic information. The improvement of
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text representation brought in semantic features is mainly limited to the scope of internal
relations within text contents, rather than directly reveal how the text content is related to
the response variables. For example, if we want to identify the online reviews about certain
movies, it is more difficult to get the signal features compared to finding discriminative words
or phrases in thematic categorization tasks. In such kind of tasks, the response variable is
distantly related to what is explicitly mentioned in the text, which means that there exists a
semantic gap. The textual information is related to the response variables by more complex
reasoning with background knowledge, thus surface features extracted from the text are
usually not effective in bridging the gap.

Among all the applications where background knowledge is required to allow people to
see the pattern behind the textual information, a large number of them are entity-based
where the response variables are closely related to certain entities. For example, in many
text classification or regression tasks, the response variables can be a group of entities or a
certain attribution of them. We refer to such kind of application as entity-centric text ap-
plication, and name the entities that the response variables are related to as central entities.
For instance, identifying online reviews about movies, predicting the sales performance of
products, are both entity-centric text applications. In the movie review classification task,
the central entities are the movies and the response variables can be their IDs. While in the
sales prediction task, the sales performance can be considered as an attribute of a product
and the product are the central entities.

Though semantic gap also exists in entity-entric text applications, the natural connection
between the response variables and the central entities makes it easier to capture the corre-
lation between textual information and the response variable with assistance of knowledge
graph. In order to bridge the gap, we propose to leverage knowledge graph as an auxiliary
to represent documents. Background knowledge provided by knowledge graph helps to dis-
tinguish informative textual signal from the noise, thereby better exploiting the predictive

power of the textual information.

3.2 DEFINITION

Before introducing our exploration of exploiting knowledge graph for entity-centric pre-
diction in details, we first formulate the problem and define the concepts that will be used

in the thesis.
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3.2.1 Knowledge graph

A generic knowledge graph is composed of entities and relations between them. An entity
or a relation in a knowledge graph can have an assortment of attributes, e.g., name and

aliases, types, etc. Formally, we have the following definition for entity and relation:

Definition 3.1. Entity: An entity is an object or concept that can be distinctively
identified. It has a set of attributes which can be considered as
its components or properties. Formally, let e be an entity then its
attribute set is denoted as e.A = {e.A1,e.As, ...} where e.A; is the
i-th attributes of e.

Definition 3.2. Relation: A relation is the relationship between two entities, and
it can be represented as a triple r = (e;,r.A, e;). Here e; and e; are
the two entities that are connected by the relation r. We name e;
and e; as the head entity and the tail entity connected by relation

r respectively. r.A is the attribute set of .

Example 3.1 shows an instance of entity. It is a movie entity contains attributes such as
name and budget. We define a function I(a) to obtain the key of an attribute a. V(a) is
the function to obtain its value. Va = (k,v),K(a) = k,V(a) = v. In this example, we have
K({name, LaLaLand)) = name and V({name, LaLaLand)) = LaLaLand.

Example 3.1. A movie entity in Figure 1.2 can be represented as e; = {{name,
LaLaLand),{Budget,$30million),...}. It contains attributes like
name, budget, etc. Each attribute is represented as a key-value

pair where the key is the type of the attribute (e.g., name, budget).

An example of relation is given in Example 3.2. Type information and confidence scores
are popular attributes for relation. In this example, the relations contain only one attribute

which is the type of the relation.
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Example 3.2. As shown in Figure 1.2, the movie entity e; are connected with
two person entities: (1) its director by relations such as (es, (type,
DirectedBy),es); (2) and the actress who starred in the movie

(e1, (type, StarredBy), e3).

Based on the definition of entity and relation, we can formally define a generic knowledge

graph as:

Definition 3.3. Knowledge Graph (KG): A knowledge graph G is composed of
entities and relations between them. Formally, G = {E, R} where

E and R are the entity set and relation set respectively.

Entities in the knowledge graph can be considered as nodes, while relations between them

can be treated as edges. Based on the graph structure, we can define the path between two

entities:

Definition 3.4. Path between Entities: The set of all possible paths between
two entities in knowledge graph G is path(e;, e;,G) = {{r1,re, ... 7)|r1
= (e, r1.A, er1), 72 = (ex1, 2. A, €p2), .11 = <6k,l—1,rl-A76j)}-

Example 3.3. A path between e; and e4 in Figure 1.2 is: ((ey, (type, Directed By),

62)) <627 <typ€, SpOUS€>, 64))

The distance between two entities in a knowledge graph is then defined as the length of

the shortest path between them.

Definition 3.5. Distance between Entities: The distance between two entities

in knowledge graph G is defined as dis(e;, €, G) = MiNpepatn(e;e;,0)1

len(p)}, where len(p) is the length of path p.

For instance, the distance between e; and ey is 2, as the path shown in Example 3.3 is the

shortest path between them.
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3.2.2 Task Description

Text-based prediction takes free-form text data as input and produces an estimate of the
response variable as output. Formally, we represent the input text as a set of documents
D ={dy,ds,...,d,} and the response variable values as a vector Y. The text-based prediction

task is thus essentially a mapping from D to Y: F(D - Y).

Definition 3.6. Document: A document d is a set of sentences d = {s1, 53, ..., 54}
where each sentence can be represented as a sequency of words

S; = (w“,’wm,. .. ,UJZ‘|S|>.

Definition 3.7. Response Variable: The response variables are the output of
text-based prediction, and can be represented as a vector Y =
[y1,y2, -, yn]T where y; is the response variable of the i-th docu-

ment d; in D. All the y’s are numerical, either discrete or contin-

uous.

Entity-centric prediction is a family of text-based prediction tasks where the response
variables are the attributes of a group of entities. This kind of prediction tasks is very
common, including examples such as prediction of sales of products, revenues of movies,

stock prices, and poll results of presidential candidates.

Definition 3.8. Entity-centric Prediction: A text-based prediction task ¢ takes
Y as its response variables. If each response variable y € Y is asso-
ciated with an attribute of an entity (VyeY,|{eleec Enyece A}| =

1), the task t is an entity-centric prediction task.

Definition 3.9. Central Entity: Given an entity-centric prediction task ¢ whose
response variables are Y, entities that are associated with its re-
sponse variables are named as central entities. We denote the
central entities of ¢ as t.E,, then t.E. = {elee EA(JyeY st. ye
e.A)}.
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Example 3.4. If we want to collect customers’ review about some products from
social media and classify them based on the product being re-
viewed, it can be considered as an entity-centric prediction task.
The products are the central entities. The response variables are

the class labels which equals to the IDs of the products.

Example 3.5. A movie entity has various attributes such as name, release date
and box office (e.g., e = {(Name: La La Land), ( Release date:12-31-
2016), (Bozx office: $30 million),...}), and the response variable
(i.e., box office) is one of them. If the task is to predict the box
office for a given set of movies from online reviews, it is an entity-

centric prediction task with the movies as central entities.

Among all kinds of entity-centric predictions, we mainly focus on two fundamental types —
entity-entric classification and entity-centric regression. Example 3.4 is an example of entity-
centric classification, which is a fundamental family of entity-centric prediction. Entity-
centric classification is a representative task of entity-centric prediction, where the central
entities are directly connected to the output. In other kinds of entity-centric tasks, there
may be additional information required in the outcome besides central entities. For example,
However, the primary step in many real-world entity-centric prediction tasks is usually to
distinguish the relatedness between a central entity and an output variable. In this sense,
entity-centric classification is helpful for many other kinds of entity-centric text analysis.

The response variables in entity-centric are discrete. While in some other types of tasks,
the response variables can be continuous, such as the entity-centric regression task shown
in Example 3.5. Such tasks can sometimes be much more challenging the entity-centric
classification tasks, especially when the response variables are weakly correlated with the

input text.

3.3 KNOWLEDGE GRAPH-ASSISTANT FEATURE EXTRACTION

In many text classification or regression tasks, a popular way to featurize the text data
is to use lexical features such as bag of words. When using individual words or phrases as
features, one issue is that it ignores the semantic relations between features. For example, it

can neither distinguish polysemous words nor recognizing synonyms. This problem can be
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alleviated by mapping documents to feature vectors in a latent semantic space. However,
it still does not go beyond the surface semantic level from the perspective of capturing the
correlation between text input and response variables.

In entity-centric classification or regression tasks, the central entities could play the role
of the bridge linking the input text and the response variables which are their attributes.
It is likely that the textual information has ties to the response variables if the content is
related to some of the central entities. For example, if the task is to classify online reviews
according to the mentioned movies, we can identify a sentence like “I love the movie and
City of Stars is my favorite song of the year” as the review about the movie “La La Land”
because we know that “City of Stars” is one of the songs in “La La Land”.

In general, entities related to central entities mentioned in the text content indicate a
possible association with the response variables. Meanwhile, the relationship between the
mentioned entity and the central entity casts into the insight how the textual information is
tied to the response variables. Besides, the contextual information may also of great value to
gain additional information. Our goal is to leverage these desirable features in the document
representation and deliver them to the classifier or regressor in an effective form. With the
assistance of knowledge graph, we can obtain the related entities and their corresponding
relations easily. Therefore, we propose to featurize the text in a knowledge graph-assistant
way. In order to find a better way to construct features based on knowledge graph, we

propose four approaches for feature extraction.

3.3.1 Entity-based featurization

Given a knowledge graph, we first find entities that are closely related to the central
entities. Entities that are connected by a certain type of relations or paths in the knowledge
graph are related to each other in a particular way. Generally, they are more closely related
when the path is shorter. Based on this assumption, we construct a sub-graph formed by the
central entities and their close neighbor entities together with the relations between them.
Intuitively, this subgraph represents the relevant knowledge from the KG to our prediction
task.

Formally, let Gy = {Fy, Ro} be the original KG. The extracted subgraph is defined as
G = (E,R), with

E=t.E.u{ec Fy|3e et.E. s.t. dis(e,e’,Gp) <0y} (3.1)
R={reRy|3ect.E. e’ e E st.repApepath(e,e,Gp)
Alen(p) = dis(e,e’,Go)} u{{e, SELF,e)le € E} (3.2)
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Figure 3.1: An example of related entities in the knowledge graph.

{<Name, Fred

Berger>, ...}
{<Name, Olivia

{Name: City of Stars, Hamilton>,...}
Composer: Justin Hurwitz,

{Name: La La Land,
Box office: $446m,
.}

{Name:, Damien Chazelle,
Born Year: 1985,

{Name: The Amazing Spider-Man 2,
Box office: $709m,

B S\

{Name: Emma Stone, ...}

where t.E, are the central entities of the task t. path(e,e’,Gy) is the set of all possible paths
from entity e to €’ in the knowledge graph G and dis(e, e’,Gy) is the distance between the
two entities which equals to the length of the shortest path. len(p) denotes the length of
the path p. The neighbor entities can be directly connected to one of the central entities by
a relation, or they can be connected by a path whose length is no larger than 6;. Note that
we add an extra relationship “SELF” connecting an entity with itself, which will be used

later.

Example 3.6. As the example shown in Figure 3.1, the task is to classify online
reviews according to the mentioned movies. There are a bunch of
movie entities to be identified, including e; (“La La Land”) and es
(“The Amazing Spider-Man 2”). The entity set of the subgraph is
{e1,e9,€e3,€e4,e5} when we set the cut-off threshold of path length
(04) as 1. If we set 6, to be 2, then eg will be included in the entity
set of the subgraph as well.

Given a sentence s, how should we derive features based on the subgraph G?7 Intuitively,
we first want to check whether any of the entities in G occurs in s, and if so, those matched
entities in s would be relevant to the prediction task and thus should be the basis for
constructing features. A most straightforward way to featurize text based on these entities
is to directly use the entities themselves as the feature space. A document will be then
represented as the matched entities in it, as the example shown in Example 3.7. We name

the features generated by this featurization method as entity-based features.
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Formally, the entity-based features extracted from a sentence s are defined as:

5(3):{e|eeE/\vename(e)/\v=(wl,---awk>/\5:<w17""wlls|>

AW =W A AW =W AT TAGHE =1 < s} (3.3)

where name(e) is the function to return the names of the entity e including all its aliases:

name(e) = {V(a)la € e AK(a) = name}.

Example 3.7. Taking the document “I loved La La Land so much. Clity of Stars
is my favorite song of the year” as an example, it is represented by
the following vector given the subgraph shown in Figure 3.1 when

using entity-based featurization:

€1 €2 €3 €4 €5

d(l 0 0 1 0)

We find two entities mentioned in the documents: e; (“La La
Land”) and ey (“City of Star”).

3.3.2 Context-aware entity-based featurization

The related entities help to discover useful information in the text content. However, if we
only use such entities as features, we would lose much context information about the mention
of an entity. Apart from the occurrence of related entities, the contextual information is also
helpful. In the example shown in Section 3.7, if we only want to know which movie the review
“I love La La Land and City of Stars is my favorite song of the year” is talking about, the
occurrence of “La La Land” and “City of Stars” provides enough information to infer that
it is about the movie La La Land. However, if we also want to analyze the sentiment, it is
hard to predict the sentiment polarity if the only information we can get is the occurrence of
entities. In this case, what leads to a deeper understanding of the sentiment of the sentence
is content like “I loved La La Land so much”.

In fact, context is helpful in many cases, it together with the mentioned entity tells us
more detailed information. To capture the context information, we thus define our context-

aware entity-based feature as a 3-tuple representing a combination of a mentioned relevant
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entity with any n-gram from the “left context” and any n-gram from the “right context” of
the mentioned entity.

To make such features more comparable with each other, we control the total length of
the two “contextual” n-grams with a parameter [ (i.e., requiring their total length to be [).
Besides, to ensure relevance of the contextual n-grams, we further restrict the size of the
context window on both sides of the entity to be not exceeding another parameter W.

Formally, given an entity e, the context-aware entity-based feature set for sentence s with

parameters [ and W is defined as:

C(s,e, [, W) ={((wi,...,wi, ) e, {wg ..., wp,))|vename(e) Av=(w,... w)
As= (Wl W) AW = WA AW = wE AT <GAG i<W
ANg+l<|s|nj+hk-1<qgnq+la—-(G+k-1)<W Al +1y=1} (3.4)
We can use multiple contextual phrase lengths (1) to generate the features. Denote the

set of all the contextual phrase lengths we want to have as L. A document will then be

represented by all the context-aware entity-based features that are extracted from it:
C(d,l,W) = USEd,eEE,lELC(S7€7l7W) (35)

where E is the entity set of the knowledge graph that is used to extract the entity-aware

entity-based features.

Example 3.8. Given a document “I loved La La Land so much. City of Stars is
my favorite song of the year” and the knowledge graph shown in
Figure 3.1. The document is represented as the following vector
when we set both [ and W as 2:

((I 10V€),€1,<>) ((10\76)’61’(80)) ((),64,<iS my})

d ( 1 1 1 )

3.3.3 Explanatory path-based featurization

Intuitively, entity-level features are semantically relevant to the prediction task, but they

tend to cause data sparsity problem and cannot adapt to unseen data such as newly-emerging
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entities. To address these limitations, we propose a method to transform the entity-level
features to a explanatory path-based features that involve both entities and relations.

More specifically, we transform the entity in the entity-level features to its relationship
with the central entities. This transformation is a novel idea in feature construction, which
generalizes the original entity-level features without sacrificing relevance. Indeed, the relation
provides an “explanation” why the entity can be potentially useful for the prediction task.
Thus it generalizes much better than the original entities and is also more interpretable.
Since entities that are related to the central entities in the same way can be expected
to play a similar role in the prediction, merging them together as one (abstract) feature
not only alleviates the sparsity problem in the feature space, but also ensures the needed
generalization when we encounter entities not seen in the training data, because relation
types are much more prevalent than individual entities.

Given an entity e and a set of central entities t.F,, the explanatory path are defined as:
Qe,t.E.) ={(T(p),e)|e et.E. npepath(e,e',G) Anpath(e,e',G) =dis(e,e’,G)}  (3.6)
where T (p) is a function to get all the relation types in path p:
T(p) = (V(r1.A1),V(re. A1), .. V(1. Ay)) it p=(ri,re,...17) (3.7)

Here we assume that each relation r has type information as one of its attributes, and denote
the corresponding attribute as r.A; (the first element in the attribute set). Note that if the
entity e is one of the central entities, then T (p) = (“SELF”).

Given a sentence s and an entity e, the explanatory path-based features are defined as:

Q(e,t.E,) if ec&(s);

P(s,e) = { - (3.8)

otherwise.

Finally, a sentence s is represented by all the explanatory paths that can be found in it:

P(s) ={P(s,e)|lee E} (3.9)

Example 3.9. Take the document “Emma Stone’s performance hits high notes.
City of Stars is my favorite song of the year” as an example.

Again, we have the knowledge graph shown in 3.1. Thera are two
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central entities — “La La Land” (e;) and “The Amazing Spider-
Man 2”7 (es). We first extract the related entities mentioned in the
document, namely “Emma Stone” (e3) and “City of Stars” (e4). In
the next step, we find their explanatory paths to the central enti-
ties, i.e., {((es,starln, e;)), ((es,starln, es))}, {((es,isSongOf, e1))}
for e; and ey respectively. Finally, we ignore the mentioned en-
tity itself and utilize the rest link struction as features, which are
{((starIn,e;)), ((starln,e5))} and {((isSongOf,e;))}. These fea-

tures are used to represent the document:

{((starIn, ey)), ((starIn,e5))} {{(isSongOf,e;1))}

d ( 1 1 )

By mapping the related entities to their explanatory paths, entities that are related to
the central entities in a similar way can be grouped together. Note that if we keep the
related entities in the explanatory paths, the formed feature space is equal to or larger than
the entity-based feature space introduced in 3.3.1, which may even exacerbate the sparsity

problem.

3.3.4 Context-aware explanatory path-based featurization

Though explanatory path-based featurization helps to reduce the degree of freedom by
merging entities playing a similar role together in the feature space, it may also suffer from
the information loss problem. For example, we still cannot identify the semantic polarity
towards the song when we see the sentence “City of Stars is my favorite song of the year.”
by using the explanatory path-based features even if we are aware that City of Stars is a
song of La La Land. This is mainly due to the fact that the context information is missing.
A solution to this problem is again to combine the context information.

Similar to the context-aware entity-based featurization, we also include the context words
and construct so-called context-aware explanatory path-based features.

Formally, given an entity e, the context-aware explanatory path-based feature set for
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sentence s with parameters [ and W is defined as:

M(s,e, L, W) ={({w;, ..., wiy, ), Qe t.Ee), (wg, ..., wp,,,))|v € name(e) Av = (wi, ... wy)
As= (W W) AW = WA AW = wE AT < GAG i<W

ANg+la<|s|Anj+k-1<qrq+lo—(j+Ek-1)<W Al +1y=1} (3.10)

We can have multiple contextual phrase lengths (L) and the final context-aware entity-

based features extracted from the document are:

M(d7l7W) = USEd,eGE,lELM(Saeyl’W) (311)

Example 3.10. Given the knowledge graph shown in 3.1, the sentence “City of
Stars is my favorite song of the year” will be represented by the
following vector based on context-aware entity-based featurization
by setting both [ and W to be 2:

((), {((isSongOf, 1))}, (is my))

" | .

3.4 EXPERIMENT

In this section, we apply our method in two applications: (1) classifying reviews according

to the mentioned movies; (2) predicting the revenue of movies based on reviews.

3.4.1 Dataset and experiment setup

We use the dataset in [5] to conduct our experiment. The dataset contains reviews of 1,718
movies released from 2005 to 2009. The reviews are collected by crawling Meta-Critic'. In
the review classification task, we remove reviews with no more than 10 words because it
is often hard to infer the referred movie from the short reviews. For example, reviews like

“I love the movie” do not provide enough information for us to identify the movie labels.

Lwww.metacritic.com
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Movies with no less than 12 reviews are remained in the dataset for the classification task.
Finally, a dataset contains 1,354 movies are used, and these movies are considered as the
class labels. 10-fold cross validation is used in this study to evaluate the performance of
various features in entity-centric classification.

For the revenue prediction task, all the reviews from the original dataset are used. They are
partitioned temporally into training, development and test set. Movies released from 2005
to 2007 are used for training; and those released in 2008 are included in the development
set. Based on the history data, the future (2009) revenue performance is to be predicted.
The central entities in the test set are all newly-emerging ones, reflecting the prediction task
in a real-world application very well.

A logistic regression model with L-1 regularization is trained to identify the class labels
for the movie review classification task. While a linear regression model with L-1 and L-2
regularization is trained to predict the movie revenue.

Four metrics are used to evaluate the performance of features in the classification tasks,
namely, accuracy, precision, recall and F1 measure. To assess the performance of features in
the revenue prediction task, we adopt two metrics — mean absolute error (MAE) and sym-
metric mean absolute percentage error (SMAPE). The symmetric mean absolute percentage
error is calculated as: Lo [F - A

i — Ay
SMAPE =S 2 R I+1Af
where A; is the actual revenue of the i-th movie and F; is the predicted revenue. n is the
number of movies in the test set.

We employ two different knowledge graphs in our experiment. One is YAGO [9]. The
other is constructed from the infobox of the corresponding Wiki page about the movies,
merging the meta information such as authors, actors/actresses and directors of each movie
provided by the dataset in [5].

3.4.2 Feature engineering in the entity-centric classification task

The primary goal of our study is to see what kind of features works best for the entity-
centric classification and regression, and whether knowledge graph-assistant featurization is
useful for such kind of applications.

We investigate four families of featurization methods. The first one is lexical features,
including different kinds of n-gram features. The second one is syntactic features such as
POS tags and dependency triples. The third one is semantic features. The named entity

identified from the text are used to form the feature space. We also apply word embedding
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Table 3.1: Performance in classification task

feature \ accuracy precision recall  F-1 measure
unigram 0.374 0.371 0.362 0.366
uni- and bigram 0.378 0.379 0.365 0.372
uni-, bi- and trigram | 0.380 0.376 0.367 0.371
POS 0.270 0.249 0.243 0.246
DEP 0.171 0.158 0.152 0.155
NER 0.327 0.448 0.323 0.376
W2av 0.193 0.181 0.177 0.179
Wiki (EF) 0.339 0.419 0.332 0.370
Yago (EF) 0.303 0.439 0.296 0.353
Wiki (CaEF) 0.532%* 0.511* 0.513* 0.512%*
Yago (CaEF) 0.451 0.437 0.432 0.435
Wiki (ExPF) 0.230 0.364 0.226 0.278
Yago (ExPF) 0.217 0.348 0.212 0.263
Wiki (CaExPF) 0.458 0.451 0.441 0.446
Yago (CaExPF) 0.307 0.311 0.291 0.301

Two-tailed t-test is done for paired data. In each pair, one is the
method that get best performance, and the other one is any of the
other methods. * indicates p-value < 0.01 for all tests.

technique to represent documents in a latent semantic space. The last one is the proposed
knowledge graph-based features.

The performance of different families in the entity-centric of features are summarized
in Table 3.1. The first three rows are n-gram features. “POS” means n-grams (includ-
ing unigram, bigram and trigram) with their POS tags. “DEP” is the dependency triples.
“NER” is the named entity extracted from the text. The POS tagging, dependency triples
and named entities are obtained by using Stanford NLP tools. Word vectors pre-trained
on Common Crawl [46]2. are used to represent documents in the latent embedding space.
The document vector is calculated by taking the average of the word vectors. The four
methods for knowledge graph-based feature construction proposed in Section 3.3.1 are ap-
plied in both of the two knowledge graphs. “EF” indicates the entity-based featurization
proposed in Section 3.3.1. “CaEF” represents the context-aware entity-based features (see
Section 3.3.2). “ExPF” extracts the explanatory path-based features from text, as shown
in Section 3.3.3. “CaExPF” is the context-aware explanatory path-based feature extraction

method introduced in Section 3.3.4.

2The pre-trained vectors are downloaded from https://fasttext.cc/docs/en/crawl-vectors.html
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We can see that it is hard to find the correct label when we only use n-gram features. This
is because there are too many noisy features in n-grams. The n-gram based method is good
at finding topic-level features. For example, “magic” is among the top features for all the
three Harry Potter movies in the data set. It can help to find movies in the same genre. But
it is not a powerful feature for finer-grained categorization such as to identify the referred
movie. Such kind of features finally cause overfitting problems. For example, the accuracy
can reach 1.0 on a subset of the training data but is much worse on the test data. Feature
selection methods can help to alleviate the problem a little, but not fully solve it.

In general, lexical features work better than the syntactic features. The syntactic informa-
tion does not help much in this entity-centric classification problem. The syntactic features
are much sparser than the lexical features, which is a possible reason why the prediction ac-
curacy decreases. Entity names are informative signals of the class labels, thus “NER” works
the best among all the other features except knowledge-graph based ones. Our knowledge
graph-based features significantly outperform others. Entities are more discriminative than
relation information in the classification task, thus mapping entities to a subgraph consists
of the explanatory paths does not help much.

Context information provides valuable signals to identify the class labels. When the
context information is combined with the knowledge graph-based features, it can even work

better, for both the entity-based ones and the explanatory path-based ones.

3.4.3 Feature engineering in the entity-centric regression task

In Section 3.4.2, we show that leveraging knowledge graph can provide tangible benefits to
entity-centric classification tasks. A further question is that whether the knowledge graph-
based features are helpful in more general entity-centric regression tasks. Entity-centric
regression task can sometimes be much more challenging than classification task when the
response variable that is to be predicted is very weakly correlated to the text information.
We conduct the experiment to predict revenue performance based on movie reviews. The
experiment includes two kinds of response variables, one is the weekend revenue and the
other is per-screen revenue. The results are shown in Table 3.2 and Table 3.3. There are
two models used to make the prediction. “LR” represents the linear regression model and
“Elastic net” is the linear regression model with L-1 and L-2 regularization. Similar to the
features used in the classification task, we also employ lexical (n-grams), syntactic (POS and
DEP), and semantic (W2V) features in the regression task. “W2V” is calculated by a linear
combination of the pre-trained word vectors using TFIDF weighting.

The results again show that the prediction task suffers a lot from the overfitting problem.
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Table 3.2: Performance in prediction task with linear regression model

foature Weekend revenue Per-screen revenue
MAE($SM) SMAPE (%) | MAE(SK) SMAPE (%)

unigram 9.41 70.71 7.07 38.13
uni- and bigram 9.03 68.78 6.70 33.61
uni-, bi- and trigram 9.05 68.55 6.68 33.50
POS 9.11 70.04 7.12 37.66
DEP 9.40 69.27 6.91 35.17
W2v 10.04 68.55 8.86 46.83
Wiki(EF) 15.99 82.45 8.71 41.97
Yago(EF) 18.61 85.20 11.45 54.65
Wiki(CaEF) 10.78 69.90 7.33 36.49
Yago(CaEF) 10.44 72.96 7.13 36.68
Wiki(ExPF) 19.27 72.64 18.04 57.45
Yago(ExPF) 26.41 73.05 35.05 72.11
Wiki(CaExPF) 10.83 69.93 7.18 36.49
Yago(CaExPF) 10.43 73.06 6.90 35.29

Two-tailed t-test is done for paired data. In each pair, one is the method that get best
performance, and the other one is any of the other methods. * indicates p-value< 0.01
and t indicates p-value < 0.05.

This is somewhat expected due to the large semantic gap between such surface features and
the target variable. Taking unigram features as an example, we test the linear regression
model trained for weekend revenue on a subset of the training set, and MAE is $16.54,
much less than what we get for the test set (over $9 million). When we utilize NLP tools
to get more sophisticated features such as part-of-speech tags and dependency triples, it
sometimes works better than n-gram features. When source website information is added,
the n-grams features get better. Generally, source website information outperforms POS
tag, and both of them work better than dependency triples. All those features are noisy
and feature selection is needed to obtain better performance. For example, the embedding
vectors (“W2V”) does not work as well as others when the prediction is made by the linear
regression model. When elastic net is employed, it can get comparable performance with
other baseline methods. However, the overfitting problem cannot always be fully solved with
L-1 and L-2 regularization.

The knowledge graph-based features do not always work better than the baseline features.
The performance of lexical, syntactic and semantic features is generally comparable. Entity-
based and explanatory-based features without context information are not very effective for

the revenue prediction task, even worse than the baseline features. When context information
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Table 3.3: Performance in prediction task with elastic net model

foature Weekend revenue Per-screen revenue
MAE($SM) SMAPE (%) | MAE(SK) SMAPE (%)

unigram 8.45 69.68 6.48 34.03
uni- and bigram 8.20 67.96 6.29 31.65
uni-, bi- and trigram 8.19 67.13 6.15* 30.96*
POS 7.93 67.91 6.92 34.81
DEP 8.33 67.42 6.46 32.84
W2v 8.19 66.03 6.44 32.34
Wiki(EF) 9.25 70.56 7.35 36.14
Yago(EF) 9.43 72.56 7.01 35.43
Wiki(CaEF) 9.10 70.54 6.97 34.84
Yago(CaEF) 8.85 69.19 6.68 33.64
Wiki(ExPF) 10.02 71.10 7.18 36.20
Yago(ExPF) 10.09 70.90 7.04 35.52
Wiki(CaExPF) 9.03 70.33 6.70 33.86
Yago(CaExPF) 8.86 68.24 6.50 33.19

Two-tailed t-test is done for paired data. In each pair, one is the method that get
best performance, and the other one is any of the other methods. * indicates p-value
< 0.01 and 7 indicates p-value < 0.05.

is brought in, more powerful features are generated (i.e., context-aware entity-based features
denoted as CaEF and context-aware explanatory path-based features denoted as CaExPF).
Among all the knowledge graph-based features, the context-aware explanatory path-based
features are the best. However, the overall performance of all the knowledge graph-based
features is not satisfactory. Maybe one reason is that the coverage of the original knowledge

graph is limited so the effectiveness of the knowledge graph-based is impacted.

3.4.4 Summary

In general, the proposed knowledge graph-assistant featurization methods are beneficial in
the entity-centric prediction applications, especially the classification task. The entity-based
features are more effective than the explanatory path-based features in the classification
task. When combining with context information, both the entity-based features and the
explanatory path-based features are further enhanced. In the more general regression task
which is to predict the revenue performance of movies, context-aware explanatory path-based
features work the best. However, the revenue prediction task is much more challenging than

the review classification task, and neither the baseline methods nor our methods are able to
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make accurate prediction. One possible reason why the performance of the knowledge graph-
based features is not outstanding especially for the regression task is that the coverage of the
knowledge graph is not sufficient and many of the related entities or relations are missing in
the knowledge graph. In the next chapter, we will testify this hypothesis and see whether the
expansion of knowledge graph can improve the performance of knowledge graph-assistant

featurization methods.
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CHAPTER 4: EXPAND KNOWLEDGE GRAPH

4.1 INTRODUCTION

In general, knowledge graph is a powerful tool to facilitate deeper understanding of text.
Recent years have seen much progress towards creating universal and domain knowledge
graphs and many open sources of knowledge graph are available online. Some of them are
in large scale or even web scale, which makes them offer significant benefit in a variety of
applications. These knowledge graphs can help us to discover relations between entities,
finally leading to a better capture of correlation between text and response variables in
entity-centric tasks.

Relations covered by knowledge graph usually fall into predefined types, which allows
for better organization of human knowledge. However, relation between words or entities
can go beyond the scope of the covered relationships in an existing knowledge graph. For
example, a book can be connected with its author and publisher in the knowledge graph. If
we want to understand people’s feedback about the book, such information could be helpful.
On the other hand, the word “reader” may not be closely connected to the book entities
in a knowledge, but its mention in the document could provide important signals about
readers’ attitude. Such relationships, though more implicit compared to the well-organized
predefined relation types, are also useful for the entity-centric prediction tasks.

In practice, no matter how large a knowledge graph is, it is infeasible to cover all the overt
and implicit word relations and entity relations. To solve this problem, we propose to mine
word relations from the background text corpus and extend the knowledge graph by those
implicit relations between words and entities.

There are two fundamental and complementary types of interesting semantic relations
between words in natural languages. The first is the relation between two words that tend
to occur in similar context; such a relation connects distributionally similar words. The
second is the relation between two words that tend to co-occur with each other together;
such a relation connects statistically associated words. In semiotics, the first type of relation
is called paradigmatic relation, and the second syntagmatic relation.

To illustrate these two relationships, consider two synonyms such as “car” and “vehicle”,
which is a good example of words that have a paradigmatic relation because they tend to
occur in the same context. If we substitute one for the other in a sentence, we would still have
a meaningful sentence, whereas two semantically associated words such as “car” and “drive”

would have a syntagmatic relation because they tend to co-occur in the same sentence (note
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that we generally would not obtain a meaningful sentence by substituting “car” for “drive”
or “drive” for “car”). Table 4.1 gives another example of syntagmatic and paradigmatic
relation. “Paris” and “Chicago” are strongly related in terms of paradigmatic relation and
so are “Monday” and “December”, whereas “arrived” and “Chicago” are syntagmatically
related, and so are “go” and “Paris”.

In general, syntagmatic relation emphasizes positioning and co-occurrence in the same
context, whereas paradigmatic relation usually holds between words that are associated
with each other in the same category and can be substitutional in many contexts. Different
from syntagmatic relation, paradigmatic relation does not require words to co-occur in the
same context at the same time.

As two basic relationships, syntagmatic relation and paradigmatic relation are comple-
mentary with each other. Paradigmatic relation tells us how words are associated with one
another as playing similar roles in terms of functional rule, thus often capturing synonym-like
relations, while syntagmatic relation reveals how words can be combined with each other to
complete the functional synthesis, thus often capturing topically associated words.

Both paradigmatic and syntagmatic relations are very useful knowledge fundamental to
various applications involving text processing, including, e.g., search engines, recommender
systems, text classification, text summarization, and text analytics. For example, such
relations can be directly useful for query expansion in search engine applications to enrich
the representation of a query or suggest related queries, and for capturing inexact matching
of text for classification or clustering. Though they do not classify the relation between
words or entities to the pre-defined categories as the way how a traditional knowledge graph
organizes the relations, paradigmatic and syntagmatic relation can capture the association

between two words in a higher level which can be used to find related entities.

Table 4.1: Example for syntagmatic relation and paradigmatic relation.

‘ Paradigmatic Relationship
Syntagmatic | She has arrived at Chicago on Monday
Relationship | I will go to Paris in December

Text data are unstructured, and effective discovery of knowledge from text data requires
the computer to understand natural languages, which is known to be an extremely difficult
task due to the dependency on other difficult tasks in artificial intelligence such as knowledge
representation and reasoning. How to develop general algorithms to systematically discover
semantic relations of words from arbitrary text data in a scalable way is a major open

challenge in text data mining. In this chapter, we will make use of these two fundamental
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types of word relations to expand knowledge graph to enlarge the coverage.

We will mainly focus on how to mine paradigmatic and syntagmatic relations from the
background text corpus and make use of them to expand knowledge graph to achieve better
featurization of text data for entity-centric applications. First, we propose several different
methods to extract paradigmatic and syntagmatic relations from the text. Next, we will
make use of the discovered paradigmatic and syntagmatic relations as a complement to an
existing knowledge graph in the text featurization to check whether enlarging the coverage
of knowledge is important. We evaluate our method in two applications: movie review
classification and revenue prediction. The experimental results show that the proposed

method generates better representation of documents thus improves the performance.

4.2 EXPAND KNOWLEDGE GRAPH BY PARADIGMATIC AND SYNTAGMATIC
RELATIONSHIPS

4.2.1 Discovering paradigmatic and syntagmatic relationship by the random walk-based
model

In this section, we study how to mine large text data in an unsupervised way to dis-
cover paradigmatic and syntagmatic relations efficiently and effectively [47]. We propose
a novel general probabilistic approach based on random walks on word adjacency graphs
to systematically mine these two fundamental and complementary lexical relations between
words from arbitrary text data. In particular, we show that representing text data as an
adjacency graph opens up many opportunities to define interesting random walks on the
graph for mining lexical relation patterns, and propose multiple types of random walks for
mining useful paradigmatic and syntagmatic relations. A word adjacency graph is a graph
with words as vertices and edges indicating whether two words have adjacency relation in
the text data. Edges have weights which can be computed based on word co-occurrences,
i.e., the estimated probability that two words occur “next” to each other. Note that we
define “next” very generally to include both immediate adjacency of two words occurring
in text (i.e., one immediately after another) and sequential co-occurrence of the two words
with gaps in between.

For example, given two sentences, “The vegetable grows fast in our greenhouse” and
“The number of possible connection grows exponentially”, if we only consider immediately
adjacency, the adjacency graph would be as shown in Figure 4.1.

We can also generate other versions of adjacency graphs by making use of non-immediately

adjacent co-occurrence, where gaps are allowed for co-occurring words. For example, if we
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Figure 4.1: An example of word graph.

allow one gap between two adjacent words and add an edge between them, a part of the
graph derived from the above example would look like “grown” — “in” — “greenhouse”.
Allowing non-immediate adjacency enables discovery of long-distance relations and better
use of the corpus statistics.

The basic idea of the random walk based approach is to introduce a random walker that
can stochastically “walk” on the nodes of the graph by following the edges, with higher prob-
abilities of following edges that have higher weights (i.e., higher counts of co-occurrences).
The probability of a trajectory of such a random walker can then be associated with the
frequency of observing the word co-occurrences visited by the walker. A random walker
can also walk backward along the edges of the graph (i.e., in the reverse direction of an
edge), capturing different word co-occurrences than walking forward. Furthermore, we may
also define “round trips” of the random walker where the walker would first go forward (or
backward) and then backward (or forward).

With random walks defined on graphs, we can quantify the relation between two words
based on the probability of the random walker walking from one word to reach the other
in various ways. For example, words that tend to occur in similar context have high prob-
abilities to be reached in random walks starting from one to the other in both forward and
backward directions. Also, a round trip random walk going back to a word itself can be used
to discover words associated with the starting word based on how likely it would go through a
particular candidate word. Although not explored in this thesis, similar approaches can also
be applied to mine interesting word sequences based on most probable paths of a random
walk, which can be useful for text summarization or topic extraction. Thus using random
walks on word graphs opens up an interesting new way to mine text data, especially for
discovery of useful lexical associations.

Such a new approach has several important advantages: 1) It is completely general and
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unsupervised, thus it requires no/little human effort and can be applied to mine arbitrary
text data in any natural language. 2) It is a principled probabilistic approach with a solid
foundation based on random processes, thus the scores to quantify lexical relations are
meaningful, and it is easy to adapt the approach to capture different types of semantic
relations between words by simply changing the way a random walk is defined. 3) It is very
efficient for discovering paradigmatic and syntagmatic relations, and thus can potentially
scale up to mine very big text data. It is generally easy to parallelize such algorithms since
strongest associations tend to be “local” on the adjacency graph and multiple random walks
can be potentially computed in parallel. Updating the graph is very efficient as we only need
to update the co-occurrence statistics, making such a method scale up well to handle the
“never-ending growth” of big text data in the real world in an online manner.

Although the general approach of random walks on word graphs can potentially solve
many different text mining problems, we focus on systematically mining paradigmatic and
syntagmatic relations. We propose and evaluate several random walk based algorithms for
discovering such relations on real text data. Evaluation results show that the proposed
algorithms are effective for mining these two kinds of relational patterns and can discover
quite meaningful lexical knowledge from large text data without any human effort. Due to
the generality and scalability, the proposed algorithms can be potentially applied to large
amounts of arbitrary text data in different natural languages for discovery of useful lexical
knowledge.

The random walk-based model is based on word adjacency graph which can be constructed
from arbitrary text. Word is the basic element in text and a word adjacency graph is a graph
with words as vertices and edges indicating whether two words have adjacency relation in
the text data. Note that though we name it as word adjacency graph, it is not limited to
only words, but the node can also be phrases or entities. Entities that can be recognized
from the text are directly used as nodes in the word adjacency graph.

To construct a word adjacency graph, we connect every word or entity with its neighbors
by a directed edge, and the direction is from the preceding one to the following one. The
adjacency can be both immediate (i.e., one immediately after another) and non-immediate
(i.e, co-occurrence with gaps in between). For example, given two sentences, “The vegetable
grows fast in our greenhouse” and “The number of possible connection grows exponentially”,
if we only consider immediate adjacency, the adjacency graph would be as shown in Fig-
ure 4.1.

Formally, the node set in a word adjacency graph is denoted as W and the edge set is
denoted as &y. In &y, an edge is represented by a triple (w;,w;,¢;;). Here w; and w; are

the i-th and j node in W respectively and they are connected by the edge. ¢;; is the number
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of co-occurrence of w; and w;. Note that the co-occurrence is ordered, and ¢;; # ¢j;.

Two basic types of random walk can be defined on the word adjacency graph, namely
forward walking and backward walking. Forward walking follows the direction of the edges
while backward walking is in the inverse direction. Assume we have a path composed of an
edge series (wy, ws), (wa, w3), ... ,(w,_1, wy,) in the word adjacency graph where w; is the
i-th word (or entity) in this path. A forward walking w; - ws... - w,, is to visit wy, ws,...,
w, sequentially. And a backward walking w,, -» wj... -> w; is to visit w,, wy,..., w; by taking

the inverse direction of edges between them.

o . . n
Definition 4.1. An n-step forward walking w; - w; = {w; > wy, > Wyy... > wy, | —
wil(wi, Wiy ), ooy (wr, ,,w;) € Ew} and an n-step backward walking
n
w; -> wj = {w; > Wy => Wey.oo > Wy, > Wil (W, w5 ), .., (W), w0y, ) €

Ew}.

For the example shown in Figure 4.1, “number” - “of” - “possible” — “connection” is a 3-
step forward walking and “connection”->“possible” ->“of”->“number” is a 3-step backward
walking.

The probability of an n-step forward walking from w; to w; in a word adjacency graph
is denoted as P(w; 5 w;) and the probability of an n-step backward walking is denoted as

P(w; > w;), and they are defined as:

P(w Sw))= S Plw S w,) - P(w, > w;), (4.1)
wyeW

P(w; S w)= Y Plw " w,) - P(w, > w;). (4.2)
wyreW

The probability of n step walking can be recursively derived from that of an 1-step walking.

The probability of 1-step forward walking is

P(u)Z —1> wj) = Cij (43)

while the probability of 1-step backward walking is

1 Cij
P(w; ->w;) = . 4.4
(w1 ) = 52 (4.4)

Paradigmatic relation captures substitution and categorization of words. It usually holds

between words that occur in similar context but not at the same time, which tend to share
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Figure 4.2: Tllustration of circle trip for paradigmatic relation mining. (a) Clockwise circle
trip; (b) Anti-clockwise circle trip.

common neighbors in the adjacency graph. If we take a random walk starting from wy;, visit
the left and right neighbors and finally return to w;, it is likely that we will pay a visit to
w; as it tends to be a popular connector among the neighbors. This observation motivates
us to make use of “circle trip” over the context to quantify paradigmatic relation.

In this thesis, we take [-step circle trips to discover paradigmatic relationship, in both
clockwise and anti-clockwise directions. In the first step, we need to find all common neigh-
bors that are reachable from w; and w; by an l-step forward or backward walking in the
adjacency graph.

As the example shown in Figure 4.2, w; and w, are common neighbors of w; and w; from
left side and right side respectively, which satisfy the following conditions: Pg(w; L w;) >0,
Pg(w, R w;) > 0, Po(w; R w,) >0 and Pg(w; L w,) > 0. Then the clockwise circle trip

. . ! ! ! 1 .
between them is to walk in the order of w; - w, -> w; -> w; - w; (see Figure) and the

anti-clockwise trip is w; 4 wy 4 w; 4 Wy 4 w; (see Figure). To distinguish w; and w; from
w; and w,, we say that w; and w; are vertical ends and w; and w, are horizontal ends.
Strong paradigmatic relation does not only require words to share enough context, but
also emphasizes on their substitutability in the same context, which makes it easier for a
random walker to accomplish both the clockwise and the anti-clockwise circle trip with w;
and w; as the vertical ends. We denote the probability of taking I-step circle trip with

vertical ends of v; and v; in both clockwise and anti-clockwise directions in adjacency graph

l
G as Po(w; O wj). If we denote {w|Pe(w; R w;) > 0 A Pg(w, R w;) > 0} as L and
{w,|Pg(w; R wy) >0 A Po(w, R w,) >0} as R, then
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l
Po(w; O w;)= 3 3 Pa(wi - wy) - Po(w, -> w;)

wiell wreR
I I
- Pa(w; - wy) - Pa(wp — w;)

. Z Z Pg(w; -Lwl)‘PG(wl_l’wj)

wiellb wreR

l l
- Pa(wj - wy) - Pg(w, -> w;) (4.5)

!
However, it may cause bias towards frequent words if we only make use of Pg(w; O w;)

to extract paradigmatic relation. When |L| and |R| are large enough, no matter whether w;
!
and w; are substitutable in the contexts or not, the value of Pg(w; O w;) will be high. To

!

tackle this problem, we normalize Ps(w; O w;) by the number of all possible circle trips in
!

a unique direction, which is m. The normalized Pg(w; O w;) reflects how w; and w; are

correlated with their common context on average and a high value of it implies that they
are likely to be substitutable in the contexts.
Given that the random walker can choose different [ to complete the circle trip, we will
have:
s ! 1
;}Pg(wi O wj)-m-al, (4.6)
where s is the max step allowed in the circle trip. «; is the prior probability for the random
walker to chose [. If short-distance circle trips are more reliable, small [ will get higher «;.
If different multi-step circle trips are equally favored regardless of the path length, o is set
equivalently for different {. Principally, oy should be non-negative and .} oy = 1.
Combining different adjacency graphs induced from the same data together, we finally use

Pr(w;,w;) to measure the paradigmatic relation, which is defined as:

K s l 1
Pr(wi,w;) = 3, Br ). Po, (wi O wy)-

— - Qy, (4.7)
R L - [R|

where £ > 0 and Y1, By = 1.

Syntagmatic relation concerns adjacency and co-occurrence between words, and is usually
sensitive to the order of words. This kind of correlation can be captured by round trips
on the adjacency graph. If v; and v; co-occur a lot and v; always locates before v;, the
probability of taking a forward trip from v; to v; and then walking back from v; to v; is

likely to be high. The advantage of round trip over one-way trip is that round trip will
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be less likely to be dominated by “popular” nodes which have a large number of outlinks
or inlinks in the graph. Especially, “popular” nodes may bring in a lot of noise when the
distribution of frequency of edges obey power law, which is followed by a wide variety of
data including text data. In a round trip, even if it is quite easy for a random walker to
reach a popular node, it is unlikely that the walker will easily return to the starting point
from the popular node since there are too many paths to chose to walk back. Thus, we can
explore syntagmatic relation based on two types of round trip random walk.

If the task for a random walker is to take an [-step forward walking from v; to v; and then
return to v; by an [-step backward walking, where [ should be less than s and can be chosen
in advance with a probability of a;. Among all the possible round trips, the probability for

the random walker to reach v; as the destination is:

I I
Yo Pa(vi = vj) - Pa(vj > v) -y

l l
Yoyev Lie Pa(vi = vjr) - Po(vjr > vi) - cu

Pe(vi —vj) =
2 ! !
o< ¥ Pe(vi = vj) - Pa(vj -> v;) - oy (4.8)
=1
Here a >0 and Y], oy = 1.

We can define a similar task of backward-first round trip in which the first step is to take

backward walking, and the probability of the random walker to successfully reach v; is

I I
Yo Pa(vi > vj) - Pa(vj = v) -y

l l
Yoyev Liz Pa(vi - vjr) - Po (v = vi) -

Pév(’l)Z <« ’Uj) =
> ! !
o< ¥ Pg(vi -> vj) - Pa(vj = vi) - oy (4.9)
=1

If P (v; — v;) is high, it indicates that v, is likely to share strong syntagmatic relationship
with v; in the order of taking v; as predecessor, whereas PZ(v; <— v;) measures their
syntagmatic relatedness by taking v; as a successor. For example, Pg(v; — v;) can be high
when v; represents “more” and v; represents “than”, and Pj(v; «<— v;) could be high if v;
is “much”. If we further make use of multiple adjacency graphs, we can finally measure the

syntagmatic relation in the following way:

40



K

Syn(vi »v;) = Y Br- P&, (vi — vj) (4.10)
k=1
K

Syn(vi < vj) = > B Pg, (vj «— v;) (4.11)
k=1

where Syn(v; - v;) is the syntagmatic relation between v; and v; by taking the order of
v; being followed by v;, while Syn(v; «< v;) is in the inverse order.

Table 4.2, Table 4.3 and Table 4.4 show some examples of the paradigmatically related
and syntagmatically related word pairs discovered from a set of news articles (TREC APS8S8
and AP89) by the random walk-based method respectively. From these examples, we can
have a better understanding about what kind of related words that can be discovered by
those two relationships in practice. For example, the weekday names are grouped together as
the paradigmatically related words. While syntagmatic relation can tell us about interesting
topics of the target word. For example, in the case of “Chinese”, we can see the associated

words show different aspects of topics, such as education, politics.

Table 4.2: Top 10 associated words retrieved by paradigmatic relation.

Monday protein more year intimacy
Tue protein more week intimacy
Thur protien less year contact
Mon pellucida stockier month intercourse
Thursday renin stouter decade encount
Wednesday icam shrewder half-century assault
Tuesday insulin’secret smoggier day relationship
Sunday feedstuff faser century tryst
Friday DNA worse year-and-a-half relate
Monday gene-engine dearer quarter-century liaison
Saturday lecithin faster hour abuse
can slightly eggplant Berkeley jump
can’t cent eggplant Berkeley jump
can slightly celery Livermore rose
will geffenplantinum | cantaloup trucke fell
could’t sharply kale Arcata drop
would broadly jalapeno Irvine of
don’t modestly honeydew Riverside increase
could percent melon Cupertino leap
cannot issue whiterib Greenbrae go
must outnumber onion Sacramento climb
should mostly watermelon Lompoc and
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Table 4.3: Top 10 associated words retrieved by syntagmatic relation (top words retrieved
from the right side).

Chinese — school — express— long— | mount —
student district concern island | Rushmore
mainland | superintendant regret overdue | Everest
leader dropout satisfaction time Hermon
government student dismay beach Rainier
opera board optimism | distance | Pleasant
author teacher wieczorny way Vernon
dissident diploma gratitude | enough | Holyoke
cheongsam principal sympathy | enough Clemen
riben bus confidence haul Kisco
embassy gymnasium displeasure ago Tokachi

Table 4.4: Top 10 associated words retrieved by syntagmatic relation (top words retrieved
from the left side).

— information - market — spokesman - war - Own
classify over-the-count ministry world their
non-public stock police civil his
confidential bond department | Iran-Iraq | wholly
inside exchange house Vietnam its
withhold the a star our
mcgrawhill financial embassy postworld my
IDD broader white cold her
sensitive credit army eight-year | your
provide secondary pentagon Korean | already
gather BceCredit FAA beanfield | jointly

4.2.2 Discovering paradigmatic and syntagmatic relationship by the word
embedding-based model

The random walk-based method directly uses the occurrence information between words
to calculate the paradigmatic or syntagmatic similarity between words. An alternative way
is to represent the words in a latent semantic space and then compute the paradigmatic and
syntagmatic similarity based on the vectors. Word embedding technique is a well-studied
and widely-used way to solve this problem. In this thesis, we use Skip-gram [48] to learn

the embedding vectors. Skip-gram model can learn an input vector and an output vector for

42



Algorithm 4.1: Extension of knowledge graph

Input: Knowledge graph G, text corpus D, similarity measurement function &
Output: Extended knowledge graph G’

1 repeat

2 e « argmaxqep{max.{S(e,e’)|e’ € E}};

3 G' < G'u{(e, R, e')|e’ e argmax,  {S(e, Ee))|Ze) ceEN};
4 iter < iter + 1,

5 until iter > K;

each word at the same time. The cosine similarity of the input vectors are usually used to
represent words and the cosine similarity between them measures the paradigmatic relations
between words. With both the input and output vectors, we can calculate the probability
of seeing a word in the context of another one, which is a natural way to measure the
syntagmatic similarity. Denote the input vector of word w as v, and its output vector as

v},, then the syntagmatic relation between w; and w; are calculated as:

Synsg(wi, wy) = P(wslw;) P(wj|w;)

exp(vTv,. exp(viT v,
_ el Z,TJ) - ) (4.12)
Lo, XVl Vs, ) Yoy, €2P(V] V)

The syntagmatic relation can be evaluated based on both input and output vectors, while
the paradigmatic relation can simply measured by the cosine similarity between the input

vectors, which is a commonly-used way to calculate word similarity:

Pr(wi,w;) = cos(Vw,, Vw,) (4.13)

4.2.3 Expand knowledge graph

To expand the knowledge graph by paradigmatic or syntagmatic relation, we first extract
all the entities mentioned in a document by NLP tools and then segment each sentence into
phrases that represent the entity names and other words that are not recognized as entities.
Then we calculate the similarity between each entity pair based on either of the above two
methods. Finally, entities that are related to any of the existing entities in the knowledge
graph are added into the knowledge graph. The procedure is summarized in Algorithm 4.1.

In Line 2, we examine all the entities that are not in the knowledge graph and calculate
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their paradigmatic or syntagmatic similarity scores to the entities that are already contained
in the knowledge graph. In this way, we compute similarity scores between each entity pairs
where one is a new entity and the other is an existing entity in the knowledge graph. Then
shown in Line 3 and Line 3, the corresponding new entity which gets the highest similarity
score among all these pairs are added into the knowledge graph, along with its relation to
the existing entity in the knowledge graph (the other entity in the pair). An existing entity
is linked to the newly added one only if its similarity with the newly added one is larger than
others. The relationship between them (R) is determined by the way how we measure the
similarity, i.e., either paradigmatic or syntagmatic. Finally, the top new K entities which are
most related to the existing ones in the knowledge graph are used to expand the knowledge

graph.

4.3 EXPERIMENT

In this section, we apply our method in two applications: (1) classifying reviews accord-
ing to the mentioned movies; (2) predicting the revenue of movies based on reviews. The
experiment setup is the same as that in chapter 3. The window size of skip-gram is set to be
5, the step size in the random walk model is set to be 2. Two gap sizes are used to generate
the word graph in the random walk model: 1 and 2. In the first word graph, only adjacent
words are connected with each other. When the gap size is 2, one gap is allowed between

words.

4.3.1 Knowledge graph expansion for the entity-centric classification task

We now confirm that bringing background knowledge graph from a knowledge graph is
beneficial for entity-centric classification application. The next question is that whether
extending the knowledge graph by mining word relations from local context can further
improve the performance. As discussed in Section 4.2, two fundamental types of word
relations — paradigmatic relation and syntagmatic relation — are used to discover related
entities to extend the knowledge graph by either word embedding technique (Skip-gram) or
a random-walk based method. When we get the extended knowledge graph, all the four
methods of knowledge graph-based featurization is employed to represent the documents.

Similar to Chapter 3, we compare the knowledge graph-based features to several different
types of baseline featurization methods, including lexical features, syntactic features such as

POS tags and dependency triples, semantic features such as extracted named entities and
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Table 4.5: Performance of extension of knowledge graph for entity-
based featurization in classification task

feature \ accuracy precision recall F-1 measure
unigram 0.374 0.371 0.362 0.366
uni- and bigram 0.378 0.379 0.365 0.372
uni-, bi- and trigram 0.380 0.376 0.367 0.371
POS 0.270 0.249 0.243 0.246
DEP 0.171 0.158 0.152 0.155
NER 0.327 0.448 0.323 0.376
W2v 0.193 0.181 0.177 0.179
Wiki (EF) 0.339 0.419 0.332 0.370
Yago (EF) 0.303 0.439 0.296 0.353
Wiki + Para,,, (EF) 0.440 0.548 0.430 0.482

Wiki + Syn,., (EF) | 0.443 0.551  0.434 0.486
Wiki + Paras, (EF) | 0.443  0.555% 0.434  0.4877

Wiki + Syn,, (EF) | 0.443  0.551  0.433 0.485
Yago + Para,, (EF) | 0.439 0.541 0.428 0.478
Yago + Syn., (EF) | 0.443 0547  0.433 0.484
Yago + Paras, (EF) | 0.430 0.543 0.420 0.481

Yago+ Syn., (EF) | 0.442 0.543  0.431 0.473

Two-tailed t-test is done for paired data. In each pair, one is the method
that get best performance, and the other one is any of the other methods.
* indicates p-value < 0.01 for all tests and { indicates p-value < 0.05.

word embedding vectors. The original knowledge graph as well as the expanded one are
both used to construct the knowledge graph-based features.

Table 4.5 shows the performance of expanded knowledge graph using entity-based fea-
turization in classification task. The knowledge graph which is generated from Wikipedia
Infobox is denoted as “Wiki”. “Wiki + Paras,” means to expand the knowledge graph

7

by paradigmatic relation mined using Skip-gram model, while “Wiki + Syn,.,” represents
the expansion based on syntagmatic relation discovered by the random walk-based method.
“EF” means to construct the entity-based features using the corresponding knowledge graph,
and “CaEF” denotes the context-aware entity-based features. We can see that because the
coverage of the knowledge graph is significantly enlarged by adding related entities, the per-
formance is significantly improved. Both paradigmatic relation and syntagmatic are effective
in enlarging the coverage by either of the two methods. Because the original knowledge graph
which is generated from Wikipedia Infobox and the meta data has a better coverage of the

central entities as well as the related entities compared to Yago, it still works slightly better
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Table 4.6: Performance of extension of knowledge graph for context-aware
entity-based featurization in classification task

feature \ accuracy precision recall F-1 measure
unigram 0.374 0.371 0.362 0.366
uni- and bigram 0.378 0.379 0.365 0.372
uni-, bi- and trigram 0.380 0.376 0.367 0.371
POS 0.270 0.249 0.243 0.246
DEP 0.171 0.158 0.152 0.155
NER 0.327 0.448 0.323 0.376
W2v 0.193 0.181 0.177 0.179
Wiki (CaEF) 0.532 0.511 0.513 0.512
Yago (CaEF) 0.451 0.437 0.432 0.435
Wiki + Para,,, (CaEF) 0.537 0.529 0.522 0.525
Wiki + Syn,., (CaEF) 0.541 0.536 0.527 0.531
Wiki + Paras, (CaEF) | 0.555%  0.549*  0.543* 0.546*
Wiki + Syng, (CaEF) 0.533 0.526 0.519 0.522
Yago + Para,, (CaEF) | 0.482 0.483 0.467 0.475
Yago + Syn,, (CaEF) 0.486 0.489 0.472 0.480
Yago + Paras, (CaEF) 0.493 0.495 0.480 0.487
Yago+ Syns, (CaEF) 0.479 0.480 0.465 0.472

Two-tailed t-test is done for paired data. In each pair, one is the method
that get best performance, and the other one is any of the other methods. *
indicates p-value < 0.01 for all tests.

after expansion. However, the expansion reduces the coverage gap between them and their
performances are comparable. Generally, paradigmatic relation and syntagmatic relation
achieves similar performance, and both are effective in finding related entities. The random
walk-based methods is slightly more effective in finding syntagmatically related pairs while
the paradigmatic relation discovered by skip-gram is more helpful in this task.

Context-aware entity-based features are also extracted from the text based on the ex-
panded knowledge graphs, as shown in Table 4.8. We can arrive at the same conclusion
as what we have for the entity-based features. Besides, similar to the evaluation results in
Section 3.4, we can observe that the context-aware entity-based features work significantly
better than the entity-based features, which again confirms that context information is of
great value in the entity-centric classification task.

Table 4.7 demonstrates the comparison between the expanded knowledge graph and the
original one using explanatory path-based features. We can see that with the help of ex-

pansion, the knowledge graph becomes much more powerful. It outperforms the baseline
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Table 4.7: Performance of extension of knowledge graph for explanatory
path-based featurization in classification task

feature \ accuracy precision recall F-1 measure
unigram 0.374 0.371 0.362 0.366
uni- and bigram 0.378 0.379 0.365 0.372
uni-, bi- and trigram 0.380 0.376 0.367 0.371
POS 0.270 0.249 0.243 0.246
DEP 0.171 0.158 0.152 0.155
NER 0.327 0.448 0.323 0.376
W2v 0.193 0.181 0.177 0.179
Wiki (ExPF) 0.230 0.364 0.226 0.278
Yago (ExPF) 0.217 0.348 0.212 0.263
Wiki + Para,., (ExPF) 0.370 0.471 0.362 0.409
Wiki + Syn,., (ExPF) 0.379 0.455 0.365 0.405
Wiki + Paray, (ExPF) | 0.467*  0.574* 0.458* 0.510%*
Wiki + Syn,, (ExPF) 0.411 0.517 0.404 0.453
Yago + Para,, (ExPF) 0.310 0.427 0.303 0.355
Yago + Syn,,, (ExPF) 0.368 0.450 0.355 0.397
Yago + Paras, (ExPF) | 0.442 0.557 0.434 0.488
Yago+ Syns, (ExPF) 0.369 0.471 0.362 0.409

Two-tailed t-test is done for paired data. In each pair, one is the method
that get best performance, and the other one is any of the other methods. *
indicates p-value < 0.01 for all tests.

methods even though the explanatory path-based features are shown to be not effective
when using the original knowledge graph, which indicates that the coverage of the knowl-
edge graph is indeed of great importance.

Similarly, by combining the context information with the explanatory path, the con-
structed features can be further enhanced. Context-aware explanatory path-based featur-
ization method is applied in Table 4.8. We can see that it beats the explanatory path-based
features on all metrics.

We have a parameter K in Algorithm 4.1 to control the number of new entities that are
added to the knowledge graph. Larger K results in larger coverage, but meanwhile may
also increase the risk of bringing in more noise. To see how the setting of K will impact
the performance of the expanded knowledge graph in the classification task, we construct
different versions of the knowledge graph.

Based on the original knowledge graph constructed from Wiki Infobox and the meta data,

we build multiple versions of expanded knowledge graph. Entity-based features are used.

47



Table 4.8: Performance of extension of knowledge graph for context-aware
explanatory path-based featurization in classification task

feature \ accuracy precision recall F-1 measure
unigram 0.374 0.371 0.362 0.366
uni- and bigram 0.378 0.379 0.365 0.372
uni-, bi- and trigram 0.380 0.376 0.367 0.371
POS 0.270 0.249 0.243 0.246
DEP 0.171 0.158 0.152 0.155
NER 0.327 0.448 0.323 0.376
W2v 0.193 0.181 0.177 0.179
Wiki (CaExPF) 0.458 0.451 0.441 0.446
Yago (CaExPF) 0.307 0.311 0.291 0.301
Wiki + Para,,, (CaExPF) 0.433 0.429 0.418 0.423
Wiki + Syn,,, (CaExPF) 0.452 0.428 0.432 0.430
Wiki + Paras, (CaExPF) | 0.557*  0.548% 0.544* 0.546*
Wiki + Syn,, (CaExPF) 0.480 0.473 0.468 0.471
Yago + Para,, (CaExPF) | 0.306 0.315 0.294 0.304
Yago + Syn,,, (CaExPF) 0.379 0.367 0.360 0.363
Yago + Paras, (CaExPF) | 0.450 0.453 0.437 0.445
Yago+ Syns, (CaExPF) 0.375 0.374 0.361 0.367

Two-tailed t-test is done for paired data. In each pair, one is the method that
get best performance, and the other one is any of the other methods. * indicates
p-value < 0.01 for all tests.

Their performances are shown in Figure 4.3. We can see that the top ranked pairs found by
paradigmatic relation based on the random walk-based method are more reliable compared
to others and the curve rises much faster at the beginning. With more and more entities
added into the knowledge graph, all the curves arrive at similar value.

We also conduct the same experiments on Yago and the results are shown in Figure 4.4,
from which we can draw similar conclusion. In general, with more entities are added into
the knowledge graph, the performance gets better. However, the knowledge graph-based

features will become noisy when too many entities are included, thus hurts the performance.

4.3.2 Knowledge graph expansion for the entity-centric regression task

In the Section 4.3.1, we show that leverage knowledge graph can provide tangible benefits
to entity-centric classification tasks. A further question is that whether the knowledge graph-
based features are helpful in entity-centric prediction tasks. Entity-centric prediction can be

sometimes much more challenging than the classification task because the response variable
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Figure 4.3: Impact of K in knowledge graph expansion for the entity-centric classification
task, with original knowledge graph constructed from Wiki Infobox and the meta data.

that is to be predicted is weakly related to the text information. We conduct the experiment
to predict revenue performance based on movie reviews. The experiment includes two kinds
of response variables, one is the weekend revenue and the other is per-screen revenue. There
are two models used to make the prediction. “LR” represents the linear regression model
and “Elastic net” is the linear regression model with L-1 and L-2 regularization.

When we only use the original knowledge graph to generate the features, it does not
help much and the prediction errors are even larger than the baseline methods, as shown
in Table 3.2 and Table 3.3. We suspect that the reason for the underperformance of the
knowledge graph-based features is the insufficient coverage of the knowledge graph. In this
section, we will take a close look into this problem.

As shown in Table 3.2 and Table 3.3, the context-aware explanatory path-based features

(CaExPF) works best among all the knowledge graph-based features. Thus, we mainly focus
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Figure 4.4: Impact of K in knowledge graph expansion for the entity-centric classification
task, with original knowledge graph as Yago.

on using the context-aware explanatory path-based features to represent the documents,
based on which we can further analyze the influence of knowledge graph expansion in the
regression task.

We expand the knowledge graph by either paradigmatic or syntagmatic relations, just as
what we did for the classification task. The results can be found in Table 4.9 and Table 4.10.
Compared to the original knowledge graph, the expanded version works much better and
achieve comparable prediction accuracy as the baseline methods, for both linear regression
and elastic net model. If we combine the context-aware explanatory path-based features
with lexical features such as unigram, the prediction error can be further reduced. However,
the significance test shows that the reduction is not significant.

Though knowledge graph may help in some cases, how to make use of knowledge graph in

such kind of applications where the text only provides weak signals for the prediction of the
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Table 4.9: Performance of extension of knowledge graph with linear regression model
in prediction task

foature Weekend revenue Per-screen revenue
MAE(SM) SMAPE (%) | MAE(SK) SMAPE (%)

unigram 9.41 70.71 7.07 38.13
uni- and bigram 9.03 68.78 6.70 33.61
uni-, bi- and trigram 9.05 68.55 6.68 33.50
POS 9.11 70.04 7.12 37.66
DEP 9.40 69.27 6.91 35.17
W2V 10.04 68.55 8.86 46.83
Wiki 10.83 69.93 7.18 36.49
Yago 10.43 73.06 6.90 35.29
Wiki+Parag., 9.84 70.40 6.80 35.24
Wiki+Parag, 9.84 70.89 6.90 35.55
Wiki+Syn, ., 9.89 69.00 7.03 36.76
Wiki+Syng, 9.82 71.40 6.66 34.51
Yago+Para,.,, 9.73 69.44 6.94 35.78
Yago+Parag, 9.62 69.39 6.91 35.35
Yago+Syn, 9.63 67.70 6.82 34.67
Yago+Syns, 9.56 69.56 7.07 35.85
Wiki+ Para,,, + unigram 8.94 69.40 6.53 33.16
Wiki+Paras, + unigram 8.91 68.35 6.67 33.89
Wiki+Syn,,, + unigram 8.99 68.53 6.79 34.67
Wiki+Syng, + unigram 9.00 69.38 6.51 33.30
Yago+Para,,, + unigram 9.09 69.11 6.72 34.30
Yago+Parasy, + unigram 9.03 69.91 6.66 34.07
Yago+Syn,, + unigram 9.10 69.02 6.69 34.09
Yago+Syns, + unigram 8.97 70.21 6.75 34.29

Context-aware explanatory-path featurization (CaExPF) is used to represent the docu-
ments. Two-tailed t-test is done for paired data. In each pair, one is the method that
get best performance, and the other one is any of the other methods. T indicates p-value
< 0.05.

response variables is still very challenging problem. This again emphasizes the necessity of
constructing a task-aware knowledge graph, generating best-suited knowledge graph-based
features and selecting the features in a task-dependent way, especially when the correlation

between the text and the response is weak to capture.
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Table 4.10: Performance of extension of knowledge graph with elastic net model in
prediction task

foature Weekend revenue Per-screen revenue
MAE(SM) SMAPE (%) | MAE(SK) SMAPE (%)

unigram 8.45 69.68 6.48 34.03
uni- and bigram 8.20 67.96 6.29 31.65
uni-, bi- and trigram 8.19 67.13 6.15 30.96
POS 7.93 67.91 6.92 34.81
DEP 8.33 67.42 6.46 32.84
W2V 8.19 66.03 6.44 32.34
Wiki 9.03 70.33 6.70 33.86
Yago 8.86 68.24 6.50 33.19
Wiki+Parag., 8.44 68.49 6.70 34.36
Wiki+Parag, 8.44 67.51 6.45 33.23
Wiki+Syn, ., 8.66 68.53 6.72 34.67
Wiki+Syng, 8.60 68.77 6.34 32.22
Yago+Para,.,, 8.45 68.11 6.48 33.49
Yago+Parag, 8.26 66.53 6.55 33.41
Yago+Syn, 8.43 66.96 6.37 32.63
Yago+Syns, 8.27 67.54 6.80 34.36
Wiki+ Para,,, + unigram 7.79 65.86 6.31 32.17
Wiki+Paras, + unigram 7.92 66.01 6.35 32.13
Wiki+Syn,,, + unigram 8.01 65.97 6.35 32.19
Wiki+Syng, + unigram 7.95 65.68 6.28 32.12
Yago+Para,,, + unigram 8.05 66.73 6.31 32.11
Yago+Parasy, + unigram 7.90 66.80 6.37 32.16
Yago+Syn,, + unigram 7.99 66.33 6.36 32.23
Yago+Syns, + unigram 7.77 66.51 6.46 32.60

Context-aware explanatory-path featurization (CaExPF) is used to represent the docu-
ments. Two-tailed t-test is done for paired data. In each pair, one is the method that
get best performance, and the other one is any of the other methods. T indicates p-value
< 0.05.

4.3.3 Summary

In this section, we conduct experiment to examine the efficacy of expanding knowledge
graph in the knowledge graph-assitant feature engineering. It turns out both the classi-
fication task and the regression task benefit from the expansion of the knowledge graph.
The coverage of a pre-constructed knowledge graph is sometimes not sufficient for real-world
applictions, which will eventually impact the effectiveness of using such a knowledge graph

in the applications. When the major problem is limited coverage, enlarging the coverage is
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more important than reducing the noise, thus a larger K (in Algorithm 4.1) to allow more
entities to be added in the knowledge graph is favored. However, considerable noise will be
brought in when K is too large. To avoid introducing substantial noise, it is necessary to
control the quality of the newly added entities.

Compared to the classification task, though the expansion of the knowledge graph helps
the knowledge graph-based features to work much better, the predictive power is still not
good enough. Context-aware explanatory path-based features are shown to be most effective
among all the four types of knowledge graph-based features, which requires the explanatory
path to be accurate to support the utility of the features in the regression task. Although
paradigmatic and syntagmatic can help to make significant enlargement of the related en-
tities, they do not distinguish the precise relationship between the new entities and the
central entities in a finer granularity. Hence, we argue that a more customized expansion of
the knowledge graph is needed.

On one hand, the expansion should only focus on finding relevant entities or relations that
are useful for the task in order to avoid bringing in noise. On the other hand, more precise
relationship in a finer granularity needs to be recognized when new entities are introduced.
For example, we may only want to include entities that are related to the existing entities
in the knowledge graph by the pre-defined relationship. In this way, the explanatory path
will be more accurate and thus can provide better explanation of the relatedness between
the new entities and the central entities. In the next chapter, we will discuss the problem of

how to construct such a knowledge graph.
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CHAPTER 5: A FRAMEWORK FOR TASK-AWARE KNOWLEDGE
GRAPH

As discussed in Chapter 3, entity-centric prediction can benefit from leveraging knowledge
graph. However, a main factor that constrains the full exploitation of knowledge graph in
such tasks is the limited coverage of the pre-constructed knowledge graph. When the con-
struction and the application of knowledge graph are disjoint from each other, a knowledge
graph will remain unchanged during its use. It receives no feedback from the task and thus
cannot assimilate new useful knowledge from the text data.

We argue that it is important to expand the knowledge graph based on the background
text corpus to enlarge the coverage. Experimental results in Chapter 4 have shown that
the knowledge graph-based features can be more effective when we expand the knowledge
graph by paradigmatic and syntagmatic relations. However, one problem with such kind of
expansion is that paradigmatic and syntagmatic relations, though good at finding related
entities, are not discriminative enough when we need to distinguish the finer-granularity
relationships, which play an important role in constructing the context-aware explanatory
path-based features.

To build a customized knowledge graph for a given task, we propose to construct a task-
aware knowledge graph (TAKG) which would only contain the relevant knowledge to a
particular task and assimilate new knowledge from the background text data. In this way,
task-aware knowledge graph can provide better knowledge support for the particular task,
by enlarging the coverage and reducing the noise. Meanwhile, it can identify the newly
found relations more precisely compared to loosely connecting the new entities to the ex-
isting entities by paradigmatic and syntagmatic relation, which helps to get higher-quality
explanatory path.

As an example, consider the task to predict the movie revenue performance based on
the reviews. Part of a general knowledge graph that can be used to solve this problem is
shown in Figure 1.2a which includes movie entities and their relations with other entities.
If we find that whether the audience like the songs in the movie will have impact on the
revenue. There is a review “City of Stars is my favorite song in La La Land”, indicating that
“City of Stars” is a song of “La La Land” which is unknown to the knowledge graph. Then
we can expand the TAKG with this new knowledge. With paradigmatic and syntagmatic
relation-based expansion, we may only be able to know that “City of Stars” is related to “La
La Land”, but cannot tell how it is different from the relation between “Emma Stone” and
“La La Land”. With a task-aware knowledge graph, we hope to learn about more detailed

information like whether the relation between “City of Stars” and “La La Land” can fall
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into some pre-defined categories such as “hasSong” or “starredBy”. Besides discovering new
knowledge from the text corpus, we also learn from the feedback of the task that relations
such as “producedBy” is not very useful for the task, so we will just remove such kind of
relations from the knowledge graph.

As shown in the above example, the construction of a TAKG includes (1) trimming the
knowledge graph to reduce noise and increase efficiency and (2) expanding it with new
knowledge that can be extracted from the data used in the task to enlarge coverage. The
process can be repeated multiple times to iteratively adapt the knowledge graph to the task.
TAKG bridges the gap between the construction and application of knowledge graph to allow
for a potentially iterative process for constructing an increasingly relevant and complete

knowledge graph customized toward maximizing the performance of a specific task.

5.1 DEFINITION OF TASK-AWARE KNOWLEDGE GRAPH

As discussed in Section 3.2, a knowledge graph consists of entities and relations between
them. A task-aware knowledge graph also has a graph structure where nodes represent
entities and edges represent relations. Besides, each entity and relation are both assigned
with a task awareness value to evaluate their relatedness or usefulness for the task.

A task-aware knowledge graph can be formally defined as G = {E, R, t, ¥} where F and R
are again the entity set and relation set, and t is the task. ¥ is the assignment of the task
awareness, which evaluates all the entities, relations and attributes from the perspective of
the relevance to the task. f is the function that evaluates the task awareness. Function f
always returns a non-negative value, and the number can be binary (1 or 0) or a continuous

value, with a zero indicating that the entity or relation is not relevant or useful for the task.

Definition 5.1. Task-aware knowledge graph: A task-aware knowledge graph
can be represented as G = {F,R,t,%} where F and R are the
entity set and relation set respectively. > is the assignement of
taskawareness measurement to each entity, relation and attribute
in the knowledge graph: ¥ = {(e, f(e,t))le € E} u{(r, f(r,t))|r €
R}u{(a, f(a,t))|aceneec EYu{(a, f(a,t))acr.AnreR}.

Example 5.1. The knowledge graph in Figure 3.1 contains movies entities such

as e; = {{name,
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LaLaLand),(Budget,$30million), ...}, which are connected with
other types of entities with various relations. For example, the
movie entity e; are connected two person entities: (1) its director
by relations such as (eq, (type, Directed By), es); (2) and the actress
who starred in the movie (ey, (type, StarredBy),es). Then the en-
tity set of the knowledge graph is {ey,es, ...}, while the relation
sets is {(e1, (type, Directed By), e3), {e1, (type, Produced By), e3), . . .}.
From the feedback of the task which is to classify reviews accord-
ing to the movies being reviewed, we learned that relations such
as “ProducedBy” is not very useful for our task, then we just set
its task awareness value as 0. The task awareness measurement
assignment is 3 = {(ey, 1), ({e1, (type, ProducedBy), e3),0),...}.

A task-aware knowledge graph is always constructed to help a particular task. In some
sense, the task awareness measurement of entities and relations provides a “guideline” for
the application of the knowledge graph in the task. Entities and relations with low task
awareness value are unlikely useful for the task and can thus be ignored to reduce noise. We
can also make use of the task awareness measurement in the construction of the task-aware
knowledge graph. For example, we can prune the task-aware knowledge graph by removing
entities and relations whose task awareness is zero. Expansion can also be made by finding
new entities or relations that are similar or related to those with high task awareness.

We can see that a key component in a task-aware knowledge graph is the task awareness

measurement function, which will be introduced in the next section.

5.2 TASK AWARENESS MEASUREMENT

A task awareness measurement function is designed to measure the relevance of an entity,
relation or attribute to a task. All kinds of information provided by a general knowledge
graph are valuable from the perspective of accumulating machine-usable human knowledge.
However, it may not be necessary to include all of them in a particular task. Only the entities
or relations that are relevant to the task need to be taken into consideration. For example,
when we want to find people’s opinion about a newly released product, the background
knowledge we need can be all included in a small sub-graph composed of the product and
some of its neighbor entities. Focusing on relevant entities and relations not only helps to

improve efficiency, but also removes potentially distracting noise.
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An entity, relation or attribute has high task awareness only if it is relevant to the task.
The relevance can be judged by prior knowledge. For example, we can assume entities that
are connected to the central entity by some types of relations are relevant to the task of
mining opinions about products, and use the assumption as the prior knowledge. In this
case, task awareness measurement function of other entities is set to be zero. Making use
of prior knowledge is a simple and straightforward approach, but the problem is that our
prior knowledge is not always reliable and it may not fit the task so well. A better way is
to evaluate the relevance in a data-dependent way. For example, we can evaluate the task
awareness of a relationship based on its correlation with the output.

How to design a good task awareness measurement function inevitably varies from task
to task. It also depends on how the knowledge graph is used in the task. Hence, it is
infeasible to find a single optimal measurement function that works well for all kinds of
different tasks. Nevertheless, we can still discover some hints by analyzing the relatedness
between an entity /relation/attribute and the input/output of the task. We can also find some
typical methods for the most popularly studied text-related applications. For example, the
task awareness of an entity in the text classification problem can be measured by classic

feature selection method such as information gain.

5.3 CONSTRUCT A TASK-AWARE KNOWLEDGE GRAPH

Once the task awareness measurement function is designed, we can build a task-aware
knowledge graph based on it. We need an initial knowledge graph to start with. The initial
knowledge graph can be an existing general knowledge graph or a small seed graph that only
contains the central entities. The initial knowledge graph may contain redundancy or noise,
and its coverage may not be large enough either; the construction of task-aware knowledge
graph mainly focuses on solving the two problems.

Trimming: Once we have the initial knowledge graph, the next step is to remove redun-
dancy or noise from it based on the task awareness measurement function. The redundancy
or noise can come from irrelevant or less useful entities/relations/attributes. The task aware-
ness measurement is designed to extract the best-fit sub-graph from the initial knowledge
graph. The knowledge graph is trimmed based on the awareness measurement to remove
entities/relations/attributes that are not needed in the task so that the knowledge provided
by the knowledge graph is less noisy.

Expansion: Expansion of the task-aware knowledge graph is made when the coverage is not
large enough. Once the task awareness measurement is defined, we can have a rough sense

of what kind of knowledge is useful for the task, e.g., what types of entities and relations are
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most useful, what kind of attributes of entities is valuable, etc. Based on such information,
we can expand the knowledge graph by extracting new entities/relations/attributes from
the background text data. The well-studied entity extraction, relation extraction and other
related techniques can be also applied in this step. The expansion can be made for all
entities, relations and attributes, or only focuses on a small group of them. The rule of how
to make expansion should be designed based on the nature of the task.

The trimming and expansion are carried out in turn until the task-aware knowledge graph
stops changing, or when its coverage is sufficient meanwhile the noise is ignorable. The
framework is summarized in Algorithm 5.1.

The framework provides general principles for how to construct a task-aware knowledge
graph. How to design the task awareness measurement function f, the trimming method
(function ¢rim) and expansion method (function expand) is task-dependent. To make a fur-
ther explanation, we illustrate an instantiation of the construction of a task-aware knowledge
in Chapter 6.

Algorithm 5.1: Framework for construction of task-aware knowledge graph

Input: Task ¢, initial knowledge graph Go = {Ey, Ry}, task awareness measurement
fuction f

Output: Task-aware knowledge graph G' = {E, R, t, %}

E < Eq;

R < Ry;

Y« {{e, f(e,t)ee Eoy u{{r, f(r,t))|re Ry} u{{a, f(a,t))|acenee
Eo}u{(a, f(a,t))|laer. AnreRy};

4 G<{E R X};

5 repeat

6 {E,R} < expand({E, R},1);

7 Y« {{e, f(e;t)lee E}u{(r, f(r,t))|re R} u{{a, f(a,t))|laceneec
E}yu{{a, f(a,t))|aer. AnreR};

{E,R} < trim({E,R},Y);

G < {E,R,t,¥};

10 until G does not change; or the coverage is sufficient and the noise is ignorable;

W N =

©

5.4 APPLY A TASK-AWARE KNOWLEDGE GRAPH

Knowledge graph is widely used in a variety of applications. In this thesis, we mainly focus
on its application in text-based prediction. As shown in the study in Chapter 3, knowledge
graph can be leveraged to assist featurization of text data. Compared to surface features

such as n-grams, knowledge graph-based features can better capture the correlation between
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the text and the response variables and thus are more effective in bridging the semantic gap,
epspecially for the entity-centric prediction tasks.

Though semantic gap also exists in entity-entric text applications, the natural connection
between the response variables and the central entities makes it easier to capture the corre-
lation between textual information and the response variable with assistance of knowledge
graph. In order to bridge the gap, we propose to leverage knowledge graph as an auxiliary
to represent documents. Background knowledge provided by knowledge graph helps to dis-
tinguish informative textual signal from the noise, thereby better exploiting the predictive
power of the textual information.

In order to leverage task-aware knowledge graph to benefit real-world text-based predic-
tion applications, we propose to construct a knowledge graph-based featurizer to represent
documents. The knowledge graph-based features can be constructed based on either entities
or relations, or both. We aim at finding features that better captures the correlation between
text and response variables, especially when the latter cannot be directly derivable from the
former. Generally, any method that applies a generic knowledge graph in a specific task is
applicable to task-aware knowledge graph because task-aware knowledge graph is essentially
a knowledge graph with task awareness as a special type of weighting that indicates whether
an entity or a relation should be utilized in a task.

Even though the constructed task-aware knowledge graph already helps to filter noisy
information in the knowledge graph from the perspective of its applications in a particular
task, the generated features can sometimes still be redundant or noisy, which may further
result in overfitting problems. Therefore, a more sophisticated method for feature selection

is needed in this case, which will be discussed in Chapter 7.
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CHAPTER 6: CONSTRUCT A TASK-AWARE KNOWLEDGE GRAPH FOR
ENTITY-CENTRIC CLASSIFICATION

In this chapter, we present an instantiation of the framework introduced in Chapter 5 on
a specific family of text-based prediction applications — entity-centric classification.

As discussed before, it is hard to propose a uniform algorithm to construct and apply
task-aware knowledge graph that is optimal for an arbitrary task. For example, how to
define task awareness measurement function may vary from task to task. However, in the
case of entity-centric prediction tasks, we can make the assumption that an entity, relation
or attribute is relevant to the task only if it is related to the central entities. Since the
response variables are closely related to the central entities, an entity/relation/attribute
that is irrelevant to the central entities is not likely to be relevant to the response variables,
thus not very helpful for the task.

We can make use of the relatedness of entity/relation/attribute to the central entities
to measure the task awareness. Meanwhile, we can also make some statistical analysis
such as the oc-occurrence with the central entities in the text to evaluate how an en-
tity /relation/attribute is relevant to the task.

Based on the task awareness measurement, we can trim the knowledge graph to filter noise.
For the expansion of the knowledge graph, we can find entities, relations and attributes that
are related to the central entities to enlarge the coverage. More detailed example of how to
design the task awareness function and how to trim and expand the knowledge graph will

be introduced in the rest of this chapter.

6.1 DEFINE TASK AWARENESS MEASUREMENT FOR ENTITY-CENTRIC
CLASSIFICATION

Task-aware knowledge graph can be initialized by an existing knowledge graph. The initial
knowledge graph can be much larger than what we need, and only a small sub-graph of it
which contains the central entities and their neighbors is relevant to the task. If we consider
the knowledge graph (G) as an undirected graph where nodes are entities and edges are
relations, we can compute the distance between two entities (e; and e;) by the shortest
o {ilen(p)} where path(e;,e;,G) is the set of all valid

paths between e; and e; in G (all the formal definition can be found in Section 3.2). Then

path: dis(e;,e;,G) = MiNpepati(e, e;,

a sub-graph G, that only contains the central entities and their close neighbors can be
defined as:
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G = ({€|3€, ;r%lg {dis(e,e’,G)} <04} Ut.E, (6.1)

{r|]3e;e Enejet. Enrepnpepath(e;,e;,G)
Alen(p) <0 nlen(p) = dis(e;,e;,G)})

where t.E, denotes the central entities of the task.

The sub-graph is composed of entities whose distance to at least one of the central entities
is no larger than 6, and their shortest paths to the central entities. If an entity or relation is
not included in the sub-graph, we assume that it is not very relevant to the task and set its
task awareness to be zero. Taking the knowledge graph shown in Figure 3.1 as an example,
the central entity is e; which represents the movie “La La Land”. If we set 6; as 1, then
its directors, actresses and producers which are directly connected to it will be kept in the
subgraph. However, the spouse of the director (eg) will be removed because its distance to
the nearest central entity is 2.

The subgraph constituted by neighbor entities of central entities and the corresponding
relations that connect them provides background information about the central entities,
which may be potentially valuable for the task. For example, if the task is to classify movie
reviews based on the referred movies, we may have a group of relationships which directly
connect a central entity (movie) to its neighbor, such as directedBy, isLocatedIn. They can
tell us about features of the central entities from different aspects. Though many of them
are supposed to be closely related to central entities, some of them may not be quite useful
for the task. For example, isLocatedIn may not be as useful as some other relations such as
directedBy for the task intuitively. In this thesis, we measure the task awareness of relations
to the task in a more quantitative way.

We assume the task awareness of relations with the same type is equal. For each relation
type R, we first gather all the entities that are connected to a central entity by one of the
relations of this type:

Er ={elee Gsupn (Fe' €et. EAre RAV(r.A)) =R s.t. repath(e,e’,G))}

Here we assume that relation in the knowledge graph always has type information as one
of the attributes, represented as r.A;. V(r.A;) is the function to obtain the type of relation
r. We define that a relation type R is mentioned in the text if and only if any of the entities

in Fx occurs. If a relation type is never mentioned in the data set, the task awareness would
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be set to zero.

If we can infer the distribution of labels by the mention of a relation type easily, the relation
type is likely to be useful and should thus have high task awareness. Given a relation type R,
we can use the posterior probability of the class label given R is mentioned in the document
(denoted as p(c|R)) to approximate the original distribution of labels in the data set and
evaluate the approximation by KL-divergence.

We first compute the probability that the class label of a given document is ¢ on condition

that a relation type R is mentioned in the document:

p(eR) = . p(cle)p(elR) (6.2)

eebEp
where p(e|R) is the probability that entity e occurs in the text given R is mentioned. p(cle)
is the probability that the label is ¢ given that e occurs in the text. p(cle) and p(e|T") can

be calculated as:

- e
p(eR) = count(e)

Y erer, count(e’)

where count(c,e) is how many times e occurs in a text document whose label is ¢, and
count(e) is the number of times e occured in the text data set.

Then we use the above posterior probability to approximate the original distribution of
labels in the data set. If the approximation is close, the corresponding relation type is
likely to be useful in the label prediction task. We can evaluate the approximation by
KL-divergence:

D(LIR) = ¥ p(e)log2L (63)
cer L p(cR)
where p(c) is the prior probability of label ¢ in the text data set, and t.L is the set of all
possible labels in the output of task t.
Equation 6.3 requires p(c[R) to be non-zero whenever p(c) is not zero. To avoid zero

probability problem, we use Dirichlet smoothing to calculate p(c|R):

ecii COuNt(c, ) + pp(c)

5 eetn count(e) + 4

p(R) = &

(6.4)

where p is a smoothing parameter to be empirically set. Note that p should always be

62



non-negative (u > 0).

The task aware measurement of relation type R is finally defined as:

1D(LIR), if |Exl|>0

(6.5)
, else.

f(R,t) = {
The task awareness of a relation r is determined by two facts: (1) whether it is in the

shortest path of an central entity to its close neighbor; (2) the task awareness of its type.

f(R,t), ifre Gsub

6.6
0, else. (6.6)

f(?",t) :{

Entity in the knowledge graph can be considered as an ensemble of attributes. Different
from the relations, attributes of entities can be mentioned directly in the text. If the mention
of an attribute can help to discriminate the class labels, its task awareness should be high.
We evaluate the task awareness of attributes by Gini index:

1-Gini(a) if a occurs in t.D

f(aat) = { (67)

, else.

where t.D is the input text data.

Task awareness of an attribute is high when its distribution over all the labels is un-
balanced, which means that it is a strong indicator for only a few labels. Gini index is
effective especially when the number of labels is large (which may usually be the case for
many entity-centric classification tasks). Other kinds of measurement such as information
gain and y-square can also be used. The task awareness of an entity is measured based on

its attributes:

maxa€e{f(a, t)}, if e € Ggup

(6.8)
, else.

f(evt):{

If an entity is a close neighbor of any of the central entities, its task awareness is the
maximal value of the task awareness of all its attributes. Otherwise, its task awareness is

set to be zero.
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6.2 EXPAND KNOWLEDGE GRAPH BY FINDING NEW ENTITIES AND
RELATIONS

A main deficiency of using pre-constructed knowledge graph in a static way is that the
coverage is insufficient in many cases, which eventually hurts the performance. Informa-
tive signals from the text may be ignored due to the absence of the required background
knowledge. To solve this problem, we propose to expand the knowledge graph from the
background text data in the task. Some of the entities or relations that are helpful for the
task could be extracted from the text corpus, but are actually missing in the knowledge
graph. If we can discover these unexplored entities and relations from the text corpus, the
coverage will be enlarged, thus the power of knowledge graph will be better exploited.

We first extract entities from the corpus by NLP tools to enrich the entity set. The next
step is to identify which of the newly found entities are related to the existing entities in
the knowledge graph, especially the central entities. To achieve this goal, we use a joint
embedding model to represent all entities and relations in the same vector space so that we
can calculate the probability that a new entity is connected to an existing entity by a certain
type of relation.

The joint embedding model is constituted of two models. One is a knowledge graph em-
bedding model which learns a low-dimensional vector for the entities and relations in the
same vector space. The knowledge graph embedding model we use is similar to TransE [49].
The basic assumption that the tail entity vector should be close to the sum of the head
entity vector and the relation vector. Thus, the head/tail entity can be estimated given the
tail /head entity and the relation, while the relation can be also inferred given the head and
the tail entities. The goal of the knowledge graph embedding is to minimize the estima-
tion error. More specifically, the knowledge graph embedding is learned by minimizing the

following objective function:

Lo= > { > [v+d(ue +up ue,) —d(ue, +ur, ue)]s

(eirej)eR e'eQ(e;,r)

+ Z [7 + d(uei + Uy, uej) o d(uei Uy, Ue; )]+

r'eQ(e;,e;)

+ Z [ + d(u, +uT,uej) = d(ue +ur,uej)]+} (6.9)

e'eQ(r.e;)
where u,,, u, and u., are the vectors for the head entity, the relation and the tail entity
respectively. d(u;,u;) = 5|u; —u;|3 is the distance between two vectors u; and wu;. Q(e;,r)
are the negative examples for entity e; and relation r where an negative example e’ does not

hold relation r with entity e;. Similarly, {2(r,e;) are the negative sampling for retrieving the
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head entities. {2(e;,e;) is the negative examples of the relations.

Knowledge graph embedding models have been shown to be promising in knowledge graph
completion and have attracted much attention recently [50]. However, the scope is still lim-
ited to the entities that are already included in the knowledge graph. We believe that learning
knowledge from the task can help to enhance the knowledge graph, and the expansion of the
knowledge graph can also benefit from leveraging the text data. For example, reviews like
“City of Stars is my favorite song in La La Land” may indicate that the entity “La La Land”
is connected to “City of Stars” by “hasSong” relation. In order to extend the coverage to
entities that are out of the knowledge graph, we propose another model for text embedding
to learn the vector representation for entity in the text corpus. Inspired by Skip-gram, we
also predict the context words/entities based on the target word/entity. When we see a word
occurs in the text, the probability of seeing its context words is estimated in the same way
as in Skip-gram.

Once we find an entity mentioned in a training document, we assume that the entity is
implicitly related to the corresponding central entiti(es) which is assigned as the label(s) of
the document. For example, if we see “City of Stars” occurs in a review about the movie
“La La Land”, then these two entities may be connected by a certain type of relationship.
This assumption is different from traditional joint embedding techniques (e.g., [31]) which
requires the related entity to co-occur together in the same context. For a random text
collected from an arbitrary source, we can only rely on the explicit oc-occurrence to extract
relations. However, in the circumstance of entity-centric classification, the constraint can be
more flexible. Based on this assumption, we can infer the context of the mentioned entity
by its relation to the central entiti(es). We assume that the entities that have the same type
of relation with a central entity are likely to see similar words in their context. For example,
when we see a song of a movie is mentioned in the text, we may expect to find contextual
words such as “song” and “composer”, while words like “performance” are likely to be found

in the context of the actor/actress. Formally, the text embedding is learned by:

L= Z log P(w.|w) + Z log P(w¢|e., r)P(r|e., e) (6.10)

(w,wc)eD (e,we)eD
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Vi, * U

P(w, = 6.11

(o) = e (6.11)
Vo, * (Ue, + Uy )

P(wee, r) = ——we Wee 6.12

(w |e r) Zwé Ut (uec + Ur) ( )

P(rlec,e) = erp(alec..¢)) (6.13)

X exp(qlec,r'se))

where v,, and u,, represent the output and input vector for word w respectively. q(e.,r,e) =
=3 | tte, +ur—ue||3 is the normalized distance between e, and e given that the relation between
them is r. Negative sampling is used to approximate the softmax function in Equation 6.11
and 6.12.

When we obtain the embedding vectors, we can discover the related entities to a central

entity e. by a certain relationship r based on the following probability:

exp(q(ee,r, e))
o exp(q(ec,,e’))

P(ele.,r) = 3 (6.14)

The primary of the expansion is to discover unknown entities and relations that are related
to the central entities so that we can enlarge the coverage of useful knowledge for the task.
Based on the background text corpus, we are able to find new entities that are not covered
by the knowledge graph. Among all of these entities, some of them are actually closely
related to the central entities, while the others may not very relevant to the central entities
and thus is less likely to be potentially useful for the task. For each central entity e., we
only collect the newly found entities that are most likely to be related to it and add them
as its neighbors. In order to find such closely related entities, we measure the probability of
a new entity being connected to the central entity e. by relation r by Equation 6.14.

Besides discovering new entities and relations, we also expand the knowledge graph by
finding aliases for the entity names.

We mainly use the task-aware knowledge graph for knowledge graph-assistant featurization
in this task. More specifically, we can extract all the attributes (e.g., entity names) from the
text and represent the text as a vector where each dimension is an attribute or a combination
of an attribute and its context words. The quality and coverage of the attributes, especially
entity names, will have a great impact on the performance of the task. If the knowledge
graph can cover most of the aliases mentioned in the data set, it will help to classify the

text more accurately. Thus, we can also use the background text corpus to find aliases of
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entity names for further expansion of the knowledge graph. Because it is carried out in an
automatic way, noise or errors might be brought in. To control the quality, task awareness
measurement is used to filter out the newly found aliases which contribute little to the
classification task.

Most of the entity names provided by an existing general knowledge graph are full names.
However, the entity is sometimes mentioned as an abbreviation. For each entity name,
we extract all its sub-phrases composed of adjacent words in it as alias candidates. If an
original name is (wy, ws, ..., w,), a valid sub-phrase is like (w;, w1, ..., Wiyym) where 1 < i+ 1
and 7 +m <n. When a candidate alias is extracted from the original name, we match it in
the text data set. If an alias never occurs, it indicates that the alias we find is not correct

or is not useful for the task.

6.3 REFINE TRIMMING AND EXPANSION FUNCTIONS

The trimming function we designed for the task is simple. It removes entities, relations,
and attributes whose task awareness is lower than a threshold. After a primary trimming is
made to remove irrelevant entities and relations from the initial knowledge graph, the next
step is to expand it.

The expansion is made by finding new entities, relations and aliases for entity names based
on the background text corpus. Given a new entity, if its probability of being connected to
any of the central entities by a certain relation is above a cut-off threshld (6,), it is added to
the knowledge graph together with the corresponding relation. The trimming and expansion
function is plugged in the framework proposed in Chapter 5.

Finally, we get a set of entities and relations with their task awareness. They together
form the task-aware knowledge graph. The full process is summarized in Algorithm 6.1.
0,. 0. and 6, are the thresholds used to filter relations, entities and attributes respectively.
Multiple task-aware knowledge graphs can be generated with different thresholds. Lower
threshold enables larger coverage, but also makes the feature noisier if we use the task-aware
knowledge graph for text representation. Higher threshold finds better features but may
hurt the coverage. In practice, we can tune the threshold parameters based on the data set
to make a better trade-off between the coverage and the quality.

The above algorithm is only one example of how the general framework can be instantiated
for the entity-centric classification tasks. Note that the framework can be instantiated in

many other ways as well.
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Algorithm 6.1: Construct task-aware knowledge graph for entity-centric classification
tasks
Input: Task ¢, initial knowledge graph Gy = {Ey, Ry}, task awareness measurement

fuction f
Output: Task-aware knowledge graph G = {E, R, t, %}
1 F <« Ey;
2 R« Ry;
3 X<« {{e,fle,t))ee Eo} u{(r, f(r,t))|re Ro} u{{a, f(a,t))|acenee

Eo} u{{a, f(a,t))|aeranre Ry},
{E,R} < trim({E, R},X);
G < {E,R,t,X};
repeat
{E,R} < expand({E, R},1);
Y<{f(e,t)leec E}u{f(r,t)re Ryu{f(a,t)jaceneec E}u{f(a,t)|acranreR};
{E,R} < trim({E, R}, Y);
G < {E,R,t,X};
until G does not change; or the coverage of G is sufficient and the noise in G is
1gnorable;
12 Function trim(E, R)

© W N o oA

-
= o

13 e < {alacena, f(a,t))eX A f(a,t)>0.};

14 E < {elec Enfe, f(e,t)) e XA f(e,t)>0.};

15 R« {elee RA(r,f(r,t))e XA f(r,t)>0,};

16 Function expand(FE, R)

17 foreach e € F, do

18 if e, et.E., 7 =(e.,m.Ae) s.it. 1Ay e{r' Ai|r' € Ro} A P(ele,r) > 0, then
19 E < Eu{e};

20 R« Ru{r};

21 end

22 end

23 e < {ala € e} U{( “name”, alias)|alias € sub_phrases(V(a)) ra € enK(a) = “name”};

6.4 EXPERIMENT

In this section, we apply the method introduced in this chapter in a movie review classifi-
cation task. The problem is to automatically annotate movie reviews with the movies being
reviewed. The movie label belongs to a pre-given set, which are the central entities of the
task. The experiment setup is the same as the movie classification experiment discussed in
Chapter 3
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6.4.1 Performance of Task-aware Knowledge Graph

The primary goal of constructing a task-aware knowledge graph is to benefit the real-
world applications. A natural way to evaluate a task-aware knowledge graph is to estimate its
performance in the task. In our experiments, we use four metrics to evaluate the performance:
accuracy, precision, recall and F-1 measure.

We use two generic knowledge graphs in the movie review classification task. One is
built from Wikipedia Infobox and meta data (denoted as “Wiki”), and the other is Yago.
According to our study in Chapter 3, entity-based features (EF) and context-aware entity-
based features (CaEF) work better in the classification task. Hence, we employ these two
featurization method to construct knowledge graph-based features.

As shown in Table 6.1, the generic knowledge graphs indeed help to improve the perfor-
mance. Lexical features such as n-grams are very noisy so the precision is lower than the
generic knowledge graphs, even if L-1 regularization is employed. The generic knowledge
graphs also outperform syntactic features such as the POS tags (“POS”) and dependency
triples (“DEP”). Among all the baseline methods, the extracted named entity works best,
even better than the generic knowledge graphs sometimes, due to the larger coverage com-
pared to the pre-constructed knowledge graphs.

The performance of the knowledge graphs is far from optimal since the coverage of the
generic knowledge graphs is not large enough for this task. Actually the performance gets
significantly improved because of the enlargement of the coverage when the knowledge graphs
are expanded by paradigmatic or syntagmatic relations (e.g., “Wiki + Paras, ” which de-
notes the knowledge graph built from Wiki Infobox and meta data by paradigmatic relations
mined by Skip-gram model). When we combine the entity-based features generated based on
the original knowledge graphs with the extracted named entities (“Wiki + NER” and “Yago
+ NER”), it works better than using them separately, but are not as effective as directly ex-
panding the knowledge graph by adding more related entities because the recognized named
entities are filtered by the paradigmatic or syntagmatic relations so that the features are less
noisy. Again, we find that the knowledge graph-based features are more effective with the
context information, for both the original knowledge graphs and the expanded knowledge
graphs.

Next, since we have now confirmed that knowledge graph is helpful in this task and
expansion of the knowledge graph even makes the prediction more accurate, we turn to
ask the central research question whether a task-aware knowledge graph can perform even
better. To construct the task-aware knowledge graph, we set 6, and 8, to be 0.05, and 6,
to be 0.135. 6, is set to be 0.1 for the knowledge graph built from Wiki and 0.05 for Yago.
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Table 6.1: Baseline method v.s. knowledge graph

feature \ accuracy precision recall F-1 measure
unigram 0.374 0.371 0.362 0.366
uni- and bigram 0.378 0.379 0.365 0.372
uni-, bi- and trigram 0.380 0.376 0.367 0.371
POS 0.270 0.249 0.243 0.246
DEP 0.171 0.158 0.152 0.155
NER 0.327 0.448 0.323 0.376
W2v 0.193 0.181 0.177 0.179
Wiki (EF) + NER 0.438 0.545 0.429 0.480
Yago (EF) + NER 0.374 0.467 0.358 0.405
Wiki (EF) 0.339 0.419 0.332 0.370
Wiki + Paras, (EF) 0.443 0.555 0.434 0.487
TAKG_Wiki (EF) 0.455 0.571 0.450 0.503
Yago (EF) 0.303 0.439 0.296 0.353
Yago + Syn,, (EF) 0.443 0.547 0.433 0.484
TAKG Yago (EF) 0.366 0.507 0.365 0.425
Wiki (CaEF) 0.532 0.511 0.513 0.512
Wiki + Paras, (CaEF) 0.555 0.549 0.543 0.546
TAKG_Wiki (CaEF) 0.572*  0.586* 0.563* 0.574*
Yago (CaEF) 0.451 0.437 0.432 0.435
Yago + Paras, (CaEF) 0.493 0.495 0.480 0.487
TAKG_Yago (CaEF) 0.455 0.473 0.447 0.460

Two-tailed t-test is done for paired data. In each pair, one is GKG, and
the other one is any of the other methods. * indicates p-value < 0.01 for
all tests.

i is a smoothing parameter that we simply set to a small value (0.001) without tuning.
Parameter 6, in Equation 6.1 is set to be 1. The performance is shown in Table 6.2.

TAKG is the task-aware knowledge graph we construct. TAKG_Wiki is the task-aware
knowledge graph constructed based on the generic knowledge graph built from Wiki Infobox,
while TAKG_Yago uses Yago as the initial knowledge graph. We can see that the task aware
knowledge graphs work better than both of the generic knowledge graphs because the task-
aware knowledge graphs are augmented by learning new knowledge from the application. By
enlarging the coverage and reducing the noise, the entity features from task-aware knowledge
graphs are more informative.

The expansion of the knowledge graph in the construction of task-aware knowledge graph
is more customized compared to the expansion based on paradigmatic and syntagmatic

relations. When the generic knowledge graph provides enough example of related entities to
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learn, task-aware knowledge graphs are more effective in generating good features and thus
achieve better performance. In fact, the knowledge graph built from Wiki Infobox and the
meta data has much better coverage than Yago. The former covers all the central entities
while over one third of the central entities are missing the latter. As a result, TAKG_Wiki
works better than the expanded knowledge graph based on paradigmatic or syntagmatic
relations. Paradigmatic relation mined by Skip-gram model is the most effective version
in the paradigmatic/syntagmatic relation-based expansion for the knowledge graph built
from Wiki Infobox, and its performance (“Wiki + Paras,”) is worse than the task-aware
knowledge graph (“TAKG_-Wiki”). For Yago, however, expanding the knowledge graph based
on paradigmatic or syntagmatic relation helps better in the task compared to constructing
a task-aware knowledge graph, because the original knowledge graph only covers limited
number of central entities and consequently the embedding algorithm proposed in Section 6.2
is not as effective as expected to find new entities and relations that are relevant to the task.

According to our study, the related entities are the most useful predictors of the mentioned
movies in the reviews. In fact, the entity-based features are not only effective but also
“sufficient” for the task, and adding other features on top of it may even bring in noise which
leads to overfitting problem and finally hurts the performance. For example, if we add the
unigrams on top on the entity-based features generated based on the task-aware knowledge
graph built from Wiki Infobox, the F-1 measure drops to, and the decrease is mainly due to
the overfitting problem. We test “TAKG_Wiki (EF)” with unigrams on a subset of training
data, and it indeed has much high value on all three metrics (e.g., 1.0 on F-1 measure). The
fact that it does not work well on the test set clearly shows that the unigrams indeed have
caused overfitting when the unigram features are added to task-aware knowledge graph-
based features. These results also suggest that the more generalizable features generated
by the task-aware knowledge graph tend to “lose” to more specific features like unigrams in
the training process due to the high potential of overfitting the training examples by those
unigram features. In general, all the results show that the task-aware knowledge graphs and
the expanded knowledge graphs have a sufficient coverage for the task while containing little
noise compared to the original knowledge graphs and baseline methods.

To see how the change of task-aware knowledge graph during its construction makes
influence on its application, we investigate each step of trimming and expansion. We apply
the task-aware knowledge graph built in each step in the task. Entity-based features are used.
Logistic regression without L1 regularization is employed to avoid automatically filtering of
noisy features so that we can have a better estimation of how noisy the task-aware knowledge
graph can be.

We start from the initial knowledge graph that constructed from Wiki Infobox and the

71



Table 6.2: Analysis of impact of each step in the construction of
task-aware knowledge graph

foature accuracy precision recall F-1 measure
(gain)  (gain)  (gain) (gain)
Wiki (EF) 0.318 0.387 0.305 0.341
First Trimming 0.289 0.446 0.284 0.347
(-0.029*%)  (0.059*%) (-0.021%) (0.006%)
First Expansion 0.432 0.543 0.421 0.474
(0.143*%) (0.097*) (0.137%) (0.127%)
Second Trimming 0.450 0.559 0.442 0.494
(0.018%)  (0.016*)  (0.021%) (0.020%)

One-tailed t-test is done for the gain of the performance, and * in-
dicates p-value < 0.01 for all tests.

meta data in Table 6.2. The first trimming removes entities that are not directly connected
with central entities and their relations. Relations and entities whose task awareness is less
than the thresholds are filtered as well (Line 4 in Algorithm 6.1). After the first trimming,
only 4 out of all the 17 relationships are kept in the knowledge, namely, starred By, directed By,
writtenBy and producedBy. It is in line with our common sense that it is easy to infer which
movie a review is about when its directors, actors or authors are mentioned in the text. We
can see that because we narrow down the scope of background knowledge to the best-fit
types, the precision is increased after the first trimming. However, the coverage is lowered
by filtering out so many entities and relations, which consequently hurts the recall.

The first expansion is done by adding new entities, relations and aliases of entity names
(Line 7 in Algorithm 6.1), leading to the largest increase in all metrics because the coverage
of knowledge is enlarged significantly. The second trimming reduces noise brought in by the
expansion (Line 9 in Algorithm 6.1) Because the noise is filtered by this step, the performance
is further improved.

Similar conclusion can be drawn from comparison of each step in the construction process
of the task-aware knowledge graph built from Yago.

Though continuous improvement is made by polishing the task-aware knowledge graph
step by step, the overall performance is still far from ideal. The evaluation results are
not very high in general. Apart from the imperfection of the task-aware knowledge graph,
another important reason is that the movie review classification is not an easy task in general,
not only for machine but also for human beings. It is because some reviews are not able to

provide enough hints for the inference of movie labels. For example, the following review is
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about the movie “The Ground Truth’:

o “Anyone who claims to support the troops owes it to them to see the film and hear their

stories.”

No identification information about the related movie is mentioned in the review, and it is
almost impossible to know which movie it is about without any additional information. To
have a quantitative evaluation of the difficulty of the task. We randomly sample 100 reviews
from the corpus and manually label them. The best accuracy human annotators can get is
0.57, which can be considered as an approximation of the upper bound of the performance
for this task. In this sense, our method gets surprisingly good performance given that the
best accuracy the task-aware knowledge graph can achieve is around 0.572 (“TAKG_Wiki
(CaEF)”).

6.4.2 Impact of thresholding

To check the sensitivity of performances to the parameter setting, we can generate multiple
versions of task-aware knowledge graph by using different thresholds and apply them in the
task. We can also have an insight into how the selection of relationships and the restrictions
in expansion can influence the task.

There are four thresholds, namely, 0,, 0,, 6. and 6,. 0, controls the expansion process.
With small §,, more newly found entities and relations will be added to the knowledge graph,
which results in larger coverage but may also hurt the quality because of more noise. The
task-aware knowledge graph reaches a smaller size with larger 6,, but the expansion could
be more reliable. To investigate the impact of 8,, we construct variations of the task-aware
knowledge graph by only changing 6,. The generic knowledge graph built from Wiki is
used to initialize the task-aware knowledge graph. Entity-based features are used in linear
regression without L-1 regularization.

As shown in Figure 6.1, the performance is not sensitive to ¢,. When 6, increases, the
overall performance is neither improved nor hurt. A main reason is that even though high
0, may filter many of the related entities, the discovery of aliases will make substantial
expansion in the other way. However, we may not want 6, to be too small since it causes
considerable noise. The performance of the task-aware knowledge graph based on Yago is
stable over different 6,’s as well.

6, is used to filter relations. The 17 relation types in the initial knowledge graph are
ranked by their task awareness. We can have different combinations of top relationships

by changing 6,. To show the impact of 6,, we construct multiple versions of TAKG, each
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Figure 6.1: Impact of 0,.
Table 6.3: Analysis of impact of relation types
K \ Top K relation types \ accuracy precision recall F-1 measure
0 | Wiki (EF) 0.318 0.387 0.305 0.341
1 | starredBy 0.388 0.491 0.381 0.429
2 | starredBy, directedBy 0.421 0.521 0.413 0.461
3 | starredBy, directedBy, writtenBy 0.426 0.526 0.417 0.465
4 starredBy, directed By, writtenBy 0.439 0.543* 0.421 0.474
produced By
starredBy, directedBy, writtenBy, % «

5 producedBy, distributedBy 0.439 0.532  0.429 0.474

Two-tailed t-test is done for paired data. In each pair, one is the version gets the best
performance, and the other one is any of the other versions. * indicates p-value < 0.01
for all test.

containing different types of relations. The performance can be found in Table 6.3. 6, and
. are both fixed to be 0 to keep all the relations of the selected type. Logistic regression
without L1 regularization is used again.

If we start with the generic knowledge graph built from Wiki Infobox and meta data, the
top four relationship are starredBy, DirectedBy, writtenBy and producedBy. Relationship
starredBy gets the highest task awareness. If we only use it, the task-aware knowledge
graph is then composed of movie entities connected with their actors. It has the smallest

coverage in all the listed versions of task-aware knowledge graph, so it gets the lower recall
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compared to the others. However, because it is still augmented by expansion, it outperforms
the original generic knowledge graph on all metrics. When we add directedBy, writtenBy
and producedBy relationships in the task-aware knowledge graph, the performance is further
improved. It is because director and author are hot topics extensively discussed in movie
reviews. As the number of relation types grows, the coverage increases but noise is also
brought in. When more relations like distributedBy are included, the recall rises but the
precision drops. The trend is similar for larger K'’s.

When constructing task-aware knowledge graph from Yago, the top 3 relationships are
ActedIn, FEdited and Directed respectively, which is close to the ranking in the generic
knowledge graph built from Wiki. We can again find the similar trend in variations of
TAKG_YAGO that with more relationships included, the features becomes noisier and thus
hurts the performance.

Two parameters control the growth of entities and their attributes, i.e., 6, and 6, respec-
tively. By changing 6, and 6,, we can have another group of task-aware knowledge graphs.
We set 0, and 6, as the same (6, is dominant to 6,), and the performance of the generated
task-aware knowledge graphs is shown in Figure 6.2. Small 6, and 6, are favored in general.
Large threshold makes the quality better controlled but results in poor coverage which hurts
the performance. Small threshold enables more aggressive expansion but may also raise the
risk of bringing in noise. Considerable noise is brought in and the performance gets worse
when 6, and 6, become too low (e.g, 0.01 or 0.02). The overall performance is more sensitive
to 6. and 0, compared to 6,, because large 6. and 6, hurts the coverage more significantly
than large 6,.

Small 6, and 6, are favored in general. Large threshold makes the quality better controlled
but results in poor coverage which hurts the performance. Small threshold enables more
aggressive expansion but may also raise the risk of bringing in noise. Considerable noise
information is brought in and the performance gets worse when 6, and 6, become too low
(e.g, 0.01 or 0.02). The overall performance is more sensitive to . and 6, compared to 0,.,

because large 6. and 6, hurts the coverage more significantly than large ,.

6.4.3 Summary

To summarize, the constructed task-aware knowledge graph is indeed effective in improving
the performance of the task. The gain mainly comes from expansion but trimming also helps
to make further improvement. In general, it is beneficial to make use of knowledge graph.
However, task-aware knowledge graph outperforms general knowledge graphs because it

provides customized knowledge for the task. With adequate training examples to learn the
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embedding vectors for the entities and the relations, the task-aware knowledge graph can
have a better coverage of the entities or relations relevant to the task and consequently
works better than the knowledge graph expanded by more general word relations such as
paradigmatic or syntagmatic relations. Generally, when the coverage of the central entities
in the existing generic knowledge graph is good enough, finding new entities and relations
by the jointly embedding model is more promising. While when the coverage of the central
entities is poor, making use of more “vague” relations such as paradigmatic and syntagmatic
relations is more beneficial.

The task awareness function helps to find the most useful types of relations. By removing
the noisy features brought in by irrelevant relations, the performance can be improved.
Besides, this kind of finding can also cast insight into the interpretation of what kind of
information is most useful for identifying the class labels. For example, we find in our
experiment that the actor/actress and directory information is important, and a review is
probably relevant to the corresponding movie when they are mentioned in it. Such kind of
knowledge may also be applicable in another task with the same type.

Trimming of entities and attributes is also necessary because sometimes the expansion
introduces noise. In general, low threshold is favored for the trimming of attributes and
entities if enlarging the coverage is more important for the task. But it should not be too
low. Otherwise, the quality of the knowledge graph will be hurt.

Context-aware entity-based featurization works best when applying the task-aware knowl-
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edge graph (or other types of knowledge graph such as a generic knowledge graph or an
expanded version) in the entity-centric classification task which takes the central entities
as class labels. In general, entity-centric classification is more challenging than thematic
categorization of documents because background knowledge is required to derive class labels
from the text. By constructing a task-aware knowledge graph and applying it in knowledge
graph-assistant featurization, the performance can even be close to that a human annotator
can reach. Though the performance is still not perfect, it is promising that the construction

and application of task-aware knowledge graph can benefit real-world applications.
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CHAPTER 7: APPLY KNOWLEDGE GRAPH FOR ENTITY-CENTRIC
REGRESSION

In this chapter, we present the proposed approach for exploiting knowledge graph to
improve entity-centric prediction [51]. The construction process of the task-aware knowledge
graph is the same as that shown in Chapter 6, because we believe that identifying the related
information about the central entities in a sentence or paragraph is the primary step to mine
deeper semantic information. As discussed in Chapter 3, context-aware explanatory path-
based features works best for the regression task, thus we employ it as the featurization
method in this chapter. The experimental results in our previous study (see Chapter 3)
show that the extracted context-aware explanatory path-based feawtures are still very noisy
and we need further pruning to make sure that the signal information can stand out. To solve

this problem, we present a two-stage filtering algorithm to improve feature representation.

7.1 FEATURIZATION

As discussed in Chapter 3, the explanatory path together with the contextual information
generates better features that capture the correlation between text input and the response
variables compared to other kinds of knowledge graph-based features. Entities that are
related to the central entities in the same way may play a similar role in the predictive
analysis, and merging them together helps to alleviate the sparsity problem in the feature
space. Moreover, relation types are much more prevalent than individual entities, so they
can be easily adapted to new data.

Based on the findings in the study about the knowledge graph-based feature engineering
(see Chapter 3), we refine the context-aware explanatory path-based features by allowing
n-grams extracted from both the left and right side. To further generalize the extracted
features for varied central entities, we remove the central entity which is at the end of the
explanatory path. In this way, the features is generalizable to unseen central entities as well.

More specifically, the features can be defined as:

K(s,e,l, W) ={({wi,y, ..., wi, ), {T (p)le’ € E. Ap € path(e,
e',G) Apath(e,e’,G) = dis(e, e, G)},(wp,y, - .. ,w;+12))|((wg+1,
Wiy )y e, (W why,)) €E(s e L, W)} (7.1)

where [ is the length of the contexual phrase which can be from either left or right side or

both. W is the maximum context window size. T (p) is a function to get all the relation
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types in path p and T ((ry,72,...7)) = (r.T,r9. T, ..., 7. T). Note that if the entity e is one
of the central entities, then T (p) = (“SELFE”).

E(s,e,1,W) is the context-aware features extracted from sentence s given an entity e:

E(s e, L, W) ={((wi, ... wiyy ), (Wi, -y whyg ), (we, -
Woy Nlen = (wr,...,w) As=(wl,...,wy) Aw;=wiA
AW T WE AT+ <GATISW ATy <s|A

Jrk=-1<gnqg+la-(G+k-1)<WAli+l=1} (7.2)

where e.n is the name of entity e. The context n-gram does not have to be adjacent with

the entity mention.

Example 7.1. Given the relation between “Rowling” and the central entity “Harry
Potter and the Order of the Phoenix” is “WrittenBy”, let [ and
W both be 2, then the context-aware explanatory path-based fea-
tures extracted from the sentence “Goblet of Fire is the entry in
which Rowling finally took off the gloves.” are: K(s,e,l,W) ={({
“in” “which”), (“WrittenBy”), (}), ((), (“WrittenBy”), ( “finally”,
“took” )), ({ “in” ),( “WrittenBy” ), ( “finally” }) , ({ “in” ), (
“WrittenBy” ), ( “took” )), ({ “which” },( “WrittenBy” ), ( “fi-
nally” )), ({ “which” ), (“WrittenBy”), (“took”))}

By setting the contextual phrase length (I in Equation 3.10) to different values, we can
get multiple sets of context-aware explanatory path-based features. Let L be all possible
settings of contextual phrase length we want, then the context-aware explanatory path-based

features in a document d are:

K(d7 E) = UsEd,eGE,lEL,C(Sa €, l7 W) (73)

7.2 PRIMARY FILTERING OF FEATURES

The generated context-aware explanatory path-based features can better capture the cor-

relation between the text and the response variable than surface lexical features. However,
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the original features are quite noisy, and it is necessary to filter the features in a data-
dependent way to improve the quality.

To this end, we define a t-statistic based measure to filter the features. Given a feature
f, we first find all the documents that contain it and denote the set as Dy. Then align the
documents with the response variable: Yy = {y;|d; € Ds}. The t-statistic based measure is
defined as:

ts(f) = mean(YJsct)d(Y:?)wan(Y) (7.4)
VIVl

where mean(Yy) is the mean of Yy and std(Y}) is its standard deviation. Y is the response

for all the documents.

Suppose we make a hypothesis that the true parameter of Y; equals to Y, then Equation 7.4
can be used to perform a t-test with degrees of freedom of [Yy|-1, and the hypothesis is more
likely to be accepted in general when the value is small. Consider Y7 as the response variables
conditional on feature f. When the true distribution of Y} equals to Y (the hypothesis is
accepted), it means that the uncertainty of Y is not reduced by f and f is not so useful
for prediction. Think about two features — one is a common word that occurs in every
document, while the other can only be found in documents that have the largest response
variable in the dataset. The distribution of Y} for the first one is exactly the same as that
of Y whereas the second one is more likely to be an effective feature because its occurrence
indicates a large value of the response variable.

We can also interpret the t-statistic measure in another way. Initially, we normalize all

the response variables as:

N

Y =41, .., 0]t = [y1 - mean(Y), ..., yp — mean(Y)]"

Then Y; = {g|d; € Ds} and ts(f) = %

We can see a feature will have a high t-statistic measure when its normalized response
variables have high average or low variation. Low variation means that the feature is likely
to be an effective indicator for a small range of response variables, while high-average fea-
tures are more robust to outliers. \/@ in the numerator penalizes low-frequency features
and rewards high-frequency ones whose performance tends to be more reliable in unseen
examples.

Compared to other kinds of measurements such as Chi-square, the t-statistic based mea-
sure not only works for classification problem where the response variables are discrete, but

also works for more generalized regression tasks where the response variables are continuous.
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7.3 SECOND-STAGE FILTERING

Features with high t-statistic measure usually tend to have strong predictive power. How-
ever, the requirement for getting high t-statistic measure is sometimes too strict. A feature
has to work well for all the relevant central entities to get high t-statistic measure. Some-
times a feature may not get a very high t-statistic measure but they are still effective enough
for a group of central entities. To have a finer analysis of the features, we use mixed effects
model to understand where its impact comes from.

Mixed effect model is a powerful tool to estimate the correlation between a response vari-
able and some other variables that are observed along with it. It decomposes the observation
into a deterministic component and a random component. Deterministic component demon-
strates the detailed effects of individual objects, while the random effects are intended to
explain the representative influence on the response in a more general way. For instance,
suppose our task is to predict the revenue performance of movies from the movie reviews,
and the movies can be clustered into two genres — drama and documentary. Drama is likely
to be more popular than documentary, and gets higher revenue on average. But such kind
of impact still varies a lot among individual movies in the same genre. Hence, the genres
can perform as random factors, and the random effect of drama will be larger than that of
documentary. Different from fixed effects, the overall random effects are assumed to sum

" impact of the random factors when compared to each

up to zero, thus reflect the “relative’
other.

Formally, denote the vector of observation as ), a linear mixed model can be written as:
V=XB+Uy+e (7.5)

where X and U are the designed fix-effects and random-effects matrix respectively. § and
v are the vectors for fixed effects and random effects, and ¢ is the error. 3, v and € are
unknown and needs to be estimated. Moreover, the random effect and the error are assumed
to be sampled from an underlying normal distribution: v ~ N (0,Q), € ~ N (0, H). Different
from linear regression, the primary goal of mixed effects model is not trying to minimize the
error. Besides, the random effects are assumed to obey normal distribution, so the random
effects are more like a rough estimation on a high level compared to fixed effects.

The problem finally boils down to minimize the following objective function when D and

H are unknown [52]:

LV, B)=ln|V]|+(Y-x3)"VH(Y-X3)+n|XTVX| (7.6)
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where V =UQUT + H.

For a feature f, we assume that it affects the response variable in a deterministic way.
The central entities can often be categorized into diverse clusters (e.g., based on types or
other kinds of attributes), and the clustering information is used as random factors.

To decompose the impact of a feature f on the response into different components, we
find all documents that contain f and denote it as Dy (see Section 7.2). Dy includes all the
positive examples, which tell us how the feature makes impact on its presence. To make a
full analysis of the impact of a feature on both its presence and absence, we also sample
some negative examples from the data where the feature cannot be found in the documents.
We denote the negative example set as D} and D} c {d|d e D A f ¢ K(d,E)}. Dy and D}

are merged together and their indexes are recorded in Xy:
Yy ={ild; € Dyvd;eD}}

We assume that the fixed effects come from the impact of the feature f. Let v(/) be the
vector indicating the occurrence of feature f in the sampled documents:

o = [pD DT

i1 2 Yig 2t Z\Zf\

where i; € ¥y for 1< j < [¥¢| and i) <ip <... <djgy).

)

'U(f): 1, lffE,C(dlj,E),
0, otherwise.

Then the fix-effects matrix for f can be designed as X; = [,0(/)] where is an all-one vector
with the same dimension as v(/).

Suppose we have N clustering systems and the i-th system splits the central entities into
m; clusters. Let g(9(e) be the function which maps an central entity e to its group label
assigned by the i-th clustering system. If the i-th system categorizes e to the j-th cluster,

then g()(e) = j. The cluster assignment based on the i-th system can be recored in a matrix

U@:

vy Uy o Ul
o |9 9 v
AR AN AN
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where

o { L g0 (o(d) =k
ik -
0, otherwise.

o(d;) is the function to get the corresponding central entity for document d;: o(d;) =e if e €
E.nyjeeA
To get the random-effects matrix for feature f, we extract the sub-matrix from U based

on the sampled set X for each clustering system:

[ 77(9) (1) ©)]
U]&’)1 Uj(lf . Uj(l")mi
U(i) _ UJ'ZJ Uj2,2 T Uj2,mz‘
U : . ;
(3) (1) (1)
_Uj|zf|71 Uj|2f|72 T Uj\Zf\vmi_

where j, € Xy for 1 < k < [¥y[ and 1 < j; < jp < ... < jig; < n. We finally design the
random-effects matrix as:

1 2 N
U= [0, 0P, UM

For example, if we have two documents in 3y and only one clustering system which assigns

the corresponding central entity of the first document to the first cluster while the second

10
U =

The response vector for feature f is defined as:

one to the second cluster. Then

yf = [yiuyiz?"'?yi\zf\]T

where i € Xy for 1 <k <[Sy| and 1<y <ip < ... <y <.
Now the fixed effects and random effects for each feature can be inferred from the mixed

model:
yf = Xf/Bf +Uf’yf +€f

The fixed effects 3, contains two variables 3,, and ,,. 3,, is the intercept, and 3, is the
deterministic effect comes from feature f. 7, measures the random effects in a more general
level. Ideally, if a feature is applicable to a wide range of central entities, the sum of random

effects in v, is close to 0, or it could be a relatively small number compared to 3, . Hence,
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we estimate the deterministic impact made by feature f on the response as:

18,
I(f)= (7.7)
|ﬁ f1| + h/f|1
Features are first filtered by t-statistic measure and those with low t-statistic value are
removed. Then deterministic impact measure based on mixed effects model (Equation 7.7)

are used to further select features which are effective for a wide range of central entities.

Finally a document d is represented by:

UleL{f'f € K(d, E) A tS(f) > Qts AN I(f) > Q[}

7.4 EXPERIMENT

In this section, we evaluate the method introduced in this chapter by using two variants

of movie revenue prediction task.

7.4.1 Experimental setup

Experiment procedure and parameter setting

The task-aware knowledge graph constructed based on the generic knowledge graph built
from Wiki Infobox (see Chapter 6) is used to generate the context-aware explanatory path-
based features to represent the documents. Besides, many of the reviews in the dataset are
short sentences which do not mention the entity name explicitly. To further enlarge the
coverage, we treat explicit reference like “the movie” and “the director” as the related entity
as well. They are also transformed to their relations with the central entities (e.g., “the
director” is transformed to “DirectedBy”). There are altogether 20 such phrases which are
manually selected based on 4 most prevalent relations with movie entities: SELF, Directed By,
Writted By and StarredBy. Note that more complicated NLP tools can be utilized to facilitate
this process as well, but we only use the most straightforward way in our experiment which
still meets our primary goal of studying the effectiveness of using task-aware knowledge
graph.

We compare our method with several baseline methods representing the major existing

approaches for the construction of features.

e N-grams, including unigrams, bigrams and trigrams.
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e N-grams with source websites: the reviews are collected from seven websites. Besides

the original n-grams, we also conjoin the n-grams with the source information.
e Part-of-speech n-grams which combine the POS tags with the n-gram features.

e Dependency triples where each feature is a triple of (head word, relation, modifier

word).

e Embedding vectors: a TFIDF-weighted linear combination of word vectors is used to

represent documents. The word vectors are pre-trained on Common Crawl [46]!.

A stopword list containing 30 words is used. Phrases that only contains stopwords are
removed, for all methods including ours.

We apply our method in two representative prediction tasks, one is to predict the weekend
revenue and the other is to predict the per-screen revenue. They share the same input text
but the response variables are different. L is set to be {1,2,3,4,5} which means that we
use 1-5 n-grams as contextual phrases to generate the context-aware explanatory path-based
features. The maximum window size W is set to be 12. All the parameters are tuned based
on the development set, resulting in the following parameter settings. T-statistic measure
threshold (6;5) is set to be 503 for weekend revenue prediction, and 7.7 for the per-screen
revenue prediction. Movies are clustered by genres and release date that are attributes of
the movie entities, which is used as random factors in the mixed effects model. The cut-off
threshold for the deterministic impact measure (6;) is set to be 0.30 for weekend revenue
while 0.29 for per-screen revenue.

Two models are employed to predict the revenue from reviews. One is linear regression
without any regularization, and the other elastic net which is linear regression with a com-

bination of L-1 and L-2 regularization [53].

7.4.2 Evaluation results

Performance of knowledge graph-level features

The performance of our method and the baseline methods is shown in Table 7.1 and
Table 7.2. “unigram”, “bigram” and “trigram” are the original n-grams. “unigram+", “uni-
and bigram+" and “uni-, bi- and trigram-+" are n-grams conjoined with the source websites.

“POS unigram”, “POS uni- and bigram” and “POS uni-, bi- and trigram” use n-grams with

IThe pre-trained vectors are downloaded from https://fasttext.cc/docs/en/crawl-vectors.html
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Table 7.1: Performance of our method v.s. baseline methods with linear regression

foature Weekend revenue Per-screen revenue
MAE(SM) SMAPE (%) | MAE(SK) SMAPE (%)

unigram 9.41 70.71 7.07 38.13
uni- and bigram 9.03 68.78 6.70 33.61
uni-, bi- and trigram 9.05 68.55 6.68 33.50
unigram-+ 8.11 65.57 6.40 33.74
uni- and bigram+ 8.16 65.52 6.32 32.70
uni-, bi- and trigram+ 8.36 65.96 6.31 32.51
POS unigram 9.11 70.04 7.12 37.66
POS uni- and bigram 8.82 69.79 6.78 34.72
POS uni-, bi- and trigram 8.88 68.86 6.70 33.80
DEP triple 9.40 69.27 6.91 35.17
W2v 10.04 68.55 8.19 66.03
TAKG & unigram 8.77* 69.17 6.22% 32.55%*
TAKG & uni- and bigram 8.77* 68.43 6.40%* 32.17*
TAKG & uni-, bi- and trigram 8.85% 67.77 6.48% 32.62*
TAKG & unigram+ 7.82% 63.94* 5.88* 31.25%
TAKG & uni- and bigram+ 8.07 65.43 6.09%* 31.79%
TAKG & uni-, bi- and trigram+ 8.31 65.58 6.16* 31.94%*
TAKG & POS unigram 8.59% 68.79 1 6.67* 35.33%*
TAKG & POS uni- and bigram 8.50%* 68.26* 6.55% 32.95%
TAKG & POS uni-, bi- and trigram 8.62* 67.69* 6.607 33.29
TAKG & DEP triple 8.82% 67.08%* 6.62* 34.00*
TAKG & W2V 10.03 68.55 6.01 35.71
TAKG 6.47* 61.77* 4.62% 25.91*

Context-aware explanatory-path featurization (CaExPF) is used to represent the documents. Two-
tailed t-test is done for paired data. For the last row, we compare CaExPF with all the other methods,
and the minimum p-value is reported. The 13-23th row (from “CaExPF & unigram” to “CaExPF
& W2V”) is compared to the corresponding baseline method in the 2-12th row (e.g., “unigram” v.s.
“CaExPF & unigram”). * indicates p-value < 0.01 and { indicates p-value < 0.05.

their POS tags. “DEP triple” is the dependency triples. “W2V” uses the embedding vectors.
“CaExPF” is the context-aware explanatory path-based features generated by our method.
“CakxPF & unigram” takes both CaExPF features and unigrams. Similarly, features like
“CaExPF & unigram+” and “CaExPF & DEP triple” mean to combine CaExPF with other
baseline features.

We can see that the baseline features are not very effective and suffer a lot from the
overfitting problem. Taking unigram features as an example, we test the model trained for
weekend revenue on a subset of the training set, and MAE is $16.54, much less than what we

get for the test set (over $9 million). Elastic net can help to reduce the noise and alleviate
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Table 7.2: Performance of our method v.s. baseline methods with elastic net

foature Weekend revenue Per-screen revenue
MAE(SM) SMAPE (%) | MAE(SK) SMAPE (%)

unigram 8.45 69.68 6.48 34.03
uni- and bigram 8.20 67.96 6.29 31.65
uni-, bi- and trigram 8.19 67.13 6.15 30.96
unigram- 7.87 65.02 5.98 31.65
uni- and bigram+ 7.96 65.37 5.88 30.32
uni-, bi- and trigram+ 7.95 65.13 5.82 29.78
POS unigram 7.93 67.91 6.92 34.81
POS uni- and bigram 7.82 66.45 6.63 33.26
POS uni-, bi- and trigram 7.85 66.07 6.49 32.74
DEP triple 9.40 69.27 6.46 32.84
W2v 8.19 66.03 6.44 32.34
TAKG & unigram 7.88% 67.53* 6.01°* 31.70%*
TAKG & uni- and bigram 7.96* 68.19 6.07* 30.83¢
TAKG & uni-, bi- and trigram 8.01* 66.27 6.01* 30.42*
TAKG & unigram+ 7.71% 64.37 5.64%* 30.34*
TAKG & uni- and bigram+ 7.82% 64.97 5.69%* 29.58*
TAKG & uni-, bi- and trigram+ 7.95 65.15 5.67* 29.14*
TAKG & POS unigram 7.64* 67.70 6.38% 33.46
TAKG & POS uni- and bigram 7.60* 66.16 6.43 32.62
TAKG & POS uni-, bi- and trigram 7.66* 65.55 6.36 32.29
TAKG & DEP triple 7.86 66.21 6.20* 31.69*
TAKG & W2V 8.17 65.65 6.43 32.33
TAKG 6.16* 61.59* 4.40%* 23.58%*

Context-aware explanatory-path featurization (CaExPF) is used to represent the documents. Two-
tailed t-test is done for paired data. For the last row, we compare CaExPF with all the other methods,
and the minimum p-value is reported. The 13-23th row (from “CaExPF & unigram” to “CaExPF
& W2V”) is compared to the corresponding baseline method in the 2-12th row (e.g., “unigram” v.s.
“CaExPF & unigram”). * indicates p-value < 0.01 and { indicates p-value < 0.05.

the overfitting problem to some extent. The performance is improved significantly for all
baseline methods, but still much worse than the CaExPF. The proposed two-stage filtering
algorithm has already removed a large number of noisy features, so elastic net only produces
limited improvement for CaExPF.

When we utilize NLP tools to get more sophisticated features such as part-of-speech
tags and dependency triples, it sometimes works better than purely using n-gram features.
When source website information is added, the n-grams features also become more powerful.
Generally, source website information outperforms POS tag, and both of them works better

than dependency triples. All those features are much sparser than the original n-grams,
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which exacerbates the overfitting problem. Again, feature selection is needed to obtain
better performance. However, the overfitting problem cannot always be fully solved with
L-1 and L-2 regularization. For example, for both POS n-grams and n-grams with source
websites, the prediction error is slightly increased when higher-order n-grams are included
(e.g., “unigram+" is slightly better than “unigram+ & bigram+"). The embedding vectors
(“W2V") does not work as well as others when the prediction is made by the linear regression
model. When elastic net is employed, it can get comparable performance with other baseline
methods.

CaExPF outperforms all the baseline methods significantly. Besides, when we combine the
CaExPF feature with baseline features, the prediction errors are reduced compared to only
using baseline features, showing that CaExPF is highly effective and quite robust. We carry
out significance test to check whether the reduction is significant, and it turns out that the
improvement made by adding CaExPF to baseline features is significant in general. We can
further observe that using CaExPF alone works the best among all the combinations, which
is a very promising result because this means that the features used in CaExPF are not only
semantically interpretable and relevant to the prediction task (thus more generalizable), but
also seem to be “sufficient” for our prediction tasks in the sense that once we have such
effective semantic features, adding additional text-level features would tend to degrade the
performance, presumably due to overfitting.

The benefits of CaExPF comes from both aspects: (1) extracting explanatory path to
represent the documents along with the context, (2) noise filtering. Feature extraction helps
to find informative snippets, and the transformation from entity to explanatory path makes
the feature more generalizable to unseen data meanwhile reduces sparsity to avoid overfitting.
To see whether the features transformation is effective, we compare the context-aware entity-
based features to context-aware explanatory path-based features. We can see that CaExPF
beats CAEF features on all metrics for both tasks (Table 7.3 and Table 7.4 ). By accurately
distinguishing finer-granularity relations (i.e., the specific relation type pre-defined by the
knowledge graph rather than the more general word relations such as paradigmatic relation
or syntagmatic relation), the relationship between the entities mentioned in the text and the
central entities is better captured by the explanatory path. With further pruning of the noise,
the TAKG-based features finally work better than the KG-based features generated from
the knowledge graph expanded by the word relations (i.e., paradigmatic and syntagmatic
relation). In Table 7.5 and Table 7.6, we can see that the TAKG-based features filtered by
the two-stage filtering method works significantly better.

Next, we investigate how effective each of the two-stage filtering steps is for generating

better features, and make some further analysis of the filtering algorithm. To avoid automatic
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Table 7.3: Performance of context-aware entity-based features v.s. context-
aware explanatory path-based features with linear regression

foature Weekend revenue Per-screen revenue
MAE(SM) SMAPE (%) | MAE ($K) SMAPE (%)

TAKG (CaEF) 7.49 65.36 5.75 30.27

TAKG (CaExPF) 6.35%* 60.22* 4.58%* 26.35%*

Two-tailed t-test is done for paired data. * indicates p-value < 0.01 and T indicates
p-value < 0.05.

Table 7.4: Performance of context-aware entity-based features v.s. context-
aware explanatory path-based features with elastic net

feature Weekend revenue Per-screen revenue
MAE($M) SMAPE (%) | MAE ($K) SMAPE (%)

TAKG (CaEF) 7.13 63.80 5.60 29.16

TAKG (CaExPF) | 6.12% 61.01 4.44% 24.06*

Two-tailed t-test is done for paired data. * indicates p-value< 0.01 and { indicates
p-value< 0.05.

feature selection made by regularization, we use linear regression rather than elastic net to
train the model. As shown in Table 7.7, we first use all the context-aware explanatory
path-based features without any filtering, and the performance is even worse than unigram
because there is too much noise. Then the first-round filtering is carried out based on the
t-statistic measure. Many of the noisy features are filtered out, leading to smaller prediction
errors. In the second-round filtering, the mixed effects model is used to analyze the source of
impact for each feature, and features that are applicable to multiple types of central entities
stand out in this round. Hence, the performance is further improved.

The baseline methods we show in Table 7.1 are all automatically generated. In real
applications, we can sometimes utilize manually designed features that may be more effective
than text features. For example, sophisticated meta features are provided in [5]. Many of
them are more than the straightforward relationship we can find in a regular knowledge
graph. For example, information like number of screens, number of highest grossing actors,
whether released on Labor Day, etc. We conduct experiments with the metadata and the
results are shown in Table 7.8 and Table 7.9. We also combine the CaExPF with the
metadata features, and the results can be found in the last row (“meta & CaExPF”).

We can see that the metadata features works better than the CaExPF in the weekend

revenue prediction task. When we combine them together, it achieves the best performance.
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Table 7.5: Performance of TAKG features v.s. KG features by expanding KG by word relation
with linear regression

foature Weekend revenue Per-screen revenue
MAE($SM) SMAPE (%) | MAE ($K) SMAPE (%)

Wiki+Para,,, (CaExPF) 9.84 70.40 6.80 35.24
Wiki+Para,, (CaExPF) 9.84 70.89 6.90 35.55
Wiki+Syn,., (CaExPF) 9.89 69.00 7.03 36.76
Wiki+Syn,, (CaExPF) 9.82 71.40 6.66 34.51
Yago+Para,,, (CaExPF) 9.73 69.44 6.94 35.78
Yago+Paras, (CaExPF) 9.62 69.39 6.91 35.35
Yago+Syn,,, (CaExPF) 9.63 67.70 6.82 34.67
Yago+Syn,, (CaExPF) 9.56 69.56 7.07 35.85
Yago+Syns, (CaExPF) + unigram 8.97 70.21 6.75 34.29
TAKG (CaExPF) 6.35* 60.22%* 4.58%* 26.35*

Two-tailed t-test is done for paired data. * indicates p-value < 0.01 and T indicates p-value < 0.05.

Table 7.6: Performance of TAKG features v.s. KG features by expanding KG by
word relation with elastic net

foature Weekend revenue Per-screen revenue
MAE($SM) SMAPE (%) | MAE ($K) SMAPE (%)

Wiki+Para,,, (CaExPF) 8.44 68.49 6.70 34.36
Wiki+Paras, (CaExPF) 8.44 67.51 6.45 33.23
Wiki+Syn,., (CaExPF) 8.66 68.53 6.72 34.67
Wiki+Syn,, (CaExPF) 8.60 68.77 6.34 32.22
Yago+Para,, (CaExPF) 8.45 68.11 6.48 33.49
Yago+Paras, (CaExPF) 8.26 66.53 6.55 33.41
Yago+Syn,, (CaExPF) 8.43 66.96 6.37 32.63
Yago+Syns, (CaExPF) 8.27 67.54 6.80 34.36
TAKG (CaExPF) 6.12* 61.01* 4.44* 24.06*

Two-tailed t-test is done for paired data. * indicates p-value < 0.01 and f indicates p-value
<0.05.

For per-screen revenue prediction, our method still outperforms the metadata features and
the reduction of prediction error is significant on all metrics. CaExPF can even beat the
combination of the two. It again shows that the knowledge graph-based features are effective
and sufficient, and the incorporation with elaborately-designed features does not boost the
prediction accuracy but even make it worse. Besides, manual exploration of meta features
is usually expensive, and it is infeasible to come up with all possibly helpful features in

advance. Our knowledge graph-based method can automatically detect effective features
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Table 7.7: Analysis of each step in the filtering strategy

Weekend revenue

Per-screen revenue

feature MAE ($M) SMAPE (%) | MAE (SK) SMADE (%)
(Gain) (Gain) (Gain) (Gain)

All CaExDF features | .62 69.06 6.71 33.07
. 6.85 63.95 4.98 28.87

Ist-round filtering (-2.77%) (-5.11%) (-1.73%) (-5.10%)
. 6.47 61.77 4.62 25.91

2nd-round filtering | 34 (-2.18%) | (-0.361)  (-2.96%)

Linear regression without regularization is used. One-tailed t-test is performed for the
gain of the performance. * indicates p-value < 0.01 and t indicates p-value < 0.05

Table 7.8: Performance of our method v.s. metadata features with linear regres-

sion
feature Weekend revenue Per-screen revenue
MAE($M) SMAPE (%) | MAE ($K) SMAPE (%)
meta 6.11 61.41 6.85 38.76
TAKG (CaExpF) 6.47 61.77 4.62%* 25.91%
meta & TAKG (CaExpF) 6.11 61.39 6.49 35.19

Two-tailed t-test is done for paired data. In each pair, the first one is the one that
get the best performance, and the second one is any of the others. * indicates p-value
< 0.01 for all tests and t indicates p-value < 0.05 for all tests.

Table 7.9: Performance of our method v.s. metadata features with elastic net

foature Weekend revenue Per-screen revenue
MAE($M) SMAPE (%) | MAE ($K) SMAPE (%)

meta 5.62 64.81 6.43 32.74

TAKG (CaExpF) 6.16 61.59* 4.40* 23.58*

meta & TAKG (CaExpF) 5.18%* 63.01 4.50 24.88

Two-tailed t-test is done for paired data. In each pair, the first one is the one that
get the best performance, and the second one is any of the others. * indicates p-value
< 0.01 for all tests and t indicates p-value < 0.05 for all tests.

that are both interpretable and generalizable.
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Impact of the knowledge graph

Our main idea is to utilize the background knowledge provided by knowledge graph to
benefit text-based prediction, which boils down to represent documents by knowledge graph-
based features such as CaExPFs. The quality of the knowledge graph-based features not
only depends on how the filtering strategy works (as discussed in Sectoin 6.4.1), but is
also impacted by the knowledge graph itself. If the background knowledge provided by
the knowledge graph is not adequate, it is hard to get sufficient high-quality knowledge
graph-based features and the performance will be hurt.

To see how the knowledge graph influences the prediction task, we construct multiple
versions of knowledge graph by randomly sampling entities along with their relations with
the central entities. Different versions of knowledge graph can be constructed by varying
the proportion of the sampling. Linear regression without regularization is used in order
to keep all the knowledge graph-based features that are extracted based on the knowledge
graph. The performance of the variations of task-aware knowledge graph can be found in
Figure 7.1.

As the sampling is done in a random way, the quality of the knowledge graph is not
necessarily higher when using larger proportion. Some variations of the original knowledge
graph may contain more useful entities or relations by accident. Thus, we can observe small
oscillation in all the curves. But the overall trend is still clear — with more entities and
relations contained in the knowledge graph, the performance gets better. It indicates that
the background knowledge provided by the knowledge graph plays an important role in
the task. The knowledge graph-based features work better with more adequate background
knowledge, meaning that we can expect the proposed method to become even more powerful
as larger knowledge graphs of higher quality become available in the future (e.g., due to the

availability of better natural language processing techniques).

7.4.3 Case study of context-aware explanatory path-based features

Our method not only brings in the existing background knowledge to solve the problem
but also can tell us some interesting new underlying knowledge that can only be discovered
in the data. To give an insight into how the context-aware explanatory path-based helps to
explore the correlation between text and response, we show some examples of top features in
Table 7.10. We find “(a series),(SELF'),(in)” is among the top features, which implies that
whether a movie belongs to a movie series is helpful information for the revenue prediction.

Besides, whether a movie is adapted from a graphic novel or a comic-book is correlated
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Figure 7.1: Performance of variations of KG

Table 7.10: Examples of top features

Weekend revenue

‘ Per-screen Revenue

(it ),( DirectedBy),(spike)
a series),(SELF') (in)

(first-timer), ( DirectedBy),(to )
comic-book movie),(SELF') ()

(
(like all of ),( WittenBy),(films)
{

(
(toronto film festival),(SELF') ()
),{ DirectedBy),{charms) {

SELF),{graphic novel) ()

to the box office performance as well. From the above three features, we can learn that
if the revenue performance will be influenced by the fact that people are familiar with the
background story and the fans are looking forward to watching the movie. Features like
“(toronto film festival),(SELF'),()” implies that festival is also an important factor. People’s
impression of the director, e.g., whether the director is a first-timer or whether the director
is charming, is also a useful feature. Although a deeper exploration of this line is out of
the scope for this thesis, it is clear that the proposed context-aware explanatory path-based
features also provide us a generally powerful way for potential discovery of “causal factors”

that have impact on the target (response) variable.

7.4.4 Discussion of mixed effects model

Mixed effects model is a powerful and flexible statistical tool that allows for capturing
correlations between response variable and potential predictor variables. In our case, mixed
effects model promotes features with strong predictive ability from both global and local

view. Features that are globally effective for diverse central entities are selected by the
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method proposed in Section 7.3, finally leading to a further improvement of prediction ac-
curacy on the top of the first rounding filtering. T-statistics is not normalized and the best
cut-off value may vary a lot for different tasks. However, the filtering algorithm is much
less sensitive to the value of deterministic impact measure (6; in Equation 7.7), as shown in
Figure 7.2. Generally, the prediction error will be raised when the cut-off value is too small
due to ineffective filtering of noise, while high cut-off value also hurts the overall performance

because of aggressive pruning which misses out many good features.
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Figure 7.2: Sensitivity analysis of deterministic impact

Mixed effects model also enables us to have a deeper understanding of the correlation
between the features and the response at a finer granularity. As in the example of movie
revenue prediction (see Table 7.8 and Table 7.9), some features may be more effective for a
certain genre than for the others. For example, the feature “(),(SELF'),(comic masterpieces
)" contributes to romance movies more than to comedies. “(first-time ),{ DirectedBy),{with)”
would be a positive factor for crime movies compare to other genres. When the movie is
adapted from other works such as TV shows, it is easier for action to gained high box-office.

To the best of our knowledge, our work is the first to introduce mixed effects model for
feature selection. Mixed effects model is a promising tool to make exploratory analysis of
data. With mixed effects model, we can dig into the effect of features at diverse level simul-
taneously in a more principal way, which may also benefit some downstreaming applications.
For example, if we want to pay particular attention to dramas and comedies, we can quickly
retrieve high-quality features by ranking them based on the random effects for the corre-
sponding genre. It can also tell us about the interaction between different factors, such as

how the release date influence certain genre of movies (if genre and release date are both
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Table 7.11: Examples of random effects for features (weekend revenue prediction)

Feature \ Genre Random effect

romance  1075027.72
(),(SELF'),(comic masterpieces ) | comedy 130050.43

horror -1205078.15

crime 2933199.78
(first-time ),( DirectedBy),(with) | drama -63975.22

horror -2869224.56

action 16146903.11
horror 1655160.55

drama -3743380.12
(film version of the ),(SELF),() | crime -1301023.16
comedy -8400953.53
romance  -1301859.03
adventure -3054847.82

used as random factors).

7.4.5 Summary

Text-based prediction has widespread applications especially for optimization of decision
making. Since the target variable to be predicted is generally not directly mentioned in the
text data, one of the most important challenges is how to bridge the semantic gap between
the surface text content and the target variable. Overall, our experimental results clearly
demonstrate that knowledge graph can be exploited to bridge the semantic gap effectively
in two movie revenue prediction tasks, leading to significantly better prediction results than
all the baseline methods that we experimented with.

The performance of using only knowledge graph-based features is also comparable to or
sometimes even better than the manually-made features. Further analysis shows that the
benefits of our method come from two aspects — making use of knowledge graph and filtering
the feature in a data-driven way, which is a good sign that our knowledge graph-based
method is promising to discover the underlying correlation between text input and response
even when it looks weak to human beings. A case study further illustrates that with the
proposed knowledge graph-based features, predictive modeling can also reveal interesting
interpretable features that can help explain the changes of the response variable, suggesting
its great potential as a tool for discovering and understanding causal factors that impact
any interesting variable by mining text data.

Although our experiments were done on movie revenue prediction tasks, the proposed
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approaches are completely general and can be easily applied to any entity-centric prediction
problems and can be combined with any specific regression model to support a wide range of
applications in many different domains. Further exploration of all these possibilities would
be very interesting and promising future directions. Another interesting future research
direction is to explore the potential of using the knowledge graph in combination with the
proposed two-stage filtering algorithm to analyze causal factors behind the variation of target

variables.
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CHAPTER 8: SUMMARY

Text-based prediction has widespread applications especially for optimization of decision
making. Since the target variable to be predicted is generally not directly mentioned in the
text data, one of the most important challenges is how to bridge the semantic gap between
the surface text content and the target variable. In this thesis, we propose to bridge this
gap by exploiting a knowledge graph which is nowadays increasingly available in the public
domain. Focusing on entity-centric tasks where the goal is to predict the attribute value of
an entity, we propose a novel general algorithm for constructing knowledge-aware knowledge
graph; study the knowledge graph-based feature representation; and introduce a two-stage
filtering method to further reduce noisy features.

Knowledge graph can be leveraged to bridge the semantic gap and capture the correlation
between the text and the response variables in general, especially when the response variables
are not directly derivable from the text. However, existing applications of knowledge graphs
use a static pre-constructed knowledge graph that does not make self-improvement during its
application in real tasks, causing inefficiency, introduction of noise, and insufficient coverage
of task-specific knowledge. We addressed this limitation by proposing to construct a task-
aware knowledge graph, which bridges the gap between the construction and the application
of knowledge graph, enabling dynamic optimization and adaptation of a knowledge graph
in a task-specific manner.

Conceptually, if one could build a truly complete “universal knowledge graph” that would
cover all the human knowledge, the task-aware knowledge graph would be simply a subgraph
of such a universal knowledge graph that only contains relevant knowledge needed in a task.
However, it is clearly impossible to build such a knowledge graph in practice, and the best
we could achieve is realistically a general knowledge graph inevitably incomplete for specific
tasks. The main idea of our proposed construction algorithms is to construct a task-aware
knowledge graph based on a pre-constructed general knowledge graph adaptively for a real
application task and learn new knowledge in a task-dependent way. The new knowledge
learned from the task can enrich the overall cumulation of knowledge in a general knowledge
graph in turn, and it can be collected through different learning processes on different data
sets. For example, the aliases we extracted in our experiments for movie review classification
task can be used to enrich the “synonym” relation in another general knowledge graph. If
we have more data sets for other similar problems, the knowledge learned in the expansion
process can also be included, leading to continuous growth of the general knowledge graph

(at least conceptually).
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The constructed task-aware knowledge graph captures the knowledge requirements and
can provide better support for the task. As we have experimentally shown in the movie
classification and revenue prediction evaluation, the task-aware knowledge can indeed help
to improve the performance of the task significantly. The gain mainly comes from a better
selection of features. However, it is different from the traditional feature selection techniques.
Standard feature selection techniques can help to alleviate the overfitting problem, but we
only observe slight improvement. This is because feature selection is data-independent and
it fails when most of the features are noise such as in the case of movie classification. Task-
aware knowledge graph solves the problem in a task-dependent way by leveraging relevant
task knowledge to ensure generalization of the features and improve robustness to overfitting,
making it possible for the features to be reused on arbitrary data sets for the same task.

Knowledge graph is an important resource to support inference as statistical learning
reaches its limit. The proposed task-aware knowledge graph opens up a new way of mutual
enhancing the construction and the application of knowledge graph. The instantiation is a
good example of how the framework can be used in a special kind of text analysis tasks, but
the framework is clearly not limited to entity-centric classification or entity-centric regression
problems. An important future direction is to further explore the framework on other types
of applications and make the further refinement of the framework, especially for text-based
prediction tasks where the target variable to be predicted tends to be only remotely related
to the text content, thus requiring knowledge graphs to help bridge the gap.

Evaluation results on two examples of entity-centric applications show that the idea of
exploiting knowledge graph for text-based prediction is very powerful and that the task-
aware knowledge graph is quite effective, outperforming all the baselines that use text-level
features significantly and delivering promising results as compared with human-generated
metadata features or human annotation performance. Our study demonstrates the effec-
tiveness of different types of knowledge graph-based features on multiple applications. It
turns out that the context information is important and the explanatory path can help to
capture the correlation between the related entities mentioned in the text content and the
target variables. The proposed method can also effectively reveal meaningful features that
can potentially explain the variation of the target variable, making the approach also a po-
tentially powerful tool for helping make causal discoveries by leveraging knowledge graph
and text-based predictive modeling.

Although our experiments were done on movie classification and revenue prediction tasks,
the proposed approaches are completely general and can be easily applied to any entity-
centric prediction problems and can be combined with any specific regression model to

support a wide range of applications in many different domains. Further exploration of
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all these possibilities would be very interesting and promising future directions. Another
interesting future research direction is to explore the potential of using the knowledge graph
in combination with the proposed two-stage filtering algorithm to analyze causal factors

behind the variation of target variables.
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