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ABSTRACT

Capsule Network, introduced in 2017 by Sabour, Hinton, and Frost [1], has

sparked great interest in the computer vision and deep learning community

and offers a paradigm shift in neural computation. In CapsNet, Sabour et.

al. replace classical notions of scalar neural computation with a vectorised

approach. This allows CapsNet to describe input images not only by the pres-

ence of constituent features but also by the pose of detected features, thus

imparting view-point and pose invariance. Hinton’s group and the research

community at large have applied CapsNets to a number of specific problems

and achieved state-of-the-art performance. In contrast, this thesis studies

CapsNet by applying it to complex real world datasets like CIFAR10 and CI-

FAR100 where the CapsNet’s performance is still unproven. We investigate

the operational characteristics of CapsNet for the CIFAR10 problem and iden-

tify several practical limitations of Capsules that inhibit their performance in

an industrial setting. The contribution of this research is the introduction of

residual blocks of primary capsule layers. We developed a novel architecture

for CIFAR10 classification, called ResCapsNet, and find that the model in-

creases validation accuracy to 78.54% from 71.04% achieved by the baseline

CapsNet, at the marginal cost of increasing the number of parameters from

22 million to 25 million. In addition, to extend the generalization of capsules

into deeper networks, we discuss the application of Capsules as hidden layers

in CIFAR100 classification and show that Capsules are largely ineffective in

a latent unsupervised setting. For active supervision of hidden capsules, we

propose methods to train hidden capsules as super-class detectors prior to final

classification.
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Chapter 1: Review of Convolutional Neural

Networks

Convolutional Neural Networks (here onward CNNs), are one of the pinnacle

of breakthroughs in machine learning algorithms. Most Prominently, CNNs

are used in image classification, image segmentation, object detection, action

identification and large scale video recognition among many other applica-

tions of machine learning. The concept, used with multitudes of variations,

has given state of the art results in all of the above applications. They have

even been successfully used in Natural Language Processing settings like text

classification. The invention of CNNs allowed for the departure from tradi-

tional fully connected artificial neural networks that were heavy on computer

memory, thus leading to the generalizability of deep learning models to process

larger and more complex datasets. In the context of this thesis, exclusive focus

will be put on the image classification task in computer vision, which was the

original inspiration for CNNs.

CNNs have been around in the engineering community since the late 1980s.

Inspired by neuroscientific developments at the time and prior research in

Neocognitrons [2] by Fukushima, Deep Convolutional Neural Nets were first

proposed by LeCun et. al. in 1999 [3]. However, up until the mid-2000s,

academia and industry alike agreed that CNNs could not be practically used

for Image Classification due to existing convergence issues of the popular op-

timization algorithm Gradient Descent, combined with limitations in comput-
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ing power. But, as aptly observed by The MIT Press, 2017 [4], CNNs saw

a renaissance with the emergence of high performance computing on Graph-

ics Processor Units(GPUs), and with the availability of large labelled image

datasets that could enable supervised learning on CNNs. Since then, CNNs

have led arguably one of the greatest success stories in deep learning research.

1.1 The Convolution Operation

The backbone of a CNN is the convolution operation. The key idea is to

convolve a filter of trained weights across an input image-space to extract

key features within the image. The extraction is performed using a simple

element-wise multiplication of the filter weights and features of the input that

lie within the receptive field of the convolutional filter. The output is a feature

map that corresponds to locations in the input where the filter has observed

the feature it was looking for. The variety of features detected can be in-

creased by increasing the number of channels in the convolutional kernel. The

key here is training the filter to extract specific patterns in an image that can

add up to more meaningful representations that allow for classification of the

input. Training, as with any deep learning algorithm, is done through the

backpropagation algorithm where Gradient of the loss with respect to func-

tion operations within the algorithm are propagated backwards across hidden

layers so that the weights may be updated. Another key aspect of Convo-

lutional Layers is the introduction of non-linearity into feature maps after

the convolution operation has been performed. This allows the algorithm to

model complex non-linear relationships in images. When CNNs were first in-

troduced, a number of non-linear activation schemes had already existed, for

example, Sigmoid and Tanh transformations. However, the most influential

among non-linearities were developed after CNNs were already introduced,
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namely the Rectified Linear Activation Unit(ReLU). The technique of ReLU

is to simply mask negative values in a feature space with 0, while allowing all

positive values through.

It was soon discovered that stacking convolutional layers one after the

other, in a deep architecture, allowed deep learning algorithms to model even

the most complex features in an image. Lower level layers modelled simple,

rudimentary patterns like lines and curves while the more higher level layers

were able to model complex shapes. The convolution operation itself provided

the advantage of being translation invariant. This means, a convolutional ker-

nel can extract a feature regardless of its translations within the image. This

was a major advantage in a field of neural network research that historically

suffered from models not being able to correct for shifts in a feature’s position

within the image. The Convolution operation also enabled another very im-

portant advantage which is perhaps more responsible for its explosive success,

parameter sharing. The major disadvantage in state of the art Artificial Neu-

ral Networks before CNNs was a parameter explosion on increasing the depth

of an ANN. A fully connected layer introduces weights for every single possi-

ble connection between a lower layer and a higher layer. Naturally, a model

with only fully connected layers becomes both computationally burdensome

as depth increases, and also tends to overfit supervised learning tasks due to

overparameterization. In comparison, the convolution operation enables usage

of the same set of weights (inside the filter) across the whole image. The pa-

rameters saved through this particular usefulness of convolutions enabled the

a marked increase in depth of ANNs using convolutional layers, while at the

same time reducing the risk of overfitting compared to Fully Connected Layers.
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1.2 Disadvantage of Very Deep CNNs

One important disadvantage that researchers started observing with the ad-

vent of Deep CNNs was that the depth of CNNs could not be increased in-

definitely to model increased complexity in the data. It was observed after a

certain depth the performance of CNN starts deprecating. The reason for this

was the famous Vanishing Gradient problem. When the gradient of the loss

is computed, it converges to zero on multiple iterations of the chain rule (the

foundational procedure of Backpropagation). This means that the deeper the

network, the more iterations of chain rule required to compute the gradient at

shallow layers and hence the Vanishing Gradient problem arose. This particu-

lar problem was solved, in part, by the introduction of Deep Residual Networks

by He et. al. in 2015 [5]. The core principle was to introduce skip connections

across sets of convolutional layers so that gradients can flow quickly back to

shallow layers, thereby helping solve the vanishing gradient problem.

1.3 Review of popular CNN Architectures

Over the last two decades, researchers have made astounding progress in image

classification using CNNs. The foundational 7 layer CNN, LeNet [3], archi-

tecture proposed by LeCun et. al. in 1998, classified handwritten digits on

cheques(MNIST) with an accuracy of 98.5%, which was a remarkable result for

its time. AlexNet proposed by Krizhevsky et. al. in 2012 [6], resembled LeNet

but was much deeper with more filter channels per layer. AlexNet achieves a

Top1 error rate of 37.5% on the ImageNet dataset.

A very popular architecture introduced by Simonyan et. al., 2015, was
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VGGNet [7] which was highlighted by a simple, yet powerful deep CNN ar-

chitecture. The network uses simple 3x3 convolutional filters stacked on top

of each other with increasing depth. A version of VGGNet, VGG16, can be

seen used widely not only in image classification tasks but also as base net-

works in object detection and image segmentation tasks as well. VGGNet

resulted in an outstanding performance in the ImageNet Image Classification

challenge giving a Top 1 error rate of 24.7%. It also represented a marked

shift in pushing the limits of depth of CNNs. However, VGGNet suffered a

crucial bottleneck called the Vanishing Gradient problem as explained earlier.

Resnet-18 [5] originally introduced by He et. al. in 2015 delivers a Top 1 error

rate of 27.88 on ImageNet Validation set. However, since Resnets allowed a

major increase in depth of a CNN, the original paper even introduced a 152

layer residual network that gave a top 1 error of 22.16%. This was a major

improvement from classical Deep CNNs.

1.4 Limitations of CNN

While CNNs prove successful in a number of image classification tasks, they

prove inadequate to deal with dimensions of affine transformations on the input

image other than translations. Of course, some data augmentation techniques

like random scaling, cropping, and rotations, help to generalize a model be-

yond the ability to adjust to local translations. However, to capture all possible

affine transformations, the amount of labelled data needed for augmentation

increase exponentially. Further, some transformations may be innately diffi-

cult to capture in a model.

A very good example of such an affine transformation is pose variance.

When a CNN learns to recognize an object it is normally give example images
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of objects captured from specific angle. CNNs however fail to deal with a

change in pose of the object, i.e., an image of the same object from a different

perspective. This proves to be a major drawback of CNNs as real world images

are often subject to shifts in pose and perspective.

Researchers solved this problem in CNNs using MaxPooling, which is a way

of decreasing the size of the feature maps and increasing the receptive field

of higher level convolutional kernels. This allowed higher layers in CNN to

capture disparate characteristics of the image at different parts thus solving the

problem of pose variance to some extent. However, MaxPooling in CNN leads

to a large amount of information loss. Even though Pooling works surprisingly

well in practise, it still does not solve the core of the problem of pose variance.

The focus in this thesis will be on a family of CNN models that do achieve

pose invariance. Capsule Networks [1], introduced by Sabour et. al., 2017, is

a promising new architecture that claims to get closer to the goal of achieving

complete equivariance, which is the ability of CNN models to handle affine

transformations of any kind in the input image.
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Chapter 2: Introduction to Capsule Networks

In 2017, Sara Sabour, Geoffrey Hinton, and Nicholas Frost [1] introduced a new

technique of neural computation which departs from traditional approaches of

CNNs. One major difference is changing the scalar outputs of neurons to

vector outputs. The authors define Capsules as vector entities that encode in-

stantiation parameters of a detected feature, for example, its pose, skewness,

rotation, etc. In turn, the magnitude of the vector describes the probability of

existence of the feature. This shift in computational paradigm allowed Sabour

et. al. to introduce an algorithm called Dynamic Routing by Agreement. The

concept behind Dynamic Routing is to calculate the agreement of Capsule out-

puts between lower and higher level capsules independent of model training.

The result of Routing is therefore based on the input image and the pose of

its object.

It is easy to see how vectorization of neural outputs can enable the com-

putation of ‘agreement’ using inner products. A higher agreement allows the

algorithm to assign a higher coupling coefficient to the output of a lower level

capsule. In theory, the algorithm dynamically allocates the correct low level

features towards the assembly of high level features. Learning the instantia-

tion parameters allows the network to recognize varying instances of the same

object instead of re-learning every variation of features for the object. The

authors show that such a technique generalizes better, and is more robust

towards pose variance and perturbations than conventional CNNs. Capsule
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Networks also reportedly require less data to train than CNNs for the same

task.

One of the main advantages of CapsNet is the elimination of the Max-

Pooling layer that is commonly used in conventional Deep CNNs. While max-

pooling to a degree solves the problem of pose invariance in CNNs, it tends

to lose information as well. CapsNet has been shown to allow high levels of

information retention.

Figure 2.1: Schematic Representation of the Capsules

8



Algorithm 1: Dynamic Routing, proposed by Sabour et. al. [1]

1 Given: uj|i, r, l, l + 1
2 bi,j = 0 for all capsule i in layer l and j in layer l + 1
3 for i = 0 to r do
4 for all capsule i in layer l, ci = Softmax(bi)
5 for all capsule j in layer l+1, vj = Squash(

∑
i ci,juj|i)

6 for all capsule i in layer l and j in l+1, bi,j = bi,j + uj|ivj
7 end
8 return vj

2.1 CapsNet applied to MNIST

Sabour et. al. designed the original CapsNet [1] implementation around the

MNIST classification task. The network consists of only 3 layers; 2 Convo-

lutional layers and a Fully Connected layer. The First convolution extracts

features from the input single channel image, converting the 26 × 26 image

into a 9 × 9 × 256 feature map. The second layer (Primary Capsule) consists

of 8-dimensional capsules where each capsule is a group of 8 convolutional

units. The capsules are spread over 32 channels. Dynamic Routing is imple-

mented between the primary and secondary capsules. Each secondary capsule

is a 16 dimensional vector containing the instantiation parameters of a digit.

A 10 digit classification requires 10 such secondary capsules. The authors have

used 3 routing iterations during dynamic routing. At each routing step, the

algorithm computes the similarity between each primary and secondary cap-

sule and assigns a higher coupling coefficient to capsules that match closely.

Sabour et. al. introduce non-linearity into system using the squashing func-

tion given by σ(u) in Figure 2.1. The function squashes capsules to have a

maximum length of one. Capsules with low magnitudes are squashed toward

zero, while capsules with high magnitudes possess an almost unit length after

squashing.
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2.2 Margin Loss

CapsNet uses a novel Margin Loss to establish presence of a digit. As is the

basic idea of capsules, the length or magnitude of a digit capsule (secondary

capsule) represents the probability of it existence. Margin loss penalizes the

neural network if the length of the capsule representing the true class is not

high enough. At the same time it penalizes the network if an incorrect capsule

has a high magnitude.

2.3 Reconstruction Regularization

Sabour et. al. propose three fully connected layers for reconstruction regu-

larization. The reconstruction loss is scaled down so as to not overpower the

digit classification loss. Loss is calculated by the sum of squared differences

between the true pixel intensities and the output of the final fully connected

layer.

2.4 Performance on MNIST

The authors tested Capsule Networks for two types of classification tasks;

image classification with one class per image, and image classification with

multiple overlapping classes. The results on single class classification was re-

ported as a 0.25% test-error rate which is state-of-the-art considering only

much deeper networks can achieve these results. Without routing, the model

performs worse by a margin of 0.04%, which mildly demonstrates the effec-

tiveness of Dynamic Routing. The effectiveness is clearly demonstrated in the

multi-class classification task with overlapping digits. The authors reported a

5% error rate which is on par with the sequential attention model of Ba et.

al. [8] even with a much higher digit overlap. The major observation however

was in the reconstruction of overlapping digits. Even with highly overlapping
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digits, the model was able to color code digits separately, showing that Sec-

ondary capsules were actually encoding digit information which was later used

during reconstruction.

2.5 Matrix Capsules with EM Routing

Shortly after the release of Capsule Networks with Dynamic routing, Hinton et.

al. [9] published another paper with a vastly more sophisticated perspective on

Capsules. In this version, routing is framed as an Expectation Maximization

problem rather than an Agreement problem. Routing, in this algorithm is a

clustering-like operation. Each higher level capsule is assumed to be a Gaussian

that explains data from lower level capsules. In theory, if we have n higher level

capsules and m lower level capsules then EM routing tries to find n Gaussian

mixtures from m data points and appropriately assigns them to higher level

clusters. The Capsule itself has a slightly different structure than the one

proposed in the Dynamic routing paper. Each capsule consists of a 4 x 4

pose matrix M, that defines the instantiation parameters of a feature from the

input image. In simpler terms, if a Capsule describes a circle, then matrix M

for that capsule describes the properties of the circular shape as observed in

the image and only depends on the input image. In addition, Hinton et. al.

propose an additional scalar A that represents the ’activity’ of the Capsule.

This is slightly different from the first CapsNet work where the magnitude

of Capsules represent the activities. The separation of ’pose’ and ’activity’

decouples the two types of information. This separation of magnitude and

’direction’ is actually a common trick used in computation (for example, weight

normalization by Kingma et. al. [10])
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This new architecture was tested on the SmallNORB dataset. The best

performing model achieves a test error rate of 1.4% which beats the state-of-

the-art in SmallNORB classification. More significantly, the architecture was

tested for adversarial attacks. In theory, Capsules should be able to resist

adversarial perturbations as the pose matrices should describe said perturba-

tions without directly affecting activities. Hinton et. al. tested their Matrix

Capsule architecture on the FGSM adversarial strategy (Goodfellow et. al.

[11]) and found that CapsNet is much less susceptible to adversarial attacks

than conventional CNNs.

Matrix Capsules also reduced the number of trainable parameters by a

large margin. The only downside of this architecture is its specificity to the

problem at hand. The paper did not report performances of experiments on

other conventional datasets, and it is not clear whether this is because the

new CapsuleNet does not work well on those problems. Another possible

issue one might observe is that the number of capsules in each higher layer

is an important hyper-parameter that may need to be tuned for each specific

problem. In the classical Gaussian Mixture clustering problem, the quality

of clusters largely depends on the number of pre-defined clusters that EM is

trying to group data points into. With EM routing in CapsNet, one may need

to find the appropriate number of higher-level capsules for each individual

problem. This is especially a concern when it comes to applying CapsNet in

industry grade problems.

12



2.6 Current developments in Capsule Networks

One of the most interesting works following the original CapsNet paper of

Sabour et al. is Sparse Unsupervised Latent Capsules[12] developed by Rawl-

inson et. al. who argue that the generalizability of CapsNet depends on the

ability to use Capsule blocks in hidden layers. The reasoning of why this the

case is further explained later when this thesis explores the same notion.

Rawlinson et. al. [12] test Capsules in hidden layers where the only mode

of training is through backpropagation of Gradients and not through direct su-

pervision. Note that in both, Capsules with dynamic routing and EM routing,

Hinton’s team use a custom loss function that directly supervises the Capsule’s

training. The researchers found that without direct supervision, hidden (la-

tent) capsules lose their viewpoint invariance and pose equivariance properties

that are desired. In their experiments, only a few capsules are active after

training, and are responsible for almost all of the transfer of information from

lower to higher layers. This thesis will show, how the lack of supervision of

hidden capsules, in fact harms a model’s performance. As an alternative, they

propose a joint sparsification and online boosting algorithm that softly selects

k winning capsules after routing before passing the information to higher lay-

ers. Experiments show that this preserves some of the desired qualities of

capsules. They argue that sparsification is the key to increasing the depth of

CapsNet. This thesis largely concurs with the findings of Rawlinson et. al.

but will also point out a few pitfalls to their approach.
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CapsNet has sparked a lot of interest in the field of medical AI. The follow-

ing literature review provides notable examples where authors have extended

CapsNet research with novel techniques. Mobiny et. al. use CapsNet to detect

lung nodules during lung cancer screening [13]. The authors show that Cap-

sNet performs significantly better than Deep CNNs when a small number of

training samples are available. This is an interesting finding that validates the

usefulness of CapsNet in many real world problems with less available data.

Mobiny et. al. also use Transposed Convolutions during image reconstruc-

tion to reduce the number of parameters while improving performance during

reconstruction. CapsNet has been used successfully in image segmentation

problems as well. LaLonde et. al. [14] propose a U-Net (Ronneberger et. al.

[15])like architecture for segmentation of pathological lungs in CT scans. Their

SegCaps [14] model outperforms U-Net [15] in segmentation accuracy while

drastically reducing network size compared to the original U-Net. Spectral

CapsNet [16], proposed by Bahaduri to make diagnoses on patient time-series

data, aims to increase the efficiency of EM-Routing algorithm of Hinton et.

al. [9] by simplifying the computation of pose vectors of higher level capsules.

Bahaduri’s architecture uses one dimensional vectors rather than matrices for

pose computation due to the sequential nature of the data.

With HitNet [17], Deliege et. al. [17] analyse the core behaviour of Sabour

et. al.’s CapsNet [1] and identify functional aspects of the model that might

in fact be counter-productive to the stated aim of CapsNet. The final Capsule

output of the Sabour et. al. model is a 10 x 16 DIGITCaps layer where each

16 dimensional vector corresponds to a class (in the case of MNIST a digit).

Based on the input image, the vector of the true class encode input dependent

pose and feature information, while its magnitude represents the model’s pre-
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diction of probability of the classes presents. The margin loss is formulated in

a way that pushes the magnitude of the true capsule far away from incorrect

capsules and it does this by increasing the length of the correct capsule while

squeezing the others. Now, let us consider a unit hypersphere which contains

all ten 16 dimensional vectors. The incorrect vectors are points close to the

center while the correct class is a point close to the surface of the hypersphere.

Deliege et. al. [17] argue that training the model in this way leads to loss of

control over the part of hypersphere aimed at by the model to describe the true

class. Additionally there is no way to ensure that two input images of the same

class result in capsules that are close to one another. This is compounded by

a squashing function that universally squeezes all capsules, meaning if many

features within a capsule are large then none of the features will remain large

after squashing. This inhibits how well a capsule can explain the input it is

encountering. Deliege et. al., formulate an alternative ‘Centripetal loss’ that

inverts the notion of training proposed by Sabour et. al. Instead of increasing

the length of true DIGIT Capsules, Centripetal loss pushes true capsules to-

ward the center of the hypersphere described above, while ‘throwing’ incorrect

capsules out towards the surface. This ensures an added layer of control to

the CapsNet model by grouping together capsule representations of the same

class. They achieve model training by introducing a novel ‘Hit-or-Miss’ layer.

Additionally, the researchers use Batch Normalization combined with Sigmoid

activation to mimic the squashing while preserving large features.
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The 2D perspective of Matrix Capsules [9] has been generalized to a 3D

setting for video action recognition by Duarte et. al., 2018 [18]. The group

uses 3D Convolutional Capsules and Capsule Pooling to reduce the number of

trainable parameters in their proposed network. Additionally they use a lo-

calization network, that uses the instantiation parameters inherent to capsules

to track action in videos. The technique achieves state of the art performance

on a conventional action recognition datasets.

Jaiswal et. al., 2018 [19], show that Capsules can be used as Discrim-

inators in Generative Adversarial Networks (Goodfellow et. al. [20]) and

can outperform Conventional convolutional GANs in MNIST and CIFAR10

datasets. Nguyen et. al., 2019 [21], introduce a Capsule Network based em-

beddings model for search personalization and knowledge graph completion.

Their CapsE model uses a Capsules ability to encode intrinsic spatial relation-

ships transforming input knowledge graph matrices into final vector whose

length measures the plausibility of the knowledge graph triplet. A most im-

portant work by James O’Neill [22], extends the idea of Siamese Networks (Sun

et. al., 2014 [23]) for face verification, using Capsule Networks. His proposed

model outperforms strong baselines even when face pairs in the test set were

previously unseen.

Natural Language Processing has seen some developments using CapsNet.

In theory, it is natural to view Natural Language as highly pose variant. Se-

mantically similar sentences may be written in completely unique ways which

is analogous to objects in images varying in pose and viewpoint. Wang et.

al., 2018 [24], propose recurrent neural layers paired with Capsule blocks for

Sentiment Analysis tasks. There proposed model achieves state of the art

in standard datasets, proving the effectiveness of Capsules even in a Natural

Language setting.
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Chapter 3: Thesis Objective

If Capsule Networks can be validated over multiple datasets, then their gener-

alization capacity may be proven therefore making Capsule Networks useful in

the industry. The Capsule Network proposed by Sabour et. al. in both their

original papers fundamentally explore the MNIST data-set and the Small-

NORB dataset. While SmallNORB classification is complicated in its own

right, it still does not prove a Capsule Network’s performance in real world

images. Real world images offer a degree of irregularity both in background and

foreground that make image classification a quite complex problem. Even at 10

classes, the CIFAR10 dataset offers vastly greater complexity than MNIST.

Indeed, Sabour et. al. do not report state-of-the-art performance of their

CapsNet implementation on the CIFAR10 dataset. They report a 10.6% error

rate on a 7 model CapsNet ensemble. However, ensembles in the real world

setting are difficult to deploy due to increased time and resource expenditure

during inference serving. The key motivation behind this thesis is to validate

the performance of a single CapsNet model on the CIFAR10 and CIFAR100

datasets. Further, the thesis will report a thorough investigation of the pit-

falls of CapsNet in a real world image classification setting. Building on the

findings obtained, a number of approaches and model architectures will be

explored that can help implement CapsNet on the CIFAR10 and CIFAR100

datasets. The thesis draws inspiration from a number of key ideas prevalent

in the field of Deep Learning and in specific, ResNet [5].
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Chapter 4: Capsule Networks for CIFAR10

The original capsule network architecture with dynamic routing results in

state-of-the-art performance on the MNIST dataset. The same architecture

was chosen as a baseline model to evaluate performance on CIFAR10 as it pro-

vided a good starting point for understanding the effect of dynamic routing

on more complex image classification tasks.

A number of minor changes were made to the original capsule architecture

for this experiment. The input channels were increased to 3 as CIFAR10 is

expressed in the RGB range. The input dimensions were increased from 28 x

28 to 32 x 32. In the original paper, Sabour et. al. cut random 28 x 28 patches

from the original 32 x 32 images of CIFAR10. From here on the final secondary

capsule which gives the classified outputs will be addressed as CIFAR capsules.

The number of output channels of the CIFAR capsules were increased from

16 (original implementation) to 32 in order to encode more information from

the image. This is because MNIST is a much more simplistic image set than

CIFAR and hence, more encoding capacity is required to explain the classes.

All experiments were carried out for the same constant step size, to maintain

uniformity over test conditions.
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Figure 4.1: Comparison of performance in various routing conditions

Figure 4.1 shows that the baseline Capsule Network implementation does

not perform too well on the CIFAR10 dataset, which was expected. A three

layer model does not have enough depth to accurately learn complicated fea-

ture representations. The high degree of overfitting points towards the model

not learning high level representations but instead trying to fit as many low

level features from the training set as possible. However, the experiment pro-

vides a good basis to understand the effect of dynamic routing in Capsules.

The model achieves a higher test-accuracy with number of routing iterations

greater than one. It is important to note that with one routing iteration the
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model is almost identical to a standard neural net with 2 convolutional layers

and a fully connected layer. Therefore this routing condition can be taken as

a measure of performance of a standard neural net of similar depth on the

CIFAR10 classification task.

While the authors report the best test accuracy at three routing iterations,

the baseline performs best at two iterations on the CIFAR10 dataset. More

iterations lead to greater overfitting. It can also be noted that dynamic rout-

ing allows the model to learn faster, evidenced by the test and train accuracies

saturating much earlier for iterations greater than one. This is an important

feature as the training time of model was noted to be much higher than con-

ventional neural nets. This is owing to the fact that each forward pass during a

training iteration requires n computations of coupling coefficients for n capsule

routing iterations.
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4.1 Stacking Convolutional Layers

Building upon the observations above, further experiments were carried out

by increasing the depth of the network incrementally. The Primary Capsule

layer was preceded by additional Convolutional layers to increase the feature

extraction capacity of the network (shown in Figure 4.2). The experiments

were performed for three routing iterations.

(a) Capsule Network with 1 additional
Convolutional layers

(b) Capsule Network with 2 additional
Convolutional layers

Figure 4.2
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As shown in Figure 4.3, increasing the depth of the network does not

observably improve the best test accuracy. When two convolutional layers

are stacked before the primary capsule, the model learns features quicker,

but saturates at around the same maximum test and train accuracy as the

baseline model. Furthermore, increasing the number of convolutional layers

does not decrease the tendency to overfit. The reason for the observed effects

may be due to difficulties in model training and are not entirely clear at this

point. We conjectured that vanishing gradients may be the cause. However,

it is unlikely for vanishing gradients to take effect for networks this shallow.

Further targeted experimentation is needed to identify the problem.

Figure 4.3: Performance comparison on increasing depth of capsules
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4.2 Residual Capsule Networks

Based on preceding experiments, we propose to introduce residual blocks con-

sisting of primary capsules. The architecture described in this section shows

how one might construct Capsule Residual Blocks with skip connections join-

ing a lower level primary capsule to the routing enabled secondary capsule.

It should be noted that the Capsule Residual Block differs from traditional

Residual Blocks introduced by He et. al. [5]. Unlike the original ResNet

where output feature dimensions of residual blocks are independent of sub-

sequent computation, our model forces primary capsules to share the same

transformation weight matrices prior to routing. Therefore, we must force

primary capsules in two separate branches to be identical in dimensions to

maintain the same number of capsules. The optimal proposed architecture

(Figure 4.4) passes the input image through a Convolutional layer to extract

all features. The output of the convolutional layer is passed to a Primary

Capsule which forms the Convolutional Capsule block preceding the skip con-

nection. The output of the first convolutional layer is also passed to the

wide residual connection through two additional Convolutional layers onto an

identical Primary Capsule layer. The outputs of both Primary Capsules are

merged and then squashed. The merger now produces a temporary capsule

tensor which is dynamically routed through to the final CIFAR capsule layer.

Note that in terms of total number of neural layers, this model differs from

the nearest stacked convolution model in only one additional Primary Capsule

layer. Also, weighted transformation of Capsules and subsequent routing takes

place on the combined feature maps of one shallow and one deep capsule.
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Figure 4.4: Architecture of Residual Capsule Network
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In the experiments, we adopt a slightly modified version of the above archi-

tecture, where the signal splitting occurs at the output of the primary capsule

rather than the first Convolutional layer. This was done due to ease of im-

plementation. However, this makes the architecture slightly unstable due to

numerous tensor manipulation operations.

Figure 4.5: Performance of ResCapsNet against prior models
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Model Routing iterations No. of Params Test Acc.(%)
1. Baseline 1 22m 71.94
2. Baseline 2 22m 74.16
3. Baseline 3 22m 73.19
4. Baseline 4 22m 73.44
5. +2 Conv 3 27m 74.35
6. ResCapsNet 3 25m 78.54

Table 4.1: Performances of various Capsule architectures on CIFAR10 classi-
fication

The first observation is the dramatic improvement in test accuracy when

the Residual capsule block is used. Compared to the Baseline CapsNet with 1

routing iteration (a standard neural net), this model delivers a 6.54% increase

in validation accuracy. It outperforms the nearest best performing CapsNet

model with two additional stacked convolutional layers by 4.19% while using

2 million less parameters. It can also be observed that the model overfits

much less this time around even though it takes greater epochs to achieve the

same results as its simpler counterpart. The highlight of the result however,

is that capsules placed in independent branches of residual blocks seem to

reinforce each others learned features. Both Primary Caps layers share the

same transformation weight matrices and are successful in imparting pose-

invariance through dynamic routing. The technique reduces the need for any

additional weights prior to routing apart from the one’s introduced by convo-

lutional layers. We conjecture that the model can be improved by introducing

skip connections to more than two primary capsule layers placed at arbitrary

depths within a deep CNN, prior to a final routing layer, that is, we propose

to include additional nested branches of Capsules where each branch pushes

deeper into the network and all capsules branches merge toward one routing

module.
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Chapter 5: Limitations of CapsNet

It is evident that Capsules and the mechanism of Capsule coupling show

promise. With further research and application Capsule Networks may even

replace traditional CNNs. However, there are a number of limitations that

were discovered during research and experimentations. These limitations need

to be addressed before Capsules can be applied in any useful way within the

industry.

The practical aspects of training and inference serving are a cause for con-

cern. While dynamic routing certainly increases the network’s capacity to

assemble parts of a whole, it is also a time consuming process. The more

capsules within a network, more are the parameters that need to be computed

at each routing iteration. Consequently, the wider or denser the network, the

more time required for dynamic routing.

Investigating further into the problem of memory usage, in a typical Cap-

sNet, the number of trainable parameters in a Capsule layer is orders of mag-

nitude higher than a typical Fully Connected layer. Consider a transformation

weight matrix W ∈ RD×d where D is the dimension of a higher level capsule

and d corresponds to a lower level capsule. For j secondary capsules and

for a convolutional capsule with k channels and edge length l, we obtained

d×D× l× k× j many trainable parameters. Even if all the individual quan-

tities in the above expression are reasonable, increasing even one parameter
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leads to an explosion. Compare this to a fully connected layer that has simple

one 2D transformational weight matrix. As a result, the number of capsules in

the final layer are a major hindrance toward applying capsules to large prob-

lems. As we switch from CIFAR10 to CIFAR100 classification, we see that

parameters explode by a factor of 10.

Indeed the number of discriminatively learned weights comprise the largest

proportion of the original Capsule Network model parameters. This is in stark

contrast to the philosophy of Convolutional layers which make deep learning

models much more lightweight by sharing weights across an input feature map.

In the current dynamic routing regime, it is intractable to place a capsule at

the final layer of CIFAR100 classification models due to parameter explosion.

At the same time, training CapsNet requires a strongly supervised learning

mechanism using the Margin Loss, which explicitly forces secondary capsules

to encode pose information. It is not possible to achieve this unless Capsule

layers are placed at the end of a neural network model. Hence, there is a depth

limitation for supervised capsules.

Complex problems require larger depth. The depth of Capsule networks

can only be increased by stacking standard convolutional blocks and for prob-

lems that require more than 10 layers of depth, Capsules in the final layer serve

little to no purpose as the major contribution is that of prior convolutional

layers.

28



Chapter 6: Supervised Hidden Capsules for

CIFAR100

The inability to place capsules in hidden layers limits the generalizability of

CapsNet. It is easy to see that performance gain can be maximized if hidden

layer capsules behave the same way as Digit Caps in Sabour et. al.’s CapsNet

[1], and encode the same equivariance relationships for hidden features. Sparse

Unsupervised Capsules [12] by Rawlinson et. al., are a potential solution to

this challenge, and can enable deeper Capsule layers. However, Rawlinson et.

al. do not address the parameter explosion problem that limits the size and

width of hidden capsule layers. Further, an unsupervised approach removes

control over the kind of equivariance relationships and pose information that

we would like to encode. We explored a possible solution that uses supervised

hidden capsules for CIFAR-100 classification. However, the efficacy of the

solution is still under research and validation. The model is therefore discussed

as a concept and the experimental results highlight some of the failures of this

approach.

The architecture takes advantage of the 20 superclasses of CIFAR100. In-

stead of learning to encode every individual class for all 100 classes the model

forces capsules to encode superclass information and fine tunes the capsules

using the final classification loss. Due to the complexity of CIFAR100, a head

network is used to extract features prior to Dynamic Routing. Normally this

can be a simple ResNet model. In this thesis, the Wide-Residual Network [25]

by Zaguroyko et. al. is used. Two different losses are used, Sabour et. al.’s
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Figure 6.1: High level Concept for Supervised Hidden Capsules
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Margin Loss and Cross Entropy loss.

The Wide ResNet blocks extract input features, and pass their output to

the Primary Capsules. The Capsules are routed to 20 secondary capsules,

called Coarse Capsules for 20 coarse classes, each being 32 units long. Margin

Loss is then used to compute loss between the capsule output logits against

true superclasses. Finally, two fully connected layers (in this case, 2 FC lay-

ers were chosen as the Classifier network) transform capsule outputs to a 100

dimensional softmax output. The fully connected layers are explicitly trained

using Cross Entropy Loss computed against fine class labels, and gradients

are backpropagated through the whole network in order to fine tune Capsules

and the head network. By using capsules as hidden layers, the architecture

reduces the number of learnable weights in the capsule layers by a factor of five

while maintaining the width of capsule layers to encode as much information

as possible. In essence each 32 dimensional coarse capsule is assumed to be an

embedding of the input image specific to that coarse class (super-class). When

the fully connected layers succeeding the capsules are trained, the capsules en-

code fine-tuned input image embeddings to resolve all fine classes within a

coarse class. Fully connected layers share weights across all 20 coarse classes

to make the model lightweight. The training of capsules combined with the

squashing function ensure that for each input image the fully connected layers

receive emphasis on the position of the winning capsule along with its encoded

information.

Training the network can be done using multiple strategies. One strategy

is to combine the final classification and superclass classification loss. The

coarse margin loss and fine cross entropy loss may be added after scaling down
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the margin loss. In theory this would emphasize training towards the final

prediction of classes while weakly supervising capsules to encode coarse class

information. The loss can be formulated as,

Loss = λ×Margin Loss + Cross Entropy Loss

During experimentation, a range of scaling parameters for Margin Loss were

tested but during each experiment, the model broke down completely and

failed to train. There are two likely explanations for the observed behaviour,

one being that Margin Loss entirely dominates the final classification loss no

matter what the scaling coefficient. The more likely explanation might be due

to some incorrect backpropagation of Margin Loss Gradients across the clas-

sification layer. The problem might be solved by performing two different and

independent backpropagation steps where Margin Loss gradients do not pass

the classification network but Cross Entropy gradients are allowed to back-

propagate across the whole network.

As an alternative, the simpler and more assured method of training would

be a two-step training protocol. First, we exclude the classification network

while training capsules to detect coarse classes. In this step, only the margin

loss is used against the output logits of Capsules. In the second step, the FC

layers are connected to capsules for final classification of classes and Cross

Entropy Loss is used to train the entire network. This method however, has

not been tested and subject to future work.

One might question the worthiness of an architecture that takes advantage

of pre-existing semantic groups among classes to supervise Capsule training.
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But this is actually not a far fetched notion. Most real world problems with

high class counts likely contain semantic groupings that can be made use of. In

fact, the idea is similar to Hinton et. al.’s [9] work of finding latent Gaussians in

higher level Matrix Capsules. Except in this case, it is a much more controlled

method of making Capsules behave the way we want them to. Many Machine

Learning problems require a clustering based pre-exploration of hidden com-

munities in data. The same cluster assignments may be used to determine the

number of hidden Capsules.

6.1 Unsupervised Hidden Capsules

Scaling Margin loss to zero results in an unsupervised hidden capsule layer.

This is the case where, according to Rawlinson et. al. [12], only a few randomly

assigned capsules remain active and are reinforced throughout the training pe-

riod thereby losing properties of equivariance imparted by dynamic routing.

We tested the performance of unsupervised hidden capsules against our Wide-

ResNet benchmark classifier.

In Figure 6.2, it is clear that not only do unsupervised capsules lose de-

sirable pose in-variance properties but also impede model performance. This

should be quite likely if only a few Capsules are active and more signals are

being ’squeezed’ through the active capsules. The findings validate our previ-

ously stated hypothesis. It is either necessary to sparsify capsule outputs or to

find a way to supervise hidden capsule training even if the training is weakly

supervised.
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Figure 6.2: Performance of Unsupervised Hidden Capsules against Wide-
ResNet baseline (Test Accuracy)
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Chapter 7: Future Work

First and foremost, back-propagation of Gradients in the proposed Hidden

Capsule architecture needs to be perfected. If the joint loss computation

seems unfeasible then a two step training process will be explored. Possibly an

intermediate verification step is required to monitor the Hidden Capsule’s pre-

diction accuracy with respect to coarse classes. If validated, only then can we

proceed with the fine tuning step. We need to also explore the generalization

of SparseCapsule ([12]) where sparsity constraints are introduced while simul-

taneously supervising Hidden Capsules. This would generate a much more

robust model, combining the positives of both approaches.

Through the course of this thesis, an interesting question arose but could

not be explored due to time constraints. A large portion of the Capsules

limitations seems to be associated with how we are training the transforma-

tion weights. However, no researcher has so far explored if we need learnable

weights between routing capsules at all. In Sabour et. al.’s CapsNet, a major

reason why trainable weight matrices are used is to make lower and higher

level capsules mutually compatible for Agreement computation. If we impose

a constraint of equal dimensionality then agreement can simply be framed as a

problem of finding the best non-linear combination of vectors at each capsule

layer. This makes routing similar to existing notions of Attention Mechanisms.
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A successful implementation of agreement routing without transformation

weights would enable us to arbitrarily place routing modules in hidden layers,

which is one step closer to the complete generalization of Capsule layers.

Leading up to the development of ResCapsNet, there was evidence to sug-

gest that Dynamic Routing somehow inhibits learning representations in shal-

low layers. Normally, shallow neural networks tend not to overfit as easily as

CapsNet does. Since vanishing gradient is unlikely at such depths, we conjec-

ture that there may be two possible explanations for this. Dynamic Routing

or any kind of Agreement based routing has a tendency to self-bias. Once a

’favorite’ primary capsule has been chosen on account of random weight ini-

tialization, the same choice for all subsequent inputs is only reinforced as the

coupling coefficients converge in favor of the ’favorite’ capsule. This may lead

to existence of inactive capsules which propagates back toward shallow layers,

thereby limiting the amount to which they learn. The second argument is

that Gradient backpropagation in Capsules Networks occurs through the ‘un-

rolled’ routing steps. The effect of accumulation of coupling coefficients on the

differential with respect to a lower level capsule leads to either an exploding

gradient or a very low gradient depending on the magnitude of coupling coef-

ficient. A more theoretical approach is needed to examine model convergence

during routing, complemented by experimental examination of gradients in

shallow layers. Another interesting future line of research would be to run

targeted experiments to examine the distribution of capsules that are inactive

or active at the end of training.
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In the broader context, our work on Residual Capsule block needs to be

generalized to Matrix Capsules with EM routing. To a large extent the pa-

rameter explosion problem may be solved if our method of increasing network

depth by sharing weight matrices across capsules can be integrated with the

lightweight nature of Hinton et. al’s. proposed Matrix Capsule architecture [9].

A major future work would be to study adversarial attacks on Capsules.

The growing challenge for the AI industry is that of protecting CNNs against

malicious attacks. In that respect, CapsNet may be at the frontline of ad-

versarial resistance in neural networks. Hinton et. al. have tested Matrix

Capsule’s [9] resistance to adversarial attacks but only using the FGSM strat-

egy [11] by Goodfellow et. al. A larger scale of study is required to determine

the true qualities of adversarial resistance exhibited by both Matrix Capsules

[9] and Vector Capsules of Sabour et. al [1]. A comparative adversarial attack

study between the two types of Capsules applied on the same routing protocol,

would show us if the decoupling of ’pose’ and ’magnitude’ in Matrix Capsules

actually helps build adversarial resistance. We conjecture that Capsules could

be modelled to have three distinct descriptive quantities rather than two. In

addition to ’pose’ and ’magnitude’, Capsules could also model the ’perturba-

tion’ aspect of inputs to separate adversarial perturbations from the desired

signal.
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Chapter 8: Conclusion

In this thesis, we explored an explosive new field of research that has sparked

wide-spread interest in the machine learning community. Within a year of

its introduction, Capsule Networks had already beaten state-of-the-art bench-

marks in a variety of computer vision and and even natural language related

tasks.

This thesis took a closer look at the research behind Capsule Networks,

focusing specifically on one aspect of its performance; Are Capsule Networks

applicable to complicated, noisy, real world image classification problems? The

CIFAR10 and CIFAR100 datasets were taken as test cases for this study. A

number of limitations were discovered that made the generalization of CapsNet

difficult. CapsNet natively has a tendency to over-parameterise and overfit in

more complex problems. In order to extend Capsules to complex datasets,

Residual Capsule Networks (ResCapsNet) was introduced. We found that

our proposed model beat the baseline CNN in validation accuracy by 6.6%

with only a 13% increase in the number of parameters. More significantly, it

beat an equivalent capsule network of similar depth by 4.19% in validation

accuracy, while using 8% lesser parameters. With this result, we found that

primary capsules placed at different depths that are made to share transfor-

mation weight matrices prior to routing, retain qualities of pose and viewpoint

in-variance. This finding is an important step towards generalizing CapsNet

for larger problems.
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Preceding experiments and contributions were all made under the condition

of direct supervision of Capsule training through the margin loss. However, on

the CIFAR100 problem, we found that placing secondary ‘routing’ capsules in

hidden layers without direct supervision does not lead to improved validation

accuracy. We argue that without a custom loss function directly supervising

the training of the Capsule layer, Capsules tend to lose their pose and view-

point invariance properties. We propose a method to integrate margin loss of

the original CapsNet by Sabour et. al to train hidden capsules as super-class

detectors. However, due to errors in network design and incorrect backprop-

agation, we failed to validate the performance of supervised hidden capsule.

Alternative step-wise training protocols are an interesting future direction of

research.
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