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ABSTRACT

This thesis focuses on solving the K-means clustering problem approximately

with side information provided by crowdsourcing. Both binary same-cluster

oracle and general crowdsourcing framework are considered. It can be shown

that, under some mild assumptions on the smallest cluster size, one can ob-

tain a (1 + ε)-approximation for the optimal potential with probability at

least 1− δ, where ε > 0 and δ ∈ (0, 1), using an expected number of O(K
3

εδ
)

noiseless same-cluster queries and comparison-based clustering of complexity

O(ndK + K3

εδ
); here, n denotes the number of points and d the dimension

of space. Compared to a handful of other known approaches that perform

importance sampling to account for small cluster sizes, the proposed query

technique reduces the number of queries by a factor of roughly O(K
6

ε3
), at

the cost of possibly missing very small clusters. This setting is extended to

the case where some queries to the oracle produce erroneous information, and

where certain points, termed outliers, do not belong to any clusters. Incorpo-

rating state-of-the-art results in crowdsourcing can further improve the per-

formance of the algorithm. Note that the proof techniques used in this thesis

differ from previous methods used for K-means clustering analysis, as they

rely on estimating the sizes of the clusters and the number of points needed

for accurate centroid estimation and subsequent nontrivial generalizations of

the double Dixie cup problem. The performances of proposed algorithms are

illustrated on both synthetic and real datasets, including MNIST and CIFAR

10.
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CHAPTER 1

INTRODUCTION

1.1 Background and Related Work

K-means clustering is one of the most studied unsupervised learning prob-

lems [1, 2, 3], with a rich application domain spanning areas as diverse as

lossy source coding and quantization [4], image segmentation [5] and com-

munity detection [3]. The core question in K-means clustering is to find a

set of K centroids that minimizes the K-means potential function, equal to

the sum of the squared distances of the points from their closest centroids.

An optimal set of centroids can be used to partition the points into clusters

by simply assigning each point to its closest centroid.

It is well established that the K-means clustering problem is NP-hard

even for the case when K = 2, or when the points lie in a two-dimensional

Euclidean space [6]. Moreover, finding a (1 + ε)-approximation for 0 < ε < 1

remains NP-hard, unless further assumptions are made on the point and

cluster structures [7, 8]. Among state-of-the-art K-means approximation

methods are the algorithms of Kanungo et al. [9] and Ahmadian et al. [10].

There also exist many heuristic algorithms for solving the problem, including

Lloyd’s algorithm [2] and Hartigan’s method [1].

An interesting new direction in K-means clustering was recently initiated

by Ashtiani et al. [11] who proposed to examine the effects of side-information

on the complexity of the K-means algorithm. In their semi-supervised active

clustering framework, one is allowed to query an oracle whether two points

from the dataset belong to the same optimal cluster. The oracle answer

to queries involving any pair of points is assumed to be consistent with a

unique optimal solution, and it takes the form “same (cluster)” and “differ-

ent (cluster)”. The method of Ashtiani et al. [11] operates on special clus-

ter structures which satisfy the so-called γ-margin assumption with γ > 1,
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which asserts that every point is at least a γ-factor closer to its correspond-

ing centroid than any other centroid. The oracle queries are noiseless and

O(K log n+K2 logK+log( 1
δ

)

(γ−1)4
) same-cluster queries on n points are needed to en-

sure that with probability at least 1− δ, the obtained partition is the sought

optimal solution. Ailon et al. [12] proposed to dispose of the γ-margin as-

sumption and exact clustering requirements, and addressed the issue of noisy

same-cluster queries in the context of the K-means++ algorithm. In their

framework, each pairwise query may return the wrong answer with some pre-

scribed probability, but repeated queries on the same pair of points always

produce the same answers. Given that no constraints on the cluster sizes and

distances of points are made, one is required to perform elaborate nonuni-

form probabilistic sampling and subsequent selection of points that represent

uniform samples in the preselected pool. This two-layer sampling procedure

results in a large number of noiseless and noisy queries - in the former case,

with running time of the order of O(ndK
9

ε4
) - and may hence be impractical

whenever the number of clusters is large, the smallest cluster size is bounded

away from one, and the queries are costly and available only for a small set

of pairs of points. Further extensions of the problem include the work of

Gamlath et al. [13] that provides a framework for ensuring small clustering

error probabilities via PAC (probably approximately correct) learning, and

the weak-oracle analysis of Kim and Ghosh which allows for “do not know”

answers [14].

In practice this required side information can come from online crowd-

sourcing services like Amazon Mechanical Turk. However, all the oracles

mentioned above are binary, which involve only two samples in each event

of query (denoted as same-cluster queries in later context). A more natural

setting in crowdsourcing assumes that there are w workers, s samples and

K classes (denoted as crowdsourcing queries in later context). Each worker

labels a sample as one of K categories directly, and the query complexity

is measured by w × s. Note that the labels collected by crowdsourcing can

also be of low quality because workers are often non-experts and sometimes

unreliable. Dawid and Skene [15] developed a maximum likelihood approach

based on the EM algorithm to infer true labels from noisy but redundant

worker labels. Furthermore, Zhang et al. [16] proposed a provably optimal

spectral method for initialization of the EM algorithm. They showed that

true labels for each sample can be exactly recovered with high probability
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when w and s satisfy some mild conditions.

1.2 Contributions

Unlike other semi-supervised approaches proposed for K-means clustering,

we address the problem in the natural setting where the size of the smallest

cluster is bounded from below by a small value dependent on the number of

clusters K and the approximation constant ε, and where the points contain

outliers. Hence, we do not require that the clusters satisfy the γ-margin

property, nor do we insist on being able to deal with very small clusters that

seldom appear in practice. Bounding the smallest cluster size is a preva-

lent analytical practice in clustering, community detection and learning on

graphs [17, 18, 19]. Often, K-means clustering methods are actually con-

strained to avoid solutions that produce empty or small clusters as these are

considered to be artifacts or consequences of poor local minima solutions [20].

Let α = ( n
Ksmin

), 1 ≤ α ≤ n
K

, denote the cluster size imbalance, where smin

equals the size of the smallest cluster in the optimal clustering; when α = 1,

all clusters are of the same size n
K

. Furthermore, when the upper bound is

met, the size of the smallest cluster equals one.

As for outliers, in same-cluster queries they are defined as points at “large”

distance from all clusters, for which all queries return negative answers and

hence add additional uncertainty regarding point placements; in the setting

of generalized crowdsourcing they are defined as samples that are not labelled

by workers, which may happen frequently in practice.

Our main results are summarized below.

Theorem 1.1 (Query complexity with noiseless same-cluster queries). As-

sume that one is given parameters ε ∈ (0, 1), δ ∈ (0, 1) and K, and n points

in Rd. Furthermore, assume that the unique optimal clustering has imbal-

ance α, where α ∈ [1, n
K

]. Then, there exists a same-cluster query algorithm

with an expected number of queries O
(
αK3

εδ

)
that with probability at least

1−δ outputs a set of cluster centers whose corresponding clustering potential

function is within a multiplicative factor (1+ε) of the optimal. The expected

running time of the query-based clustering algorithm equals O(Kdn+αK
3

εδ
).
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Theorem 1.2 (Query complexity with noisy same-cluster queries and out-

liers). Assume that one is given parameters ε ∈ (0, 1), δ ∈ (0, 1) and K, and

n points in Rd. Let po be the fraction of outliers in the dataset. Furthermore,

assume that the unique optimal clustering without outliers has imbalance α,

where α ∈ [1, n
K

], and that the oracle may return an erroneous answer with

probability pe < 1/2. When presented with a query involving at least one

outlier point, the oracle always produces the answer “different (cluster)”.

Then, there exists a noisy same-cluster query algorithm that requires

O

(
αK4

δε (1− po)(1− 2pe)8
log2 αK2

δ (2pe − 1)4 (1− po)

)
queries and with probability at least 1 − δ outputs clusters whose corre-

sponding clustering potential function is within (1 + ε) of the optimal. The

expected complete running time of the noisy clustering algorithm is bounded

from above by O
(
Kdn+ αK6

δε(1−po)(2pe−1)10
log3 αK2

δε(2pe−1)4(1−po)

)
, provided that

the outliers satisfy a mild separability constraint (see Chapter 2 for more

details).

Theorem 1.3 (Query complexity with noisy crowdsourcing queries). As-

sume that one is given parameters ε ∈ (0, 1), δ ∈ (0, 1) and K, and n points

in Rd. Let pe ∈ [ρ, 1−ρ] be the probability that a worker mislabels a sample.

Furthermore, assume that the unique optimal clustering has imbalance α,

where α ∈ [1, n
K

]. Let κ =
∣∣1− pe − 1

K

∣∣ , D̄ = K−1−Kpe
K−1

log (K−1)(1−pe)
pe

. Then,

there exists a crowdsourcing algorithm with w workers and s items sampled

uniformly at random (without replacement) from whole dataset satisfying

w = Ω

(
log(1/ρ) log(Ks/δ) + logws

D̄

)
s = Ω

(
logw/

√
δ

κ6 min{κ2, ρ2, (ρD̄)2}
+
αK2

δε
+ αK log

K

δ

)
,

which can output a set of cluster centers whose corresponding clustering

potential function is within a multiplicative factor (1+ ε) of the optimal with

probability at least 1− δ. The required query complexity is w × s.

Note that Theorem 1.1 gives performance guarantees in expectation. Nev-

ertheless, a straightforward application of Markov’s inequality and the union

bound allow us to also bound, with high probability, the query complexity.
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Also Theorem 1.3 considers the case without outliers for simplicity. How-

ever, the algorithm can be easily adapted to cases with outliers by proper

normalization [16].

In noiseless binary oracle setting, we conclude that using O
(
αK3

δε

)
queries,

with probability at least 1−δ our clustering produces a (1+ε)-approximation.

For example, by choosing δ = 0.01, we guarantee that, with probability

at least 0.99, the query complexity of our noiseless method equals O(αK
3

ε
).

Compared to the result of Ailon et al. [12], as long as smin ≥ nε3

K7 , our method

is more efficient than the two-level sampling procedure of [12]. The efficiency

gap increases with smin. As an illustrative example, let n = 106, K = 10

and ε = 0.1. Then, the minimum cluster size constraint only requires the

smallest cluster to contain at least one point (since nε3

K7 = 10−4 < 1).

Our proof techniques rely on novel generalizations of the double Dixie cup

problem [21, 22]. Similarly to Ailon et al. [12], we make use of Lemma 2

from [23] described in Chapter 2. But unlike the former approach, which

first performs K-means++ sampling and then subsampling that meets the

conditions of Lemma 2, we perform a one-pass sampling. Given the smallest

cluster size constraint, it is possible to estimate during the query phase the

number of points one needs to collect from each cluster so as to ensure a

(1 + ε)-approximation for all the estimated centroid. With this information

at hand, queries are performed until each cluster (representing a coupon

type) contains sufficiently many points (coupons). The double Dixie cup

problem pertains to the same setting, and asks for the smallest number of

coupons one has to purchase in order to collect s complete sets of coupons.

The main technical difficulty arises from the fact that the number of coupons

required is represented by the expected value of the maximum order statistics

of random variables distributed according to the Erlang distribution [22], for

which asymptotic analysis is hard when the number of types of coupons is

not a constant. In our setting, the number of types depends on K, and the

number of coupons purchased cannot exceed n. To address this issue, we use

Poissonization methods [24] and concentration inequalities. Detailed proofs

are relegated to Appendix A.

For the case of noisy same-cluster queries and outliers, our solution con-

sists of two steps. In the first step, we invoke the results of Mazumdar

and Saha [25, 26] that describe how to reconstruct all clusters of sufficiently

large sizes when using similarity matrices of stochastic block model [27] along
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with same-cluster queries. The underlying modeling assumption is that every

query can be wrong independently from all other queries with probability p,

and that we cannot repeatedly ask the same query and apply majority vot-

ing to decrease the error probability, as each query response is fixed. In the

second step, we simply compute the cluster centers via averaging.

In the given context, we only need to retrieve a fraction of the cluster points

correctly. Note that the minimum cluster size our algorithm can handle is

constrained both in terms of sampling complexity of the double Dixie cup as

well as in terms of the cluster sizes that [26] can handle. Additional issues

arise when considering outliers, in which case we assume the oracle always

returns a negative answer (“different clusters”). Note that if the first point

queried is an outlier, the seeding procedure may fail as an answer of the form

“different clusters” may cause outliers to be placed into valid clusters. To

mitigate this problem, we propose a simple search and comparison scheme

which ensures that the first point assigned to any cluster is not an outlier.

For crowdsourcing setting, our algorithm can also be divided into two parts.

Firstly, we use labels inferred from crowdsourcing data to fill in each cluster

with the least number we need. Then we can output centers of already classi-

fied samples as estimates of true centers. Since the results in [16] shows that

one can recover all true labels for sampled data with high probability under

some mild assumptions, we use it as an initialization step of our algorithm.

We experimentally tested the proposed algorithms on synthetic and real

datasets in terms of the approximation accuracy for the potential func-

tion, query complexity and the misclassification ratio, equal to the ratio

of the number of misclassified data points and the total number of points.

Note that misclassification errors arise as the centroids are only estimates

of the true centroids, and placements of points according to closest cen-

troids may be wrong. Synthetic datasets are generated via Gaussian mixture

models, while the real world datasets pertain to image classification with

crowdsourced query answers, including the MNIST [28] and CIFAR-10 [29]

datasets. The results show order-of-magnitude performance improvements

compared to other known techniques.

A few comments are in order. The models studied in [11, 26] are related

to our work through the use of query models for improving clustering. Nev-

ertheless, Ashtiani et al. [11] only consider ground truth clusters satisfying

the γ-margin assumption, and K-means clustering with perfect (noiseless)
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queries. The focus of the work by Mazumdar et al. [26] is on the stochastic

block model, and although it allows for noisy queries it does not address the

K-means problem directly. The two models most closely related to ours are

Ailon et al. [12] and Kim and Ghosh [14]. Ailon et al. [12] focus on develop-

ing approximate K-means algorithms with noisy same-cluster queries. The

three main differences between this line of work and ours are that we impose

mild smallest cluster size constraints which significantly reduce the query

complexity in both noiseless and noisy regimes, that we introduce outliers

into our analysis, and that our proofs are based on a variation of the double

Dixie cup problem rather than standard theoretical computer science analy-

ses that use notions of covered and uncovered clusters. The work of Kim and

Ghosh [14] is related to ours only insofar as it allows for query responses of

the form “do not know” which can also be used for dealing with outliers.

This work about Query K-means clustering was previously published in

NeurIPS 2018 [30] and is adapted here with permission.
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CHAPTER 2

PROBLEM FORMULATION

We start with a formal definition of the K-means problem. Given a set of n

points X ⊂ Rd, and the number of clusters K, the K-means problem asks

for finding a set of points C = {c1, ..., cK} ⊂ Rd that minimizes the following

objective function

φ(X ; C) =
∑
x∈X

min
c∈C
||x− c||2,

where || · || denotes the L2 norm. Throughout the thesis, it is assumed

that the optimal solution is unique, and we denote it by C∗ = {c∗1, ..., c∗K}.
The set of centroids C∗ induces an optimal partition X =

⋃K
i=1 C∗i , where

∀i ∈ [K], C∗i = {x ∈ X : ||x − c∗i || ≤ ||x − c∗j || ∀j 6= i}. We use φ∗K(X ) to

denote the optimal value of the objective function.

As already stated, the K-means clustering problem is NP-hard, and hard

to approximate within a (1 + ε) factor, for 0 < ε < 1. An important question

in the approximate clustering setting was addressed by Inaba et al. [23], who

showed how many points from a set have to be sampled uniformly at random

to guarantee that, for any ε > 0 and with high probability, the centroid of

the set can be estimated within a multiplicative (1+ε)-term. This result was

used by Ailon et al. [12] in the second (sub)sampling procedure. In our work,

we make use of the same result in order to determine the smallest number

of points (coupons) one needs to collect for each cluster (coupon type). For

completeness, the result is stated below.

Lemma 2.1 (Centroid lemma, Lemma 2 of [23]). Let A be a set of points

obtained by sampling with replacement m points independently from each

other, uniformly at random, from a point set S. Then, for any δ > 0, one

has

P (φ(S; c(A)) ≤ (1 +
1

δm
)φ∗(S)) ≥ 1− δ,

where c(A) stands for the centroid of A.
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In our proof, the Centroid lemma is used in conjunction with a generaliza-

tion of the double Dixie cup problem to establish the stated query complexity

results in the noiseless and noisy setting. The double Dixie cup problem is an

extension of the classical coupon collector problem in which the collector is

required to collect m ≥ 2 sets of coupons. While the classical coupon collec-

tor problem may be analyzed using elementary probabilistic tools, the double

Dixie cup problem solution requires using generating functions and complex

analysis techniques. For the most basic incarnation of the problem where

each coupon type is equally likely and each coupon needs to be collected at

least m times, where m is a constant, Newman and Shepp [21] showed that

one needs to purchase an average of O(K(logK+(m−1) log logK)) coupons.

This setting is inadequate for our analysis, as our coupons represent points

from different clusters that have different sizes, and hence give rise to different

coupon (cluster point) probabilities. Furthermore, in our analysis we require

m = K
δε

, which scales with K and hence is harder to analyze. The start-

ing point of our generalization of the nonuniform probability double Dixie

cup problem is the work of Doumas and Papanicolaou [22]. We extend the

Poissonization argument and perform a careful analysis of the expectation of

the maximum order statistics of independent random variables distributed

according to the Erlang distribution. All technical details are delegated to

Appendix A.

Often, one seeks the K-means solutions in a setting where the cluster

points X satisfy certain separability and cluster size constraints, such as

the γ-margin and the bounded minimum cluster size constraint, respectively.

Both are formally defined below.

Definition 2.1 (The γ-margin property [11]). Let γ > 1 be a real number.

We say that X satisfies the γ-margin property if ∀ i 6= j ∈ [K], x ∈ C∗i , y ∈
C∗j , one has

γ||x− c∗i || < ||y − c∗i ||.

To describe the cluster size constraint, we now formally introduce the

previously mentioned notion of α-imbalance.

Definition 2.2 (The α-imbalance property). Let α ∈ [1, n/K] be a real

number. We say that the point set X satisfies the α-imbalance property if

α = n
K smin

.
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To avoid complicated and costly two-level queries, we impose an α-imbalance

constraint on the optimal clustering, excluding outliers.

For the set of outliers, we use a milder version of the γ-margin constraint,

described as follows. Assume that X = Xt ∪ Xo, where Xt and Xo are the

nonintersecting sets of true cluster points and outliers, respectively. Outliers

are formally defined as follows.

Definition 2.3. The set Xo consists of points that satisfy the Γ(ξ)-separation

property, defined as

∀x ∈ Xo, ∀ i ∈ [K], ||x− c∗i || > max
y∈C∗i
||y − c∗i ||+

√
ξ φ∗(C∗i )
|C∗i |

≥ Γ(ξ).

Here, Γ(ξ) stands for the minimum of the lower bounds obtained for all values

of i ∈ [K].

This is a reasonable modeling assumption, as outliers are commonly de-

fined as points that lie in “outlier clusters” that are well-separated from all

“regular” clusters. The definition is reminiscent of the γ-margin assumption,

but adapted to outliers. Note that the second term serves as a scaled proxy

for the empirical standard deviation of the average distance between cluster

points and their centroids. In this extended setting, the objective is to mini-

mize the function φ(Xt,C). Furthermore, with a slight abuse of notation, we

use C∗1 , ..., C∗K to denote the optimal partition for both Xt and X . It should

be clear from the context which clusters are referred to.

Side information for the K-means problem is provided by a query oracle

O such that

∀x1, x2 ∈ X , O(x1, x2) =

0, if ∃i ∈ [K] s.t. x1 ∈ C∗i , x2 ∈ C∗i ;

1, otherwise.
(2.1)

Query complexity is measured in terms of the number of times that an algo-

rithm requests access to the oracle. The goal is to devise query algorithms

with query complexity as small as possible. The noisy oracle On may be

viewed as the response of a binary symmetry channel with parameter pe

to an input produced by a noiseless oracle O. Equivalently, ∀x1, x2 ∈ X ,

P (On(x1, x2) = O(x1, x2)) = 1 − pe, and P (On(x1, x2) 6= O(x1, x2)) = pe,

independently from other queries. Each pair (x1, x2) is queried only once,
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and the noisy oracle On always produces the same answer for the same query.

When presented with at least one outlier point in the pair (x1, x2), the noise-

less oracle always returns O(x1, x2) = 1, while the noisy oracle On may flip

the answer with probability pe. The problem of identifying outliers placed

in regular clusters is resolved by invoking the algorithm of [26], which places

outliers into small clusters that are expurgated from the list of valid clusters.

In the setting of crowdsourcing, side information for K-means problem

comes from workers instead of a given oracle. Suppose that there are w

workers, s items and K classes. The true label yj of item j follows some

underlying distribution which is unknown. Denote zij ∈ RK as the label that

worker i assigns to item j, which is a one-hot vector. Let πi be the probability

that worker i is able to classify an item into one of those K categories. If not,

zij = 0 is considered as an outlier. Workers may also make mistakes during

the process. It is assumed that the probability µilc that worker i labels an

item in class l as class c is independent of any particular samples. Define

Ci = [µilc]l∈[K],c∈[K] ∈ RK×K as the confusion matrix of worker i. For fair

comparison with the query oracle mentioned above, we considered a special

case, where µilc is a constant for any l 6= c and Ci’s are the same for all i ∈ [w].

In this case, if we define pe as the probability that a worker mislabel an item,

all the diagonal elements of Ci are 1 − pe and the other elements are 1−pe
K−1

.

Note that this is a simplified version of the one-coin model in crowdsourcing,

which can be solved nearly optimally by the algorithm of [16].
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CHAPTER 3

ALGORITHMIC SOLUTIONS

In this chapter, we present three algorithms for different settings. In the

process, we sketch some of the proofs establishing the theoretical performance

guarantees of our methods.

3.1 Approximate Noiseless Same-Cluster Query

K-means Clustering

Algorithm 1: Approximate Noiseless Same-Cluster Query K-
means Clustering

Input: A set of n points X , number of clusters K, an oracle O
Output: Estimates of the centers C
Initialization: t = 1, Ci = ∅, Ri = ∅, ∀i ∈ [K].
Uniformly at random sample a point x from X , C1 ← C1 ∪ {x},
R1 ← x.

while mini∈[K] |Ci| < K
δε

do
Uniformly at random sample with replacement a point x from X .
if ∀i ∈ [t], O(Ri, x) = 0 then
Ci ← Ci ∪ {x}.

else
t← t+ 1, Ct ← {x}, Rt ← x.

end

end
for k = 1 to K do

Let ck,i denote the ith element added to Ck, µk = 1
|Ck|
∑Sk

i=1 ck,i,

C← C ∪ {µk}.
end

The noiseless same-cluster Query K-means algorithm is conceptually sim-

ple and it consists of two steps. In the first step, we sample and query pairs
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of points until we collect at least K
δε

points for each of the K clusters. In

the second step, we compute the centroids of clusters by using the queried

and classified points. The number of points to be collected is dictated by

the size of the smallest cluster and the double Dixie cup coupon collector’s

requirements derived in Appendix A, and summarized below.

Lemma 3.1. Assume that there are K types of coupons and that the small-

est probability of a coupon type pmin is lower bounded by 1
αK

, with α ∈ [1, n
K

].

Then, on average, one needs to sample at most

2αK(logK +m log 2)

coupons in order to guarantee the presence of at least m complete sets, where

m = O(K).

Note that in our analysis, we require that m = K
δε
, for some ε, δ > 0,

while classical coupon collection and Dixie cup results are restricted to us-

ing constant m [22, 21]. In the latter case, the number of samples equals

O(K(logK + (m− 1) log logK)), which significantly differs from our bound.

Two remarks are in order. First, one may modify Algorithm 1 to enforce a

stopping criterion for the sampling procedure. Furthermore, when perform-

ing pairwise oracle queries, we assumed that in the worst case, one needs

to perform K queries, one for each cluster. Clearly, one may significantly

reduce the query complexity by choosing, at each query time, to first probe

the clusters with estimated centroids closest to the queried point.

3.2 Approximate Noisy Same-Cluster Query K-means

Clustering with Outliers

The steps of the algorithm for approximate same-cluster query-based clus-

tering with noisy responses and outliers are listed in Algorithm 2. The gist

of the approach is to assume that outliers create separate clusters that are

filtered out using the noisy-query clustering method of [26]. Unfortunately,

the aforementioned method assumes that sampling is performed without re-

placement, which in our setting requires that we modify the Centroid lemma

to account for sampling points uniformly at random without replacement.

This modification is described in Lemma 3.2.

13



Lemma 3.2 (The Modified Centroid Lemma). Let S be a set of points

obtained by sampling m points uniformly at random without replacement

from a point set A. Then, for any δ > 0, with probability at least 1− δ, one

has

φ(A; c(S)) ≤

(
1 +

1− m−1
|A|−1

δm

)
φ∗1(A) ≤

(
1 +

1

δm

)
φ∗1(A).

Here, c(S) denotes the center of mass center of S, and m ≤ |A|.

Furthermore, the requirement that sampling is performed without replace-

ment gives rise to a new version of the double Dixie cup coupon collection

paradigm in which one is given only a limited supply of coupons of each type,

with the total number of coupons being equal to n. As a result, the number

of points sampled from each cluster without replacement can be captured

by an i.i.d. multivariate hypergeometric random vector with parameters

(n, np1, ..., npK ,m). To establish the query complexity results in this case,

we need not to estimate the expected number of points sampled, but instead

to ensure concentration results for hypergeometric random vectors. This is

straightforward to accomplish, as it is well known that a hypergeometric

random variable may be written as a sum of independent but nonidentically

distributed Bernoulli random variables [31]. Along with tight bounds on the

Kullback–Leibler divergence and Hoeffding’s inequality [32], this leads to the

following bound on the probability of sampling a sufficiently large number of

points from the smallest cluster.

Theorem 3.1. Without loss of generality, assume that p1 ≤ p2 ≤ . . . pK ,

where pi ∈ (0, 1) for all i, and
∑

i pi = 1. Furthermore, assume that during

the query procedure, M points from K nonuniformly sized clusters of sizes

(np1, ..., npK) are sampled uniformly at random, without replacement. De-

note S†i as the number of samples filled in cluster i after this process. Then,

the probability that each cluster is filled with at least Mp1
2

is bounded as

P{minS†i ≥
Mp1

2
} ≥ 1−K exp

(
−Mp1

8

)
. (3.1)

Recall that the oracle treats outliers as points that do not belong to the

optimal clusters, so that in Algorithm 3, outliers are treated as singleton

clusters. In this case, the minimum cluster size requirement from [26] auto-

matically filters out all outliers. Nevertheless, nontrivial changes compared

14



Algorithm 2: Approximate Noisy Same-Cluster Query K-means
Clustering with Outliers

Input: A set of n points X , the number of clusters K, a noisy oracle
On with output error probability pe, a precomputed value
M , and probability po of outliers

Output: Centroids set C
Phase 1: Seed the clusters by running Algorithm 3 for noisy

query-based clustering
Uniformly at random sample M points from X without replacement.
The sampled set equals A.

Run Algorithm 3 on A to obtain a K-partition of A =
⋃K
i=1Ai.

Phase 2: Estimate the centroids
For all i ∈ [K], ci ← c(Ai) where c(Ai) is the center of mass of the
set Ai. C← {c1, ..., cK}.

to the noisy query algorithm derived from [26] are needed, as the presence of

outliers changes the effective number of clusters. How to deal with this issue

is described in Appendix A.

For completeness, we describe Algorithm 3 used in our main routine, and

first proposed in [26]. The parameters and routines used in the algorithm are

as follows: N = 64k2 log(n)
(1−2pe)4

, c = 16
(1−2pe)2

, and T (a) = pea +
6
√
N log(n)

(1−2pe)
, θ(a) =

2pe(1−pe)a+2
√
N log(n), where K is the number of clusters, n is the number

of data points and pe is the error probability. For a weighted graph G(V,E),

we let N+(u) denote all the neighbors of u in V ′ that are connected with u

by a +1 weight edge.

3.3 Approximate Noisy Crowdsourcing Query

K-means Clustering

The steps of the algorithm for approximate crowdsourcing-based Query K-

means clustering are listed in Algorithm 4 which, similarly to Algorithm 2,

uses Algorithm 5 proposed in [16] as the initialization strategy. The perfor-

mance guarantee for Algorithm 4 is shown in Theorem 1.3, and is explained

in Appendix A in more detail.

The parameters and routines used in Algorithm 5 are as follows: for ev-

ery two workers a and b, denote Nab = K−1
K

(∑s
j=1 1(zaj=zbj)

s
− 1

K

)
as their
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Algorithm 3: Clustering with a Noisy Same-Cluster Oracle On
Input : A set of n points V , the number of clusters K, a noisy

oracle On and the error probability parameter pe
Output: All clusters in the set active, i.e., clusters of size at least

Ω( k log(n)
(1−2pe)4

)

The Main Algorithm:
Initialization: Start with an empty graph G′ = (V ′, E ′), with all
vertices in V unassigned. The cluster set active is empty.
Phase 1: Selection of a small subgraph
Add vertices uniformly at random chosen from the unassigned
vertices in V \V ′ to V ′, ensuring that the size of V ′ is N . If there are
not sufficiently many vertices left in V \V ′ to add to V ′, add all of
V \V ′.
Update the weights for G(V ′, E ′) by querying the oracle. For each
pair of vertices (u, v), set w(u, v) = +1 if the answer is “yes” and −1
otherwise.
Phase 2: Active cluster identification
for each pair (u, v) in V ′ and u 6= v do

if |N+(u)| ≥ T (|V ′|) and |N+(v)| ≥ T (|V ′|) and
|N+(u)4N+(v)| ≤ θ(|V ′|) then

Place u, v into the same cluster.

end
Include all clusters formed in this step that have size at least N/k.
Remove all vertices in such clusters from V ′ and any edge incident
on them from E ′.
Phase 3: Growth of the active cluster set
for every unassigned vertex v ∈ V \V ′ do

for every cluster C ∈ active do
Randomly pick c log(n) distinct vertices from C and query v
with them.
if the majority answers are yes then

include v in C.
Break the loop and continue to another unassigned vertex.

end

end
If there are still points in V \V ′, move to Phase 1 to obtain the
remaining clusters.
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Algorithm 4: Approximate Noisy Crowdsourcing Query K-means
Clustering

Input: A set of n points X , the number of clusters K, a noisy
crowdsourcing service with error probability of workers pe,
and precomputed values w and s

Output: Centroids set C
Phase 1: Seed the clusters by running Algorithm 5 for noisy

crowdsourcing label inference
Uniformly at random sample s points from X without replacement.
The sampled set equals A.
Run Algorithm 5 on A with w workers to obtain a K-partition of
A =

⋃K
i=1Ai.

Phase 2: Estimate the centroids
For all i ∈ [K], ci ← c(Ai) where c(Ai) is the center of mass of the
set Ai. C← {c1, ..., cK}.

similarity. And for every worker i, a pair of other workers (ai, bi) is defined

as (ai, bi) = arg max(a,b) {|Nab| : a 6= b 6= i}. Note that original algorithm for

the one-coin model in [16] assumes different error probabilities for different

workers, while in our case the estimate of error probabilities are constrained

to be the same by averaging at each iteration. For consistency with the

notation in [16], we denote pc = 1− pe as the accuracy of workers.
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Algorithm 5: Inferring True Labels from Noisy Crowdsourcing
Queries

Input: The number of clusters K, the number of workers w, the
number of samples s, and observed labels zij ∈ RK for
i ∈ [w] and j ∈ [s]

Output: Predicted labels ŷj for j ∈ [s]
Phase 1: Initialize estimate of pc

Initialize p̂c by p̂c ← 1
w

∑w
i=1

(
1
K

+ sign (Nia1)
√

NiaiNibi
Naibi

)
.

If p̂c <
1
K

, then set p̂c ← 2
K
− p̂c.

Phase 2: Infer sample labels using EM algorithm
Iterate the following two steps until convergence, where q̂jl is the
estimate probability for sample j ∈ [s] belonging to class l ∈ [K]:

q̂jl ∝ exp

(
w∑
i=1

1 (zij = el) log (p̂c) + 1 (zij 6= el) log

(
1− p̂c
K − 1

))
,

p̂c ←
1

w

w∑
i=1

(
← 1

s

s∑
j=1

K∑
l=1

q̂jl1 (zij = el)

)
.

Output ŷj = arg maxl∈[K] {q̂jl} for j ∈ [s].
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CHAPTER 4

EXPERIMENTS

For fair comparison with state-of-the-art Query K-means algorithms, only

results related with same-cluster oracles (Algorithm 1 and 2) are shown in

this chapter.

4.1 Synthetic Data

For our synthetic data experiments, we start by selecting all relevant problem

parameters, the number of clusters K, the cluster imbalance α, the dimension

of the point dataset d, the approximation factor ε and the error tolerance level

δ. We uniformly at random sample K cluster centroids in the hypercube

[0, 5]d – this choice of the centroids allows one to easily control the overlap

between clusters. Then, we generate ni points for each cluster i = 1, . . . , K,

where the values {ni}Ki=1 are chosen so as to satisfy the α-imbalance property

and so that ni ∈ [1000, 6000]. The points in the cluster indexed by i are

obtained by sampling d-dimensional vectors from a Gaussian distribution

N (0, σ2
i I), with I representing the d × d identity matrix, and adding these

Gaussian samples to the corresponding cluster centroid. When generating

outliers, we uniformly at random choose a subset of points of size po × n,

where n is the total number of points to be clustered. Then we adjust the

positions of the points to make sure that they satisfy the Γ(2)-separation

property, described in the previous sections. In the noisy oracle setting, we

assume that the oracle produces the correct answer with probability 1− pe,
for pe ∈

(
0, 1

2

)
.

We evaluated our algorithms with respect to three performance measures.

The first measure is the value of the potential function. As all our algo-

rithms are guaranteed to produce a (1 + ε)-approximation for the optimal

potential, it is of interest to compare the theoretically guaranteed and ac-
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tually obtained potential values. The second performance measure is the

query complexity, for which we once again have analytic upper bounds. The

third performance measure is the overall misclassification ratio, defined as

the fraction of misclassified data points. We also compared our Algorithm 1

with the state-of-the art Algorithm 2 of [12] for the case when there exists

one cluster containing one point only. Recall that [12] does not require the

smallest cluster size to be bounded away from one, and may in principle

operate more efficiently in settings where clusters of smallest possible size

(one) exist. As will be seen from our simulation studies, even in this case,

our method significantly outperforms [12].

The results of our experiments for the noiseless setting are shown in Fig-

ure 4.1. As may be seen, our analytic approximation results for the potential

closely match the results obtained via simulations. In contrast, the actual

query complexity is significantly lower in practice than predicted through our

analysis, due to the fact that we assumed a worst case scenario for pairwise

queries, and set the number of comparisons to K. For the misclassification

ratio, we observe that the general trend is as expected – the larger the number

of clusters K, the larger the misclassification ratio. Still, the misclassification

error in all tested examples did not exceed 2.9%. From Figure 4.1-(d) we can

see clearly that our method performs significantly better than Algorithm 2

in [12] even when α is fairly large. We did not compare our noisy query

method with outliers with the noisy sampling method of [12] as the latter

cannot deal with outliers.

Figure 4.1-(d) reveals that there exists a substantial gap between the query

complexity of our method and that of [12] in the noiseless setting. For exam-

ple, when K = 5 and K = 10, we require 510, 932 and 4.16× 106 queries. In

comparison, Algorithm [12] requires 6.55×1011 and 5.24×1012 queries, which

in the latter case is roughly a five-order larger number of queries. As a matter

of fact, the algorithm in [12] involves a very large constant in its complexity

bound, equal to 223K3

ε4
, which for practical clustering settings dominates the

complexity expression.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Panels (a) to (c) and (e) to (g) list the results for synthetic data
and the noiseless oracle Algorithm 1 and noisy oracle with outliers
Algorithm 2, respectively. The parameters are d = 20, K = [2 : 20], and
α = [1, 6], σi = [0, 2], δ = ε = 0.2, po = pe = 0.05. Panels (a) and (e) plot the
potential, (b) and (f) the query complexity, and (c) and (g) the
misclassification ratio. Panels (d) and (h) provide comparisons with the
noiseless Algorithm 2 of Ailon et al. [12] for a clustering problem with one
cluster of size equal to one, with all cluster sizes in the range [100, 600].

4.2 Real Data

Since the query complexity of our methods is independent of the size of the

dataset, we can provide efficient solutions to large-scale crowdsourcing prob-

lems that can be formulated as K-means problems, such as is the case with

image classification. We use the following two image classification datasets

for which the ground-truth clusters are known and can hence be used to gen-

erate the outputs of both the noiseless and noisy oracle:

1) The well-known MNIST dataset [28] comprises 60, 000 training and 10, 000

test images of handwritten digits. Each image is normalized to fit into a

28 × 28 pixel bounding box and is anti-aliased, which results in grayscale

levels.

2) The CIFAR-10 dataset [29] contains 60, 000 color images with 32 × 32

pixels, grouped into 10 different clusters of equal size, representing 10 differ-

ent objects. The clusters are nonintersecting and we sampled 10, 000 cluster

points.
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Table 4.1: Real Datasets Results

Actual query complexity Theoretical query complexity

MNIST-Algorithm 1 12,195 38,868
MNIST-Algorithm 2 3,628,193,647 6,439,271,969
CIFAR 10-Algorithm 1 12,490 37,479
CIFAR 10-Algorithm 2 128,458,964 898,432,836

Here, we set po = 0 and pe = 0.05, hence asserting that there are no out-

liers, but that 5% of the data points are mislabelled. Note that all the query

complexities reported are needed to achieve a (1 + ε)-approximation of the

potential. The results are shown in Table 4.1.
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CHAPTER 5

CONCLUSION

This thesis considers the problem of Query K-means clustering with both

same-cluster and crowdsourcing queries, where same-cluster queries mean

that one is given access to potentially noisy side information regarding pairs

of points belonging to the same cluster or not. Our solution significantly

improves upon the state-of-the-art results, showing that one can obtain a

(1+ ε)-approximation for the optimal solution with probability at least 1−δ,
where ε > 0, δ ∈ (0, 1), using O(K

3

εδ
) noiseless same-cluster queries in expecta-

tion and a comparison-based clustering algorithm of complexity O(ndK+K3

εδ
)

in expectation, where n is the number of points and d is the dimension of

space. In contrast, previously reported results required O(K
9

ε4
) same-cluster

queries and with time complexity O(ndK
9

ε4
), where they fix δ = 0.01. Unlike

previous approaches, we also focus on a new error model which more real-

istically captures missing information or outliers in datasets frequently used

in crowdsourcing and biological network analysis. Also, our proof techniques

differ from previous methods used for K-means clustering analysis, as they

rely on estimating the sizes of the clusters and the number of points needed

for accurate centroid estimation and subsequent nontrivial generalizations of

the double Dixie cup problem.
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APPENDIX A

PROOFS AND EXTENSIONS

A.1 Proof of Theorem 1.1

The bases of our proof are the Centroid lemma and a new problem in the

area of double Dixie cup problems.

The Centroid lemma asserts that in order to obtain a (1+ε)-approximation

of the potential with probability at least 1−δ, one only needs to sample (with

replacement) m = 1
δε

points, which is a value independent of the size of set

A. This fact can be directly observed from the following equality:∑
x∈A

||x− c(S)||2 =
∑
x∈A

||x− c(A)||2 + |A| · ||c(S)− c(A)||2. (A.1)

The first term on the right-hand side is the optimal potential φ∗1(A). The

second term corresponds to the centroid estimation error. In order to obtain

a (1 + ε)-approximation, we hence need εφ∗1(A) ≥ |A|||c(S) − c(A)||2. At

first glance, it appears that the existence of a small set of points far removed

from large clusters of points in A may cause the estimate of c(A) to be highly

imprecise as the sampling strategy is uniformly at random, and this small

subset may never be sampled. However, whenever these assumptions are

true, φ∗1(A) itself is large and the error is within the required ε-margin.

Based on the above discussion, we need to sample (with replacement)

points uniformly at random until each query cluster contains at least K
δε

points. Hence, by the Centroid lemma 2.1, the centroids estimated according

to the collected points guarantee that for all C∗i , i = 1, . . . , K, one has

P{φ(C∗i ; C) ≤ (1 +
1

δm
)φ∗1(C∗i )} ≥ 1− δ

K
.
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Invoking the union bound, we obtain

P{
K∑
i=1

φ(C∗i ; C) ≤
K∑
i=1

(1 + ε)φ∗1(C∗i )} = P{φ(X ; C) ≤ (1 + ε)φ∗(X )} ≥ 1− δ.

Thus, Algorithm 1 ensures a (1 + ε)-approximation of the potential with

probability at least 1− δ.
In the next step, we establish the number of required iterations of the

query procedure. Note that in each iteration within the while loop, with

probability pi =
|C∗i |
n

we sample a point from optimal cluster C∗i . The while

loop terminates if we have at least K
δε

points from all K clusters. Clearly, this

is an instance of the double Dixie cup coupon collector problem [21, 33, 22].

Let the random variable TK(m,p), where m = K
δε
, equal the number of

executed iterations of the algorithm. In the double Dixie cup setting, it equals

the number of coupons purchased until each type of coupon is observed at

least m times. The probability of sampling a coupon of type i equals pi.

From a slight modification of the analysis in [22] involving Poissonization

techniques, we arrive at the following result:

E[TK(m,p)] = E[max
i∈[K]
{Xi}], Xi’s are independent, (A.2)

and distributed according to the Erlang distribution, Xi ∼ Erlang (m,λi),

where λi = 1
pi

. Recall that the Erlang(m,λi) distribution makes probability

mass assignments according to

P{Xi = x} =
xm−1λmi
(m− 1)!

exp(−λix) =
xm−1

pmi (m− 1)!
exp

(
− x
pi

)
. (A.3)

An naive approach to upper bounding (A.2) is to replace the max value by

the sum of all terms involved. However, this bound is very loose and we

hence resort to a different approach.
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For any t ∈ (0, p∗), where p∗ = smin
n

, we have

E[maxXi] = E[
1

t
log exp(tmaxXi)] ≤

1

t
logE[exp(tmaxXi)]

=
1

t
logE[max exp(tXi)](monotonicity of the exponential)

≤ 1

t
log

K∑
i=1

E[exp(tXi)]

=
1

t
log

K∑
i=1

(
pi

pi − t

)m
≤ 2

p∗
log(K2m) (choosing t =

p∗

2
)

≤ 2αK(logK +m log 2) (invoking the α-imbalance property).

(A.4)

Plugging m = K
δε

into the above expression and noting that we require at

most KE[TK(m,p)] queries establishes the result.

A.2 Extensions

A.2.1 Clustering with outliers

In what follows, we focus on analyzing the query algorithm with outlier

points and a noiseless oracle. We first present an algorithm that addresses

this problem, Algorithm 6.

This algorithm has theoretical performance guarantees established by The-

orem A.1.

Theorem A.1. Let po = |Xo|
n

. For all X for which the subsets Xt satisfy the

α-imbalance property, Algorithm 6 outputs a set of centroids C such that

with probability at least 1−δ, φ(Xt; C) ≤ (1+ ε)φ∗(Xt). The expected query

complexity of the algorithm is bounded from above by

2αK2

1− po
(logK + 2 log 2) + 2(

αKpo
1− po

(log(2K) + 2 log 2))2

+
2αK

1− po
(po +K(1− po))(logK + (

K

δε
− 2) log 2).
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Algorithm 6: Query K-means Clustering with Outliers and a
Noiseless Oracle O

Input: A set of n points X , the number of clusters K, a noiseless
oracle O, two parameters δ ∈ (0, 1), ε ∈ (0, 1)

Output: Set of centroids C
Phase 1: Find K pairs of non-outlier points
Initialization: S1 = ∅, R = 1, Count= 0.
Uniformly at random sample (with replacement) a point x from X .
S1 ← S1 ∪ {x}.
while Count ≤ K do

Uniformly at random sample (with replacement) a point x from
X .
Query one point from each cluster Sr, r ∈ [R] in pair with x.
if ∃r ∈ [R], a ∈ Sr s.t. O2(a, x) = 0 then
Sr ← Sr ∪ {x}.
Count ← Count+1.

else
R← R + 1.
Create a new cluster SR = {x}.

end

end
Dispose of all clusters containing a single point only. Let S be the
resulting clusters.

Phase 2: Run Algorithm 1 with clusters seeds S = {S1, ..., SK}
while Until Algorithm 1 terminates do

Uniformly at random sample (with replacement) a point y from
X .
if ∃i ∈ [K] s.t. x ∈ Si,O(y, x) = 0 then

proceed with Algorithm 1.
else

Remove y.
end

end
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Once the clusters are seeded with sufficiently many points so that the cen-

troids may be estimated with sufficiently high precision, all the remaining

points are placed based on the Γ(β)-margin between outlier and non-outlier

points. Clearly, if β > 0 one can distinguish all outliers from non-outliers

provided that we computed the exact centroids. It is impossible to distin-

guish outliers from non-outliers if β ≤ 0 by using distance information only.

Thus, we assume that β > 0 in all our subsequent derivations. With this

assumption, we arrive at the following corollary.

Corollary A.1. Assume that optimal clusters satisfy the Γ(β)-separation

property with ε ≤ β2. Let C be the output of Algorithm 6. For all x ∈ X ,

let d(x) = minc∈C ||x − c||. Assign all points x ∈ X that have not been

queried to their closest centers as long as d(x) ≤ Γ(β). Otherwise, declare

the point to be an outlier. By Theorem A.1, the resulting clustering provides

a (1 + ε)-approximation of the optimal potential with probability at least

1− δ.

We are now ready to present the proof of our main result in this sec-

tion. First, we argue that the described algorithm indeed provides a (1 + ε)-

approximation of the potential with probability at least (1 − δ). Note that

based on Phase 1 of Algorithm 6, we can ensure that each of the clusters S
contains one pair of points that does not include outliers. Upon executing

Phase 2 of the algorithm, by Theorem 1.1, we can immediately establish the

claimed approximation guarantees.

Next, we focus on bounding the expected query complexity of the algo-

rithm. We decompose the random variable Q capturing the number of pair-

wise queries made into Q1, the query complexity of Phase 1, and Q2, the

query complexity of Phase 2.

Consider Q1 first. Note that the process in Phase 1 will terminate if and

only if we sample at least two points from each C∗i . Since we are sampling

with replacement, this can be solved exactly by the double Dixie cup problem.

Again using Poissonization arguments, we can establish that the number of

points sampled in Phase 1 at step t is a random variable Z(t) ∼ Poisson (t).

Let Zj(t) ∼ Poisson (pjt), j ∈ {o, 1, ..., K}, where the Zj(t) variables are

independent. Moreover, let Xj denote the number of queries until we sample

two points from the optimal cluster C∗j and let X = maxi∈[K] Xi. Then, we
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have

E[Q1] ≤ E

E
K K∑

i=1

Zi(X) +

Zo(X)∑
j=1

(K + j − 1)|X

 =

K E[X] + E
[
E
[
Zo(X)(Zo(X)− 1)

2
|X
]]

= K E[X] +
p2
o

2
E[X2].

(A.5)

This first term K
∑K

i=1 Zi(X) arises due to the fact that when we sample a

point from Xt, we use at most K queries to place it. When we sample an

outlier point from Xo, assuming we have already sampled ` outliers, we will

require most K + ` queries. This gives rise to the second term
∑Zo(X)

j=1 (K +

j − 1).

Next, we derive bounds for E[X] and E[X2]. For E[X], noting that in this

case we have m = 2 and setting λ = p∗

2
∈ (0, p∗ = mini∈{1,...,K} pi), we obtain

E[X] = E
[
max
i∈[K]

Xi

]
≤ 1

λ
log

K∑
i=1

E [exp(λXi)] =

1

λ
log

K∑
i=1

(
pi

pi − λ

)m
≤ 2

p∗
log(K2m) ≤ 2αK

1− po
(logK + 2 log 2).

(A.6)

The last equality follows from the α-imbalance assumption, and the fact that

m = 2 by the design of the algorithm. To bound the second moment, we

cannot use E
[
exp(X2

j )
]

as this expectation does not exist (since Xj is not

sub-Gaussian, but sub-exponential instead).

For all t ∈ (0, p∗), we have

E[X2] = E
[
(max Xi)

2
]

= E
[

1

t2
(log(exp(tmaxX2

i )))2

]
=

E
[

1

t2
(log(max exp(tX2

i )))2

]
.

Next, we note that (log x)2 is concave over x ∈ [e,∞) and nondecreasing, so
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that

= E
[

1

t2
(log(max exp(tXi)))

2

]
≤ E

[
1

t2
(log((max exp(tXi))1(max tXi ≥ 1) + e1(max tXi < 1)))2

]
≤ E

[
1

t2
(log((max exp(tXi)) + e))2

]
≤ 1

t2
(log(E [max exp(tXi) + e])2 (Jensen’s inequality)

≤ 1

t2
(log(

K∑
i=1

E[exp(tXi) + e])2

=
1

t2
(log(

K∑
i=1

(
pi

pi − t
)m + e))2

≤ 4

(p∗)2
(log(K2m + e))2 (setting t =

p∗

2
)

≤
(

2αK

1− po
log(K2m + e)

)2

≤
(

2αK

1− po
log(2K2m)

)2

(assuming K2m ≥ e)

=

(
2αK

1− po
(log(2K) +m log 2)

)2

.

(A.7)

Note that since m = 2, obviously K2m = 4K ≥ 4 ≥ e. Setting m = 2

in (A.7) and plugging (A.7) and (A.6) into (A.5), we have

E[Q1] ≤ K E[X] +
p2
o

2
E[X2] (A.8)

≤ 2αK2

1− po
(logK + 2 log 2) + 2(

αKpo
1− po

(log(2K) + 2 log 2))2. (A.9)

To bound Q2, we use an analysis similar to that described in the proof of

Theorem 1.1 and in the previous derivations. By the same Poissonization

argument as in Theorem 1.1 and above, the number of points sampled in

Phase 2 at time t is Z(t) ∼ Poisson(t) and let Zj(t) ∼ Poisson(pjt), j ∈
{o, 1, ..., K}; the variables Zj(t) are independent. Let Xj be the time by

which we have sampled m points from C∗j , for j ∈ {1, ..., K} and let X =

maxi∈[K] Xi. Note that the variables Xj ∼ Erlang(m,λj), where λj = 1
pj

. Xj
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are independent. Then,

E[Q2] ≤ E

[
E

[
Zo(X) +K

K∑
i=1

Zi(X)|X

]]
= (po +K(1− po))E[X]. (A.10)

Since X = maxi∈[K] Xi is independent of Zo and Zo is Poisson distributed,

the first term equals po E[X]. The second term is obtained as follows.

Let Y =
∑K

i=1 Zi(X), so that E[X] = E
[∑Y

i=1 Ui

]
= 1

1−po E[Y ], where the

variables Ui are iid exponential with rate 1− po. Plugging in equation (A.4)

with m = K
δε

, we obtain

E[Q2] ≤ 2αK

1− po
(po +K(1− po))(logK + (

K

δε
− 2) log 2). (A.11)

Consequently,

E[Q] ≤ 2αK2

1− po
(logK + 2 log 2) + 2(

αKpo
1− po

(log(2K) + 2 log 2))2

+
2αK

1− po
(po +K(1− po))(logK + (

K

δε
− 2) log 2),

(A.12)

which completes the proof.

A.2.2 The case of finding centers of top r largest clusters

We denote the ratio of the size of cluster |S∗i | to n as pi =
|S∗i |
n

. Without loss

of generality we assume pi are also sorted. Then we define p̄ = pr+pr+1

2
and

∆ = pr − p̄. Moreover, let KL(a||b) be the KL-divergence for Bernoulli(a)

and Bernoulli(b). We denote D = min{KL(p̄||p̄+ ∆), KL(p̄||p̄−∆)}.

Theorem A.2. Assume that p̄ ∈ (0, 1) and ∆ > 0. Let us denote p̃ =∑r
i=1 pi. There exists an algorithm which will output a set of centers C such

that with probability at least 1−δ, φ(X (r); C) ≤ (1+ε)φ∗(X (r)). The expected

query complexity EQ can be bounded as

EQ ≤ K

D
log

2K

δ
+

2

pr
(1− p̃+Kp̃)(logK +

2K

δε
log 2).

Moreover, the expected time complexity for outputting C is O(EQ).

Remark A.1. The first term in the query complexity upper bound is the
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query complexity for Phase 1, which is clearly KM = K
D

log 2K
δ

by our choice

of M . The second term will be similar to the case of Theorem A.1. Note

that our bound here should be further refinable since the bound we use for

Phase 2 here is to collect 2K
δε

for all top r largest clusters starting with one

point for each cluster. However for simplicity we present the looser bound

here.

A.2.3 Clustering with a noisy oracle

Next, we analyze the query algorithm with a noisy oracle. Recall that the

noisy oracle On gives a correct answer with probability 1− pe, where pe <
1
2
.

For the same query, we always get the same answer, which prevents us from

repeatedly asking the same query to increase the probability of success [26].

This assumption is motivated by crowdsourcing applications in which non-

experts often provide answers based on the same source (i.e., the first result

obtained by searching Google). Nevertheless, the assumption that the an-

swers are provided independently is unrealistic but still used in order to make

the analysis tractable [26].

Before describing the underlying algorithm, let M be the smallest positive

integer that satisfies two inequalities,

M

logM
≥ 128αK2

(2pe − 1)4
(A.13)

and

M ≥ M̃ = max{6αK

δε
, 8αK log

3K

δ
}.

The noisy query algorithm is described below.

Theorem A.3 (Theoretical guarantees for Algorithm 7). Assume that one

is given a set of n points X with an underlying optimal set of K clusters

X =
⋃K
i=1 C∗i . Suppose that X satisfies the α-imbalance property. Let

M̃ = max{6αK

δε
, 8αK log

3K

δ
} (A.14)

and M ≥ M̃ . Let M ∈ N be the smallest positive integer simultaneously

satisfying (A.13) and M̃ ≤ M . Algorithm 7 returns a set of centers C such

that with probability at least 1 − δ, φ(X ; C) ≤ φ∗K(X ), provided that all
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Algorithm 7: Query K-means Clustering with a Noisy Oracle On
Input: A set of n points X , the number of clusters K, a noisy oracle

On and a precomputed value M
Output: Set of centers C
Phase 1: Seed the clusters by running Algorithm 3
Uniformly at random sample (without replacement) M point x
independently from X . Denote the obtained subset by A.
Run Algorithm 3 on the set A. Generate a K-partition of
A =

⋃K
i=1 Si.

Phase 2: Estimate the centroids
For all i ∈ [K], set ci ← c(Si) where c(Si) is the average of set Si.
C← {c1, ..., cK}.

points are assigned to their closest centers in C. The query complexity of the

algorithm is O(MK2 logM
(1−2pe)4

), while the overall running time of the algorithm is

O(Kn+MK logM
(1−2pe)2

+KNω), with N = 64K2 logM
(1−2pe)4

and ω ≤ 2.373 (the complexity

exponent in fast matrix multiplication).

Remark A.2. First, observe that given M̃ ′ = 8αK
εδ

log(3K
δ

), one has M̃ ′ ≥ M̃ .

Hence, for any M satisfying M ≥ M̃ ′ we automatically have M ≥ M̃ . To

handle the condition (A.13), we use a bootstrapping approximation for the

log term, ignoring all log-log and smaller terms. This procedure leads to the

following bound:

M ≥ 128αK2

(2pe − 1)4
log

128αK2

(2pe − 1)4
.

For fixed constants pe, δ, ε, we have M = O(αK2 log(αK)). This implies

that the resulting query complexity of Algorithm 7 is O(αK4 log(αK) ×
log(αK2 log(αK))), or O(αK4(log(αK))2).

Next, we prove Theorem A.3. Our proof will rely on the theoretical guar-

antee of Algorithm 2 in [26], restated below.

Theorem A.4 (Theorem 3 of [26]). Assume that one is given a set of M

points X partitioned into K clusters, X =
⋃K
i=1 Ci. Let N = 64K2 logM

(1−2pe)4
. Then

Algorithm 2 in [26] returns all clusters of size at least 64K logM
(1−2pe)4

with probabil-

ity at least 1− 2
M

. The query complexity of the method is O(MK2 logM
(1−2pe)4

) and

the total running is O(MK logM
(1−2pe)2

+KNω), where ω ≤ 2.373 is the complexity

exponent of fast matrix multiplication.

Remark A.3. Note that in [26] they do not assume that the underlying par-
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tition
⋃K
i=1 Ci is the optimal solution of k-means problem. Hence in the

statement of theorem we use C to denote the underlying partition instead of

C∗. The key is that the partition C should be consistent with the answers

given by the (noiseless) oracle.

We start by modifying Lemma 2.1 for the case that sampling is performed

without replacement.

Lemma A.1 (The Centroid lemma for sampling without replacement). Let

S be a set of points obtained by sampling m points without replacement and

uniformly at random from A. Then, for any δ > 0, with probability at least

1− δ,

φ(A; c(S)) ≤ (1 +
1− m−1

|A|−1

δm
)φ∗1(A) ≤ (1 +

1

δm
)φ∗1(A).

Here c(S) denotes the centroid of the set S. Clearly, we require m ≤ |A|.

Proof. Let S = {y1, ..., ym} be the set of m points we sampled. Let Eȳ
denote the expectation with respect to y1, ..., ym. By using a bias variance

decomposition, we have∑
x∈A

||x− c(S)||2 =
∑
x∈A

||x− c(A)||2 + |A| · ||c(S)− c(A)||2.

We start by analyzing the term Eȳ||c(S)− c(A)||2. By definition, we have

Eȳ||c(S)− c(A)||2 = Eȳ||
1

m

m∑
i=1

(yi − c(A))||2 =
1

m2
Eȳ||

m∑
i=1

(yi − c(A))||2

=
1

m2
Eȳ(

m∑
i=1

||(yi − c(A))||2 +
∑
i 6=j

〈yi − c(A), yj − c(A)〉)

=
1

m2
(
m∑
i=1

Eȳ||(yi − c(A))||2 +
∑
i 6=j

Eȳ 〈yi − c(A), yj − c(A)〉)

=
1

m2
(mφ∗(A) +

∑
i 6=j

Eyi
〈
yi − c(A),Eyj |yi(yj − c(A))

〉
).

Furthermore, note that

Eyj |yi(yj − c(A)) =
1

|A| − 1

∑
yj∈A/{yi}

((yj − c(A))

=
1

|A| − 1
(|A|c(A)− yi − (|A| − 1)c(A)) =

−1

|A| − 1
(yi − c(A)).
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Hence, we have

1

m2
(mφ∗(A) +

∑
i 6=j

Eyi
〈
yi − c(A),Eyj |yi(yj − c(A))

〉
)

=
1

m2

(
mφ∗(A) +

∑
i 6=j

Eyi
〈
yi − c(A),

−1

|A| − 1
(yi − c(A))

〉)

=
1

m2
(mφ∗(A)− 1

|A| − 1

∑
i 6=j

Eyi ||yi − c(A)||2)

=
1

m2
(mφ∗(A)− 1

|A| − 1
m(m− 1)φ∗(A)) =

φ∗(A)

m
(1− (m− 1)

|A| − 1
).

Combining the above equations and by invoking Markov’s inequality, we

obtain the desired result.

We also make use of the following result.

Lemma A.2 ([34]). Let D(px||py) denote the KL divergence between two

Bernoulli distribution with parameters px ≤ py ∈ [0, 1]. Then,

D(px||py) ≤
(py − px)2

2py
. (A.15)

Remark A.4. Note that this bound is tighter than the one obtained directly

from Pinsker’s inequality whenever py ≤ 1/8.

We are now ready to prove Theorem A.3.

Proof. Assume that we sample (without replacement) uniformly at random

M points from X , and denote the subsampled set of points by X ′. Note that

X ′ can be partitioned into at most K clusters so that for all i ∈ [K], S†i =

X ′
⋂
C∗i . Clearly, the vector (S†1, ..., S

†
K) is a multivariate hypergeometric

random vector with parameters (n, np1, ..., npK ,M), where pi =
|S∗i |
n

, ∀i ∈
[K]. As before, we write p∗ = mini pi = 1

αK
, where the second equality follows

from the α-imbalance property. In particular, S†i is a hypergeometric random

variable with parameters (n, npi,M). Using Hoeffding’s inequality [32, 35],
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we obtain

P{S†i < M(pi −
pi
2

)} ≤ exp
(
−MD(

pi
2
||pi)

)
≤ exp

(
−Mpi

8

)
⇒ P{S†i <

Mpi
2
} ≤ exp

(
−Mpi

8

)
⇒ P{S†i <

Mp∗

2
} ≤ exp

(
−Mp∗

8

)
.

(A.16)

Here, we used the bound D((1− a)p||p) ≥ 1
2
a2p, a ∈ [0, 1

2
], which is a direct

consequence of Lemma A.2. By using the union bound, we have

P{minS†i ≥
Mp∗

2
} ≥ 1−K exp(−Mp∗

8
), (A.17)

which completes the proof of Theorem 3.1. Min S†i ≥ max{64K logM
(2pe−1)4

, 3K
δε
}

is required, which corresponds to (A.13) and gives rise to the first term

in (A.14). The first term under the maximum is needed in order to satisfy

the requirements of Theorem A.4. The second term under the maximum is

needed because we want to apply Lemma 3.2. By properly choosing M we

can ensure that these two conditions are met. Also, we want the statement

to hold with probability at least 1− δ
3
, for which we need M ≥ 8αK log 3K

δ
.

This gives rise to the second term in (A.14). Again, for our given choice

of M this constraint is also satisfied. As a result, from Theorem A.4, we

know that upon completion of Phase 1, we will have generated the desired

partition S†1, ..., S
†
K with probability at least 1− 2

M
. Due to our choice of M ,

the former probability is at least 1− δ
3
.

Finally, since every point in S†1, ..., S
†
K is obtained by sampling uniformly at

random from X , Lemma 3.2, the union bound and the choice of M guarantee

that, with probability at least 1 − δ
3
, the resulting set of centers C provides

a (1 + ε)-approximation of the optimal potential φ∗. The query complexity

and the time complexity follow directly from Theorem A.4. This completes

the proof.

A.3 Proof of Theorem 1.2

Let us restate Theorem 1.2 as follows.

Theorem A.5 (Theoretical guarantees for Algorithm 2). Assume that one
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is given a set of n points X with an underlying optimal K-clustering X =⋃K
i=1 C∗i and that the clusters satisfy the α-imbalance property. Let

M̃ = max

{
128αK2

(2pe − 1)4
log

128αK2

(2pe − 1)4
,
8αK

δε
, 8αK log

4K

δ

}
,

M =
2

1− po
M̃ +

1

2(1− po)2
log

4

δ
,

N =
64K2 logM

(1− 2pe)4
+M − M̃.

Algorithm 2 returns a set of centers C such that, with probability at least 1−
δ, φ(X ; C) ≤ φ∗K(X ). The query complexity of the algorithm is O(MK2 logM

(1−2pe)4
).

Moreover, if we assign all points to their closest centers in C, we can complete

the clustering in time O(Knd + MK logM
(1−2pe)2

+ KNω), where N ∼ O(αK
2 logM

(1−2pe)4
)

and ω ≤ 2.373 is the complexity exponent of fast matrix multiplication.

Proof. In order to use Theorem A.3, we first need to make sure that the M

points selected from X will contain at least M̃ non-outlier points with high

probability, where M̃ satisfies the conditions required by Theorem A.3. We

also need to adapt the value of the parameter N , as N is used to lower bound

the size of the largest cluster as N/K, and in our setting outliers need to be

taken into consideration. There are two approaches to deal with this issue.

The first approach is to select M points uniformly at random from X ,

containing at least M̃ non-outliers with probability at least 1− δ
4
. Clearly, in

this case, the number of outliers is upper bounded by M − M̃ . If N−M+M̃
k

≥
8
√
N logM

(1−2pe)2
, we can then directly use the result of [26]. We can simplify the

problem as one in which there are M independent Bernoulli random variables

{Xi}Mi=1, that take the value 0 with probability po (outliers), standing for

outlier, and 1 with probability 1 − po (non-outliers). Then the number of

non-outliers among these M points is the sum of the independent Bernoulli

random variables described above. By Hoeffding’s inequality, we have

P{
M∑
i=1

Xi ≤ E

[
M∑
i=1

Xi

]
− t} ≤ exp

(
−2t2

M

)
.

Let t = E
[∑M

i=1Xi

]
−M̃ = (1−po)M−M̃ , and exp(−2t2/M) ≤ δ

4
. Then the

selected M points will contain more than M̃ non-outliers with probability at
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least 1− δ
4
. Combining the above results we obtain the following inequality:

((1− po)M − M̃)2 ≥ M

2
log

4

δ
.

By solving this inequality we get M ≥ 2M̃
1−po + 1

2(1−po)2 log 4
δ
. Based on Theo-

rem A.3, we also need M̃ to satisfy

M̃ = max

{
128αK2

(2pe − 1)4
log

128αK2

(2pe − 1)4
,
8αK

δε
, 8αK log

4K

δ

}
.

For the second part of analysis which ensures each cluster in subset A has

enough points with probability 1, we need

N −M + M̃

k
≥ 8
√
N logM

(1− 2pe)2
.

By solving this inequality for N , we get

N =
64K2 logM

(1− 2pe)4
+M − M̃.

In this case, we know that with probability at least 1−δ, Algorithm 2 provides

a (1 + ε)-approximation of the true potential for the case of queries involving

non-outliers.

The second approach is to select M points uniformly at random from X ,

containing at least M̃ non-outliers with probability at least 1− δ
5
. Following

the same procedure as described above, we get

M =
2M̃

1− po
+

1

2(1− po)2
log

5

δ
.

For the second part of the analysis which ensures that each cluster in subset

A has enough points with high probability, we require the N chosen points

in each round to contain at least N ′ non-outliers, where N ′

K
≥ 8

√
N logM

(1−2pe)2
with

probability at least δ
5K

. Then,

N =
2N ′

1− po
+

1

2(1− po)2
log

5K

δ
,
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and

N ′ =
128K2 logM + 4

√
2(1− 2pe)

2K
√

logM log 5K
δ

(1− 2pe)4(1− po)
.

By using the union bound for all error events, we conclude that with prob-

ability at least 1 − δ, Algorithm 2 offers a (1 + ε)-approximation guarantee

for the optimal potential for non-outlier points.

Note that although in both methods we had to change the value of N ,

the value remained O(αK
2 logM

(1−2pe)4
). Therefore, the overall query complexity

equals O(MK2 logM
(1−2pe)4

). Furthermore, if all points are assigned to their closest

centers in C, the clustering can be completed with overall running time

O(Knd + MK logM
(1−2pe)2

+ KNω), where ω ≤ 2.373 is the complexity exponent of

fast matrix multiplication.

A.4 Proof of Theorem 1.3

Our proof will rely on the theoretical guarantee of Algorithm 2 in [16], re-

stated below.

Theorem A.6 (Theorem 4 of [16]). Assume that one is given parameters

δ ∈ (0, 1) and the number of clusters K. Define pe ∈ [ρ, 1 − ρ] as the

probability that a worker mislabels a sample. Let κ =
∣∣1− pe − 1

K

∣∣ , D̄ =
K−1−Kpe

K−1
log (K−1)(1−pe)

pe
. Then, Algorithm 5 can exactly recover true labels

of all samples with probability at least 1− δ if the number of workers w and

the number of samples s satisfy

w = Ω

(
log(1/ρ) log(Ks/δ) + logws

D̄

)
, s = Ω

(
logw/

√
δ

κ6 min{κ2, ρ2, (ρD̄)2}

)
.

Combining this result with Lemma 3.2 and Theorem 3.1 finishes the proof

of Theorem 1.3.
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