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ABSTRACT

High-dimensional fluid dynamics systems are central to a variety of modern

engineering challenges. Direct numerical simulation of these processes is pos-

sible, but the high computational cost of these simulations is always an impor-

tant consideration. Optimal control of these high-dimensional fluid dynamics

problems is especially cost prohibitive. In order to keep computational cost

within a reasonable level, we explore the potential of merging data-driven

model reduction with optimal control. In particular, we demonstrate the

application of Dynamic Mode Decomposition (DMD) to the adjoint-based

optimal control of the Ginzburg-Landau equation.

The adjoint method uses the governing equations of the system to derive

a gradient in the space of admissible inputs. This gradient points toward

the choice of input which minimizes a cost functional. A gradient descent

algorithm can then be employed to arrive at the optimum. Since the gradient

comes from the governing equations, it can be difficult to derive and costly to

compute. Dynamic Mode Decomposition computes a linear, low-dimensional

approximation of the dynamics which allows the adjoint gradient to be com-

puted more easily. We demonstrate that a ten-fold dimensional reduction

of the Ginzburg-Landau system can be used to approximate the full-state

gradient to within a margin of error of 0.02%.

The error in the reduced order gradient is dependent on the quality of the

reduced order model (ROM). In order to compute an accurate gradient, we

require that the ROM be robust to the range of possible dynamics in the

search path of the gradient descent algorithm. This is difficult because one

data set does not always capture the rich variety of possible behaviors of the

system. Moreover, a reduced order model constructed from data acquired at

a single operating point may not be robust to changes in control inputs or

boundary conditions, thereby limiting the model’s utility in control.

In order to evaluate the quality of a given data set, we use a condition called
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Persistence of Excitation (PE). When a data sample satisfies the PE prop-

erty, it guarantees that the data represents the dynamics well and that the

hidden model parameters of the system can be approximated using methods

from adaptive control. We prove that the persistence of excitation condition

ensures that DMD-based reduced order models derived from PE data opti-

mally approximate the true low-rank dynamics of the system. This method

is system agnostic and is based on the idea of Persistence of Excitation.

Since PE is often not possible to achieve for many systems, we propose an

optimization problem which, when solved, specifies an input designed to

drive the dynamical system toward a more excited state. We call this Op-

timally Persistent Excitation (OPE). The act of applying our OPE-enriched

data to DMD is called PE-informed DMD. To demonstrate our method, we

apply PE-informed DMD to the simulation and closed loop control of the

Ginzburg-Landau equation. Our results show that when we start with a

poorly representative baseline data set, we can improve the resulting DMD

approximation of the low-rank state transition matrix by 20%.
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CHAPTER 1

INTRODUCTION

Given a governing dynamical system and a cost functional, the simplest

approach to solving an optimal control problem is to do an exhaustive search

over all possible values of the control parameters. These types of searches

involve performing many experiments or simulations and quickly become

impractically expensive. Gradient-based search methods are an alternative

approach. Given some guess for the optimal value of the input, a gradient

is computed that points in the direction of a better choice of input. Then, a

gradient descent algorithm, such as the conjugate gradient method, can be

used to determine the next choice of input. One way to compute the gradient

is by using a finite difference. This method is simple, but at every iteration

of the search, it requires the evaluation of the governing equation at least

p+ 1 times where p is the number of input parameters.

In order to mitigate this computational cost, we employ the adjoint method

[Teo et al., 1991]. In this method, the governing equations and the cost func-

tional are manipulated to construct another system of differential equations

called the adjoint equations. This system is then evaluated backward in time

and the resulting adjoint data is collected. The adjoint data and the forward

state data from the governing equations are then used to compute the gradi-

ent. At each iteration of the search method, the gradient computation only

requires each of these evaluations to be completed once, regardless of the

number of input parameters. Adjoint-based optimal control was successfully

applied to the optimal control of the noise in a jet [Kim et al., 2014]. An in-

troduction to the use of the adjoint method in aircraft design can be found in

Giles and Pierce (2000). This method, however, requires detailed knowledge

of the governing equations and can be difficult to execute on complicated

problems. Instead of working with the full complexity of a high-dimensional

fluid dynamics problem, we propose using data-driven system identification

and model reduction techniques to simplify the computation.
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Data-driven model reduction techniques are able to infer approximate low-

rank models of a dynamical system without any a priori knowledge of the

governing equations. Proper Orthogonal Decomposition (POD) is a data-

driven system identification technique which seeks to find an approximate

model which captures as much of a suitably-defined energy of the system

as possible [Holmes et al., 1996]. However, this technique misses the low-

energy components of the dynamics which can be critical to the overall evo-

lution of the flow. There is a version of POD which is optimized for use

in control called Balanced Proper Orthogonal Decomposition (bPOD). This

method is inspired by balanced truncation [Moore, 1981] and attempts to

find a projection onto which the system will be both controllable and observ-

able. This method was applied to the control of transitional channel flow in

[Ilak and Rowley, 2008]. A third method is called the Eigensystem Realiza-

tion Algorithm (ERA) and is used to find models of impulse response data.

A thorough discussion of these methods can be found in Rowley (2005).

Our main tool for constructing data-driven reduced order models is Dy-

namic Mode Decomposition (DMD)[Schmid, 2010]. This method computes

modes from data and associates each of those modes with a frequency and a

growth rate. We choose DMD because of its commonality, low computational

cost, and because it can be modified for use with input-output systems using

DMDc [Proctor et al., 2016]. DMD can easily be extended to nonlinear sys-

tems using Koopman Mode Decomposition (KMD) [Arbabi and Mezić, 2017].

Future work will attempt to use KMD to strengthen our methods and extend

them to nonlinear control problems.

Both POD and DMD were applied to the adjoint-based optimal control

of the FitzHugh-Nagumo equation in Karaszen et al. (2017). In this thesis,

we apply DMD to a dynamical system based on the linearized Ginzburg-

Landau equation [Chen and Rowley, 2011] and apply the adjoint method to

optimally stabilize the system. It is found that the DMD-based reduced

order model (ROM) is capable of approximating the adjoint gradients with

sufficient precision to perform optimal control.

DMD and other related algorithms create reduced order models based only

on the data they are provided. When this data poorly represents the full dy-

namics of the system, the reduced order model is not predictive. We want to

prescribe an input to drive the system toward a better representation of the

underlying dynamics. In order to determine which types of inputs will lead to
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better data-driven reduced order models, we turn to the field of system iden-

tification. Connections between DMD and system identification have been

pointed out, namely its connection to the eigensystem realization algorithm

[Kutz et al., 2014]. We prove that when the data satisfies the persistence of

excitation condition (PE), the resulting low-rank state transition matrix is

the best possible low-rank approximation of the governing state transition

matrix.

Since the PE condition is usually too strong to be enforced in full, an opti-

mization problem is posed involving a PE-inspired cost functional. When the

optimization problem is solved, we see a significant increase in the accuracy

of our reduced order model when this method is applied to the linearized

Ginzburg-Landau equation.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, we describe the mathematical tools of model reduction and

optimal control required to understand the proceeding analysis. We also

introduce the Ginzburg-Landau system which we will use to test our methods.

2.1 Dynamic Mode Decomposition

Dynamic mode decomposition is a data-driven method that extracts dynam-

ical information from data in the form of modes. Each mode is associated

with a frequency and a growth rate [Schmid, 2010]. In order to compute

the DMD of a system, we first collect M time snapshots of the state data.

The resulting time series {q1,q2, · · · ,qM} is then split into the unshifted

Q1 = [q1 q2 · · · qM−1] and shifted Q2 = [q2 q3 · · · qM ] snapshot matrices.

It is assumed that there exists a state transition matrix A such that the

following relationship is satisfied:

Q2 = AQ1. (2.1)

The matrix A transforms each snapshot of data in Q1 to its time-shifted

counterpart. Our goal is to find a rank r approximation of A called Ā which

solves the following minimization problem:

Ā =
argmin

A ‖Q2 − AQ1‖2 (2.2)

The Young-Eckart Theorem [Eckart and Young, 1936] states that this can be

solved exactly using the Moore-Penrose pseudo-inverse. To accomplish this,

we first take the economy-sized singular value decomposition of Q1,

Q1 = UΣV H . (2.3)
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The columns of the unitary matrices U and V are the left-singular and right-

singular vectors ofQ1, respectively. The superscriptH signifies the Hermitian

transpose of V . Each vector corresponds to one of the non-negative, real

singular values along the diagonal of Σ. By truncating all but the first r

columns of U and V and all but the largest r singular values from Σ, we get

the following low-rank approximation of the data:

Q1 ≈ UrΣrV
H
r . (2.4)

From here we compute the Moore-Penrose pseudo-inverse:

Q†1 = VrΣ
−1
r UH

r . (2.5)

We can now approximate the state transition matrix A by left multiplying

Q2.

A ≈ Ā = Q2Q
†
1 = Q2VrΣ

−1
r UH

r (2.6)

The matrix Ā has rank r but the same dimension as the original matrix

A. In order to reduce the computational cost involved with working with

our reduced order model, we can project our low-rank matrix onto the basis

defined by the columns of Ur. The resulting low-rank, low-dimension state

transition matrix is Ã,

Ã = UH
r Q2VrΣ

−1
r . (2.7)

This operator governs the following reduced dimension dynamical system:

q̃k+1 = Ãq̃k. (2.8)

The corresponding reduced dimension state variable q̃ can be projected back

onto the full dimension state space by computing qk ≈ Ũ q̃k.

2.2 Dynamic Mode Decomposition with Control

DMD can be modified for use in linear input-output dynamical systems. This

is called dynamic mode decomposition with control (DMDc). This method

attempts to isolate the natural dynamics of the system from the contribution
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of input [?]. This method only works when the input is purely additive.

In order to construct a reduced order model using DMDc, we start with

both a time series of state data {q1,q2, · · · ,qM} and input data {u1,u2, · · · ,uM}.
Assume that the dynamical system has the form qk+1 = Aqk + Buk where

A is the unknown state transition matrix, and B is the known input matrix.

Collect these into the matrices Q1 = [q1 q2 · · · qM−1], Q2 = [q2 q3 · · · qM ],

and U = [u1 u2 · · · uM−1]. The data matrices satisfy the following relation-

ship:

Q2 = AQ1 +BU. (2.9)

We wish to find a low rank approximation of A. The minimization problem

is now:

Ā =
argmin

A ‖Q2 −BU − AQ1‖2. (2.10)

To solve this, we rearrange the system into AQ1 = Q2 − BU . Now, we take

the truncated singular value decomposition of Q1,

Q1 = UrΣrV
H
r . (2.11)

As in standard DMD, we approximate A by using the Moore-Penrose pseudo-

inverse:

A ≈ Ā = (Q2 −BU)VrΣ
−1
r UH

r . (2.12)

If a dimensional reduction is desired, Ā can be projected onto the modes in

Ur,

Ã = UH
r (Q2 −BU)VrΣ

−1
r . (2.13)

The reduced dimension dynamical system is now:

q̃k+1 = Ãq̃k + B̃uk. (2.14)
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2.3 Discrete Time Adjoint Method

In order to perform optimal control, we use the adjoint method. In particular,

we use a discrete-time variant which is better suited to be implemented with

DMD. The adjoint method involves manipulating the governing equations

and cost functional to construct a system of differential equations called

the adjoint equations. These adjoint equations produce adjoint data which

when combined with the state data can be used to compute a gradient.

This gradient points in the space of admissible inputs to the input that

best minimizes the cost functional J [Giles and Pierce, 2000]. This saves

computational cost because the governing equations and the adjoint system

only need to be evaluated once per iteration of the search method. Therefore,

the computational cost of the search is independent of the number of input

parameters. We follow the analysis in Teo et al. (1991).

Given a discrete-time dynamical system of the form qk+1 = f(qk,uk) with

k ∈ {1, · · · ,M}, we wish to find the gradient in the space of all possible

control parameters Uad which will lead us to the vector of optimal control

parameters uopt = [uopt1 uopt2 · · · uoptM−1] which minimizes the cost functional

J = Φ(qM) +
M−1∑
k=1

j(qk,uk). (2.15)

We first perturb the vector of control parameters u in the direction ρ with

magnitude ε > 0,

u(ε) = u + ερ. (2.16)

The perturbed state is now given by

qk(ε) = qk(u(ε)). (2.17)

The perturbed state is governed by the equation,

qk+1(ε) = f(qk(ε),uk(ε)). (2.18)

The variation in the state is given by

δqk+1 =
dqk+1(ε)

dε

∣∣∣∣
ε=0

=
∂f(qk,uk)

∂qk
δqk +

∂f(qk,uk)

∂uk
ρ, (2.19)
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with δq1 = 0.

We can now compute

∂J

∂u
ρ =

dJ(u(ε))

dε

∣∣∣∣
ε=0

=
∂Φ(qM)

∂qM
δqM +

M−1∑
k=1

[
∂j(qk,uk)

∂qk
δqk +

∂j(qk,uk)

∂uk
ρ

]
.

(2.20)

We define the Hamiltonian sequence

H(qk,uk, zk+1) = j(qk,uk) + zHk+1f(qk,uk). (2.21)

The set of Lagrange multipliers z will be known as the adjoint state or costate.

Substitution of the Hamiltonian into the expression for the sensitivity of

the cost functional gives

∂J

∂u
ρ =

∂Φ(qM)

∂qM
δqM +

M−1∑
k=1

[
∂H(qk,uk, zk+1)

∂qk
δqk − zHk+1

∂f(qk,uk)

∂qk
δqk

+
∂H(qk,uk, zk+1)

∂uk
ρ− zHk+1

∂f(qk,uk)

∂uk
ρ

]
.

(2.22)

The adjoint data is computed via the adjoint difference equations

zHk =
∂H(qk,uk, zk+1)

∂qk
(2.23)

which are marched backward in time starting from the adjoint terminal con-

ditions zHM = ∂Φ
∂qM

.

Applying the adjoint difference equations to our equation for the sensitivity

of the cost functional gives

∂J

∂u
ρ =

M−1∑
k=1

∂H(qk,uk, zk+1)

∂uk
ρ. (2.24)

Since ρ is arbitrary, we can now compute the gradient of J with respect to

u directly with the formula

∇uJ =
∂J

∂u
=

M−1∑
k=1

∂H(qk,uk, zk+1)

∂uk
. (2.25)

This gradient can now be used in a gradient-descent search method until

convergence on the optimal set of control parameters uopt. These control

parameters can be used to approximately minimize the cost functional J .
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The following is the algorithm used in the adjoint method. A simple gradi-

ent descent method is used to update the value of the input at each iteration,

but more sophisticated methods can be used as well.

Algorithm 1: Discrete-Time Adjoint Method

Result: The optimal input uopt

Set initial guess u1;

Choose tolerance ε > 0 and search method step size δ > 0;

while ‖∇uiJ‖> ε do

Evaluate the system qk+1 = f(qk,u
i
k) forward in time starting at

initial condition q1;

Evaluate the system zHk =
∂H(qk,u

i
k,zk+1)

∂qk
backward in time

starting at terminal condition zHM = ∂Φ
∂qM

;

Compute ∇uiJ =
∑M−1

k=1

∂H(qk,u
i
k,zk+1)

∂uk
;

Compute ui+1 = ui + δ∇uiJ ;

end

2.4 The Ginzburg-Landau Equation

We demonstrate our methods on the linearized Ginzburg-Landau system

with an additive input term. The Ginzburg-Landau equation is a simplified

version of the Navier-Stokes equation which can be tuned to exhibit a wide

range of stability characteristics [Chen and Rowley, 2011]. The continuous-

time governing equations are given as follows:

∂q

∂t
= −ν ∂q

∂x
+ µ ◦ q + γ

∂2q

∂x2
+ Bu(t) (2.26)

q(0) = q0. (2.27)

The state q is complex. The tuneable parameters (ν,µ, γ) are the com-

plex advection speed, amplification factor, and complex diffusion parameter,

respectively. The amplification factor modifies the state by the Hadamard

product ◦. The term u(t) is a time-dependent, scalar input term applied to

the system by the input matrix B.

In the following analysis, we will use the “subcritical” formulation of the

Ginzburg-Landau equation. Here, the amplification factor µ (Figure 2.1) is
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negative in the extremes of the domain and therefore has a stabilizing ef-

fect on perturbations in this region. The center of the domain experiences

a small, positive amplification which defines the part of the domain that ex-

periences oscillatory dynamics. The subcritical parameters are ν = 2 + 2i,

µ(x) = 0.34−0.005x2, and γ = 1−i. More detail on the implementation of the

Ginzburg-Landau system including the Hermite-polynomial based discretiza-

tion of the derivative operators can be found in [Chen and Rowley, 2011].

The operator A = −ν ∂
∂x

+µ+ γ ∂2

∂x2
represents the state component of the

continuous-time dynamics. The discrete-time operator A is derived using the

relation A = eA∆t where ∆t is the time step. The discrete-time counterpart

to the input matrix is given by B = A−1(eA∆t− I)B. The resulting discrete-

time dynamical system is of the form:

qk+1 = Aqk +Buk. (2.28)

The discrete-time system starts at time step k = 1 with initial condi-

tion q1. For illustrative purposes, we define two initial conditions q{1,1} and

q{1,2} which are Gaussian humps with centers at x1 = −20 and x2 = −10,

respectively. These are shown in Figure 2.1.

-50 -25 0 25 50

x

-1

-0.5

0

0.5

1

q

µ

q{1,1}

q{1,2}

Figure 2.1: The amplification factor µ is given by the blue solid line. The
initial conditions q{1,1} and q{1,2} are given by the red dotted line and the
black dashed line, respectively.
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The resulting uncontrolled dynamics of the system with initial conditions

q{1,1} and q{1,2} are shown in Figs. 2.2 and 2.3, respectively. Note that

the initial condition q{1,1} is far into the negative amplification region and

therefore decays rapidly in time. However, the initial condition q{1,2} is close

enough to the center of the domain that it is convected rightward into the

positive amplification region and displays ongoing, oscillatory dynamics. We

will establish the effect that the choice of data has on the quality of the

resulting DMD-based ROM and DMD-informed adjoint gradients.
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Figure 2.2: The real and imaginary parts of the uncontrolled, poorly
representative data with initial condition q{1,1}.
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Figure 2.3: The real and imaginary parts of the uncontrolled, rich data
with initial condition q{1,2}.
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CHAPTER 3

DMD-BASED OPTIMAL CONTROL

We now apply DMD to the computation of the adjoint gradient in order to

stabilize the Ginzburg-Landau input-output system.

3.1 Formulation

We are given the following discretization of the Ginzburg-Landau equation

qk+1 = f(qk, uk) = Aqk +Buk. (3.1)

We want find an input u which stabilizes the system. To this end, we define

the cost functional

J =
M−1∑
k=1

[
qHk Qqk + ūkRuk

]
. (3.2)

The diagonal matrix Q contains the state penalty weights, and the scalar R is

the input penalty weight. We take Q = I and R = 1. The pair (f, J) defines

an optimization problem with optimal solution uopt. In order to compute

uopt, we follow the analysis in Section 2.3 and construct the adjoint system:

zHk = zHk+1A+ 2QqHk . (3.3)

The resulting gradient is:

∇ukJ = zHk+1B + 2Ruk. (3.4)

We want to investigate whether the low-dimensional, DMD-approximated

operators Ã and B̃ can be used to estimate ∇ukJ . First, we define the low-

dimension dynamical system:
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q̃i+1 = Ãq̃k + B̃uk. (3.5)

The corresponding reduced dimension cost is

J̃ =
M−1∑
k=1

[
q̃Hk Q̃q̃k + ūkRuk

]
, (3.6)

where Q̃ is dimensionally reduced using the expression Q̃ = ŨHQŨ . Follow-

ing the discrete time adjoint method, the following DMD-informed reduced

order adjoint equations can be constructed:

z̃Hk = z̃Hk+1Ã+ 2Q̃q̃Hk , (3.7)

with terminal conditions z̃HM = 2Q̃q̃HM . After computing the reduced-dimension

adjoint data backward in time, the DMD-based adjoint gradient is given by:

∇uk J̃ = z̃Hk+1B̃ + 2Ruk. (3.8)

The following tests address the question of whether ∇ukJ ≈ ∇uk J̃ .

3.2 Results

We want to verify whether the DMD-based adjoint gradient ∇uk J̃ approxi-

mates the full-state adjoint gradient ∇ukJ well enough to solve optimal con-

trol problems. In order to do this, we compare both to the finite difference-

based gradient

∇ukJFD =
J(uk + ε)− J(uk)

ε
, (3.9)

which is computed separately for each time sample k. The finite difference

step size ε varies between 10−10 and 100. The resulting gradient error is given

by

egrad =
‖∇uJ −∇uJFD‖
‖∇uJFD‖

, (3.10)

with the norms taken over all time.

Figure 3.1 shows the dependence of egrad on the finite difference step size
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used to compute ∇uJFD. For comparison, the gradient error resulting from

ROMs informed by the poor data from Fig. 2.2 is compared to that of the rich

data in Fig. 2.3. The rich data approximates the adjoint gradient with an

error multiple orders of magnitude better than the poor data. The converged

value of the rich data gradient error is shown for a wide selection of modes

in Figure 3.2. For this particular configuration, 21 seems to be the optimal

choice for the rank of the DMD approximation. The resulting error at this

point is egrad = 1.062 · 10−4. If any more modes are taken, the gradient error

increases. This is because the data used to compute DMD becomes rank

deficient whereby the singular values in Σ become small, their corresponding

modes represent noise as opposed to true dynamics. The trend in singular

values is illustrated in Figure 3.3.
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Figure 3.1: The error in the DMD-reduced and full-state gradients
compared to a finite difference gradient. The dashed lines represent
gradients derived from the poor data in 2.2, and the solid lines use the rich
data from 2.3.

14



0 10 20 30 40

Number of Modes

10−4

10−3

10−2

10−1

100

G
r
a
d
ie
n
t
E
r
r
o
r

Figure 3.2: The converged DMD-reduced gradient error as a function of the
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because of the rank deficiency of the data matrix Q1.
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Figure 3.3: The singular values of the un-shifted data matrix Q1.

Next, we use these gradients along with a conjugate gradient minimization

method to find the converged control. The Ginzburg-Landau system starts

with the input set to uk = 0 ∀k, and three different types of adjoint-based
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gradient are used to converge to approximations of the optimal input uopt

which minimizes J . The trend in J as a function of the number of iterations

of the search method is shown in Figure 3.4. For comparison, the adjoint

gradients of the 6 and 7 modes DMD-reduced system are used alongside the

full state adjoint gradient.

The uncontrolled system resulted in a cost of J = 2.019 · 103. The 6

and 7 mode DMD-based adjoint methods converged to values of J = 32.67

and J = 10.30, respectively. Using fewer than 6 modes causes a divergence

in the cost while more than 7 modes results in almost perfect convergence

of the adjoint search. The full state adjoint method converged to a value

of J = 9.405. For comparison, the exact optimal solution was computed

by solving the continuous algebraic Ricatti equations and constructing a

linear quadratic regulator (LQR) [Corless, 2003]. The resulting cost was

JLQR = 6.047.

This test demonstrates the effectiveness of DMD in solving the optimal

control of the Ginzburg-Landau system. Only 7 modes were required to

approximate the full state adjoint gradient well enough to converge to nearly

the same optimal input and cost J .
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Figure 3.4: Convergence of the adjoint method to an approximate optimal
control. The dotted red line and the solid yellow line are the 6 and 7 mode
DMD-based adjoint method. The dashed blue line is the full state adjoint
method. The horizontal purple line is placed at the value of the best
possible J given by the LQR solution.
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CHAPTER 4

CONTROL-INFORMED DMD

The quality of our DMD approximations and by extension, our optimal con-

trol depends on the quality of the data. The data must represent the dynam-

ics relevant to the system near the initial guess of input u1, the optimal input

uopt, and all points along the search path. In order to ensure this robustness

to inputs, we need to ensure that the reduced order models we construct

with DMD represent the true dynamics of the system. We prove that Persis-

tence of Excitation (PE) is a sufficient condition on the data to ensure that

the resulting DMD-based dynamical system represents the optimal low-rank

approximation of the dynamics. In order to enrich our data, we propose the

use of an input. The choice of input is inspired by PE and is computed by

solving an optimal control problem. We demonstrate the effectiveness of this

method on the Ginzburg-Landau equation.

4.1 Persistence of Excitation

We want to use an input to enrich our data sets. What exactly does it

mean for our data to be “rich”? We will use the idea of persistent excitation

from the field of system identification [Bai and Sastry, 1985]. In adaptive

control, persistence of excitation is a condition on data that guarantees that

properly chosen adaptive laws will cause estimates of system parameters

to converge uniformly and exponentially to the actual underlying system

parameters [Ioannou and Sun, 2012].

Define the regressor vector φ = [qH(t) · · · qH(t − P )]H where P is a

positive integer. A signal φ(t) is persistently exciting in P time steps if

∃P ∈ Z+ and ∃α > 0 such that
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t0+P∑
t=t0+1

φ(t)φH(t) ≥ αI ∀t0. (4.1)

In order to relate this to DMD, we will prove that if the state data q

satisfies the persistence of excitation condition, then the DMD-estimated

state transition matrix Ā is the best possible low-rank estimate Ar of the

exact discrete-time state transition matrix A.

Suppose we are given the discrete-time, linear dynamical system qk+1 =

Aqk with initial condition q1. This system generates the time series of data

{q1,q2, · · · ,qM}. For convenience, we parameterize the data matrices Q1

and Q2 by the initial condition q1 as follows:

Q1(q1) = [q1 q2 · · · qM−1] (4.2)

Q2(q1) = [q2 q3 · · · qM ]. (4.3)

We now define the exact low-rank version of this dynamical system. First,

we compute the low-rank version of the original state transition matrix A

by computing the svd: A = UΣV H . If we truncate all but the r largest

singular values in Σ as well as all the corresponding modes from U and V ,

we get the exact low rank state transition matrix A ≈ Ar = UrΣrV
H
r . The

corresponding low rank dynamical system is qrk+1 = Arq
r
k. Given initial

condition q1, the data matrices generated by the low-rank system are Qr
1(q1)

and Qr
2(q1).

The third operator we need to define is the DMD-approximated, low-rank

state transition matrix Ā. In order to perform DMD, we specify a particular

initial condition q̂1. DMD minimizes the following error norm ‖Q2(q̂1) −
ĀQ1(q̂1)‖. Using the svd and the pseudo-inverse, we find the matrix Ā of

specified rank r such that ‖Q2(q̂1)− ĀQ1(q̂1)‖ is minimized.

By definition,

‖Q2(q1)− AQ1(q1)‖= 0 ∀q1 (4.4)

and

‖Qr
2(q1)− ArQr

1(q1)‖= 0 ∀q1 (4.5)
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The Young-Eckart Theorem guarantees that the norm ‖Q2(q̂1)−ĀQ1(q̂1)‖ is

minimized when Ā is computed using the pseudo-inverse. However, this does

not guarantee that the norm is identically 0; the quality of Ā is dependent

on the quality of the data.

Our goal is to prove that Ā = Ar when the data used to compute Ā satisfies

the PE condition. In order to do this, we need to prove the following:

‖Qr
2(q1)− ĀQr

1(q1)‖= 0 ∀q1. (4.6)

Take the signal Qr = [q1 qr2 · · · qrM ] generated by the dynamical system

qrk+1 = Arq
r
k with initial condition q1. If this signal is PE, then a suitable

choice of gradient based search (called an adaptive law) will guarantee that

‖Ā− Ar‖→ 0 exponentially fast. Since Qr
1(q1) is a constant,

‖Ā− Ar‖→ 0 =⇒ ‖ĀQr
1(q1)− ArQr

1(q1)‖→ 0. (4.7)

Adding (Qr
2(q1)−Qr

2(q1)) = 0 inside the norm has no effect, so:

‖(Qr
2(q1)−Qr

2(q1)) + ĀQr
1(q1)− ArQr

1(q1)‖→ 0. (4.8)

Rearranging, we get:

‖(Qr
2(q1)− ĀQr

1(q1))− (Qr
2(q1)− ArQr

1(q1))‖→ 0. (4.9)

Since ‖Qr
2(q1)− ArQr

1(q1)‖= 0 ∀q1,

‖(Qr
2(q1)− ĀQr

1(q1))‖→ 0 ∀q1. (4.10)

Therefore, the PE condition implies convergence of DMD to the best pos-

sible low-rank approximation of the state transition operator of the full-state

system. When the PE condition is met, we can expect the resulting DMD-

based reduced order model to be more robust to inputs because it more

closely represents the actual dynamics of the system.
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4.2 Measures of Performance

In order to measure the robustness of ROMs, we propose two choices of

normalized error: the operator error eop and the reconstruction error erecon.

Given a DMD-approximated state transition matrix Ā with rank r, the

corresponding exact low rank state transition matrix of rank r is Ar. We

define the operator error

eop =
‖Ā− Ar‖
‖Ar‖

. (4.11)

This provides a way of measuring the degree to which the DMD-approximated

ROM represents the true underlying low-rank dynamics of the system.

The next error measure measures the degree to which the dynamics of the

DMD-approximated ROM represents the dynamics relevant to the stabiliza-

tion optimal control problem presented in Section 3.1. This error measure

compares the data given by the evolution of the DMD-ROM to the exact

data of the full-state system.

For example, the data in Figure 2.2 generated by the uncontrolled Ginzburg-

Landau equation with initial condition q{1,1} is fed into DMD. This data is

used to compute an approximate state transition matrix Ā1 where rank(Ā1) =

12. The state transition operator Ā1 is applied to the initial condition q{1,2}

in order to reconstruct the original data. The results of this reconstruction

are shown in 4.1. For comparison, the same process is also done using a

model derived from the q{1,2} data and is shown in Figure 4.2.
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Figure 4.1: Here, a DMD-derived reduced order model is computed using
the uncontrolled q{1,1} data. The resulting model is used to reconstruct the
data from the uncontrolled system with initial condition q{1,2}. The relative
error is erecon = 137%.
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Figure 4.2: Here, a DMD-derived reduced order model is computed using
the uncontrolled q{1,2} data. The resulting model is used to reconstruct the
same data set. The relative error is erecon = 2%.

The exact data with initial condition q{1,2} is called qexact and the recon-

structed data is qrecon. The relative error between the two data sets is given

by the following equation:

erecon =
‖qrecon − qexact‖
‖qexact‖

(4.12)
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The reconstruction error given by the reduced order model Ā1 is erecon =

137%, and the error corresponding to Ā2 is erecon = 2%. As can be seen from

Figure 4.1, the reduced order model from Ā1 captures some of the qualitative

behavior of the system, but is quantitatively wrong.

The question now is this: Can we use an input to enrich the q{1,1} data

and construct a better version of Ā1?

4.3 Optimally Persistent Excitation (OPE)

Now, it is time to determine which input would best “enrich” our data set.

We will first cast the Ginzburg-Landau equation in the form of a continuous-

time input-output system:

q̇ = Aq + Bu. (4.13)

The input matrix B is a Gaussian hump located at the variable location xB

with magnitude 1. The input is taken to be u(t) = 1 ∀t.
The corresponding discrete time state transition and input operators are

A = eA∆t and B = A−1(eA∆t − I)B, respectively. We arrive at the following

discrete-time dynamical system:

qk+1 = Aqk +Buk. (4.14)

The initial condition is taken to be q{1,1}. Normally, the uncontrolled system

with this initial condition produces a low quality reduced order model. It

will be our goal to determine how to choose the location xB of the Gaussian

input with the goal of enriching this data.

Persistency of excitation is a strong assumption on the data, and it is usu-

ally not possible to know beforehand how to enforce PE when the dynamics

are unknown. In fact, for the Ginzburg-Landau equation, it is unrealistic to

ever expect the data to be PE. This is because perturbations of the state are

quickly stabilized on the ends of the domain. Instead of strictly enforcing

this condition, we will define a cost functional JPE which measures the de-

gree to which the system fails to be persistently excited. We will use a finite

difference gradient to find the direction of greatest increase of JPE and use

gradient descent to improve JPE.
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First, we collect our state data into the regressor matrix Φ = [q1q2 ... qM ].

We are interested in tracking where this data shows interesting dynamics in

space and time. We define the following collection of Gaussians:

G(x, t)ij = e
−(x−xi)

2

2σ21 − e
−(t−tj)

2

2σ22 . (4.15)

The locations in space and time of the peaks of these Gaussians are given

by the values of i and j, respectively. These values are taken to give coarse

samplings of the spatial and time domains. The Gaussians are plotted in the

x− t plane in Figure 4.3.

Figure 4.3: Gaussian weighting functions used in the PE-inspired cost
functional

We define our cost functional:

JPE =
∑
i,j

1

‖ Φ̇
‖Φ̇‖ ◦Gij‖

. (4.16)

Since activity in the data is more important that simply the magnitude of

the data, we take the derivative of the regressor matrix Φ̇. This is then

normalized because we care more about the distribution of activity within

the domain than we do the magnitude of this activity. The term Φ̇/‖Φ̇‖ is

then multiplied elementwise with one of the Gaussians Gij. The norm of this

term tells us how “active” the state is in the region around the ith point in
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space and the jth point in time. If no activity occurs in this region, then the

inverse of this term results in a strong penalty, but the Gaussians ensure no

blowup occurs. In this way, we see that we want to minimize JPE.

Figure 4.4 shows the trend in JPE plotted against all possible choices of

xB. JPE is high at the extremes of the domain because perturbations in these

regions are quickly stabilized by the negative amplification factor. However,

a broad patch to the left of center of the domain shows the lowest values of

JPE. This is because inputs in this region are convected rightward into the

positive amplification region. This location for the minimum of J is near the

regions where eop and erecon are minimized. Therefore, our choice of JPE is

helpful in trying to improve the robustness of our DMD-ROM. Algorithm 2

searches for the input location which minimizes JPE.

(a) (b)

Figure 4.4: (a) The cost defined by JPE as a function of the input Gaussian
location. (b) The relative reconstruction and operator errors as a function
of the input Gaussian location. Note that the lowest value of JPE occurs
just left of x = −10 and roughly corresponds to the value of x which shows
the lowest errors. The blue rectangle shows the location of the positive
amplification region.
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Algorithm 2: Optimally Persistent Excitation

Result: The optimally exciting input location xPEB
Set initial guess x1

B = −20;

Fix uk = 1 ∀k;

Choose tolerance ε, perturbation magnitude α, and search method

step size δ;

while ‖∇xiB
JPE‖> ε do

Construct Bpert with peak location at xiB + α;

Bpert = A−1(eA∆t − I)Bpert;
Advance the system qk+1 = Aqk +Bpertuk forward in time and

collect the resulting data qpert;

∇xBJPE = JPE(qpert)−JPE(q)
α

;

xi+1
B = xiB + δ∇xBJPE;

end

4.4 Results

We now apply Algorithm 2 to the enhancement of a DMD-based reduced

order model. We use an initial guess for the input location of x1
B = −20.

This input location results in a data set which stabilizes quickly, resulting

in poor data and an inaccurate reduced order model. In Figure 4.5, we see

that over the course of 100 iterations of Algorithm 2, the reconstruction error

gradually decreases indicating a substantially improved ROM. The converged

relative reconstruction error is erecon = 0.82%.

The Ginzburg-Landau system with the converged input and the q{1,1} ini-

tial condition was then used to construct the rank 12 state transition matrix

ĀPE. This reduced order model was then used to compute the data recon-

struction of the uncontrolled system with initial condition q{1,2}. The result

of this reconstruction is given in Figure 4.7. This reconstruction turns out

to be a very accurate approximation of the state in Figure 2.3. We conclude

that the input derived from the minimization of JPE was enough to greatly

enhance the quality and robustness of the resulting DMDc-ROM.
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Figure 4.5: (a) The cost J is shown to be decreasing and converging to
J = 2.428 · 1016. (b) The location xd of the input converges to xd = −11.78.
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Figure 4.6: (a) The reconstruction error converges to erecon = 8.189 · 10−3.
(b) The operator error converges to eop = 0.2998.
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Figure 4.7: The real and imaginary parts of the uncontrolled q{1,2} data
reconstructed using PE-informed DMDc.

4.5 OPE Applied to the Stabilization Problem

The motivation for OPE was the construction of robust ROMs which can

be used for optimal control. In Section 3.1, we introduced the stabiliza-

tion problem for the Ginzburg-Landau system. We will now apply OPE to

improve the “poor” data from Section 4.2. This realization of the Ginzburg-

Landau system has its initial condition at q{1,1} which is to the far left of

the domain. Perturbations in this region decay quickly and showcase only

a limited range of the dynamics of the system. The resulting DMDc-ROM

poorly approximates the gradient of the stabilization problem as shown in

Figure 3.1.

An input Gaussian B with variable location xB is added to the system

as in Section 4.3. As we iterate through the optimally persistent excitation

algorithm, the location of the Gaussian changes to better enrich the data. In

Figure 4.8, we see the cost J of the stabilization optimal control problem as

a function of the number of iterations for a number of choices of xB. As the

input Gaussians move closer to the JPE minimizing location of xB = −11.78,

the approximation of the gradient is improved. The OPE-informed DMDc-

based adjoint method is able to decrease J by 99.4%
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CHAPTER 5

CONCLUSIONS

This thesis explored the usefulness of DMD in optimal control. In particu-

lar, the DMD-based optimal control of the Ginzburg-Landau equation was

successfully implemented. Our results show that DMD can be used to com-

pute the adjoint gradient for linear problems and that the resulting optimal

control closely resembles that of the full-state optimal control problem.

The problem of finding a data-driven reduced order model which is robust

to inputs was also addressed. It was found that control-informed DMDc is

a viable way of constructing reduced order models of systems with poorly

representative data sets. In order to decide on an appropriate input, the

persistency of excitation condition was considered. We chose PE because we

were able to prove that PE of the data guarantees the best possible result

from DMD. Since it isn’t possible to know a priori how to enforce the PE

condition on arbitrary systems, a PE-inspired cost functional was proposed

which rewards signals which have a high level of excitation. It was found

that this cost combined with an appropriate gradient descent algorithm was

able to improve the richness of the resulting data. The improved data led to

a better data-driven reduced order model.

In the future, we would like to extend this method to nonlinear systems. It

is our hope that this work will eventually lead to the construction of robust

and controllable reduced order models for two-phase flows. We hope that

our method will lead us to the optimal control of spray atomization.
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