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ABSTRACT

Graph-structured data is able to characterize pairwise or even higher-order

relations among different data points, and has been demonstrated to be

highly advantageous in various data mining and machine learning appli-

cations. Such graph-structured data may either come from real life net-

works, or some transformation based on data points. However, in practice

the measurement of graph-structured data is usually partially incomplete or

incorrect. For example, the measured states of nodes in the graph might

be incorrect due to sensor noise. In this thesis, we study two problems on

graph-structured data with imperfect information: hypergraph-based active

learning and source estimation on directed acyclic graphs (DAGs), all with

provable statistical guarantees.

In the first part of this thesis, we propose an active learning scheme which

is able to accommodate the structure of hypergraphs, termed HS2. HS2

generalizes the previously proposed S2 algorithm which is only able to solve

graph-based active learning (GAL) with pointwise oracle. Our HS2 is more

flexible in the sense that it is adaptable for three different types of oracles:

pointwise oracle, pairwise oracle, as well as noisy pairwise oracle. Based on

a novel parametric system particularly designed for hypergraphs, we derive

theoretical results on the query complexity of HS2 for the above described

settings. Both the theoretical and empirical results show that HS2 outper-

forms the näıve combination of clique expansion and GAL algorithms.

Next we develop a heuristic, termed generalized Jordan center (GJC),

to estimate the source of a spreading process on a DAG based on noisy

and incomplete observations. This problem is motivated by contamination

diffusion in a food supply chain. For this setting, identifying the source

correctly and efficiently as well as inferring states of unobserved events are

of top priorities (the recall problem). We believe this is the first work on

source estimation with noisy information. Under mild conditions, GJC is the
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maximum likelihood (ML) estimator of the diffusion source. Our proposed

heuristic is parameter-free (only needs to know the structure of the DAG and

states of some nodes), and can be evaluated efficiently by a message-passing-

like algorithm in Õ(|V |) complexity (the tilde notation means ignoring the

logarithm factor), where V is the vertex set. Experiments on both synthetic

and real networks show that GJC has significant gains over a näıve extension

of Jordan center and is comparable to the exact ML estimate, in terms of

source detection probability and false negative rate for recall.
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CHAPTER 1

INTRODUCTION

1.1 Graph-Structured Data

Machine learning on graphs is an important and ubiquitous task with ap-

plications ranging from recommendation to community detection. A graph

is defined by a collection of nodes and edges, which may either come from

real life networks such as social networks [1], or some transformation based

on data points, e.g. nearest neighbor graphs [2]. The structure of a graph

itself is able to characterize useful information for solving many engineering

problems, and principally exploiting the structure of graphs has shown out-

standing performance in applications from different fields. In other words,

graphs are emerging as a powerful analysis paradigm for numerous problems.

Much data can be modeled as a graph, and following is a short list of concrete

examples:

• Cities are nodes and highways are edges (in a transportation network)

• Humans are nodes and relationships between them are edges (in a social

network)

• Atoms are nodes and chemical bonds are edges (in a molecule)

Graph-structured data is becoming prevalent in many data mining and ma-

chine learning applications, but there are still many challenges with regard

to this type of data. One main challenge is the scale of the data, especially in

the era of big data. It is typical that social networks nowadays have billions

of nodes; thus, developing efficient algorithms for solving problems on graph-

structured data is extremely important. Another challenge in processing

graph data is the error in the measurement step, which is always inevitable.

For example, due to the RFID sensor noise, the state of nodes in a supply
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chain network might be incorrect with some probability [3,4]. Therefore the

robustness of algorithms designed for graph data is also of great concern. In

this thesis, we target two problems on graph data and develop efficient and

robust algorithms for them respectively, with provable statistical guarantees.

1.2 Two Inference Problems on Graphs

Various inference problems can emerge in the context of graph data, and they

can be divided into two categories: online problems and offline problems. The

first type refers to situations where the program is operating and taking in

new information in real time. The second type is opposite to the first type,

in the sense that we have a static set of input data. One issue largely ignored

by the research community is the unseen error in the graph data. This thesis

studies the following two questions considering the unseen error in the graph

data, which represent the above two types, respectively.

Active Learning on Hypergraphs This problem refers to the situa-

tion where the learner aims to select a minimum number of most informative

nodes in the hypergraph, in order to correctly predict the labels of remaining

unknown nodes with high confidence. Active learning on graphs has been

studied extensively; most of the proposed algorithms for this problem fall

into two categories: algebraic [5–7] or topological [8]. However, work on ac-

tive learning for hypergraphs is quiet limited. In this thesis, we show the

need for algorithms which can accommodate the structure of hypergraphs,

since the projection from hypergraph to graph leads to loss of information.

Source Estimation with Noisy and Incomplete Observations Dif-

fusion processes in complex networks characterize numerous real-world phe-

nomena including disease spread in epidemics, rumor propagation in soci-

eties, and perhaps less well-known: contamination diffusion in food supply

chains [9, 10]. Since such infections cause tremendous societal losses [11,12],

it is important to identify the source accurately and efficiently, so proper

control strategies can inhibit or even eliminate spreading. Previous works on

source estimation mostly focus on graphs with perfect information [13, 14],

i.e., the states of all nodes and graph structure are known to be correct. How-

ever, in practice this assumption does not hold, due to the noise introduced

in the graph data generation. We want to study how to infer the diffusion
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source given noisy and incomplete observation of node states. In this thesis,

we make some progress on solving this problem.

Bibliographical Note

The problem of active learning on hypergraphs and part of the results of

Chapter 2 have been presented at the conference listed below and appear in

its proceedings:

• I. Chein, H. Zhou, and P. Li, “HS2: Active learning over hypergraphs

with pointwise and pairwise queries,” in Proceedings of 22nd Interna-

tional Conference on Artificial Intelligence and Statistics (AISTATS),

Apr. 2019.

The problem of source estimation with incomplete and noisy observations

and part of the results in Chapter 3 have been presented at the conference

listed below and appear in its proceedings:

• H. Zhou, A. Jagmohan, and L. R. Varshney, “Generalized Jordan cen-

ter: A source localization heuristic for noisy and incomplete observa-

tions,” in Proceedings of the IEEE Data Science Workshop (DSW),

June 2019.
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CHAPTER 2

ACTIVE LEARNING ON HYPERGRPAHS

In this chapter, we study the problem of active learning on hypergraphs.

We first state the concise problem formulation, and then demonstrate the

active learning algorithms as well as their query complexity bounds, designed

for different types of oracles respectively. In the last part, we show the

experimental results of our proposed algorithms on both synthetic and real

data.

2.1 Problem Formulation

We use G = (V,E) to denote a hypergraph with a node set V and a hyperedge

set E. A hyperedge e ∈ E is a set of nodes e ⊂ V such that |e|≥ 2. When

for all e ∈ E, |e|= 2, G reduces to a graph.

Suppose that each node belongs to one of k classes. Let [k] denote the set

{1, 2, ..., k}. A labeling function is a function f : V 7→ [k] such that f(v) is

the label of node v. Given the labels of all nodes, we call a hyperedge e a cut

hyperedge if there exist u, v ∈ e, f(u) 6= f(v). The cut set C includes all cut

hyperedges. Moreover, define the boundary of the cut set C as ∂C =
⋃
e∈C e,

i.e., the set of nodes that appear in some cut hyperedges. By removing

all the cut hyperedges, we suppose that G is partitioned into T connected

components whose node sets are denoted by V1, V2, ..., VT . For any pair of

connected components Vr, Vs, define the associated cut component as Crs =

{e ∈ C : e ∩ Vr 6= ∅, e ∩ Vs 6= ∅}. Note that two different cut components

of hyperedges Crs and Cr′s′ may have intersection in the hypergraph setting

and the union of Crs for all (r, s) pairs is the cut set C.

We are considering active learning problems, in which the learner is allowed

to ask queries and collect information from the oracle. In this work, we study

two kinds of oracles: the pointwise oracle F0 : V 7→ [k] and the pairwise oracle
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O0 : V × V 7→ {0, 1}, which are defined as follows. For all v1, v2 ∈ V ,

F0(v1) = f(v1), O0(v1, v2) =

1, if f(v1) = f(v2)

0, if f(v1) 6= f(v2).

In the pairwise setting, we also allow for a noisy oracle, denoted by Op, where

p stands for the error probability of the oracle, i.e.,

P (Op(v1, v2) = O0(v1, v2)) = 1− p.

We assume that for different pairs of nodes, the responses of the oracle are

mutually independent. However, for each pair of nodes (v1, v2), Op(v1, v2)

is consistently 0 or 1. Therefore, querying one pair multiple times does not

lead to different responses or affect the learning performance.

We use the term query complexity, denoted by Q, to quantify how many

times an algorithm uses the oracle. Our goal is to design algorithms which

learn the partition V =
⋃T
i=1 Vi, or equivalently cut set C, with query com-

plexity Q as low as possible. In this work, due to the randomness of the

proposed algorithms, we focus on learning the exact C with high probability.

That is, given a δ ∈ (0, 1), with probability 1 − δ we recover C with query

complexity Q(δ).

Remark 2.1.1. The original S2 paper considers a simpler noise model [8],

where one allows independent responses after querying for a single event mul-

tiple times. In this case, a simple majority voting can be used for aggregating

and denoising the information. However, according to real-life experiments in

crowdsourcing [15, 16], such a method intrinsically introduces bias and thus

majority voting may even increase the error. Therefore, we consider a more

realistic model used in [15]. Also note that this noise model is not applicable

to the case of pointwise oracle as the noise may always lead to some incorrect

labels that can never be fixed.
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2.2 HS2 with a Pointwise Oracle

In this section, we propose the HS2 algorithm with a pointwise oracle, termed

HS2-point, which essentially generalizes the S2 algorithm for GAL [8] to the

hypergraph setting. HS2-point is similar to S2, insofar as the algorithm only

asks for the label of the midpoint of current shortest path among all paths

that connect two nodes with different labels, while the path now is defined

over hypergraphs. The novelty of HS2-point appears in the corresponding

analysis of the query complexity. We find that how well cut components are

clustered determines the query complexity. Later, we will formally define it

as the clusteredness of cut components. In contrast to [8], for HS2-point,

clusteredness of cut components is determined by a much more complicated

measure that characterizes the distance between cut hyperedges. Moreover,

we tighten the original analysis for S2. As a corollary, the tightened bound

shows that HS2-point requires lower query complexity than a naive combi-

nation of the clique-expansion method and S2.

We start by introducing the HS2-point algorithm. As HS2 depends on

shortest paths, we first define a path in hypergraphs and its length.

Definition 2.2.1 (Path in hypergraph). Given a hypergraph G = (V,E),

we say there is a path of length l between nodes u, v ∈ V if and only if there

exists a sequence of hyperedges (e1, e2, ..., el) ⊆ E such that u ∈ e1, v ∈ el
and ei ∩ ei+1 6= ∅ ∀i ∈ [l − 1].

Conceptually, the algorithm operates by alternating two phases: random

sampling and aggressive search. Each outer loop corresponds to a random

sampling phase, where the algorithm will query randomly. This phase will

end when two nodes with different labels are detected and there is a path

connecting them, which is determined by the subroutine MSSP (G,L) (it

finds the midpoint on the shortest among all the shortest-paths that connect

oppositely labeled vertices in the collection of labeled nodes). Then, the

algorithm turns into the inner loop, i.e., the aggressive search phase that

searches cut hyperedges. In the inner loop, cut hyperedges are gradually

removed and G breaks into a collection of connected components. Here, L

is a list to collect labeled nodes with labels. Algorithm 1 will keep tracking

the size of L. When the query complexity budget is used up, the algorithm

ends and outputs the remaining connected components of G.
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Algorithm 1: HS2-point

Input : A hypergraph G, query complexity budget Q(δ)
Output: A partition of V
Main Algorithm: L← ∅
while 1 do

x← Uniformly at random pick an unlabeled node.
do

Add (x,F0(x)) to L
Remove all hyperedges containing nodes with different label
from G.
if more than Q(δ) queries are used then

Return the remaining connected components of G
end

while x←MSSP (G,L) exists

end

The aggressive search phase that finds all cut hyperedges within low query

complexity is the most important step. The key idea is the following. On

the path between two nodes with different labels, there must be at least one

cut hyperedge. Intuitively, to efficiently find this cut hyperedge, we may use

a binary-search method along the shortest one of such paths. That is, we

iteratively query for the label of the node that bisects this path. The binary

search and the search of a shortest path are done simultaneously by the key

subroutine MSSP (G,L) (Algorithm 2). Finding the shortest path in the hy-

pergraph can be implemented via standard breath-first-search algorithm [17].

A more efficient way to search the shortest path in a dynamic hypergraph is

described in [18]. Since we focus on query complexity, discussion of the time

complexity of the algorithms is outside the scope of the paper.

To characterize the query complexity of Algorithm 1 we need to introduce

the following concept.

Definition 2.2.2 (Balancedness). We say that G is β-balanced if β =

mini∈[k]
|Vi|
n

.

Definition 2.2.3 (Distance between cut hyperedges). Let dG−Csp (v, u) denote

the shortest path between nodes v, u with respect to the hypergraph G after

all cut hyperedges are removed. Let Ωi(e) = {x ∈ e|x ∈ Vi}. Define the

directed distance between cut hyperedges as ∆ : C × C → N ∪ {0,∞}: for
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Algorithm 2: MSSP

Input : The hypergraph graph G, label list L
Output: The midpoint of shortest-shortest path
Main Algorithm:
for each v, u ∈ L such that u, v has different label do

Pv,u ← shortest path between v, u in G.
lu,v ← length of Pu,v.(=∞ if doesn’t exist)

end
(v∗, u∗) = arg min lu,v
if (v∗, u∗) exists and lv∗,u∗ ≥ 2 then

Return the midpoint of Pv∗,u∗ .
else

Return ∅
end

e1, e2 ∈ C,

∆(e1, e2)

= sup
(i,j):e1,e2∈Ci,j

(
sup

v1∈Ωi(e1)

inf
u1∈Ωi(e2)

dG−Csp (v1, u1)

+ sup
v2∈Ωj(e1)

inf
u2∈Ωj(e2)

dG−Csp (v2, u2) + 1
)
. (2.1)

If e1, e2 do not belong to a common cut component, let ∆(e1, e2) =∞.

For e1, e2 that belong to certain cut component, the metric ∆(e1, e2) char-

acterizes the length of shortest path that contains e2 after we have found

and removed e1. With the above distance, we may characterize the clus-

teredness of cut hyperedges. First, we need to construct a dual directed

graph Hr = (C, E) according to the following rule: the nodes of Hr corre-

spond to cut hyperedges of G and for any two nodes e, e′, ee′ is an arc in Hr if

and only if ∆(e, e′) ≤ r. According to the definition, each cut component Ci,j

is mapped to a group of nodes in Hr. Now, we may define κ-clusteredness.

Definition 2.2.4 (κ-clusteredness). A cut set C is said to be κ-clustered

if for each cut component Ci,j, the corresponding nodes in Hκ are strongly

connected.

The intuition behind the above definition is that ideally we want the cut

hyperedges in one cut component to not be so far away from another cut

8



hyperedge. For better understanding, suppose HS2-point has found and re-

moved the cut hyperedge e1. Another hyperedge e2 in the same cut compo-

nent appears in the shortest path whose endpoints are in e1. This parameter

guarantees that HS2-point needs only at most dlog2 κe queries along such a

path to find the cut hyperedge e2. Hence, if the hypergraph has a small κ,

we can efficiently find all the cut hyperedges in C after we find the first one

in each cut component in the random sampling phase. Typically κ is not

large, as κ is naturally upper bounded by the diameter of the hypergraph,

which, in a small-world situation, is at most O(log n) [19].

The novel part of HS2-point is that we propose Definition 2.2.3 and Def-

inition 2.2.4, which properly generalize the parametric system of S2 [8] to

hypergraphs and leads to the following theoretical estimation of query com-

plexity.

Theorem 2.2.5. Suppose that G = (V,E) is β-balanced. The cut set C

induced from a label function f is κ-clustered and m non-empty cut com-

ponents. Then for any δ > 0, Algorithm 1 will recover C exactly with

probability at least 1− δ if Q(δ) is larger than

Q∗(δ) , log(1/(βδ))

log(1/(1− β))
+m(dlog2(n)− log2(κ)e)

+ min(|∂C|, |C|)(dlog2(κ)e+ 1). (2.2)

Note that Theorem 2.2.5 not only generalizes Theorem 3 from [8] to the

hypergraph case but also provides a tighter result. Specifically, it improves

the original term |∂C| to min(|∂C|, |C|). Recall the definitions of |∂C| and

|C|. Typically, |C|< |∂C| corresponds to the case when the number of cut

hyperedges is small while the size of each cut hyperedge is large, which may

appear in applications that favor large hyperedges [20–22]. This improvement

is also critical for showing that the HS2-point algorithm has lower query

complexity than a simple combination of CE and the original S2 algorithm [8].

We will illustrate this point in the next subsection.

2.2.1 Comparison with clique expansion

Clique expansion (CE) is a frequently used tool for learning tasks over hyper-

graphs [23–26]. CE refers to the procedure that transforms hypergraphs into
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CE

Figure 2.1: An example of clique expansion. Left: the orginal hypergraph
G with 4 hyperedges; Right: the clique-expanded graph G(ce). The colors of
nodes identify the labels and the dashed hyperedges/edges are cut
hyperedges/edges.

graphs by expanding hyperedges into cliques. Based on the graph obtained

via CE, one may leverage the corresponding graph-based solvers to solve

learning tasks over hypergraphs. For HAL, we may choose a similar strat-

egy. Suppose the obtained graph after CE is denoted by G(ce) = (V (ce), E(ce)),

so that V (ce) = V , and for u, v ∈ V (ce), uv ∈ E(ce) if and only if ∃e ∈ E such

that u, v ∈ e. In this subsection we will compare the bounds of query com-

plexity of HS2-point evaluated over G and that of S2 evaluated over G(ce).

Suppose G is β-balanced, with m cut components, and the corresponding

cut set C is κ-clustered. In the following proposition, we show that some

parameters of G(ce) are the same as those of G.

Proposition 2.2.6. G(ce) is β-balanced and has exactly m cut components.

Let C(ce) be the cut set of G(ce). Then, C(ce) is κ-clustered and |∂C|= |∂C(ce)|.
However, we always have min(|C|, |∂C|) ≤ min(|C(ce)|, |∂C(ce)|).

As graphs are special case of hypergraphs, Theorem 2.2.5 can be used

to characterize the query complexity of S2 over G(ce). For this purpose,

recall the parameters in Theorem 2.2.5 that determine the query complexity.

Combining them with Proposition 2.2.6, it is clear that the HS2 algorithm

often allows for lower query complexity than that of CE plus S2 and such

gain comes from the case when |C|≤ |C(ce)|. To see the benefit of HS2-point

more clearly, consider the example in Figure 2.1. Once HS2-point finds and

removes the cut hyperedge of G, the correct partition of V is learned. So we

only need to collect the labels of any two nodes in |∂C|. However, if we use
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S2 over the obtained graph G(ce), all three nodes in ∂C(ce)(= ∂C) must be

queried for labels before we learn the correct partition.

Remark 2.2.1. The benefit of HS2-point essentially comes from the fact that

|C| is often smaller than |C(ce)|. Note that the query complexity for S2

derived in [8] does not reflect such a parametric dependence.

Remark 2.2.2. Note that in the example in Figure 2.1 we have |C|≤ |C(ce)|
and |∂C|= |∂C(ce)|. However, |C| is not necessarily smaller than |C(ce)|. Con-

sider the following example: Suppose all nodes of G have different labels and

there are
(
n
3

)
hyperedges in E that cover all triples. Then, G(ce) is a big clique

connecting all nodes. In this case |C|=
(
n
3

)
>
(
n
2

)
= |C(ce)|. Nevertheless,

in this case we have |∂C|= |∂C(ce)|< |C(ce)| and hence Proposition 2.2.6 still

holds. This example shows that it is non-trivial to prove Proposition 2.2.6.

2.3 HS2 with Pairwise Oracle

We now look into the HAL problem with a pairwise oracle. Since the pro-

posed algorithms also depends on the strategy of searching for the shortest

path that connects two nodes with different labels, we refer to them as HS2-

pair. As mentioned, to our best knowledge, HS2-pair appears to be the

first model-free strategy to handle the HAL/GAL problems with a pairwise

oracle.

We analyze settings with both noiseless and noisy oracles. The noiseless

case is simple and will be introduced first. Then, we introduce the noisy case

that is much more involved. Note that in the setting with a pairwise oracle,

the exact label of each node is not known and not relevant. Hence, without

loss of generality, we associate the ith class identified during the learning

procedure with the label i.

2.3.1 Noiseless case

We start by introducing the setting with a noiseless pairwise oracle. The key

point is to first seed a few classes and then classify a newly selected node

via pairwise comparison with the seeds. If there is a match, we assign the

node to its corresponding class; otherwise, we assign the node to a new class.
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Notationally, we let Si, i ∈ [k] be the set of nodes that have been classified to

the ith class so far. Each Si starts from one node when a node from the ith

new class is detected and Si gradually grows when new nodes of this class

are detected. As all nodes u ∈ Si share the same label, for a new node v, we

use O0(v, Si) to denote the query O0(v, u), u ∈ Si. The HS2-pair algorithm

for the noiseless case is listed in Algorithm 3.

Algorithm 3: The noiseless HS2-pair

Input : A hypergraph G and query complexity budget Q(δ).
Output: A partition of V .
Main Algorithm: L← ∅, #c ← 1
v ← Uniformly at random pick an unlabeled node
Add (v, 1) to L and set S1 ← {x}
while 1 do

v ← Uniformly at random pick an unlabeled node
do

Collect O0(v, Si) for all i ∈ [#c]
if ∃i, O0(v, Si) = 1 then

Add (v, i) to L and v to Si
else

#c← #c + 1
Add (v, #c) to L and Set S#c ← {v}

end
Remove all hyperedges containing nodes with different labels
from G
if more than Q(δ) queries are used then

Return the remaining connected components of G
end

while x←MSSP (G,L) exists

end

The only difference between HS2-pair in the noiseless case and HS2-point

is the way to label a newly selected node. We leverage the pairwise oracle to

compare the new node with each class that has been identified. Intuitively, we

need at most k pairwise queries to identify the label of each node. Moreover,

without additional assumptions on the data, it appears impossible to identify

the label of each node with o(k) many pairwise queries. Therefore, combining

this observation with Theorem 2.2.5, we establish the query complexity of

Algorithm 3 in the following corollary, which essentially is Θ(k) times the

number of queries required by HS2-point.
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Corollary 2.3.1. Suppose G = (V,E) is β-balanced. The cut set C is κ-

clustered and the number of non-empty cut components is m. Then for any

δ > 0, Algorithm 3 will recover C exactly with probability at least 1 − δ if

Q(δ) is larger than kQ∗(δ), i.e.,

k
log(1/(βδ))

log(1/(1− β))
+ km(dlog2(n)− log2(κ)e)

+ kmin(|C|, |∂C|)(dlog2(κ)e+ 1).

2.3.2 Noisy case

We consider next the setting with a noisy pairwise oracle. The key idea is

similar to the one used in the noiseless case: we first identify seed nodes

for the different classes. Due to the noise, however, we need to identify a

sufficiently large number of nodes within each class during Phase 1 so that

the classification procedure in Phase 2 has high confidence. To achieve this,

we adopt a strategy similar to that used in Algorithm 2 of [15] in Phase 1,

which can correctly classify a group of vertices into different clusters with high

probability based on pairwise queries as long as the size of each cluster is not

too small. Phase 2 reduces to classifying the remaining nodes. In contrast

to the noiseless case, we adopt a normalized majority voting strategy: we

will compare the ratios of the nodes over different classes that claim to have

the same label with the incoming node. We list our HS2-pair with noise in

Algorithm 4.

We now describe the query complexity of Algorithm 4.

Theorem 2.3.2. Suppose G = (V,E) is β-balanced. The cut set C induced

from a label function f is κ-clustered and has m non-empty cut components.

Then for any δ > 0, p < 1
2
, Algorithm 4 will recover C exactly with proba-

bility at least 1− δ if Q(δ) is larger than

Q∗(δ/4)M +
128Mk2 logM

(2p− 1)4
, (2.3)

13



Algorithm 4: HS2-pair with noise

Input : A hypergraph G, query complexity budget Q(δ), parameter
M

Output: A partition of V
Phase 1:
Uniformly at random sample M nodes from G;
Use Algorithm 2 in [15] on these M nodes to get a partition S1, ..., Sk.
Let S =

⋃k
i=1 Si;

Phase 2:
L← {(v, i)|v ∈ Si, i ∈ [k]};
Remove all hyperedges whose containing different labels from G;
while 1 do

Uniformly at random sample an unlabeled node v;
do

Mi ← |{u ∈ Si|Op(u, v) = 1}| for all i ∈ [k];

i∗ ← arg maxi∈[k] Mi/|Ŝi|, add (v, i∗) to L;
Remove all hyperedges that contain different labels from G;
if more than Q(δ) queries are used then

Return the remaining connected components of G
end

while x←MSSP (G,L) exists ;

end
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where Q∗(δ) is defined in (2.2), and M is an integer satisfying

M

logM
≥ 128k

β(2p− 1)4
, M ≥ 12

β
log

4k

δ
,

M ≥ 8

δ
, M ≥ 2

βD(0.5||p)
log

8(k − 1)Q∗(δ/4)

δ
.

(2.4)

Here D(p||q) denotes the KL-divergence of two Bernoulli distributions with

parameters p and q.

We only provide a sketch of the proof of Theorem 2.3.2. For the complete

proof, please refer to the appendix.

Proof. (sketch) In Phase 2, we expect to select Q∗(δ1) nodes for labeling,

according to Theorem 2.2.5. This phase may require MQ∗(δ1) queries. To

classify all these nodes correctly via normalized majority voting with proba-

bility at least 1− δ2, we require each Si to be large enough. Specifically, via

the Chernoff bound and the union bound, we require

min
i∈[k]
|Si|≥

1

D(0.5||p)
log

2(k − 1)Q∗(δ1)

δ2

. (2.5)

To obtain a sufficiently large |Si|, we need to sample a sufficiently large

number of points M in Phase 1. With probability 1−kexp(−Mβ/8), we can

ensure that

min
i∈[k]
|Si|≥

βM

2
. (2.6)

Combining (2.5) and (2.6) gives the fourth inequality in (2.4). Moreover, we

also need to cluster these Si correctly via Algorithm 2 in [15], which requires

the first three constrains in (2.4) and the additional 128Mk2 logM
(2p−1)4

queries ac-

cording to Theorem 3 in [15]. This gives the formulas in Theorem 2.3.2.

Remark 2.3.1. Suppose that the parameters (p, k, δ, β) are constants. Then,

the fourth requirement of M in (2.4) reduces to M = O(log(Q∗(δ))), and

the overall query complexity equals O(Q∗(δ) log(Q∗(δ))). Comparing this to

Theorem 2.2.5 and Corollary 2.3.1, we only need O(log(Q∗(δ))) times more

queries for the setting with the noisy pairwise oracle.

Recall the perfect partitioning according to the labels follows V =
⋃T
i=1 Vi.

If we additionally assume that T equals the number of classes k, Phase 1 of
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Algorithm 4 will guarantee to sample at least one node from each Vi, i ∈ [T ].

This observation allows us to get rid of the random sampling procedure in

Phase 2. So the first term in Q∗(δ) essentially vanishes. We may achieve the

following tighter result.

Corollary 2.3.3. Suppose G = (V,E) is β-balanced. The cut set C induced

from a label function f is κ-clustered and m non-empty cut components.

Moreover, suppose T = k. Then, for any δ > 0, p < 1
2
, Algorithm 4 will

recover C exactly with probability at least 1− δ if Q(δ) is larger than

Q∗1M +
128Mk2 logM

(2p− 1)4

where

Q∗1 = m(dlog2(n)− log2(κ)e)

+ min(|∂C|, |C|)(dlog2(κ)e+ 1),

and now M is the smallest integer satisfying

M

logM
≥ 128k

β(2p− 1)4
,

;M ≥ 12

β
log

3k

δ
,

M ≥ 6

δ
,

;M ≥ 2

βD(0.5||p)
log

6(k − 1)Q∗1
δ

.

In the end of this section, we remark on the CE method in the setting with

the pairwise oracle. One still may first apply CE to obtain a graph G(ce) and

then run Algorithms 3 and 4 over G(ce). Corollary 2.3.1 and Theorem 2.3.2

again indicate that the query complexity depends on min{|C|, |∂C|}. By

using Proposition 2.2.6, we can again demonstrate the superiority of our

proposed approaches over CE-based methods.

2.4 Experiments

In this section, we evaluate the proposed HS2-based algorithms on both syn-

thetic data and real data. We mostly focus on demonstrating the benefit of
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HS2 in handling the high-order structures. For the setting with a point-

wise oracle, we compare HS2-point with some GAL algorithms including the

original S2 [8] and EBM [6], a greedy GAL algorithm based on error bound

minimization. To make these GAL algorithms applicable to our high-order

data, we will first transform hypergraphs into standard graphs by clique

expansion which was introduced in Section 2.2.1. For the setting with a

pairwise oracle, as there are no other model-free algorithms even for GAL

to the best of our knowledge, we compare HS2-pair over hypergraphs with

the combination of clique expansion and HS2-pair over graphs (termed CE

+ S2-pair later). All the results are averaged over 100 independent tests.

For the real datasets, we test both HS2 and CE+S2 on the task of mo-

tion segmentation, which is essentially a subspace clustering problem and

typically needs to utilize hypergraph structures [27]. We use the popular

benchmark — the Hopkins 155 — dataset [28] to evaluate the performance.

As mentioned in [22, 29], the trajectories on the distinct motions can be

grouped into 4-dimensional subspaces. We generate 5-uniform hypergraphs

from the data, since a fit to d-dimensional subspace can only be evaluated

over at least d + 1 data points. It is crucial to use hypergraphs instead of

standard graphs for this tasks.

2.4.1 Synthetic data

For the synthetic data, we investigate the effects of the scale of hypergraphs n

and the number of classes k on all proposed algorithms. We generate labeled

hypergraphs according to the following random hypergraph model: fix the

number of inner-cluster and intra-cluster hyperedges, and then generate all

hyperedges uniformly at random without replacement. Specifically, we fix

the size of all hyperedges to be 5, and restrict each cluster to be equal-

sized. In our experiments, we uniformly randomly place n
k

log n
k

hyperedges

within each cluster. This ensures that each cluster will be connected with

high probability. Then we uniformly randomly place 1
3
n
k

log n
k

hyperedges

across different clusters, which means |C|= 1
3
n
k

log n
k
. For the experiments on

pointwise queries, the results are shown in Figure 2.2. As it shows, HS2-

point outperforms S2 and EBM with nontrivial gains (roughly by a factor of

2). The reason why the query complexity scales linearly in n is due to our
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experiment setting. We place n
k

log n
k

hyperedges within each cluster which

makes the κ small. Hence the query complexity is dominated by the last term

in (2.2). In addition, we also vary the size of hyperedges and the number of

cut edges. The results are shown in Figure 2.3. We can see that HS2-point

will perform better when the size of hyperedges gets larger. Also we observe

that when the number of cut edges gets larger, the CE+S2 approach needs

to query all n nodes while the HS2 approach does not have to. All these

results suggest that our HS2 is better than the CE+S2 approach. For the
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Figure 2.2: Simulation results with pointwise oracles over synthetic data.
Left: query complexity vs scale of hypergraphs n with fixed k = 3; Right:
query complexity vs the number of classes k with fixed n = 200.
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Figure 2.3: Simulation results with pointwise oracles over synthetic data.
Left: query complexity vs size of hyperedges with fixed k = 3, n = 900;
Right: query complexity vs the number cut edge |C| with fixed k = 3,
n = 900.

experiments on pairwise noiseless queries, the results are shown in Figure 2.4.

Again, our HS2-pair algorithm outperforms the naive combination of CE
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and S2-pair. In contrast to the pointwise case, we can see that the query

complexity increases almost linearly with respect to the number of classes.

This is because we need Θ(k) pairwise queries to identify the label of one

node. To test HS2-pair with noisy oracle, we construct a larger hypergraph,
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Figure 2.4: Simulation results with pairwise oracles over synthetic data.
Left: query complexity vs scale of hypergraphs n with fixed k = 3; Right:
query complexity vs the number of classes k with fixed n = 200.

due to the fact that in phase 1 it requires sufficient numbers of pairs of nodes

to be queried. We set the total number of nodes in the hypergraph n = 5000,

number of clusters k = 2 and the number of pairs of nodes to be queried in

phase 1 M = 2000. The result is shown in Table 2.1. As expected, HS2 is

better than CE+S2 in terms of query complexity.

Table 2.1: Query complexity with noisy pairwise oracle on synthetic graphs.

noisy HS2-pair CE+noisy S2-pair
Query

Complexity 5,401,830 8,574,332

2.4.2 Real world application

We test the algorithms on 4 checkerboard sequences in the Hopkins 155

dataset under the pointwise query setting. They are sequences of indoor

scenes taken with a handheld camera under controlled conditions. The

checkerboard pattern on the objects is used to assure a large number of

tracked points. We follow the same methodology as [22] to generate hyper-

graphs from these data. For each cluster i with ni points, we sample ni log ni

subsets of 5 points from them, as a 4D-subspace was required to be fitted

on each sample via SVD. We denote N =
∑

i ni to be the number of total
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inner-cluster samples. We place a hyperedge on the sampled subset if the

sum of the distance of corresponding points to the fitted 4D-subspace is less

than a threshold. Then we sample N
6

subsets of 5 points uniformly at random

among all points and place hyperedges by following the same criterion. The

results are in the Figure 2.5. We can see that indeed HS2 needs many fewer

queries than CE+S2, which matches our theoretical and synthetic results.
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Figure 2.5: Results for the experiments on the Hopkins 155 dataset. The
title for each subfigure describes how the corresponding data is obtained.
For example, 2RT means that object 2 translates and rotates on the same
axis. Each task contains about 400 to 500 points.
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CHAPTER 3

SOURCE ESTIMATION WITH NOISY AND
INCOMPLETE OBSERVATIONS

In this chapter, we will first state the problem formulation of source estima-

tion with noisy and incomplete observations explicitly, and then introduce

our proposed heuristic, generalized Jordan center (GJC) which extends the

previous Jordan center [14], as well as its performance guarantee. Lastly,

we will demonstrate the outstanding performance of our proposed heuris-

tic on both synthetic and real data. According to our experiments, GJC

is comparable to the exact maximum likelihood estimator, and significantly

outperforms the näıve extension of previously proposed method source esti-

mator for perfect information.

3.1 Problem Formulation

Consider the DAG G = (V,E). At time t = 0, the infection process starts

from source s ∈ V following the transmission model defined in [30], having

key properties:

• Infection process travels independently through graph,

• Infection of any susceptible node only depends on nodes that directly

infect it, and

• Any infected node remains infected for all time thereafter.

The model is parameterized by a first-order, row-stochastic transition matrix

PT , where entry PT (i, j) is the probability node j is infected by node i in

one time step. Assume we only have access to the state of a subset of nodes,

through a binary symmetric channel with crossover probability η. That is,

∀n ∈ O, where O is the set of nodes observed as infected:
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P (n is infected|n ∈ O) = 1− η

P (n is uninfected|n ∈ O) = η

From the Bayesian perspective, we must find the most likely source s∗ ∈ C,

where C is the candidate set of sources, based on O. (In general, O may not

be the collection of all infected nodes but just a small subset.) Given these

definitions, the Bayes estimate of the diffusion source is:

s∗ = arg max
s∈C

P (s|O) =
P (s)P (O|s)

P (O)
, (3.1)

where P (s|O) is the conditional probability of node being source s given the

infection pattern O. If we do not have prior information on the source, the

MAP estimator reduces to the ML estimate, s∗ = arg maxs∈C P (O|s). The

exact joint likelihood function for noiseless observations is [30]:

P (O|s) =
k∏
i=1

P (s→ oi) =
k∏
i=1

{(I − PT )−1PT}soi , (3.2)

where P (s→ ok) is the total probability of reaching the kth infected node ok

from starting point s along all possible infection paths, and {(I−PT )−1PT}soi
is the soi-th entry of the matrix (I − PT )−1PT . The expression is due to the

independence assumption of the contamination process. Note that (I−PT )−1

is well-defined since for any absorbing Markov chain I − PT is invertible

[31]. Thus the computation complexity of evaluating the ML estimate of the

contamination source is O(|V |w), where 2 < w < 3 is the best constant to

implement matrix inversion and multiplication [32].

This strategy is computationally intractable when dealing with large-scale

networks even for noiseless observations. For noisy observations, it becomes

much worse since it additionally requires enumerating all possible state com-

binations, which in worst-case is 2|V |. The exact joint likelihood function of

node s being the source given noisy observation O is:

P (O|s) =
1

Z

m∑
i=1

ηh(Ôi,O)P (Ôi|s), (3.3)

where 1
Z

is the normalization constant, {Ôi}mi=1 is the collection of all feasible

infection patterns (all infected nodes share at least one common ancestor)
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and h(·, ·) is the Hamming distance between binary vectors. We slightly

abuse notation with vectorized versions of O and Ôi having length |O| in

h(·, ·), and for each entry, 1/0 represents infected/uninfected. Now we are

ready to introduce the definition of GJC.

3.2 Generalized Jordan Center

Definition 3.2.1. The generalized Jordan center is:

ŝGJ = arg min
s∈B

max
n∈Ô(s)

d(s, n),

where Ô(s) is the subset of observed infected nodes O, such that any node in

O\Ô(s) is not connected to node s, and B is the collection of nodes such that

∀n ∈ B, n = arg maxs∈V
∑

m∈D(s) 1{m ∈ O} where D(s) is the collection of

descendent nodes of s and s itself. We term B as the set of nodes with the

highest beliefs.

Before introducing the performance guarantee of GJC, we need some tech-

nical definitions and lemmas.

Definition 3.2.2. A DAG is layered if its adjacency matrix can be written

in the following form, after permuting node labels:

A =


0 A1,2 0 ... 0 0

0 0 A2,3 ... 0 0

0 0 0 ... 0 0

.

.

.

.

.

.

.

.

. ... 0 0

0 0 0 ... Ak−1,k 0

0 0 0 ... 0 0

 ,
where Ai,i+1(i ∈ [k−1]) is the adjacency matrix that defines the connectivity

pattern from layer i to layer i+ 1, and k is the number of layers.

Roughly, for a given DAG, its vertex set can be partitioned into k disjoint

subsets (layers) {L1, . . . , Lk}, and nodes in Li+1 can only be connected from

nodes in Li, i ∈ [k−1]. Figure 3.1 shows examples of layered and non-layered

DAGs to clarify the definition.

Lemma 3.2.3. For any layered directed graph G, if O is error-free, the most

likely contamination source is one of the Jordan centers: s∗ ∈ {ŝJ}, where
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Figure 3.1: Examples of layered (left) and unlayered (right) DAGs. Node
color indicates status: black means infected and white means uninfected.
Clearly, these DAGs are feasible since all infected nodes share at least one
common ancestor.

a Jordan center is ŝJ = arg mins∈C maxn∈O d(s, n), d(s, n) is the shortest

distance from node s to node n, and C is the candidate set of possible con-

tamination sources. By definition, any node in the set C is connected to all

of the infected nodes in O.

Proof. Let l(n) be the layer of node n, n ∈ Ll(n). Let s∗ be the most likely

contamination source in the l(ŝJ)th layer, i.e. P (O|s∗) ≥ P (O|n),∀n ∈
Ll(ŝJ ). Further, by definition of Jordan center, if l(n) > l(ŝj), then n 6∈ C

(shown by contradiction). Thus we only need to analyze nodes from the first

layer L1 to Ll(ŝJ )−1. Considering any node n ∈ Ll(ŝj)−1:

P (O|n) =
∑

m∈Ll(ŝj)

P (n→ m)P (O|m) ≤ P (O|s∗).

By induction, we know that ∀n ∈ Li, i ∈ {1, ..., lŝj}, P (O|s∗) ≥ P (O|n).

Thus the most likely contamination source must be one of the Jordan centers.

Note that unlike undirected tree-like graphs, DAGs can have more than

two Jordan centers [14]. Lemma 3.2.3 states that if our partial observations

are error-free and the network structure is layered, we can narrow our search

space for the most likely diffusion sources to the collection of Jordan centers,

regardless of the underlying dynamics P .

More generally, the set of observed infected nodes can be infeasible, i.e.

the observed infected nodes do not have any common ancestors. This is due

to the causality of DAGs. Clearly for any connected undirected graph, any

infection pattern is feasible. As we discuss before, computing the exact joint

likelihood function is computationally intractable for large networks but GJC

can be evaluated efficiently, which we will discuss later.
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Let us first dig into the property of GJC a little bit. Clearly when O is

error-free, GJC is equivalent to the standard Jordan center. We motivate

the heuristic as follows.

Lemma 3.2.4. The ŝGJ is the most likely diffusion source given the most

likely infection pattern if the underlying network is a layered DAG, i.e. ŝGJ =

arg maxn∈V P (Ô∗|n) where Ô∗ = arg maxi∈[m] P (Ôi|O).

Proof. By the i.i.d. assumption of the observation noise,

P (Ôi|O) ∝ ηh(Ôi,O),∀i ∈ {1, 2, ...,m}.

Then combining Lem. 3.2.3 and Def. 3.2.1 yields the result.

Notice that to evaluate the GJC, for each node n ∈ V we must compute

the subset of observed infected nodes O which includes all descendants of this

node in O (denoted Bn), as well as the maximum distance to its observed

infected descendants dn. These two quantities can be computed efficiently

by the following local update rule. For any node n ∈ V , we have

Bn =

∪m∈c(n)Bm, n 6∈ O

(∪m∈c(n)Bm) ∪ n, n ∈ O
(3.4)

dn = max
m∈c(n)

dm + 1, (3.5)

where c(n) is the collection of children nodes of n, i.e. there exists at least one

path from n to any node in c(n). Thus Algorithm 5 uses this update rule to

efficiently find the GJC for arbitrary DAGs with complexity O(|O||V |+|B|).
But if |O|� |V | and |B|� |V | (reasonable since most likely observations are

very limited), then the complexity is roughly O(|V |). Now we are ready to

state the performance guarantee of GJC. Under mild conditions, GJC is the

ML estimate for layered DAGs.

Theorem 3.2.5. Let G = (V,E) be an arbitrary layered DAG and η be

the parameter of the observation noise. If ŝGJ is unique, there exists a com-

putable constant c > 0 such that if η < c then ŝGJ is the ML estimate.

Proof. Let F = {Ô1, Ô2, ..., Ôm} be the collection of all possible subsets of

O that are feasible, in decreasing order of probability (ŝGJ is the Jordan
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Algorithm 5: GJC Message Passing

Phase 1: Evaluate beliefs, maximum distance ∀n ∈ V
for n ∈ V do

Bn ← φ;
dn ← 0;
if n ∈ O then

Bn ← Bn ∪ n;
end

end
for n ∈ O do

Propagate ID, relative distance to ancestors A(n);
if a ∈ A(n) then

Ba ← Ba ∪ n;
da ← max(da, d(a, n))

end

end
Phase 2: Ranking
Select the collections of nodes with highest beliefs
B = arg maxn∈V |Bn|;

Evaluate GJC ŝGJ = arg minn∈B dn, ties break uniformly at random
return ŝGJ

center associated with Ô1). Denote the layer of ŝGJ by Lm. By Lem. 3.2.4,

P (Ô1|ŝGJ) ≥ P (Ô1|n),∀n ∈ V . The likelihood function of noisy observation

O given the source to be ŝGJ is:

P (O|ŝGJ) =
1

Z

m∑
i=1

ηh(Ôi,O)P (Ôi|ŝGJ). (3.6)

By the uniqueness assumption of ŝGJ , arg maxi∈m|Ôi| is unique which is Ô1.

Then any other elements in F are a subset of Ô1. Using an argument similar

to the proof of Lemma 3.2.3, we can show that ∀n ∈ A(ŝGJ), P (O|ŝGJ) ≥
P (O|n), where A(n) is the collection of ancestor nodes of n. In addition,

∀n ∈ D(ŜGJ), the difference of joint likelihood functions associated with ŝGJ

and n, is

P (O|ŝGJ)− P (O|n)

=
1

Z
ηh(O,Ô1)P (Ô1|ŝGJ)

− 1

Z

m∑
i=2

ηh(O,Ôi)P (Ôi|n)(1−
|Ôi|∏
j=1

P (ŝGJ → n)).

(3.7)
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Dividing the expression by ηh(O,Ô1), we have all n ∈ D(ŝGJ).

P (O|ŝGJ)− P (O|n)

ηh(O,Ô1)
≥ 1

Z
P (Ô1|ŝGJ)− 1

Z
(m− 1)η.

So if η < P (Ô1|ŝGJ )
m−1

, ŝGJ is the ML estimate. Note that when we analyze the

difference, w.l.o.g. we assume n is a candidate source for all infection patterns

in F except Ô1. For other cases, the analysis still holds.

The condition for ŝGJ to be the exact ML estimate is intuitive for layered

DAGs. If the noise is small enough, the most likely infection pattern domi-

nates the joint likelihood function and therefore does not impact optimality.

Theorem 3.2.5 further gives some insight into when this heuristic performs

poorly. By analyzing (3.7), we see GJC performs poorly when the observed

infected nodes are not evenly distributed over the network or the noise is

high.

3.3 Recall

Another practical concern arises in food supply chain networks is the so called

recall problem, which aims to correctly predict the states of remaining un-

known nodes given the information we have gathered so far. Thus in addition

to the source estimation probability, another reasonable yet important metric

to measure the performance of the source estimate is the false negative rate.

To be more specific: Given the contamination source estimate (evaluated

by different methods) and the collection of node states which are observed,

what is the prediction error on the unknown node states? In this thesis, we

apply the maximum likelihood estimator to predict the unknown node states,

assuming the parameters of the network spreading dynamic are known. We

present the empirical performance of our proposed source estimate heuristic

in the following section.

3.4 Experiments

Though our theoretical analysis focused on layered DAGs, we now see it

performs well in experiments on general DAGs.
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We evaluate GJC over synthetic and real networks, comparing to the näıve

combination of Jordan center and random guess (JC+R), i.e., evaluate the

Jordan center for feasible infection patterns and randomly guess otherwise,

as well as the exact ML estimate. Source detection probability and false

negative rate in recall are our performance metrics. The false negative rate

is |Û ∩I|/|V |, where Û is the set of nodes estimated to be uninfected and I is

the ground truth set of infected nodes. This is important in food safety since

infected nodes should not be misclassified. When evaluating false negative

rate, we assume access to the network dynamics PT , and infer the unknown

node states by ML estimation given the source estimator ŝ and noisy obser-

vation O. All simulation results are averages over 100 independent trials.

Random Networks We investigate effects of network scale and of noise on

GJC and JC+R, generating simulated data as follows: (1) Generate a random

layered DAG with adjacency matrix A by fixing the number of nodes (10) in

each layer and connecting each pair of nodes between adjacent layers with

probability 0.2. (2) Generate a |V |×|V | random matrix M where each entry

is an i.i.d. uniform random variable. (3) Obtain transition matrix PT by

computing the Hadamard product M · A and then normalize each row to

make it row-stochastic. Given structure A and dynamics PT , we run Monte

Carlo simulations to evaluate JC+R, GJC, and ML, by randomly choosing

the diffusion source, and running spreading over 20 timesteps.

Figure 3.2 shows experimental results. GJC has non-trivial gains for source

detection probability and false negative rate, compared to JC+R. As the

fraction of observed nodes increases, the detection probability generally in-

creases. On the other hand, increasing the noise makes identifying the correct

diffusion source much harder. The gain of GJC comes from careful handling

of infeasible infection patterns, by choosing the most likely source associated

with the most likely infection pattern given the noisy observations. Sur-

prisingly, the performance of GJC is comparable to exact ML estimation.

Synthetic Supply Chain All three proposed methods are evaluated on a

synthetic supply chain network, which is generated by IBM’s work on trusted

supply chain using blockchain. The following is a description of the supply-

chain process, and a contamination graph model which approximately models

28



0.2 0.4 0.6 0.8 1.0
|O|/|V|

0.2

0.3

0.4

0.5

0.6

0.7

JC+random guess
GJC
ML

0.2 0.4 0.6 0.8 1.0
|O|/|V|

0.15

0.20

0.25

0.30

0.35

0.40

0.45
JC+random guess
GJC
ML

(a) (b)

0.2 0.4 0.6 0.8 1.0
|O|/|V|

0.0005

0.0010

0.0015

0.0020

0.0025
JC+random guess
GJC
ML

0.2 0.4 0.6 0.8 1.0
|O|/|V|

0.0005

0.0010

0.0015

0.0020

0.0025

JC+random guess
GJC
ML

(c) (d)

Figure 3.2: Random layered DAGs. Detection probability: (a) η = 0.1. (b)
η = 0.2. False negative rate: (c) η = 0.1. (d) η = 0.2.

the reality.

• Step 1: Harvest a batch of raw fruit at a farm.

• Step 2: Transform the batch into packaged raw fruits cases.

• Step 3: Ship the cases to warehouses/manufacturing plants (MFs).

• Step 4: Receive the cases at the warehouse/MF.

• Step 5: Transform each raw fruit case into processed fruit cases.

• Step 6: Ship the processed fruit cases from warehouse/MF to distribu-

tion center (DC).

• Step 7: Receive the processed fruit cases at DC.

• Step 8: Transform - essentially mix the received cases into cases that

will be sent to stores. (The simulator does not allow mixing, unfor-

tunately, but see below for how our contamination graph model can

model mixing.)
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• Step 9: Ship from DC to store.

• Step 10: Receive at store.

The contamination graph model is generated according to the following rules,

which are able to coarsely characterize:

• Each node represents an event which comes along with some side in-

formation. The side information includes location, date, step ID, and

process ID.

• Connect an edge from event i to event j if the two events are part of

the same process and event j is the consecutive event of i, i.e., step ID

of j = step id of i + 1.

• In addition, connect an edge from event i to event j, if the two events

– belong to different processes.

– have the same step ID, which can only be 1, 2, 5 or 8.

– happen at the same location, and the time difference is within a

specified threshold.

We simulate 100 processes (each process has 10 event nodes) and then ag-

gregate them according to rules mentioned before, to construct the contami-

nation network. We further assume the probability of contamination spread

along an edge should be 100 for shipping and receiving, and less than 100 for

commission, transform and cross-process edges (in the experiment, it is uni-

form random variable ranges from 0 to 1). The experimental results, which

are all averages of 100 independent tests, are summarized in Figure 3.3.

Google+ Dataset We also evaluate GJC on tame Google+ dataset with

107614 nodes and 13673453 edges [33], which is a general directed graph

(not layered). In our simulation, we assume uniform diffusion rates for all

out-edges of each node, i.e., ∀ (i, j) ∈ E,PT (i, j) = 1
deg+i

(edges with the

same source node have the same diffusion rate). We run the experiments

by choosing the source with the greatest number of connected nodes, i.e.

arg maxi∈V |{j : j ∈ V, d(i, j) < ∞}| and running the spreading over 10

timesteps.

30



0.2 0.4 0.6 0.8 1.0
|O|/|V|

0.2

0.3

0.4

0.5

JC+random guess
GJC
ML

0.2 0.4 0.6 0.8 1.0
|O|/|V|

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45 JC+random guess
GJC
ML

(a) (b)

0.2 0.4 0.6 0.8 1.0
|O|/|V|

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030 JC+random guess
GJC
ML

0.2 0.4 0.6 0.8 1.0
|O|/|V|

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
JC+random guess
GJC
ML

(c) (d)

Figure 3.3: Synthetic food supply chain. Detection probability: (a) η = 0.1.
(b) η = 0.2. False negative rate: (c) η = 0.1. (d) η = 0.2.

Experimental results in Figure 3.4 show GJC is comparable to the exact

ML estimate. Results also indicate the performance gap between GJC and

JC+R is much more for real networks, since the real network is sparser than

the random layered DAGs we studied. Thus as the fraction of observed

nodes increases, the observation is more likely to be infeasible. This explains

why for JC+R, the detection probability decreases and false negative rate

increases as the fraction of observed nodes increases.
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Figure 3.4: Google+. Detection probability: (a) η = 0.1. (b) η = 0.2. False
negative rate: (c) η = 0.1. (d) η = 0.2.
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CHAPTER 4

CONCLUSION

In this thesis, we study efficient algorithms which are robust to data noise,

for two typical problems on graphs: selecting a minimum number of most

informative nodes in a hypergraph in order to correctly predict the labels

of remaining nodes, and estimating the diffusion source of a contamination

process on DAG with noisy and incomplete observations.

For the active learning problem, we use the majority voting strategy to

overcome the effect of noise. Compared to the case of noiseless oracles,

the query complexity is penalized by a factor of logM , where M is query

complexity bound for the case of noiseless oracle. In the source estimation

problem, our strategy is to rule out the infeasible infection pattern and evalu-

ate the Jordan center with respect to the most likely infection pattern. This

method works well in the low-noise regime, since the most likely infection

pattern dominates the joint likelihood function when the noise is reasonably

small.

Future work involves the interplay between these two problems, i.e., how to

actively query the node states in order to locate the diffusion source. It is also

interesting to derive the converse bound for the HAL problem; for now, we

only have the achievability bound but we do not know whether our algorithm

is order-optimal. Our guess is this algorithm is not order-optimal, since [8]

constructs a hard example which shows that the original S2 algorithm is near-

order optimal for this instance. Even though our proposed algorithm is not

order-optimal, we are still interested in what is the gap between the converse

and achievability. Lastly, there are also lots of unexplored problems in source

estimation under imperfect information. In this thesis, we only consider the

case when the node state observations are noisy; another possibility is that

the structure of the graph itself is uncertain. One other potential extension

is how to generalize to the case of multiple diffusion sources, which is more

practical but much more challenging.
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APPENDIX A

DETAILED PROOFS FOR HS2

A.1 Proof of Theorem 2.2.5

We need Lemma 1 of [8] which characterizes a bound for the query complexity

of the random sampling phase. We first define a witness set of the cut set C

as the node set that contains at least one node for each Vi, i ∈ [T ].

Lemma A.1.1 (Lemma 1 in [8]). Consider a β-balancedness graph G =

(V,E). For all α > 0, a subset W chosen uniformly at random is a witness

of the cut set C with probability at least 1− α as long as

|W |≥
log ( 1

βα
)

log (1/(1− β))
.

Moreover, we will need the following lemma. Basically it ensures that once

HS2-point discovers a cut hyperedge from a cut component, then HS2-point

will discover all remaining cut hyperedges in this cut component and the

shortest paths that include these hyperedges are at most of length κ.

Lemma A.1.2. Suppose a hypergraph G with a cut set C is κ-clustered.

Moreover, suppose Crs is a cut component. If e ∈ Crs is discovered, which

means a pair of nodes u ∈ Ωr(e), v ∈ Ωs(e) are labeled, then at least one

remaining cut hyperedge in Crs lies in a path of length at most κ from a pair

of nodes with labels r and s respectively.

Proof. By definition 2.2.4, we know that the hyperedges in Crs will form a

strongly connected component in Hκ. This means for any e ∈ Crs, there is at

least one e′ ∈ Crs such that the arc ee′ exists in Hκ. Recall there exists arc

ee′ in Hκ if and only if ∆(e, e′) ≤ κ. By definition 2.2.3 this means for any

node pair u ∈ Ωr(e), v ∈ Ωs(e), the length of the shortest path including e′

but excluding e will be less then κ. Note that in the definition of ∆(e, e′), we
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use the supremum taking over the node set Ωr(e),Ωs(e). This is because it

ensures that no matter which node pair u, v ∈ e we have, ∆(e, e′) can always

upper bound the length of the shortest path including e′ but excluding e

with endpoints u, v. In contrast, we use the infimum taking over the node

set Ωr(e
′),Ωs(e

′). This is because it only needs to search for the shortest

path. Hence once we find a cut hyperedge e in Crs, we are guaranteed to find

at least one cut hyperedge e′ ∈ Crs through a path of length lS ≤ κ after we

remove e.

Now let us prove Theorem 2.2.5. The proof follows an outline similar to

that of proof given in [8]. However, we need to take care of the hypergraph

structures that are described by the Definitions 2.2.1 to 2.2.4. We will also

derive a tighter bound for the number of runs R, which finally yields a lower

query complexity than that in [8].

A.2 Proof of Proposition 2.2.6

A.2.1 Checking the equal parameters

We check the parameters one by one.

We start from proving that if C is κ-clustered, then C(ce) is also κ-clustered.

We note that performing CE does not change the length of the shortest path

of arbitrary node pair v1, v2 ∈ V . This is because CE will replace a hyperedge

by a clique, which makes all nodes in the hyperedge become fully connected.

Hence the C(ce) is still κ-clustered.

Now, we prove that if G has m non-empty cut components, then G(ce)

will also have m non-empty cut components. We note that for any non-

empty cut component Ci,j in G, there is at least one hyperedge e ∈ Ci,j. By

definition, we know that e∩Vi 6= ∅ and e∩Vj 6= ∅. So after CE, in the clique

corresponding to this hyperedge e, there must be at least one edge such that

one of its endpoints is from Vi and the other is from Vj, which makes Ci,j still

non-empty in G(ce). On the other hand, for arbitrary i, j, the cut component

Ci,j is empty in G if and only if there is no hyperedge between Vi, Vj. Hence

Ci,j will still be empty in G(ce). Together we show that if there are m non-

empty cut components in G, there are exactly m non-empty cut components
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in G(ce).

It is easy to see G(ce) keep β-balanced as f does not change in CE. Now,

we prove that |∂C|= |∂C(ce)|. For any e ∈ C, denote e = {v1, ..., vd}. By

definition we know that v1, ..., vd ∈ ∂C. Suppose e ∈ C and the nodes

v1, ..., vd can be partitioned into t non-empty set S1, ..., St according to their

labels. Without loss of generality, let v1 ∈ S1. Then after CE of e we know

that the edges (v1, v), v ∈ Sj, j ∈ {2, 3, ..., t} will be in the set C(ce). By

definition of C(ce), we know that all v ∈ Sj, j ∈ {2, 3, ..., t} will be in the

cut set ∂C(ce). We can repeat the same argument for all nodes in S1 and

know that S1 ⊂ ∂C(ce). In the end, we can show that ∀v ∈ e, v ∈ ∂C(ce). By

definition we also have ∀v ∈ e, v ∈ ∂C. Therefore, we claim that ∂C = ∂C(ce)

and furthermore that |∂C|= |∂C(ce)|.

A.2.2 Proof for the inequality

Now, we prove that min(|C|, |∂C|) ≤ min(|C(ce), |∂C(ce)|). As above, we have

proved |∂C|= |∂C(ce)|. The case when |∂C(ce)|≤ |C(ce)| is an easy case. So,

we only need to prove for the case when |∂C(ce)|> |C(ce)|. We claim that if

|∂C(ce)|> |C(ce)|, then |C|≤ |C(ce)|, which is proved as follows.

Let us first introduce an auxiliary graph G′ that can be useful in the proof.

G′ = (∂C(ce), C(ce)) is a subgraph of G(ce) with the node set ∂C(ce) and the

edge set C(ce). In the following, we show that when |∂C(ce)|> |C(ce)|, then

it is impossible for G′ to have any cliques of size greater than or equal to

3. Note that by the definition of C(ce) and ∂C(ce), the auxiliary graph G′ is

connected. Moreover, as for the condition |∂C(ce)|> |C(ce)|, we know that the

average degree of G′ is strictly less then 2. This is because

2 >
2|C(ce)|
|∂C(ce)|

=

∑
v∈∂C(ce) dv

|∂C(ce)|
,

where dv is the degree of node v in G′. Hence it is impossible to have any

cliques of sizes that are greater than or equal to 3 in G′.

By using the above observation and the definition of clique expansion, we

know that when |∂C(ce)|> |C(ce)|, all hyperedges in C are actually edges.

Equivalently, we have C = C(ce), which implies |C|= |C(ce)|< |∂C(ce)|. This

concludes the proof.
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By the end of this subsection, we would like to show that it is possible

to have min(|C|, |∂C|) < min(|C(ce)|, |∂C(ce)|) for some hypergraphs. Let C

contain only one hyperedge e such that |e|= 4. Then it is obvious to see that

1 = |C|< |C(ce)|= 6 and |∂C(ce)|= |∂C|= 4. Hence in this special example

we have min(|C|, |∂C|) < min(|C(ce)|, |∂C(ce)|).

A.3 Proof of Theorem 2.3.2

Before we start our proof, we need to prepare preliminary results. The first

one is Theorem 3 in [15] that characterizes the theoretical performance of

Algorithm 2 in [15].

Theorem A.3.1 (Theorem 3 in [15]). Given a set of M points which can

be partitioned into k clusters, the Algorithm 2 in [15] will return all clusters

of size at least 64k logM
(1−2p)4

with probability at least 1 − 2
M

. The corresponding

query complexity is O(Mk2 logM
(1−2p)4

).

Basically we use this theorem to analyze Phase 1 of Algorithm 4. The next

one is a lemma that characterizes a lower bound of the KL divergence of two

Bernoulli distributions.

Lemma A.3.2. Let us denote D(x||y) to be the KL divergence of two

Bernoulli distributions with parameters x, y ∈ [0, 1] respectively. We have

D(x||y) ≥ (y − x)2

2 min{x, y}
. (A.1)

Remark A.3.1. Note that the bound is tighter than directly using Pinsker’s

inequality [34] when y ≤ 1/8.

Now we start to prove Theorem 2.3.2. First we will show that Phase 1 of

Algorithm 4 will return the correct partition S1, ..., Sk with high probability.

From Theorem A.3.1 we know that we have to ensure our sampled M points

contain all underlying true clusters with size at least O(Mk2 logM
(1−2p)4

). Since we

sample these M points uniformly at random, (S1, ..., Sk) is the multivari-

ate hypergeometric random vector with parameters (n, np1, ..., npk,M) and

∀i, pi = |{v∈V |f(v)=i}|
n

. It is well known that when M ≤ n/2, the tail bound
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for the multivariate hypergeometric distribution is [35,36],

P(Si ≤M(pi −
pi
2

)) ≤ exp(−MD(
pi
2
||pi))

≤ exp(
−Mpi

8
)

⇒ P(Si ≤
Mβ

2
) ≤ exp(

−Mβ

8
),

(A.2)

where we use Lemma A.3.2 for the second inequality. For the case M ≥ n/2,

we could apply trick of symmetry [35–37] and have

P(Si ≤M(pi −
pi
2

))

≤ exp(−(n−M)D(pi +
piM

2(n−M)
||pi))

≤ exp(−(n−M)
( piM

2(n−M)
)2

pi(2 + M
n−M )

)

= exp(− piM
2

4(2n−M)
)

≤ exp(−Mpi
12

),

where the second inequality is via Lemma A.3.2 and the last inequality uses

the assumption M ≥ n/2. Hence, for all M ≤ n, we have

P(Si ≤
Mβ

2
) ≤ exp(

−Mβ

12
). (A.3)

Since we need (A.3) to hold for all i, we apply the union bound over all k

events which gives

P(
k⋂
i=1

{Si ≥
Mβ

2
}) ≥ 1− k exp(

−Mβ

12
). (A.4)

Now, we need M to be large enough such that Mβ
2

meets the requirement

of Theorem A.3.1. Moreover, we also need M to be large enough such that

this event holds with probability at least 1− δ
4
. For the first requirement, we

have
Mβ

2
≥ 64k logM

(2p− 1)4
⇒ M

logM
≥ 128k

β(2p− 1)4
.

This is exactly our first requirement on M in (2.4). For the high probability
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requirement, we have

k exp(
−Mβ

12
) ≤ δ

4
⇒M ≥ 12

β
log

4k

δ
.

This is exactly the second requirement on M in (2.4). Moreover, we also

need Algorithm 2 of [15] to successfully recover all the true clusters with

probability at least 1− δ
4
, and thus we have

2

M
≤ δ

4
⇒M ≥ 8

δ
.

This is exactly the third requirement on M in (2.4).

Now assume that Algorithm 2 of [15] indeed returns all true clusters. We

will analyze Phase 2. Start from assuming all Si’s are correctly clustered.

Then for any new node v, from the algorithm we designed we will query

for comparing v with all the M nodes that have been clustered. Before we

continue, let us introduce some error events which are useful for the follow-

ing analysis. Let Er(i) be the event that a node with label i is incorrectly

clustered by the normalized majority voting. Let Er
(i)
j = {Mj

|Sj | >
Mi

|Si|}, for

j 6= i, where Mj is the number of nodes in Sj that respond positively to the

pairwise comparisons with node v. Note that we have Mj ∼ Bin(p, |Sj|) for

j 6= i and Mi ∼ Bin(1− p, |Si|). All these Ml’s are mutually independent.

We start from analyzing the normalized majority voting for the unlabeled

node v. Then we have

Op(v, u) ∼ Ber(1− p) ∀u ∈ Si;

Op(v, u) ∼ Ber(p) ∀u /∈ Si,

where we recall thatOp(x, y) is the query answer for the point pair (x, y) from

the noisy oracle Op. So the error probability P(Er(i)) that we misclassify the

point v can be upper bounded by

P(Er(i)) ≤ (k − 1) max
j 6=i

P(Erj),

where we used the union bound. Moreover, we can upper bound P(Er
(i)
j ) as
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follows (recall that p < 1/2):

P(Er
(i)
j ) = P(

Mj

|Sj|
>
Mi

|Si|
)

≤ P(
Mj

|Sj|
≥ 1

2
) + P(

1

2
>
Mj

|Sj|
).

Denote λ = 1
2
− p > 0. So we have 1

2
= λ+ p = p̄−λ where p̄ = 1− p. Hence

by Chernoff’s bound the first term can be upper bounded by

P(
Mj

|Sj|
≥ 1

2
) ≤ exp(−|Sj|·D(p+ λ||p)),

and similarly the second term can be upper bounded by

P(
1

2
>
Mi

|Si|
) ≤ exp(−|Si|·D(p̄− λ||p̄)).

Hence we have

P(Er(i)) ≤ (k − 1)[max
j 6=i

exp(−|Sj|·D(p+ λ||p))

+ exp(−|Si|·D(p̄− λ||p̄))].

Recall that from (A.4), we have mini∈[k]|Si|≥ Mβ
2

with probability at least

1− δ
4
. Moreover, we observe that D(0.5||p) = min{D(p+ λ||p), D(p̄− λ||p̄)}

by the symmetry of KL-divergence for Bernoulli distribution. Thus, the error

probability for any new point can be upper bounded as

P(Er) ≤ max
i

P(Er(i)) ≤ 2(k − 1) exp(
−MβD(0.5||p)

2
).

Note that from Theorem 2.2.5 we will need to query Q∗( δ
4
) nodes in the

aggressive search phase if we want the exact result to hold for probability

at least 1 − δ
4

in noiseless case. Hence by using the union bound, the error

probability for exact recovery of these Q∗( δ
4
) points is upper bounded by

2Q∗(δ
4

)(k − 1) exp(
−MβD(0.5||p)

2
).
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Requiring this to be smaller than δ
4
, then we have

M ≥ 2

βD(0.5||p)
log(

8(k − 1)Q∗( δ
4
)

δ
).

This is exactly the forth requirement on M in (2.4). Further, via the union

bound, the overall algorithm will succeed with probability at least 1−δ. Note

that if we have exact recovery on these Q∗( δ
4
) nodes, then we can indeed find

the cut set C by Theorem 2.2.5, which concludes the proof.
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