
c© 2019 Hussein Darir

PRIVACY-PRESERVING NETWORK CONGESTION CONTROL

BY

HUSSEIN DARIR

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Mechanical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Professor Geir E. Dullerud

ABSTRACT

Cyber-physical technology is applied in various domains and connect com-

putation with physical processes. Distributed cyber-physical networks have

had a major impact in the area of networking and communications, more

specifically on the Internet.

The Internet nowadays is an important tool of communication, however

one of the main challenges facing users on the Internet is maintaining privacy,

especially when facing widespread surveillance.

Anonymity networks have emerged as a solution to this problem by allow-

ing users to conceal their identities online. The most successful anonymous

communications network to date is currently the Tor network. It is operated

by volunteers around the world and has many users worldwide. However,

the trade off between performance and anonymity has always been a major

problem for this type of networks.

Users’ traffic in Tor is routed across a series of servers; each user’s path

going through the network transits three of them. This process of path

selection creates a load balancing problem that could lead to network con-

gestion. Congestion may deteriorate the network performance and service

quality resulting in queuing delay, data packet loss and the blocking of new

connections.

In this work, we study the problem of load-balancing in path selection in

anonymous networks such as Tor. We first find that the current Tor path se-

lection strategy can create significant imbalances. We then develop a (locally)

optimal algorithm for selecting paths and show, using flow-level simulation,

that it results in much better balancing of load across the network.

Our initial algorithm uses the complete state of the network, which is im-

practical in a distributed setting and can compromise users’ privacy. We

therefore develop a revised algorithm that relies on a periodic and differ-

entially private summary of the network state to approximate the optimal

ii

assignment. Our simulations show that the revised algorithm significantly

outperforms the current strategy while maintaining provable privacy guar-

antees [1].

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

First and foremost, the utmost gratitude goes to my parents. Nothing would

have been possible without their love and support. They worked hard and

risked everything unconditionally to ensure my well-being and my success.

I would like to thank my brother Ali for being the kind-hearted and caring

brother, and Dalia for loving and supporting me along my journey. Without

my family, I would have never fulfilled this accomplishment.

I would like also to thank my advisor Professor Geir Dullerud for offering

me the chance to work in his research group. His continuous support and

help as well as his guidance and advice during the past years were of utmost

importance to me. This thesis would not have been accomplished without

him. I want to thank him for being the ideal academic advisor as well as a

life mentor. Also, I would like to thank Professors Nikita Borisov and Sayan

Mitra for their plentiful collaboration which had a major impact on the ideas

and methods presented in this thesis.

Moreover, I would like to thank my friend and colleague Hussein Sibai for

being the go-to friend and supportive mentor in my research, without his

contribution and experience, this work would not have been achieved. I also

want to thank my friends: Nabil Ramlawi, Hasan Dbouk, Patrick Birbarah

and many more from the Lebanese community at UIUC for their invaluable

companionship.

Finally, I want to thank National Science Foundation (NSF) for supporting

this work through a research grant (Grant No. 1739966).

v

CONTENTS

LIST OF FIGURES . vii

Chapter 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Related Work . 4

Chapter 2 PRELIMINARIES . 8
2.1 Anonymous Networks and Tor 8
2.2 Max-min Fairness . 9
2.3 Differential Privacy . 11

Chapter 3 RANDOM ALLOCATION ALGORITHM 13
3.1 Random Allocation Algorithm 13
3.2 Implementation of the Random Allocation Algorithm 13
3.3 Conclusion . 16

Chapter 4 LOCALLY OPTIMAL INCREMENTAL PATH AL-
LOCATION . 17
4.1 Algorithm Description . 17
4.2 Algorithm Correctness . 20
4.3 Implementation of the locally optimal algorithm 22
4.4 Conclusion . 23

Chapter 5 DIFFERENCIALLY PRIVATE ALGORITHM 24
5.1 Overview . 24
5.2 Pair-based Algorithm . 25
5.3 Batch Path Allocation Algorithm 29
5.4 Adding Differential Privacy 31
5.5 Implementation of the Differentially Private Optimal Path

Allocation Algorithm . 33
5.6 Conclusion . 37

Chapter 6 CONCLUSION AND FUTURE WORK 38

BIBLIOGRAPHY . 40

vi

LIST OF FIGURES

1.1 Anonymous communication networks: Tor. 2
1.2 Users paths and servers in Tor. 2

2.1 Measured relay bandwidths from two Tor consensus docu-
ments: February 5, 2018 at 19:00 (UTC) and July 26, 2018
at 00:00 (UTC). Note the logarithmic scale of the y-axis. . . . 9

2.2 Max-min fairness allocation algorithm input and output. . . . 11

3.1 Random allocation algorithm inputs and outputs. 14
3.2 Bandwidth allocation of 1 million paths using the random

algorithm 2. 15
3.3 Bandwidth allocation of 10 000 paths using the random

algorithm 2. 16

4.1 Optimal allocation algorithm inputs and outputs. 18
4.2 Graph comparing the bandwidth allocation of one million

paths generated using the locally optimal algorithm 2 and
the random algorithm 3. Note the logarithmic scale of the
y-axis. 23

5.1 Graph comparing the bandwidth allocation of 10 000 paths
generated using the pair-based algorithm 4 and the locally
optimal algorithm 3. 28

5.2 Graph comparing the bandwidth allocation of one million
paths generated using pair-based algorithm 4 and locally
optimal algorithm 3 (in blue). Note the logarithmic scale
of the y-axis. 29

5.3 Graph comparing the bandwidth allocation of 600 000 paths
generated using the random algorithm 2 and the batch al-
gorithm 5. Note the logarithmic scale of the y-axis. 31

5.4 Differentially private path allocation algorithm implementation 35
5.5 Graph comparing the bandwidth allocation of one million

paths generated using the differentially private algorithm 7
and using the random algorithm 2. Note the logarithmic
scale of the y-axis. 36

vii

5.6 Comparing random allocation in algorithm 2 to a sample
of 10 000 circuits out of 1 million that were generated by
the differentially private algorithm 7. 36

viii

Chapter 1

INTRODUCTION

1.1 Motivation

Cyber-physical systems connect the physical world to the world of commu-

nication and computation [2]. This integration must be done efficiently, se-

curely and safely. Cyber-physical technology is applied in different domains

such as critical infrastructure control, alternative energy, manufacturing and

social networking [3]. Of particular importance is the application of cyber-

physical technology in the Internet where the anonymity of users is an im-

portant property that should be addressed.

Throughout human history, methods of communication seem to be equipped

with different tools guaranteeing anonymity. In fact, the Internet is no ex-

ception. By nature, users of the Internet are shielded behind their computers

and are able to communicate without being limited by geographical bound-

aries [4]. Users around the world take advantage of this features for various

purposes.

However, the Internet does not provide the level of anonymity that it might

appear to guarantee. Users’ messages sent from a computer are tagged with

an address that enables the recipient to respond. Combining this address

with some information from the service provider can allow the identification

of the source. As an example, communications happening over higher-level

protocols, such as email, usually contain information allowing the tracking

of a message back to the sender.

Nowadays, users are increasingly turning to anonymous communication

networks to protect themselves from surveillance, online tracking, or govern-

ment censorship.

Anonymizing services, such as the Tor network (fig. 1.1), tackle the issue

of tracking. In order to achieve anonymity, users’ traffic in the network are

1

Figure 1.1: Anonymous communication networks: Tor.

Figure 1.2: Users paths and servers in Tor.

encrypted within multiple layers of encryption.

The Tor network has several million daily active users [5] and has recently

been integrated into the privacy-focused Brave browser [6].

To achieve anonymity in Tor, users’ traffic is routed across a series of

servers, called relays. There are several thousand relays, run by volunteers;

each user’s path through the network, called a circuit, typically transits three

of them, as depicted in fig. 1.2. Each relay sees the immediate previous relay

as the origin and the immediate next relay as the destination. Thus, no

relay knows both the true origin and destination of the packet. However,

this creates a load-balancing problem of assigning circuits to relays while

ensuring no relay gets overloaded and all circuits receive good performance.

Complicating this problem are the highly heterogeneous relay capacities—

spanning some five orders of magnitude—and the privacy requirements of

circuit construction. In particular, no one except the user must know the

entirety of the circuit, precluding any centralized load-balancing solution.

Currently, the Tor network uses a randomized assignment of flows cir-

2

cuits to relays, where each user chooses the relays for their circuits randomly

weighted by their measured capacity (with some other constraints, see sec-

tion 2.1). This ensures that each relay has the same average load; however,

as we will demonstrate in section 3.1, this can create significant imbalances

at any given point in time. We therefore consider the question of whether

it is possible to provide better load balancing while satisfying the privacy

requirements.

In this thesis, we first study a non-private load-balancing algorithm. We

adapt an algorithm that calculates the max-min-fair allocation of bandwidth

to circuits to select an optimal set of relays for a new path. We show that

this results in significantly better load-balancing. Running this algorithm for

each new flow would be impractical, therefore we create a batch version of

the algorithm, which speculatively generates new circuits using the optimal

algorithm and uses these circuits to induce a distribution over the relays,

which is then sampled from to generate new circuits. Note that, unlike the

Tor algorithm, the distribution reflects the current state of the network and

is periodically refreshed; we show that this results in significantly better

load-balancing performance than the Tor algorithm.

We then design a private version of this algorithm. Rather than working

with a list of circuits, we break each hop into two 2-hop segments. We can

then summarize the state of the network by creating a histogram of segments

with one entry for each pair of relays. Our design is motivated by the fact that

each entry in this histogram can be filled in by a single relay; moreover, each

relay can locally add noise to the entry resulting in a differentially private

histogram. We show that using a private histogram, we can implement a

modified batch algorithm that approximates the optimal load-balancing. Our

experiments show that the algorithm results in significantly better balanced

circuits than the Tor randomized approach, while preserving privacy.

1.2 Contributions

In this thesis, our main contributions are as follows:

• We first show through flow-level simulation, that the current Tor path

selection strategy can create significant imbalances.

3

• We develop a (locally) optimal algorithm for selecting paths and show,

using flow-level simulation, that it results in much better balancing of

load across the network.

• We develop a revised algorithm that relies on a periodic, differentially

private summary of the network state to approximate the optimal as-

signment.

• We show through flow-level simulation, that the revised algorithm sig-

nificantly outperforms the current strategy while maintaining provable

privacy guarantees.

1.3 Related Work

There is a significant amount of work dealing with the different aspects of

Tor performance. Hundreds of thousands of daily users currently use the

Tor [7] anonymity network in order to ensure and enhance the privacy of

their communications [8]. Significant effort has been initiated in order to

improve different aspects of performance of the Tor network, which suffers

from high congestion and latency [9]. Those efforts tackle different features

of the network; specifically improving Tor’s circuit processing [10, 11], relay

recruitment [12, 13], transport mechanism [14, 15], and relay selection [16,

17, 18, 19, 1]. This section surveys previous research papers that investigated

the relay selection problem in Tor and aimed to improve it by trading off its

performance with anonymity.

The survey by AlSabah and Golberg [20] covers different aspects of Tor

performance and examines the design of the Tor network. The survey iden-

tifies some of the shortcomings of Tor’s design, and based on the outlined

weaknesses presents classification of research directions and ongoing work.

One of the main problems outlined in the survey is the inconvenient perfor-

mance that manifests itself in the form of large and highly variable delays

and download times experienced during web surfing activities.

As stated in section 1.1, users of Tor select a source routed circuit formed

by three relays by querying any one of several authoritative directories. After

choosing the relays and constructing the circuit, the user’s traffic is forwarded

4

through this circuit using a layered encryption scheme based on onion routing

[21].

Snader and Borisov tackled the problem of path selection in Tor and

suggested biasing selection towards higher bandwidth relays, showing that

it improved performance in both simulation and real-world Tor measure-

ments [18, 22]. Herbert et al.proposed a relay selection algorithm for opti-

mizing the queuing latency while modeling Tor traffic as an M/D/1 queuing

network [23]. Both these papers assert that the selection of relays weighted by

their bandwidth results in suboptimal path selection, however their solutions

did not include any feedback mechanisms.

Wang et al. presented a congestion-aware path selection algorithm [24].

Their algorithm proposed performing latency measurements by users on cir-

cuits in the network, in order to identify overloaded relays and avoid selecting

them during the path selection process. Even though each user will have a

partial view of the network, the experiments conducted have shown that sig-

nificant improvements can be realized. Likewise, Conflux [25] aims to reduce

network congestion by multiplexing traffic across two paths through the Tor

network. Although performance can be improved by using this technique

however the last relay in the circuit cannot be mitigated since this is where

the traffic must converge. Both of the aforementioned scheme enable the user

to have a partial view of the network in order to detect and avoid congestion

rather than balancing load across the entire Tor network, as in the scheme

that will be presented in this thesis.

Sherr et al. [26] suggest replacing the relay-based path selection process

with a link-based one. According to their observations, choosing paths based

on link characteristics such as the number of traversed Autonomous Systems

(ASes) or latency, can enhance the performance of the system.

LASTor [16], proposed by Akhoondi et al., presents a new approach for

selecting path in the Tor network. Instead of basing the selection process

on relays’ capacity or links’ latency, LASTor is a weighted shortest path

algorithm, where routing decisions are based on the geographical distance

between the source and the destination. One main advantage of this algo-

rithm over the others is that only user-side updates are required instead of

the expensive router updates.

Wacek et al. [27] assess the performance and security of the aforemen-

tioned path selection algorithms. To realistically model the live Tor network,

5

an emulated scaled-down Tor network is used. Their results show that the

congestion-aware algorithm, proposed by Wang et al. has the best perfor-

mance when compared to the others, while also preserving anonymity. On

the other hand, LASTor has the poorest performance but induces the highest

anonymity guarantees.

Chen et al. [28] also studied the problem of path selection by studying

the performance impact of changing the number of relays in a circuit. Their

observations show that reducing the number of relays in a path and the geo-

graphic distance between relays helped improve performance and reliability.

However those changes caused a reduction in the anonymity guarantees of

the network.

Despite the growing interest in the problem of path selection techniques in

the Tor network, none of the proposals presented have been evaluated under

more realistic conditions that reflect the ones encountered in a live anonymity

network. In fact, it is shown [18, 11] that the performance improvements at-

tained under simulations and modeling are not usually manifested when the

algorithms are tested under more realistic conditions [29, 30]. Although ad-

vantageous effects of a given algorithm may be experienced when tested for a

small number of clients or relays, however unexpected negative consequences

may arise when applied on a larger scale network.

In order to achieve load balancing in Tor, an accurate measure of relay

capacity is required, which is currently performed by TorFlow [31]. TorFlow

uses bandwidth authorities to proactively measure relay performance, and

incorporates a long-term feedback mechanism: relays that are assigned too

high a bandwidth value and become overloaded will perform worse in subse-

quent measurements and thus have their consensus weight reduced, and vice

versa. This feedback, however, occurs over a period of days and does not

deal with more transient congestion and load imbalances. EigenSpeed [32]

proposed an alternate measurement approach that relied on opportunistic

measurements of relays by other relays. In EigenSpeed, each Tor relay re-

ports the speed of its connections to other relays. The authority receiving

those measurements, applies Principal Component Analysis (PCA) in order

to generate bandwidth estimates. Johnson et al. identified several attacks on

both TorFlow and EigenSpeed and proposed an improved peer measurement

scheme called PeerFlow [33].

Capacity estimation techniques are susceptible to attacks, Karame et al.

6

[34] describe those attacks and propose relying on a trusted network hardware

to secure these measurements. Suselbeck et al. [35] suggest estimating the

capacities based on active traffic injection and passive measurements. Hae-

berlen et al. propose the PeerReview system [36], that detects misbehavior

in a distributed system while using information related to relays’ activities

and actions.

Anonymity is the principle objective of this type of networks. However,

as most anonymous communication networks, Tor is vulnerable to traffic

correlation attacks. An adversary controlling a certain number of relays in

the network, can apply any one of many known traffic analysis attacks [37, 38]

in order to correlate the source and destination.

7

Chapter 2

PRELIMINARIES

In this chapter, we review the key properties of anonymous communica-

tion networks relevant to load balancing. We then present the max-min fair

bandwidth allocation algorithm that we will use to model the load-balancing

performance, and introduce the differential privacy framework that will be

used to maintain users’ anonymity.

2.1 Anonymous Networks and Tor

Anonymity networks provide users a way to communicate without reveal-

ing their identity, and without revealing their relationships to third parties.

Starting with Chaum’s seminal mix network design [39], anonymity has been

most frequently achieved by forwarding traffic through a series of servers in

order to disguise its origin. In onion routing networks [40], each packet is

multiply encrypted, with a layer of encryption being removed by each server

in the path. This makes it impossible for any server to learn the entire path;

rather, it knows only the preceding and following hops.

In Tor [41], paths (called circuits) typically take three hops to transit the

network. These hops are chosen from a collection of volunteer-run servers,

called relays. These relays have vastly varying bandwidth capacity; in or-

der to balance the load among them, their bandwidth is measured using

TorFlow [31]. Relays are then allocated to circuits randomly, weighted by

their measured capacity (also known as the consensus weight) (Revisited in

section 3.1).

An important feature of the Tor network is that the relays, due to being

supplied by volunteers, vary wildly in their bandwidth capacity. Figure 2.1

shows the relays and their measured capacity from two consensus documents

take about five months apart. The distribution is highly skewed, with mea-

8

0 1000 2000 3000 4000 5000 6000
Relay number

100

101

102

103

104

105
C

on
se

ns
us

w
ei

gh
t

2018-02-05 19:00
2018-07-26 00:00

Figure 2.1: Measured relay bandwidths from two Tor consensus documents:
February 5, 2018 at 19:00 (UTC) and July 26, 2018 at 00:00 (UTC). Note
the logarithmic scale of the y-axis.

sured capacities spanning over five orders of magnitude. Note that the distri-

bution in the two consensus documents follows a similar pattern; we therefore

use the February 5, 2018 19:00 (UTC) consensus as representative for our

experiments in this thesis.

2.2 Max-min Fairness

Each user’s path in the network has a bandwidth limit that dictates the rate

at which a packet is transferred from the source to the destination. This

limit is imposed by the capacities of the relays forming each path. In order

to compute paths’ bandwidths an accurate model of the Tor network must

be adopted.

In this section we introduce our model of Tor performance using max-

min fair bandwidth allocation. Our model of the Tor network includes two

simplifying assumptions: (a) each user holds a single path through relays

and (b) path capacities are constrained only by the relays, and not by the

9

links between relays. The former can be easily adjusted by creating virtual

users; the latter assumption is standard in analyzing Tor, and indeed central

to the Tor bandwidth measurement and allocation architecture. We use the

max-min fair allocation as a model because Tor schedules circuits in a round-

robin fashion, which has been shown to achieve max-min fairness [42]. One

further assumption is that each path is in simultaneous active use. We discuss

some relaxations of this assumption in section 5.5, and defer more complex

modeling and simulation of circuit usage to future work.

Notation. We introduce some notation for the rest of the thesis. For any

positive integer k, [k] denotes the set {1, . . . , k}. We denote the number of

relays by n and the number of users (and therefore the number of paths) by

m. We assign integer identifiers to the relays and users, and thus, the sets of

relays and users are [n] and [m], respectively. The capacity of relay r ∈ [n] is

the positive constant C[r]. The path assigned to user p ∈ [m] is a sequence

of three relays and is denoted by P [p]. We identify this sequence with the

the pth path. Given an allocation of paths to all users, for any relay r ∈ [n]

we define R[r] = {p ∈ [m] | r ∈ P [p]} to be the set of identifiers of the paths

to which the relay r belongs.

Each relay r allocates some bandwidth to each of the paths in R[r]. The

bandwidth allocated to the pth path is the minimum bandwidth allocated for

it by its three relays and is denoted by band [p]. For any relay r, the total

allocated bandwidth to all paths in R[r], must be less than the capacity of

r:

∀ r ∈ [n],
∑
p∈R[r]

band [p] ≤ C[r]. (2.1)

Allocations satisfying eq. (2.1) are said to be feasible.

A feasible allocation band is max-min fair if and only if an increase of

bandwidth allocation to any path (within the set of feasible allocations), must

be at the cost of a decrease in allocation of another path with an already

lower bandwidth in band (See Section 6.5.2 in [43]). That is, for any other

feasible allocation band ′ and any path p1 ∈ [m], if band ′[p1] > band [p1], then

there exists p2 ∈ [m] such that band ′[p2] < band [p2] and band [p2] ≤ band [p1].

It is well-known that the allocation algorithm shown below (algorithm 1)

achieves max-min fairness. It takes as input a network of relays and paths,

10

Figure 2.2: Max-min fairness allocation algorithm input and output.

and allocates a bandwidth to each path in an iterative fashion, see fig. 2.2.

Specifically, the inputs are the array or map C of all the relay capacities,

the array of user paths P , and the array R. The algorithm keeps track of

the residual capacity , Cres , of each relay after subtracting the bandwidths of

the paths passing through it. It also keeps track of the residual paths , Rres ,

that is, the set of paths passing through each relay after removing those paths

whose bandwidths are already allocated. At each iteration, one relay r∗ ∈ [n]

is chosen and each path in Rres [r∗] is allocated a bandwidth. The chosen

relay r∗ is the one that has the smallest ratio Rat [r] := Cres [r]/ |Rres [r]| at

the corresponding iteration (line 7). After it is chosen, each of the paths in

Rres [r∗] is assigned a bandwidth of Rat [r∗] (line 9). Relay r∗ is called the

bottleneck relay of these paths. Then, these paths are removed from their

corresponding relays (line 12) and the capacities of these relays get subtracted

by Rat [r∗] (line 11). This is repeated until all paths are allocated bandwidth.

Remark 1. Suppose the relay r∗ chosen at line 7 of algorithm 1 belongs to

a path p. Then, path p is allocated bandwidth of Rat [r∗], that is band [p] =

Rat [r∗]. Further, this allocation is not changed in subsequent iterations.

2.3 Differential Privacy

To perform load-balancing, we would like to incorporate feedback about the

state of the network into the path selection process. However, as discussed

above, the state of the network is explicitly required to be private, as this is

key to preserving users’ anonymity. We will use differential privacy to ensure

11

Algorithm 1 Max-min Bandwidth Allocation Algorithm

1: input: C,R, P
2: Cres [r]← C[r], ∀r ∈ [n]
3: Rres [r]← R[r], ∀r ∈ [n]
4: band [p]← 0, ∀p ∈ [m]
5: while ∃ p | band [p] = 0 do

6: Rat [r]←

{
Cres[r]
|Rres[r]| ∀r ∈ [n] | |Rres [r]| 6= 0

∞ otherwise

7: r∗ ← argmin
r∈[n]

Rat[r]

8: for p ∈ Rres [r∗] do
9: band [p]← Rat[r∗]

10: for r ∈ P [p] do
11: Cres [r]← Cres [r]−Rat(r∗)
12: Rres [r]← Rres [r] \ {p}
13: end for
14: end for
15: end while
16: return band

our feedback mechanism does not result in privacy loss.

Differential privacy was first proposed by Dwork [44]. It formalizes the

notion that a mechanism operating over a private data set must produce an

output that depends only minimally on each item in the data set. We will

use the formulation given by Vadhan [45]:

Definition 1 ((Approximate) differential privacy). [45, Definition 1.4] For

ε ≥ 0, δ ∈ [0, 1] we say that a randomized mechanism M : χn × Ω → Y is

(ε, δ)-differentially private if for every pair of neighboring datasets x ∼ x ′ ∈
χn (i.e. x and x ′ differ in one row), and every query q ∈ Ω, we have:

∀T ⊆ Y ,Pr [M(x , q) ∈ T] ≤ eε · Pr [M(x ′, q) ∈ T] + δ,

where Ω is the set of possible queries. Moreover, δ should typically satisfy

δ ≤ n−ω(1) for this definition to be meaningful.

In our case, the dataset in question will be the complete list of circuits in

the Tor network, with each circuit representing a row. As a result, differential

privacy will guarantee the privacy of each individual circuit while providing

aggregate traffic statistics. We note that differential private mechanisms have

previously been used to study traffic properties of Tor [46].

12

Chapter 3

RANDOM ALLOCATION ALGORITHM

In this chapter, we will present the current method used to create paths in

the Tor network. Using flow-level simulations, we will show that this method

creates significant imbalances between users, more specifically at the level of

the bandwidth allocated to each user’s path.

3.1 Random Allocation Algorithm

As stated in section 2.1, relays are allocated to circuits randomly, weighted by

their measured capacity (also known as the consensus weight). The full Tor

path selection algorithm [47] is somewhat complex because it must account

for some relays not being usable in certain positions of the circuit as well

as other constraints. For the purposes of this work, we will approximate

the algorithm as picking three random relays, without replacement, from the

distribution induced by the measured capacities, leaving simulations of the

full Tor algorithm for future work.

Inputs and outputs of the random allocation algorithm are shown in fig. 3.1.

3.2 Implementation of the Random Allocation

Algorithm

In order to simulate the random allocation algorithm, we wrote a code using

Python programming language (algorithm 2). This code generates paths by

sampling without replacement three relays using the distribution over relays

where each relay is weighed by its capacity.

We evaluate the performance of this algorithm with respect to the param-

eters of the Tor network. Jansen and Johnson [46] estimated that there were

13

Figure 3.1: Random allocation algorithm inputs and outputs.

Algorithm 2 Random Path Allocation Algorithm

1: input: C
2: Sample three relays {r1, r2, r3} without replacement from the set of relay

where each relay is weighed by its capacity.
3: return: {r1, r2, r3}

14

0 200000 400000 600000 800000 1000000
Circuit number

100

101

102
B

an
dw

id
th

Figure 3.2: Bandwidth allocation of 1 million paths using the random
algorithm 2.

approximately 1.2 million active circuits (95% CI +/- 500,000) in the net-

work. We therefore created 1 million paths using the random algorithm 2 and

then computed their bandwidth allocation using max-min fair algorithm 1.

The results are in fig. 3.2. We can see that the majority of circuits receive an

allocation close to the average of 10.9, but there are significant tails at both

ends of the distribution: the minimum circuit has allocation of 1.0 and the

maximum of 190. (The standard deviation is 1.28.)

Jansen and Johnson define an active circuit as one that has ever been used

to forward data; however, at any given moment, most circuits are idle. This

can be seen by comparing the data about the aggregate Tor network traffic

of approximately 100 Gbps [48] to the performance of a sustained download,

which is roughly 10 s for 5 MiB [49]. Given that each circuit gets carried

by 3 relays, this suggests that 100 Gbps/3/(5 MiB/10 s) ≈ 10 000 circuits are

active at any given time. Figure 3.3 shows the bandwidth allocation of 10 000

circuits generated by algorithm 2. Observe that the imbalances in this case

are much more significant: the minimum allocation is 14 and the maximum

is 6419, with a standard deviation of 475.8. 932 out of 10 000 flows receive

less than half of the average bandwidth of 980, and 37 receive less than 10%.

15

0 2000 4000 6000 8000 10000
Circuit number

101

102

103

104

B
an

dw
id

th

Figure 3.3: Bandwidth allocation of 10 000 paths using the random
algorithm 2.

3.3 Conclusion

We have presented the current path selection algorithm, along with the code

used to implement it (algorithm 2). We then generated 1 million and 10000

paths using algorithm 2 and computed their bandwidth allocation using al-

gorithm 1. The results show the large imbalance between the bandwidths

allocated to different paths in the network, depicted by the significant tails

at both ends of the distributions obtained.

16

Chapter 4

LOCALLY OPTIMAL INCREMENTAL
PATH ALLOCATION

In this chapter, we modify the max-min fair allocation algorithm 1 to design

an algorithm that, given the state of the Tor network, returns three relays

that would result in an optimal allocated bandwidth for a new path. We will

then show, using flow-level simulations, that this algorithm results in a much

better load-balancing between paths across the network than the previously

presented algorithm 2.

4.1 Algorithm Description

The developed algorithm aims to find three relays in the set of relays [n],

forming the path with the highest possible bandwidth when added to the

given network. We first develop an algorithm that takes as input the state of

the network, i.e. the whole set of paths in the network along with the relays

forming the paths (see fig. 4.1). The result is algorithm 3.

The developed algorithm assumes that the bandwidths of the existing

paths in the network are allocated using max-min fairness (algorithm 1).

The algorithm iteratively creates a list B of (bandwidth, relay)-pairs. This

list determines how much bandwidth would be allocated to a newly added

path to the network. That is, of the relays appearing in a new path, the one

that appears earliest in B determines the bandwidth of the path.

The idea of algorithm 3 is to simulate the behaviour of the max-min fairness

algorithm 1 on the network when an arbitrary new path is added. This

simulation allows us to know how much bandwidth it would get allocated.

A trivial but key observation is that when a new path is added, the number

of paths passing through each of its three relays will be incremented by one.

For all other relays, the number of paths will remain unchanged. Moreover,

as per remark 1, the relay that is chosen first from a path determines the

17

Figure 4.1: Optimal allocation algorithm inputs and outputs.

path’s bandwidth allocation. Since we are searching for the relays that would

maximize the bandwidth allocation for a newly added path, algorithm 3

computes the different possible allocations based on the different possible

bottlenecks.

In addition to the ratio Cres [r]/|Rres [r]| tracked in algorithm 1 (line 7),

algorithm 3 also tracks Cres [r]/ (|Rres [r]|+ 1), for each relay r (line 8). In

other words, Rat is now a 2 × n matrix: row 1 stores Cres [r]/|Rres [r]| and

row 2 stores Cres [r]/ (|Rres [r]|+ 1).

At each iteration, a minimum of all the 2n ratios is chosen. We denote

the minimizing row by t∗ ∈ {1, 2} and the corresponding relay by r∗ ∈
[n]. If the minimizing row t∗ = 1, the algorithm proceeds as max-min fair

allocation algorithm 1 by allocating bandwidth of Rat [1, r∗] to each of the

paths in Rres [r∗]. Then, it removes them from the other relays in which they

pass (lines 17 and 18). Both ratios in the same column of Rat , i.e., ratios

corresponding to the same relay, are updated in the same way unless the ratio

in the second row is already added to B (line 8). That is because both ratios

use the same arrays Cres and Rres for their numerator and denominator.

18

Otherwise, if t∗ = 2, the pair (Rat [2, r∗], r∗) is added to the end of B. It is

added at the end since the r∗ will be the bottleneck of the added path only

when its other relays are not in already in B at this iteration. If one of its

relays is already in B at this iteration, that would be its bottleneck instead

of r∗. This will be proved in the section 4.2. The algorithm iterates until all

n relays have entries in B.

Algorithm 3 Locally Optimal Path Allocation Algorithm

1: input: C,R, P
2: B ← ∅
3: Cres [r]← C[r], ∀r ∈ [n]
4: Rres [r]← R[r], ∀r ∈ [n]
5: band [p]← 0, ∀p ∈ [m]
6: while ∃ i /∈ B do

7: Rat[1, r]←

{
Cres[r]
|Rres[r]| if |Rres [r]| 6= 0

∞ otherwise

8: Rat[2, r]←

{
Cres[r]
|Rres[r]|+1

if r /∈ B
∞ otherwise

9: (t∗, r∗)← argmin
t∈
{
1,2
}
,r∈[n]

Rat[t, r]

10: if t∗ == 2 then
11: B.push([Rat [t∗, r∗], r∗])
12: Rat [t∗, r∗]←∞
13: else
14: for p ∈ Rres [r∗] do
15: band[p]← Rat[t∗, r∗]
16: for r ∈ P [p] do
17: Cres [r]← Cres [r]− Rat [t∗, r∗]
18: Rres [r]← Rres [r] \ {p}
19: end for
20: end for
21: end if
22: end while
23: Let ((b1, r1), (b2, r2), (b3, r3)) be the last three elements of B
24: return: {r1, r2, r3}

19

4.2 Algorithm Correctness

In this section, we will prove that the output of algorithm 3 is a path with

maximum bandwidth allocation possible, for a new path that is to be added

to the given network. In this analysis, we will compare the state of algo-

rithm 3 with the state of max-min fair allocation algorithm 1, in the same

iteration.

Notation. We will add bars on top of the variable names of algorithm 3 to

distinguish them from the variables with the same names in algorithm 1. A

subscript of zero refers to the initial values of the variables. A subscript l > 0

denotes the value of the variable at the end of the lth while-loop iteration,

for the corresponding program1. For example, Cres2 is the value of Cres of

algorithm 3 at the end of the second iteration of its while loop. We will use

⊕ to represent sum of sets.

The following key lemma is used to prove an equivalence between the be-

haviors of algorithm 1 and algorithm 3: given any new path p, the bandwidth

allocated to p by algorithm 1 equals the bandwidth associated with the relay

in p that appears earliest in B (computed by algorithm 3).

Lemma 1. Let the new path be H = {h1, h2, h3} ∈ [n]3. Assume (a) C = C,

(b) R[r] = R[r] for all r ∈ [n] \ H and R[r] = R[r] ∪ {m + 1} for r ∈ H,

and (c) P [p] = P [p] for all p ∈ [m], and P [m+ 1] = H. Assume w.l.o.g that

h1 is the first relay to be added by algorithm 3 to B. Let l1, l2, . . . lk be the

iterations in algorithm 3 at which t
∗

= 1 before h1 is added to B. Then, for

all s ≤ k, Cress = Cres ls and Rress[r] = Rres ls [r] for all r ∈ [n] \ H and

Rress[r] = Rres ls [r] ∪ {m+ 1} for r ∈ H.

Proof. First, Cres0 = C1 = C2 = Cres0. Second, note that Rat1[r] =

Rat1[1, r] for all r ∈ [n] \H and Rat1[r] = Rat1[2, r] for all r ∈ H. Hence, if

the minimum ratio at the first iteration of algorithm 3 exists in Rat1, that

same ratio will be chosen by algorithm 1 at its first iteration. Thus, if t
∗
1 = 2

and r∗1 = h1 (r∗1 cannot be h2, h3 as we assumed that h1 is chosen first), then

the lemma would hold with k = 0 and r∗1 = h1.

1For algorithm 1, it is the value of the variable after the execution of line 15 and for
algorithm 3 it is the value after the execution of line 22

20

If t
∗
1 = 2 and r∗1 6= h1, then the minimum ratio of algorithm 3 does not

belong to Rat1 and neither Cres nor Rres would be changed in this iteration,

i.e. Cres1 = Cres0 and Rres1 = Rres0. In that case, Rat2 would still be a

subset of Rat2.

The case where t
∗
1 = 1 and r∗1 ∈ H cannot happen since Rat1[2, r] ≤

Rat1[1, r] for all r ∈ [n].

Finally, if t
∗
1 = 1 and r∗1 /∈ H, then l1 = 1 and both algorithms will have

the same minimum ratio, the else branch would be taken in algorithm 3 and

Cres and Rres would be updated in the same manner as those Cres and

Rres . Thus, the property in the lemma would be preserved.

Hence, the above analogy can be repeated to shown that the lth iteration

of algorithm 3 at which t
∗

= 1 will run the same updates as that of the lth

iteration of algorithm 1 till h1 is added to B. Iterations of the while loop

in algorithm 3 at which t
∗

= 2 does not affect Cres , Rres , and the ratios

common with algorithm 1 until h1 is chosen. Once h1 is added to B, that

corresponds to the k + 1th iteration of algorithm 1 where h1 will be chosen

as the minimizing relay too and the bandwidth of the new path would be

determined.

Corollary 1. For any new path H = {h1, h2, h3}. The bandwidth asso-

ciated with h1 in B (algorithm 3) equals the bandwidth allocated for H by

algorithm 1.

Since in the following lemma we will be only analyzing algorithm 3, there

will be no confusion with the variables of algorithm 1 so we drop the bars.

Lemma 2. The ratios in B appear in increasing order.

Proof. Consider the lth iteration of algorithm 3 at which a ratio-relay pair

(b, r∗l) is added to B, i.e. t∗l = 2. If in the preceding iteration l− 1, t∗l−1 = 2,

another ratio-relay (b1, r
∗
l−1) would have been added to B before it. Moreover,

both Cres and Rres would not have changed and since b1 was chosen first

means it is smaller than b2 and thus in this case the B would be increasing.

Otherwise, if t∗l−1 = 1, the “else” branch would be taken. Denote the number

of paths r∗l−1 and r∗l share at the (l− 1)th iteration be s. Then, Rat l[2, r
∗
l] =

Cresl−1[r
∗
l]−Rat l−1[1,r

∗
l−1]

|Rresl−1[r
∗
l]|+1−s . We will show that it is larger than Rat l−1[1, r

∗
l−1] =

Cresl−1[r
∗
l−1]

|Rresl−1[r
∗
l−1]|

.

21

We know that Rat l−1[2, r
∗
l] :=

Cresl−1[r
∗
l]

|Rresl−1[r
∗
l]|+1

>
Cresl−1[r

∗
l−1]

|Rresl−1[r
∗
l−1]|

. Hence,

Cres l−1[r
∗
l]|Rres l−1[r

∗
l−1]| > Cres l−1[r

∗
l−1](|Rres l−1[r

∗
l]|+ 1)

=⇒ Cres l−1[r
∗
l]|Rres l−1[r

∗
l−1]| − s(Cres l−1[r

∗
l−1])

> Cres l−1[r
∗
l−1](|Rres l−1[r

∗
l]|+ 1− s)

=⇒ |Rres l−1[r
∗
l−1]|(Cres l−1[r

∗
l]− s

Cres l−1[r
∗
l−1]

|Rres l−1[r∗l−1]|
)

> Cres l−1[r
∗
l−1](|Rres l−1[r

∗
l]|+ 1− s)

=⇒
Cres l−1[r

∗
l]− s

Cresl−1[r
∗
l−1]

|Rresl−1[r
∗
l−1]|

|Rres l−1[r∗l]|+ 1− s
>

Cres l−1[r
∗
l−1]

|Rres l−1[r∗l−1]|
.

Therefore, the ratios are non decreasing in the iterations at which t∗ = 1 and

constant (other than the one added to B) when t∗ = 2 which means that

every time a ratio is added to B, it will be equal or larger than all previously

added ones.

Corollary 2. Choosing the last three relays of the resulting B for the new

path would result in maximum bandwidth allocated for it by algorithm 1. That

bandwidth is the one associated with the third relay from the end of B.

4.3 Implementation of the locally optimal algorithm

In order to simulate algorithm 3, we wrote a code using Python programming

language. Starting with an empty set, one million paths were created by

repetitively running our locally optimal algorithm 3 while adding the output

path to the network. The bandwidth allocation of the one million paths

generated is found using the max-min fair algorithm 1. Those results were

then compared to the bandwidth allocations of one million paths generated

using the random algorithm 2. The results are shown in fig. 4.2.

The locally optimal algorithm 3 produces a much more well-balanced set

of paths: the minimum allocation if 10.96 is nearly the same as the average

of 10.97, and the maximum is 21. In contrast, the paths created using the

random algorithm 2, while having a similar average bandwidth allocation of

10.94, span a much broader range, with a minimum allocation of 1 and a

maximum of 210.14.

22

0 200000 400000 600000 800000 1000000
Circuit number

100

101

102
B

an
dw

id
th

Algorithm 3
Algorithm 2

Figure 4.2: Graph comparing the bandwidth allocation of one million paths
generated using the locally optimal algorithm 2 and the random
algorithm 3. Note the logarithmic scale of the y-axis.

4.4 Conclusion

We developed a locally optimal path selection algorithm that, given the state

of the network, generates a path with maximum bandwidth allocation pos-

sible. We implemented the algorithm using Python programming language.

We then showed, using flow-level simulations, that the new algorithm 3 re-

sults in a more load-balanced path allocation between users than the random

algorithm 2.

23

Chapter 5

DIFFERENCIALLY PRIVATE
ALGORITHM

The locally optimal algorithm 3 requires the knowledge of the state of the

network as input. Thus, if it is going to be used, every user will need to know

the state of the network, i.e., the paths of every other user, in order to be able

to construct a path for herself. This will defeat the purpose of onion routing

as it will then be possible to deanonymize users. In this chapter, we will be

discussing how to implement a differentially private version of algorithm 3.

5.1 Overview

In this section, we present an overview of the different steps required in order

to implement the differentially private algorithm. In the private version of

the algorithm, we first decompose each circuit (r1, r2, r3) into two circuit

segments, (r2, r1) and (r2, r3). We then adapt the locally optimal algorithm 3

to use these segments, rather than complete circuits, in creating an optimal

new path. To add privacy, we summarize the list of segments as a histogram,

indexed by pairs of relays, of the number of circuit segments (ri, rj) that are

present. We then create a differentially private version of this histogram by

using a threshold-based differentially private count, to account for the sparse

nature of the histogram.

One feature of the private count algorithm is that each histogram entry

can be processed individually. Therefore, a relay ri can apply it to the

count of each histogram entry (ri, rj), since it knows the (actual, non-private)

number of such flow segments. The private counts can then be aggregated

and distributed using a modification of the existing Tor directory mechanism

or another peer-to-peer broadcast scheme.

Since the private histogram can only be updated periodically, we use this

histogram to generate the next K near-optimal circuits. We cannot assign

24

these circuits directly to each new user; instead, we count the number of times

each relay appears in these K circuits and use it to induce a distribution over

relays that the users sample from for their circuit. This approach is similar

to the random algorithm 2, except that the weights reflect relays that are

underloaded in the current state of the network, rather than the static relay

capacities.

Thus in order to implement a differentially private algorithm, we will tackle

each of the aforementioned steps in different sections of this chapter by de-

veloping a suitable algorithm for each step:

• We first decompose the three relays paths in the network into ordered

pairs of relays and summarize the list of segments in a histogram.

• We create a private version of the histogram using (ε, δ)-differential

privacy in section 5.4.

• We will adapt the optimal path allocation algorithm 3 to take as input

a pairs of relays in section 5.2 .

• We will then generate K near-optimal circuits using the algorithm de-

veloped in the previous step in order to induce a distribution over relays

that the next L users sample from for their circuits in section 5.3.

We will combine the algorithms developed in each section and simulate our

differentially private algorithm in section 5.5.

5.2 Pair-based Algorithm

5.2.1 Description

As stated previously, we first adapt algorithm 3 to take as input ordered pair

of relays instead of three relays paths.

Notation. As in the locally optimal algorithm 3, we denote the capacity

of the rth relay by C[r]. As discussed before, the paths are now ordered

pairs of relays. Being ordered is essential for the correctness of the pair-

based algorithm 4 as will be discussed later. We denote by P the map from

25

these paths to the ordered pairs of relays to which they belong. For example,

those corresponding to the pth path are P [p] = (rp,1, rp,2). Also, as before,

we define R[r] to be the set {p | r ∈ P [p]} of paths to which relay r belongs.

However, we decompose R into two maps: Rc mapping relays to the paths in

which they appear in the first component of the ordered pair, i.e. the central

relay, and Re mapping relays to the paths in which they appear in the second

component of the ordered pair, i.e. the end relay.

We finally define Nres [r] as the number of actual paths (paths with three

relays) containing relay r. We can compute it as: Nres [r] = |Rresc[r]|/2 +

|Rrese[r]|, since for an actual path in the Tor network where r is the central

relay, it will appear as two pairs in Rresc[r] while it should be counted once.

It will only appear once in Rrese[r] if r is one of its end relays.

In algorithm 4, (see algorithm 4 below), as in the previous two algorithms,

in the iterations at which t∗ = 1, Rat [1, r∗] = Cres[r]
Nres[r]

of bandwidth would

be allocated to each of the paths passing through it. After that, the paths

in Rrese[r
∗], Rat [1, r∗]/2 would be deducted from the residual capacity of

the central relay in the path. That is because the bandwidth of the other

path that corresponds to the same actual path will be subtracted from the

residual capacity of the central relay in that path too. For the paths in

Rresc[r
∗], Rat [1, r∗] would be deducted entirely from the residual capacity of

the end relay of the path. That is because the end relay of an actual path

of the Tor network only appears once in the two-relay paths corresponding

to that path. Using the same analogy, for the paths in Rresc[r
∗], Nres [r], r

being the end relay in the path, is deducted by one and for paths in Rrese[r
∗],

Nres [r], r being the central relay in the path, is deducted by half. The rest

of the algorithm follows the same steps of algorithm 3.

Hence, algorithm 4 takes as an input a path matrix of ordered pairs of

relays along with the capacity matrix. The output is the path of three re-

lays that when added to the system gives the highest bandwidth allocation

compared to any other path that can be added to the system.

26

Algorithm 4 Pair-based Locally Optimal Path Allocation Algorithm

1: input: C,R,Rc,Re ,P
2: B ← ∅
3: Cres [r]← C[r], ∀r ∈ [n]
4: Rres [r]← R[r], ∀r ∈ [n]
5: band [p]← 0, ∀p ∈ [m]

6: Nres [r]← |Rresc[r]|
2

+ |Rrese[r]|, ∀r ∈ [n]
7: while ∃ i /∈ B do

8: Rat[1, r]←

{
Cres[r]
Nres[r]

∀r | Nres [r] 6= 0

∞ otherwise

9: Rat[2, r]←

{
Cres[r]

Nres[r]+1
if r /∈ B

∞ otherwise

10: (t∗, r∗)← argmin
t∈
{
1,2
}
,r∈[n]

Rat[t, r]

11: if t∗ == 2 then
12: B.push([Rat[t∗, r∗], r∗])
13: Rat[t∗, r∗]←∞
14: else
15: for p ∈ Rres [r∗] do
16: band[p]← Rat[t∗, r∗]
17: for r ∈ P [p] do
18: if p ∈ Rresc[r] then
19: Cres [r]← Cres [r]−Rat[t∗, r∗]/2
20: Nres [r]← Nres [r]− 1/2
21: Rres [r]← Rres [r] \ {p}
22: Rresc[r]← Rresc[r] \ {p}
23: else
24: Cres [r]← Cres [r]−Rat[t∗, r∗]
25: Nres [r]← Nres [r]− 1
26: Rres [r]← Rres [r] \ {p}
27: Rrese [r]← Rrese [r] \ {p}
28: end if
29: end for
30: end for
31: end if
32: end while
33: return: {r1, r2, r3}

27

0 2000 4000 6000 8000 10000
Circuit number

103

2 × 103
B

an
dw

id
th

Algorithm 3
Algorithm 4

Figure 5.1: Graph comparing the bandwidth allocation of 10 000 paths
generated using the pair-based algorithm 4 and the locally optimal
algorithm 3.

5.2.2 Implementation of the Pair-based Algorithm

Starting from an empty set, the pair-based algorithm 4 was used repetitively

to generate a set of 10 000 paths of three relays. At each run, a path matrix

representing the decomposition of the paths in the network into segments of

two relays is constructed, and then used as input to algorithm 4 along with

the capacity matrix. The output, the path of three relays, is then added to

the network. The bandwidth allocations for these paths are then computed

using the max-min fairness algorithm 1.

The results were then compared to the bandwidth allocations of 10 000

paths generated by repetitive application of locally optimal algorithm 3 start-

ing from an empty set, in order to know how much accuracy we lost by the

decomposition of paths into pairs. The results are shown in fig. 5.1. The two

curves coincide which shows there is zero loss of accuracy.

The same experiment is repeated but instead 1 million paths were created

using both algorithms. The results are shown in fig. 5.2. The maximum

difference between the two allocations was 0.918.

As the results of the two simulations show, the bandwidth allocation of

28

0 200000 400000 600000 800000 1000000
Circuit number

2 × 101
B

an
dw

id
th

Algorithm 3
Algorithm 4

Figure 5.2: Graph comparing the bandwidth allocation of one million paths
generated using pair-based algorithm 4 and locally optimal algorithm 3 (in
blue). Note the logarithmic scale of the y-axis.

the paths generated using both algorithms coincides completely, showing that

there is no loss of accuracy when adapting the locally optimal algorithm 3

to take as input ordered two-relay paths (pair-based algorithm 4).

5.3 Batch Path Allocation Algorithm

As we discussed earlier, the server would periodically collect data from the

relays and create a histogram mapping each ordered pair of relays to the

number of paths passing through them. It would then create a differentially

private version of this histogram (we will deal with this step in the next sec-

tion 5.4). After that, given the histogram, it runs the pair-based algorithm 4

(section 5.2) repetitively to generate K additional paths. These paths are

not added to the actual network but to a virtual copy of the network. The

number of times each relay appeared in these K paths is counted to generate

a probability distribution over the relays. The distribution is then released

to the public. Incoming users would sample that distribution (without re-

29

placement) to get three different relays which would constitute their paths.

The batch algorithm 5 creates, given a histogram mapping each pair of re-

lays to the number of path going through them, a batch of L random paths

using the procedure we just described. L represents the expected number of

paths (i.e. users) that would be created in a single period before the distri-

bution gets updated.

Algorithm 5 Batch Path Allocation Algorithm

1: input: C,R,Rc,Re ,P , K, L
2: Repeat K times:
3: Input C,Rres ,Rc,Re ,P to algorithm 4.
4: Add the returned path to the network.
5: Update Rres ,Rc,Re ,P accordingly.
6: Compute the distribution of the relays in the added K paths.
7: Sample L paths with three relays from that distribution
8: return: Generated L paths

To evaluate the behaviour of the batch algorithm 5, K is set to 10 000 and

L to 200. Then, starting from a network with no paths, we ran it repetitively

to create a network with 600 000 paths, 200 at a time. At each run, a path

matrix is constructed by decomposing the paths in the network to paths of

two ordered relays as previously discussed and taken as input for the next

run.

After that, the bandwidth allocations of the created paths were computed

using the max-min fair algorithm 1 and compared to the bandwidth allo-

cations of 600 000 paths generated using the the random algorithm 2. The

results are shown in fig. 5.3.

The minimum bandwidth of a path generated using the batch algorithm 5

was 6.33, the maximum was 37.23 and the average was 17.29. On the other

hand, for the set of paths generated randomly, the minimum bandwidth of a

path was 1, the maximum was 287.99 and the average was 17.23.

The simulation demonstrates the fairness property of algorithm 5. The

range of the bandwidth allocations of the paths is [6.33, 37.23] compared to

a range of [1, 287.99] for the random paths, while the average is being con-

served. The algorithm hence avoids the use of paths with very low bandwidth

and guarantees a more fair distribution of the bandwidth between users.

30

0 100000 200000 300000 400000 500000 600000
Circuit number

100

101

102

B
an

dw
id

th

Algorithm 5
Algorithm 2

Figure 5.3: Graph comparing the bandwidth allocation of 600 000 paths
generated using the random algorithm 2 and the batch algorithm 5. Note
the logarithmic scale of the y-axis.

5.4 Adding Differential Privacy

In this section, we show how the server ensures differential privacy of the

statistics it releases about the network.

As discussed earlier, at the end of each period, the server generates a

differentially private version of a histogram (matrix) of size n2. In our work,

we use the notion (ε, δ)-differential privacy defined in section 2.3. We did not

use the usual ε-differential privacy since the histogram that we are making

private, is very large (n2 ≈ 36 000 000) and is very sparse. Using (ε, δ)-

differential privacy allows us to operate on the sparse histogram, as described

below, rather than producing a noisy version of each 0 value in the histogram,

which would overwhelm the algorithm. We replace n with n2 in the original

definition since in our case the dataset is of size n2.

The following theorem shows that there is a mechanism that ensures the

differential privacy of the histogram against queries consisting of point func-

tions while guaranteeing an acceptable level of accuracy of query responses.

Before stating the theorem, let us define formally the set of queries for which

31

the mechanism ensures privacy.

Definition 2 (page 6 in [45]). Point Functions (Histograms): Let X be an

arbitrary set and for each y ∈ X , we consider the predicate qy : X → {0, 1}
that evaluates to 1 only on input y. The family Qpt = Qpt(X) consists of

the counting queries corresponding to all point functions on data universe

X . (Approximately) answering all of the counting queries in Qpt amounts to

(approximately) computing the histogram of the dataset.

As before we substitute n by n2 from the original theorem.

Theorem 1. (stability-based histograms [50]). For every finite data universe

χ, n ∈ N, ε ∈ (0, 2 lnn), and δ ∈ (0, 1/n2) there is an (ε, δ)-differentially

private mechanism M : χn
2 → Rχ that on every dataset x ∈ χn2

, with high

probabilityM(x) answers all of the counting queries in Qpt(χ) to within error

O

(
log(1/δ)

εn2

)
In the proof of the theorem, the authors provided such mechanism which

takes a dataset (histogram) x ∈ χn2
as input and returns a privatized version

of it. The mechanism is shown in algorithm 6. It iterates over the elements

of the histogram, those that are zero are kept zero. A positive entry would

be added to an independent Laplace variable with λ = 2/(εn2). If the result

is below the threshold ((2 ln(2/δ))/(ε)) + (1), the entry would be set to zero,

otherwise it is set to the result. Note that we multiplied the threshold that

is in the mechanism by n2 since we do not need the result of the query to be

normalized, i.e. between 0 and 1, so we do not need the n2 factor.

Algorithm 6 (ε, δ)-differentially Private Histogram Mechanism

1: input: x, χ
2: For every y ∈ χ:
3: If qy(x) = 0 then:
4: Set ay = 0
5: If qy(x) > 0 then:
6: Set ay ←− qy(x) + Lap(2/(εn2)).
7: If ay < 2 ln(2/δ)/εn2 + 1/n2 then:
8: Set ay = 0
9: return: (ay)y∈χ

32

As discussed earlier, the server releases a distribution over the relays at

the beginning of every period based on the generated private histogram.

Thus, information about the paths that remain over multiple periods in the

network will be released several times. This will deteriorate the level of

privacy they are guaranteed. To bound this deterioration we consult the

following composition theorem of differential privacy.

Theorem 2. (Composition of (ε, δ)-differentially-private algorithms, Theo-

rem 16 in [51]). Let T1 : D −→ T1(D) be (ε, δ)-differentially-private, and

for all J ≥ 2, Tj : (D, s1, ..., sJ−1) −→ TJ(D, s1, ..., sJ−1) ∈ ζJ be (ε, δ)-

differentially-private, for all given (s1, ..., sJ−1) ∈ ⊗J−1j=1 ζj, where ”⊗” denotes

direct product of spaces. Then for all neighboring D, D′ and all S ⊆ ⊗J−1j=1 ζj :

P ((T1, ..., TJ) ∈ S) ≤ eJεP ′((T1, ..., TJ) ∈ S) + Jδ

We can conclude that the parameters of privacy ε and δ that we can guar-

antee for a certain path increase linearly in the number of periods it stays in

the network.

5.5 Implementation of the Differentially Private

Optimal Path Allocation Algorithm

In this section we will combine the different algorithms presented in the dif-

ferent sections of this chapter in order to implement the differentially private

optimal path allocation algorithm.

As previously stated, the server would create a histogram mapping each

ordered pair of relays to the number of paths passing through them in the

network. We use algorithm 6 in order to create a private version of this

histogram. We chose the parameters ε and δ to be 0.3 and 0.001, respectively.

This private version of the histogram is then inputted to algorithm 5, in order

to generate a distribution over the relays from which we sample L three relays

paths corresponding to the next L users.

To evaluate the behaviour of algorithm 5 after we privatize the histogram

before using it to generate the distribution over relays, we conducted the

following experiment: starting from an empty network, we generated N =

1 000 000 paths using repetitive application of batch algorithm 5 with K =

33

10 000 and L = 200 while using a private version of the histogram before

each run. Those steps are shown in algorithm 7 and fig. 5.4.

Algorithm 7 (ε, δ)-differentially Private Optimal Path Allocation Algorithm

1: input: C,R,Rc,Re ,P , N,K,L
2: for i ∈ [dN

L
e] do

3: A histogram mapping the pairs of relays in the network to the number
of paths between each pair is constructed.

4: A private version of the histogram is generated using the mechanism
described in algorithm 6.

5: The private histogram is input to the batch algorithm 5 with param-
eters K and L.

6: The generated L paths are added to the network.
7: Update R,Rc,Re ,P .
8: end for

The bandwidth allocations of those paths are then computed using max-

min fair allocation algorithm 1 and compared to the bandwidth allocations

of one million paths generated using the random algorithm 2. The sorted (in

bandwidth) results are shown in fig. 5.5.

The minimum bandwidth allocation of a path of differentially private algo-

rithm 7 was 8.2, the maximum was 9603.5 and the average was 10.54. While

for those generated randomly using algorithm 2, the minimum was 1, the

maximum was 210.14 and the average was 10.94. Although the average was

lower for our algorithm, it has no paths with low bandwidth as the random

one. The tail on the left is much shorter while the tail on the right is much

longer than the random one. The difference in most paths is negligible.

Finally we evaluate the scenario where only a subset of the generated paths

are active, as discussed in section 3.2. We take the million circuits generated

using the privacy-preserving algorithm 7, as above, and choose a random

sample of 10 000 circuits as being active. We then compare the bandwidth

allocated to those circuits with 10 000 circuits chosen by the random algo-

rithm 2 in fig. 5.6. Note that the randomized algorithm has a significantly

longer tail on the left side of the graph, representing circuits with a patho-

logical bandwidth allocation. The minimum bandwidth in algorithm 2 is 7,

whereas the minimum for the sampled algorithm 7 is 171. The randomized

algorithm produces 953 flows with a bandwidth less than half of the average,

980. The sampled circuits from the private algorithm have a slightly lower

34

Figure 5.4: Differentially private path allocation algorithm implementation

35

0 200000 400000 600000 800000 1000000
Circuit number

100

101

102

103

104

B
an

dw
id

th

Algorithm 7
Algorithm 2

Figure 5.5: Graph comparing the bandwidth allocation of one million paths
generated using the differentially private algorithm 7 and using the random
algorithm 2. Note the logarithmic scale of the y-axis.

0 2000 4000 6000 8000 10000
Circuit number

101

102

103

104

B
an

dw
id

th

Algorithm 7, sampled
Algorithm 2

Figure 5.6: Comparing random allocation in algorithm 2 to a sample of
10 000 circuits out of 1 million that were generated by the differentially
private algorithm 7.

36

average of 960, but only 326 flows have a bandwidth of less than 980/2. The

lower average performance is due to some relays being underutilized, as evi-

denced by the longer tail on the right-hand side of the graph; in our ongoing

work we are investigating adjustments to the algorithm to make better use

of these relays.

5.6 Conclusion

We have developed a private version of the optimal path allocation algo-

rithm 3. We first introduced the concept of decomposing three relays paths

into ordered pairs of relays that can be summarized in a histogram. We then

adapted algorithm 3 to take as input the histogram generated instead of a

set of three relays paths (Pair-based algorithm 4). The simulations of algo-

rithm 4 showed that no loss of accuracy is induced when adapting the new

algorithm. We then introduced the batch algorithm 5 that runs the Pair-

based algorithm 4 repetitively to generate K optimal path without actually

adding them to the network. Instead, algorithm 5 generates a probability

distribution over the relays by counting the number of times each relay ap-

pears in those K paths. Then the algorithm samples from this distribution

L paths to be used by users. The simulations of algorithm 5 demonstrated

the fairness property of our algorithm. Finally, we added a layer of privacy

to the histogram generated by creating a private version of it using (ε, δ)-

differential privacy. This private version is inputted to algorithm 5 instead

of a non-private histogram; the result is algorithm 7. By running algorithm 7

repetitively to generate one million paths, we have shown that the bandwidth

allocation of the generated paths have a more fair distribution among users by

avoiding the use of paths with very low bandwidth as shown by the absence

of the tail on the left-hand side of the graph in fig. 5.5.

37

Chapter 6

CONCLUSION AND FUTURE WORK

We have presented an algorithm that approximates locally optimal load-

balancing of circuits in the Tor network while preserving user privacy [1]. In

chapter 4, we introduced an optimal path selection algorithm that takes as

input the whole state of the network and generates a path with the highest

possible bandwidth when added to the network. In Chapter 5, we further

developed the above algorithm by taking into account the privacy preserving

aspect of our problem. We thus developed the differentially-private optimal

path allocation algorithm. We demonstrated that this algorithm significantly

improves on the randomized relay assignment in Tor using flow-level simula-

tions of max-min fair bandwidth allocation.

Our promising results encourage the further exploration of using privacy-

preserving feedback for load balancing in anonymity networks. Several im-

portant challenges remain. First, load imbalance occurs over short time

scales, thus the private summary of the network state must be quickly dis-

tributed to all users. We note that this is a similar problem to that of

distributing blocks in cryptocurrencies; in the Bitcoin network, which is sim-

ilarly sized to Tor, measurements have shown that blocks reach the median

node in 6.5s and the 90th percentile node in 26s [52]. Improving this latency

while maintaining resilience to attack is an area of active research.

A second problem is that malicious nodes may misreport their contribu-

tions to the histogram to direct circuits away from honest nodes and towards

malicious ones. We note that this problem is somewhat similar to the peer

bandwidth measurement problem in EigenSpeed [32] and PeerFlow [33] and

thus some of the defenses used in those systems may be adaptable to this

setting. Furthermore, all our work is based on the consensus document con-

taining the measured capacities of the relays. However as stated before, those

measured capacities can vary wildly in time and are also the target of many

adversaries attacks. Developing the procedure used to measure the capacities

38

of the relays remains one major challenge that needs to be addressed.

Finally, flow-level simulation is a coarse-grained approximation of Tor traf-

fic; web browsing is a dominant use of Tor and web traffic is known to be quite

bursty. Further evaluation of the load-balancing mechanism using queuing-

based traffic models or full network simulation [53] is needed.

39

BIBLIOGRAPHY

[1] H. Darir, H. Sibai, N. Borisov, G. Dullerud, and S. Mitra, “Tightrope:
Towards optimal load-balancing of paths in anonymous networks,” in
Proceedings of the 2018 Workshop on Privacy in the Electronic Society,
ser. WPES’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3267323.3268953 pp. 76–85.

[2] M. N. O. Sadiku, Y. Wang, S. Cui, and S. M. Musa, “Cyber-physical
systems: A literature review,” European Scientific Journal, vol. 13, 12
2017.

[3] T. Sanislav and L. Miclea, “Cyber-physical systems - concept, chal-
lenges and research areas,” Control Engineering and Applied Informat-
ics, vol. 14, pp. 28–33, 01 2012.

[4] A. Johnson, “Design and analysis of efficient anonymous-communication
protocols,” Ph.D. dissertation, Yale University, 2009.

[5] T. T. Project, “Tor metrics: Users,” https://metrics.torproject.org/
userstats-relay-country.html, 2018.

[6] Brave, “Brave introduces beta of private tabs with Tor for enhanced
privacy while browsing,” https://brave.com/tor-tabs-beta, 2018.

[7] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Paul Syverson, vol. 13, 06 2004.

[8] K. Loesing, “Measuring the Tor network, evaluation of client
requests to the directories to determine total numbers and coun-
tries of users,” The Tor Project, Tech. Rep. 2009-06-002, June
2009. [Online]. Available: https://research.torproject.org/techreports/
directory-requests-2009-06-25.pdf

[9] R. Dingledine and S. J. Murdoch, “Performance improvements on tor
or, why tor is slow and what we’re going to do about it,” 06 2019.

[10] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage,
and G. M. Voelker, “Defenestrator: Throwing out windows in tor,” in
Privacy Enhancing Technologies, S. Fischer-Hübner and N. Hopper, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 134–154.

40

[11] C. Tang and I. Goldberg, “An improved algorithm for tor circuit
scheduling,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security, ser. CCS ’10. New York, NY, USA:
ACM, 2010. [Online]. Available: http://doi.acm.org/10.1145/1866307.
1866345 pp. 329–339.

[12] R. Jansen, N. Hopper, and Y. Kim, “Recruiting new tor relays with
braids,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security, ser. CCS ’10. New York, NY, USA: ACM,
2010. [Online]. Available: http://doi.acm.org/10.1145/1866307.1866344
pp. 319–328.

[13] W. B. Moore, C. Wacek, and M. Sherr, “Exploring the potential
benefits of expanded rate limiting in tor: Slow and steady wins the race
with tortoise,” in Proceedings of the 27th Annual Computer Security
Applications Conference, ser. ACSAC ’11. New York, NY, USA: ACM,
2011. [Online]. Available: http://doi.acm.org/10.1145/2076732.2076762
pp. 207–216.

[14] N. Mathewson, “Evaluating sctp for tor,” http://archives.seul.org/or/
dev/Sep-2004/msg00002.html, 2004.

[15] J. Reardon and I. Goldberg, “Improving tor using a tcp-over-dtls
tunnel,” in Proceedings of the 18th Conference on USENIX Security
Symposium, ser. SSYM’09. Berkeley, CA, USA: USENIX Association,
2009. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855768.
1855776 pp. 119–134.

[16] M. Akhoondi, C. Yu, and H. V. Madhyastha, “Lastor: A low-latency
as-aware tor client,” in 2012 IEEE Symposium on Security and Privacy,
May 2012, pp. 476–490.

[17] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and M. Blaze,
“A3: An extensible platform for application-aware anonymity,” in
NDSS, 2010.

[18] R. Snader and N. Borisov, “A tune-up for Tor: Improving security and
performance in the Tor network,” in 15th Network and Distributed Sys-
tem Security Symposium (NDSS), C. Cowan and G. Vigna, Eds. Re-
ston, VA, USA: Internet Society, Feb. 2008.

[19] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-aware path
selection for tor,” in Financial Cryptography and Data Security, A. D.
Keromytis, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 98–113.

41

[20] M. AlSabah and I. Goldberg, “Performance and security improvements
for Tor: A survey,” ACM Computing Surveys (CSUR), vol. 49, no. 2,
p. 32, 2016.

[21] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Hiding routing
information,” in Proceedings of the First International Workshop
on Information Hiding. London, UK, UK: Springer-Verlag, 1996.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647594.731526
pp. 137–150.

[22] R. Snader and N. Borisov, “Improving security and performance in the
Tor network through tunable path selection,” IEEE Transactions on
Dependable and Secure Computing, vol. 8, no. 5, pp. 728–741, 2011.

[23] S. Herbert, S. J. Murdoch, and E. Punskaya, “Optimising node selection
probabilities in multi-hop M/D/1 queuing networks to reduce latency of
tor,” Electronics Letters, vol. 50, no. 17, pp. 1205–1207, 2014.

[24] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-aware path
selection for Tor,” in International Conference on Financial Cryptogra-
phy and Data Security. Springer, 2012, pp. 98–113.

[25] M. AlSabah, K. Bauer, T. Elahi, and I. Goldberg, “The path less
travelled: Overcoming Tor’s bottlenecks with traffic splitting,” in Pro-
ceedings of the Privacy Enhancing Technologies Symposium (PETS).
Springer, 2013, pp. 143–163.

[26] M. Sherr, M. Blaze, and B. T. Loo, “Scalable link-based relay selection
for anonymous routing,” in Privacy Enhancing Technologies, I. Goldberg
and M. J. Atallah, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 73–93.

[27] C. Wacek, H. Tan, K. S. Bauer, and M. Sherr, “An empirical evaluation
of relay selection in tor,” in NDSS, 2013.

[28] F. Chen and J. Pasquale, “Toward improving path selection in tor,” in
2010 IEEE Global Telecommunications Conference GLOBECOM 2010,
Dec 2010, pp. 1–6.

[29] R. Jansen and N. J Hopper, “Shadow: Running tor in a box for accurate
and efficient experimentation shadow: Running tor in a box for accurate
and efficient experimentation,” 06 2019.

[30] S. J. Murdoch and R. N. Watson, “Metrics for security and
performance in low-latency anonymity systems,” in Proceedings of
the 8th International Symposium on Privacy Enhancing Technologies,
ser. PETS ’08. Berlin, Heidelberg: Springer-Verlag, 2008. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-70630-4 8 pp. 115–132.

42

[31] M. Perry, “TorFlow: Tor network analysis,” in Proceedings of the
2nd Workshop on Hot Topics in Privacy Enhancing Technologies (Hot-
PETs), 2009, pp. 1–14.

[32] R. Snader and N. Borisov, “EigenSpeed: Secure peer-to-peer bandwidth
evaluation,” in 8th International Workshop on Peer-To-Peer Systems,
R. Rodrigues and K. Ross, Eds. Berkeley, CA, USA: USENIX Associ-
ation, Apr. 2009.

[33] A. Johnson, R. Jansen, N. Hopper, A. Segal, and P. Syverson, “Peer-
Flow: Secure load balancing in Tor,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, no. 2, pp. 74–94, 2017.

[34] G. Karame, D. Gubler, and S. Čapkun, “On the security of bottleneck
bandwidth estimation techniques,” in Security and Privacy in Commu-
nication Networks, Y. Chen, T. D. Dimitriou, and J. Zhou, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 121–141.

[35] R. Süselbeck, G. Schiele, P. Komarnicki, and C. Becker, “Efficient band-
width estimation for peer-to-peer systems,” in 2011 IEEE International
Conference on Peer-to-Peer Computing, Aug 2011, pp. 10–19.

[36] A. Haeberlen, P. Kuznetsov, and P. Druschel, “Peerreview: practical
accountability for distributed systems,” in SOSP, 2007.

[37] A. Serjantov and P. Sewell, “Passive-attack analysis for connection-
based anonymity systems,” International Journal of Information
Security, vol. 4, no. 3, pp. 172–180, Jun 2005. [Online]. Available:
https://doi.org/10.1007/s10207-004-0059-3

[38] A. Back, U. Möller, and A. Stiglic, “Traffic analysis attacks and trade-
offs in anonymity providing systems,” in Information Hiding, I. S.
Moskowitz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 245–257.

[39] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90,
February 1981.

[40] P. F. Syverson, G. Tsudik, M. G. Reed, and C. E. Landwehr, “Towards
an analysis of onion routing security,” in Workshop on Design Issues in
Anonymity and Unobservability, ser. Lecture Notes in Computer Science,
H. Federrath, Ed., vol. 2009. Springer, 2000, pp. 96–114.

[41] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in USENIX Security Symposium. USENIX,
2004, pp. 303–320.

43

[42] E. L. Hahne, “Round-robin scheduling for max-min fairness in data net-
works,” IEEE Journal on Selected Areas in Communications, vol. 9,
no. 7, pp. 1024–1039, 1991.

[43] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1992.

[44] C. Dwork, “Differential privacy,” in Automata, Languages and Program-
ming, M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds. Berlin,
Heidelberg: Springer, 2006, pp. 1–12.

[45] S. Vadhan, “The complexity of differential pri-
vacy,” https://privacytools.seas.harvard.edu/publications/
complexity-differential-privacy, 2017.

[46] R. Jansen and A. Johnson, “Safely measuring tor,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978310 pp. 1553–1567.

[47] R. Dingledine and N. Mathewson, “Tor path specification,” https://
gitweb.torproject.org/torspec.git/plain/path-spec.txt, 2017.

[48] T. T. Project, “Tor metrics: Traffic,” https://metrics.torproject.org/
bandwidth.html, 2018.

[49] T. T. Project, “Tor metrics: Performance,” https://metrics.torproject.
org/torperf.html, 2018.

[50] M. Bun, K. Nissim, and U. Stemmer, “Simultaneous private learning
of multiple concepts,” CoRR, vol. abs/1511.08552, 2015. [Online].
Available: http://arxiv.org/abs/1511.08552

[51] C. Dwork and J. Lei, “Differential privacy and robust statistics,”
in Proceedings of the Forty-first Annual ACM Symposium on Theory
of Computing, ser. STOC ’09. New York, NY, USA: ACM, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1536414.1536466 pp.
371–380.

[52] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin
network,” in 13th International Conference on Peer-to-Peer Computing
(P2P). IEEE, 2013, pp. 1–10.

[53] R. Jansen, K. Bauer, N. Hopper, and R. Dingledine, “Methodically mod-
eling the tor network,” in Proceedings of the USENIX Workshop on Cy-
ber Security Experimentation and Test (CSET 2012), August 2012.

44

