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Abstract

Many interactions between mathematical objects, e.g. the interaction between the set of
primes and the additive structure of N, can be usefully thought of as random modulo some
obvious obstructions. In the first part of this thesis, we document several such situations,
show that the randomness in these interactions can be captured using first-order logic, and
deduce in consequence many model-theoretic properties of the corresponding structures.
The second part of this thesis develops a framework to study the aforementioned situations
uniformly, shows that many examples of interest in model theory fit into this framework,
and recovers many known model-theoretic results about these examples from our theory.
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Notation and conventions

We include here notation and conventions which will be in force throughout the entire thesis.

Uniformity conventions. Whenever we declare that a particular letter denotes a certain
type of object in some portion of this thesis, that letter with decorations is also assumed to
be the same type of object in that portion of the thesis. For example, k is used throughout
for integers, so k′, k1, k∗, etc. also denote integers whenever they appear.

Numbers conventions. Throughout, h, k, and l range over the set Z of integers, m and n
range over the set N of natural numbers (which contains 0), p ranges over the set of (positive)
prime numbers, and q ranges over the set {pm ∶m ⩾ 1} of positive powers of primes.

Set theory conventions. We assume the reader is familiar with basic concepts and defi-
nitions from set theory. The letter κ will be reserved for a cardinal.

Logic and model theory conventions. We work in multi-sorted first-order logic. Our
semantics allows empty sorts and empty structures. Our syntax includes logical constants ⊺
and � interpreted as true and false, respectively. We view constant symbols as 0-ary function
symbols. The equality symbol is considered a logical symbol.

We let L denote a (possibly multi-sorted) first-order language, and let M be a structure in
some language. Let x, y, and z be (possibly infinite) tuples of variables; strictly speaking, we
should also specify the languages, but these are always obvious from the context. Suppose
L has S its set of sort and M is an L-structure. We use the corresponding capital letter M
to denote the S-indexed family (Ms)s∈S of underlying sets of the sorts of M. By A ⊆M , we
mean A = (As)s∈S with As ⊆Ms for each s ∈ S. If A ⊆M , then a tuple of elements (possibly
infinite) in A is a tuple each of whose components is in As for some s ∈ S. If x = (xj)j∈J is a
tuple of variables, we let Ax = ∏j∈J As(xj) where s(xj) is the sort of the variable xj.

Suppose M is an L-structure. For B ⊆M and b ∈ By, let L(B) and L(b) be the extensions
of L obtained by adding constant symbols for the elements of B and for the components
of b, and view M in the obvious way as an L(B)-structure and an L(b)-structure. For an
L-formula ϕ(x, y) and b ∈My, we let ϕ(M, b) be the set defined in the structure M by the
L(b)-formula ϕ(x, b).
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CHAPTER 1

Introduction

This thesis is a fusion of four papers [7, 80, 54, 79] and some material from a paper under
preparation [53]. They share a common theme dealing with the model theory of partially
random structures, that is, structures that contain both predictable/algebraic features and
random/generic features. These preprints consist of my stand-alone work as well as joint
works with Neer Bhardwaj, Alex Kruckman, and Erik Walsberg.

In this introduction, I would like to give some justification for the current endeavor and
offer a bird’s-eye view of the whole thesis. I will start by colloquially explaining what it
means to study the model theory of a structure or a class of structures and why it might
be interesting to do so. Then I provide reasons for studying the model theory of partially
random structures. The primary target audience of this part are fellow graduate students
from outside model theory, but I hope it will also amuse/annoy some experts. Afterward, I
will go into a more detailed description of the structure of this thesis and the main results
of the chapters; this part is essentially a fusion of the introductions of the aforementioned
papers. For it, I will assume more familiarity with model theory.

1.1. Why model theory and partially random structures?

Viewing a mathematical problem in a geometric light is often desirable and sometimes the
key to its solution. This is the case even for very discrete problems like solving systems of
polynomial equations over finite fields or counting the number of solutions of such systems.
Model theory can be described as “geometry from a logical perspective”: the subject allows
us to put even more exotic problems under the lens of geometry, albeit in a weaker sense.

Let us make more sense of the above. Model theory is a subject that belongs to the “modern
wing” of mathematical logic. The focus is no longer on using mathematical methods to
investigate the way humans reason or to provide a foundation of mathematics. Instead, we
want to study mathematical structures or classes of structures with a perspective informed
by logic. A structure here consists of an ambient space M and relations on M , i.e., subsets
of Mn for varying n thought of as relations between n elements of M ; most mathematical
objects can be seen as a structure in this way. Studying structures in the logic way means
considering sets, functions, and groups that “can be described or constructed” from the basic
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relations of the structure (or class of structures) and then studying various mathematical
phenomena that arise from these settings. The meaning of “can be described or constructed”
varies as we move across the areas of logic or even the areas of model theory. It should be
noted that similar ideas are also native to other fields of mathematics. For instance, algebraic
geometry studies affine algebraic varieties over a field, which are sets admitting a particular
description, namely, as the solution set of a system of polynomial equation. Stretching the
meaning further, one can think of a manifold as “can be described or constructed” compared
to a totally arbitrary subset of the ambient space. Hence, one should not be too surprised
that some aspects of classical geometric theories have analogues in favorable logical settings.

Model theory studies the above analogues, which we call notions of tameness, and the above
favorable settings, which we call tame structures. Understanding these notions and structures
is desirable as it makes available new geometric tools beyond the reach of classical geometric
theories. The machinery has been applied to solve many problems outside logic which make
model theory connected to virtually every major area of mathematics. We arrived at three
main goals of model theory: Isolating and studying various notions of tameness, finding
interesting structures and either showing that they satisfy some tameness notions or showing
the opposite (often referred to as establishing the model-theoretic properties of the structure),
and looking for opportunities elsewhere in mathematics to apply our understanding. These
three tasks roughly corresponds to pure model theory, “middle-of-the-road” model theory,
and applied model theory. They are intricately connected, as many notions of tameness
arising out of purely logical consideration turned out to be keys to application.

Let us clarify the meaning of “partial randomness” through an example before saying why
it ought to be studied. Consider (N;+,Pr) where Pr is the set of prime numbers. The
interaction between Pr and + is not fully random, it is quite different from how a set Rd
given by coin-flipping interacts with +. For instance, 4a is not in Pr for all a ∈ N, but there
is b ∈ N with 4b ∈ Rd (with probability 1). Nonetheless, it is possible to think of Pr as
interacting with + randomly modulo such obstructions. It is also useful to do so as many
conjectures in analytic number theory depends on such intuition. Strictly speaking, this
situation should be called “partially pseudo-random” as Pr is completely predictable, but we
will blur this distinction.

There are many other structures in mathematics that can be viewed in the same way as
above. Moreover, a respectable strategy to deal with a structure is to decompose it into
a predictable (algebraic) part and a random (generic) part and then try to handle them
separately. Developing model theory (establishing tameness notions/generalized geometrical
principles) for these structure might therefore give us new tools to solve problems.

2



This thesis observes that many natural partially random structures indeed satisfy certain
known notions of tameness/generalized geometrical principles. We also build a general theory
to study all these structures uniformly. Our tools need probably to be sharpened much
further before they can find applications outside model theory, so what we have done so
far is very “middle of the road”. In the mean time, we have found that our framework
is quite powerful for the purpose of organizing examples in model theory. We can view
many important examples in model theory as an instance of partially random structures,
and recover known model-theoretic results for them from our theory. On the other hand,
our theory suggests new notions of tameness that ought to be studied, so there is hope that
interesting pure model theory can come out of it as well.

1.2. What is in this thesis?

This thesis has two parts. The first part, concrete partially random structures, consists
of the next three chapters. These correspond to three papers: my stand-alone paper [79],
my joint paper [7] with Bhardwaj, and my joint paper with Erik [80]. The second part,
abstract partially random structures, consists of the last five chapters. They comes
from the two joint papers [54] and [53] with Kruckman and Walsberg.

As most of the above papers are joint, I am only partially to credit for many of the results
presented here. In fact, a few items came close to being solely the work of my collaborators:
The idea and proof of Section 7.7 on structures and fields with automorphism are mostly by
to Walsberg. The conjecture behind Section 9.7 was made by me with input from Walsberg,
and I obtained some partial results. However, the proof in its current final form is entirely
due to Kruckman, who brought in many new ideas and came to the project with his own
perspective. I will present these results here anyway as they make the story more complete.

Part 1. Concrete partially random structures. We consider several situations where
randomness plays an important role in understanding the model-theoretic properties of struc-
tures. Chapter 2 looks at structures of the form (F,◁) where F is an algebraic closure of a
finite field, and ◁ is a circular ordering on the multiplicative group F× which respects mul-
tiplication. Chapter 3 is about the structure (Z,SFZ) with Z the additive group of integers
SFZ the set of square-free integers and several other structures in the same vein. In both
chapters, establishing the model-theoretic properties of the structures under consideration
requires observing that they are built up from two components interacting in a random
way modulo obvious obstructions. Chapter 4 studies structures of the form (Z,◁) where ◁
is a circular ordering on the additive group Z which respects addition. Here, randomness
plays a role in classifying such structures up to interdefinability. We now give more detailed
summaries of the chapters, together with the neccessary background to consider them.
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Chapter 2. Tame structures via character sums over finite fields. Throughout the
current summary and the corresponding chapter, F is an algebraic closure of a finite field.
We are interested in the following question:

Are there natural expansions of F by order-type relations which are also
model-theoretically tame?

There is no known order-type relation on F which interacts in a sensible way with both
addition and multiplication. This is in stark contrast to the situation with the field C where
addition and multiplication are compatible with the Euclidean metric induced by the natural
order on its subfield R. It is not hard to see the reason: the additive group of F is an infinite
torsion group of finite exponent, so even finding an additively compatible order-type relation
seems unlikely. On the other hand, the multiplicative group F× is a union of cyclic groups,
so it is fairly natural to consider circular orders ◁ on F× which are compatible with the
multiplicative structure. In this paper, we will show that the resulting structures (F,◁) give
a positive answer to some aspects of the above question.

We will take a step back to be more precise and to study the above structures as members
of a natural class. A circular order on a group G is a ternary relation ◁ on G which is
invariant under multiplication by elements in G and satisfies the following conditions for all
a, b, c ∈ G:

(1) if ◁(a, b, c), then ◁(b, c, a);
(2) if ◁(a, b, c), then not ◁(c, b, a);
(3) if ◁(a, b, c) and ◁(a, c, d), then ◁(a, b, d);
(4) if a, b, c are distinct, then either ◁(a, b, c) or ◁(c, b, a).
A canonical example, also used later on, is (T,◁) where T is the multiplicative group of
complex numbers with norm 1, and ◁ is the clockwise circular order (i.e., ◁(a, b, c) if b lies
in the clockwise open arc from a to c viewing T as the unit circle).

Amultiplicative circular order on a field F is a circular order on the multiplicative group
F ×, viewed as a ternary relation on F . If ◁ is a multiplicative circular order on F , then(F,◁) is a structure in the total language Lt extending the language Lf = {0,1,+,−,×,◻−1}
of fields by a ternary predicate symbol ◁. Let ACFO− be the Lt-theory whose models are
such (F,◁) where F is algebraically closed. Section 2.1 and Section 2.2 establish our first
main result:

Theorem 1.1. The theory ACFO− has a model companion ACFO.

Underlying the proof of Theorem 1.1 is the following heuristic: the existential closed models
of ACFO− are (F,◁) ⊧ ACFO− where (F ×,◁) is “sufficiently rich”, and + interacts in a
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“random fashion” with ◁ modulo their compatibility with ×. The challenges involve making
sense of “sufficiently rich” and “random fashion”, justifying this heuristic, and showing that
these properties are first-order axiomatizable.

In section 2.3, we return to the structures described in the first paragraph:

Theorem 1.2. If ◁ is a multiplicative circular order on F, then (F,◁) ⊧ ACFO.

Every injective group homomorphism χ ∶ F× → T induces a multiplicative circular order on
F, namely, the pullback ◁χ of the clockwise circular order ◁ on T by the map χ. It turns out
that every multiplicative circular order on F is of this form; see Corollary 2.6. The main idea
of the proof of Theorem 1.2 is to exploit this connection and results on character sums over
finite fields. These results are useful here as they reflect “number-theoretic randomness” [50].
This is precisely what we want for the interaction between + and ◁.

This work is a response to the question below by van den Dries and Hrushovski; Kowalski
also asked a related question in [51].

Do results on exponential sums and character sums over finite fields yield any
model-theoretically tame structures?

Behind this question is the hope to find analogies of Ax’s results in [4]. There, the model-
theoretic tameness of ultraproducts of finite fields essentially follows from results on counting
points over finite fields. The theory ACFO is our proposed counterpart of the theory of
pseudo-finite fields, and the above two theorems correspond to the fact that the theory of
finite-fields is almost model complete and the fact that nonprincipal ultraproducts of finite
fields are pseudofinite fields (in the definition given by Ax). There are also reasons to believe
that there are deeper connections between ACFO and the theory of pseudo-finite fields.
Both theories include certain “random features” and can be put under the framework of
interpolative fusions discussed in Part 2; see Sections 7.4 and 7.7 for details.

Chapter 2 is essentially the updated version of [79]. The earlier versions of [79] contained
several other results. Some of these are now generalized into results about interpolative
fusions; see Chapter 9. We do not include them here to minimize overlapping.

The structures (F,◁) in Theorem 1.2 are not simple (in the sense of model theory) as they
define dense linear orders. They also have IP by a result of Shelah and Simon [71]. It turns
out that these structure do not even have TP2 (see Proposition 2.7). This brings (F,◁)
outside the current known boundary of the combinatorially tame universe. We hope these
structures provide some motivation to push the boundary further and include them as well.
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Chapter 3. Additive groups of Z and Q and predicates for being square-free. In
this the current summary and the corresponding chapter, Z is the additive group of integers
implicitly assumed to contain the element 1 as a distinguished constant. Likewise, Q is the
additive group of rational numbers with 1 as a distinguished constant.

In [45], Kaplan and Shelah showed under the assumption of Dickson’s conjecture that if Pr is
the set of a ∈ Z such that either a or −a is prime, then the theory of (Z,Pr) is model complete,
decidable, and super-simple of U-rank 1. This result can be interpreted as an example of
the central theme of this thesis where we can often capture aspects of randomness inside a
structure using first-order logic and deduce in consequence several model-theoretic properties
of that structure. In (Z,Pr), the conjectural randomness is that of the set of primes with
respect to addition. Dickson’s conjecture is useful here as it reflects this randomness in a
fashion which can be made first-order.

This viewpoint in particular predicts that there are analogues of Kaplan and Shelah’s results
with Pr replaced by other random subsets of Z. We confirm the above prediction here
without the assumption of any conjecture when Pr is replaced with the set

SFZ = {a ∈ Z ∶ vp(a) ⩽ 1 for all p}
where vp is the p-adic valuation associated to the prime p. As the reader can guess, “SF”
stands for “square-free”. We will introduce a first-order notion of “genericity” which encap-
sulates the partial randomness in the interaction between SFZ and the additive structure on
Z. Using an approach with the same underlying principle as that in [45], we obtain:

Theorem 1.3. The theory of (Z,SFZ) is model complete, decidable, supersimple of U-rank
1, and is k-independent for all k ∈ N⩾1.

The theorem above gives us without assuming any conjecture the first natural example of
a simple unstable expansion of Z. From the same notion of “genericity”, we deduce entirely
different consequences for a related structure:

Theorem 1.4. The theory of (Z,<,SFZ) defines multiplication.

The proof adapts the strategy Bateman, Jockusch, and Woods used in [6] to show that
Th(N;+,<,Pr) with Pr the set of primes interprets arithmetic. The above two theorems
are in stark contrast with one another in view of the fact that (Z,<) is a minimal proper
expansion of Z; indeed, Conant proved in [19] that adding any new definable set from (Z,<)
to Z results in defining <. On the other hand, Dolich and Goodrick showed in [26] that
there is no strong expansion of the theory of Presburger arithmetic, so the second theorem
is perhaps not completely unexpected.
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It is also natural to consider the structures (Q,SFQ) and (Q,<,SFQ) where SFQ is the set{a ∈ Q ∶ vp(a) ⩽ 1 for all primes p}, and the relation < on Q is the natural ordering. (We do
not study (Q,SFZ) as the set Z is definable in (Q,SFZ). Indeed, it follows from Lemma 3.2
that every integer is a sum of two elements in SFZ.) The main new technical aspect here lies
in getting other suitable notions of “genericity” and using this to prove:

Theorem 1.5. The theory of (Q,SFQ) is model complete, decidable, simple but not super-
simple, and is k-independent for all k ∈ N⩾1.

From the above, (Q,SFQ) is “less tame” than (Z,SFZ). The reader might therefore suspect
that (Q,<,SFQ) is wild. However, this is not the case:

Theorem 1.6. The theory (Q,<,SFQ) is model complete, decidable, has NTP2 but is not
strong, and is k-independent for all k ∈ N⩾1.

Above we presented the material of Chapter 2 structure by structure. However, the chapter
actually proceeds by considering all the four structures in parallel fashion, and prove related
results for them consecutively. More precisely, the first theorem is Theorem 3.3 and Theo-
rem 3.6 put together, the second theorem is Theorem 3.5, the third theorem is a consequence
of Theorem 3.4 and Theorem 3.7, and the fourth theorem is a consequence of Theorem 3.4
and Theorem 3.8. Having the same principle running through four structures hints that ran-
domness can be indeed used as a framework to explain model-theoretic properties of multiple
structures uniformly.

Chapter 4. A family of dp-minimal expansions of the additive group Z. In this
chapter and summary, Z is the additive group of integers. We are interested in the following
classification-type question:

What are the dp-minimal expansions of Z?
For a definition of dp-minimality, see [72, Chapter 4]. The terms expansion and reduct here
are as used in the sense of definability: If M1 and M2 are structures with underlying set
M and every M1-definable set is also definable in M2, we say that M1 is a reduct of M2

and that M2 is an expansion of M1. Two structures are definably equivalent if each is
a reduct of the other.

A very remarkable common feature of the known dp-minimal expansions of Z is their “rigid-
ity”. In [21], Conant and Pillay showed that all proper stable expansions of Z have infinite
weight, hence infinite dp-rank, and so in particular are not dp-minimal. The expansion(Z,<), well-known to be dp-minimal, does not have any proper dp-minimal expansion (a
result in [3] by Aschenbrenner, Dolich, Haskell, Macpherson, and Starchenko), or any proper
expansion of finite dp-rank, or even any proper strong expansion (a resut in [26] by Dolich
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and Goodrick). Moreover, Conant showed that any reduct (Z,<) expanding Z is definably
equivalent to Z or (Z,<) [20]. Recently, Alouf and d’Elbée showed in [24] that (Z,≺p) is
dp-minimal for all p where ≺p is the partial order on Z given by declaring k ≺p l if and only
if vp(k) < vp(l) with vp the p-adic valuation on Z. In the same paper, they showed that any
reduct of (Z,≺p) expanding Z is definably equivalent to either Z or (Z,≺p).
The above “rigidity” gives hope for a classification of dp-minimal expansions of Z analogous
to Johnson’s classification of dp-minimal fields [42]. In [2] (also by by Aschenbrenner,
Dolich, Haskell, Macpherson, and Starchenko), the authors asked whether every dp-minimal
expansion of Z is a reduct of (Z,<). In view of results in [24], the natural modified question
is whether every dp-minimal expansion of Z is a reduct of (Z,<) or (Z,≺p) for some p.

With the notion of circularly ordered abelian groups defined in the summary of Chapter 2,
we show that:

Theorem 1.7. Every circularly ordered abelian group (Z,◁) is dp-minimal.

In Section 4.1, we characterize unary definable sets in these expansions of Z, classify these
structures up to definable equivalence, and show that there are continuumm many up to de-
finable equivalence. Hence, we get a strong negative answer to the aforementioned question.
The proof of many of the above results notably makes use of Kronecker’s approximation
theorem, which can be seen as reflecting randomness.

Part 2. Abstract partially random structures. We aim to develop a general framework
to study structures with partial randomness. Chapter 5 is a preliminary chapter, but with
several original results. Chapter 6 introduces the notion of an interpolative structure, which
makes precise what it means to say that a structure is built up from multiple components
interacting randomly over a common part. Chapter 7 shows that many examples with model
theoretic interest fit into this framework. Chapter 8 provides several sufficient conditions
under which randomness can be captured using first-order logic. Chapter 9 develops a general
theory which allows us to understand definable sets in an interpolative structure in terms of
definable sets in the components. Below we describe the chapters in more details omitting
chapter 5 as it is a necessary supplement but not part of the storyline.

Chapter 6. Interpolative structures and interpolative fusions. For expository pur-
pose, we only consider here a special case of the setting introduced in Chapter 6. In this
summary, L1 and L2 are first-order languages with the same sorts, L∩ = L1 ∩ L2, and
L∪ = L1 ∪ L2. We let T1 and T2 be L1 and L2-theories, respectively, with a common set
T∩ of L∩-consequences, and T∪ = T1∪T2. Finally, M∪ is an L∪-structure, M◻ is the L◻-reduct
of M∪, and X◻ ranges over M◻-definable sets for ◻ ∈ {1,2,∩}.
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We say that M∪ is interpolative if for all X1 ⊆X2, there is an X∩ such that

X1 ⊆X∩ and X∩ ⊆X2

(more symmetrically: for all disjoint X1 and X2, there are M∩-definable sets X1∩ and X2∩ such
that X1 ⊆ X1∩, X2 ⊆ X2∩, and X1∩ ∩X2∩ = ∅). This notion is an attempt to capture the idea
that M1 and M2 interact, with respect to definability, in a generic, independent, or random
fashion over the reduct M∩. Informally, the above definition says that the only information
M1 has about M2 comes from M∩. If the class of interpolative models of T∪ is elementary
with theory T ∗∪ , then we say that T ∗∪ is the interpolative fusion (of T1 and T2 over T∩).
We also say that “T ∗∪ exists” if the class of interpolative T∪-models is elementary.

The reader may notice similarities with the Craig interpolation theorem: for every L1-
sentence ϕ1 and L2-sentence ϕ2 for which ⊧ ϕ1 → ϕ2, there is an L∩-formula ϕ∩ such that⊧ ϕ1 → ϕ∩ and ⊧ ϕ∩ → ϕ2. The resemblance is consequential. It allows us to prove:

Theorem 1.8. Suppose T1 and T2 are model-complete. Then M∪ ⊧ T∪ is interpolative if and
only if M∪ is existentially closed in the class of T∪-models. Hence, T ∗∪ exists if and only if
T∪ has a model companion, in which case T ∗∪ is a model companion of T∪.
In the case that T1 and T2 are not model-complete, we can still think of T ∗∪ as a relative
model companion of T∪, see Proposition 6.2.

Chapter 7. Examples of interpolative fusions. We adopt here the notational conven-
tions of the summary of Chapter 6. We show that many theories of model-theoretic interest
can be construed as interpolative fusions.

We show in Section 7.1 that if P is an infinite and co-infinite unary predicate on a single-
sorted structure M with underlying set M , then P is a generic predicate as defined by
Chatzidakis and Pillay [11] if and only if (M;P ) is a model of the interpolative fusion of the
theories of M and (M,P ) over the theory of the pure set M . Another source of examples
with the same flavor is the expansion of a structure by a generic predicate for a reduct,
recently described by d’Elbée [23]. We will discuss the latter examples and others in [53].

Certain notions of independence in mathematics give us interpolative fusions. Let K be an
algebraically closed field and v1, v2 be non-trivial valuations which induce distinct topologies
on K. It follows from results in [43, Chapter 11] by Johnson that (K,v1, v2) is a model
of the interpolative fusion of the theories of (K,v1) and (K,v2) over the theory of K (see
Section 7.2). Now write k ≼p l if vp(k) ⩽ vp(l) with vp the p-adic valuation. Following results
in [24], if p and p′ are distinct, and Z is the additive group of integers, then (Z,≼p,≼p′) is a
model of the interpolative fusion of the theories of (Z,≼p) and (Z,≼p′) over the theory of Z.
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Consider the structures in the summary of Chapter 2: (F;+,×) is an algebraic closure of a
finite field with the underlying set F, and ◁ is a multiplicative circular order on (F;+,×).
It follows rather easily from the main theorems of Chapter 2 that (F;+,×,◁) is a model of
the interpolative fusion of the theories of (F;+,×) and (F;×,◁) over the theory of (F;×).
The initial motivation to introduce the notion of interpolative fusions was to find a common
generalization of this example and the first example in the preceding paragraph.

Many interesting theories are not themselves interpolative fusion, but bi-interpretable with
one. Let σ be an automorphism of a model-complete L-structure M, N another L-structure,
and τ an isomorphism from M to N. Let T be the theory of M and TAut be the theory of
a T -model expanded by an L-automorphism. We show in Section 7.7 that (M,N; τ) and(M,N; τ ○σ) are both canonically bi-interpretable with M and (M,N; τ, τ ○σ) is canonically
bi-interpretable with (M, σ). Further, (M, σ) is existentially closed in the collection of TAut-
models if and only if (M,N; τ, τ ○ σ) is an interpolative structure. It follows that if TAut has
a model companion T ∗

Aut, then T ∗
Aut is bi-interpretable with the interpolative fusion of two

theories, each of which is bi-interpretable with T .

As a special case of the remarks in the preceding paragraph, we see that the model companion
ACFA of the theory of difference fields is bi-interpretable with an interpolative fusion of two
theories, each of which is bi-interpretable with the theory of algebraically closed fields. We
also show that the analogous statement holds for the theory DCF of differentially closed
fields. The general algebraic framework of D-fields, developed by Moosa and Scanlon [60],
gives a way of uniformly handling both ACFA and DCF. We show in Section 7.8 that the
model companion of the theory of D-fields of characteristic 0 is always bi-interpretable with
an interpolative fusion of two theories, each of which is bi-interpretable with ACF0.

Chapter 8. Existence results. We adopt here the notational conventions of the summary
of Chapter 6. In general, T ∗∪ need not exist, and the existence of T ∗∪ may even involve
classification-theoretic issues. For example, it is conjectured that if T is unstable, then
TAut does not have a model companion. In Chapter 8 we give general “pseudo-topological”
conditions on T1, T2, and T∩ which ensure the existence of T ∗∪ . These conditions are highly
nontrivial, but they are satisfied in many interesting examples. We also give a natural set of
pseudo-topological axioms for T ∗∪ when the pseudo-topological conditions are satisfied.

Suppose we can assign to each M∩-definable set X∩ in M∩ ⊧ T∩ an ordinal dimension
dim(X∩), and dim satisfies some minimal conditions given in Section 8.1. Most tame theories
come with a canonical dimension. We say that an arbitrary set A is pseudo-dense in X∩
if A intersects every M∩-definable Y∩ ⊆ X∩ such that dimY∩ = dimX∩. We say that X∩ is a
pseudo-closure of A if A is pseudo-dense in X∩ and A ⊆X∩.
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For i ∈ {1,2}, we say that Mi is approximable over M∩ if every Mi-definable set has a
pseudo-closure, and we say that Ti is approximable over T∩ if the same situation holds for
every Ti-model. Then Ti satisfies the pseudo-topological conditions if Ti is approximable
over T∩ and Ti defines pseudo-denseness (see Section 8.1 for a precise definition of the latter).
If T1 and T2 satisfy the pseudo-topological conditions, then M∪ is interpolative if and only if
X1 ∩X2 ≠ ∅ whenever X1 and X2 are both pseudo-dense in some X∩. The definability of
pseudo-denseness ensures this property is axiomatizable. In many settings of interest, the
notions of approximability and definability of pseudo-denseness turn out to be equivalent to
very natural notions in those settings.

The use of the term “pseudo-topological” is motivated by consideration of the case, treated
in Section 8.3, when T∩ is o-minimal and dim is the canonical o-minimal dimension. In this
case, any theory extending T∩ defines pseudo-denseness. Furthermore Ti is approximable
over T∩ if and only if T∩ is an open core of Ti, i.e. the closure of any Mi-definable set in any
Ti-model Mi is already M∩-definable. This leads to the following:

Theorem 1.9. Suppose T∩ is o-minimal. If T∩ is an open core of both T1 and T2 then T ∗∪
exists.

In the case when L∩ = ∅ and T∩ is the theory of an infinite set, the notion of interpolative
fusion is essentially known and was studied by Winkler in his thesis [89]. Winkler shows
that T ∗∪ exists if only if T1 and T2 both eliminate ∃∞. In Section 8.4, we show that if T∩ isℵ0-stable, and dim is Morley rank, then any theory extending T∩ is approximable over T∩
(e.g. if T∩ is the theory of algebraically closed fields, then this follows from the fact that
every Zariski closed set is definable). In Section 8.5, we show that if T∩ is ℵ0-stable, ℵ0-
categorical, and weakly eliminates imaginaries, then Ti defines pseudo-denseness if and only
if Ti eliminates ∃∞. This yields a generalization of Winkler’s theorem:

Theorem 1.10. Suppose that T∩ is ℵ0-stable, ℵ0-categorical, and weakly eliminates imagi-
naries. If T1 and T2 both eliminate ∃∞, then T ∗∪ exists.

The preceding theorem can also be used to prove another main result of [89]: the existence
of generic Skolemizations of model-complete theories eliminating ∃∞. We explain this in
Section 7.5.

In [81, Chapter 3], van den Dries notes a similarity between his main result and Winkler’s
theorem and remarks that this similarity “. . . suggests a common generalization of Winkler’s
and my results” . This chapter can be seen as a moral answer to this suggestion, but not yet
the final one, as our result only covers a special case of the main result in [81, Chapter 3].
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Chapter 9. Preservation results. We adopt here the notational convention of the sum-
mary of Chapter 6. Suppose that the interpolative fusion T ∗∪ exists. The examples described
above motivate the following question:

How are the model-theoretic properties of T ∗∪ determined by T1, T2, and T∩?
Model-theoretic properties of T ∗∪ should be largely determined by how Ti relates to T∩ for
i ∈ {1,2}, and not by any relationship between T1 and T2. We describe a general framework
for strengthenings of model-completeness in Section 5.2 and prove syntactic preservation
results in Chapter 9. The most important is the following, see Proposition 9.2.

Theorem 1.11. Suppose T∩ is stable with weak elimination of imaginaries. Suppose T ∗∪
exists. Then every L∪-formula ψ(x) is T ∗∪ -equivalent to a finite disjunction of formulas of
the form ∃y (ϕ1(x, y) ∧ ϕ2(x, y))
where ϕi(x, y) is an Li-formula for i ∈ {1,2} and (ϕ1(x, y) ∧ ϕ2(x, y)) is bounded in y, i.e.
there exists k such that T ∗∪ ⊧ ∀x∃⩽ky (ϕ1(x, y) ∧ ϕ2(x, y)).
This result is close to optimal, as L∪-formulas are in general not T ∗∪ -equivalent to boolean
combinations of L1 and L2-formulas. However, in Proposition 9.4, we show that certain
restrictive conditions on algebraic closure in T1 and T2 do imply that every L∪-formula is
T ∗∪ -equivalent to a boolean combination of L1 and L2-formulas. If this special situation holds,
and if T1 and T2 are both stable (NIP), then T ∗∪ must also be stable (NIP), see Section 9.5.

These syntactic preservation results can be applied to obtain classification-theoretic preser-
vation results which relate the (neo)stability-theoretic properties of T ∗∪ to those of T1, T2,
and T∩. The most notable result we have obtained so far in this direction is the following:

Theorem 1.12. If both T1 and T2 have NSOP1 and T∩ is stable with 3-uniqueness, then T ∗∪
has NSOP1.

On the other hand, NTP2 is not preserved even in very natural situations, which brings us to
the hope that the boundary of the tame universe can be extended to include these examples
as well.
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Part 1

Concrete partially random structures
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CHAPTER 2

Tame structures via character sums over finite fields

To minimize repetition, we treat this chapter as the continuation of the corresponding
summary in Section 1.2, and keep the definitions and statements of theorems given there.
Throughout this chapter, we also assume that x = (x1, . . . , xm) is an m-tuple of variables,
y = (y1, . . . , yn) is an n-tuple of variables, G is a multiplicative abelian group, F is a field,
and F × is the multiplicative group of F . Again, T is the multiplicative group of complex
numbers of norm 1, and F is an algebraic closure of a finite field.

2.1. Almost model companion of GMO−
For understanding ACFO− and finding its model companion, we need to first understand F ×
and (F ×,◁) as (F,◁) ranges over the models of ACFO−. Two phenomena turn out to be
important later on:

(1) the “reduct” of ACFO− to the language of multiplicative groups is very simple: it
“almost” admits quantifier elimination and has a natural notion of dimension;

(2) the “reduct” of ACFO− to the language of circularly ordered multiplicative groups “al-
most” has a model companion.

2.1.1. Multiplicative groups of algebraically closed fields. We will consider the the-
ory of multiplicative groups of algebraically closed fields (i.e., the set of statements which hold
in all such structures) in a suitable language, show that this theory “almost” admits quan-
tifier elimination and coincides with the theory of multiplicative groups of ACFO−-models,
and obtain an axiomatization along the way as usual.

Throughout Section 2.1.1, G is a multiplicative abelian group. If a and b in G are such that
bn = a, we call b an nth root of a. If n ⩾ 1, an nth root of the identity element 1G of G is
trivial if it is 1G. An nth root of 1T in the multiplicative group T for some n ⩾ 1 is called a
root of unity. Let U ⊆ T be the multiplicative group of roots of unity. For a given p, let
U(p) ⊆ T be the multiplicative group of roots of unity whose order is coprime to p. So U(p)
is isomorphic to F× as a group when char(F) = p.
Let Lm = {1,×,◻−1} be the language of multiplicative groups. It is easy to obtain an Lm-
theory GM such that G ⊧ GM if and only if the following conditions hold:
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(0×) every finite subgroup of G is cyclic;(1×) the group G is divisible;(2×) for any two distinct prime numbers p and l, either 1G has a nontrivial pth root, or 1G

has a nontrivial lth root.

The theory GM is our candidate for axiomatizing the theory of multiplicative groups of
algebraically closed fields. It has several natural extensions. For a given p, let GMp be the
Lm-theory whose models are G ⊧ GM which satisfy the following extra property:

(c×p) every pth root of 1G is trivial.

It is easy to see that if G ⊧ GMp, then 1G has a nontrivial lth root for any prime number
l ≠ p. Let GM0 be the Lm-theory whose models are G ⊧ GM which satisfy the following
extra property:

(c×0) for all prime numbers l, 1G has a nontrivial lth root.

Hence, a model of GM is either a model of GMp for some p or a model of GM0.

Remark 2.1. Suppose G satisfies conditions (0×) and (1×), and l is a prime number. The
condition that 1G has a nontrivial l-root is also equivalent to several other conditions:

(1) 1G has exactly l many lth roots;
(2) for all k ⩾ 1, 1G has exactly lk many lkth roots;
(3) for all k ⩾ 1, every a ∈ G has exactly lkth many lkth roots.

Likewise, the condition that every pth root of 1G is trivial is also equivalent to two other
conditions:

(1) for all k, every pkth root of 1G is trivial;
(2) for all k ⩾ 1, every a ∈ G has exactly one pkth root.

From Remark 2.1, we easily deduce the following:

Remark 2.2. For every p, U(p) is a model of GMp, and so is F× when char(F) = p. Moreover,
if G is a model of GMp, then the group of torsion elements of G is isomorphic to U(p). The
group U is a model of GM0 and is isomorphic to the group of torsion elements of any GM0-
model.

Lemma 2.1 confirms that our candidate GM at least meets the basic requirements:

Lemma 2.1. If G is the multiplicative group of an ACF-model, then G ⊧ GM. Similar
statements hold for ACFp together with GMp for an arbitrary p and for ACF0 together with
GM0.
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Proof. It is easy to see that if G is the multiplicative group of a prime model of ACF, then
conditions (0×), (1×), and (2×) are satisfied. Hence, the first statement follows from the fact
that ACF is model complete. The proof of the second statement is similar. �

Suppose B is a subset of G, and t(x) and t′(x) are Lm(B)-terms. Then we call the atomic
formula t(x) = t′(x) a multiplicative equation over B. A multiplicative equation over B
is trivial if it defines in every abelian group G′ extending ⟨B⟩ the set (G′)m. If a ∈ Gm does
not satisfy any nontrivial multiplicative equation over B, we say that a is multiplicatively
independent over B.

Proposition 2.1 below is the “almost” quantifier-elimination result we promised. This can be
seen as folklore and can be obtained as a consequence of the characterization of elementary
embeddings of abelian groups [30] and the quantifier-reduction for abelian groups [65, page
46]. Since the situation is relatively simple, we briefly indicate a direct proof:

Proposition 2.1. For each p, the theory GMp is complete and admits quantifier elimination.
A similar statement holds for GM0. However, GM is not model complete.

Proof. We will only prove the first statement for GMp with p fixed as the proof for GM0

is very similar. By Remark 2.2, U(p) is an Lm-substructure of every model of GMp, so
completeness will follow from quantifier elimination. Using a standard test for quantifier
elimination, we need to show the following: if G and G′ are models of GMp such that G′ is∣G∣+-saturated, and f is a partial Lm-isomorphism from G to G′ (i.e., f is an Lm-isomorphism
from an Lm-substructure of G to an Lm-substructure of G′) such that Domain(f) ≠ G, then
there is a partial Lm-isomorphism from G to G′ which properly extends f .

In each of the following cases, we will obtain a in G∖Domain(f) and a′ in G′∖Image(f).
A proper extension of f can then be defined by

akb↦ (a′)kf(b) for k ∈ Z and b ∈ Domain(f).
We will leave the reader to check that the function is well-defined and is a partial Lm-
isomorphism from G to G′.

Suppose l is a prime number, and a ∈ G ∖Domain(f) is a nontrivial lth root of 1G. As
G satisfies (c×p), l ≠ p. Since G and G′ both satisfy (0×), Domain(f) and Image(f) contain
no nontrivial lth roots of 1G and 1G′ respectively. We can then choose a′ ∈ G′ ∖ Image(f) to
be an lth root of 1G′ , which must exist because G′ satisfies (c×p) and (2×).

Now suppose Domain(f) contains all roots of 1G with prime order, l is a prime and
a ∈ G ∖Domain(f) is such that al ∈ Domain(f). If b is another lth root of al, then ab−1 is
an lth root of 1G. Hence, Domain(f) contains no lth root of al, and Image(f) contains no
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lth root of f(al). We then choose a′ to be an lth root of f(al) which must exist because G′
satisfies (1×).

The last case is when Domain(f) is divisibly closed in G, and a ∈ G∖Domain(f). Using
the fact that G′ is ∣G∣+-saturated, we obtain a′ ∈ G′ which is multiplicatively independent
over Image(f).

For the last statement, note that both U(p) and U are models of GM, U(p) is a substructure
of U, but Up is not not an elementary substructure of U. �

Fact 2.1 is an easy consequence of Želeva’s characterization of circularly orderable groups [85]
and Levi’s characterization of linearly orderable abelian group [55]:

Fact 2.1. An abelian group is circularly orderable if and only if it satisfies (0×).
Combining Proposition 2.1 and Fact 2.1 confirms the validity of our candidate GM:

Corollary 2.1. Every model of GM is elementarily equivalent to both the multiplicative
group of an algebraically closed field and the multiplicative group of a model of ACFO−.
Many other model-theoretic properties of the theory GM are also immediate:

Corollary 2.2. The theory GM is strongly minimal.

Hence, definable sets, types, and elements in a model of GM can be given a canonical
dimension mdim which coincides with Morley rank and the aclm-dimension; see [58] for
details. Proposition 2.1 also yields:

Corollary 2.3. Suppose G is a model of GM, B is a subset of G, and a is in Gm. Then
mdim(a∣B) <m if and only if a is multiplicatively dependent over B.

2.1.2. Circularly ordered multiplicative groups of ACFO−-models. We next consider
the theory of circularly ordered multiplicative groups of models of ACFO−. We want to show
that that this theory “almost” has a model companion and obtain an axiomatization for this
model companion along the way.

Throughout Section 2.1.2, we adopt the notational conventions of Section 2.1.1. Moreover,
G is assumed to be circularly orderable, and (G,◁) ranges over the circularly ordered multi-
plicative abelian groups. For each (G,◁), we define the linear order ⋖ on (G,◁) by setting
1G ⋖ a for all a ∈ G ∖ {1G} and

a ⋖ b if and only if ◁ (1G, a, b) for a, b ∈ G ∖ {1G}.
When G is T, U, or U(p), we let ◁ denotes the clockwise circular orders on the respective
sets. From Fact 2.1, we can easily deduce the following:
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Remark 2.3. For given (G,◁) and finite subgroup A of G, if a ∈ A ∖ {1G} is minimal with
respect to ⋖, then A = ⟨a⟩.
Let Lmc = Lm ∪ {◁} be the language of circularly ordered abelian groups. Let GMO− be
the theory whose models are (G,◁) such that G ⊧ GM, or equivalently, G satisfies (1×)
and (2×) (as (0×) is automatic by Fact 2.1). Let GMO−

p = GMO− ∪ GMp for all p, and let
GMO−

0 = GMO− ∪ GM0. We show below that GMO− is an axiomatization of the theory of
circularly ordered multiplicative groups of algebraically closed fields:

Lemma 2.2. An Lmc-structure (G,◁) is a model of GMO− if and only if (G,◁) is elemen-
tarily equivalent to the circularly ordered group of an ACF-model. Similar statements hold
for GMO−

p together with ACFp for an arbitrary p and GMO−
0 together with ACF0.

Proof. The backward implication of the first statement follows immediately from Lemma 2.1.
For the forward implication of the first statement, suppose (G,◁) is a model of GMO−. We
assume further that (G,◁) is a model of GMO−

p and omit the proof of the similar case where(G,◁) is a model of GMO−
0 . Replacing (G,◁) by an elementary extension if necessary, we

can arrange that ∣G∣ = κ > ℵ0. By Corollary 2.2, GMO−
p is κ-categorical. Hence, G is is iso-

morphic to the multiplicative group G′ of a model of ACFp of size κ. Pushing forward ◁ by
the isomorphism we get a circular orderding ◁′ on G′ such that (G′,◁′) is Lmc-isomorphic
to (G,◁). This also proved the second statement. �

A rather awkward aspect dealing with (G,◁) comes from the fact that ⋖ is not invariant
under translation. We will consider here a partial rectification. The winding number
W (a1, . . . , an) of (a1, . . . , an) ∈ Gn is defined to be the cardinality of the set

{k ∶ 1 ⩽ k ⩽ n − 1,
k+1∏
i=1

ai ⋖ k∏
i=1

ai}.
It is intuitively the number of times the sequence a1, a1a2, . . . ,∏n−1

i=1 ai,∏n
i=1 ai “winds around

the circle”. If a1 = . . . = an = a, we also denote W (a1, . . . , an) as Wn(a).
Remark 2.4. Suppose a and b in G satisfy a ⋖ b. Then for all c ∈ G, either ac ⋖ bc or
W (a, c) < W (b, c). So in this sense the notion of winding number accounts for the non-
invariant of ⋖.
For a ∈ G, we say that a is n-divisible with winding number r if a has an nth root b
with Wn(b) = r.
Remark 2.5. Consider (G,◁) and a ∈ G. From Remark 2.4, it is easy to see that every
a ∈ G has at most one nth root b such that Wn(b) = r. So if there are distinct b1, . . . , bn such
that bni = a for all i ∈ {1, . . . , n}, then for each r ∈ {1, . . . , n} there is exactly one i ∈ {1, . . . , n}
such that Wn(bi) = r.
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Let GMO be the Lmc-theory such that its models are (G,◁) with G ⊧ GM and the following
density condition is satisfied:

(d×) for any given n, r ∈ {0, . . . , n − 1}, and c and d in G, there is a ∈ G such that ◁(c, a, d)
and a is n-divisible with winding number r.

The theory GMO is our candidate for the “almost” model companion of GMO−. Also set
GMOp = GMO ∪GMO−

p for an arbitrary p, and set GMO0 = GMO ∪GMO−
0 .

To handle circularly ordered groups, it is convenient to “linearize” them; see also [34] and [31]
for related material. Let (H,<) be a linearly ordered additive group with identity element
0H , and let ω ∈ H be a distinguished positive element such that (nω)n>0 is cofinal in (H,<)
(i.e., for every α ∈H, α < nω for sufficiently large n). For every k, set

[k, k + 1)H = {α ∈H ∶ kω ⩽ α < (k + 1)ω}.
A surjective group homomorphism e ∶ H → G with kernel ⟨ω⟩ is a covering map from(H,ω,<) to (G,◁) if for all n and all α,β, γ ∈ [n,n + 1)H ◁(e(α), e(β), e(γ)) is equivalent
to

α < β < γ or β < γ < α or γ < α < β.
If there is a covering map from (H,ω,<) to (G,◁), we call (H,ω,<) a universal cover of(G,◁).
Remark 2.6. Suppose (H,ω,<) is as described in the preceding paragraph. Then the above
definition also allow us to construct (G,◁) such that (H,ω,<) is a universal cover of (G,◁).
The examples in the following remark will hopefully make this notion concrete:

Remark 2.7. Let the additive groups R, Q, and Z(p) be equipped with their natural orders<. With α ↦ e2πiα the covering map, we have the following:

(1) (R,1,<) is a universal cover of (T,◁);
(2) (Q,1,<) is a universal cover of (U,◁);
(3) (Z(p),1,<) is a universal cover of (U(p),◁).
The lemma below illustrates the advantage of having a universal cover.

Lemma 2.3. Suppose (H,ω,<) is a universal cover of (G,◁) with e the covering map,
α1, . . . , αn are in [0,1)H , and ai = e(αi) for i ∈ {1, . . . , n}. Then

W (a1, . . . , an) = r if and only if α1 + . . . + αn ∈ [r, r + 1)H .
Proof. It follows from the definition of a universal cover that ∑k

i=1αi ∈ [l, l + 1)H and∑k+1
i=1 αi ∈ [l + 1, l + 2)H if and only if ∏k+1

i=1 ai ⋖ ∏k
i=1 ai. The desired conclusion follows. �
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Applying Lemma 2.3 into the setting where a1 = . . . = an = a, we get:

Corollary 2.4. Suppose (H,ω,<) is a universal cover of (G,◁) with e the covering map,
a is in G, n ⩾ 1, r is in {0, . . . , n − 1}, and α ∈ [r, r + 1)H is such that e(α) = a. Then the
following are equivalent:

(i) a is n-divisible with winding number r;
(ii) α is n-divisible.

We can view such (H,ω,<) as a structure in a language Lal consisting of function symbols
for 0, ω, and + and a relation symbol for <. It turns out that the convenience of a universal
cover is something we can always afford. Moreover, we get it partially definably:

Lemma 2.4. Every (G,◁) has a universal cover (H,ω,<). Moreover, there is an Lmc-
isomorphic copy (G̃, ◁̃) of (G,◁) such that the underlying set of G̃ is [0,1)H , and the
multiplication on G̃ and ◁̃ can be defined by Lal-formulas whose choice is independent of the
choice of (G,◁) and the choice of (H,ω,<).
Proof. Set H = Z ×G, and define

(k, a) + (k′, a′) = (k + k′ +W (a, a′), aa′)
for (k, a) and (k′, a′) in H. Let < be the lexicographic product of the usual order on Z
and the linear order ⋖ on G. Set 0H = (0Z,1G) and ω = (1Z,1G). We can easily check that(H,ω,+,<) is a universal cover of G. For a, a′ ∈ [0H , ω)H , set

a ×̃ a′ = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a + a′ if a + a′ ∈ [0,1)H ,
a + a′ − ω otherwise.

Define ◁̃ by setting ◁̃(a, b, c) for any a, b, c ∈ [0,1)H such that a < b < c or b < c < a or c < a < b.
It is easy to see the quotient map H → G induces an isomorphism from ([0,1)H , ×̃, ◁̃) to(G,◁). �

The universal cover notion is functorial in the following sense:

Lemma 2.5. Suppose (H,ω,<) is a universal cover of (G,◁) with convering map e, and(H ′, ω′,<′) is a universal cover of (G′,◁′) with convering map e′. Then we have the following:

(i) if g is an Lmc-embedding from (G,◁) to (G′,◁′), then there is a unique Lal-embedding
h from (H,ω,<) to (H ′, ω′,<′) such that the diagram below commutes:

H ′ G′

H G

e′

h

e

g ;
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in particular, e is the unique covering map from (H,ω,<) to (G,◁), and any two
universal coverings of (G,◁) are isomorphic as Lal-structures;

(ii) if h is an Lal-embedding from (H,ω,<) to (H ′, ω′,<′), then there is a unique Lmc-
embedding g from (G,◁) to (G′,◁′) such that the same diagram above commutes.

Proof. For (i), let h ∶ H → H ′ be such that α ∈ [k, k + 1)H is mapped to the unique
β ∈ [k, k + 1)H′ with g ○ e(α) = e′(β). For (ii), let g ∶ G→ G′ be such that e(α) is mapped to
e′ ○ h(α) for α ∈H. It is easy to check that h and g are as desired. �

We extend the “linearization” procedure to theories GMO− and GMO. Let HAO− be an
Lal-theory such that an Lal-structure (H,ω,<) is a model of HAO− if and only if (H,<) is a
linearly ordered additive abelian group, ω is a positive element in H, and the the following
additional two properties are satisfied:

(1+) for each n and α ∈H, there is at least one r ∈ {0, . . . , n−1} such that α+rω is n-divisible;(2+) for any prime numbers p and l, ω is either p-divisible or l-divisible.

Note that (1+) and (2+) correspond to (1×) and (2×). There is no (0+) because (0×) is
trivial in our current setting. The condition that ω is cofinal in H cannot be included here
as it is not first-order. For a given p, let HAO−

p be the Lal-theory whose models are the(H,ω,<) ⊧ HAO− which satisfy the addition condition:

(c+p) ω is not p-divisible.

We also let let HAO−
0 be the Lal-theory whose models are the (H,ω,<) ⊧ HAO− which satisfy

the additional condition:

(c+0) for all prime numbers l, ω is l-divisible.

Let HAO be an Lal-theory whose models are the (H,ω,<) ⊧ HAO− which also satisfy the
additional condition:

(d+) for any given n and β, γ ∈ H with β < γ, there is α ∈ H such that α is n-divisible and
β < α < γ.

Finally, set HAOp = HAO ∪HAO−
p for each p, and HAO0 = HAO ∪HAO−

0 ; in fact, HAO0 is
just the theory of divisible ordered abelian groups. The next Lemma explains precisely what
it means by saying that these are “linearization” of GMO− and GMO:

Lemma 2.6. Suppose (H,ω,<) is a universal cover of (G,◁). Then we have:

(i) for all p, (H,ω,<) ⊧ HAO− if and only if (G,◁) ⊧ GMO−. Similar statements hold for
HAO−

p together with GMO−
p and HAO−

0 together with GMO−
0 ;

(ii) for all p, (H,ω,<) ⊧ HAO if and only if (G,◁) ⊧ GMO. Similar statements hold for
HAOp together with GMOp and HAO0 together with GMO0.

Proof. All these statements are immediate consequences of Corollary 2.4. �
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Lemma 2.6 allows us to deduce results for GMO−-models and GMO-models from generally
much easier results for HAO−-models and HAO-models. Below is the first demonstration of
its usefulness:

Lemma 2.7. Let (Z(p),1,<) and (Q,1,<) be as in Remark 2.7. Then we have (Z(p),1,<) ⊧
HAOp and (Q,1,<) ⊧ HAO0. Moreover, there is a unique Lal-embedding of (Z(p),1,<) into
every HAO−

p -model and a unique Lal-embedding of (Q,1,<) into every HAO−
0 -model.

Proof. It is easy to verify that (Z(p),1,<) is a model of HAO−
p . Since Z(p) is dense in R

with respect to the natural order, it follows that (Z(p),1,<) is a model of HAOp. Suppose(H,ω,<) is a model of HAO−
p . Then the subgroup of H generated by ω is an isomorphic copy

of Z(p). This gives us an Lal-embedding of (Z(p),1,<) into (H,ω,<). This Lal-embedding is
unique as any such Lal-embedding must send 1 to ω. The statements for (Q,1,<) can be
proven similarly. �

Combining with Lemma 2.5 and Lemma 2.6, we get:

Proposition 2.2. We have (U(p),◁) ⊧ GMOp and (U,◁) ⊧ GMO0. Moreover, there is a
unique Lmc-embedding of (U(p),◁) into every GMO−

p -model and a unique Lmc-embedding of(U,◁) into every GMO−
0 -model.

Suppose σ is an Lm-automorphism of U(p). Define ◁σ to be the image of the clockwise
circular order ◁ under σ. From Lemma 2.2, we get the following:

Corollary 2.5. Every circular order on U(p) is equal to ◁σ for a unique Lm-automorphism
σ of U(p).
For an injective group homomorphism χ ∶ F× → T, define the circular order ◁χ to be the
pullback of ◁ via χ. Note that χ(F×) = U(p) as a subgroup of T. So applying Corrollary 2.5,
we get:

Corollary 2.6. Every multiplicative circular order on F is equal to ◁χ for a unique injective
group homomorphism χ ∶ F× → T.

Toward showing that GMO is “almost” the model companion of GMO−, we first show the
“linearized” version of the result. This is also folklore [88], but not everything we want is
written down, so we briefly indicate a proof.

Lemma 2.8. For each p, the theory HAOp is complete and is the model companion of HAO−
p .

A similar statement holds for HAO0 and HAO−
0 . The theory HAO is not model complete.
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Proof. To show the first statement, we require some preparation. For each (H,ω,<) ⊧
HAO−

p , define the family D = (Dn)n>0 of unary relations on H by setting

Dn = {α ∈H ∶ there is β ∈H such that nβ = α.}
Then such (H,ω,<,D) is naturally a structure in a language L♢al extending Lal by adding
a family of unary relation symbols for D. The theory HAO−

p and HAOp can be naturally
expanded to L♢al-theories by adding the obvious axioms defining such D. Note that when(H,ω,<) ⊧ HAO−

p and D = (Dn)n>0 are as above, we also have

Dn = {α ∈H ∶ for all β ∈H, n−1⋀
r=1

nβ ≠ α + rω.}
It follows that such Dn is both universally and existentially definable. Moreover, we can
choose the formula defining such Dn independent of the choice of (H,ω,<). Thus, the
problem is reduced to showing that the natural L♢al-expansion of HAOp is complete, admits
quantifier elimination, and is the model companion of the natural L♢al expansion of HAO−

p .
It follows from Lemma 2.7 that (Z(p),1,<,D) can be canonically viewed as a L♢al-

substructure of any model of the natural L♢al-expansion of HAOp. Hence,it suffices to show the
following: if (H,ω,<,D) is the natural L♢al-expansion of a model of HAO−

p , (H ′, ω′,<′,D′) is
the natural L♢al-expansion of a model of HAOp and is moreover ∣H ∣+-saturated, and f ∶H →H ′
is a partial L♢al-isomorphism from (H,ω,<,D) to (H ′, ω′,<′,D′) with Domain(f) ≠ H, then
we can find a partial L♢al-embedding which properly extends f .

It is easy to reduce to the case where Domain(f) is a divisibly closed subgroup of H.
Let α ∈ H ∖Domain(f). If α − rω is pk-divisible and β < α < β′ for β and β′ in Domain(f),
then we can find α′ in H ′ ∖ Image(f) such that α′ − rω′ is pk-divisible and f(β) < α′ < f(β′)
using the fact that (H ′, ω′,<′) satisfies (d+). As H ′ is ∣H ∣+-saturated, we can arrange that
α′ satisfies all such conditions simultaneously. Let g be the obvious extension of f sending
α to α′. It is easy to check that g is as desired.

The proof of the second statement is similar to the proof of the first statement. Note
that (Z(p),1,<) is an Lal-substructure of (Q,1,<), and both are models of HAO, but the
former is not an elementary substructure of the latter. So HAO is not model complete. �

Proposition 2.3. For each p, the theory GMOp is complete and is the model companion
of GMO−

p . A similar statement holds for GMO0 and GMO−
0 . However, GMO is not model

complete.

Proof. By Proposition 2.2, (U(p),◁) is a model of GMOp and is an Lmc-substructure of
any model of GMOp. Hence to get the completeness of GMOp, it suffices to show that GMOp

is model complete. Suppose (G,◁) and (G′,◁) are models of GMOp and that the former
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is a substructure of the latter. By Lemma 2.6, the universal covers (H,ω,<) and (H ′, ω,<)
of (G,◁) and (G′,◁) are models of HAOp. It follows from Lemma 2.5 and Lemma 2.8 that(H,ω,<) can be viewed as an elementary substructure of (H ′, ω,<). Combining this with
the second part of Lemma 2.4, we get that (G,◁) is an elementary substructure of (G′,◁).

Next we show that every model of GMO−
p can be embedded into a model of GMOp.

Suppose (G,◁) is a model of GMO−
p . By Lemma 2.6, the universal cover (H,ω,<) of (G,◁)

is a model of HAO−
p . Hence, it follows from Lemma 2.8 that (H,ω,<) has an extension(H ′, ω,<) which is a model of HAOp. Construct (G′,◁) as mentioned in Remark 2.6. Then(G′,◁) is a model of GMOp by Lemma 2.6 and (G′,◁) can be considered a substructure of(G′,◁) by Lemma 2.5.

The second statement can be proved similarly. The third statement can be deduced from
Lemma 2.8 using similar ideas. It can also be observed directly by looking at (U(p),◁) and(Q,◁). �

Remark 2.8. The theory HAO0 is just the theory of divisible ordered abelian groups, so
HAO0 has quantifier elimination. For the second statement of Proposition 2.3, we can also
get that GMO0 admits quantifier elimination. Since we will not use this later on, we leave
it to the interested reader.

2.2. Model companion of ACFO−
We will establish that ACFO− has a model companion in two steps:

(1) obtaining a characterization of the existentially closed models of ACFO− following the
ideas in [11];

(2) showing that the class of ACFO−-models satisfying the characterization in (1) is ele-
mentary by using model-theoretic/geometric properties of the reducts of ACFO− to the
language of rings and the language of circularly ordered multiplicative groups.

2.2.1. Geometric characterization of the existentially closed models. Intuitively,
in an existentially closed model (F,◁) of ACFO−, the field F interacts “randomly” with the
circularly ordered abelian group (F ×,◁) ⊧ GMO over their “common reduct” F ×. In this
section, we will make precise this intuition through a “geometric characterization” and then
verify its correctness.

We keep the the notational conventions of Section 2.1.1 and Section 2.1.2. Suppose (G,◻)
is an L-structure expanding G. For convenience, we call a set X ⊆ Gm which is defined
in (G,◻) by a quantifier-free L(G)-formula a qf-set in (G,◻). For X ⊆ Gm definable in(G,◻) and an elementary extension (G′,◻) of (G,◻), let X(G′) ⊆ (G′)m be the set defined
in (G′,◻) by any L(G)-formula formula ϕ(x) that defines X.
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We first correct a minor issue: the group F × is, strictly speaking, not a reduct of F , as 0 is
not an element of F ×. Set

Σn+1 = {(a1, . . . , an+1) ∈ (F ×)n+1 ∶ a1 + . . . + an = an+1}
and let Σ = (Σn+1). We call (F ×,Σ) the punctured field associated to F . Then (F ×,Σ)
is naturally a structure in the language L×f = Lm ∪ {Σn+1}. The group F × is now an honest
reduct of (F ×,Σ).
We will see in the proof of Lemma 2.14 a more substantial advantage working with L×f instead
of Lf , namely, L×f expands Lm only by relation symbols and not by function symbols.

Remark 2.9. The following “adding 0” procedure allows us to recover an isomorphic copy
of a field from its associated punctured field, but the procedure is applicable to any L×f -
structure expanding a multiplicative abelian group. Starting with an L×f -structure (G,Σ),
set F = G ∪ {0}, define + on F 2 by pretending that G is F × (i.e. 0 + 0 = 0, a + 0 = 0 + a = a
for a ∈ G, a + b = c for a and b in G if c is the unique element of G satisfying Σ3(a, b, c), and
a + b = 0 for the remaining cases), and define × on F 2 similarly.

As immediate consequence of Remark 2.9, we get:

Remark 2.10. Suppose F is a field and (F ×,Σ) is its associated punctured field. Then
X ⊆ (F ×)m is definable in F if and only if X is definable in (F ×,Σ).
From Remark 2.9, it is also easy to find an L×f -theory whose models are precisely the punc-
tured fields. Likewise, we get L×f -theories ACF×, ACF×

p for every p, and ACF×
0 whose models

are punctured models of ACF×, ACF×
p , and ACF×

0 respectively. The basic model theory
ACF× can be obtained:

Lemma 2.9. The theory ACF× admits quantifier elimination and is the model companion
of the theory of punctured fields. The theories ACF×

p for various p and ACF×
0 are the only

completions of ACF×.
Proof. These statements are easy consequences of Remark 2.9, Remark 2.10, the quantifier
elimination of ACF, and the fact that ACFp for various p and ACF0 are the only completions
of ACF. �

Let (F,◁) be an ACFO−-model and (F ×,Σ) the punctured field associated to F . We call(F ×,Σ,◁) the punctured ACFO−-model associated to (F,◁). Then (F ×,Σ,◁) is a struc-
ture in the language L×t = L×f ∪ Lmc. We define punctured ACFO−

p -models for various p and
punctured ACFO−

0 -models likewise.
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By the discussion on “adding 0” in Remark 2.9, it is easy to see that there is an L×t -theory
whose models are precisely the punctured ACFO−-models. We say that a punctured ACFO−-
model is existentially closed if it is an existentially closed model of this theory.

The following Lemma allows us to trade existentially closed ACFO−-models with existentially
closed punctured ACFO−-models:

Lemma 2.10. An ACFO−-model is existentially closed if and only if its associated punctured
ACFO−-model is existentially closed.

Proof. Let (F ×,Σ,◁) be the punctured ACFO−-model associated to a model (F,◁) of
ACFO−, and suppose (F ×,Σ,◁) is existentially closed. We assume further that (F,◁) ⊧
ACFO−

p for a fixed p and omit the proof of the similar case where (F,◁) is a model of ACFO−
0 .

Note that an ACFO−-model extending (F,◁) is then automatically an ACFO−
p -model. Let

ϕ(x) be a quantifier-free Lt-formula which defines a nonempty set in some ACFO−
p -model

extending (F,◁). To get the backward implication, we need to show that ϕ(x) already
defines a nonempty set in (F,◁).

Note that ϕ(x) is logically equivalent to (ϕ(x)∧xi = 0)∨(ϕ(x)∧xi ≠ 0) with i ∈ {1, . . . ,m},
and ϕ(x)∧xi = 0 is equivalent over ACFO−

p to a quantifier-free formular with fewer variables.
So we reduced to the case where ϕ(x) is logically equivalent to ϕ(x) ∧ ⋀mi=1 xi ≠ 0. Consider
the special case where the only atomic formulas of ϕ(x) in which + appears are of the form

t1(x) + . . . + tn(x) = tn+1(x)
where ti(x) does not further contain + for i ∈ {1, . . . , n+1}. Such a formula t1(x)+. . .+tn(x) =
tn+1(x) defines in an arbitary ACFO−

p -model the same set that Σn+1(t1(x), . . . , tn(x), tn+1(x))
defines in the associated punctured ACFO−

p -model. So we get an L×t formula ϕ×(x) such that
ϕ(x) defines in an ACFO−

p -model the same set that ϕ×(x) defines in its associated punctured
ACFO−

p -model. In particular, ϕ×(x) defines a nonempty set in a punctured ACFO−
p -model

extending (F ×,Σ,◁). As (F ×,Σ,◁) is existentially closed, ϕ×(x) defines a nonempty set in(F ×,Σ,◁). Thus, in this special case, ϕ(x) defines a nonempty set in (F,◁) .
We next reduce to the special case in the preceding paragraph. Arrange that every term

t(x) appearing in ϕ(x) is of the form t1(x) + . . . + tk(x) where ti(x) does not contain + for
i ∈ {1, . . . , k}. Introduce a new variable yt for each such t, and set y to be the tuple of
variables built up from such yt. Replace the appearance of each aforementioned t(x) in ϕ(x)
with yt to get a formula ψ(x, y). Then ϕ(x) is equivalent across ACFO−

p -models to

∃y(ψ(x, y) ∧⋀
t

t(x) = yt).
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Note that ψ(x, y) ∧ ⋀t yt = t(x) is of the form in the preceding paragraph and defines a
nonempty set in an ACFOp-models extending (F,◁). So ψ(x, y) ∧ ⋀t yt = t(x) defines a
nonempty set in (F,◁). Hence, ϕ(x) also defines a nonempty set in (F,◁), which concludes
the proof of the backward implication.

The forward implication is much easier. The main difficulty with the backward impli-
cation comes from the fact that + has no corresponding function symbol in L×t . On the
other hand, basic functions of (F ×,Σ,◁) are restrictions of basic functions of (F,◁) to
0-definable sets of (F,◁), and basic relations of (F ×,Σ,◁) are 0-definable sets of (F,◁).
So the analogous argument can be carried out without worrying about the aforementioned
difficulty. �

In order to “geometrically” characterize the existentially closed models of the expansion of
a theory by a unary predicate, Chatzidakis and Pillay implicitly introduced a “largeness
property” for definable sets [11]; the name largeness here is taken from the paper [71] by
Shelah and Simon. We will provide an analogous notion in this setting.

Suppose (G,◻) is an expansion of G, X ⊆ Gm is definable in (G,◻), and (G,◻) is a monster
elementary extension of (G,◻). We say that X is multiplicatively large if there is
a ∈X(G) which is not a solution of any nontrivial multiplicative equations over G.

The above definition in particular applies to definable sets in a circularly ordered abelian
group (G,◁) and definable sets in a punctured field (G,Σ). We can extend it in an obvious
way to cover definable sets in a field F . A definable subset X ⊆ Fm is multiplicative large
if X ∩ (F ×)m is multiplicatively large as a definable subset of the punctured field (F ×,Σ)
associated to F .

Remark 2.11. Suppose (G,◻) is an expansion of G, and X, X1, and X2 are definable
in (G,◻) with X = X1 ∪ X2. Then X is multiplicatively large if and only if either X1 is
multiplicatively large or X2 is multiplicatively large.

Even though multiplicative largeness can be defined very generally, it only behaves well
under stronger assumptions:

Lemma 2.11. Suppose (G,◻) is an expansion of G ⊧ GM, and X ⊆ Gm is a multiplicatively
large definable set in (G,◻). If (G′,◻) is an elementary extension of (G,◻), then X(G′) is
a multiplicatively large definable set in (G′,◻).
Proof. Suppose (G,◻), (G′,◻), and X are as above. It follows from Lemma 2.3 that
mdim(X) = m. As mdim coincides with Morley rank which is preserved under taking
elementary extension, mdim(X(G′)) =m. Applying Lemma 2.3 again, we get that X(G′) is
also multiplicatively large. �
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We now move on to give the geometric characterization we promised. Suppose (G,Σ,◁) is a
punctured ACFO−

p -model. We say that (G,Σ,◁) satisfies the geometric characterization
if the following two conditions are satisfied:

(1) (G,◁) ⊧ GMO;
(2) if X1 ⊆ Gm is a multiplicatively large qf-set in (G,Σ) and X2 ⊆ Gm is a multiplicative

large qf-set in (G,◁), then X1 ∩X2 ≠ ∅.
We say that an ACFO−-model (F,◁) satisfies the geometric characterization if its as-
sociated punctured ACFO−-model does, or equivalently, if it satisfies a definition as above
but with (G,◁) replaced by (F ×,◁) and (G,Σ) replaced by F . Note that ACF× admits
quantifier elimination, so the assumption that X1 is a qf-set is in fact unnecessary.

In the rest of the section, we will show that an ACFO−-model is existentially closed if and
only if it satisfies the geometric characterization. If T is an L-theory, let T (∀) denote the
set of L-consequences of T .

Lemma 2.12. Suppose (G,Σ,◁) is an L×t -structure with (G,Σ) ⊧ ACF×
p(∀) and (G,◁) ⊧

GMOp(∀). Then (G,Σ,◁) can be L×t -embedded into a punctured ACFO−
p -model (G′,Σ,◁)

such that (G′,◁) is a model of GMO. A similar statement holds for L×t -structure with(G,Σ) ⊧ ACF×
0(∀) and (G,Σ) ⊧ GMO0(∀).

Proof. We will only prove the first statement as the proof of the second statement is similar.
Let (G,Σ,◁) be as above. We will construct a sequence (Gn,Σ,◁)n of L×t -structure such
that

(1) (G0,Σ,◁) extends (G,Σ,◁) as an L×t -structure;
(2) (Gn+1,Σ,◁) is an L×t -extension of (Gn,Σ,◁);
(3) (G2n,Σ) is a punctured ACFO−

p -model;
(4) (G2n+1,◁) ⊧ GMOp and (G2n+1,Σ) is a model of ACF×

p(∀).
Then we can take (G′,Σ,◁) to be the union of (Gn,Σ,◁)n. Note that ACF×

p and GMOp

are both inductive theories, as they are model complete, so it is easy to see that (G′,Σ,◁)
satisfied the desired conclusion.

As (G,Σ) ⊧ ACF×
p(∀), we can get (G0,Σ) ⊧ ACF×

p extending (G,Σ) as an L×f -structure.
On the other hand (G,◁) ⊧ GMOp(∀), so we can get a monster model (G,◁) of GMOp

extending (G,◁) as an Lmc-structure. Now both G0 and G are models of GMp, and recall
that the theory GMp admits quantifier elimination by Proposition 2.1. Hence, there is an
embedding of G0 into G. We can then define ◁ on G0 by pull-back via f . Clearly, (G0,Σ,◁)
is a model of ACFO−

p .
Suppose we have constructed (G2n,Σ,◁) satisfying both (2) and (3). Then (G2n,◁) is a

model of GMO−
p which has GMOp as a model companion, so we can get (G2n+1,◁) ⊧ GMOp
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extending (G2n,◁) as an Lmc-structure. Choose a monster model (G,Σ) of ACF×
p extending(G2n,Σ). Note that G2n, G2n+1, and G are models of GMp, which is a model complete Lm-

theory. So there is an Lm-embedding f ∶ G2n+1 →G which extends the identity map on G2n.
Define the family of relations Σ on (G2n+1,◁) as the pull-back via f of the family Σ on G.
Then G2n+1 ⊧ ACF×

p(∀) by construction, and so (G2n+1,◁) ⊧ GMOp satisfies (4).
Finally, suppose we have constructed (G2n+1,Σ,◁) satisfying both (2) and (4). We note

that the only thing used in the preceding paragraph is that GMOp is the model companion of
GMO−

p and that GMp is model complete. Hence, we can carry out exactly the same strategy
to get the desired conclusion by replacing the former with the fact that ACF×

p is the model
companion of ACFp(∀) and reusing the latter. �

Remark 2.12. Using the fact that GMp is strongly minimal, one can produce a quicker
proof of Lemma 2.12 by constructing (G′,Σ,◁) directly. We still choose to present the
longer proof here to make the neccesary ingredients transparent.

We need another embedding lemma:

Lemma 2.13. Suppose (G,Σ,◁) is a punctured ACFO−
p -model with (G,◁) ⊧ GMOp. Then(G,Σ,◁) can be L×t -embedded into a punctured ACFO−
p -model which satisfies the geometric

characterization. A similar statement holds for a punctured ACFO−
0 -model (G,Σ,◁) with(G,◁) ⊧ GMO0.

Proof. We will only prove the first statement, as the proof for the second statement is
similar. Suppose (G,Σ,◁) is as stated. Let X1 ⊆ (F ×)m is a multiplicative large qf-set
in (G,Σ) and X2 ⊆ (F ×)m is a multiplicative large qf-set in (G,◁). Our problem can be
reduced to finding (G′,Σ,◁) ⊧ ACFO−

p extending (G,Σ,◁) with (G′,◁) ⊧ GMO such that
X1(G′) ∩X2(G′) ≠ ∅. Indeed, we can simply iterate this construction and take the union.

We now construct the aforementioned (G′,Σ,◁). Take a monster elementary extension(G1,Σ) of (G,Σ) and a monster elementary extension (G2,◁) of (G,◁). As X1 is mul-
tiplicatively large, we get a′ ∈ X1(G1) whose components are multiplicatively independent
over G. Likewise, we get b′ ∈ X1(G2) whose components are multiplicatively independent
over G. Let f ∶ ⟨G,a′⟩ → G2 be the unique map which extends the identity map on G and
maps a′ to b′. Define the family Σ on ⟨G,a′⟩ by restricting the family with the same name
on G1, and define the relation ◁ on ⟨G,a′⟩ by pulling back via f the relation with the
same name on G2. Then (⟨G,a′⟩,Σ,◁) is an L×t -structure with (⟨G,a′⟩,Σ) ⊧ ACF×(∀) and(⟨G,a′⟩,Σ) ⊧ GMO(∀). Applying Lemma 2.12, we get the desired conclusion. �

Lemma 2.13 essentially gives us that the characterization works in one direction:
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Corollary 2.7. Suppose (G,Σ,◁) is an existentially closed punctured ACFO−-model. Then(G,◁) satisfies the geometric characterization.

Proof. We consider only the case where (G,Σ,◁) is a punctured ACFO−
p -model; the other

case with (G,Σ,◁) a punctured ACFO−
0 -model is very similar. Using Lemma 2.13, we

obtain a punctured ACFO−
p -model (G′,Σ,◁) extending (G,Σ,◁) as an L×t -structure such

that (G′,Σ,◁) satisfies the geometric characterization.
The structure (G,Σ,◁) is existentially closed in (G′,Σ,◁), so (G,◁) is existentially

closed in (G′,◁). As (G′,Σ,◁) satisfies the geometric characterization, (G′,◁) is a model
of GMOp. The theory GMOp is model complete, so we can assume that it only consists of∀∃ statements. It follows that (G,◁) is also a model of GMOp.

Suppose X1 ⊆ Gm is a multiplicatively large qf-set in (G,Σ) and X2 ⊆ Gm is multiplica-
tively large qf-set in (G,◁). Then X1(G′) is multiplicatively large in (G′,Σ), and X2(G′) is
multiplicatively large in (G′,◁) by Lemma 2.11 and the fact that both ACF×

p and GMOp are
model complete. As (G′,Σ,◁) satisfies the geometric characterization, X1(G′)∩X2(G′) ≠ ∅.
So X1 ∩X2 ≠ ∅ as well by the fact that (G,Σ,◁) is existentially closed. The desired conclu-
sion follows. �

We next verify that the characterization works in the other direction:

Lemma 2.14. Suppose (G,Σ,◁) is a punctured model of ACFO− that satisfies the geometric
characterization. Then (G,Σ,◁) is existentially closed.

Proof. It suffices to prove the corresponding statements for punctured ACFO−
p -models and

punctured ACFO−
0 -models. We will only prove the former as the latter is very similar. Sup-

pose (G,Σ,◁) is a generic punctured model of ACFO−
p , and ϕ(x) is a quantifier-free L×t (G)-

formula which defines a nonempty set in a punctured ACFO−
p -model (G′,Σ,◁) extending(G,Σ,◁). Our job is to show that ϕ(x) defines a nonempty set in (G,Σ,◁).

As the only function symbols in both L×f and Lmc already appear in Lm, we can reduce
to the case where ϕ(x) = ψ(x) ∧ θ(x) with ψ(x) a quantifier-free L×f (G)-formula and θ(x)
a quantifier-free Lmc(G)-formula. Let a′ ∈ (G′)m be such that (G′,Σ,◁) ⊧ ϕ(a′). Suppose
a′ is multiplicatively independent. Then ψ(x) and θ(x) define multiplicatively large sets in(G,Σ) and (G,◁). So ϕ(x) defines a nonempty set in (G,Σ,◁) by the assumption that(G,Σ,◁) satisfies the geometric characterization.

Now consider the general case where a′ might not be multiplicatively independent. Then
we can choose a tuple b′ ∈ (G′)n which is multiplicatively independent such that a′ = t(b′)
with t = (t1, . . . , tm) and ti(y) is an Lm-term for i ∈ {1, . . . ,m}. Applying the earlier case for
the formula ϕ(t(y)) = ψ(t(y)) ∧ θ(t(y)), we get b ∈ Gy such that (G,Σ,◁) ⊧ ϕ(t(b)). Thus,
ϕ(x) defines in (G,Σ,◁) a nonempty set, which is our desired conclusion. �
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Finally, we put everything together:

Proposition 2.4. An ACFO−-model (F,◁) is existentially closed if and only if (F,◁) sat-
isfies the geometric characterization.

Proof. This follows easily from Lemma 2.10, Corollary 2.7, and Lemma 2.14. �

2.2.2. Axiomatization. Just as in [11], we want to establish that the class of models of
ACFO− satisfying the geometric characterization is elementary. In order to do so, the key is
to show that ACF and GMO each “defines multiplicative largeness”.

Throughout Section 2.2.2, F is an algebraically closed field, and V ⊆ (F ×)m is a quasi-affine
variety (i.e, a Zariski-open subset of an irreducible Zariski-closed subset of (F ×)m). We equip(F ×)m with the group structure given by coordinate-wise multiplication, and let 1(m) be the
identity element of (F ×)m.
Suppose T is an L-theory, ϕ(x, y) is an L-formula, and P is a property of M-definable subsets
of Mx with M ⊧ T . We say that T defines P for ϕ(x, y) if there is an L-formula δ(y) such
that for all M ⊧ T and b ∈My, we have

ϕ(M, b) satisfies P if and only if M ⊧ δ(b).
A formula δ(y) as above is called a P-defining formula over T for ϕ(x, y). The fact that
this is key to axiomatization can be seen through the following lemma:

Lemma 2.15. Assume ACF defines multiplicative largeness for all Lf-formulas ϕ(x, y) and
GMO defines multiplicative largeness for all quantifier-free Lmc-formulas ψ(x, z). Then the
class of ACFO−-models satisfying the geometric characterization is elementary.

Proof. Let ACFO−1/2 be the Lt-theory whose models are (F,◁) ⊧ ACFO− with (F ×,◁) ⊧
GMO. Obtain ACFO from ACFO−1/2 by adding for each Lf-formula ϕ(x, y) and Lmc-formula
ψ(x, z) the formula ∀y∀z(δ(y) ∧ θ̂(z) → ∃x(ϕ(x, y) ∧ ψ̂(x, z))),
where δ(y) is a multiplicative largeness-defining formula over ACF for ϕ(x, y), θ(z) is a
multiplicative largeness-defining formula over GMO for ψ(x, z), and θ̂(z) and ψ̂(x, z) are
the obvious modifications of θ(z) and ψ(x, z) such that θ̂(z) and ψ̂(x, z) apply to all tuples
with components in F . It is easy to see that ACFO axiomatizes the class of ACFO−-models
satisfying the geometric characterization. �

We next obtain various characterizations of multiplicative largeness in models of ACF and
deduce from them the first condition of Lemma 2.15.
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Lemma 2.16. A quasi-affine variety V ⊆ (F ×)m is multiplicatively large if and only if no
nontrivial multiplicative equation vanishes on V .

Proof. The forward implication is immediate. Suppose no nontrivial multiplicative equa-
tion vanishes on V . As V is irreducible, it is not a subset of a finite union of solution sets
of nontrivial multiplicative equations. The desired conclusion then follows a compactness
argument. �

If B ⊆ F ×, a multiplicative system over B is simply a conjunction of multiplicative
equations over B. Fact 2.2 below about definable subgroups of (F ×)m is a consequence of
the fact that definable subgroups of (F ×)m are closed and of the characterization of algebraic
subgroups of (F ×)m. For the former, see for instance [58, Lemma 7.4.9]. For the latter, see
for instance [8, Corollary 3.2.15]; the proof there is for characteristic 0 but goes through in
positive characteristics.

Fact 2.2. Every connected definable subgroup of (F ×)m is defined by a multiplicative system
over ∅.
Suppose X1, . . . ,Xn are subsets of G. Set X1⋯Xn = {a1⋯an ∶ ai ∈Xi for 1 ⩽ i ⩽ n}.Moreover,
if X1 = ⋅ ⋅ ⋅ = Xn = X, then we denote this as Πm(X). The following fact is a special case of
Zilber’s Indecomposability theorem for structures of finite Morley rank but was also known
much earlier for algebraically closed fields; see [58, Theorem 7.3.2].

Fact 2.3. Suppose 1(m) is in V . Then Π2m(V ) is (the underlying set of) a connected definable
subgroup of (F ×)m. Hence, Π2m(V ) is a subgroup of every definable subgroup of (F ×)m
containing V as a subset.

We now have a simple criterion for multiplicative largeness:

Lemma 2.17. If 1(m) is in V , then V is multiplicatively large if and only if Π2m(V ) = (F ×)m.
Proof. For the forward implication, suppose V is multiplicatively large. Then by Lemma 2.16
and Fact 2.2, no proper definable subgroup of (F ×)m contains V as a subset. It then fol-
lows from Fact 2.3 that Π2m(V ) = (F ×)m. The backward implication is immediate from
Lemma 2.16. �

To get from quasi-affine varieties over F to general sets definable in F , we need a result
related to defining irreducibility. This and other related results are included in Fact 2.4 as
we will also need them later on; see [43, Chapter 10] for details.

Fact 2.4. Supose ϕ(x, y) is an Lf-formula, d is in N, and r is in N⩾1. Then there are
formulas δd(y), µr(y), ι(y), and ψ(x, z) such that if the families (Xb)b∈Y and (Xc)c∈Z are
defined in F by ϕ(x, y) and ψ(x, z), we have the following:
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(i) F ⊧ δd(b) for b ∈ Y if and only if dim(Xb) = d;
(ii) F ⊧ µr(b) for b ∈ Y if and only if the Morley degree of Xb is r;
(ii) F ⊧ ι(b) for b ∈ Y if and only if Xb is a quasi-affine subvariety of Fm;
(iv) (Xc)c∈Z is a family of quasi-affine varieties which contains all irreducible components

of members of (Xb)b∈Y .
We now put together Fact 2.4 and Lemma 2.17:

Proposition 2.5. The theory ACF defines multiplicative largeness for every Lf-formula.

Proof. Suppose ϕ(x, y) is an arbitrary L×f -formula, ψ(x, z) is as in Fact 2.4, and ϕ(x, y)
and ψ(x, z) define in F the families (Xb)b∈Y and (Xc)c∈Z . Observe that Xb with b ∈ Y is
multiplicatively large if and only if there is c ∈ Z with Xc ⊆Xb and a ∈Xc ∩ (F ×)m such that
Π2m(a−1(Xc ∩ (F ×)m)) = (F ×)m. It is easy to see from here that ACF defines multiplicative
largeness for ϕ(x, y). �

Every multiplicative equation over ∅ is equivalent over GM to a multiplicative equation
t(x) = t′(x) of the simplified form where the power of every variable is nonnegative and each
variable appears only on at most one side of the equation. The degree of a multiplicative
equation is the highest power of xi which appears in the above simplified form as i ranges over{1, . . . ,m}. A simple application of the compactness theorem yields the following corollary:

Corollary 2.8. Suppose (Vb)b∈Y is a family of quasi-affine subvarieties of (F ×)m passing
through 1(m). Then there is N > 0 such that for all b ∈ Y , either Vb is multiplicatively large
or a nontrivial multiplicative equation over ∅ with degree at most N vanishes on Vb.

We will next obtain a characterization of multiplicative largeness in models of GMO and
from there obtain the second condition of Lemma 2.15.

Suppose (G,◁) ⊧ GMO. The ◁-topology on Gm is defined as the topology which has a
basis consisting of sets of the form U = U1 ×⋯ ×Um where Ui is the “interval”

{a ∈ G ∶ ◁(di, a, d′i)}
with di and d′i in G for i ∈ {1, . . . ,m}. It is also easy to see that the ◁-topology on Gm is
simply the product of the ◁-topologies on the m copies of G.

Lemma 2.18. Suppose (G,◁) is a model of GMO. Then we have the following:

(i) ◁ as a subset of G3 is ◁-open;
(ii) the multiplication map is continous.

Proof. It is well known that U(p) for an arbitrary p and U are dense in T with respect to
the Euclidean topology. Hence, when (G,◁) is (U(p),◁) for some given p or (U,◁), the
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◁-topology is just the subspace topology with respect to the usual Euclidean topology on
T. Hence, (i) and (ii) are automatic in these cases. Note that properties (i) and (ii) can
be expressed as Lmc-statements, so the desired conclusion follows from Proposition 2.2 and
Proposition 2.3. �

Proposition 2.6. Suppose (G,◁) is a model of GMO and X ⊆ Gm is defined in (G,◁) by
a quantifer-free Lmc(G)-formula. Then X is multiplicatively large if and only if X contains
a nonempty subset which is ◁-open in Gm.

Proof. Let (G,◁) and X be as stated above. For the forward implication, suppose X is
multiplicative large. Note that ¬◁ (x, y, z) is equivalent over GMO to

◁(z, y, x) ∨ (x = y) ∨ (y = z) ∨ (z = x).
So quantifier free Lmc-formulas are equivalent over GMO to positive quantifier-free formulas.
Applying also Remark 2.11, we can assume that X is defined by a formula of the form

⋀
i∈I◁(ti(x), t′i(x), t′′i (x)) ∧ ⋀

j∈J (tj(x) = t′j(x)).
where ti(x), t′i(x), t′′i (x), tj(x), t′j(x) are Lm(G)-terms for all i ∈ I and j ∈ J . As X is multi-
plicatively large, one must have that tj(x) = t′j(x) is trivial for all j ∈ J . It then follows from
Lemma 2.18 that X is open, which gives us the desired conclusion.

For the backward implication, suppose X contains a a nonempty subset which is ◁-open
in Gm. We may assume that X = ∏m

i=1Xi where

Xi = {ai ∈ G ∶ ◁(di, ai, d′i)},
with di, d′i ∈ G and di ≠ d′i for i ∈ {1, . . . ,m}. Let (G,◁) be a monster elementary extension of(G,◁). Using Proposition 2.3, it is easy to show that Xi is infinite by reducing to the special
cases where G = U or G = U(p) for some p. Hence, ∣Xi(G)∣ > ∣G∣ for i ∈ I. Hence, we can
choose the desired a′ = (a′1, . . . , a′m) inX(G) by ensuring that a′i+1 ∈Xi(G) is multiplicatively
independent over a′1, . . . , a′i for i ∈ {1, . . . ,m − 1}. �

From the definition of ◁-topology, we immediately get:

Corollary 2.9. The theory GMO defines multiplicative largeness for all quantifier free Lmc-
formulas.

Combining Proposition 2.6, Remark 2.11, and the well-known fact that definable sets in
ACF-models are finite unions of quasi-affine varieties, we get:

Corollary 2.10. Suppose (F,◁) is a model of ACFO− with (F ×,◁) ⊧ GMO. Then (F,◁)
satisfies the geometric characterization if and only if all multiplicatively large V ⊆ (F ×)m are
dense with respect to the ◁-topology.
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We now put together the results of this section and the preceding section to get the existence
of the model companion ACFO of ACFO−.
Proof of Theorem 1.1. The desired conclusion follows immediately from Proposition 2.4,
Lemma 2.15, Proposition 2.5, and Corollary 2.9. �

As a side note, we will show that every model of ACFO has TP2. The notion was defined
in [68] by Shelah and systematically studied in [16] by Chernikov. We use here a finitary
version of the definition given in [16]. Let M be an L-structure. An L-formula ϕ(x, y)
witnesses that M has TP2 if for each finite set I, there is a family (bij)(i,j)∈I2 of elements of
Mn such that the following conditions hold:

(1) M ⊧ ¬∃x(ϕ(x, bij) ∧ ϕ(x, bij′)) for every i ∈ I and distinct j and j′ in I;
(2) M ⊧ ∃x⋀i∈I ϕ(x, bif(i)) for any f ∶ I → I.

We say that M has TP2 if there is a formula ϕ(x, y) which witnesses that M has TP2 and
say that M has NTP2 otherwise.

Proposition 2.7. Every model of ACFO has TP2.

Proof. Suppose (F,◁) is a model of ACFO. Let x be a single variable, y = (z, t, t′) with
z, t, and t′ single variables, and ϕ(x, y) the formula

◁(x + z, t, t′).
Let I be an arbitrary finite set. Get a family (ci)i∈I of distinct elements in F . Obtain a
family (dj, d′j)j∈I of pairs of elements in F × with dj ≠ d′j for all j ∈ J and

(F,◁) ⊧ ¬∃x( ◁ (dj, x, d′j) ∧◁(dj′ , x, d′j′)) for distinct j, j′ ∈ I.
Set bij = (ci, dj, d′j). It is easy to see that ϕ(x, y) together with (bij)(i,j)∈I2 satisfy (1) in the
definition of a TP2-witness. We assume without loss of generality that I = {1, . . . , k}. Set

V = {(a + c1, . . . , a + ck) ∶ a ∈ F}.
It suffices to show that V is multiplicatively large as it will follow that ϕ(x, y) together with(bij)(i,j)∈I2 satisfies (2) in the definition of a TP2-formula as well. We can reduce further
to showing triviality for an arbitrarily chosen multiplicative equation xn1

1 ⋯xnmm = cxn′11 ⋯xn′mk
vanishing on V where c is in F ×, and ni and n′i are in N with either ni = 0 or n′i = 0 for
i ∈ {1, . . . ,m}. In this case, we have

(a + c1)n1⋯(a + cm)nm = c(a + c1)n′1⋯(a + cm)m′
m for all a ∈ F.

For i ∈ {1, . . . ,m}, we substitute a = −ci and deduce ni = n′i = 0. Hence, we also get c = 1,
and the desired conclusion follows. �
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Remark 2.13. Proposition 2.7 is surprising: following [11], one would expect that models
of ACFO have NTP2. It suggests that NTP2 is not quite “stable + order + random”. In the
same direction, recent evidence seems to suggest that “stable + random” is NSOP1 instead of
simple as earlier thought [52, 53]. We hope a new candidate for “stable + order + random”
will be introduced in the near future.

2.3. Standard models are existentially closed

We will finally show that if ◁ is a multiplicative circular order on F, then (F,◁) is a model
of ACFO, or in other words, (F,◁) satisfies the geometric characterization. This will require
two steps:

(1) simplifying the characterization of ACFO-models given by Corollary 2.10 into a char-
acterization that only concerns curves.

(2) using number-theoretic results on character sums over finite fields and counting points
over finite fields in combination with Weyl’s criterion for equidistribution to show that(F,◁) satisfies the characterization specified in (1).

2.3.1. Geometric characterization with curves. We will show that every multiplica-
tively large variety contains as a subset a curve which is multiplicatively large. This curve
will be obtained by intersecting the original variety with suitably chosen hyperplanes of
the ambient space. Combining this with Corollary 2.10, we will get the desired simplified
characterization of ACFO-models.

Throughout Section 2.3.1, we work with a fixed algebraically closed fied F , and definable
means definable in F . The notions of open, closed, irreducible, and dense are with respect
to the Zariski topology, which is natural in this context. Let dim be the canonical dimension
for algebraically closed fields, so dim coincides with Morley rank, topological dimension,
acl-dimension, etc. Let mult be the Morley degree. If X ⊆ Fm is definable with multX = 1,
we say that X is generically irreducible and let the maximal component of X be
the unique quasi-affine variety with maximal dimension in the decomposition of X into
irreducible components. We let V range over the quasi-affine subvarieties of (F ×)m and C
range over the one-dimension quasi-affine subvarieties of (F ×)m.
Let S be Fm ∖ {0(n)}. If b is an element of S, let Hb be the hyperplane defined by the
equation b ⋅ x = 1 where b ⋅ x is the usual vector dot product between b and x. So S is
essentially the space parametrizing the affine hyperplanes of Fm. For each definable set
X ⊆ Fm and b1, . . . , bn ∈ S, set

X(b1, . . . , bn) =X ∩Hb1 ∩ . . . ∩Hbn .
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Fact 2.5 below is a well-known consequence of Fact 2.4, Bezout’s theorem [67, Section 4.1]
and Bertini’s theorem [67, Theorem 2.26].

Fact 2.5. Suppose W ⊆ Fm is generically irreducible, and dimW = n + 1. Then the set of(b1, . . . , bn) ∈ Sn satisfying the following conditions (i) and (ii) is definable and dense in Sn:

(i) W (b1, . . . , bi) is generically irreducible for i ∈ {1, . . . , n};
(ii) dimW (b1, . . . , bi) = dimW (b1, . . . , bi−1) − 1 for all i ∈ {1, . . . , n}.
Hence, for such (b1, . . . , bn) ∈ Sn, the maximal component of W (b1, . . . , bi) is a subset of the
maximal component of W (b1, . . . , bi−1) for i ∈ {1, . . . , n}.
For each V ⊆ Fm, define SV to be the set of b ∈ S such that V is a subset of Hb.

Remark 2.14. If V is a single point c, then Sc is an irreducible quasi-affine variety and
dimSc =m − 1. If dim(V ) ⩾ 1, then dimSV ⩽m − 2.

We need a variation of Fact 2.5:

Lemma 2.19. SupposeW ⊆ Fm is generically irreducible, and dimW = n+1. Then there is c
in the maximal component of W such that the set Yc of (b1, . . . , bn) ∈ Snc satisfying conditions
(i)-(iii) below is dense in Snc .

(i) W (b1, . . . , bi) is generically irreducible for i ∈ {1, . . . , n};
(ii) dimW (b1, . . . , bi) = dimW (b1, . . . , bi−1) − 1 for all i ∈ {1, . . . , n};

(iii) c is in W (b1, . . . , bn).
Moreover, with the above c, if X ⊆W is definable and satisfies dimX < dimW , then the set
of (b1, . . . , bn) ∈ Yc such that dimX(b1, . . . , bn) ⩽ 0 is also dense in Snc .

Proof. Suppose W and n are as stated above, and Y ⊆ Sn is the set obtained in Fact 2.5.
We show the first statement of the lemma. Let Γ be

{(b1, . . . , bn, c) ∈ Y ×W ∶ c is in the maximal component of W (b1, . . . , bn)}.
We note that Γ is definable by Fact 2.4. Let π1 ∶ Γ → Y and π2 ∶ Γ → W be the projection
maps. For each c ∈ W , we have π−1

2 (c) ⊆ Snc × {c} and π1(π−1
2 (c)) ⊆ Snc . We want to find

c such that π1(π−1
2 (c)) is dense in Snc . As Snc is irreducible of dimension n(m − 1), for the

current purpose, it suffices to find c ∈W such that dimπ−1
2 (c) = n(m − 1).

For each (b1, . . . , bn) ∈ Y , we have dimπ−1
1 (b1, . . . , bn) = 1. As dimY = dimSn = mn, it

follows that dim Γ =mn + 1. As dimW = n + 1, the set

{c ∈W ∶ dimπ−1
2 (c) = n(m − 1)}

must be dense in W . So we obtain c such that the set Yc of (b1, . . . , bn) ∈ Snc satisfying
conditions (i)-(iii) is dense in Snc .
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Now suppose X is as in the second part of the statement. Note that dimX(b1, . . . , bn)
is at most dimW (b1, . . . , bn) = 1. By Fact 2.4 and the irreducibility of Snc , exactly one of the
following two possibilities happens:

(1) {(b1, . . . , bn) ∈ Yc ∶ dimX(b1, . . . , bn) ⩽ 0} is dense in Snc
(2) {(b1, . . . , bn) ∈ Yc ∶ dimX(b1, . . . , bn) = 1} is dense in Snc .

We need to show that (2) cannot happen. Suppose to the contrary that it does. Then using
Fact 2.4, we get a definable dense subset Rc of Snc and i ∈ {1, . . . , n} such that

dimX(b1, . . . , bi) = dimX(b1, . . . , bi−1) = dimW (b1, . . . , bi) < dimW (b1, . . . , bi−1)
for all (b1, . . . , bn) in Rc. Shrinking Rc further if necessary, we can arrange that Rc = Un

c

with Uc a definable dense subset of Sc. Fix (b1, . . . , bi−1) ∈ U i−1
c . Then for all bi in Uc, the

hyperplane Hbi must contain an irreducible component of X(b1, . . . , bi−1) with dimension ⩾ 1.
Remark 2.14 then gives us that dimUc ⩽m− 2 which contradicts the fact that Uc is dense in
Sc and dimSc =m − 1. The desired conclusion follows. �

Proposition 2.8. Suppose V is multiplicatively large and dimV = n + 1. Then there is(b1, . . . , bn) ∈ Sn such that V (b1, . . . , bn) is generically irreducible with multiplicatively large
maximal component of dimension one.

Proof. Obtain c in V and Yc as in the first part of Lemma 2.19. Then for all (b1, . . . , bn) ∈ Yc,
V (b1, . . . , bn) is generically irreducible with maximal component C(b1, . . . , bn) of dimension
one. It suffices to show that the set

{(b1, . . . , bn) ∈ Yc ∶ C(b1, . . . , bn) is multiplicatively large}
is dense in Yc. Replacing V with c−1V and c with 1(m) if neccesary, we arrange that c = 1(m).
Hence, (C(b1, . . . , bm))(b1,...,bm)∈Yc is a family of subvarieties of (F ×)m passing through 1(m).
Obtain N as in Corollary 2.8 for this family. Let (Xi)ki=1 list the intersections of V with the
solution sets of the multiplicative equations of the form M(x) = 1 with degM < N , and set
X = ⋃ki=1Xi. As V is multiplicatively large, dimX < dimV . It then follows from the second
part of Lemma 2.19 that

{(b1, . . . , bn) ∈ Yc ∶ dimX(b1, . . . , bn) ⩽ 0} is dense in Yc.

Suppose (b1, . . . , bn) is in the above set. Then C(b1, . . . bn) is not a subset of X(b1, . . . , bn).
So C(b1, . . . bn) is not a subset of X = ⋃ki=1Xi. By the property of N , C(b1, . . . , bn) is
multiplicatively large, which gives us the desired conclusion. �

Combining with Corollary 2.10, we get:
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Corollary 2.11. Suppose (F,◁) is a model of ACFO− and (F ×,◁) ⊧ GMO. Then (F,◁)
satisfies the geometric characterization if and only if all multiplicatively large C ⊆ (F ×)m are
dense with respect to the ◁-topology.

2.3.2. Standard models and number-theoretic randomness. We now use the results
in the preceding section to prove Theorem 1.2. Other ingredients include a variant of Weyl’s
criterion for equidistribution and results on counting points and character sums over finite
fields, which are consequences of the Weil conjectures for curves over finite fields.

In Section 2.3.2, let ◁ be the clockwise circular order on T. The multiplicative group Tm is
a compact topological group. So Tm is equipped with a unique normalized Haar measure µ.
A sequence (Xn) of finite subsets of Tm becomes equidistributed in Tm if

lim
n→∞

∣Xn ∩U ∣∣Xn∣ = µ(U) for all ◁-open U ⊆ Tm.

The following result is a variant of Weyl’s criterion for this setting; a proof can be obtained
by adapting that of [77, Theorem 2.1].

Fact 2.6. A sequence (Xn) of finite subsets of Tm becomes equidistributed if and only if

lim
n→∞( 1∣Xn∣ ∑a∈Xn al11 ⋯almm ) = 0 for all (l1, . . . , lm) ∈ Zm ∖ {0(m)}.

Below are the consequences of Weil conjectures for curves that we need; see [87] for Fact 2.7(i)
and [63, Proposition 4.5] for a stronger version of Fact 2.7(ii).

Fact 2.7. Suppose C ⊆ Fm is a one-dimensional quasi-affine variety over F, f ∈ F[C] has
image in F×, char(F) = p, C and f are definable over Fq (in the model-theory sense, or
equivalently for perfect fields like Fq, in the field sense), and χ ∶ F× → C× is an injective
group homomorphism. Then there is a constant N ∈ N⩾1 such that for all n ⩾ 1,

(i) ∣C(Fqn)∣ < qn +N√
qn;

(ii) ∣∑a∈C(Fqn) χ(f(a))∣ < N√
qn.

Here, C(Fqn) is the set of Fqn-points of C.

Proof of Theorem 1.2. Applying Corollary 2.6, it suffices to verify for fixed F, injective
group homomorphism χ ∶ F× → T, and multiplicative circular order ◁χ on F (as defined
in the paragraph preceding the same corollary), that (F,◁χ) is a model of ACFO. By
Proposition 2.4, it suffices to show that (F,◁χ) satisfies the geometric characterization.
Using Proposition 2.2 and Corollary 2.11, we reduce the problem further to showing for a
fixed multiplicatively large one-dimensional quasi-affine variety C ⊆ (F×)m that C is dense
in (F×)m with respect to the ◁χ-topology. This is equivalent to showing that χ(C) is dense
in Tm with respect to the ◁-topology.
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Assume, without loss of generality, that char(F) = p and C is definable over Fq. Let
C(Fqn) be the set of Fqn-points of C. Note that C = ⋃nC(Fqn). Hence, the denseness of
χ(C) in Tm with respect to the ◁-topology follows from a stronger result: if Xn is the image
of C(Fqn) under χ, then the sequence (Xn) becomes equidistributed. Using Fact 2.6, we
reduce the problem to verifying that

lim
n→∞

⎛⎝ 1∣C(Fqn)∣ ∑
a∈C(Fqn)

χ(al11 ⋯almm )⎞⎠ = 0 for all (l1, . . . , lm) ∈ Zm ∖ {0(m)}.
It is easy to check that C together with f(x) = xl11 ⋯xlmm satisfies all the conditions described
in Fact 2.7, so we arrive at the desired conclusion. �

Remark 2.15. All approaches to prove Theorem 1.2 so far require the use of character sums
over finite fields, counting points over finite fields, and Weyl’s criterion for equidistribution.
However, slightly different paths could have been taken.

The original approach in our earlier write-up [79] did not go through Section 2.3.1, but
directly used Corollary 2.10 and appealed to the much deeper results on character sums
over varieties and counting points over varieties [25]. It is possible to avoid these results
in the appendix through a rather lengthy proof of “Lang-Weil Theorem for character sums”
provided in the appendix of the same manuscript.

We also proved there that ACFO is aclf-complete (i.e., every complete type over a field-
theoretic algebraically closed set is determined by the quantifier-free part of that type); this
is a refinement of the fact that ACFO is model complete as every ACFO-model expands
an algebraically closed field. Hrushovski pointed out a shorter path to aclf-completeness
which only uses character sums and counting points over curves: using a similar aproach
as in our proof of Theorem 1.1, one can get a similar axiomatization correspoding to the
simplified geometric characterization in Corollary 2.3.1; then one can show directly that the
resulting theory is aclf-complete by a back-and-forth argument. Only results for curves are
necessary in this approach as in the back-and-forth argument, one can extend a field-theoretic
algebraically closed set each time by an element with transcendence degree ⩽ 1.

The current approach is in between. It preserves some of the original intuitive ideas in
[79] while not appealing to deep number-theoretic results. The current geometric charac-
terization of existentially closed models of ACFO− is closer to the notion of an interpolative
structure in Chapter 6 than the simplified geometric characterization that one would get
following the approach suggested by Hrushovski. Proposition 2.8 is interesting in its own
right, and the technology might be useful elsewhere. The aclf-completeness of ACFO can
also be obtained now from the general machinery of interpolative fusions [54].
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CHAPTER 3

Additive groups of Z and Q and predicates for being square-free

We also treat this chapter as the continuation of the corresponding summary in the intro-
duction and keep the notational conventions, definitions, and statements of theorems given
there. In Section 3.1, we define the appropriate notions of randomness for the structures un-
der consideration. The model completeness and decidability results are proven in Section 3.2
and the combinatorial tameness results are proven in Section 3.3.

Throughout the chapter, let x be a single variable, y a finite tuple of variables of unspecified
length, z the tuple (z1, . . . , zn) of variables, and z′ the tuple (z′1, . . . , z′n′) of variables. For
an n-tuple a of elements from a certain set, we let ai denote the i-th component of a for
i ∈ {1, . . . , n}. For an abelian group G and a ∈ G, we define ka in the obvious way and write
k for k1.

3.1. Genericity of the examples

We can view Z and Q as structures in a language Lb consisting of function symbols for 0, 1,+, a↦ −a; we will refer to Lb as the base language. So (Z,SFZ) and (Q,SFQ) are structures
in the language Lu extending Lb by a unary predicate symbol for SFZ, and (Z,<,SFZ) and(Q,<,SFQ) as structures in the language Lou extending Lu by a binary predicate symbol for
the natural orderings <.
We study the structure (Z,SFZ) indirectly by looking at its definable expansion to a richer
language. For given p and l, set

UZ
p,l = {a ∈ Z ∶ vp(a) ⩾ l}.

Let UZ = (UZ
p,l). The definition for l ⩽ 0 is not too useful as UZ

p,l = Z in this case. However,
we still keep this for the sake of uniformity as we treat (Q,SFQ) later. For m > 0, set

P Z
m = {a ∈ Z ∶ vZp (a) < 2 + vp(m) for all p}.

In particular, P Z
1 = SFZ. Let PZ = (P Z

m)m>0. We have that (Z,UZ,PZ) is a structure in the
language L∗u extending Lu by families of unary predicate symbols for UZ and (P Z

m)m>1. Note
that

UZ
p,l = Z for l ⩽ 0, UZ

p,l = plZ for l > 0, and P Z
m = ⋃

d∣mdSFZ for m > 0.
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Hence, UZ
p,l and P Z

m are definable in (Z,SFZ), and so a subset of Z is definable in (Z,UZ,PZ)
if and only if it is definable in (Z,SFZ) .

Let (G,PG,UG) be an L∗u-structure. Then UG is a family indexed by pairs (p, l), and PG is
a family indexed by m. For p, l, and m, define UG

p,l ⊆ G to be the member of UG with index(p, l) and PG
m ⊆ G to be the member of the family PG with index m. In particular, we have

UG = (UG
p,l) and PG = (PG

m)m>0. Clearly, this generalizes the previous definition for Z.

We isolate the basic first-order properties of (Z,UZ,PZ). Let Sf∗Z be a recursive set of L∗u-
sentences such that an L∗u-structure (G,UG,PG) is a model of Sf∗Z if and only if (G,UG,PG)
satisfies the following properties:

(Z1) G is elementarily equivalent to Z;
(Z2) UG

p,l = G for l ⩽ 0, and UG
p,l = plG for l > 0;

(Z3) 0 and 1 are in PG
1 ;

(Z4) for any given p, we have that pa ∈ PG
1 if and only if a ∈ PG

1 and a ∉ UG
p,1;

(Z5) PG
m = ⋃d∣m dPG

1 for all m > 0.

The fact that we could choose Sf∗Z to be recursive follows from the well-known decidability
of Z. Clearly, (Z,UZ,PZ) is a model of Sf∗Z. Several properties which hold in (Z,UZ,PZ)
also hold in an arbitrary model of Sf∗Z:
Lemma 3.1. Let (G,UG,PG) be a model of Sf∗Z. Then we have the following:

(i) (G,UG) is elementarily equivalent to (Z,UZ);(ii) for all k, p, l, and m > 0, we have that

k ∈ UG
p,l if and only if k ∈ UZ

p,l and k ∈ PG
m if and only if k ∈ P Z

m;

(iii) for all h ≠ 0, p, and l, we have that ha ∈ UG
p,l if and only if a ∈ UG

p,l−vp(h);(iv) if a ∈ G is in UG
p,2+vp(m) for some p, then a ∉ PG

m ;(v) for all h ≠ 0 and m > 0, ha ∈ PG
m if and only if we have

a ∈ PG
m and a ∉ UG

p,2+vp(m)−vp(h) for all p which divides h;

(vi) for all h > 0 and m > 0, a ∈ PG
m if and only if ha ∈ PG

mh.

Proof. Fix a model (G,UG,PG) of Sf∗Z. It follows from (Z2) that the same first-order
formula defines both UG

p,l in G and UZ
p,l in Z. Then using (Z1), we get (i). The first assertion

of (ii) is immediate from (i). Using this, (Z3), and (Z4), we get the second assertion of (ii)
for the case m = 1. For m ≠ 1, we reduce to the case m = 1 using property (Z5). Statement(iii) is an immediate consequence of (i). We only prove below the cases m = 1 of (iv − vi)
as the remaining cases of the corresponding statements can be reduced to these using (Z5).
Statement (iv) is immediate for the case m = 1 using (Z2) and (Z4). The case m = 1 of (v)
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follows from (iii), (iv),and repeated application of (Z4). The case m = 1 of (vi) follows from(iv), (v) and (Z5). �

We next consider the structures (Q,SFQ) and (Q,<,SFQ). For given p, l, and m > 0, in the
same fashion as above, we set

UQ
p,l = {a ∈ Q ∶ vp(a) ⩾ l} and PQ

m = {a ∈ Q ∶ vp(a) < 2 + vp(m) for all p},
and let

UQ = (UQ
p,l) and PQ = (PQ

m)m>0.

Then (Q,UQ,PQ) is a structure in the language L∗u. Clearly, every subset of Qn definable
in (Q,SFQ) is also definable in (Q,UQ,PQ). A similar statement holds for (Q,<,SFQ) and(Q,<,UQ,PQ). We will show that the reverse implications are also true.

Lemma 3.2. Every integer is a sum of two elements from SFZ.

Proof. We prove the statement for a given integer k. As SFZ = −SFZ and the cases where
k = 0 or k = 1 are immediate, we assume that k > 1. It follows from [66] that the number of
square-free positive integers lesser than k is at least 53k

88 . Since
53
88 > 1

2 , this implies k can be
written as a sum of two positive square-free integers which is the desired conclusion. �

Lemma 3.3. For all p and l, UQ
p,l is existentially 0-definable in (Q,SFQ).

Proof. As UQ
p,l+n = pnUQ

p,l for all l and n, it suffices to show the statement for l = 0. Fix a
prime p. We have for all a ∈ SFQ that

vp(a) ⩾ 0 if and only if p2a ∉ SFQ.

Using Lemma 3.2, for all a ∈ Q, we have that vp(a) ⩾ 0 if and only if there are a1, a2 ∈ Q such
that (a1 ∈ SFQ ∧ vp(a1) ⩾ 0) ∧ (a2 ∈ SFQ ∧ vp(a2) ⩾ 0) and a = a1 + a2.

Hence, the set UQ
p,0 = {a ∈ Q ∶ vp(a) ⩾ 0} is existentially definable in (Q,SFQ). The desired

conclusion follows. �

It is also easy to see that for all m, PQ
m = mSFQ for all m > 0, and so PQ

m is existentially
0-definable in (Q,SFQ). Combining with Lemma 3.3, we get:

Proposition 3.1. Every subset of Qn definable in (Q,UQ,PQ) is also definable in (Q,SFQ).
The corresponding statement for (Q,<,UQ,PQ) and (Q,<,SFQ) holds.

In view of the first part of Proposition 3.1, we can analyze (Q,SFQ) via (Q,UQ,PQ) in the
same way we analyze (Z,SFZ) via (Z,UZ,PZ). Let Sf∗Q be a recursive set of L∗u-sentences
such that an L∗u-structure (G,UG,PG) is a model of Sf∗Q if and only if (G,UG,PG) satisfies
the following properties:
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(Q1) G is elementarily equivalent to Q;
(Q2) for any given p, UG

p,0 is an n-divisible subgroup of G for all n coprime with p;
(Q3) 1 ∈ UG

p,0 and 1 ∉ UG
p,1;

(Q4) for any given p, p−lUG
p,l = UG

p,0 if l < 0 and Up,l = plUp,0 if l > 0;
(Q5) UG

p,0/UG
p,1 is isomorphic as a group to Z/pZ;

(Q6) 1 ∈ PG
1 ;

(Q7) for any given p, we have that pa ∈ PG
1 if and only if a ∈ PG

1 and a ∉ UG
p,1;

(Q8) PG
m =mPG

1 for m > 0;

The fact that we could choose Sf∗Q to be recursive follows from the well-known decidability
of Q. Obviously, (Q,UQ,PQ) is a model of Sf∗Q. Several properties which hold in (Q,UQ,PQ)
also hold in an arbitrary model of Sf∗Q:
Lemma 3.4. Let (G,UG,PG) be a model of Sf∗Q. Then we have the following:

(i) For all p and all l, l′ ∈ Z with l ⩽ l′, we have UG
p,l is a subgroup of G, UG

p,l′ ⊆ UG
p,l, and

UG
p,l/UG

p,l′ ≅L� Z/(pl′−lZ);
(ii) for all h, k ≠ 0, p, l, and m > 0, we have that

h

k
∈ UG

p,l if and only if
h

k
∈ UQ

p,l and
h

k
∈ PG

m if and only if
h

k
∈ PQ

m

where hk−1 is the obvious element in Q and in G;(iii) the replica of (iii − vi) of Lemma 3.1 holds.

Proof. Fix a model (G,UG,PG) of Sf∗Q. From (Q2) we have that UG
p,0 is a subgroup of G

for all p. It follows from (Q4) that UG
p,l′ ⊆ UG

p,l are subgroups of G for all p and l ⩽ l′. We
get an L�-embedding of Z/(pl′−lZ) into UG

p,l/UG
p,l′ and ∣UG

p,l/UG
p,l′ ∣ = p(l′−l) using (Q2)-(Q5) and

induction on l′ − l. So, the aforementioned embedding must be an isomorphism and we get(i). The first assertion of (ii) follows easily from (Q2)-Q(4). The second assertion for the
case m = 1 follows from the first assertion, (Q6), and (Q7). Finally, the case with m /= 1

follows from the casem = 1 using (Q8). The proof for (iii) is similar to the proofs for (iii − vi)
of Lemma 3.1. �

As the reader may expect by now, we will study (Q,<,SFQ) via (Q,<,UQ,PQ). Let L∗ou be
Lou ∪L∗u. Then (Q,<,UQ,PQ) can be construed as an L∗ou-structure in the obvious way. Let
OSf∗Q be a recursive set of L∗ou-sentences such that an L∗ou-structure (G,UG,PG) is a model
of OSf∗Q if and only if (G,UG,PG) satisfies the following properties:

(1) (G,<) is elementarily equivalent to (Q,<);
(2) (G,UG,PG) is a model of Sf∗Q.
As Th(Q,<) is decidable, we could choose OSf∗Q to be recursive.
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Returning to the theory Sf∗Z, we see that it does not fully capture all the first-order properties
of (Z,UZ,PZ). For instance, we will show later in Corollary 3.1 that for all c ∈ Z, there is
a ∈ Z such that

a + c ∈ SFZ and a + c + 1 ∈ SFZ,

while the interested reader can construct models of Sf∗Z where the corresponding statement
is not true. Likewise, the theories Sf∗Q and OSf∗Q do not fully capture all the first-order
properties of (Q,UQ,PQ) and (Q,<,UQ,PQ).
To give a precise formulation of the missing first-order properties of (Z,UZ,PZ), (Q,UQ,PQ),
and (Q,< UQ,PQ), we need more terminologies. Let t(z) be an L∗u-term (or equivalently an
L∗ou-term) with variables in z. If (G,UG,PG) is either an L∗u-structure or an L∗ou-structure,
and c ∈ Gn, define tG(c) to be the Z-linear combination of the components of c given by t(z).
Define in the obvious way the formulas

t(z) = 0, t(z) ≠ 0, t(z) < 0, t(z) > 0, t(z) ⩽ 0 and t(z) ⩾ 0.

An L∗u-formula (or an L∗ou-formula) which is a boolean combination of formulas having the
form t(z) = 0 where we allow t to vary is called an equational condition. Similarly, an
L∗ou-formula which is a boolean combination of formulas having the form t(z) < 0 where t is
allowed to vary is called an order-condition. For any given p, l define t(z) ∈ Up,l to be the
obvious formula in L∗u(z) which defines in an arbitrary L∗u-structure (G,UG,PG) the set

{c ∈ Gn ∶ tG(c) ∈ UG
p,l}.

Define the quantifier-free formulas t(z) ∉ Up,l, t(z) ∈ Pm, and t(z) ∉ Pm in L∗u(z) for p, l, and
for m > 0 likewise. For each prime p, An L∗u-formula (or an L∗ou-formula) which is a boolean
combination of formulas of the form t(z) ∉ Up,l where t and l are allowed to vary is called
a p-condition. We call a p-condition as in the previous statement trivial if the boolean
combination is the empty conjunction.

A parameter choice of variable type (x, z, z′) is a triple (k,m,Θ) such that k is in Z∖{0},
m is in N⩾1, and Θ = (θp(x, z, z′)) where θp(x, z, z′) is a p-condition for each prime p and is
trivial for all but finitely many p. We say that an L∗u-formula ψ(x, z, z′) is special if it has
the form

⋀
p
θp(x, z, z′) ∧ n⋀

i=1

(kx + zi ∈ Pm) ∧ n′⋀
i′=1

(kx + z′i ∉ Pm)
where k,m and θp(x, z, z′) are taken from a parameter choice of variable type (x, z, z′). Every
special formula corresponds to a unique parameter choice and vice versa. Special formulas
are special enough that we have a “local to global” phenomenon in the structures of interest
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but general enough to represent quantifier free formula. We will explain the former point in
the remaining part of the section and make the latter point precise with Theorem 3.10.

Let ψ(x, z, z′) be a special formula with parameter choice (k,m,Θ) and θp(x, z, z′) is the
p-condition in Θ for each p. We define the associated equational condition of ϕ(x, z, z′)
to be the formula

n⋀
i=1

n′⋀
i′=1

(zi ≠ z′i′)
and the associated p-condition of ϕ(x, z, z′) to be the formula

θp(x, z, z′) ∧ n⋀
i=1

(kx + zi ∉ Up,2+vp(m)).
It is easy to see for an arbitrary special formula that its associated equational condition and
its associated p-condition for any prime p are its logical consequences.

Suppose (G,UG,PG) and (H,UH ,PH) are L∗u-structures such that the former is an L∗u-
substructure of the latter. Let ψ(x, z, z′) be a special formula, ψ=(z, z′) the associated
equational condition, and ψp(x, z, z′) the associated p-condition for any given prime p. For
c ∈ Gn and c′ ∈ Gn′ , we call the quantifier-free L∗u(G)-formula ψ(x, c, c′) a G-system. An
element a ∈H such that ψ(a, c, c′) holds is called a solution of ψ(x, c, c′) in H. We say that
ψ(x, c, c′) is satisfiable in H if it has a solution in H and infinitely satisfiable in H if it
has infinitely many solutions in H. We say that ψ(x, c, c′) is nontrivial if ψ=(c, c′) holds or
more explicitly if c and c′ have no common components. For a given p, we say that ψ(x, c, c′)
is p-satisfiable in H if there is ap ∈ H such that ψp(ap, c, c′) holds. A G-system is locally
satisfiable in H if it is p-satisfiable in H for all p.

Suppose (G,<,UG,PG) and (H,<,UH ,PH) are L∗ou-structures such that the former is an
L∗ou-substructure of the latter. All the definitions in the previous paragraph have obvious
adaptations to this new setting as (G,UG,PG) and (H,UH ,PH) are L∗u-structures. For b and
b′ in H such that b < b′, define

(b, b′)H = {a ∈H ∶ b < a < b′}.
A G-system ψ(x, c, c′) is satisfiable in every H-interval if it has a solution in the interval(b, b′)H for all b and b′ in H such that b < b′. The following observation is immediate:

Lemma 3.5. Suppose (G,UG,PG) is a model of either Sf∗Z or Sf∗Q. Then every G-system
which is satisfiable in G is nontrivial and locally satisfiable in G.

It turns out that the converse and more are also true for the structures of interest. We say
that a model (G,UG,PG) of either Sf∗Z or Sf∗Q is generic if every nontrivial locally satisfiable
G-system is infinitely satisfiable in G. A OSf∗Q model (G,<,UG,PG) is generic if every
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nontrivial nontrivial locally satisfiable G-system is satisfiable in every G-interval. We will
later show that (Z,UZ,PZ), (Q,UQ,PQ), and (Q,<,UQ,PQ) are generic.

Before that we will show that the above notions of genericity are first-order. Let ψ(x, z, z′)
be the special formula corresponding to a parameter choice (k,m,Θ) with Θ = (θp(x, z, z′)).
A boundary of ψ(x, z, z′) is a number B ∈ N>0 such that B > max{∣k∣, n} and θp(x, z, z′) is
trivial for all p > B.

Lemma 3.6. Let ψ(x, z, z′) be a special formula, B a boundary of ψ(x, z, z′), and (G,UG,PG)
a model of either Sf∗Z or Sf∗Q. Then every G-system ψ(x, c, c′) is p-satisfiable for p > B.

Proof. Let ψ(x, z, z′) be the special formula corresponding to a parameter choice (k,m,Θ),
and B, (G,UG,PG) as in the statement of the lemma. Suppose ψ(x, c, c′) is a G-system, p >
B, and ψp(x, z, z′) is the associated p-condition of ψ(x, z, z′). Then ψp(x, c, c′) is equivalent
to

n⋀
i=1

(kx + ci ∉ Up,2+vp(m)) in (G,UG,PG).
We will show a stronger statement that there is a ap ∈ Z satisfying the latter. Note that
for all d ∉ UG

p,0, we have that (ka + d ∉ Up,0) for all a ∈ Z. From Lemma 3.4, we have that
UG
p,l ⊆ UG

p,k whenever k < l, so we can assume that ci ∈ UG
p,0 for i ∈ {1, . . . , n}. In light of

Lemma 3.1 (i) and Lemma 3.4 (i), we have that

UG
p,2+vp(m)/UG

p,0 ≅L� Z/(p2+vp(m)Z).
It is easy to see that k is invertible mod p2+vp(m) and that p2+vp(m) > n. Choose ap in{0, . . . , p2+vp(m) − 1} such that the images of kap + c1, . . . , kap + cn in Z/(p2+vp(m)Z) are not 0.
We check that ap is as desired. �

Corollary 3.1. There is an L∗u-theory SF∗
Z such that the models of SF∗

Z are the generic
models of Sf∗Z. Similarly, there is an L∗u-theory SF∗

Q and an L∗ou-theory OSF∗
Q satisfying the

corresponding condition for Sf∗Q and OSf∗Q.
In the rest of the chapter, we fix SF∗

Z, SF∗
Q, and OSF∗

Q to be as in the previous lemma. We
can moreover arrange them to be recursive. In the remaining part of this section, we will
show that (Z,UZ,PZ), (Q,UQ,PQ) and (Q,<,UQ,PZ) are models of SF∗

Z, SF∗
Q, and OSF∗

Q

respectively. The proof that the latter are in fact the full axiomatizations of the theories
of the former needs to wait until next section. Further we fix SFZ and SFQ to the theories
whose models are precisely the Lu-reducts of models of SF∗

Z and SF∗
Q respectively, and OSFQ

to be the theory whose models are precisely Lou reducts of models of OSF∗
Q. For the reader’s

reference, the following table lists all the languages, the corresponding theories and primary
structures under consideration:
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Languages Theories Primary structures

Lu SFZ, SFQ (Z,SFZ), (Q,SFQ)
Lou OSFQ (Z,<,SFZ), (Q,<,SFQ)
L∗u Sf∗Z, SF∗

Z, Sf∗Q, SF∗
Q (Z,UZ,PZ), (Q,UQ,PQ)

L∗ou OSf∗Q, OSF∗
Q (Q,<,UQ,PQ)

Table 3.1. Languages, theories, and primary structures

Suppose h ≠ 0 and ϕ(z) is a boolean combination of atomic formulas of the form t(z) ∈ Up,l
or t(z) ∈ Pm where t(z) is an L∗u-term. Define ϕh(z) to be the formula obtained by replacing
t(z) ∈ Up,l and t(z) ∈ Pm in ϕ with t(z) ∈ Up,l+vp(h) and t(z) ∈ Pmh for every choice of p, l, m
and L∗u-term t. By construction and linearity of terms, across models of Sf∗Z and Sf∗Q, using
Lemma 3.1 (iii), (vi) and Lemma 3.4 (iii), we have that

ϕh(hz) is equivalent to ϕ(z).
Moreover, if θ(z) is a p-condition, then θh(z) is also p-condition. If ψ(x, z, z′) is the spe-
cial formula corresponding to a parameter choice (k,m,Θ) with Θ = (θp(x, z, z′)), then
ψh(x, z, z′) is the special formula corresponding to the parameter choice (k, hm,Θh) with
Θh = (θhp(x, z, z′)). It is easy to see from here that:

Lemma 3.7. Any boundary of a special formula ψ(x, z, z′) is also a boundary of ψh(x, z, z′)
and vice versa.

Let ψ(x, z, z′) be a special formula, (G,UG,PG) a model of either Sf∗Z or Sf∗Q, and ψ(x, c, c′)
a G-system. Then ψh(x,hc, hc′) is also a G-system which we refer to as the h-conjugate of
ψ(x, c, c′). This has the property that ψh(ha,hc, hc′) if and only if ψ(a, c, c′) for all a ∈ G.

For a and b in Z, we write a ≡n b if a and b have the same remainder when divided by n. We
need the following version of Chinese remainder theorem:

Lemma 3.8. Suppose B is in N>0, Θ is a family (θp(x, z))p⩽B where θp(x, z) is a p-condition
for all p ⩽ B, and c ∈ Zn is such that θp(x, c) defines a nonempty set in (Z,UZ,PZ) for all
p ⩽ B. Then we can find D ∈ N>0 such that for all h ≠ 0 with gcd(h,B!) = 1, for some
rh ∈ {0, . . . ,D − 1} we have that

a ≡D rh implies ⋀
p⩽B θ

h
p(a, hc) for all a ∈ Z.

Proof. Let B, Θ, and c be as stated. Fix h ≠ 0 such that gcd(h,B!) = 1 and so we have
that θp(x, z) = θhp(x, z) for all p ⩽ B. For each p ⩽ B, the p-condition θhp(x, z) is a boolean
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combination of atomic formulas of the form kx + t(z) ∈ Up,l where t(z) is an L∗u-term. Now
for p ⩽ B, let lp be the largest value of l occurring in an atomic formula in θp(x, z). Set

D = ∏
p⩽B p

lp .

Obtain ap such that θp(ap, c) holds. By the Chinese remainder theorem, we get r in{0, . . . ,D − 1} such that
r ≡plp ap for all p ⩽ B.

Suppose a ∈ Z is such that a ≡D hr. By construction, if p ⩽ B and kx + t(z) ∈ Up,l is any
atomic formula, then ka + t(hc) ∈ UZ

p,l if and only if k(hap) + t(hc) ∈ UZ
p,l. It follows that

θhp(a, hc) holds for all p ⩽ B. The desired conclusion follows with any rh ≡D hr. �

Towards showing that the structures of interest are generic, the key number-theoretic ingre-
dient we need is the following result:

Lemma 3.9. Let ψ(x, z, z′) be a special formula and ψ(x, c, c′) a nontrivial Z-system which
is locally satisfiable in Z. For h > 0, and s, t ∈ Q with s < t, set

Ψh(hs, ht) = {a ∈ Z ∶ ψh(a, hc, hc′) holds and hs < a < ht}.
Then there exists N ∈ N>0, ε ∈ (0,1), and C ∈ R such that for all h > 0 with gcd(h,N !) = 1

and s, t ∈ Q with s < t, we have that

∣Ψh(hs, ht)∣ ⩾ εh(t − s) − ( n∑
i=1

√∣hks + hci∣ +√∣hkt + hci∣) +C.
Proof. Throughout this proof, let ψ(x, z, z′), ψ(x, c, c′), and Ψh(hs, ht) be as stated. We
first make a number of observations. Suppose ψ(x, z, z′) corresponds to the parameter choice(k,m,Θ) and has a boundary B, and ψp(x, z, z′) is the associated p-condition of ψ(x, z, z′).
Then ψh(x, z, z′) corresponds to the parameter choice (k, hm,Θh), and B is also a bound-
ary of ψh(x, z, z′) by Corollary 3.7. Moreover ψhp(x, z, z′) is the associated p-condition of
ψh(x, z, z′). Using Lemma 3.8, we fix D ∈ N>0 and obtain for each h > 0 with gcd(h,B!) = 1

an rh ∈ {0, . . . ,D − 1} such that

a ≡D rh implies ⋀
p⩽Bψ

h
p(a, hc, hc′) for all a ∈ Z.

We note that D here is independent of the choice of h for all h with gcd(h,B!) = 1.
We introduce a variant of Ψh(hs, ht) which is needed in our estimation of ∣Ψh(hs, ht)∣.

Until the end of the proof, set lp = 2 + vp(m). Fix primes p1, . . . , pn′ such that p1 > ci for all
i ∈ {1, . . . , n}, p1 > c′i′ for all i′ ∈ {1, . . . , n′} and

B < p1 < . . . < pn′ .
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For M > pn′ , h > 0 with gcd(h,B!) = 1, and corresponding rh, define Ψh
M(hs, ht) to be the

set of a ∈ Z such that hs < a < ht and
(a ≡D rh) ∧ ⋀

B<p⩽M ( n⋀
i=1

(ka + hci /≡plp+vp(h) 0)) ∧ n′⋀
i′=1

(ka + hc′i′ ∉ P Z
hm).

It is not hard to see that Ψh(hs, ht) ∩ {a ∈ Z ∶ a ≡D rh} ⊆ Ψh
M(hs, ht), and the latter

is intended to be and upper approximation of the former. The desired lower bound for∣Ψh(hs, ht)∣ will be obtained via a lower bound for ∣Ψh
M(hs, ht)∣ and an upper bound for∣Ψh

M(hs, ht) ∖Ψh(hs, ht)∣.
Now we work towards establishing a lower bound on ∣Ψh

M(hs, ht))∣ in the case where
M > pn′ , h > 0, and gcd(h,M !) = 1. The latter assumption implies in particular that
plp+vp(h) = plp for all p ⩽ M . For p > B, we have that p > ∣k∣ and so k is invertible mod plp .
Set

∆ = {p ∶ B < p ⩽M} ∖ {pi′ ∶ 1 ⩽ i′ ⩽ n′}.
For p ∈ ∆, as k is invertible mod plp , there are at least plp − n (note we have p > B > n)
choices of rp in {0, . . . , plp − 1} such that if a ≡plp rp, then

n⋀
i=1

(ka + hci /≡plp 0).
Suppose p = pi′ for some i′ ∈ {1, . . . , n′}. By the assumption that ψ(x, c, c′) is nontrivial, c
has no common components with c′. Since gcd(h,M !) = 1, h and p are coprime, and so the
components of hc and hc′ are pairwise distinct mod plp . As k is invertible mod plp , there is
exactly one rp in {0, . . . , plp − 1} such that if a ≡plp rp, then

n⋀
i=1

(ka + hci /≡plp 0) ∧ (ka + hc′i′ ≡plp 0) and consequently ka + hc′i′ ∉ P Z
hm.

Now it follows by the Chinese remainder theorem that,

∣Ψh
M(hs, ht)∣ ⩾ ⌊ ht − hs

D∏B<p⩽M plp
⌋∏
p∈∆ (plp − n) .

Then it follows that,

∣Ψh
M(hs, ht)∣ ⩾ ht − hs

D
∏
p⩽pn′

1

plp

⩽M∏
p>pn′

(1 − n

plp
) − ∏

p⩽M p
lp .

Set
ε = 1

2D
∏
p⩽pn′

1

plp
∏
p>pn′

(1 − n

plp
) .

50



Now as lp ⩾ 2, for U ∈ N>0 with U > max{p′n, n2} we have that

∏
p>U (1 − n

plp
) > ∏

p>U (1 − 1

p
3
2

) .
Hence, it follows from Euler’s product formula that ε > 0. We now have

∣Ψh
M(hs, ht)∣ ⩾ 2ε(ht − hs) − ∏

p⩽M p
lp .

We note that ε is independent of the choice of M and h, and will serve as the promised ε in
the statement of the lemma.

Next we obtain a upper bound on ∣Ψh
M(s, t)∖Ψh(s, t)∣ forM > pn′ h > 0 and gcd(h,M !) =

1. We arrange that k > 0 by replacing c by −c and c′ by −c′ if necessary. Note that an element
a ∈ Ψh

M(s, t) ∖Ψh(s, t) must be such that

hks + hci < ka + hci < hkt + hci for all i ∈ {1, . . . , n}
and ka+hci is a multiple of plp for some p >M and i ∈ {1, . . . , n}. For each p and i ∈ {1, . . . , n},
the number of multiples of plp in (hks + hci, hkt + hci) is

either ⌊hk(t − s)p−lp⌋ or ⌊hk(t − s)p−lp⌋ + 1.

In the latter case, as lp ⩾ 2 we moreover have

p2 ⩽ ∣hks + hci∣ or p2 ⩽ ∣hkt + hci∣,
and so

p ⩽ √∣hks + hci∣ +√∣hkt + hci∣.
As lp ⩾ 2, we have ⌊hk(t − s)p−lp⌋ ⩽ hk(t − s)p−2. Therefore we have that

∣Ψh
M(s, t) ∖Ψh(s, t)∣ ⩽ h(t − s) ∑

p>M
nk

p2
+ n∑
i=1

√∣hks + hci∣ +√∣hkt + hci∣.
We now obtain N and C as in the statement of the lemma. Note that

∑
p>T p

−2 ⩽ ∑
n>T n

−2 = O(T −1).
Using this, we obtain N ∈ N>0 such that N > pn′ and ∑p>N knp−2 < ε where ε is from the
preceding paragraph. Set C = −∏p⩽N plp . Combining the estimations from the preceding
two paragraphs for M = N it is easy to see that ε,N,C are as desired. �

Remark 3.1. The above weak lower bound is all we need for our purpose. We expect
that a stronger estimate can be obtained using modifications of available techniques in the
literature; see for example [59].
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Corollary 3.2. For all c ∈ Z, there is a ∈ Z such that

a + c ∈ SFZ and a + c + 1 ∈ SFZ.

Proof. We have that for all c ∈ Z, ψ(x, c) = (x + c ∈ SFZ) ∧ (x + c + 1 ∈ SFZ) is a locally
satisfiable Z-system. Applying Lemma 3.9 for h = 1, s = 0, and t sufficiently large we see
there is a solution a ∈ Z for ψ(x, c). �

We next prove the main theorem of the section:

Theorem 3.1. The Sf∗Z-model (Z,UZ,PZ), the Sf∗Q-model (Q,UQ,PQ), and the OSf∗Q-model(Q,<,UQ,PQ) are generic.

Proof. We get the first part of the theorem by applying Lemma 3.9 for h = 1, s = 0, and
t sufficiently large. As the second part of the theorem follows easily from the third part,
it remains to show that the OSf∗Q-model (Q,<,UQ,PQ) is generic. Throughout this proof,
suppose ψ(x, z, z) is a special formula and ψ(x, c, c′) is a Q-system which is nontrivial and
locally satisfiable in Q. Our job is to show that the Q-system ψ(x, c, c′) has a solution in
the Q-interval (b, b′)Q for an arbitrary choice of b, b′ ∈ Q such that b < b′.

We first reduce to the special case where ψ(x, c, c′) is also a Z-system which is nontrivial
and locally satisfiable in Z. Let B be the boundary of ψ(x, z, z′) and for each p, let ψp(x, z, z′)
be the associated p-condition of ψ(x, z, z′). Using the assumption that ψ(x, c, c′) is locally
satisfiable Q-system, for each p < B we obtain ap ∈ Q such that ψp(ap, c, c′) holds. Let h > 0

be such that
hc ∈ Zn, hc′ ∈ Zn′ and hap ∈ Z for all p < B.

Then by the choice of h , Lemma 3.6, and Lemma 3.7, the h-conjugate ψh(x,hc, hc′) of
ψ(x, c, c′) is a Z-system which is nontrivial and locally satisfiable in Z. On the other hand,
ψ(x, c, c′) has a solution in a interval (b, b′)Q if and only if

ψh(x,hc, hc′) has a solution in (hb, hb′)Q.
Hence, by replacing ψ(x, z, z′) with ψh(x, z, z′), ψ(x, c, c′) with ψh(x,hc, hc′), and (b, b′)Q
with (hb, hb′)Q if necessary we get the desired reduction.

We show ψ(x, c, c′) has a solution in the Q-interval (b, b′)Q for the special case in the
preceding paragraph. By an argument similar to the preceding paragraph, it suffices to show
that for some h ≠ 0, ψh(x,hc, hc′) has a solution in (hb, hb′)Q. Applying Lemma 3.9 for
s = b, t = b′, and h sufficiently large satisfying the condition of the lemma, we get the desired
conclusion. �
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3.2. Logical Tameness

We will next prove that SF∗
Z, SF∗

Q, and OSF∗
Q admit quantifier elimination. We first need

a technical lemma saying that over Sf∗Z or Sf∗Q, quantifier free formulas are not much more
complicated than special formulas.

Lemma 3.10. Suppose ϕ(x, y) is a quantifier-free L∗u-formula. Then ϕ(x, y) is equivalent
over Sf∗Z to a disjunction of quantifier-free formulas of the form

ρ(y) ∧ ε(x, y) ∧ ψ(x, t(y), t′(y))
where

(i) t(y) and t′(y) are tuples of L∗u-terms with length n and n′respectively;(ii) ρ(y) is a quantifier-free L∗u-formula, ε(x, y) an equational-condition, ψ(x, z, z′) a special
formula.

The corresponding statement with Sf∗Z replaced by Sf∗Q also holds.

Proof. Let ϕ(x, y) be a quantifier-free L∗u-formula. We will use the following disjunction
observation several times in our proof: If ϕ(x, y) is a finite disjunction of quantifier-free
L∗u-formulas and we have proven the desired statement for each of those, then the desired
statement for ϕ(x, y) follows. In particular, we can assume that ϕ(x, y) is the conjunction

ρ(y) ∧ ε(x, y) ∧⋀
p
ηp(x, y) ∧ n⋀

i=1

(kix + ti(y) ∈ Pmi) ∧ n′⋀
i=1

(k′ix + t′i(y) ∉ Pm′
i
)

where ρ(y) is a quantifier-free L∗u-formula, ε(x, y) is an equational condition, k1, . . . , kn

and k′1, . . . , k′n′ are in Z ∖ {0}, m1, . . . ,mn and m′
1, . . . ,m

′
n′ are in N⩾1, t1(y), . . . , tn(y) and

t′1(y), . . . , t′n(y) are L∗u-terms with variables in y, ηp(x, y) is a p-condition for each p, and
ηp(x, y) is trivial for all but finitely many p.

We make further reductions to the form of ϕ(x, y). Set t(y) = (t1(y), . . . , tn(y)) and(t′1(y), . . . , t′n′(y)). Using the disjunction observation and the fact that (x+yj ∈ P1)∨(x+yj ∉
P1) is a tautology for every component yj of y, we can assume that either x + yj ∈ P1 or
x+yj ∉ P1 are among the conjuncts of ϕ(x, y), and so yj is among the components of t(y) or
t′(y). Then we obtain for each prime p a p-condition θp(x, z, z′) such that θp(x, t(y), t(y′))
is logically equivalent to ηp(x, y). Let ξ(x, z, z′) be the formula

⋀
p
θp(x, z, z′) ∧ n⋀

i=1

(kix + zi ∈ Pmi) ∧ n′⋀
i=1

(k′ix + z′i ∉ Pm′
i
).

Clearly, ϕ(x, y) is equivalent to the formula ρ(y)∧ε(x, y)∧ξ(x, t(y), t′(y)), so we can assume
that ϕ(x, y) is the latter.

53



We need a small observation. For a p-condition θp(z) and h ≠ 0, we will show that there
is another p-condition ηp(z) such that over Sf∗Z and Sf∗Q,

ηp(z1, . . . , zi−1, hzi, zi+1, . . . , zn) is equivalent to θp(z).
For the special case where θp(z) is t(z) ∈ Up,l, the conclusion follows from Lemma 3.1(iii),
Lemma 3.4(iii) and the fact that there is an L∗u-term t′(z) such that t′(z, . . . , zi−1, hzi, zi+1, . . . , zn) =
ht(z). The statement of the paragraph follows easily from this special case.

With ϕ(x, y) as in the end of the second paragraph, we further reduce the main statement
to the special case where there is k ≠ 0 such that ki = k′i′ = k for all i ∈ {1, . . . , n} and
i′ ∈ {1, . . . , n′}. Choose k ≠ 0 to be a common multiple of k1, . . . , kn and k′1, . . . k′n′ . Then by
Lemma 3.1(vi) and Lemma 3.4(iii), we have for each i ∈ {1, . . . , n} that

kix + zi ∈ Pmi is equivalent to (kx + kk−1
i zi ∈ Pkk−1i mi) over either Sf∗Z or Sf∗Q.

We have a similar observation for k and k′i′ with i′ ∈ {1, . . . , n′}. The desired reduction easily
follows from these observations and the preceding paragraph.

Continuing with the reduction in the preceding paragraph, we next arrange that there
is m > 0 such that mi =m′

i′ =m for all i ∈ {1, . . . , n} and i′ ∈ {1, . . . , n′}. Let m be a common
multiple of m1, . . . ,mn and m′

1, . . .m
′
n′ . By Lemma 3.1(v, vi) and Lemma 3.4(iii), we have

for i ∈ {1, . . . , n} that over either Sf∗Z or Sf∗Q
kx + zi ∈ Pmi is equivalent to kx + zi ∈ Pm ∧ ⋀

p∣ m
mi

kx + zi ∉ Up,2+vp(mi)
and for i′ ∈ {1, . . . , n′} that over either Sf∗Z or Sf∗Q

kx + z′i′ ∉ Pm′
i′ is equivalent to kx + z′i′ ∉ Pm ∨ ⋁

p∣ m
m′
i′
kx + z′i′ ∈ Up,2+vp(m′

i′).

It follows that ϕ(x, y) is equivalent to a disjunction of formulas of the form we are aiming
for. The desired conclusion of the lemma follows from the disjunction observation. �

Corollary 3.3. Suppose ϕ(x, y) is a quantifier-free L∗ou formula. Then ϕ(x, y) is equivalent
over OSf∗Q to a disjunction of quantifier-free formulas of the form

ρ(y) ∧ λ(x, y) ∧ ψ(x, t(y), t′(y))
where

(i) t(y) and t′(y) are tuples of L∗ou-terms with length n and n′respectively;(ii) ρ(y) is a quantifier-free L∗ou-formula, λ(x, y) an order condition, ψ(x, z, z′) a special
formula.

In the next lemma, we show a “local quantifier elimination” result.
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Lemma 3.11. If ϕ(x, z) is a p-condition, then over either Sf∗Z or Sf∗Q, the formula ∃xϕ(x, z)
is equivalent to a p-condition ψ(z).
Proof. If ϕ(x, z) is a p-condition, then it is a boolean combination of atomic formulas of
the form kx + t(z) ∈ Up,l where t(z) is an L∗u-term. Let lp be the largest value of l occurring
in an atomic formula in ϕ(x, z) and S = {1 ⩽m < plp ∣ ∃xϕ(x,m)}. Then by Lemma 3.1 (i),∃xϕ(x, z) is equivalent to the p-condition ⋁m∈S(z ≡pl m) over Sf∗Q.

Now, we proceed to prove the statement for models of Sf∗Q. Throughout the rest of the
proof, suppose ϕ(x, z) is a p-condition, k, k′, l, l′ are in Z, and t(z), t′(z) are L∗u-terms.
First, we consider the case where ϕ(x, z) is a p-condition of the form kx + t(z) ∈ Up,l. The
case k = 0 is trivial. If k ≠ 0, then ∃x(kx+ t(z) ∈ Up,l) is tautological over Sf∗Q following from
(Q1) in the definition of Sf∗Q and Lemma 3.4(i).

We next consider the case where ϕ(x, z) is a finite conjunction of p-conditions in L∗u(x, z)
such that one of the conjuncts is kx+ t(z) ∈ Up,l with k ≠ 0 and the other conjuncts are either
of the form k′x+ t′(z) ∈ Up,l′ or of the form k′x+ t′(z) ∉ Up,l′ where we do allow l′ to vary. It
follows from Lemma 3.4(i) that if k = k′, l ⩾ l′, then

k′x + t′(z) ∈ Up,l′ if and only if t(z) − t′(z) ∈ Up,l′ .
So we have means to replace conjuncts of ϕ(x, z) by terms independent of the variable x.
However, the above will not work if k ≠ k′ or l < l′. By Lemma 3.4(iii), across models of Sf∗Q,
we have that

kx + t(z) ∈ Up,l if and only if hkx + ht(z) ∈ Up,l+vp(h) for all h ≠ 0.

From this observation, it is easy to see that we can resolve the issue of having k ≠ k′. By
Lemma 3.4(i,ii), across models of Sf∗Q, we have that

kx + t(z) ∈ Up,l if and only if
pm⋁
i=1

kz + t(z) + ipl ∈ Up,l+m for all l ⩾ 0 and all m.

Using the preceding two observations we resolve the issue of having l < l′. The statement of
the lemma for this case then follows from the first paragraph.

We now prove the full lemma. It suffices to consider the case where ϕ(x, z) is a conjunc-
tion of atomic formulas. In view of the preceding paragraph, we reduce further to the case
where ϕ(x, z) is of the form

m⋀
i=1

kx + ti(z) ∉ Up,li
We now show that ∃ϕ(x, z) is a tautology over Sf∗Q and thus complete the proof. Suppose(G,UG,PG) ⊧ Sf∗Q and c ∈ Gn. It suffices to find a ∈ G such that the p-condition ka + ti(c) ∉
UG
p,li

holds for all i ∈ {1, . . . ,m} . Without loss of generality, we assume that t1(c), . . . , tm′(c)
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are not in UG
p,l for all l and that tm′+1(c), . . . , tm(c) are in UG

p,l0
for some l0 such that l0 < li

for all i ∈ {1, . . . ,m}. Using 3.4(ii), choose a such that ka ∈ UG
p,l0−1 ∖ UG

p,l0
. It follows from

Lemma 3.4(i) that a is as desired. �

Theorem 3.2. The theories SF∗
Z, SF∗

Q, and OSF∗
Q admit quantifier elimination.

Proof. As the three situations are very similar, we will only present here the proof that
OSF∗

Q admits quantifier elimination. The proof for SF∗
Z and SF∗

Q are simpler as there is no
ordering involved. Along the way we point out the necessary modifications needed to get
the proof for SF∗

Z and SF∗
Q. Fix OSF∗

Q-models (G,<,UG,PG) and (H,<,UH ,PH) such that
the latter is ∣G∣+-saturated. Suppose

f is a partial L∗ou-embedding from (G,<,UG,PG) to (H,<,UH ,PH),
in other words, f is an L∗ou-embedding of an L∗ou-substructure of (G,<,UG,PG) into (H,<
,UH ,PH). By a standard test, it suffices to show that if Domain(f) ≠ G, then there is a
partial L∗ou-embedding from (G,<,UG,PG) to (H,<,UH ,PH) which properly extends f . For
the corresponding statements with SF∗

Z or SF∗
Q, we need to consider instead (G,UG,PG) and(H,UH ,PH) depending on the situation.

We remind the reader that our choice of language includes a symbol for additive inverse,
and so Domain(f) is automatically a subgroup of G. Suppose Domain(f) is not a pure
subgroup of G, that is, there is an element Domain(f) which is n-divisible in G but not
n-divisible in Domain(f) for some n > 0. Then there is p and a in G∖Domain(f) such that
pa ∈ Domain(f). Using divisibility of H, we get b ∈ H such that pb = f(pa). Let g be the
extension of f given by

ka + a′ ↦ kb + f(a′) for k ∈ {1, . . . , p − 1} and a′ ∈ Domain(f).
It is routine to check that g is an ordered group isomorphism from ⟨Domain(f), a⟩ to⟨Image(f), b⟩. It is also easy to check using Lemma 3.4(iii) that ka + a′ ∈ UG

p,l if and only
if kb + f(a′) ∈ UG

p,l and ka + a′ ∈ PG
m if and only if kb + f(a′) ∈ UG

m for all k, l, m, and
a′ ∈ Domain(f). Hence,

g is a partial L∗ou-embedding from (G,<,UG,PG) to (H,<,UH ,PH).
Clearly, g properly extends f , so the desired conclusion follows. The proof for SF∗

Q is the
same but without the verification that the ordering is preserved. The situation for SF∗

Z is
slightly different as H is not divisible. However, pa is in pG = UG

p,1, and so f(pa) is in
UH
p,1 = pH. The proof proceeds similarly using 3.1(4-6).
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The remaining case is when Domain(f) ≠ G is a pure subgroup of G. Let a be in
G ∖Domain(f). We need to find b in H ∖ Image(f) such that

qftpL∗ou(a ∣ Domain(f)) = qftpL∗ou(b ∣ Image(f)).
By the fact that Domain(f) is pure in G, and Corollary 3.3, qftpL∗ou(a ∣ Domain(f)) is
isolated by formulas of the form

ρ(b) ∧ λ(x, b) ∧ ψ(x, t(b), t′(b))
where ρ(y) is a quantifier-free L∗ou-formula, λ(x, y) is an order condition, ψ(x, z, z′) a special
formula, t(y) and t′(y) are tuples of L∗ou-terms of suitable length, b is a tuple of elements
of Domain(f) of suitable length, and ψ(x, t(b), t′(b)) is a nontrival Domain(f)-system. As
Domain(f) is a pure subgroup of G, we can moreover arrange that λ(x, b) is simply the
formula b1 < x < b2. Since f is an L∗ou-embedding, ρ(f(b)) holds, f(b1) < f(b2), and
ψ(x, t(f(b)), t′(f(b))) is a nontrivial Image(f)-system. Using the fact that (H,<,UH ,PH)
is ∣G∣+-saturated, the problem reduces to showing that

ψ(x, f(t(b)), f(t′(b))) has a solution in the interval [f(b1), f(b2)]H .
As ψ(x, t(b), t′(b)) is satisfiable in G, it is locally satisfiable in G by Lemma 3.5. For each
p, let ψp(x, z, z′) be the associated p-condition of ψ(x, z, z′). By Lemma 3.11, for all p, the
formula ∃xψp(x, z, z′) is equivalent over Sf∗Q to a quantifier free formula in L∗u(z, z′). Hence,∃xψp(x, f(c), f(c′)) holds in (H,<,UH ,PH) for all p. Thus,

the Image(f)-system ψ(x, f(t(b)), f(t′(b))) is locally satisfiable in H.

The desired conclusion follows from the genericity of (H,<,UH ,PH). The proofs for SF∗
Z and

SF∗
Q are similar. However, we have there the formula ⋀ki=1 x ≠ bi with k ⩽ ∣b∣ instead of the

formula b1 < x < b2, Lemma 3.10 instead of Corollary 3.3, and the corresponding notion of
genericity instead of the current one. �

Corollary 3.4. The theory SF∗
Z is a recursive axiomatization of Th(Z,UZ,PZ), and is there-

fore decidable. Similar statements hold for SF∗
Q in relation to Th(Q,UQ,PQ) and OSF∗

Q in
relation to Th(Q,< UQ,PQ).
Proof. By Lemma 3.1(ii), the relative divisible closure of 1 in an arbitrary model (G,UG,PG)
of SF∗

Z is an isomorphic copy of (Z,UZ,PZ). Hence by Theorem 3.2, SF∗
Z is complete, and

on the other hand (Z,UZ,PZ) ⊧ SF∗
Z by Theorem 3.1. The first statement of the corollary

follows. The justification of the second statement is obtained in a similar fashion. �

We will next deduce consequence for the structures (Z,SFZ), (Q,SFQ), and (Q,<,SFQ) in
the original language.
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Theorem 3.3. The theory of (Z,SFZ) is model complete and decidable.

Proof. For all p, l ⩾ 0, m > 0, and all a ∈ Z, we have the following:

(1) a ∈ UZ
p,l if and only there is b ∈ Z such that plb = a;

(2) a ∉ UZ
p,l if and only if for some i ∈ {1, . . . , pl − 1}, there is b ∈ Z such that plb = a + i;

(3) a ∈ P Z
m if and only if for some d ∣m, there is b ∈ Z such that a = bd and b ∈ SFZ;

(4) a ∉ P Z
m if and only if for all d ∣ m, either for some i ∈ {1, . . . , d − 1}, there is b ∈ Z such

that db = a + i or there is b ∈ Z such that a = bd and b ∉ SFZ.

As (Z,UZ,PZ) ⊧ SF∗
Z, it then follows from Theorem 3.2 and the above observation that every

0-definable set in (Z,SFZ) is existentially 0-definable. Hence, the theory of (Z,SFZ) is model
complete. The decidability of Th(Z,SFZ) is immediate from the preceding corollary. �

Lemma 3.12. Suppose a ∈ Q has vp(a) < 0. Then there is ε ∈ Q such that vp(ε) ⩾ 0 and
a + ε ∈ SFQ.

Proof. Suppose a is as stated. If a ∈ SFQ we can choose ε = 0, so suppose a is in Q ∖ SFQ.
We can also arrange that a > 0. Then there are m,n, k ∈ N⩾1 such that

a = m

npk
, (m,n) = 1, (m,p) = 1, and (n, p) = 1.

It suffices to show there is b ∈ Z such that m + pkb is a square-free integer as then

a + b

n
= m + pkb

npk
∈ SFQ.

For all prime l, it is easy to check that there is bl ∈ Z such that pkbl+m ∉ UQ
l,2. The conclusion

then follows from the genericity of (Z,UZ,PZ) as established in Theorem 3.1. �

Corollary 3.5. For all p and l, UQ
p,l is universally 0-definable in (Q,SFQ).

Proof. We will instead show that Q∖UQ
p,l = {a ∶ vp(a) < l} is existentially 0-definable for all

p and l. As Q ∖UQ
p,l+n = pn(Q ∖UQ

p,l) for all p, l, and n, it suffices to show the statement for
l = 0. Fix a prime p. By the preceding lemma we have that for all a, vp(a) < 0 if and only if

there is ε such that vp(ε) ⩾ 0, a + ε ∈ SFQ and vp(a + ε) < 0.

We recall that {ε ∶ vp(ε) ⩾ 0} is existentially 0-definable by Lemma 3.3. Also, for all a′ ∈ SFQ,
we have that vp(a′) < 0 is equivalent to p2a′ ∈ SFQ. The conclusion hence follows. �

Theorem 3.4. The theories of (Q,SFQ) and (Q,<,SFQ) are model complete and decidable.

Proof. We show that the Lu-theory of (Q,SFQ) and Lou-theory of (Q,<,SFQ) is model
complete and decidable. The proof is almost exactly the same as that of part 1 of Theorem
1.2. It follows from Lemma 3.3 and Corollary 3.5 that for all p and l, the sets UQ

p,l are
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existentially and universally 0-definable in (Q,SFQ). For all m, PQ
m = mSFQ and Q ∖ PQ

m =
m(Q ∖ SFQ) are clearly existentially 0-definable. The conclusion follows. �

Next, we will show that the Lou-theory of (Z,<,SFZ) is bi-interpretable with arithmetic.
The proof follow closely the arguments from [6]. In fact, we can slightly modify Corollary
3.6 to use essentially the same proof at the cost of replacing n2 with n2 + n.
Lemma 3.13. Let c1, . . . , cn be an increasing sequence of natural numbers, assume that for
all primes p, there is a solution to the system of congruence inequations

x + ci ∉ UZ
p,2 for all i ∈ {1, . . . , n}.

Then there is a ∈ N such that a + c1, . . . , a + cn are consecutive square-free integers.

Proof. Suppose c1, . . . , cn are as given. Let c′1, . . . , c′n′ be the listing in increasing order of
elements in the set of c ∈ N such that c1 ⩽ c ⩽ cn and c ≠ ci for i ∈ {1, . . . , n}. The conclusion
that there are infinitely many a such that

n⋀
i=1

(a + ci ∈ SFZ) ∧ n′⋀
i=1

(a + c′i ∉ SFZ)
follows from the assumptions about c1, . . . , cn and the genericity of (Z,UZ,PZ) as established
in Theorem 3.1. �

Corollary 3.6. For all n ∈ N>0, there is a ∈ N such that a+1, a+4, . . . , a+n2 are consecutive
square-free integers .

Proof. For each p, we can obtain a ∈ {1,2, . . . , p2 − 1} such that

a ≢p2 −m2 for all m.

Hence, for any given n > 0 and p, the p-condition ⋀ni=1(x + i2 ∉ UZ
p,2) has a solution. The

result now follows immediately from the preceding lemma. �

Theorem 3.5. The theory of (Z,<,SFZ) defines multiplication.

Proof. It suffices to show that (Z,<,SFZ) interprets multiplication on N. Let T be the set
of (a, b) ∈ N2 such that for some n ∈ N⩾1,

b = a + n2 and a + 1, a + 4, . . . , a + n2 are consecutive square-free integers.

The set T is definable in (Z,<,SFZ) as (a, b) ∈ T and b ≠ a + 1 if and only if a < b, a + 1

and a + 4 are consecutive square-free integers, b is square-free, and whenever c, d, and e are
consecutive square-free integers with a < c < d < e ⩽ b, we have that

(e − d) − (d − c) = 2.

59



Let S be the set {n2 ∶ n ∈ N}. If c = 0 or there are a, b such that (a, b) ∈ T and b− a = c, then
c = n2 for some n. Conversely, if c = n2, then either c = 0 or by Corollary 3.6,

there is (a, b) ∈ T with b − a = c.
Therefore, S is definable in (Z,<,SFZ). The map n ↦ n2 in N is definable in (Z,<,SFZ) as
b = a2 if and only if b ∈ S and whenever c ∈ S is such that c > b and b, c are consecutive in
S, we have that c − b = 2a + 1. Finally, c = ba if and only if 2c = (b + a)2 − b2 − a2. Thus,
multiplication on N is definable in (Z,<,SFZ). �

3.3. Combinatorial Tameness

As the theories SF∗
Z, SF∗

Q, and OSF∗
Q are complete, it is convenient to work in the so-called

monster models, that is, models which are very saturated and homogeneous. Until the end
of the chapter, let (G,UG,PG) be a monster model of either SF∗

Z or SF∗
Q depending on the

situation. In the latter case, we suppose (G,<,UG,PG) is a monster model of OSF∗
Q. We

assume that κ,A and I have small cardinalities compared to G.

Our general strategy to prove the tameness of SF∗
Z, SF∗

Q, and OSF∗
Q is to link them to the

corresponding “local” facts. The next lemma says that SF∗
Z is “locally” supersimple of U-rank

1.

Lemma 3.14. Suppose (G,UG,PG) ⊧ SF∗
Z, θp(x, y) is a consistent p-condition, and b is in

G∣y∣. Then θp(x, b) does not divide over any base set A ⊆ G.

Proof. Suppose (G,UG,PG), θp(x, b) are as stated, and A is a small subset of G. Suppose
I is an infinite ordered set and (σi)i∈I a family of L∗u-automorphisms of (G,UG,PG) such that(σib)i∈I is indiscernible over A. By the monstrosity of G, the problem reduces to showing that
the set {θp(x,σib) ∶ i ∈ I} is consistent. It is easy to see from Lemma 3.1(i, ii) that for some
l, θp(x, b) defines a nonempty finite union of translations of UG

p,l, which is a set definable over
the empty-set. Then θp(x,σib) defines the same set for all i ∈ I, and so ⋂i∈I θp(x,σib) ≠ ∅.
The conclusion follows. �

Theorem 3.6. The theory of (Z,SFZ) is supersimple of U-rank 1 and k-independent for all
k ∈ N⩾1.

Proof. We first show that Th(Z,SFZ) is supersimple of U-rank 1; see [44, p. 36] for a
definition of U-rank or SU-rank. By the fact that (Z,SFZ) have the same definable sets as(Z,UZ,PG) and Corollary 3.4, we can replace Th(Z,SFZ) with SF∗

Z. Suppose (G,UG,PG) ⊧
SF∗

Z. Our job is to show that every L∗u(G)-formula ϕ(x, b) which forks over a small subset
A of G must define a finite set in G. We can easily reduce to the case that ϕ(x, b) divides
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over A. Moreover, we can assume that ϕ(x, b) is quantifier free by Theorem 3.2 which states
that (G,UG,PG) admits quantifier elimination. Using Lemma 3.10, we can also arrange that
ϕ(x, b) has the form

ρ(b) ∧ ε(x, b) ∧ ψ(x, t(b), t′(b))
where ρ(y) is a quantifier-free formula, ε(x, y) is an equational condition, t(y) and t′(y) are
tuples of L∗u-terms with length n and n′ respectively, and ψ(x, z, z′) is a special formula.

Suppose to the contrary that ϕ(x, b) divives over A but ϕ(x, b) defines an infinite set
in G. From the first assumption, we get an infinite ordering I and a family (σi)i∈I of L∗u-
automorphisms of (G,UG,PG) such that (σib)i∈I is indiscernible over A and ⋀i∈I ϕ(x,σib) is
inconsistent. As ϕ(x, b) defines an infinite set in G, we get from the second assumption that
ρ(b) holds in G, ε(x, b) defines a cofinite set in G, and ψ(x, t(b), t′(b)) defines an infinite
hence non-empty set in G. As (σib)i∈I is indiscernible, we have that ρ(σib) holds in G and
ε(x,σib) defines a cofinite set in G for all i ∈ I. Using the saturatedness of G, we get a finite
set ∆ ⊆ I such that

θ∆(x) ∶= ⋀
i∈∆ψ(x, t(σib), t′(σib)) defines a finite set in G.

As θ∆(x) is a conjunction of G-systems given by the same special formula, it is easy to see
that θ∆(x) is also a G-system.

We will show that θ∆(x) defines an infinite set and thus obtain the desired contradiction.
As (G,UG,PG) is a model of SF∗

Z and hence generic, it suffices to show that θ∆(x) is non-
trivial and locally satisfiable. As ϕ(x, b) is consistent, t(b) has no common components
with t′(b). The assumption that (σib)i∈I is indiscernible gives us that t(σib) has no common
components with t′(σjb) for all i and j in I. It follows that θ∆(x) is non-trivial. For each p,
let ψp(x, z, z′) be the associated p-condition of ψ(x, z, z′). For all p, we have that ψp(x, z, z′)
defines a nonempty set and consequently by Lemma 3.14,

⋀
i∈∆ψp(x, t(σib), t′(σib)) defines a nonempty set in G.

We easily check that the above means θ∆(x) is p-satisfiable for all p. Thus θ∆(x) is locally
satisfiable which completes our proof that Th(Z,SFZ) has U-rank 1.

We will next prove that Th(Z,SFZ) is k-independent for all k > 0; see [17] for a definition
of k-independence. The proof is almost the exact replica of the proof in [45] except the
necessary modifications taken in the current paragraph. Suppose l > 0, S is an arbitrary
subset of {0, . . . , l − 1}. Our first step is to show that there are a, d ∈ N such that for
t ∈ {0, . . . , l − 1},

a + td is square-free if and only if t is in S.
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Let n = ∣S∣ and n′ = l−n, and let c ∈ Zn be the increasing listing of elements in S and c′ ∈ Zn′
the increasing listing of elements in {0, . . . , l − 1} ∖ S. Choose d = (l!)2. We need to find a
such that

n⋀
i=1

(a + cid ∈ SFZ) ∧ n′⋀
i=1

(a + c′id ∉ SFZ).
For p ⩽ l, if ap ∉ p2Z = UZ

p,2, then ap + cid ∉ p2Z for all i ∈ {1, . . . , n}. For p > l, it is easy to see
that 0 + cid ∉ p2Z for all i ∈ {1, . . . , n}. The desired conclusion follows from the genericity of(Z,UZ,PZ).

Fix k > 0. We construct an explicit Lu-formula which witnesses the k-independence of
Th(Z,SFZ). Let y = (y0, . . . , yk−1) and let ϕ(x, y) be a quantifier-free L∗u-formula such that
for all a ∈ Z and b ∈ Zk,

ϕ(a, b) if and only if a + b0 +⋯ + bk−1 ∈ SFZ where b = (b0, . . . , bk−1).
We will show that for any given n > 0, there are families (a∆)∆⊆{0,...,n−1}k and (bij)0⩽i<k,0⩽j<n
of integers such that

ϕ(a∆, b0,j0 , . . . , bk−1,jk−1) if and only if (j0, . . . , jk−1) ∈ ∆.

Let f ∶ P({0, . . . , n−1}k) → {0, . . . ,2(nk)−1} be an arbitrary bijection. Let g be the bijection
from {0, . . . , n− 1}k to {0, . . . , nk − 1} such that if b and b′ are in {0, . . . , n− 1}k and b <lex b′,
then g(b) < g(b′). More explicitly, we have

g(j0, . . . , jk−1) = j0n
k−1 + j1nk−2 +⋯ + jk−1 for (j0, . . . , jk−1) ∈ {0, . . . , n − 1}k.

It follows from the preceding paragraph that we can find an arithmetic progression (ci)i∈{0,...,nk2(nk)−1}
such that for all ∆ ⊆ {0, . . . , n − 1}k and (j0, . . . , jk−1) in {0, . . . , n − 1}k, we have that

cf(∆)nk+g(j0,...,jk−1) ∈ SFZ if and only if (j0, . . . , jk−1) ∈ ∆.

Suppose d = c1 − c0. Set bij = djnk−i−1 for i ∈ {0, . . . , k − 1} and j ∈ {0, . . . , n − 1}, and set
a∆ = cf(∆)nk for ∆ ⊆ {0, . . . , n − 1}k. We have

cf(∆)nk+g(j0,...,jk−1) = cf(∆)nk + dg(j0, . . . , jk−1) = a∆ + b0,j0 +⋯ + bk−1,jk−1 .

The conclusion thus follows. �

Lemma 3.15. Every p-condition θp(x, y) is stable in SF∗
Q.

Proof. Suppose θp(x, y) is as in the statement of the lemma. It is clear that if θp(x, y) does
not contain the variable x, then it is stable. As stability is preserved under taking boolean
combinations, we can reduce to the case where θp(x, y) is kx + t(y) ∈ Up,l with k ≠ 0. We
note that for any b and b′ in G∣y∣, the sets defined by θp(x, b) and θp(x, b′) are either the
same or disjoint. It follows easily that θp(x, y) does not have the order property; in other
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words, θp(x, y) is stable. Alternatively, the desired conclusion also follows from the fact that(Q,UQ) is an abelian structure and hence stable; see [86, p. 49] for the relevant definition
and result. �

Theorem 3.7. The theory of (Q,SFQ) is simple but not supersimple, and is k-independent
for all k ∈ N⩾1.

Proof. We first show that Th(Q,SFQ) is simple. By the fact that (Q,SFQ) has the same
definable sets as (Q,UQ,PQ) and Corollary 3.4, we can replace Th(Q,SFQ) with SF∗

Q. To-
wards a contradiction, suppose that the latter is not simple. We obtain as in a formula
ϕ(x, y) witnessing the tree property of SF∗

Q; see [44, pp. 24-25] for the definition and proof
that this is one of the equivalent characterizations of simplicity. We can arrange that ϕ(x, y)
is quantifier-free by Theorem 3.2. Disjunction preserves simplicity of formulas [9, pp. 22-23],
so using Lemma 3.10 we can arrange that ϕ(x, y) is of the form

ρ(y) ∧ ε(x, y) ∧ ψ(x, t(y), t′(y))
where ρ(y) is a quantifier-free L∗u-formula, ε(x, y) is an equational-condition, t(y) and t′(y)
are tuples of L∗u-terms with lengths n and n′ respectively, and ψ(x, z, z′) is a special formula.
Let (G,UG,PG) ⊧ SF∗

Q. Then there is b ∈ Gk, an uncountable cardinal κ, and a tree (σs)s∈ω<κ
of L∗u-automorphisms of (G,UG,PG) with the following properties:

(1) for all s ∈ ω<κ, {ϕ(x,σs⌢(i)b) ∶ i ∈ ω} is inconsistent;
(2) for all ŝ ∈ ωκ, {ϕ(x,σŝ↾αb) ∶ α < κ} is consistent;
(3) for every α < κ and s ∈ ωα, the sequence of trees ((σs⌢(i)⌢s′b)s′∈ω<κ)i∈ω is indiscernible.

More precisely, we can get b, κ, and (σt)t∈ω<κ satisfying (1) and (2) from the fact that ϕ(x, y)
witness the tree property of SF∗

Q, a standard Ramsey arguments, and the monstrosity of(G,UG,PG). We can then arrange that (3) also holds using results in [48]; a direct argument
is also straightforward.

We deduce the desired contradiction by showing that there is s ∈ ω<κ such that {ϕ(x,σs⌢(i)b) ∶
i ∈ ω} is consistent. From (1-3), we get for all s ∈ ω<κ that ρ(σsb) holds and ε(x,σsb) defines
a cofinite set. By montrosity of G, it suffices to find s ∈ ω<κ such that any finite conjunction
of {ψ(x, t(σs⌢(i)b), t′(σs⌢(i)b)) ∶ i ∈ ω} defines an infinite set in G. For s ∈ ω<κ and a finite
∆ ⊆ ω, set

θs,∆(x) ∶= ⋀
i∈∆ψ(x, t(σs⌢(i)b), t′(σs⌢(i)b)).

As κ is uncountable, it suffices to show for fixed ∆ that for all but countably many α < κ
and all s ∈ ωα, the formula θs,∆(x) defines an infinite set in G.

Note that θs,∆(x) is a conjunction of G-systems given by the same special formula, so
θs,∆(x) is also a G-system. By the genericity of SF∗

Q established in Theorem 3.1, we need to
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check that for all but countably many α < κ and all s ∈ ωα, the G-system θs,∆(x) is nontrivial
and locally satisfiable. By (2), ϕ(x, b) is consistent, and so is ψ(x, t(b), t′(b)). This implies
in particular that t(b) and t′(b) have no common components. It then follows from (3) that
for s ∈ ω<κ and i, j ∈ ω,

t(σs⌢(i)b) and t′(σs⌢(j)b) have no common elements .

Hence, θs,∆(x) is nontrivial for all s ∈ ω<κ. Let ψp(x, z, z′) be the associated p-condition
of ψ(x, z, z′). We then get from (2) that {ψp(x,σŝ↾αb) ∶ α < κ} is consistent for all ŝ ∈ ωκ.
By Lemma 3.15, the formula ψp(x, t(y), t′(y)) is stable and hence does not witness the tree
property. It follows that for all but finitely many α < κ and all s ∈ ωα, the set

{ψp(x, t(σs⌢(i)b), t′(σs⌢(i)b)) ∶ i ∈ ω} is consistent.

For such s, we have that θs,∆(x) is p-satisfiable. So for all but countably many α < κ and all
s ∈ ωα, θs,∆(x) is locally satisfiable which completes the proof that Th(Q,SFQ) is simple.

We next prove that Th(Q,SFQ) is not strong which implies that it is not supersimple;
for the definition of strength and the relation to supersimplicity see [1]. Again, we can
replace Th(Q,SFQ) by SF∗

Q using Proposition 3.1 and Corollary 3.4. For each p, let ϕp(x, y)
with ∣y∣ = 1 be the formula x − y ∈ Up,0. For all p and n, set bp,i = p−i. We will show that(ϕp(x, y), (bp,i)i∈N)) forms an inp-pattern of infinite depth in (Q,UQ,PQ). For distinct i and
j in N, we have that pi − pj ∉ UQ

p,0 which implies that ϕp(x, bp,i) ∧ ϕp(x, bp,i) is inconsistent.
On the other hand, if S is a finite set of primes, then by the weak approximation theorem⋀i∈S ϕp(x, bp,f(p)) is consistent for all f ∶ S → N. The desired conclusion follows.

Finally, we note that (Z,UZ,PZ) is a substructure of (Q,UQ,PQ), the former theory
admits quantifier elimination and has IPk for all k > 0. Therefore, the latter also has IPk for
all k > 0. In fact, the construction in part 2 of the proof of Theorem 3.6 carries through. �

Lemma 3.16. Any order-condition has NIP in OSF∗
Q.

Proof. The statement immediately follows from the fact that every order condition is a
formula in the language of ordered groups and the fact that the reduct of any model of
OSF∗

Q to this language is an ordered abelian group, which has NIP; see for example [73, p.
151] �

Theorem 3.8. The theory (Q,<,SFQ) has NTP2 but is not strong, and is k-independent for
all k ∈ N⩾1.

Proof. In the proof of part 2 of Theorem 3.7, we have shown that Th(Q,SFQ) is not strong
and is k-independent for all k > 0, so the corresponding conclusions for Th(Q,<,SFQ) also
follow. It remains to show that Th(Q,<,SFQ) has NTP2. The proof is essentially the same as
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the proof that Th(Q,SFQ) is simple, but with extra complications coming from the ordering.
By Proposition 3.1 and Corollary 3.4, we can replace Th(Q,<,SFQ) with OSF∗

Q. Towards a
contradiction, we obtain as in [16, pp. 700-701] a formula ϕ(x, y) witnessing the that OSFQ

has TP2. We can arrange that ϕ(x, y) is quantifier-free by Theorem 3.2. Disjunctions of
formulas with NTP2 again have NTP2[16, p. 701], so using Lemma 3.3 we can arrange that
ϕ(x, y) is of the form

ρ(y) ∧ λ(x, y) ∧ ψ(x, t(y), t′(y))
where ρ(y) is a quantifier-free L∗ou-formula, λ(x, y) an order condition, ψ(x, z, z′) a special
formula, and t(y) and t′(y) are tuples of L∗ou-terms with length n and n′ respectively. Then
there is b ∈ Gk and an array (σij)i∈ω,j∈ω of L∗ou-automorphisms of (G,<,UG,PG) with the
following properties:

(1) for all i ∈ ω, {ϕ(x,σijb) ∶ j ∈ ω} is inconsistent;
(2) for all f ∶ ω → ω, {ϕ(x,σif(i)b) ∶ i ∈ ω} is consistent;
(3) for all i ∈ ω, (σijb)j∈ω is indiscernible over {σi′jb ∶ i′ ∈ ω, i′ ≠ i, j ∈ ω};
(4) the sequence of “rows” ((σijb)j∈ω)i∈ω is indiscernible.

We could get b, ω, and (σij)i∈ω,j∈ω as above from the definition of NTP2, Ramsey arguments,
and the monstrosity of (G,UG,PG); see also [16, p. 697] for the type of argument we need
to get (3).

We deduce that the set {ϕ(x,σijb) ∶ j ∈ ω} is consistent for all i ∈ ω, which is the desired
contradiction. We get from (2) that ρ(σijb) holds for all i ∈ ω and j ∈ ω. Hence, it suffices
to show for all i ∈ ω that

{λ(x,σijb) ∧ ψ(x, t(σijb), t′(σijb)) ∶ j ∈ ω} is consistent.

The order condition λ(x, y) has NIP by Lemma 3.16, and so it has NTP2. Using conditions
(2-4), we get that {λ(x,σijb) ∶ j ∈ ω} is consistent for all i ∈ ω.
Hence, any finite conjunction from {λ(x,σijb) ∶ j ∈ ω} contains an interval for all i ∈ ω. For
i ∈ ω and a finite ∆ ⊆ ω, set

θi,∆(x) ∶= ⋀
j∈∆ψ(x, t(σijb), t′(σijb)).

It suffices to show that θi,∆(x) defines a non-empty set in every non-empty G-interval.
We have that θi,∆(x) is a conjunction of G-system given by the same special formula, and

so is again a G-system. By the genericity of OSF∗
Q, the problem reduces to showing θi,∆(x)

is nontrivial and locally satisfiable. By (2), ϕ(x, b) is consistent, and so is ψ(x, t(b), t′(b)).
This implies in particular that t(b) and t′(b) have no common components. It then follows
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from (3) that for i ∈ ω and distinct j, j′ ∈ ω,
t(σijb) and t′(σij′b) have no common elements.

Hence, θi,∆(x) is nontrivial for all i ∈ ω. Let ψp(x, z, z′) be the associated p-condition of
ψ(x, z, z′). We then get from (2) that {ψp(x,σif(i)b) ∶ i ∈ ω} is consistent for all f ∶ ω → ω.
By Lemma 3.15, the formula ψp(x, t(y), t′(y)) is stable and hence has NTP2. It follows that
for all but finitely many i ∈ ω the set

{ψp(x, t(σijb), t′(σijb)) ∶ j ∈ ω} is consistent.

Combining with (4), we get that θi,∆(x) is p-satisfiable for all p which completes the proof.
�

Corollary 3.7. The set Z is not definable in (Q,<,SFQ).
Proof. Towards a contradiction, suppose Z is definable in (Q,<,SFQ). Then by Theorem
3.5, (N,+,×,<,0,1) is interpretable in (Q,<,SFQ). It then follows from Theorem 3.8 that(N,+,×,<,0,1) has NTP2, but this is well-known to be false. �
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CHAPTER 4

A family of dp-minimal expansions of the additive group Z

We treat this chapter as the continuation of the corresponding summary in the introduction
and keep the notational conventions, definitions, and statements of theorems given there.
We also assume throughout this chapter that G is an additive abelian group, (H,<) is a
linearly ordered additive abelian group, j range over the integers, the operation + on N, Z,
Z2, Q, and R are the standard ones, and likewise for × and the ordering < on all the above
except Z2. If < is a linear order on a set M and a, b ∈ M , set [a, b)M = {t ∈ M ∶ a ⩽ t < b},
likewise for other intervals.

A circular order ◁ on the underlying set of an additive abelian group G is additive if ◁ is
preserved under the group operation. In this case, we call the combined structure (G,◁) a
circularly ordered abelian group.

Suppose u is an element in H>0 such that (nu)n>0 is cofinal in (H,<), and π ∶H → G induces
an isomorphism from H/⟨u⟩ to G. Define the relation ◁ on G by:

◁(π(a), π(b), π(c)) if a < b < c or b < c < a or c < a < b for a, b, c ∈ [0, u)H .
We can easily check that ◁ is an additive circular ordering on G. We call (H,u,<) as above
a universal cover of (G,◁) and π a covering map.

The above three definitions were already given for multiplicative groups in Section 1.2 and
Section 2.1.2. Even though there is no real difference between additive and multiplicative
abelian groups, we decided to repeat the definitions as we find it mentally helpful to dis-
tinct the additive and multiplicative cases. Lemma 4.1 below is simply a restatement of
Proposition 2.4, so we will not provide a proof.

Lemma 4.1. Suppose (G,◁) is a circularly ordered abelian group. Then (G,◁) has a
universal cover (H,u,<) which is unique up to unique isomorphism. Moreover, (G,◁) is
isomorphic to ([0, u)H ; +̃, ◁̃) where +̃ and ◁̃ are definable in (H,u,<).
Lemma 4.1 gives us a correspondence between additive circular orderings on Z and additive
linear orderings on Z2:

Proposition 4.1. Let (Z,◁) be a circularly ordered group. Then there is a linear order <
on Z2 such that a universal cover of (Z,◁) is (Z2, u,<) with u = (1,0).

67



Proof. Suppose (Z,◁) is as above and (H,u,<) is its universal cover. Then Z is (H/⟨u⟩.
Using also the fact that ⟨u⟩ is isomorphic to Z, we arrange that H is Z2. Choose v ∈ Z2 such
that v is mapped to 1 in Z under the quotient map. Then ⟨u, v⟩ = Z2, and so by a change of
basis we can arrange that u = (1,0). �

The dp-minimality of the circularly ordered groups (Z,◁) can be established rather quickly
using a criterion in [41]:

Proof of Theorem 1.7. By the last statement of Lemma 4.1 and Proposition 4.1, it
suffices to check that every linearly ordered group (Z2,<) is dp-minimal. We have that

∣Z2/nZ2∣ = n2 < ∞.
The desired conclusion follows from the criterion in [41, Proposition 5.1]. �

So far it is still possible that every circularly ordered group (Z,<) is a reduct of a known dp-
minimal expansion of Z. Toward showing that this is not the case, we need a more explicit
description of the additive circular orders on Z.

Define the circular ordering ◁+ on Z by setting ◁+(j, k, l) if and only if j < k < l or l < j < k
or k < l < j. We define the opposite circular ordering ◁− on Z by setting

◁−(j, k, l) if and only if ◁+ (−j,−k,−l).
We observe that ◁+ and ◁− are distinct, but (Z,◁+) and (Z,◁−) are isomorphic via the
map k ↦ −k and both have (Z2,<lex) as a universal cover where <lex is the usual lexicographic
ordering on Z2. It is easy to see that both (Z,◁+) and (Z,◁−) are definably equivalent with(Z,<).
Let (R/Z,◁) be the circularly ordered group with a universal cover (R,1,<) and such that◁(0 + Z,1/4 + Z,1/2 + Z) holds. We call (R/Z,◁) the positively oriented circle. For
a, b ∈ R such that a − b ∉ Z, we set [a, b)R/Z to be the set

{t ∈ R/Z ∶ t = a +Z or ◁ (a +Z, t, b +Z)}.
Let α be in R ∖Q. Define the additive circular ordering ◁α on Z by setting

◁α(j, k, l) if and only if ◁ (αj +Z, αk +Z, αl +Z).
In other words, ◁α is the pull-back of ◁ by the character χα ∶ Z→ R/Z, l ↦ αl+Z. As before,
we observe that ◁α and ◁−α are distinct. However, (Z+,◁α) and (Z,◁−α) are isomorphic
via the map k ↦ −k and both have (Z2,<α) as a universal cover with <α the pull-back of the
ordering < on R by the group embedding

ψα ∶ Z2 → R, (k, l) ↦ k + αl.
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We also note that (Z2,<α) is not isomorphic to (Z2,<lex) as the former is archimedean and
the latter is not. It follows that (Z,◁α) is not isomorphic to (Z,◁+) and (Z,◁−).
The following result is essentialy the well-known classification of linearly ordered group
expanding Z2 up to isomorphism:

Lemma 4.2. Suppose (Z2,<) is a linearly ordered group such that (nu)n>0 is cofinal in Z2

with u = (1,0). Then (Z2, u,<) is isomorphic to either (Z2, u,<lex) or (Z2, u,<α) for a unique
α ∈ [0,1/2)R∖Q.
Proof. Suppose (Z2,<) and u are as stated above. Using the fact that (nu)n>0 is cofinal in
Z2, we obtain k such that ku < (0,1) < (k+1)u. Let v be (0,1)−ku if 2ku < (0,2) < (2k+1)u
and let u be (k + 1)u − (0,1) otherwise. Then

⟨u, v⟩ = Z2 and 0 < 2v < u.
If (nv)n>0 is not cofinal in Z2, then it is easy to see that the map

Z2 → Z2, ku + lv ↦ (k, l)
is an ordered group isomorphism from (Z2, u,<) to (Z2, u,<lex). Now suppose (nv)n>0 is
cofinal in Z2. Then set

α = sup{m
n
∶m,n > 0 and mu < nv} .

It is easy to check that α ∈ [0,1/2)R∖Q and that the map Z2 → Z2, ku + lv ↦ (k, l) is an
isomorphism from (Z2, u,<) to (Z2, u,<α).

Finally, suppose α and β are in [0,1/2)R∖Q and f is an isomorphism from (Z2, u,<α) to(Z2, u,<β) with u = (1,0). Let v = (0,1). Then
⟨u, f(v)⟩ = Z2 and 0 < 2f(v) < u.

The former condition implies f(v) is either (k,1) or (k,−1) for some k. Combining with the
latter condition, we get f(v) = (0,1), and so f = idZ2 . It follows easily from the definition of<α and <β that α = β. �

We deduce a classification of additive circular orders on Z:

Proposition 4.2. Every additive circular order on Z is either ◁+, ◁−, or ◁α for some
α ∈ R ∖Q. Moreover, for α,β ∈ R ∖Q, ◁α = ◁β if and only if α − β ∈ Z.
Proof. Suppose ◁ is an additive circular order on Z. It follows from Proposition 4.1 and
Lemma 4.2 that (Z,◁) is isomorphic to either (Z,◁+) or (Z,◁α) for α ∈ R ∖Q. Note that
the only group automorphism of Z are idZ and k ↦ −k. The latter maps ◁+ to ◁− and ◁α

to ◁−α for all α ∈ R ∖Q. The first statement of the proposition follows.
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The backward direction of the second statement follows from the easy observations that◁α = ◁α+1. For the forward direction of the second statement, suppose α,β ∈ R ∖ Q and◁α = ◁β. In particular, this implies that

(Z,◁−α) ≅ (Z,◁α) ≅ (Z,◁β) ≅ (Z,◁−β).
By the backward direction of the second statement, we can arrange that α and β are in[−1/2,1/2)R∖Q. If both α and β are in [0,1/2)R∖Q, then it follows from Lemma 4.2 that
α = β. If both α and β are in [−1/2,0)R∖Q, a similar argument shows that −α = −β, and so
α = β. Finally, suppose one out of α,β is in [−1/2,0)R∖Q and the other is in [0,1/2)R∖Q. A
similar argument as the previous cases give us that α = −β. However, ◁α is always different
from ◁−α, so this last case never happens. �

We also need a well-known result of Kronecker: If (α1, . . . , αn) ∈ Rn is a Q-linearly indepen-
dent tuple of variables, then

(α1m +Z . . . , αnm +Z)
m>0

is dense in (R/Z)n,
where the latter is equipped with the obvious topology. See also [79] for another instance
where a phenomenon of this type is of central importance in dealing with circular orders.

Theorem 4.1. Let α be in R∖Q. Then (Z,◁α) is a reduct of neither (Z,<) nor (Z,≺p) for
any prime p.

Proof. Suppose the notations are as given. We will show that X = {k ∶ ◁(0, k,1)} is
definable neither in (Z,<) nor (Z,≺p). By [24, Remark 3.2], any subset of Z definable in(Z,≺p) is definable in Z. Hence, it suffices to show that X is not definable in (Z,<).

Toward a contradiction, suppose X is definable in (Z,<). By the one-dimensional case
of Kronecker’s approximation theorem, we get that both X and Z ∖X are infinite. It then
follows easily from the quantifier elimination for (Z,<) that there is k ≠ 0 and l such that

{km + l ∶m > 0} ⊆ Z ∖X.
On the other hand, by Kronecker’s approximation theorem again, we have that X ∩{km+ l ∶
m > 0} ≠ ∅ for all k ≠ 0 and all l, which is absurd. �

4.1. Unary definable sets and definable equivalence

We now show that if α,β ∈ R∖Q are Q-linearly independent then (Z,◁α) does not define ◁β.
This follows from a characterization of unary definable sets in a circularly ordered expansion
of Z and Kronecker’s approximation theorem.
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Let ◁ be a circular order on a set G. A subset J of G is convex (with respect to ◁)
if whenever a, b ∈ J are distinct we either have {t ∶ ◁(a, t, b)} ⊆ J or {t ∶ ◁(b, t, a)} ⊆ J .
Intervals are convex, and it is easy to see that the union of a nested family of convex sets is
convex.

Lemma 4.3. Let (G,◁) be densely circularly ordered abelian group with universal cover(H,u,<) and covering map π ∶ H → G. If J ⊆ H is convex (with respect to <) then π(J) is
convex (with respect to ◁).

Proof. Let J ⊆ H be convex. Then J is the union of a nested family of closed intervals{Ia ∶ a ∈ L}, i.e. we either have Ia ⊆ Ib or Ib ⊆ Ia for all a, b ∈ L. It follows that π(J) is the
union of the nested family {π(Ia) ∶ a ∈ L}. It suffices to show that π(J) is convex when J is
a closed interval. Suppose J = [g, h].

We first suppose h − g ⩾ u. Then [0, u]H ⊆ J − g. The restriction of π to [0, u]H is a
surjection so π(J − g) = G. As π(J − g) = π(J) − π(g), we have π(J) = G + π(g) = G. So in
particular π(J) is convex. Now suppose h − g < u. Then J − g ⊆ [0, u]H . It follows that

π(J − g) = {t ∈ G ∶ ◁(0, t, π(g − h))}
so π(J −g) is convex. Then π(J) = π(J −g)+π(g) is a translate of a convex set and is hence
convex. �

Suppose (G, . . .) expands either a linear order < or a circular order ◁; convexity in the
definitions below is with respect to either < or ◁. A tmc-set is a translation of a multiple
of a convex subset of G, that is, a subset of G the form a+mJ with a ∈ G and convex J ⊆ G.
A cnc-set is a set of the form J ∩ (a + nG) with convex J ⊆ G and a ∈ G.

We say that (G, . . .) is tmc-minimal if every definable unary set is a finite union of tmc-sets
and that (G, . . .) is cnc-minimal if every definable unary set is a finite union of cnc-sets.
These two notions coincide for linearly ordered groups.

Lemma 4.4. Suppose that (G,<) is a linearly ordered group. Then the collection of tmc-sets
and the collection of cnc-sets coincide.

Proof. Let X ⊆ G be an cnc-set. Let X = I ∩A for a convex I ⊆ G and A = a + nG. Let
J = {g ∈ G ∶ ng ∈ I − a}. Monotonocity of g ↦ ng implies J is convex as I − a is convex. The
definition of J implies g ∈ J if and only if a+ng ∈ I. As a+ng ∈ A for all g ∈ G we have g ∈ J
if and only if a + ng ∈ I ∩A. So X = a + nJ .

Conversely, suppose J is convex. A translate of an cnc-set is an cnc-set, so it suffices to
show nJ is an cnc-set. Let I be the convex hull of nJ . Then nJ ⊆ I ∩ nG. We show the
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other inclusion. Suppose g ∈ G and ng ∈ I. Then nh ⩽ ng ⩽ nh′ for some nh,nh′ ∈ nJ . Then
h ⩽ g ⩽ h′, so g ∈ J as h,h′ ∈ J and J is convex. Thus ng ∈ nJ . �

In circularly ordered abelian groups there may be tmc-sets which are not cnc-sets. More
precisely, it can be shown that there are tmc-sets which are not even finite unions of cnc-
sets. An example is the set {2k ∶ αk ∈ [0,1/2) +Z} in the structure (Z,◁α) with α ∈ R ∖Q.
As this will not be used later, we leave the proof to the interested readers.

Lemma 4.5. If α ∈ R ∖Q then (Z2,<α) is cnc-minimal.

Proof. The structure (Z2,<α) admits quantifier elimination in the extended language where
we add a predicate symbol defining nZ for each n. See [88], for example. It follows that any
definable subset of Z2 is a finite union of finite intersections of sets of one of the following
types:

(1) {t ∶ k1t + a <α k2t + b} for some k1, k2 and a, b ∈ Z2,
(2) {t ∶ k1t + a ⩾α k2t + b} for some k1, k2 and a, b ∈ Z2,
(3) {t ∶ kt + a ∈ nZ2} for some k,n and a ∈ Z2,
(4) {t ∶ kt + a ∉ nZ2} for some k,n and a ∈ Z2,
(5) {t ∶ k1t + a1 = k2t + a2} for some k1, k2 and a1, a2 ∈ Z2,
(6) {t ∶ k1t + a1 ≠ k2t + a2} for some k1, k2 and a1, a2 ∈ Z2.

We show that any finite intersection of sets of type (1)-(6) is a finite union of cnc-sets. Every
set of type (1) or (2) is either upwards or downwards closed. It follows that any intersection
of such sets is convex.

Suppose A = {t ∶ kt + a ∈ nZ2}. Suppose A is nonempty and t′ ∈ A. Then kt + a ∈ nZ2 if
and only if (kt + a) − (kt′ + a) = k(t − t′) ∈ nZ2.

For any m we have km ∈ nZ if and only if m is in NZ where N = n/gcd(k,n). So t ∈ A if
and only if t− t′ ∈ NZ2, equivalently if t ∈ NZ2 + t′. So A is a coset of a subgroup of the form
NZ2. So any finite intersection of sets of type (3) and (4) is a boolean combination of cosets
of subgroups of the form nZ2. As ∣Z2/nZ2∣ < ∞, a complement of a coset of a subgroup of
the form nZ2 is a finite union of such cosets. It follows that any boolean combination of
cosets of subgroups of the form nZ2 is a finite union of such cosets.

We have shown that a finite intersection of sets of type (1)-(4) is an intersection of a
convex set by a finite union of cosets of subgroups of the form nZ2. It follows that any finite
intersection of sets of type (1)-(4) is a finite union of cnc-sets.

Any set of type (5) or (6) is either empty, Z2, a singleton, or the complement of a
singleton. It follows that any finite intersection of such sets is either finite or co-finite.
Suppose that X is a finite union of cnc-sets. The intersection of a X and a finite set is finite,
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hence is a finite union of cnc-sets. It is easy to see that the intersection of X and a co-finite
set is a finite union of cnc-sets. �

Theorem 4.2. Let α ∈ R ∖Q. Then (Z,◁α) is tmc-minimal.

Proof. Suppose X ⊆ Z is definable. Set

Y = π−1(X) ∩ [0, u)Z2 .

Then X = π(Y ) and Y is a finite union of cnc-sets Y1, . . . , Yk by 4.5. As

π(Y ) = π(Y1) ∪ . . . ∪ π(Yk)
we may assume Y is an cnc-set. Applying Lemma 4.4 we suppose that Y = a+nJ for a ∈ Z2

and convex J ⊆ Z2. As π is a homomorphism we have

X = π(Y ) = π(a) + nπ(J).
It follows from Lemma 4.3 that π(J) is convex. Thus X is a tmc-set. �

We say that X ⊆ Z is ◁α-dense if it is dense with respect to the obvious topology induced
by ◁α.

Lemma 4.6. Suppose, α and β in R∖Q are Q-linearly independent and Jβ ⊆ Z is ◁β-convex
and infinite, fix n ⩾ 1, k. Then k + nJβ is ◁α-dense.

Proof. Suppose X ⊆ Z is ◁α-dense. It follows by elementary topology that the image of
X under the map l ↦ k + nl is ◁α-dense in k + nZ. As k + nZ is ◁α-dense, it follows that
k+nX is ◁α-dense. It therefore suffices to show that Jβ is dense with respect to the topology
induced by ◁α. We show that Jβ intersects an arbitrary infinite ◁α-convex Jα ⊆ Z. Let J ′α
and J ′β be ◁-convex subsets of R/Z such that Jα = χ−1

α (J ′α) and Jβ = χ−1
β (J ′β). Then J ′α, J ′β

are infinite and so have nonempty interior. It follows from Q-linear independence of α and
β and Kronecker’s theorem that

{(χα(m), χβ(m)) ∶m ∈ Z} is dense in (R/Z)2.

In particular, there is m ∈ Z such that (χα(m), χβ(m)) ∈ J ′α×J ′β. Then m is in Jα∩Jβ, which
implies that the latter is non-empty. �

Corollary 4.1. Suppose α,β ∈ R ∖Q are Q-linearly independent. Then there is a (Z,◁β)-
definable subset of Z which is not definable in (Z,◁α).
Proof. Suppose that α and β are Q-linearly independent elements of R ∖ Q. Let Jα be
an infinite ◁α-convex set definable in (Z,◁α) with infinite complement. Suppose Z ∖ Jα is
definable in (Z,◁β). It follows from tmc-minmality of the latter that Z∖Jα ⊇ k +nJβ where
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Jβ is ◁β-covex and n ⩾ 1. Lemma 4.6 shows that k+nJβ is ◁α-dense and thus intersects Jα,
contradiction. �

As consequence of Corollary 4.1 we obtain uncountably many definably distinct dp-minimal
expansions of Z.

Corollary 4.2. There are continumn many pairwise definably distinct circularly ordered
groups expanding Z.

We now show that if α,β ∈ R ∖Q are Q-linearly dependent then ◁β is (Z,◁α)-definable. It
follows that (Z,◁α) and (Z,◁β) are definably equivalent if and only if α and β are Q-linearly
dependent, i,e, if β = qα + r for some q, r ∈ Q. This requires several steps.

Lemma 4.7. Suppose α is in R ∖Q, n is in N⩾1, and r is in {0, . . . , n − 1}. Then the set

{l ∶ αl +Z ∈ [r/n, (r + 1)/n) +Z}
is definable in (Z,◁α).
Proof. Let the notation be as given and (R/Z,◁) be the oriented circle. We have that
αl+Z is in [r/n, (r+1)/n)+Z if and only if (αil+Z)ni=0 “winds” r times around R/Z, that is,

◁(0 +Z, α(i + 1)l +Z, αil +Z) holds for exactly r values of i ∈ {1, . . . , n − 1}.
The desired conclusion follows. �

Corollary 4.3. If α and β are in R∖Q and β = α+m/n with n ⩾ 1, then ◁β is definable in(Z,◁α).
Proof. Suppose α is in R ∖Q. Note that ◁−α(j, k, l) if and only if ◁α(−j,−k,−l), so ◁−α
is definable in (Z,◁α). As α −m/n = −(−α +m/n) is suffices to treat the case when m ⩾ 1.
It suffices to treat the case β = α + 1/n and then apply this case m times to get the general
case.

Suppose α,β are in R∖Q and β = α+1/n with n ⩾ 1. As ◁α is additive it suffices to show
that the set of pairs (k, l) such that ◁β(0, k, l) is definable in (Z,◁α). Let (R/Z,◁) be the
positively oriented circle. By definition, ◁β(0, k, l) is equivalent to ◁(0 +Z, βk +Z, βl +Z).
The latter holds if and only if either there are r, s ∈ {0, . . . , n − 1} with r < s such that

βk +Z ∈ [r/n, (r + 1)/n) +Z and βl +Z ∈ [s/n, (s + 1)/n) +Z

or there is r ∈ {0, . . . , n − 1} such that

βk +Z, βl +Z ∈ [r/n, (r + 1)/n) +Z and ◁ (0, βnk +Z, βnl +Z).
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For all a ∈ R, we have that a + k/n + Z ∈ [r/n, (r + 1)/n) + Z holds if an only if a is in[r′/n, (r′ + 1)/n) + Z with r′ ∈ {0, . . . , n − 1} and r′ + k ≡ r (mod n). Hence, it follows from
β = α + 1/n that βk +Z ∈ [r/n, (r + 1)/n) +Z is equivalent to

αk +Z ∈ [r′/n, (r′ + 1)/n) +Z with r′ ∈ {0, . . . , n − 1} and r′ + k ≡ r (mod n).
On the other hand, as nβ = nα + 1, so we get

◁(0 +Z, βnk +Z, βnl +Z) is equivalent to ◁ (0 +Z, αnk +Z, αnl +Z).
By definition of ◁α, the latter holds if and only if ◁α(0, nk, nl). Combining with Lemma
4.7 we get the desired conclusion. �

Lemma 4.8. Suppose α is in [0,1)R∖Q, m,n are in N⩾1, and r is in {0, . . . , n−1}. Then the
set {l ∶ αl +Z ∈ [0, rα/n) +Z}
is definable in (Z,◁α).
Proof. Suppose α,n, and r are as given and (R/Z,◁) is the positively oriented circle. We
note that αl +Z is in [0, α/n) +Z if and only if ◁(0+Z, αnl +Z, α+Z) and (αil +Z)ni=0 does
not“winds” around R/Z, that is,

◁(0 +Z, αil +Z, α(i + 1)l +Z) for all i ∈ {1, . . . , n − 1}.
Recall that by definition ◁(αj +Z, αk +Z, αl +Z) if and only if ◁α(j, k, l). Hence,

{l ∶ αl +Z ∈ [0, α/n) +Z} is definable in (Z,◁α).
The conclusion follow the easy observation that αl + Z is in [0, rα/n) + Z if and only if◁α(0, l, rk) for some k ∈ [0, α/n) +Z. �

Corollary 4.4. Suppose α is in [0,1)R∖Q, n is in N⩾1, and β =mα/n. Then ◁β is definable
in (Z,◁α).
Proof. As χα/n(mk) = χmα/n(k) for all k we have◁mα/n(i, j, l) if and only if◁α/n(mi,mj,ml).
It therefore suffices to treat the case β = α/n. For any given k and r ∈ {0,1, . . . , n}, let

Xk,r = {l ∶ αl +Z ∈ [0, kα + rα/n) +Z}.
We first prove that Xk,r is definable in (Z,◁α) for all k and r as above. This is true for r = 0

as l ∈ Xk,0 if and only if either l = 0 or ◁(0 + Z, lα + Z, kα + Z). The later is equivalent to◁α(0, k, l) by definition. The case where k = 0 is just the preceding lemma. In general, we
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have that

Xk,r =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xk,0 ∪ (k +X0,r) if Xk,0 ∩ (k +X0,r) = ∅,
Xk,0 ∩ (k +X0,r) otherwise.

Let r, s be in {0, . . . , n−1}. We have that ◁β(0, kn+r, ln+s) is equivalent to ◁(0+Z, β(kn+
r) +Z, β(ln+ s) +Z) by definition. The latter holds if and only if kn+ r, ln+ s, and 0 are all
distinct and Xk,r ⊆Xl,r. The conclusion follows. �

Corollary 4.3 and Corollary 4.4 show that ◁β is definable in (Z,◁α) whenever α,β ∈ R ∖Q
are Q-linearly dependent. Combining with Corollary 4.1 we get:

Theorem 4.3. Suppose α and β are in R ∖ Q. Then (Z,◁α) and (Z,◁β) are definably
equivalent if and only if α,β are Q-linearly dependent.

Finally, we give an example of a dp-minimal expansion of Z which defines uncountably
many subsets of Z. Let M = (M, . . .) be a structure and N = (N, . . .) be a highly saturated
elementary expansion of M. Then a subset of Mk is externally definable if it is of the
form A ∩Mk where A ⊆ Nk is definable in N. A standard saturation argument shows that
the collection of externally definable sets does not depend on the choice of N. The Shelah
expansion of M is the expansion MSh of M obtained by adding a predicate defining every
externally definable subset of every Mk. It was shown in [70] that MSh is NIP whenever
M is, see also [72, Chapter 3]. It was observed in [62, 3.8] that the main theorem of [70]
also shows that MSh is dp-minimal whenever M is dp-minimal. In particular (Z,◁α)Sh is
dp-minimal for any α ∈ R ∖Q.

Proposition 4.3. Fix α ∈ R∖Q. Then (Z,◁α)Sh defines uncountably many distinct subsets
of Z and has uncountably many definably distinct reducts.

Proof. If M,N are as above, and M expands a linear or circular order then it is easy to
see that any convex subset of M is of the form I ∩M for an interval I ⊆ N . It follows that(Z,◁α)Sh defines every ◁α-convex subset of Z and thus defines uncountably many subsets
of Z. Any reduct of (Z,◁α)Sh to a countable language defines only countably many subsets
of Z, it follows that (Z,◁α)Sh has uncountably many definably distinct reducts. �
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Part 2

Abstract partially random structures
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CHAPTER 5

Preliminaries

Throughout, L is a language with S the set of sorts, and M is an L-structure. Concepts
like variables, functions, formulas, etc. are by default with respect to L. We refer to L(∅)-
definable sets and L(M)-definable sets simply as L-definable sets and M-definable set.

When the structure in question is the monster model for a complete theory, we boldface the
relevant notations, i.e., writing M instead of M and M instead of M . When discussing a
monster model, we adopt the usual convention that all models of Th(M) are small elementary
substructures of M, and all sets of parameters are small subsets of M .

We often work with multiple languages with the same set of sorts S. In these cases, we
may define the union and intersection of the languages in the obvious manner and use tuples
of variables without specifying the language. Whenever we consider multiple reducts of
a structure, we decorate these reducts with the same decorations as their languages. For
example, if L0 ⊆ L1 are languages, we denote an L1-structure byM1, and we denote its reduct
M1∣L0 to L0 by M0. In this situation, we write “in M0” to denote that we are evaluating
some concept in the reduct.

In this chapter, we review background material and establish general results for later use
which are not specific to the context of abstract partially random structures. The reader
may skip to Chapter 6 and refer back to this chapter as needed.

5.1. Flat formulas

A formula is atomic flat if it is of the form x = y, R(x1, . . . , xn), or f(x1, . . . , xn) = y, where
R is an n-ary relation symbol and f is an n-ary function symbol. Here x, y, x1, . . . , xn are
single variables, which need not be distinct.

A flat literal is an atomic flat formula or the negation of an atomic flat formula. The flat
diagram fdiag(A) of an L-structure A is the set of all flat literal L(A)-sentences true in A.

A flat formula is a conjunction of finitely many flat literals. An E♭-formula is a formula
of the form ∃y ϕ(x, y), where ϕ(x, y) is flat and ⊧ ∀x∃⩽1y ϕ(x, y).
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Remark 5.1. The class of E♭-formulas is closed (up to equivalence) under finite conjunction:
the conjunction of the E♭-formulas ∃y1ϕ1(x, y2) and ∃y2ϕ2(x, y2) is equivalent to the E♭-
formula ∃y1y2 (ϕ1(x, y1) ∧ ϕ2(x, y2)).
The following lemma essentially appears as Theorem 2.6.1 in [37]. Note Hodges uses the
term “unnested” instead of “flat”.

Lemma 5.1. Every literal (atomic or negated atomic formula) is logically equivalent to an
E♭-formula.

Proof. We first show that for any term t(x), with variables x = (x1, . . . , xn), there is an
associated E♭-formula ϕt(x, y) such that ϕt(x, y) is logically equivalent to t(x) = y. We apply
induction on terms. For the base case where t(x) is the variable xk, we let ϕt(x, y) be xk = y.
Now suppose t1(x), . . . , tm(x) are terms and f is an m-ary function symbol. Then ϕf(t1,...,tm)
is the E♭-formula equivalent to

∃z1 . . . zm [m⋀
i=1

ϕti(x, zi) ∧ (f(z1, . . . , zm) = y)] .
We now show that every atomic or negated atomic formula is equivalent to an E♭-formula.

Suppose t1(x), . . . , tm(x) are terms and R is either an m-ary relation symbol or = (in the
latter case, we have m = 2). Then the atomic formula R(t1(x), . . . , tm(x)) is equivalent to

∃y1 . . .∃ym [m⋀
i=1

ϕti(x, yi) ∧R(y1, . . . , ym)] .
Negated atomic formulas can be treated similarly. �

Corollary 5.1. Every quantifier-free formula is logically equivalent to a finite disjunction of
E♭-formulas.

Proof. Suppose ϕ(x) is quantifier-free. Then ϕ(x) is equivalent to a formula in disjunctive
normal form, i.e., a finite disjunction of finite conjunctions of literals. Applying Lemma 5.1
to each literal and using Remark 5.1, we find that ϕ(x) is equivalent to a finite disjunction
of E♭-formulas. �

5.2. K-completeness

In this section, T is an L-theory and K is a class of pairs (A,M), where M ⊧ T and A is a
substructure of M.

We say that T is K-complete if for all (A,M) ∈ K, every embedding from A to another
T -model is partial elementary: if f ∶A → N is an embedding and N ⊧ T , then M ⊧ ϕ(a) if
and only if N ⊧ ϕ(f(a)) for any formula ϕ(x) and any a ∈ Ax.

79



Remark 5.2. The terminology K-complete comes from the following equivalent definition:
T is K-complete if and only if for all (A,M) ∈K,

T ∪ fdiag(A) ⊧ ThL(A)(M),
i.e., T ∪ fdiag(A) is a complete L(A)-theory. Indeed, if N is an L(A)-structure, then N ⊧
fdiag(A) if and only if the obvious map A→ N is an embedding.

Suppose T is K-complete. If K is the class of pairs (M,M) such that M ⊧ T , then T is
model-complete. We say T is substructure-complete if K is the class of all pairs (A,M)
such that A is a substructure of M. If cl is a closure operator on T -models and K is the
class of all pairs (A,M) such that A is a cl-closed substructure of M, i.e., cl(A) = A, then
we say T is cl-complete.

The class of T -models has the K-amalgamation property if whenever (A,M) ∈K, N ⊧ T ,
and f ∶A → N is an embedding, then there is an elementary extension N ≼ N′ and an
elementary embedding f ′∶M→ N′ such that f ′∣A = f , i.e., the following diagram commutes:

M
f ′
// N′

A
f
//

⊆
OO

N

≼
OO

If, in the situation above, we can choose N′ and f ′ with the further condition that

f ′(M) ∩N = f ′(A) = f(A),
then the class of T -models has the disjoint K-amalgamation property.

Proposition 5.1. The theory T is K-complete if and only if the class of T -models has the
K-amalgamation property. Further, if T is K-complete, then A is algebraically closed in M

for all (A,M) ∈ K if and only if the class of T -models has the disjoint K-amalgamation
property.

Proof. We prove the first equivalence. Suppose T is K-complete. The K-amalgamation
property follows from [37, Theorem 6.4.1].

Conversely, suppose the class of T -models has the K-amalgamation property. If M and
N are T -models, A ⊆M is in K, and f ∶A→ N is an embedding, then there is an elementary
extension N ≼ N′ and an elementary embedding f ′∶M → N′ such that f ′∣A = f . For any L-
formula ϕ(x) and a ∈ Ax, M ⊧ ϕ(a) if and only if N′ ⊧ ϕ(f ′(a)) if and only if N ⊧ ϕ(f(a)).
So f is partial elementary. Thus T is K-complete.
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Now, assuming T is K-complete, we prove the second equivalence. If every structure
in K is algebraically closed, then the class of T -models has the disjoint K-amalgamation
property, by [37, Theorem 6.4.5].

Conversely, suppose the class of T -models has the disjoint K-amalgamation property.
Assume towards a contradiction that (A,M) ∈ K and A is not algebraically closed in M.
Then there is some c ∈M ∖A such that tp(c/A) has exactly k realizations c1, . . . , ck inM ∖A.
Taking N =M and f = idA in the disjoint K-amalgamation property, there is an elementary
extension M ≼M′ and an elementary embedding f ′∶M→M′ which is the identity on A and
satisfies f ′(M)∩M = A. Then tp(c/A) has 2k distinct realizations c1, . . . , ck, f ′(c1), . . . , f ′(ck)
in M′, contradiction. �

We recall some classical facts about model-completeness and model companions.

Fact 5.1 ([37], Theorem 6.5.9, Exercise 6.5.5). The following are equivalent:

(1) T admits an ∀∃-axiomatization.
(2) The class of T -models is closed under unions of chains.
(3) The class of T -models is closed under directed colimits (in the category of L-structures

and embeddings).

If one of the above equivalent conditions are satisfied, we say that T is inductive.

Fact 5.2 ([37], Theorem 8.3.3). Every model-complete theory is inductive.

An L-theory T ∗ is amodel companion of T if T ∗ is model-complete, every T -model embeds
into a T ∗-model, and every T ∗-model embeds into a T -model.

Fact 5.3 ([37], Theorem 8.2.1, Theorem 8.3.6). Suppose T is inductive. Then:

(1) Every T -model embeds into an existentially closed T -model.
(2) T has a model companion if and only if the class of existentially closed T -models is

elementary.
(3) If T has a model companion T ∗, then T ∗ is the theory of existentially closed T -models.

Model-completeness has a syntactic equivalent: every L-formula is T -equivalent to an exis-
tential (hence also universal) formula [37, Theorem 8.3.1(e)].

Substructure-completeness also has a syntactic equivalent: quantifier elimination. This fol-
lows from [37, Theorem 8.4.1] and Proposition 5.1 above.

Many of the theories we consider are acl-complete. Unfortunately, there does not seem to be
a natural syntactic equivalent to acl-completeness. We introduce a slightly stronger notion,
bcl-completeness, which does have a syntactic equivalent.
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An L-formula ϕ(x, y) is bounded in y with bound k (with respect to T ) if

T ⊧ ∀x∃⩽ky ϕ(x, y).
A formula ∃y ψ(x, y) is boundedly existential (b.e.) (with respect to T ) if ψ(x, y) is
quantifier-free and bounded in y. We allow y to be the empty tuple of variables, so every
quantifier-free formula is b.e. (with bound k = 1, by convention). The E♭-formulas from
Section 5.1 are also b.e. with bound k = 1 with respect to the empty theory.

Remark 5.3. The class of b.e. formulas is closed (up to T -equivalence) under conjunction:
if ∃y ψ1(x, y1) and ∃y2ψ2(x, y2) are b.e. with bounds k1 and k2 on y1 and y2 respectively,
then (∃y1ψ1(x, y1)) ∧ (∃y2ψ2(x, y2))
is T -equivalent to ∃y1y2 (ψ1(x, y1) ∧ ψ2(x, y2)),
which is b.e. with bound k1 ⋅ k2 on y1y2.

Suppose M ⊧ T and A ⊆ M. The boundedly existential algebraic closure of A in M,
denoted bcl(A), is the set of all b in M such that M ⊧ ∃z ϕ(a, b, z) for some quantifier-free
L-formula ϕ(x, y, z) bounded in yz and some a ∈ Ax.
Remark 5.4. The formula ϕ(x, y, z) is bounded in yz if and only if it is bounded in z

and ∃z ϕ(x, y, z) is bounded in y. As a consequence, b ∈ bcl(A) if and only if b satisfies a
b.e. formula ∃z ϕ(y, z) with parameters from A, which is bounded in y. Such a formula is
algebraic, so bcl(A) ⊆ acl(A).
Lemma 5.2. If A ⊆M then ⟨A⟩ ⊆ bcl(A). Furthermore, bcl is a closure operator.

Proof. Fix A ⊆ M. Suppose b ∈ ⟨A⟩. Then t(a) = b for a term t(x) and a tuple a from A.
Then the formula t(x) = y is b.e. (taking z to be the empty tuple of variables) and bounded
in y (with bound 1), so it witnesses b ∈ bcl(A) by Remark 5.4.

It follows that A ⊆ bcl(A), and it is clear that A ⊆ B implies bcl(A) ⊆ bcl(B). It remains
to show bcl is idempotent.

Suppose b ∈ bcl(bcl(A)). ThenM ⊧ ∃z ϕ(a, b, z) for some quantifier-free formula ϕ(x, y, z)
which is bounded in yz and some tuple a = (a1, . . . , an) from bcl(A). For each 1 ⩽ j ⩽ n, since
aj is in bcl(A), M ⊧ ∃zj ψj(dj, aj, zj) for some quantifier-free formula ψj(wj, xj, zj) which is
bounded in xjzj, and some tuple dj from A.

Then the quantifier-free formula

( n⋀
j=1

ψj(wj, xj, zj)) ∧ ϕ(x1, . . . , xn, y, z)
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is bounded in x1 . . . xnyz1 . . . znz (by the product of the bounds for ϕ and the ψj), and

M ⊧ ∃x1 . . . xnz1 . . . znz ( n⋀
j=1

ψj(dj, xj, zj)) ∧ ϕ(x1, . . . , xn, b, z),
so b ∈ bcl(A). �

Remark 5.5. Every model is acl-closed, every acl-closed set is bcl-closed, and every bcl-
closed set is a substructure, therefore:

QE ⇔ substructure-complete⇒ bcl-complete⇒ acl-complete⇒model-complete.

Theorem 5.1 clarifies the relationship between acl- and bcl-completeness and provides the
promised syntactic equivalent to bcl-completeness.

Theorem 5.1. The following are equivalent:

(1) Every L-formula is T -equivalent to a finite disjunction of b.e. formulas.
(2) T is acl-complete and acl = bcl in T -models.
(3) T is bcl-complete.

Proof. We assume (1) and prove (2). We first show acl and bcl agree. Suppose A ⊆M ⊧ T
and b ∈ acl(A), witnessed by an algebraic formula ϕ(a, y) with parameters a from A. Suppose
there are exactly k tuples in My satisfying ϕ(a, y). Let ϕ′(x, y) be the formula

ϕ(x, y) ∧ ∃⩽ky′ϕ(x, y′),
and note ϕ′(x, y) is bounded in y. By assumption, ϕ′(x, y) is equivalent to a finite disjunction
of boundedly existential formulas, so there is some boundedly existential formula ψ(x, y) such
that T ⊧ ψ(x, y) → ϕ′(x, y) and M ⊧ ψ(a, b). Since ϕ′(x, y) is bounded in y, so is ψ(x, y),
and hence b ∈ bcl(A) by Remark 5.4.

We continue to assume (1) and show T is acl-complete. Suppose A is an algebraically
closed substructure of M ⊧ T and f ∶A → N ⊧ T is an embedding. We show that for
any formula ϕ(x), if M ⊧ ϕ(a), where a ∈ Ax, then N ⊧ ϕ(f(a)). By our assumption,
ϕ(x) is equivalent to a finite disjunction of boundedly existential formulas, so there is some
boundedly existential formula ∃y ψ(x, y) such that

T ⊧ (∃y ψ(x, y)) → ϕ(x) and M ⊧ ∃y ψ(a, y).
Let b ∈My be a witness for the existential quantifier. Then each component of the tuple b is
in acl(a) ⊆ A, since A is algebraically closed. And ψ is quantifier-free, so N ⊧ ψ(f(a), f(b)),
and hence N ⊧ ϕ(f(a)).

It is clear that (2) implies (3).
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We now assume (3) and prove (1). For any finite tuple of variables x, let ∆x be the set
of boundedly existential formulas with free variables from x.

Claim: For all models M and N of T and all tuples a ∈ Mx and a′ ∈ Nx, if tp∆x
(a) ⊆

tp∆x
(a′), then tp(a) = tp(a′).
Proof of claim: Suppose that M and N are models of T , a ∈Mx, a′ ∈ Nx, and tp∆x

(a) ⊆
tp∆x

(a′). Let y be a tuple of variables enumerating the elements of bcl(a) which are not
in a. Let p(x, y) = qftp(bcl(a)), and let q(x) = tp(a′). We claim that T ∪ p(x, y) ∪ q(x) is
consistent.

Let b = (b1, . . . , bn) be a finite tuple from bcl(a) which is disjoint from a, and let ψ(x, y′)
be a quantifier-free formula such that M ⊧ ψ(a, b) (where y′ = (y1, . . . , yn) is the finite
subtuple of y enumerating b).

For each 1 ⩽ j ⩽ n, the fact that bj ∈ bcl(a) is witnessed by M ⊧ ∃zj ϕj(a, bj, zj), where
ϕj(x, yj, zj) is quantifier-free and bounded in yjzj. Letting z = (z1, . . . , zn), the conjunction⋀nj=1ϕj(x, yj, zj) is a quantifier-free formula ϕ(x, y′, z) which is bounded in y′z. It follows
that ϕ(x, y′, z) ∧ ψ(x, y′) is also bounded in y′z, and M ⊧ ∃z (ϕ(a, b, z) ∧ ψ(a, b)). Then

∃y′z (ϕ(x, y′, z) ∧ ψ(x, y′)) ∈ tp∆x
(a) ⊆ tp∆x

(a′),
so N ⊧ ∃y′z (ϕ(a′, y′, z) ∧ ψ(a′, y′)). Letting b′ ∈ Ny′ be a witness for the first block of
existential quantifiers, N ⊧ ψ(a′, b′), so T ∪ {ψ(x, y′)} ∪ q(x) is consistent.

By compactness, T ∪ p(x, y) ∪ q(x) is consistent, so there exists a model N′ ⊧ T , a
tuple a′′ ∈ (N ′)x realizing q(x), and an embedding f ∶bcl(a) → N′ such that f(a) = a′′. By
bcl-completeness, we have tp(a) = tp(a′′) = tp(a′), as was to be shown.

Having established the claim, we conclude with a standard compactness argument. Let
ϕ(x) be an L-formula. Suppose M ⊧ T and M ⊧ ϕ(a). Let pa(x) = tp∆x

(a). By the claim,
T ∪ pa(x) ∪ {¬ϕ(x)} is inconsistent. Since pa(x) is closed under finite conjunctions (up to
equivalence) by Remark 5.3, there is a formula ψa(x) ∈ pa(x) such that T ⊧ ψa(x) → ϕ(x).

Now
T ∪ {ϕ(x)} ∪ {¬ψa(x) ∣ M ⊧ T and M ⊧ ϕ(a)}

is inconsistent, so there are finitely many a1, . . . , an such that T ⊧ ϕ → (⋁ni=1ψai(x)). Since
also T ⊧ (⋁ni=1ψai(x)) → ϕ(x), we have shown that ϕ(x) is T -equivalent to ⋁ni=1ψai(x). �

It may be surprising that acl-completeness does not already imply every formula is equiv-
alent to a finite disjunction of b.e. formulas, i.e., acl-completeness is not equivalent to bcl-
completeness. We give a counterexample.
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Example 5.1. Let L be the language with a single unary function symbol f . We denote by
E(x, y) the equivalence relation defined by f(x) = f(y). We say an element of an L-structure
is special if it is in the image of f . Let T be the theory asserting the following:

(1) Models of T are nonempty.
(2) There are no cycles, i.e., for all n ⩾ 1, ∀xfn(x) ≠ x.
(3) Each E-class is infinite and contains exactly one special element.

Every T -model can be decomposed into a disjoint union of connected components, each
of which is a chain of E-classes, (Cn)n∈Z, such that each class Cn contains a unique special
element an, and f(b) = an for all b ∈ Cn−1.

Let A be a subset of a T -model. Then acl(A) consists of A, together with the Z-indexed
chain of special elements in each connected component which meets A. But bcl(A) is just
the substructure generated by A: it only contains the special elements from E-classes further
along in the chain than some element of A. Indeed, if an is the unique special element in
class Cn, an ∉ A, and no element of A is in any class Cm with m < n in the same connected
component, then an does not satisfy any bounded and b.e. formula with parameters from A.

It is not hard to show that T is acl-complete (and hence complete, since acl(∅) = ∅),
but not bcl-complete. For an explicit example of a formula which is not equivalent to a
disjunction of b.e. formulas, consider the formula

∃y f(y) = x
defining the special elements.

5.3. Existential bi-interpretations

Here we set our notation for interpretations and related notions. We will then show that
existential bi-interpretations preserve the property of being existentially closed, and hence
restrict to bi-interpretations between model companions, when these exist.

Let T be an L-theory, and let T ′ be an L′-theory. An interpretation of T ′ in T , F ∶T ↝ T ′,
consists of the following data:

(1) For every sort s′ in L′, an L-formula ϕs′(xs′) and an L-formula Es′(xs′ , x∗s′).
(2) For every relation symbolR′ in L′ of type (s′1, . . . , s′n) in L′, an L-formula ϕR′(xs′1 , . . . , xs′n).
(3) For every function symbol f ′ in L′ of type (s′1, . . . , s′n) → s′ in L′, an L-formula

ϕf ′(xs′1 , . . . , xs′n , xs′).
We then require that for every model M ⊧ T , the formulas above define an L′-structure
M′ in the natural way, such that M′ ⊧ T ′. See [37, Section 5.3] for details. We sometimes
denote M′ by F (M). For every sort s′ in L′, we write πs′ for the surjective quotient map
ϕs′(M) →M ′

s′ .
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An interpretation F ∶T ↝ T ′ is an existential interpretation if for each sort s′ in L′, the
L-formula ϕs′(xs′) is T -equivalent to an existential formula, and all other formulas involved
in the interpretation and their negations (i.e., the formulas Es′ , ¬Es′ , ϕR′ , ¬ϕR′ , ϕf ′ , and¬ϕf ′) are also T -equivalent to existential formulas.

Lemma 5.3. Suppose F ∶T ↝ T ′ is a existential interpretation. Let ϕ′(y) be a quantifier-free
L′-formula, where y = (y1, . . . , yn) and yi is a variable of sort s′i. Then there is an existential
L-formula ϕ̂(xs′1 , . . . , xs′n) such that for every M ⊧ T and every tuple a = (a1, . . . , an) with
ai ∈ ϕs′i(M), M ⊧ ϕ̂(a) if and only if F (M) ⊧ ϕ′(πs1(a1), . . . , πsn(an)).
Proof. By Corollary 5.1, ϕ′(y) is equivalent to a finite disjunction of E♭ formulas. The rest
of the proof is as in [37, Theorem 5.3.2]. The fact that the formulas Es′ , ¬Es′ , ϕR′ , ¬ϕR′ , ϕf ′ ,
and ¬ϕf ′ are existential implies that flat literal L′-formulas can be pulled back to existential
L-formulas, and the fact that the formulas ϕ′s are existential is used in the inductive step to
handle existential quantifiers. �

A bi-interpretation (F,G, η, η′) between T and T ′ consists of an interpretation F ∶T ↝ T ′,
an interpretation G∶T ′ ↝ T , together with L-formulas and L′-formulas defining for each
M ⊧ T and each N′ ⊧ T ′ isomorphisms

ηM ∶M→ G(F (M)) and η′N′ ∶ N′ → F (G(N′)).
See [37, Section 5.4] for the precise definition. Such a bi-interpretation is existential if F
and G are each existential interpretations, and moreover the aforementioned L-formulas and
L′-formulas are existential. If there is an existential bi-interpretation between T and T ′, we
say that T and T ′ are existentially bi-interpretable. The following is [37, Exercise 5.4.3]:

Lemma 5.4. Suppose F ∶T ↝ T ′ is existential. Then F induces a functor from the category
of models of T and embeddings to the category of models of T ′ and embeddings. Suppose
moreover that (F,G, η, η′) is an existential bi-interpretation from T to T ′. Then the induced
functors form an equivalence of categories; in particular, if f ∶ M → N is an L-embedding,
then the following diagram commutes:

N
ηN // G(F (N))

M

f

OO

ηM // G(F (M))
G(F (f))
OO

We next prove the main result of this section:

Proposition 5.2. Suppose T and T ′ are existentially bi-interpretable. Then M is an exis-
tentially closed model of T if and only if F (M) is an existentially closed model of T ′.
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Proof. Let (F,G, η, η′) be an existential bi-interpretation of between T and T ′. It suffices
to show that if F (M) is an existentially closed model of T ′, then M is an existentially closed
model of T . Indeed, by symmetry it follows that if G(N′) is an existentially closed model of
T , then N′ is an existentially closed model of T ′. And then, since ηM ∶M→ G(F (M)) is an
isomorphism, if M is existentially closed, then F (M) is existentially closed.

So assume that F (M) is an existentially closed model of T ′. Let f ∶M → N be an
embedding of T -models, and let ϕ(y) be a quantifier-free formula with parameters from M

which is satisfied in N. By commutativity of the diagram in Lemma 5.4, after moving the
parameters of ϕ(y) into G(F (M)) by the isomorphism ηM, we find that ϕ(y) is satisfied in
G(F (N)), and it suffices to show that it is satisfied in G(F (M)).

By Lemma 5.3, there is an existential L′-formula ϕ̂′(x) with parameters from F (M)
such that F (N) ⊧ ϕ̂′(a) if and only if G(F (N)) ⊧ ϕ(b), where b is the image of a under
the appropriate πs quotient maps. Writing ϕ̂′(x) as ∃z ψ′(x, z), we have F (N) ⊧ ψ′(a, c)
for some c, where a is any preimage of the tuple from G(F (N)) satisfying ϕ(y). But since
F (M) is existentially closed, there are some a∗ and c∗ in F (M) such that M ⊧ ψ′(a∗, c∗), so
M ⊧ ϕ̂′(a∗), and it follows that ϕ(y) is satisfied in G(F (M)), as desired. �

Corollary 5.2. Suppose T and T ′ are inductive, and T has a model companion T ∗. If(F,G, η, η′) is an existential bi-interpretation between T and T ′, then T ′ has a model com-
panion (T ′)∗, and (F,G, η, η′) restricts to an existential bi-interpretation between T ∗ and(T ′)∗.
Proof. By [37, Theorem 5.3.2], for every L-sentence ϕ ∈ T ∗, there is an L′-sentence ϕ′ such
that for all M′ ⊧ T ′, M′ ⊧ ϕ′ if and only if G(M) ⊧ ϕ. Let (T ′)∗ = T ′ ∪ {ϕ′ ∣ ϕ ∈ T ∗}. Then
M′ ⊧ (T ′)∗ if and only if M′ ⊧ T ′ and G(M′) ⊧ T ∗. By Proposition 5.2, M′ ⊧ (T ′)∗ if and
only if M′ is an existentially closed model of T ′. So (T ′)∗ is the model companion of T ′. And
Proposition 5.2 further implies that M ⊧ T ∗ if and only if F (M) ⊧ (T ′)∗. So (F,G, η, η′)
restricts to an existential bi-interpretation between the model companions. �

5.4. Stationary independence relations

In this section, T is a complete L-theory, L′ is a first order language extending L, and T ′ is a
complete L′-theory extending T . Let M′ be a monster model of T ′ and M be the L-reduct
of M′, so M is a monster model of T .

Let ⫝ be a ternary relation on small subsets of M. We consider the following properties that⫝ may satisfy. The first three are specific to T , while the fourth concerns the relationship
between T and T ′. We let A, B, and C range over arbitrary small subsets of M.

(1) Invariance: If σ is an automorphism ofM, thenA⫝C B if and only if σ(A) ⫝σ(C) σ(B).
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(2) Algebraic independence: If A⫝C B, then

aclL(AC) ∩ aclL(BC) = aclL(C).
(3) Stationarity (over algebraically closed sets): If C = aclL(C), tpL(A/C) = tpL(A∗/C),

A⫝C B, and A∗ ⫝C B, then tpL(A/BC) = tpL(A∗/BC).
(4) Full existence (over algebraically closed sets) in T ′: If C = aclL′(C) then there

exists A∗ with tpL′(A∗/C) = tpL′(A/C) and A∗ ⫝C B in M.

For brevity, we omit the parenthetical “(over algebraically closed sets)” in properties (3) and
(4).

We say ⫝ is a stationary independence relation in T if it satisfies invariance, algebraic
independence, and stationarity. In particular, a stationary independence relation identifies,
for every L-type p(x) ∈ Sx(C) with C = aclL(C) and every set B, a unique “independent”
extension of p(x) in Sx(BC).
Our definition of a stationary independence relation differs from that introduced in [78].
Most natural stationary independence relations satisfy additional axioms (symmetry, mono-
tonicity, etc.). We only require the axioms listed above.

Forking independence ⫝f in a stable theory with weak elimination of imaginaries is the most
familiar stationary independence relation, and this is the relation we will use in most exam-
ples. However, as the next example shows, there are also non-trivial examples in unstable
theories.

Example 5.2. Suppose L contains a single binary relation E, and T is the theory of the
random graph (the Fraïssé limit of the class of finite graphs). Define:

A⫝E
C
B ⇐⇒ A ∩B ⊆ C and aEb for all a ∈ A ∖C and b ∈ B ∖C

A⫝/E
C
B ⇐⇒ A ∩B ⊆ C and ¬aEb for all a ∈ A ∖C and b ∈ B ∖C.

Both ⫝Eand ⫝/Eare stationary independence relations in T .
Now let L′ = {E,P}, where P is a unary predicate, and let T ′ be the theory of the Fraïssé

limit of the class of finite graphs with a predicate P naming a clique. T ′ extends T and has
quantifier elimination, and aclL′(A) = A for all sets A.

Then ⫝E has full existence in T ′. Indeed, for any A, B, and C, let p(x) = tpL′(A/C),
where x = (xa)a∈A is a tuple of variables enumerating A. The type p(x) ∪ {xaEb ∣ a ∈
A∖C and b ∈ B ∖C} is consistent, and for any realization A∗ of this type, we have A∗ ⫝EC B
in M.
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On the other hand, let a and b be any two elements of M′ satisfying P . Then for any
realization a∗ of tpL′(a/∅), we have P (a∗), so a∗Eb, and a∗ ⫝̸/E∅ b in M. So ⫝/Edoes not have
full existence in T ′.
The remainder of this section is devoted to the proof that when T is stable with weak
elimination of imaginaries, the stationary independence relation ⫝f in T always has full
existence in T ′. We first recall some definitions. T has stable forking if whenever a
complete type p(x) over B forks over A ⊆ B, then there is a stable formula δ(x, y) such
that δ(x, b) ∈ p(x) and δ(x, b) forks over A. Every theory with stable forking is simple; the
converse is the Stable Forking Conjecture, which remains open (see [49]).

We recall a few variations on the notion of elimination of imaginaries (see [10]).

(1) T has elimination of imaginaries if every a ∈Meq is interdefinable with some b ∈M,
i.e., a ∈ dcleq(b) and b ∈ dcleq(a).

(2) T has weak elimination of imaginaries if for every a ∈ Meq there is some b ∈ M

such that a ∈ dcleq(b) and b ∈ acleq(a).
(3) T has geometric elimination of imaginaries if every a ∈Meq is interalgebraic with

some b ∈M, i.e., a ∈ acleq(b) and b ∈ acleq(a).
Let δ(x, y) be a formula. An instance of δ is a formula δ(x, b) with b ∈M y, and a δ-formula
is a Boolean combination of instances of δ. A global δ-type is a maximal consistent set
of δ-formulas with parameters from M . We denote by Sδ(M) the Stone space of global
δ-types.

The following lemma is a well-known fact about the existence of weak canonical bases for
δ-types when δ(x, y) is stable.

Lemma 5.5. Suppose T has geometric elimination of imaginaries, and δ(x, y) is a stable
formula. For any q(x) ∈ Sδ(M), there exists a tuple d such that:

(1) q(x) has finite orbit under automorphisms of M fixing d.
(2) d has finite orbit under automorphisms of M fixing q(x).
(3) q(x) does not divide over d.

If T has weak elimination of imaginaries, we can arrange that d is fixed by automorphisms
of M fixing q(x). And if T has elimination of imaginaries, we can further arrange that q(x)
is fixed by automorphisms of M fixing d.

Proof. Let e ∈Meq be the canonical base for q(x). Then q(x) is fixed by all automorphisms
fixing e, e is fixed by all automorphisms fixing q(x), and q(x) does not divide over e. By
geometric elimination of imaginaries, e is interalgebraic with a real tuple d, and (1), (2), and
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(3) follow immediately. The cases when T has elimination of imaginaries or weak elimination
of imaginaries are similar. �

The following lemma is essentially the same idea as [64, Lemma 3], which itself makes use
of key ideas from [40, Lemmas 5.5 and 5.8].

Lemma 5.6. Suppose T has stable forking and geometric elimination of imaginaries. Then⫝f in T has full existence in T ′.
Proof. Suppose towards a contradiction that there exist sets A, B, and C in M′ such that
C = aclL′(C), and for any A∗ with tpL′(A∗/C) = tpL′(A/C), A∗ ⫝̸fC B in M. We may assume
C ⊆ B. Let p(x) = tpL′(A/C). Since T has stable forking, the fact that tpL(A∗/B) forks
over C is always witnessed by a stable L-formula. So the partial type

p(x) ∪ {¬δ(x, b) ∣ δ(x, y) ∈ L is stable, and δ(x, b) forks over C in M}
is not satisfiable in M′. By saturation and compactness, we may assume that A is finite and
x is a finite tuple of variables. And as stable formulas and forking formulas are closed under
disjunctions, there is an L′(C)-formula ϕ(x) ∈ p(x), a stable L-formula δ(x, y), and b ∈M y

such that δ(x, b) forks over C, and

M′ ⊧ ∀x (ϕ(x) → δ(x, b)).
Since forking and dividing agree in simple theories [9, Prop. 5.17], δ(x, b) divides over C.

Let [ϕ] be the set of all δ-types in Sδ(M) which are consistent with ϕ(x). This is a
closed set in Sδ(M): it consists of all global δ-types r(x) such that χ(x) ∈ r(x) whenever
χ(x) is a δ-formula and ϕ(M′) ⊆ χ(M′). In particular, if r(x) ∈ [ϕ], then δ(x, b) ∈ r(x).
Since δ is stable, [ϕ] contains finitely many points of maximal Cantor-Bendixson rank. Let
q(x) be such a point.

Let d be the weak canonical base for q(x) obtained in Lemma 5.5. Since [ϕ] is fixed
setwise by any L′-automorphism fixing C, q(x) has finitely many conjugates under such
automorphisms. It follows that d too has finitely many conjugates, so d ∈ C, as C is alge-
braically closed in M′. But then q(x) does not divide over C, contradicting the fact that
δ(x, b) ∈ q(x). �

Remark 5.6. The following counterexample shows the assumptions of geometric elimination
of imaginaries in T and C = acl(C) in M′ (not just in M) in Lemma 5.6 are necessary. Let
T be the theory of an equivalence relation with infinitely many infinite classes. Let T ′ be the
expansion of this theory by a single unary predicate P naming one of the classes. Let a and b
be two elements of the class named by P in M′, and let C = ∅ (which is algebraically closed
in M and M′). For any a∗ such that tpL′(a∗/∅) = tpL′(a/∅), we have a∗Eb, and xEb forks
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over ∅ in M. To fix this, we move to Meq, so we have another sort containing names for all
the E-classes. Note that acleq(∅) in M still doesn’t contain any of these names. But acleq(∅)
in M′ contains the name for the class named by P , since it is fixed by L′-automorphisms.
And we recover the lemma, since xEb does not fork over the name for the E-class of b.

Remark 5.7. It is also possible for Lemma 5.6 to fail when there are unstable forking
formulas. Let T be be the theory of (Q,<) and T ′ be the expansion of T by a unary
predicate P defining an open interval (p, p′), where p < p′ are irrational reals. Let b1 < a < b2

be elements of M′ such that a ∈ P and b1, b2 ∉ P . Let C = ∅ (which is algebraically closed in
M′). Then for any realization a∗ of tpL′(a/∅), we have a∗ ⫝̸f∅ b1b2 in M, witnessed by the
formula b1 < x < b2.

Remark 5.8. It is not possible to strengthen the conclusion of Lemma 5.6 to the follow-
ing: For all small sets A, B, and C, such that C = aclL′(C), and for any A′′ such that
tpL(A′′/C) = tpL(A/C) and A′′ ⫝fC B in M, there exists A′ with tpL′(A′/C) = tpL′(A/C)
and tpL(A′/BC) = tpL(A′′/BC).

That is, while it is possible to find a realization A′ of tpL′(A/C) such that tpL(A′/BC)
is a nonforking extension of tpL(A/C), it is not possible in general to obtain an arbitrary
nonforking extension of tpL(A/C) in this way.

For a counterexample, consider the theories T and T ′ from Example 5.2 above. T has
stable forking and geometric elimination of imaginaries. Let a and b be elements of the clique
defined by P inM′, and let C = ∅ (which is algebraically closed inM′). Let a′′ be any element
such that M′ ⊧ ¬a′′Eb, and note that a′′ ⫝f∅ b and tpL(a′′/∅) = tpL(a/∅) (there is only one
1-type over the empty set with respect to T ). But for any a′ with tpL′(a′/∅) = tpL′(a/∅),
M′ ⊧ P (a′), so a′Eb, and tpL(a′/b) ≠ tpL(a′′/b).
We have seen that the hypotheses of stable forking (and hence simplicity) and geometric
elimination of imaginaries in T are sufficient to ensure that ⫝f has full existentence in T ′,
with no further assumptions on T ′. But we would also like ⫝f to be a stationary independence
relation in T .

In a simple theory T , ⫝f satisfies stationarity over acleq-closed sets if and only if T is stable [9,
Ch. 11]. And a stable theory has weak elimination of imaginaries if and only if it has
geometric elimination of imaginaries and ⫝f satisfies stationarity over acl-closed sets [10,
Prop. 3.2 and 3.4]. So stability with weak elimination of imaginaries is the natural hypothesis
on T in the following proposition.

Proposition 5.3. If T is stable with weak elimination of imaginaries, then ⫝f is a stationary
independence relation in T which has full existence in T ′.
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5.4.1. NSOP1. Dzamonja and Shelah [29] introduced NSOP1. Let ⩽ be the lexicographic
order on 2<ω and let νη̂ be the usual concatenation of ν, η ∈ 2<ω. Let T be a theory. A
formula ϕ(x; y) has SOP1 (relative to T ) if there are tuples (aη)η∈2<ω in a model of T such
that:

(1) ν 0̂ ⩽ η implies {ϕ(x;aη), ϕ(x;aν 1̂)} is inconsistent for all ν, η ∈ 2<ω,
(2) {ϕ(x;aσ∣n) ∣ n ∈ ω} is consistent for all σ ∈ 2ω.

We say that T is NSOP1 if no formula has SOP1 relative to T .

We recall the definition of Kim independence, due to Ramsey, and review some foundational
results, most of which are due to Kaplan and Ramsey. Suppose T is complete, let M be a
monster model of T , and let M ≼M be a small submodel.

A global type q(y) ∈ Sy(M) is M-invariant if for any formula ψ(y, z) and any elements
c ≡M c′ of M z, we have ψ(y, c) ∈ q if and only if ψ(y, c′) ∈ q. A sequence (bi)k∈ω is a Morley
sequence for q over M if bk realizes the restriction of q(y) to Mb0 . . . bk−1 for all i. Suppose
q(y) is a global M -invariant type extending tp(b/M) and (bi)i∈ω is a Morley sequence for q
over M . The formula ϕ(x, b) q-divides over M if {ϕ(x, bi)}i∈ω is inconsistent. The formula
ϕ(x, b) Kim divides over M if it q-divides over M for some global M -invariant type q
extending tp(b/M). A formula Kim forks over M if it implies a disjunction of formulas
which Kim divide over M . We write A⫝KM B (read “A is Kim independent from B over M ”)
to mean that no formula in tp(A/MB) Kim forks over M .

These definitions are made over a submodel M of M, rather than over an arbitrary small set
A of parameters, as a type over A need not extend to a global A-invariant type.

Theorem 5.2 ([44] Theorem 3.15). Suppose T is NSOP1. If ϕ(x, b) q-divides for some global
M-invariant type q extending tp(b/M), then ϕ(x, b) q-divides for every global M-invariant
type q extending tp(b/M).
Theorem 5.2 is a version of Kim’s lemma for Kim independence in NSOP1 theories. Kim’s
lemma was originally proven for forking in simple theories.

Theorem 5.3 ([44] Proposition 3.19). Suppose T is NSOP1. If ϕi(x, bi) Kim divides over
M for all 1 ⩽ i ⩽ n, then ⋁ni=1ϕi(x, bi) Kim divides over M .

Theorem 5.3 shows Kim forking and Kim dividing agree.

Theorem 5.4 ([44] Corollary 5.17). If T is NSOP1, then for all A,B and submodels M ,

A⫝K
M
B if and only if acl(MA) ⫝K

M
acl(MB).
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Theorem 5.5 below characterizes simple theories among NSOP1 theories. Kim independence
satisfies base monotonicity over models if a⫝KM Nb implies a⫝KN b for all M ≼ N .

Theorem 5.5. Suppose T is NSOP1. Then the following are equivalent:

(1) T is simple,
(2) ⫝fM = ⫝KM for all submodels M .
(3) T is NTP2,
(4) Kim independence satisfies base monotonicity over models.

The equivalence of (1), (2), and (4) above follows from Proposition 8.4 and Proposition 8.8
of [44]. The equivalence of (1) and (3) is Corollary 8.5 of [44], but it also follows immediately
from the well-known facts that a non-simple theory has TP1 or TP2 [69], any NSOP1 theory
is NSOP2 [29], and NTP1 is equivalent to NSOP2 [47].

Theorem 5.6 ([44] Theorem 9.1). Suppose ⫝ satisfies the following for all A,A′,B,B′ and
all submodels M,M ′:
(1) Invariance: If A⫝M B and MAB ≡M ′A′B′, then A′ ⫝M ′ B′.
(2) Existence: A⫝MM

(3) Monotonicity: If A⫝M B and A′ ⊆ A and B′ ⊆ B, then A′ ⫝M B′.
(4) Symmetry: If A⫝M B, then B ⫝M A.
(5) The independence theorem: If A ≡M A′, A⫝M B, A′ ⫝M C, and B ⫝M C, then

there exists A′′ such that A′′ ≡MB A, A′′ ≡MC A′, and A′′ ⫝M BC.
(6) Strong finite character: If A⫝̸M B, then there is a formula ϕ(x, b,m) ∈ tp(A/MB)

such that for any c such that M ⊧ ϕ(c, b,m), we have c⫝̸M b.

Then T is NSOP1. If ⫝ additionally satisfies

(7) Witnessing: If A⫝̸M B, then there is a formula ϕ(x, b,m) ∈ tp(A/MB) which Kim
divides over M .

Then ⫝M = ⫝KM for all M .

Theorem 5.6 gives a positive axiomatic characterization of NSOP1. An earlier version of this
criterion appeared in [18].

Remark 5.9. If T is NSOP1, then Kim independence satisfies all of the properties in The-
orem 5.6. The only nontrivial properties are symmetry ([44] Theorem 5.16) and the inde-
pendence theorem ([44] Theorem 6.5).

Now suppose, that L ⊆ L′, T is a complete L-theory, T ′ is a complete L′-theory extending T ,
and M and M′ are monster models of T and T ′, respectively. We consider the relationship
between independence in M and M′.
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It is not clear from the definition that Kim dividing is preserved under reducts, since the
property of being an M -invariant type is not preserved under reducts in general. However,
Theorem 5.2 shows that Kim dividing is always witnessed by q-dividing for a global type q
which is finitely satisfiable in M , and this property is preserved under reducts. This gives
us the following lemma.

Lemma 5.7. If T ′ is NSOP1 then:

(1) T is NSOP1.
(2) Let M ≼M′, and let ϕ(x, b) be an L-formula. Then ϕ(x, b) Kim divides over M in M

if and only if it Kim divides over M in M′.
(3) Kim independence is preserved by reducts: if A⫝KM B in M′, then also A⫝KM B in M.

Proof. For (1), the fact that NSOP1 is preserved by reducts is clear from the definition:
any formula with SOP1 relative to T also has SOP1 relative to T ′.

For (2), fix a global L′-type q′ extending tpL′(b/M), which is finitely satisfiable in M

(henceM -invariant). Let (bi)i∈ω be a Morley sequence for q′ overM . Let q be the restriction
of q′ to L. Then q is also finitely satisfiable inM (henceM -invariant) and extends tpL(b/M),
and (bi)i∈ω is a Morley sequence for q over M . By Theorem 5.2 and (1), ϕ(x, b) Kim divides
over M in M if and only if {ϕ(x, bi)}i∈ω is inconsistent if and only if ϕ(x, b) Kim divides
over M in M′.

For (3), suppose A⫝KM B in M′. Then no formula in tpL′(A/MB) Kim divides over M
in M′, so in particular, by (2), no formula in tpL(A/MB) Kim divides over M in M. So
A⫝KM B in M. �

Define the relation ⫝r, independence in the reduct, in M′:
a⫝r

C
b⇔ acl′(Ca) ⫝f

acl′(C)acl′(Cb) in M

where acl′ is the algebraic closure operator in M′.
Note that if L is the language of equality and T is the theory of an infinite set then ⫝r = ⫝a
in M′, where ⫝a is algebraic independence:

a⫝a
C
b⇔ acl(Ca) ∩ acl(Cb) = acl(C).

Strengthened versions of extension and the independence theorem, adding additional in-
stances of algebraic independence to the conclusion, were established for Kim independence
in NSOP1 theories in [52]. Theorem 5.7 is a modified version of these results, with ⫝a
replaced by ⫝r, and additional hypotheses on T coming from Proposition 5.3. The proof will
be given in [53].

94



Theorem 5.7. Suppose T ′ is NSOP1 and T is simple with stable forking and geometric
elimination of imaginaries. Then we have the following:

(1) Reasonable extension: For all a⫝KM b and for all c, there exists a′ such that a′ ≡Mb a,
a′ ⫝KM bc, and a′ ⫝rMb c;

(2) Reasonable independence: If a⫝KM b, a′ ⫝KM c, b⫝KM c, and a ≡M a′, then there exists
a′′ such that a′′ ≡Mb a, a′′ ≡Mc a′, and a′′ ⫝KM bc, and further a⫝rMc b, a⫝rMb c, and
b⫝rMa c.
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CHAPTER 6

Interpolative structures and interpolative fusions

In addition to the notation convention of Chapter 5, we also assume the following throughout
this chapter. let L∩ be a language and let (Li)i∈I be a nonempty family of languages, all
with the same set S of sorts, such that Li ∩ Lj = L∩ for all distinct i, j ∈ I. Let Ti be a
(possibly incomplete) Li-theory for each i ∈ I, and assume that each Ti has the same set T∩
of L∩-consequences. This assumption is quite mild: given an arbitrary family of Li-theories(Ti)i∈I , we can extend each Ti with the set of all L∩-consequences of ⋃i∈I Ti. Set

L∪ = ⋃
i∈I Li and T∪ = ⋃

i∈I Ti,
and assume that T∪ is consistent. Alternatively, we could assume that T∩ is consistent, as
these two assumptions are equivalent by Corollary 6.1 below and the assumption that the
theories Ti have the same set of T∩-consequences.
Let M∪ be an L∪-structure. Suppose J ⊆ I is finite and Xi ⊆Mx is Mi-definable for all i ∈ J .
Then (Xi)i∈J is separated if there is a family (X i)i∈J of M∩-definable subsets of Mx such
that

Xi ⊆X i for all i ∈ J,and ⋂
i∈JX

i = ∅.
We say M∪ is interpolative if for all families (Xi)i∈J such that J ⊆ I is finite and Xi ⊆Mx

is Mi-definable for all i ∈ J , (Xi)i∈J is separated if and only if ⋂i∈J Xi ≠ ∅. Note that this
generalizes the setting in the introduction.

When the class of interpolative T∪-models is elementary, we denote the theory of this class
by T ∗∪ and call it the interpolative fusion of (Ti)i∈I over T∩. In this case, we say that “T ∗∪
exists”.

Remark 6.1. The notion of interpolative structure is rather robust. If we change languages
in a way that does not change the class of definable sets (with parameters), then the class
of interpolative L∪-structures is not affected. In particular:

(1) An interpolative structure M∪ remains so after adding new constant symbols naming
elements of M to all the languages L◻ for ◻ ∈ I ∪ {∪,∩}.

(2) Suppose L♢◻ is a definitional expansion of L◻ for ◻ ∈ I ∪ {∩}, L♢i ∩ L♢j = L♢∩ for distinct
i and j in I, and L♢∪ = ⋃i∈I L♢i is the resulting definitional expansion of L∪. Then any
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L∪-structure M∪ has a canonical expansion M♢∪ to an L♢∪-structure. And M∪ is an
interpolative L∪-structure if and only if M♢∪ is an interpolative L♢∪-structure.

(3) An interpolative M∪-structure remains so after replacing each function symbol f in
each of the languages L◻ for ◻ ∈ I ∪ {∪,∩} by a relation symbol Rf , interpreted as the
graph of the interpretation of f in M∪.

(4) Suppose M∪ is an L∪-structure. Moving to M
eq∩ involves the introduction of new sorts

and function symbols for quotients by L∩-definable equivalence relations on M . For all◻ ∈ I∪{∪,∩}, let L∩−eq◻ be the language obtained by adding these new sorts and function
symbols to L◻ (note that we do not add quotients by Li-definable equivalence relations),
and let M∩−eq◻ be the natural expansion of M◻ to L∩−eq◻ . Then M∪ is interpolative if and
only if M∩−eq∪ is interpolative. This follows from the fact that if X◻ is an M

∩−eq◻ -definable
set in one of the new sorts, corresponding to the quotient of Mx by an L∩-definable
equivalence relation, then the preimage of X◻ under the quotient is M◻-definable.

The name “interpolative fusion” is inspired by a connection to the classical Craig interpolation
theorem, which we recall now (see, for example, [37, Theorem 6.6.3]). It is well-known that
in the context of first-order logic, the Craig interpolation theorem is equivalent to Robinson’s
joint consistency theorem.

Theorem 6.1. Suppose L1 and L2 are first order languages with intersection L∩ and ϕi

is an Li-sentence for i ∈ {1,2}. If ⊧ (ϕ1 → ϕ2) then there is an L∩-sentence ψ such that⊧ (ϕ1 → ψ) and ⊧ (ψ → ϕ2). Equivalently: {ϕ1, ϕ2} is inconsistent if and only if there is an
L∩-sentence ψ such that ⊧ (ϕ1 → ψ) and ⊧ (ϕ2 → ¬ψ).
We make extensive use of the following easy generalization of Theorem 6.1.

Corollary 6.1. For each i ∈ I, let Σi(x) be a set of Li-formulas. If ⋃i∈I Σi(x) is inconsistent,
then there is a finite subset J ⊆ I and an L∩-formula ϕi(x) for each i ∈ J such that:

Σi(x) ⊧ ϕi(x) for all i ∈ J,and {ϕi(x) ∣ i ∈ J} is inconsistent.

Proof. Using the standard trick of introducing a new constant for each free variable, we
reduce to the case when x is the empty tuple of variables. We may also assume that the
sets Σi are closed under conjunction. By compactness, if ⋃i∈I Σi is inconsistent, then there
is a nonempty finite subset J ⊆ I and a formula ϕi ∈ Σi for all i ∈ J such that {ϕi ∣ i ∈ J} is
inconsistent.

We argue by induction on the size of J . For the sake of notational simplicity, we suppose
J = {1, . . . , n}. If n = 1, then we choose ϕ1 to be the contradictory L∩-formula �. Suppose
n ⩾ 2. Then (ϕ1 ∧ . . . ∧ ϕn−1) is an (L1 ∪ . . . ∪Ln−1)-sentence and the set

{(ϕ1 ∧ . . . ∧ ϕn−1), ϕn} is inconsistent.
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Applying Theorem 6.1, we get a sentence ψ in Ln ∩ (L1 ∪ . . . ∪Ln) = L∩ such that

⊧ (ϕ1 ∧ . . . ∧ ϕn−1) → ψ and ⊧ ϕn → ¬ψ.
Then {ϕi ∧ ¬ψ ∣ i ⩽ n − 1} is inconsistent and ϕi ∧ ¬ψ is an Li-sentence for 1 ⩽ i ⩽ n − 1.
Applying induction, we choose for each 1 ⩽ i ⩽ n − 1 an L-sentence θi such that

⊧ (ϕi ∧ ¬ψ) → θi for all 1 ⩽ i ⩽ n − 1,and ⊧ ¬(θ1 ∧ . . . ∧ θn−1).
Finally, set ϕi to be (ψ ∨ θi) for 1 ⩽ i ⩽ n − 1 and ϕn to be ¬ψ. It is easy to check that all
the desired conditions are satisfied. �

The following consistency condition for types follows immediately from Corollary 6.1. This
is the generalization to our context of Robinson’s joint consistency theorem.

Corollary 6.2. Let p(x) be a complete L∩-type, and for all i ∈ I, let pi(x) be a complete
Li-type such that p(x) ⊆ pi(x). Then ⋃i∈I pi(x) is consistent.

The following lemma says that any family of definable sets which is not separated has
“potentially” nonempty intersection.

Lemma 6.1. Let M∪ be an L∪-structure, and suppose J ⊆ I is finite and Xi ⊆ Mx is Mi-
definable for all i ∈ J . The family (Xi)i∈J is separated if and only if for every L∪-structure
N∪ such that Mi ≼ Ni for all i ∈ I, ⋂i∈J Xi(N∪) = ∅.
Proof. Suppose (Xi)i∈J is separated. Then there are M∩-definable X1, . . . ,Xn such that
Xi ⊆ X i for all i ∈ J and ⋂i∈J Xn = ∅. Suppose N∪ is a T∪-model satisfying Mi ≼ Ni for all
i ∈ I. Then Xi(N∪) ⊆X i(N∪) for all i ∈ J and ⋂i∈J X i(N∪) = ∅, so also ⋂i∈J Xi(N∪) = ∅.

Conversely, suppose that for every L∪-structure N∪ such that Mi ≼ Ni for all i ∈ I,⋂i∈J Xi(N∪) = ∅. For each i ∈ J , let ϕi(x, b) be an Li(M)-formula defining Xi. Then the
partial type ⋃

i∈I Ediag(Mi) ∪⋃
i∈J ϕi(x, b) is inconsistent.

By compactness, there is a finite subset J ′ ⊆ I with J ⊆ J ′, a finite tuple c ∈ My and a
formula ψi(b, c) ∈ Ediag(Mi) for each i ∈ J ′ such that

{ψi(b, c) ∣ i ∈ J ′} ∪ {ϕi(x, b) ∣ i ∈ J} is inconsistent.

Let ϕi be the true formula ⊺ when i ∈ J ′ ∖ J , and define ϕ′i(x, y, z) = ϕi(x, y) ∧ ψi(y, z) for
all i ∈ J ′. Note that since Mi ⊧ ψi(b, c),

ϕi(M∪, b) = ϕ′i(M∪, b, c).
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Applying Lemma 6.1, we obtain an an inconsistent family {θi(x, y, z) ∣ i ∈ J ′} of L∩-formulas
such that ⊧ ϕ′i(x, y, z) → θi(x, y, z) for each i ∈ J ′. It follows that

ϕi(M∪, b, c) ⊆ θi(M∪, b, c) for all i ∈ J ′, and ⋂
i∈J ′ θi(M∪, b, c) = ∅.

But since ϕi(M∪, b, c) =Mx when i ∈ J ′ ∖ J , and also θi(M∪, b, c) =Mx when i ∈ J ′ ∖ J . So
already ⋂i∈J θi(M∪, b, c) = ∅, and the family (θi(M∪, b, c))i∈J separates (Xi)i∈J . �

We now show that interpolative models of T∪ can be thought of as “relatively existentially
closed” models of T∪, and the interpolative fusion T ∗∪ can be thought of as the “relative model
companion” of T∪.

Theorem 6.2. Suppose M∪ is a model of T∪.
(1) M∪ is interpolative if and only if for all N∪ such that Mi ≼ Ni for all i ∈ I,

N∪ ⊧ ∃xϕ∪(x) implies M∪ ⊧ ∃xϕ∪(x)
whenever ϕ∪(x) is a Boolean combination of Li-formulas with parameters from M .

(2) There exists an interpolative L∪-structure N∪ such that M∪ ⊆ N∪, and Mi ≼ Ni for all
i ∈ I.

(3) If T ∗∪ exists, M∪ ⊧ T ∗∪ , N∪ ⊧ T ∗∪ , and Mi ≼ Ni for all i ∈ I, then M ≼ N.

Proof. Part (1) is a restatement of Lemma 6.1. Part (2) can be proven by an elementary
chain argument, similar to the proof of Fact 5.3(1), by iteratively applying Lemma 6.1 to
add solutions to families of definable sets which are not separated.

We now prove part (3), assuming T ∗∪ exists. By Morleyizing each Ti, and replacing each
function symbol with its graph, we can arrange for each i ∈ I that Ti admits quantifier-
elimination and Li only contains relation symbols, without changing the class of interpola-
tive structures or the relation of elementary substructure (see [37, Theorem 2.6.5] and Re-
mark 6.1, and see Section 9.4 below for a more careful treatment of Morleyization). Then,
since each Ti is model-complete, whenever M∪ ⊆ N∪ are both models of T∪, we have

Mi ≼ Ni for all i ∈ I.
And since there are no function symbols in L∪, every quantifier-free L∪-formula is logically
equivalent to a Boolean combination of Li-formulas. So it follows from (1) that M∪ is
interpolative if and only if it is existentially closed in the class of T∪-models. By Facts 5.1
and 5.2, each Ti has an axiomatization by ∀∃-sentences, so T∪ does too. Hence T∪ is inductive
and Fact 5.3 applies: T ∗∪ is the model companion of T∪. The desired conclusion then follows
from model-completeness of T ∗∪ . �
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The proof of Proposition 6.2 shows that if Ti admits quantifier eliminations and Li only
contains relation symbols for each i ∈ I, then the interpolative models of T∪ are just its exis-
tentially closed models of T∪ and the interpolative fusion of T∪ is just its model companion.
This is also true in a slightly more general situation.

Remark 6.2. Any flat literal L∪-formula (see Section 5.1) is an Li-formula for some i ∈ I.
This trivial observation has two important consequences:

(1) If ϕ(x) is a flat L∪-formula, then there is some finite J ⊆ I and a flat Li-formula ϕi(x)
for all i ∈ J such that ϕ(x) is logically equivalent to ⋀i∈J ϕi(x).

(2) If A∪ is an L∪-structure, then fdiag(A∪) = ⋃i∈I fdiagLi(Ai).
Theorem 6.3. Suppose each Ti is model-complete. Then M∪ ⊧ T∪ is interpolative if and
only if it is existentially closed in the class of T∪-models. Hence, T ∗∪ is precisely the model
companion of T∪, if either of these exists.

Proof. We prove the first statement. Let M ⊧ T∪ be existentially closed. Suppose J ⊆ I is
finite and ϕi(x) is an Li(M)-formula for each i ∈ J such that (ϕi(M))i∈J is not separated.
We may assume each ϕi(x) is existential as Ti is model-complete. Lemma 6.1 gives a T∪-
model N extending M such that N ⊧ ∃x ⋀i∈J ϕi(x). As M is existentially closed and each ϕi
is existential, we have M ⊧ ∃x ⋀i∈J ϕi(x). Thus M is interpolative.

Now suppose M ⊧ T∪ is interpolative. Suppose ψ(x) is a quantifier-free L∪(M)-formula
and N is a T∪-model extending M such that N ⊧ ∃xψ(x). Applying Corollary 5.1, ψ(x) is
logically equivalent to a finite disjunction of E♭-formulas ⋁nk=1 ∃yk ψk(x, yk). Then for some
k, N ⊧ ∃x∃yk ψk(x, yk). By Remark 6.2, the flat L∪(M)-formula ψk(x, yk) is equivalent to
a conjunction ⋀i∈J ϕi(x, yk) where J ⊆ I is finite and ϕi(x, yk) is a flat Li(M)-formula for
each i ∈ J . So N ⊧ ∃x∃yk ⋀i∈J ϕi(x, yk). As each Ti is model-complete, we have Mi ≼ Ni

for all i ∈ I. By Lemma 6.1, the sets defined by ϕi(x, yk) are not separated, and since M is
interpolative, M ⊧ ∃x∃yk ⋀i∈J ϕi(x, yk). So M ⊧ ∃x∃ykψk(x, yk), and M ⊧ ∃xψ(x).

By Facts 5.1 and 5.2, each Ti has an axiomatization by ∀∃-sentences, so T∪ does too.
Hence T∪ is inductive and Fact 5.3 applies. The second statement then follows from the first
statement. �
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CHAPTER 7

Examples of interpolative fusions

In this chapter, we continue to adopt the notational conventions of Chapter 6. We show
that several theories previously studied in the literature are interpolative fusions or bi-
interpretable with interpolative fusions. This can be explained by two phenomena:

(1) Model theorists often study model companions of theories of interest.
(2) Many natural theories are either equal to or bi-intepretable with a union of two or more

simpler theories.

If a theory T is a union of model-complete theories, then Theorem 6.3 identifies the model
companion of T with the interpolative fusion of these theories. It turns out that the context
of interpolative fusions includes a wider breadth of examples than one might initially expect,
since Corollary 5.2 implies that if T is merely existentially bi-interpretable with a union
of model-complete theories, then the model companion of T is existentially bi-interpretable
with the interpolative fusion of these theories.

The general theory of interpolative fusions developed in Chapters 8 and 9 will allow us to
recover many known results about these examples.

7.1. Disjoint unions of theories

In this section we assume L∩ = ∅, so the languages Li are pairwise disjoint. Note that
equality is a primitive logical symbol, so T∩ is the theory of a (usually infinite) set with
equality. The following result is proven in Winkler’s thesis [89].

Theorem 7.1. Suppose each Ti is model-complete and eliminates ∃∞. Then T∪ has a model
companion.

By Theorem 6.3, the model companion in this case is precisely T ∗∪ . So Theorem 7.1 provides
us with the simplest class of interpolative fusions. Since we can Morleyize each theory Ti
without changing the class of interpolative models (see Remark 6.1), we can do without the
assumption of model-completeness.

Corollary 7.1. Suppose Ti eliminates ∃∞. Then T ∗∪ exists.

A special case is the expansion by a generic unary predicate defined in [11] and [28]. This
deserves special mention as it often serves as a good toy example.
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Suppose L is a one-sorted language, M is an infinite L-structure, and P is a unary predicate
on M which is not in L. An M-definable set X ⊆Mn is said to be large if there is a tuple(a1, . . . , an) ∈X(M) such that

ai ∉M for all i and ai ≠ aj for all i ≠ j.
The predicate P is generic if and only if the following holds: For every large M-definable
X ⊆Mn and every S ⊆ {1, . . . , n}, there exists (a1, . . . , an) ∈X such that for all 1 ⩽ k ⩽ n,

ak ∈ P if and only if k ∈ S.
Equivalently, every large M-definable subset of Mn intersects every subset of the form S1 ×
. . . × Sn where Si ∈ {P,M ∖ P} for 1 ⩽ i ⩽ n.
Let Lu = L∪{P}. Let T be an L-theory with no finite models, and let Tu be T viewed as an
Lu-theory, so that the models of Tu are the Lu-structures (M, P ), where M ⊧ T and P is an
arbitrary predicate on M. The following is shown in [11].

Theorem 7.2. Suppose T is model-complete and eliminates ∃∞. Then Tu has a model
companion T ∗

u . Moreover, the models of T ∗
u are precisely the Lu-structures (M, P ), where

M ⊧ T and P is a generic predicate on M.

We can realize T ∗
u as an interpolative fusion of two theories in disjoint languages as follows.

Let I = {1,2}, L1 = L, and L2 = {P}. Then we have L∩ = ∅ and L∪ = Lu. Let T1 = T , and let
T2 be the L2-theory such that (M ;P ) ⊧ T2 if and only if P ⊆M is both infinite and coinfinite.
It is easy to see that T1 and T2 have a common set of L∩-consequences T∩, which is simply
the theory of infinite sets. The theory T∪ properly extends Tu, and every model of Tu can
be embedded into a model of T∪, so T ∗

u is also the model companion of T∪. The theory T1 is
model-complete by assumption, and it is also easy to check that T2 is model-complete. So
T ∗∪ = T ∗

u by Theorem 6.3.

By Morleyization, we get the following restatement of Theorem 7.2 in our context, without
assuming model-completeness.

Corollary 7.2. Suppose T1 is an L1-theory which eliminates ∃∞, and T2 is the theory of
an infinite and coinfinite predicate in the language L2 = {P}. Then T ∗∪ exists. Moreover,
the models of T ∗∪ are precisely the L∪-structures (M, P ), where M ⊧ T and P is a generic
predicate on M.

7.2. Fields with multiple independent valuations

The theory of algebraically closed fields with multiple independent valuations studied in
[82, 43] is an interpolative fusion of copies of the theory ACVF of algebraically closed
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valued fields. This is one instance of a large class of examples coming from expansions of
algebraically closed fields by extra structure (e.g. valuations, derivations, automorphisms,
etc.) in multiple independent ways.

A valuation v on a field K is trivial if the v-topology on K is discrete, equivalently if every
element of K lies in the valuation ring of v. In this section, all valuations are non-trivial.
Two valuations are independent if they induce distinct topologies.

Suppose K is a field and (vi)i∈I is a family of valuations on K. For i ∈ I, let Ri be the
valuation ring {a ∈ K ∶ vi(a) ⩾ 0} of vi. Note that vi can be recovered from its valuation
ring Ri. We view K as a structure in a language consisting of the language of rings together
with a unary predicate naming Ri for each i ∈ I. We set this to be our L∪. Then L∩ is the
language of rings, and Li = L∩ ∪ {Ri} for each i ∈ I. Note that the only difference between
Li and Lj when i ≠ j is the name of the relation symbol.

Let each Ti be the Li-theory of algebraically closed valued fields, and let T∩ be the common
set of L∩-consequences of Ti for i ∈ I. By well-known results about algebraically closed
valued fields (often treated in slightly different languages), each Ti is model-complete; see
for example [36, Theorem 2.1.1]. Hence, T ∗∪ is the model companion of T∪ if either of these
exist by Theorem 6.3.

The following Theorem 7.3 can be found in [43]. The first statement is a special case of [81,
3.1.6], so this was known earlier.

Theorem 7.3. T∪ has a model companion T ∗∪ . Moreover, (K, (Ri)i∈I) is a model of T ∗∪ if
and only if (K; (Ri)i∈I) ⊧ T∪ and the valuations (vi)i∈I are pairwise independent.

Let T −
i be the Li-theory of valued fields for i ∈ I, and let T −∪ = ⋃i∈I T −

i . As every valuation
on a field can be extended to a valuation on its algebraic closure, every model of T −∪ can be
embedded into a model of T∪. So T ∗∪ is also the model companion of T −∪ .

7.3. The group of integers with p-adic valuations

In a similar spirit, we can consider the additive group of integers (Z; 0,+,−) equipped with
multiple p-adic valuations, as studied in [24].

Let I be the set of primes. We let vp be the p-adic valuation on Z for p ∈ I, and declare
k ≼p l if vp(k) ⩽ vp(l). Note that vp can be recovered from ≼p. We view Z as a structure in
a language extending the language of additive groups by a binary relation ≼p for each prime
p. This is our L∪. Then we set L∩ to be the language of additive groups and Lp = L∩ ∪ {≼p}
for each p ∈ I.
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For p in I, set Tp = Th(Z,0,+,−,≼p). Then the theories Tp with p ∈ I have a common set of
L∩-consequences, which is simply Th(Z; 0,+,−). The theory Tp is model-complete. This was
proven independently by Guingnot [33] and Mariaule [57], but it can also be deduced from
a more general result in [24]. By Theorem 6.3, T ∗∪ is the model companion of T∪, if either
of these exists. The following was shown in [24].

Theorem 7.4. T∪ is model-complete, and so T∪ = T ∗∪ .

This naturally raises the following question.

Question. When is a union of model-complete theories model-complete? In other words,
under what conditions on the theories Ti is every model of T∪ interpolative?

See Example 9.2 below for another example of this phenomenon.

7.4. Fields with multiplicative circular orders

The next example was considered by the second author in [79], and the original motivation
for developing a general theory of interpolative fusions came from the idea of unifying this
example with the examples in Section 7.2. This example illustrates that interpolative fusions
can arise naturally in contexts often described as “pseudo-random” in mathematics. Here,
the pseudo-randomness comes from number-theoretic results on character sums over finite
fields.

A circular order on an abelian group G is a ternary relation ◁ on G which is invariant
under the group operation and satisfies the following for all a, b, c ∈ G:

(1) If ◁(a, b, c), then ◁(b, c, a).
(2) If ◁(a, b, c), then not ◁(c, b, a).
(3) If ◁(a, b, c) and ◁(a, c, d), then ◁(a, b, d).
(4) If a, b, c are distinct, then either ◁(a, b, c) or ◁(c, b, a).
An example to keep in mind is the multiplicative group T of complex numbers with norm
1, thought of as the unit circle in the complex plane, together with the circular order ◁+ of
positive orientation.

Amultiplicative circular order on a field F is a circular order on the multiplicative group
F ×, viewed as a ternary relation on F . Let ACFO− be the theory whose models are (F,◁),
where F is an algebraically closed field (viewed as a structure in the language of rings), and◁ is multiplicative circular order on F . The following result is essentially shown in [79].
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Theorem 7.5. ACFO− has a model companion ACFO. Moreover, if Fp is the field-theoretic
algebraic closure of the prime field of characteristic p > 0, and ◁ is any multiplicative circular
order on Fp, then (Fp,◁) is a model of ACFO.

It can be shown that for any multiplicative circular order ◁ on Fp, there is an injective group
homomorphism χ ∶ F×p → T such that ◁ is the preimage of ◁+, i.e.,

◁(a, b, c) if and only if ◁+ (χ(a), χ(b), χ(c)) for a, b, c ∈ F×p .
The proof of the second statement of Theorem 7.5 in [79] proceeds by exploiting this con-
nection and results on character sums over finite fields mentioned earlier.

We next explain how to realize ACFO as an interpolative fusion. Let L∪ = {+,−,×,0,1,◁}
be the language of ACFO. Let L1 = {+,−,×,0,1} be the language of rings, and let L2 ={×,0,1,◁}. Then L∩ = L1 ∩L2 = {×,0,1}.
Let T1 be ACF, and let T2 be the L2-consequences of ACFO. Then ACFO− ⊆ T∪ and
T∪ ⊆ ACFO, and so ACFO is the model companion of T∪. Each completion of the theory
T2 is model complete, and T1 and T2 have the same set of L∩-consequences; see [79] for the
details. Thus T ∗∪ = ACFO.

In fact, the proof of the existence of the model companion ACFO in [79] proceeded by devel-
oping a notion of interpolative model of ACFO− (called “generic” in [79]) and concluding that
the interpolative fusion (the theory ACFO of the “generic” models) is the model companion
of ACFO−. So the story here is told backward.

We end with a few remarks.

Remark 7.1. The reader might wonder why we do not consider fields with additive cyclic
orders. An infinite field of characteristic p > 0 does not admit an additive circular order,
because every element is p-torsion. In characteristic 0, the theory of algebraically closed
fields with an additive circular order is consistent, but we believe that it does not have a
model companion.

We also expect that some aspects of the results above still hold if we replace the role
of the theory of algebraically closed fields with the theory of pseudo-finite fields. Note that
in this case T ∗∪ is not model-complete in its natural language, as the theory of pseudo-finite
fields is not model-complete in the language of rings. Hence, this would be a natural example
of an interpolative fusion which is not a model companion.
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7.5. Skolemizations

In this section, we treat another construction from Winkler’s thesis [89]. Let L be a one-
sorted language, and let T be an L-theory with only infinite models. Suppose ϕ(x, y) is an
L-formula, where y is a single variable and x is a tuple of variables of length n > 0, such that

T ⊧ ∀x∃⩾ky ϕ(x, y) for all k.

Let L+ = L ∪ {f}, where f is a new n-ary function symbol, and let

T+ = T ∪ {∀xϕ(x, f(x))}.
Then T+ is the “ϕ-Skolemization” of T . Theorem 7.6 was shown in [89].

Theorem 7.6. If T is model-complete and eliminates ∃∞, then T+ has a model companion
T ∗+ , the generic ϕ-Skolemization of T .

We will show that T+ is existentially bi-interpretable with a union of two theories, one of
which is is existentially bi-interpretable with T , and the other of which is interpretable in
the theory of an infinite set. This will imply, by Corollary 5.2, that T ∗+ is existentially
bi-interpretable with the interpolative fusion of these theories.

Suppose (M, f) ⊧ T+. Let E ⊆ Mn+1 be ϕ(M), let px ∶ E → Mn and py ∶ E → M be the
projection on the first n coordinates and the last coordinate, respectively, and let g ∶Mn → E

be the function a ↦ (a, f(a)). Note that px is an infinite-to-one surjection onto Mn, and
g is a section of px. We consider (M,E;px, py, g) as a structure in a two-sorted language
consisting of a copy of L for M, together with function symbols px, py, and g. Let this be L∪,
let L1 be the sublanguage of L∪ without g, and let L2 be the sublanguage of L∪ containing
only px and g (without py and the copy of L). Then L∩ contains only px.

Let T1 be the L1-theory whose models are (M,E;px, py) such that M ⊧ T , and e ↦(px(e), py(e)) is a bijection from E to ϕ(M). It is easy to see that T1 is existentially
bi-interpretable with T . Let T2 be the L2-theory whose models are (M,E;px, g) such that
M and E are infinite sets, px is an infinite-to-one surjection E →Mn, and g is a section of
px. This theory T2 is interpretable in the theory of an infinite set M : let E = Mn+1, let px
be the projection on the first n coordinates, and define g(a0, . . . , an−1) = (a0, . . . , an−1, a0).
Then T∩ is the L∩-theory whose models are (M,E;px) where M and E are infinite and px
is an infinite-to-one surjection E →Mn.

Now T∪ is the theory whose models are (M,E;px, py, g), where M ⊧ T , e ↦ (px(e), py(e))
is a bijection from E to ϕ(M), and g∶Mn → E is a section of px. We have seen above how
to obtain such a structure from a model of T+. And conversely, given a model of T∪, we
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can recover the Skolem function f as py ○ g. So the following theorem follows easily, by
Corollary 5.2.

Theorem 7.7. T+ is existentially bi-interpretable with T∪. Hence, T+ has a model companion
T ∗+ if and only if T∪ has a model companion T ∗∪ . Moreover, T ∗+ and T ∗∪ are existentially bi-
interpretable whenever they both exist.

In [89], Winkler handles the case of simultaneously adding Skolem functions for an arbitrary
family of formulas, and he does not impose the restriction that every set defined by an
instance of the formula ϕ is infinite. It is possible to adjust our construction to handle
this more general context, but the technical difficulties would obscure the main point of the
example.

Remark 7.2. In the notation above, if ϕ is ⊺, then T+ is the theory of models of T expanded
by an arbitrary new n-ary function f , and T ∗+ is the “generic expansion” of T by f . In the
special case that T is the theory of an infinite set, T+ is the theory Tn of a “random n-ary
function”. It follows from the discussion above that Tn is existentially bi-interpretable with a
union of two theories, each of which is interpretable in the theory of an infinite set. In [52],
Ramsey and the first author showed that Tn is NSOP1 (but not simple when n ⩾ 2), and
more generally that if T is NSOP1, then any generic Skolemization of T or generic expansion
of T by new function symbols is NSOP1. We will show how to recover these results from
general results about interpolative fusions in the next paper [53].

7.6. Graphs

We now illustrate how to obtain “random n-ary relations” in the context of interpolative
fusions (compare with the “random n-ary functions” in Remark 7.2 above). In particular,
we show that the theory of the random graph is existentially bi-interpretable with an inter-
polative fusion of two model-complete theories, each of which is interpretable in the theory
of an infinite set.

Let L be the language of graphs and T be the the theory of (undirected, loopless) infinite
graphs with infinitely many edges. Suppose (V,E) ⊧ T . Let SV be the quotient {(v1, v2) ∈
V 2 ∶ v1 ≠ v2}/ ∼ where the equivalence relation ∼ is defined by

(v1, v2) ∼ (v′1, v′2) if and only if {v1, v2} = {v′1, v′2}.
Let πV ∶ {(v1, v2) ∈ V 2 ∶ v1 ≠ v2} → SV be the quotient map seen as a relation on V 2×SV , and
let EV be the image of E under πV , seen as a relation on SV . One can observe that the two-
sorted structure (V,SV ;πV ,EV ) is essentially equivalent to (V,E). Indeed, for distinct v1 and
v2 in V , (v1, v2) is in E if and only if πV (v1, v2) is in EV . On the other hand, (V,SV ;πV ,EV )
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can be seen as built up from the two components (V,SV ;πV ) and (V,SV ;EV ) agreeing on
the common part (V,SV ).
The observations in the preceding paragraph translate into model-theoretic language. Let(V,SV ;πV ,EV ) be as above. Choose the obvious languages L1 and L2 for (V,SV ;πV ) and(V,SV ;EV ). Then with I = {1,2}, (V,SV ;πV ,EV ) and (V,SV ) are an L∪-structure and an
L∩-structure, respectively. Let T1 be the L1-theory such that (V,S;π) ⊧ T1 if V,S are infinite
sets and π ∶ {(v1, v2) ∈ V 2 ∶ v1 ≠ v2} → S has

π(a) = π(b) if and only if a ∼ b.
Let T2 be the L2-theory such that (V,S;E) ⊧ T2 when V,S are infinite sets and E is an infinite
subset of S. The theories T1 and T2 are easily seen to be model-complete and interpretable
in the theory of an infinite set. The constructions of (V,SV ;πV ,EV ) from (V,E) and vice
versa are very simple, so we can easily verify that they form an existential bi-interpretation
between T and T∪.
It is well known that the theory of graphs has a model companion, the theory of the random
graph. We obtain:

Theorem 7.8. The theory T is existentially bi-interpretable with the theory T∪. Hence, T ∗∪
has a model companion which is existentially bi-interpretable with the theory of the random
graph.

This example can be easily modified to show that the theory of the random n-hypergraph,
random directed graph, and random bipartite graph are all bi-interpretable with an inter-
polative fusion of two theories, each of which is interpretable in the theory of an infinite
set.

7.7. Structures and fields with automorphisms

In this section T is a one-sorted model-complete consistent L-theory. Let LAut be the exten-
sion of L by a new unary function symbol and TAut be the theory such that (M, σ) ⊧ TAut if
and only if M ⊧ T and σ is an automorphism of M. We will show that TAut is existentially
bi-interpretable with the union of two theories each of which is existentially bi-interpretable
with T . This brings generic automorphisms as defined in [11] into our framework.

Let (M, σ) ⊧ T , and set I = {1,2}. We can view (M,M; idM, σ) as a structure in a two-
sorted language consisting of two disjoint copies of L for the two copies of M and two
function symbols for idM and σ respectively. Set this to be our L∪. Let L1, L2, and L∩ to
be the sublanguages of L∪ for the reducts (M,M; idM), (M,M;σ), and (M,M) respectively.
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We note that L1 differs from L2 only in the name of the function symbol. Let T1 be the L1-
theory whose models are (M,N; f) with M ⊧ T , N ⊧ T , and f ∶M→ N is an L-isomorphism.
Obtain T2 from T1 by replacing the function symbol from L1 with the corresponding function
symbol from L2.

Proposition 7.1. The theories T1 and T2 are each existentially bi-interpretable with T .

Proof. As T2 is a copy of T1, it suffices to prove the statement for T1. If (M,N; f) ⊧ T1,
then M ⊧ T . If M ⊧ T , then (M,M; idM) ⊧ T1. The two constructions above can be easily
turned into existential mutual interpretation between T1 and T .

Applying the first construction above followed by the second construction above to(M,N; f) ⊧ T1 gives us (M,M; idM). It is easy to see that (idM, f−1) is an isomorphism
from (M,N; f) to (M,M; idM) in this case. Applying the second construction above fol-
lowed by the first construction above to M ⊧ T gives us back M, so idM is already the
desired isomorphism. It is easy to see that these isomorphism can be defined by existential
formulas in the respective languages. Moreover, the choice of these formulas can be made
independent of the choice of (M,N; f) ⊧ T1 and M ⊧ T . �

The existential bi-interpretation between T1 and T above restricts to a mutual interpretation
between T∩ and T . But T∩ and T are not bi-interpretable.

It is easy to see that T1 and T2 are inductive. So by Corollary 5.2, T1 and T2 are both model-
complete. Hence, T ∗∪ is the model companion of T∪ if either of these exists by Theorem 6.3.
We prove the main result of this section:

Theorem 7.9. The theory TAut is existentially bi-interpretable with T∪. Hence, TAut has a
model companion T ∗

Aut if and only if the interpolative fusion T ∗∪ exists. Moreover, T ∗
Aut and

T ∗∪ are existentially bi-interpretable whenever they exist.

Proof. Applying Corollary 5.2 and the easy fact that TAut is inductive, we get the second
and third claims from the first statement. So it remains to prove the first statement. If(M;σ) ⊧ TAut, then (M,M; idM, σ) ⊧ T∪. Suppose (M,N; f, g) is a model of T∪. Then(M, f−1 ○ g) ⊧ TAut. It is easy to see that the two constructions above can be turned into
existential mutual interpretation between TAut and T∪.

Applying the first construction above followed by the second construction above to(M, σ) ⊧ TAut gives us back (M, σ), so idM is already the desired isomorphism. Applying
the second construction above followed by the first construction above to (M,N; f, g) ⊧ T∪
gives us back (M,M; idM, f−1 ○ g). Then (idM, f−1) is an isomorphism from (M,N; f, g) to(M,M; idM, f−1 ○ g) in this case. It is easy to see that these isomorphisms can be defined by
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existential formulas in the respective languages. Moreover, the choice of these formulas can
be made independent of the choice of (M,N; f) ⊧ T1 and (M;σ) ⊧ TAut. �

The existence of a model companion of TAut is tied to classification-theoretic issues. If T has
the strict order property then TAut does not have a model companion [46]. It is conjectured
that if T is unstable then TAut does not have a model companion. Baldwin and Shelah [5]
gave necessary and sufficient conditions for TAut to admit a model companion when T is
stable.

In the special case where T is ACF, it is well-known that TAut has a model companion, called
ACFA. This important theory is treated in [13, 56] and many other places. Hence, we get
the following as a corollary of Theorem 7.9:

Corollary 7.3. If T = ACF, then the interpolative fusion T ∗∪ exists and is existentially
bi-interpretable with ACFA.

Following our motivational theme that many mathematical structures that exhibit random-
ness in some sense can be treated in the context of interpolative fusions, it is natural to ask
whether this is true of pseudofinite fields, i.e, infinite field which is a model of the theory of
finite fields. We do not see a way to make the theory of pseudofinite fields bi-interpretable
with an interpolative fusion. Proposition 7.2 below implies that the theory of pseudo-finite
fields is interpretable in ACFA, and hence is interpretable in an interpolative fusion. This is
a folklore result which follows from unpublished work of Hrushovski [38]. We include here a
direct short proof for the sake of completeness.

The fixed field of a difference field (L,σ) is the subfield {x ∈ L ∶ σ(x) = x}.
Proposition 7.2. A field is pseudofinite if and only if it is elementarily equivalent to the
fixed field of a model of ACFA.

Proof. See [56, Theorem 6] for a proof of the fact that the fixed field of a model of ACFA
is pseudofinite. Suppose k is a pseudofinite field. Let K be an algebraic closure of k, and
let σ be some automorphism of K with fixed field k. As ACFA is the model companion of
TAut when T is the theory of fields, there is an ACFA-model (K ′, σ′) such that (K,σ) is a
sub-difference field of (K ′, σ′). Let F be the fixed field of (K ′, σ′). Then k is a subfield of F ,
and the (field-theoretic) algebraic closure of k inside of F is equal to k. It follows that the
algebraic closure of the prime subfield of F agrees with that of k. A well known theorem of
Ax (see for example [12, Theorem 1]) implies that K and F are elementarily equivalent. �
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7.8. Differential fields and D-fields

We treat the D-fields formalism developed in [60], a framework which generalizes both
differential fields and difference fields. As special cases, we show that the theories DCF0 (the
model companion of the theory of differential fields of characteristic 0) and ACFA0 (the model
companion of the theory of difference fields of characteristic 0) are each bi-interpretable with
an interpolative fusion of two theories, each of which is bi-interpretable with ACF0. In the
case of ACFA0, this provides an alternative presentation as an interpolative fusion to the
one described in Section 7.7.

In this subsection, all rings are commutative with unit. If K is a field, a K-algebra is a pair(A,ρ), where A is a ring and ρ∶K → A is a ring homomorphism. Note that ρ is necessarily
injective unless A is the zero ring. The homomorphism ρ makes A a vector space over K
with left multiplication by elements in K given by

a ⋅ r ∶= ρ(a)r for a ∈K and r ∈ A.
We denote this K-vector space as V (A,ρ). A K-algebra (A,ρ) is finite if V (A,ρ) has
finite dimension. In particular, (K, idK) is a finite K-algebra. A K-algebra homomorphism(A,ρ) → (A′, ρ′) is a ring homomorphism f ∶A→ A′ such that f ○ ρ = ρ′.
We fix a field F , a non-zero finite F -algebra (DF , ρF ), an F -algebra homomorphism πF ∶DF →
F (in other words, πF is a ring homomorphism with πF ○ρF = idF ), and a basis e = (e0, . . . , em)
of V (DF , ρF ) such that πF (e0) = 1F and πF (ei) = 0F for all i ∈ {1, . . . ,m}.
Now supposeK is a field extending F . We will define objects parallel to those in the preceding
paragraph by extension of scalars. Identifying K with the F -algebra (K, ι) where ι∶F → K

is the inclusion map, we define the K-algebra (DK , ρK) and a K-algebra homomorphism
πK ∶DK →K by setting:

DK =K ⊗F DF , ρK = idK ⊗F ρF , and πK = idK ⊗F πF .
Identifying DF with its image in DK under the injective map a ↦ 1K ⊗ a, it is easy to see
that (DK , ρK) is a non-zero finite K-algebra and e is a basis for V (DK , ρK) satisfying

πK(e0) = 1K and πK(ei) = 0K for all i ∈ {1, . . . ,m}.
It follows that any a ∈ DK can be written as ρK(a0)e0 + ⋅ ⋅ ⋅ + ρK(am)em for unique elements
a0, . . . , am ∈K, and πK(a) = πK(ρK(a0)) = a0.

Suppose ∂i ∶K →K are functions for i ∈ {1, . . . ,m}, and the map

δK ∶K →DK , a↦ ρK(a)e0 + ρK(∂1(a))e1 + . . . + ρK(∂m(a))em
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is an F -algebra homomorphism (K, ι) → (DK , ρK ○ ι). In this case, we call (K,∂1, . . . , ∂m)
a D-field. Note in particular that δK is a section of πK , since for all a ∈ K, πK(δK(a)) =
πK(ρK(a)) = a.
Example 7.1. We show how the framework above generalizes differential fields and differ-
ence fields.

(1) Let F = Q, DQ = Q[ε]/(ε2), ρ(a) = a+0ε, π(a+bε) = a, and e = (1, ε). For any field K of
characteristic 0, DK ≅K[ε]/(ε2). If δ∶K →K is a function, then the map δK ∶K →DK

given by a↦ a+ ∂(a)ε is a Q-algebra homomorphism if and only if ∂ is a derivation on
K. So a D-field in this case is the same thing as a differential field of characteristic 0.

(2) Let F = Q, DQ = Q × Q, ρ(a) = (a, a), π(a, b) = a, and e = ((1,0), (0,1)). For any
field K of characteristic 0, DK ≅ K × K. If σ∶K → K is a function, then the map
δK ∶K → DK given by a ↦ (a, σ(a)) is a Q-algebra homomorphism if and only if σ is a
field endomorphism. So a D-field in this case is the same thing as a difference field of
characteristic 0.

The key to viewing a D-field as built up from two simpler structures is to see the two F -
algebra homomorphisms ρK and δK in a more symmetric way. As we have seen, both ρK

and δK are sections of πK . Remark 7.3 below tells us that even more is true:

Remark 7.3. Since e is a basis of V (DF , ρF ), there are uniquely determined elements cijk
in F for 0 ⩽ i, j, k ⩽m such that

eiej = m∑
k=0

ρF (cijk)ek for all 0 ⩽ i, j ⩽m.
And since πF ○ ρF = idF , there are uniquely determined elements dk in F for 1 ⩽ k ⩽m such
that

1DF = ρF (1F ) = e0 + m∑
k=1

ρF (dk)ek.
Note that the constants cijk and dk determine the multiplicative structure of DF .

Let (K,∂1, . . . , ∂m) be aD-field. Then as ρK and δK are both F -algebra homomorphisms,
and the constants cijk and dk are in F ,

eiej = n∑
k=0

ρK(cijk)ek = n∑
k=0

∂K(cijk)ek for all 0 ⩽ i, j ⩽m.
Likewise, 1DK = ρK(1K) = δK(1K) = e0 +∑m

k=1 ρK(dk)ek = e0 +∑m
k=1 δK(dk)ek.

The F -algebra homomorphisms ρK and δK in a D-field are still different in one important
respect: e is a basis of V (DK , ρK) but might not be a basis for V (DK , δK). Proposition 7.3
tells us that e is a basis for V (DK , δK) if and only if the D-field is inversive, a condition
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introduced in [60]. When DF is a local F -algebra (e.g., in the case of the dual numbers
F [ε]/(ε2)), the inversive assumption is the trivial requirement that πK ○ δK = idK is a field
automorphism of K, so e is here automatically a basis for V (DK , δK). The reader who is
primarily interested in this case may prefer to skip directly to Proposition 7.3.

In the general case, every finite F -algebra is isomorphic to a product of finite local F -
algebras. So there exist n ⩾ 0 and finite local F -algebras (Dj

F , ρ
j
F ) for 0 ⩽ j ⩽ n such that

DF is isomorphic as a ring to ∏n
j=0 D

j
F , and for 0 ⩽ i ⩽ n, we have

ρjF = θjF ○ ρF where θjF ∶DF →D
j
F is the projection map.

For each j ∈ {0, . . . , n}, Dj
F has a unique maximal ideal mj

F and a residue map πjF ∶Dj
F →D

j
F /

mj
F . Then as j ranges over {0, . . . , n}, (θjF )−1(mj

F ) ranges over the n + 1 maximal ideals of
DF . Let mF = ker(πF ). Then mF is a maximal ideal of DF , and so mF = (θjF )−1(mj

F ) for some
j ∈ {0, . . . , n}. Without loss of generality, we assume j = 0, i.e., mF = (θ0

F )−1(m0
F ). It follows

that DF /mF ≅D0
F /m0

F , and since πF is surjective onto F , the composition π0
F ○ρ0

F ∶ F →D0
F /

m0
F is an isomorphism. We make the further assumption that for all j ∈ {1, . . . , n}, the

composition πjF ○ ρjF ∶ F → D
j
F /mj

F is an isomorphism. This assumption, together with the
fact that we work with a base field F instead of an arbitrary ring, corresponds to Assumptions
4.1 in [60]. The assumption holds trivially when n = 0, or equivalently, when DF is a local
F -algebra. Note that Di

F /mj
F is necessarily a finite field extension of F , so the assumption

also holds trivially if F is algebraically closed.

The entire discussion above is preserved under tensor product with K. Explicitly:

(1) With D
j
K = K ⊗F D

j
F , θ

j
K = idK ⊗F θjF , and ρjK = idK ⊗F ρjF for j ∈ {1, . . . , n}, each(Dj

K , ρ
j
K) is a finite local K-algebra, and DK ≅ ∏n

j=0 D
j
K as K-algebras, with the θjK as

projection maps. In particular, ρjK = θjK ○ ρK for j ∈ {1, . . . , n}. We identify D
j
F with its

image in D
j
K under the injective map a↦ 1K ⊗ a.

(2) The unique maximal ideal of Dj
K is mj

K =K ⊗F mj
F , and π

j
K = idK ⊗F πjF is the residue

map D
j
K →D

j
K/mj

K for all 0 ⩽ i ⩽ n.
(3) mK = K ⊗F mF = ker(πK) is equal to (θ0

K)−1(m0
K), and πjK ○ ρjK ∶ K → Di

K/mj
K is an

isomorphism for j ∈ {0, . . . , n}.
For j ∈ {0, . . . , n}, let δjK = θjK ○ δK ∶K → D

j
K . Then δjK is an F -algebra homomorphism, but

not necessarily a K-algebra homomorphism. Since (πjK ○ ρjK)∶K → D
j
K is an isomorphism,

we obtain an F -algebra endomorphism

σj = (πjK ○ ρjK)−1 ○ (πjK ○ δjK)∶K →K.
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When j = 0, σ0 = idK , since δK is a section of πK and DK/mK ≅D0
K/m0

K . We call (σ1, . . . , σn)
the associated endomorphisms of the D-field (K,∂1, . . . , ∂m). We say that the D-field
is inversive if each of its associated endomorphisms is an automorphism, equivalently if
πjK ○ δjK is surjective for all j ∈ {1, . . . , n}.
Remark 7.4. Continuing Example 7.1, we will consider what these notions mean in the
cases of differential fields and difference fields.

(1) Every D-field is trivially inversive when n = 0, or equivalently, when DF is a local
F -algebra. So in particular, differential fields of characteristic 0 are always inversive.

(2) The finite Q-algebra Q ×Q is a product of two finite local Q-algebras, namely Q and
Q, π0

Q and π1
Q are the projections onto the first and second factors, and πjQ ○ ρjQ = idQ

for j ∈ {0,1}. So a difference field (K,σ) has one associated endomorphism, namely
π1
K ○ δK = σ, and (K,σ) is inversive if and only if σ is an automorphism.

The next result provides the promised alternative characterization of inversive D-fields. The
reader who is only interested in the case where DF is a local F -algebra might read the
proof below in the following way: In that special case, n = 0, πjK = πK , and δjK = δK for all
j ∈ {0, . . . , n}, so the only use of the inversive hypothesis in the forward direction of the proof
is not necessary.

Proposition 7.3. Suppose (K,∂1, . . . , ∂m) is a D-field and δK ∶ K → DK is the associated
F -algebra homomorphism. Then the following are equivalent:

(1) (K,∂1, . . . , ∂m) is inversive
(2) e is a basis of the K-vector space V (DK , δK).
Hence, if DF is a local F -algebra, then e is a basis of the K-vector space V (DK , δK).
Proof. For the forward direction, suppose (K,∂1, . . . , ∂m) is inversive. We reduce the prob-
lem to finding for each j ∈ {0, . . . , n} a basis ej = (ej0, . . . , ejmj) of V (Dj

F , ρ
j
F ) such that ej

is also a basis of V (Dj
K , δ

j
K). Then for all j ∈ {0, . . . , n} and i ∈ {0, . . . ,mj}, let ẽji be the

element in DF satisfying

θjF (ẽji) = eji and θj′F (ẽji) = 0 for j′ ∈ {0, . . . , n} ∖ {j}.
Since V (DF , ρF ) ≅ ⊕n

j=0 V (Dj
F , ρ

j
F ) and V (DK , δK) ≅ ⊕n

j=0 V (Dj
K , δ

j
K), we have that ẽ =((ẽji)mji=0)nj=0 is a basis for both vector spaces. It follows that ẽ and e have the same cardinality,

so it suffices to show that e spans V (DK , δK). But this is clear, since each component of ẽ
can be written as an F -linear combination of e, and δK is an F -algebra homomorphism.

Next we explain how to obtain the basis ej for a fixed j ∈ {1, . . . , n}. Note that for all
l ⩽ 0, (mj

F )l is a subspace of V (Dj
F , ρ

j
F ), and (mj

F )l = 0 when l is large enough. Let be ej
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be any basis of V (Dj
F , ρ

j
F ) such that for each l ⩾ 0, a basis of (mj

F )l can be chosen from
the components of ej. This can be done by taking a basis of (mj

F )l for the largest l such
that (mj

F )l ≠ 0, extending it to a basis of (mj
F )l−1 for the same l, and continuing in the same

fashion until we reach (mj
F )0 =D

j
F .

Extending scalars to K, we have that ej is a basis of V (Dj
K , ρ

j
K) such that for each l ⩾ 0,

a basis of (mj
K)l can be chosen from the components of ej. It remains to show that ej is also

a basis of V (Dj
K , δ

j
K). Fix some l such that (mj

K)l ≠ 0. Permuting the components of ej if
necessary, we suppose ej0, . . . , e

j
k are the only components of ej which are in (mj

K)l ∖(mj
K)l+1.

Then if r ∈ (mj
K)l, there are unique b0, . . . , bk ∈K such that

r − ρjK(b0)ej0 − . . . − ρjK(bk)ejk is in (mj
K)l+1.

We reduce the problem to showing for arbitrary r ∈ (mj
K)l that there are unique a0, . . . , ak ∈K

such that
r − δjK(a0)ej0 − . . . − δjK(ak)ejk is in (mj

K)l+1.

If this is true, then an easy induction argument shows that for any r ∈Dj
K , there are unique

c0, . . . , cmj ∈K such that

r = mj∑
i=0

δjK(ci)eji .
So fix r ∈ (mj

K)l. Let b0, . . . , bk be the unique elements of K such that r − ρjK(b0)ej0 −
. . .−ρjK(bk)ejk is in (mj

K)l+1. As (K,∂1, . . . , ∂m) is inversive, we have that (πjK ○ δjK) is a field
isomorphism. Hence, there are unique a0, . . . , ak ∈K such that

(πjK ○ δjK)(ai) = (πjK ○ ρjK)(bi) for i ∈ {0, . . . , k}.
It follows that ρjK(bi) − δjK(ai) ∈ mj

K for i ∈ {0, . . . , k}, so
(ρjK(b0) − δjK(a0))ej0 + ⋅ ⋅ ⋅ + (ρjK(bk) − δjK(ak))ejk is in (mj

K)l+1,

and hence
r − δjK(a0)ej0 − . . . − δjK(ak)ejk is in (mj

K)l+1.

For uniqueness, suppose a′0, . . . , a′k ∈ K also satisfy the conclusion. As (πjK ○ ρjK) is a field
isomorphism, running the construction above backwards gives us b′0, . . . , b′k ∈ K such that(πjK ○δjK)(a′i) = (πjK ○ρjK)(b′i) for i ∈ {0, . . . , k}, and r−ρjK(b′0)ej0− . . .−ρjK(b′k)ejk is in (mj

K)l+1.
Hence, b′i = bi for i ∈ {0, . . . , k}. It follows that a′i = ai for i ∈ {0, . . . , k}, which gives us the
desired uniqueness.

For the backward direction, suppose e is a basis of V (DK , δK). Consider
f ∶DK →DK ,

m∑
i=0

δK(ai)ei ↦ m∑
i=0

ρK(ai)ei
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where ai is in K for i ∈ {0, . . .m}. It is easy to check that f is a K-algebra isomorphism
from (DK , δK) to (DK , ρK). For any j ∈ {0, . . . , n}, f induces an isomorphism (Dj

K , δ
j
K) ≅(Dj′

K , ρ
j′
K) for some j′ ∈ {0, . . . , n} (in fact, it is not hard to show that we must have j =

j′, but we do not need to use this). Since the composition πj
′
K ○ ρj′K ∶ K → D

j′
K/mj′

K is a
field isomorphism, it follows that πjK ○ δjK ∶ K → D

j
K/mj

K is also a field isomorphism. So(K,∂1, . . . , ∂m) is inversive. �

The proposition above suggests how to find an existential bi-interpretation between the
theory of inversive D-fields and a union of two theories, each of which is existentially bi-
interpretable with the theory of fields extending F . We now spell out the details.

In the rest of the section, we will never seriously encounter the situation where two different
F -algebras have the same underlying ring. Therefore, we will suppress the F -embedding ρ,
refer to an F -algebra (A,ρ) as the F -algebra A, and refer to ρ(c) for c ∈ F as cA. Note
that the data specified by the ring A and (cA)c∈F is completely equivalent to the data of(A,ρ). We can then view an F -algebra A as a structure in a language extending the language
of rings by constants for the elements cA as c ranges over F . We will refer to this as the
language of F -algebras.

Let (K,∂1, . . . , ∂m) be a D-field and δK its associated F -algebra homomorphism. Then
we can view (K,DK ;πK , e, ρK , δK) naturally as a structure in a two-sorted language which
consists of two copies of the language of F -algebras for K and DK , constant symbols for
the components of e, and function symbols for ρK and δK . We set this language to be L∪.
Let L1, L2, and L∩ be the sublanguages corresponding to the reducts (K,DK ;πK , e, ρK),(K,DK ;πK , e, δK), and (K,DK ;πK , e), respectively. We note that L1 and L2 only differ in
the names of the function symbols ρK and δK .

Let T −
1 be the L1-theory whose models (K,A;π,u, ρ) satisfy the following conditions:

(1) K and A are F -algebras, and K is a field.
(2) ρ ∶K → A is an embedding of F -algebras.
(3) u = (u0, . . . , um) is a basis of V (A,ρ) such that

uiuj = ∑
i,j,k

(cijk)Auk
and

1A = u0 + m∑
i=1

(di)Aui
(4) π ∶ A → K is an F -algebra homomorphism with π(u0) = 1K and π(ui) = 0K for i ∈{1, . . . ,m}
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Let T −
2 be the copy of T −

1 obtained by replacing L1-symbols with L2-symbols. Set T −∪ =
T −

1 ∪ T −
2 , and let T −∩ be the set of L∩-consequence of T −

1 (equivalently, of T −
2 ). Suppose(K,∂1, . . . , ∂m) be a D-field and δK its associated F -algebra homomorphism. It is easy to

see that (K,DK ;πK , e, ρK) ⊧ T −
1 and (K,DK ;πK , e) ⊧ T −∩ .

If (K,∂1, . . . , ∂m) is inversive, it follows from Proposition 7.3 that

(K,DK ;πK , e, δK) ⊧ T −
2 and (K,DK ;πK , e, ρK , δK) ⊧ T −∪ .

The following lemma can be easily verified.

Lemma 7.1. Suppose (K,A;π,u, ρ) ⊧ T −
1 . Then

f ∶ A→DK ,
m∑
i=0

ρ(ai)ui ↦ m∑
i=0

ρK(ai)ei
is K-algebra isomorphism which moreover induces an L1-isomorphism from (K,A;π,u, ρ)
to (K,DK ;πK , e, ρK) which we also denote by f .

We will view a field extending F as a structure in the language of F -algebras.

Proposition 7.4. Both T −
1 and T −

2 are existentially bi-interpretable with the theory of fields
extending F .

Proof. It suffices to prove the statement for T −
1 . If (K,A;π,u, ρ) is a model of T −

1 , then
K is a field extending F . Conversely, if K is a field extending F , then since V (DK , ρK)
is isomorphic to Km as a K-vector space, we can define a K-algebra (Km, ρ) such that(K,Km;π, e, ρ) ⊧ T −

1 , where e is the standard basis of Km and π is the projection on the first
coordinate. It is easy to see that these constructions correspond to existential interpretations.
If we start withK and apply the second construction followed by the first, we getK back, and
idK is the required isomorphism. And if we start with (K,A;π,u, ρ) ⊧ T −

1 and apply the first
construction followed by the second, we obtain the required isomorphism from Lemma 7.1,
since both structures are isomorphic to (K,DK ;πk, e, ρK). It is also easy to check that this
can be defined by an existential formula chosen independently of (K,A;π,u, ρ). Thus T1

and the theory of fields are existentially bi-interpretable. �

The existential bi-interpretation in Proposition 7.4 restricts to a mutual interpretation be-
tween T −∩ and the theory of fields extending F . But this is not a bi-interpretation, due to the
fact that ρK is not definable in the structure (K,DK ;πK , e). In fact, if (K,A;π, e) ⊧ T −∩ , it
does not necessarily follow that A is isomorphic to DK as an K-algebra (or even as a ring).

The model companion of the theory of fields extending F is the theory of algebraically closed
fields extending F . Applying Corollary 5.2, we get the following.
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Corollary 7.4. The theories T −
1 and T −

2 have model companions T1 and T2. The theories
T1 and T2 are each existentially bi-interpretable with the theory of algebraically closed fields
extending F .

For the rest of the section, we let T1 and T2 be as described in Corollary 7.4. Let T −∪ = T −
1 ∪T −

2

and T∪ = T1 ∪ T2.

We view a D-field (K,∂1, . . . , ∂n) as a structure in a language extending the language of
F -algebras by adding function symbols for ∂1, . . . , ∂n. In [60], it is verified that the class
of D-fields and the class of inversive D-fields are elementary. It follows that we can also
axiomatize the theory of algebraically closed D-fields (D-fields whose underlying fields are
algebraically closed).

Theorem 7.10. The theory of inversive D-fields is existentially bi-interpretable with T −∪ ,
and the theory of algebraically closed inversive D-fields is existentially bi-interpretable with
T∪. Hence, the theory of algebraically closed inversive D-fields has a model companion if and
only if T ∗∪ exists. Moreover, this model companion is bi-interpretable with T ∗∪ whenever they
both exist.

Proof. We will only prove the first claim, as the other claims are immediate consequences.
If (K,A;π,u, ρ, δ) ⊧ T −∪ , then since u is a basis for V (A,ρ) and δ and ρ are both sections of
π, we have that for any a ∈K, there exist unique d1, . . . , dm ∈K such that

δ(a) = ρ(a)u0 + ρ(d1)u1 + ⋅ ⋅ ⋅ + ρ(dm)um.
We define ∂i(a) = di for all i ∈ {1, . . . ,m}. Then it follows from Proposition 7.3 that(K,∂1, . . . , ∂m) is an inversive D-field. Conversely, suppose (K,∂1, . . . , ∂m) is an inversive
D-field and δK is the associated F -algebra homomorphism. Then by Proposition 7.3, and
encoding an isomorphic copy of DK with domain Km as in the proof of Proposition 7.4, we
have (K,DK ;πK , e, ρK , δK) ⊧ T −∪ . It is easy to see that the two constructions above describe
existential interpretations between T −∪ and the theory of inversive D-fields.

If (K,A;π,u, ρ, δ) ⊧ T −∪ , then applying the first construction followed by the second
construction in the preceding paragraph gives us (K,DK ;πK , e, ρK , δK), and a calculation
shows that (idK , f) is an isomorphism from (K,A;π,u, ρ, δ) to (K,DK ;πK , e, ρK , δK) where
f is the function in Lemma 7.1. If (K,∂1, . . . , ∂m) is an inversive D-field, then applying the
second construction followed by the first construction in the preceding paragraph gives us
back (K,∂1, . . . , ∂m), and idK is already the desired isomorphism. It is also easy to check that
there are existential formulas chosen independently from (K,A;π,u, ρ, δ) and (K,∂1, . . . , ∂m)
that define these isomorphisms. Thus the two theories are existentially bi-interpretable. �
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In [60], it is shown that when char(F ) = 0, every D-field can be embedded into an alge-
braically closed inversive D-field, and the theory of D-fields has a model companion. Hence,
we get the following corollary.

Corollary 7.5. If char(F ) = 0, then the model companion of the theory of D-fields is bi-
interpretable with T ∗∪ .
In the special cases from Example 7.1, D-fields are simply differential fields of characteristic
0 or difference fields of characteristic 0, and the theory of algebraically closed fields extending
Q is simply ACF0, so we obtain the following consequence.

Corollary 7.6. The theories DCF0 and ACFA0 are each bi-interpretable with an interpola-
tive fusion of two theories T1 and T2, each of which is bi-interpretable with ACF0.
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CHAPTER 8

Existence results

Throughout this chapter, we assume in addition to the notational conventions of Chapters 5
and 6 that L′ is a first-order language also with S the set of sorts and L ⊆ L′, M and M′
are an L-structure and an L′-structure both with underlying collection of sorts M , T ′ is an
L′-theory, and T is the set of L-consequences of T ′.
The goal of the chapter is to provide sufficient conditions for the existence of the interpolative
fusion with an eye toward natural examples. For this purpose, it is useful to find simpler
characterizations of interpolative T∪-models in various settings. In Section 8.1, we accomplish
this in the setting when T∩ admits an ordinal-valued dimension function, highlighting the
notions of approximability and definability of pseudo-denseness in the expansions Ti. In
Section 8.2, we show how to relativize these conditions to collections of definable sets we
call pseudo-cells. In the remaining sections, we investigate these notions under additional
hypotheses on T∩ such as ℵ0-stability and o-minimality.

Our general theory allows us to recover many results on the existence of model companions
in the literature. In fact, the existing proofs of these results can be thought of as specializa-
tions of the general arguments developed here. This is an imprecise claim which cannot be
rigorously justified, but we will demonstrate what we mean by revisiting the earlier examples
from Chapter 7.

8.1. The pseudo-topological axioms

In an interpolative structure M∪, any finite family of Li-definable sets which is not separated
has nonempty intersection. Heuristically, if each Xi is “large” in a some fixed X∩, then (Xi)i∈I
cannot be separated. When T∩ has a reasonable notion of dimension we can make this idea
precise. The setting has a certain topological flavor, hence the name.

Throughout this section, we assume the existence of a function dim, which assigns an ordinal
or the formal symbol −∞ to each M-definable set so that for all M-definable X,X ′ ⊆Mx:

(1) dim(X ∪X ′) = max{dimX,dimX ′},
(2) dimX = −∞ if and only if X = ∅,
(3) dimX = 0 if and only if X is nonempty and finite,
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We call such a function dim an ordinal rank on M. A function on the collection of definable
sets in T -models that restricts to an ordinal rank on each T -model, and such that dimX(M) =
dimX(N) for all M ⊧ T , M-definable sets X, and elementary extensions N of M, is called
an ordinal rank on T . In all cases of interest T defines dim in families. Note that when T
is complete, an ordinal rank on T is essentially the same as an ordinal rank on the monster
model of T .

We can equip any theory with a trivial ordinal rank by declaring dim(X) = 1 whenever X
is infinite. Tame theories are generally equipped with a natural (often canonical) ordinal
rank. Examples are ℵ0-stable theories with Morley rank, superstable theories with U-rank,
and supersimple theories with SU-rank.

Let X be a definable subset of Mx and A be an arbitrary subset of Mx. Then A is pseudo-
dense in X if A intersects every nonempty definable X ′ ⊆X such that dimX ′ = dimX. We
call X a pseudo-closure of A if A ⊆ X and A is pseudo-dense in X. The following lemma
collects a few easy facts about pseudo-denseness, the proofs of which we leave to the readers.

Lemma 8.1. Let X and X ′ be M-definable subsets of Mx, and let A be an arbitrary subset
of Mx. Then:

(1) When X is finite, A is pseudo-dense in X if and only if X ⊆ A.
(2) If A is pseudo-dense in X, X ′ ⊆X, and dimX ′ = dimX, then A is pseudo-dense in X ′.
(3) If X1, . . . ,Xn ⊆X are M-definable, with dimX i = dimX for all i, and

dimX △ (X1 ∪ . . . ∪Xn) < dimX,

then A is pseudo-dense in X if and only if A is pseudo-dense in each X i.

If in addition X is a pseudo-closure of A, then:

(4) A ⊆X ′ implies dimX ⩽ dimX ′.
(5) If X ′ is another pseudo-closure of A, then dim(X △X ′) < dimX = dimX ′.
(6) If A ⊆X ′ ⊆X then X ′ is a pseudo-closure of A.

Suppose M′ is an expansion of M. Then M′ is approximable over M (with respect to dim)
if every M′-definable set admits an M-definable pseudo-closure.

The definition above admits an obvious generalization to theories. If T is equipped with an
ordinal rank, we say that T ′ is approximable over T if M′ is approximable over M =M′↾L
for all M′ ⊧ T ′.
Proposition 8.1. Suppose J ⊆ I is finite and Xi ⊆Mx is Mi-definable for all i ∈ J . If there
is an M∩-definable set X in which each Xi is pseudo-dense, then (Xi)i∈J is not separated.
The converse implication holds provided Mi is approximable over M∩ for all i ∈ J .
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Proof. For the first statement, suppose X is a nonempty M∩-definable subset of Mx in
which eachXi is pseudo-dense, and (X i)i∈J is a family ofM∩-definable sets satisfyingXi ⊆X i

for each i ∈ J . As Xi is pseudo-dense in X and disjoint from X ∖X i, we have dimX ∖X i <
dimX for all i ∈ J . Hence,

dim⋃
i∈J(X ∖X i) < dimX.

Thus dim⋂i∈J X i ⩾ dimX, so ⋂i∈J X i is nonempty.
Now suppose Mi is approximable over M∩ for each i ∈ J . Simplifying notation, we let

J = {1, . . . , n}. Suppose Xi is an Mi-definable set for each 1 ⩽ i ⩽ n, and suppose there is no
M∩-definable set Z in which all of the Xi are pseudo-dense. We show (Xi)ni=1 is separated
by applying simultaneous transfinite induction to d1, . . . , dn where di is the dimension of any
pseudo-closure of Xi.

Let X i be a pseudo-closure of Xi for each i and let

Z =X1 ∩ . . . ∩Xn.

If dimXj = −∞ for some j ∈ J , then Xj and Z are both empty, so (X i)ni=1 separates(Xi)ni=1. If dimX i = dimZ for each i, then Lemma 8.1(2) shows each Xi is pseudo-dense
in Z, contradiction. After re-arranging the Xi if necessary we suppose dimZ < dimX1.
Let Y1 = X1 ∩ Z. As (Xi)ni=1 cannot be simultaneously pseudo-dense in an M∩-definable
set, it follows that Y1,X2, . . . ,Xn cannot be simultaneously pseudo-dense in an M∩-definable
set. As the dimension of any pseudo-closure of Y1 is strictly less then the dimension of X1,
an application of the inductive hypothesis provides M∩-definable sets Y 1, . . . , Y n separating
Y1,X2, . . . ,Xn. It is easy to see

Y 1 ∪ (X1 ∖Z), Y 2 ∩X2, . . . , Y n ∩Xn

separates X1, . . . ,Xn, which completes the proof. �

We say M∪ is approximately interpolative if whenever J ⊆ I is finite, Xi ⊆ Mx is Mi-
definable for i ∈ J , and (Xi)i∈J are simultaneously pseudo-dense in some nonempty M∩-
definable set, then ⋂i∈J Xi ≠ ∅. As we will see in the later parts of Chapter 8, this definition
is very close in spirit to the definitions of generic predicates in [11], generic automorphisms in
[13], algebraically closed fields with independent valuations in [42], and algebraically closed
fields with generic multiplicative circular order in [79].

The following corollary is an immediate consequence of Proposition 8.1.

Corollary 8.1. If M∪ is interpolative, then it is approximately interpolative. The converse
also holds if Mi is approximable over M∩ for each i ∈ I.
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We say that T ′ defines pseudo-denseness over T if for every L-formula ϕ(x, y) and every
L′-formula ϕ′(x, z), there is an L′-formula δ′(y, z) such that if M′ ⊧ T ′, b ∈My, and c ∈M z,
then

ϕ′(M′, c) is pseudo-dense in ϕ(M′, b) if and only if M′ ⊧ δ(b, c).
Theorem 8.1. Suppose dim is an ordinal rank on T∩. Then:

(1) If Ti defines pseudo-denseness over T∩ for all i ∈ I, then the class of approximately
interpolative T∪-models is elementary.

(2) If, in addition, Ti is approximable over T∩ for all i ∈ I, then T ∗∪ exists.

Proof. We first prove (1). Let ϕ∩(x, y) be an L∩-formula, let J ⊆ I be finite, and let
ϕi(x, zi) be an Li-formula for each i ∈ J . Let δi(y, zi) be an Li-formula defining pseudo-
denseness for ϕ∩(x, y) and ϕi(x, zi). For simplicity, we assume J = {1, . . . , n}. Then we have
the following axiom:

∀y, z1, . . . , zn (( n⋀
i=1

δi(y, zi)) → ∃x n⋀
i=1

ϕi(x, zi)) .
Then T∪, together with one such axiom for each choice of ϕ∩(x, y), J , and ϕi(x, zi) for i ∈ J
as above, axiomatizes the class of approximately interpolative T∪-models. Statement (2)
follows from statement (1) and Corollary 8.1. �

We refer to the axiomatization given in the proof of Theorem 8.1 as the pseudo-topological
axioms.

Remark 8.1. We shall see that many examples where T ∗∪ exists can be viewed as special
cases of Theorem 8.1. On the other hand, there are also interesting examples which are not
covered by Theorem 8.1. In Proposition 9.7, we consider another sufficient condition for the
existence of T ∗∪ , which does not assume any notion of dimension on T∩. Therefore, this lies
completely outside the framework of Chapter 8. Below, we will revisit the example from
Section 7.3. Here, there is a good notion of dimension on T∩, and T ∗∪ exists, but none of the
Ti are approximable over T∩, so this is not a special case of Theorem 8.1.

Consider the setting of Section 7.3. Let dim be the canonical rank on the additive group of
integers, which coincides with U-rank, acl-dimension, etc; see for example [20].

Proposition 8.2. Suppose (Z; 0,+,−,≼p) is an ℵ1-saturated elementary extension of (Z; 0,+,−,≼p). Then (Z; 0,+,− ≼p) is not approximable over (Z; 0,+,−).
Proof. Let N be an element of Z such that k ≼p N for all k ∈ Z. We show that

E ∶= {z ∈ Z ∣ N ≼p z}
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does not have a pseudo-closure in Z. We make use of the fact that a (Z; 0,+,−)-definable
subset of Z is one-dimensional if and only if it is infinite. Quantifier elimination for (Z;+,0,1)
implies that every (Z; 0,+,−)-definable subset of Z is a finite union of sets of the form(kZ + l) ∖ F for k, l ∈ Z and finite F . This is also a special case of Conant’s quasi-coset
decomposition.

Thus, if E has a pseudo-closure then E is pseudo-dense in kZ + l for some k, l ∈ Z. We
fix k ∈ Z and l ∈ {0, . . . , k − 1}, and we show E is not pseudo-dense in kZ + l. As E is a
subgroup of Z and kZ + l is a coset of a subgroup, E and kZ + l are disjoint when l ≠ 0, so it
suffices to treat the case when l = 0. Then E ⊆ kZ. Let k′ = pk so vp(k′) = vp(k) + 1. Then
E ⊆ k′Z ⊆ kZ. As vp(k′m) ⩾ vp(k)+1 and vp(k′m+k) = vp(k) for all m ∈ Z, k′Z+k is disjoint
from k′Z. Thus, k′Z + k is a one-dimensional definable subset of kZ which is disjoint from
E. Hence E is not pseudo-dense in kZ. �

Remark 8.2. One can in fact show that (Z; 0,+,−,≼p) is not approximable over (Z; 0,+,−)
by applying the “quasi-coset” decomposition of (Z; 0,+,−)-definable sets given in [20, Theo-
rem 4.10] to show that {(k, l) ∈ Z2 ∶ k ≼p l}
does not have a pseudo-closure in Z2. This presents some technical difficulties so we do not
include it here. As every (Z; 0,+,−,≼p)-definable subset of Z is (Z; 0,+,−)-definable [24], we
must pass to an elementary extension to obtain a unary set without a pseudo-closure.

The following two issues deserve further investigation. First, when the class of approximately
interpolative T∪-models is elementary, we could call the theory of this class the approximate
interpolative fusion. Can we say anything interesting about the model theory of the approx-
imate interpolative fusion in cases when not all the Ti are approximable over T∩? Second,
Theorem 8.1 tells us that defining pseudo-denseness is the key sufficient property for ex-
istence of the approximate interpolative fusion. We believe the converse may also be true
when T∩ defines dimension, but we currently do not have a proof.

8.2. Relativization to pseudo-cells

Sometimes it is enough to check the sufficient conditions of the previous section for a suffi-
ciently rich collection C of M∩-definable sets. We call such a C a pseudo-cell collection.

Suppose M is an L-structure equipped with an ordinal rank dim and C is a collection of
M-definable sets. We say that an M-definable set X admits a C-decomposition if there is
a finite family (Xj)j∈J from C such that

dim (X △⋃
j∈JX

j) < dimX.
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An M-definable set X admits a C-patching if there is a finite family (Xj, Y j, f j)j∈J such
that for all j, j′ ∈ J :
(1) Y j is in C.
(2) f j ∶Xj → Y j is an M-definable bijection.
(3) And finally,

dim (X △⋃
j∈JX

j) < dimX.

We say C is a pseudo-cell collection for M if either every M-definable set admits a C-
decomposition or dim is preserved under M-definable bijections and every M-definable set
admits a C-patching. Examples include the collection of irreducible varieties in an alge-
braically closed field and the collection of cells in an o-minimal structure.

The definition above naturally extends to theories. Let T be an L-theory equipped with
an ordinal rank dim and C a collection of definable sets in T -models. We say that C is a
pseudo-cell collection for T if for all M ⊧ T , C∩Def(M) is a pseudo-cell collection for M.

Suppose dim is an ordinal rank on M∩ and C is a collection of M∩-definable sets. We say
M∪ is C-approximately interpolative if for all finite J ⊆ I, X∩ ∈ C, and (Xi)i∈J , where
Xi is Mi-definable and pseudo-dense in X∩, we have ⋂i∈J Xi ≠ ∅. Clearly, if M∪ is approx-
imately interpolative then it is C-approximately interpolative. The following proposition
gives situations where the converse is true. We omit the straightforward proof.

Proposition 8.3. Suppose C is a collection of pseudo-cells in M∩. Then we have the fol-
lowing:

(1) M∪ is approximately interpolative if and only if it is C-approximately interpolative.
(2) If moreover Mi is approximable over M∩ for all i ∈ I, then M∪ is interpolative if and

only if it is C-approximately interpolative.

Let C be a collection of definable sets in T -models. We say that T defines C-membership
if for every L-formula ϕ(x, y) there is an L-formula γ(y) such that for all M ⊧ T and b ∈My,

ϕ(M, b) is in C if and only if M ⊧ γ(b).
We say that T ′ defines pseudo-denseness over C if for every L′-formula ϕ(x, y) and
every L-formula ϕ(x, z), there is an L′-formula δ′(y, z) such that if M′ ⊧ T ′ and c ∈My with
ϕ(M′, c) ∈ C, then

ϕ′(M′, b) is pseudo-dense in ϕ(M′, c) if and only if M′ ⊧ δ′(b, c).
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Theorem 8.2. Suppose dim is an ordinal rank on T∩, C is a collection of definable sets of
T∩-models such that T∩ defines C-membership, and Ti defines pseudo-denseness over C for
i ∈ I. Then we have the following:

(1) The class of C-approximately interpolative T∪-models is elementary.
(2) If C is a pseudo-cell collection for T∩, then the class of approximately interpolative

T∪-models is elementary.
(3) If, in addition, Ti is approximable over T∩ for each i ∈ I, then the interpolative fusion

exists.

Proof. We first prove statement (1). Let ϕ∩(x, y) be an L∩-formula, let J ⊆ I be finite,
and let ϕi(x, zi) be an Li-formula for each i ∈ J . Let γ∩(y) be an L∩-formula defining C-
membership for ϕ∩(x, y) and δi(y, zi) an Li-formula defining pseudo-denseness over C for
ϕ∩(x, y) and ϕi(x, zi) for each i ∈ J . For simplicity, we assume J = {1, . . . , n}. Then we have
the following axiom:

∀y, z1, . . . , zn ((γ∩(y) ∧ n⋀
i=1

δi(y, zi)) → ∃x n⋀
i=1

ϕi(x, zi)) .
Then T∪, together with one axiom of the above form for each choice of ϕ∩(x, y), J , and
ϕi(x, zi) for i ∈ J as above, axiomatizes the class of C-approximately interpolative T∪-models.
Assertions (2) and (3) follow immediately from Proposition 8.3. �

The axiomatization given in the proof of Theorem 8.2 is slightly different than that of
Theorem 8.1. They are nevertheless very similar in spirit, so we also refer to the former as
the pseudo-topological axioms.

Clearly, if T ′ defines pseudo-denseness over T , then T ′ defines pseudo-denseness over any
collection C of definable sets of T -models. The converse is true when the dimension is
definable.

We say T defines dimension if for every ordinal α, and every L-formula ϕ(x, y), there is
an L-formula δα(x, y) such that for all M ⊧ T and b ∈My

dimϕ(M, b) = α if and only if M ⊧ δα(b).
We leave the straightforward proof of the following proposition to the reader.

Proposition 8.4. Suppose C is a collection of pseudo-cells, T defines C-membership and
dimension, and T ′ defines pseudo-denseness over C. Then T ′ defines pseudo-denseness over
T .
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8.3. Tame topological base

If M is o-minimal, then M′ is approximable over M if and only if the closure of every M′-
definable set is M-definable. This equivalence only depends on two well-known facts from
o-minimality. One of these is known as the frontier inequality, and we refer to the other as
the residue inequality. We explore these issues in an abstract setting below.

A definable topology T on M consists of a topology Tx on each Mx, for which there is an
L-formula ϕ(x, y) such that {ϕ(M, a) ∶ a ∈ My} is an open basis for Tx. Note that we also
obtain a definable topology on every structure elementarily equivalent to M.

For the rest of Section 8.3, we suppose T is a definable topology on M and dim is an ordinal
rank on T = Th(M), such that T defines dimension.

Let A be a subset of Mx. We denote by cl(A) the closure of A with respect to Tx. The
frontier of A, fr(A), is defined as cl(A) ∖A. Since T is a definable topology, the interior,
closure, and frontier of a definable subset ofMx are definable. We say that A has nonempty
interior in X ⊆Mx if there is an open U ⊆Mx such that U ∩X ⊆ A.
In general there need be no connection between pseudo-denseness and T-denseness. We give
conditions under which the two naturally relate. We say M satisfies the frontier inequality
if

dim fr(X) < dimX for all definable X.

This is a strong assumption which in particular implies, by a straight-forward induction on
dimension, that every definable set is a Boolean combination of open definable sets.

Lemma 8.2. Suppose M satisfies the frontier inequality and X ′ ⊆ X are M-definable sets.
If dimX ′ = dimX, then X ′ has nonempty interior in X.

Proof. IfX ′ has empty interior inX, thenX∖X ′ is dense inX, and soX ′ ⊆X ⊆ cl(X∖X ′).
In particular, X ′ ⊆ fr(X ∖ X ′). The frontier inequality implies dimX ′ < dimX ∖ X ′ ⩽
dimX. �

Lemma 8.3. The following are equivalent:

(1) M satisfies the frontier inequality.
(2) If A ⊆Mx is dense in a definable X ⊆Mx then A is pseudo-dense in X.

Proof. Suppose that M satisfies the frontier inequality and that A ⊆ Mx is dense in a
definable set X ⊆Mx. Suppose X ′ ⊆X is definable and dimX ′ = dimX. Lemma 8.2 implies
that X ′ has nonempty interior in X. Thus A intersects X ′. It follows that A is pseudo-dense
in X.
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Conversely, assume (2), and letX ⊆Mx be definable. SinceX is dense in cl(X), X is also
pseudo-dense in cl(X). But sinceX does not intersect fr(X), we have dim fr(X) < dim cl(X).
It follows that dimX = dim cl(X), so the frontier inequality holds. �

The converse to (2) above almost always fails for general definable sets X. For example, if
A ⊆Mx is an infinite definable set and p ∈Mx does not lie in cl(A), then A is pseudo-dense
in X = A ∪ {p} but not dense in X. However, the converse to (2) does hold for certain
definable sets, which we call dimensionally pure.

Let X ⊆Mx be definable. Given p ∈X, we define

dimpX = min{dim(U ∩X) ∶ U is a definable neighborhood of p}.
We say that X is dimensionally pure if dimpX = dimX for all p ∈ X. Equivalently, X
is dimensionally pure if and only if dimU = dimX for all U ⊆ X such that U is definable,
nonempty, and open in X.

Lemma 8.4. Suppose X ⊆Mx is definable. Then the following are equivalent:

(1) X is dimensionally pure.
(2) If a subset A of Mx is pseudo-dense in X, then A is dense in X.

Proof. Suppose X is not dimensionally pure. Let U be a definable nonempty open subset
of X such that dimU < dimX. Then X ∖U is pseudo-dense in X and not dense in X.

Suppose X is dimensionally pure and A is pseudo-dense in X. Suppose U is a nonempty
open subset of X. Then there is a definable nonempty open subset U ′ of U . Then dimU ′ =
dimX, so A intersects U ′. Hence A is dense in X. �

The following proposition gives another characterization of dimensionally pure sets. We will
not use this characterization, so we leave its proof to the reader.

Proposition 8.5. Suppose X ⊆Mx is definable. If X is dimensionally pure, then there are
no definable sets X1 and X2 such that X = X1 ∪X2, X1 and X2 are closed in X, neither
X1 nor X2 contains the other, and dimX1 ≠ dimX2. If M satisfies the frontier inequality,
then the converse holds.

For a definable X ⊆Mx, we define the essence of X, es(X), and the residue of X, rs(X):
es(X) = {p ∈X ∶ dimpX = dimX}
rs(X) = {p ∈X ∶ dimpX < dimX}

As Tx admits a definable basis, and T defines dimension, it follows that es(X) and rs(X)
are definable.
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We say that M satisfies the residue inequality if

dim rs(X) < dimX for all definable X.

Note that the residue inequality implies that all definable discrete sets are finite.

Lemma 8.5. If M satisfies the residue inequality, then for all definable X ⊆Mx, es(X) is
dimensionally pure.

Proof. As X = rs(X) ∪ es(X) and dim rs(X) < dimX, we have dim es(X) = dim(X). Now
suppose p ∈ es(X) and U is a definable neighborhood of p. Then we have dimpX = dimX

and dim(U ∩X) = dimX. But

(U ∩X) = (U ∩ rs(X)) ∪ (U ∩ es(X)),
and dim(U ∩ rs(X)) ⩽ dim rs(X) < dimX, so dim(U ∩ es(X)) = dimX = dim es(X). Hence
dimp es(X) = dim es(X), as was to be shown. �

We will not use the following proposition, but we include it here, since it provides additional
motivation for the residue inequality.

Proposition 8.6. M satisfies the residue inequality if and only if every definable set is a
finite disjoint union of dimensionally pure definable sets.

Proof. Suppose first that M satisfies the residue inequality. Let X ⊆ Mx be definable.
We argue by induction on dimX. If dimX = −∞, then X = ∅ and the conclusion holds
vacuously. Otherwise, X is the disjoint union of es(X) and rs(X). By Lemma 8.5, es(X) is
dimensionally pure, and by the residue inequality dim rs(X) < dimX, so by induction rs(X)
is a finite disjoint union of dimensionally pure definable sets.

Conversely, for any definable set X, suppose that X is a disjoint union of dimensionally
pure definable sets Y1, . . . , Ym. We will show that dim rs(X) < dimX. We may assume
without loss of generality that 1 ⩽ j ⩽m is such that

dimYk = dimX when k ⩽ j and dimYk < dimX when k > j.
Let p ∈ rs(X), and suppose for contradiction that p ∈ Yk for some k ⩽ j. Then since Yk is
dimensionally pure, dimp Yk = dimYk = dimX, so for any definable neighborhood U of p,

dimX = dim(U ∩ Yk) ⩽ dim(U ∩X) ⩽ dimX.

So dimpX = dimX, contradicting the fact that p ∈ rs(X). Thus rs(X) ⊆ ⋃k>j Yk, and
dim rs(X) ⩽ dim⋃k>j Yk < dimX. �

We say T is dim-compatible if M satisfies both the frontier inequality and the residue
inequality. For the remainder of Section 8.3, dim is an ordinal rank on T = Th(M)
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such that T defines dimension, and T is a dim-compatible definable topology
on M. Definability of the dimension and the topology ensure that dim-compatibility is an
elementary property, i.e., the topology on any model of T is dim-compatible.

Proposition 8.7. Suppose X ⊆Mx is definable and A ⊆Mx. Then A is pseudo-dense in X
if and only if A is dense in es(X).
Proof. Since dim rs(X) < dimX and dim es(X) = dimX, A is pseudo-dense inX if and only
if A is pseudo-dense in es(X). The equivalence then follows from Lemma 8.3, Lemma 8.4,
and Lemma 8.5. �

Proposition 8.8. Any expansion T ′ of T defines pseudo-denseness over T .

Proof. Suppose M is a T -model and M′ is a T ′-model expanding M. Suppose (Xb)b∈My and(X ′
c)c∈Mz are families of subsets ofMx, which are M-definable and M′-definable, respectively.

By Proposition 8.7, X ′
c is pseudo-dense in Xb if and only if X ′

c is dense in es(Xb).
Using definability of the topology and dimension, essences of definable sets are uniformly

definable, i.e., there is an M-definable family (Yb)b∈My such that Yb = es(Xb) for all b ∈My.
Thus X ′

c is pseudo-dense in Xb if and only if X ′
c is dense in Yb. And using definability of the

topology, the set of all (b, c) such that X ′
c is dense in Y b is definable. �

Proposition 8.9. Suppose M′ expands M. Then M′ is approximable over M if and only if
the closure of any M′-definable set is M-definable.

Proof. Suppose that the closure of any M′-definable set is M-definable. Then for any
M′-definable X ⊆Mx, cl(X) is a pseudo-closure of X by Lemma 8.3.

Conversely, suppose M′ is approximable over M and X ′ ⊆Mx is M′-definable. Let X be
a pseudo-closure of X ′. We apply induction to the dimension of X. If dimX = −∞, then X ′
is empty and trivially M-definable. Now suppose dimX ⩾ 0. We have

cl(X ′) = cl(X ′ ∩ es(X)) ∪ cl(X ′ ∩ rs(X)).
Since X ′ is pseudo-dense in X, X ′ is dense in es(X) by Proposition 8.7. It follows that
cl(X ′ ∩ es(X)) = cl(es(X)), which is M-definable. As (X ′ ∩ rs(X)) ⊆ rs(X), any pseudo-
closure of (X ′ ∩ rs(X)) has dimension at most dim rs(X) < dimX. So cl(X ′ ∩ rs(X)) is
M-definable by induction. Thus cl(X ′) is a union of two M-definable sets and is therefore
M-definable. �

We conclude this section by giving examples of structures with compatible definable topolo-
gies. In each case T and dim are canonical, so we do not describe them in detail. And in each
case the existence of dimensionally pure decompositions (and hence the residue inequality,
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by Proposition 8.6) follows from the appropriate cell decomposition or “weak cell decompo-
sition” result. In different settings, cells (or “weak cells”) have different definitions, but they
are easily seen to be dimensionally pure in each case.

The most familiar case is when M is an o-minimal expansion of a dense linear order, see [84].
Similarly, it follows from [76, Proposition 4.1,4.3] that if M is a dp-minimal expansion of a
divisible ordered abelian group then the usual order topology is compatible. This covers the
case when M is an expansion of an ordered abelian group with weakly o-minimal theory. It is
shown in Johnson’s thesis [43] that a dp-minimal, non strongly minimal, expansion of a field
admits a definable field topology and it is shown in [76] that this topology is compatible.
It follows in particular that a C-minimal expansion of an algebraically closed field, or a
P-minimal expansion of a p-adically closed field admits a compatible definable topology. It
was previously shown in [22] that P-minimal expansions of p-adically closed fields satisfy
the frontier inequality and admit dimensionally pure decompositions.

We say that T is an open core of T ′ if the closure of every T ′-definable set in every T ′-model
M′ is M = M′∣L definable. Proposition 8.8 and Proposition 8.9 together yield the following
theorem.

Theorem 8.3. If T∩ admits an ordinal rank dim and a dim-compatible definable topology,
and T∩ is an open core of Ti for each i ∈ I, then T ∗∪ exists. In particular, if T∩ is an o-minimal
expansion of a dense linear order or a p-minimal expansion of a p-adically closed field, and
T∩ is an open core of Ti for each i ∈ I, then T ∗∪ exists.

We give a concrete example of Theorem 8.3. Suppose T∩ is a complete and model complete
o-minimal theory that extends the theory of ordered abelian groups. For each i ∈ I, let Ti be
the theory of a T -model N equipped with a unary predicate Ri defining a dense elementary
substructure of N. Then Ti is model complete by [83, Thm 1] and T∩ is an open core of Ti
[27, Section 5]. Applying Theorem 8.3, we see that the theory T∪ of a T -model N equipped
with a family (Ri)i∈I of unary predicates defining dense elementary substructures of N has
a model companion.

8.4. ℵ0-stable base

We assume throughout this section that T is ℵ0-stable and dim is Morley rank on T . We
write mult for Morley degree on T .

Suppose X1 and X2 are M-definable subsets of Mx. Then X1 is almost a subset of X2, if

dim(X1 ∖X2) < dim(X1),
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and X1 is almost equal to X2, if X1 is almost a subset of X2 and vice versa. An M-
definable subset X of Mx is almost irreducible if whenever X = X1 ∪X2 for M-definable
X1 and X2, we have X is almost equal to X1 or to X2. Any M-definable set of Morley
degree one is almost irreducible, and the converse holds when Th(M) defines Morley rank
or when M is ℵ0-saturated.

The following easy proposition is the main advantage of assuming that T∩ is ℵ0-stable in our
setting.

Lemma 8.6. Suppose A is a subset of Mx. Then an M-definable set X ⊆Mx is a pseudo-
closure of A if and only if A ⊆X and

(dimX,multX) ⩽Lex (dimX ′,multX ′)
for all M-definable X ′ ⊆Mx with A ⊆X ′.
Proof. By standard properties of Morley rank and degree in ℵ0-stable theories, for any M-
definable X and X ′, if (dimX ′,multX ′) <Lex (dimX,multX), then dim(X ∖X ′) = dimX.
If X ′ ⊆X, then the converse is true.

Let X be a pseudo-closure of A, so A ⊆ X, and suppose for contradiction that there is
some M-definable X ′ ⊆ Mx with A ⊆ X ′ and (dimX ′,multX ′) <Lex (dimX,multX). Then
dim(X ∖X ′) = dimX, but A ∩ (X ∖X ′) = ∅, contradicting the fact that A is pseudo-dense
in X.

Conversely, suppose A ⊆ X and (dimX,multX) is minimal in the lexicographic order
among M-definable sets containing A. Then for any M-definable X ′ ⊆ X with dimX ′ =
dimX, (dim(X ∖X ′),mult(X ∖X ′)) <Lex (dimX,multX). It follows that A /⊆ (X ∖X ′), so
A ∩X ′ ≠ ∅. Hence X is a pseudo-closure of A. �

The preceding lemma has the following important immediate consequence for the approx-
imability condition in this setting.

Proposition 8.10. Every A ⊆ Mx has a pseudo-closure. Hence every expansion of M is
approximable over M and every expansion of T is approximable over T .

Proof. This is an immediate consequence of Lemma 8.6, using the fact that the lexico-
graphic order on pairs (dimX,multX) is a well-order. �

Corollary 8.2. If Th(M∩) is ℵ0-stable and dim is Morley rank, then M∪ is interpolative if
and only it is approximately interpolative.

As a demonstration of the material developed so far, we will revisit the example of difference
fields as presented in Section 7.7. Suppose K is a model of ACF. We say that V ⊆ Kx is a
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irreducible if it is K-definable and irreducible with respect to the Zariski topology on K,
or equivalently, V is a quasi-affine variety.

Suppose K and K ′ are algebraically closed fields and f ∶ K → K ′ is a field isomorphism.
Then (K,K ′; f) is a model of the theory T1 (or equivalently of T2) in Corollary 7.3. As in
the proof of Proposition 7.1, (K,K ′; f) is isomorphic to (K,K; idK) via the map (idK , f−1).
If Z ⊆Km × (K ′)n, set

(idK , f−1)(Z) = {(a, f−1(b)) ∣ (a, b) ∈ Z} ⊆Km+n.
Then Z ⊆ Km × (K ′)n is (K,K ′; f)-definable if and only if (idK , f−1)(Z) is K-definable.
Hence, we can liberally import concepts and results from definable sets in ACF to definable
sets in (K,K ′; f). In particular, we say Z is irreducible if (idK , f−1)(Z) is irreducible.
Likewise, we say Z is Zariski-closed in Z ′ if (idK , f−1)(Z) is Zariski-closed in (idK , f−1)(Z ′).
The remark below follows easily from quantifier elimination in ACF.

Remark 8.3. Suppose K and K ′ are algebraically closed fields.

(1) Every (K,K ′)-definable subset of Km × (K ′)n is a finite union of sets of the form
V ×V ′ where V ⊆Km is an irreducible K-definable set and V ′ ⊆ (K ′)m is an irreducible
K ′-definable set.

(2) If f ∶K →K ′ is a field isomorphism, then every (K,K ′; f)-definable set is a finite union
of irreducible (K,K ′; f)-definable sets.

(3) If V ⊆Km is an irreducibleK-definable set, and V ⊆ (K ′)n is an irreducibleK ′-definable
set, then V × V ′ is an irreducible (K,K ′; f)-definable set.

Recall that T∩ is the theory of pairs (K,K ′), where K and K ′ are algebraically closed fields.
It is easy to see that this theory is ℵ0-stable. We write dim for Morley rank on (K,K ′) and
mult for Morley degree on (K,K ′). The following facts are easy to verify.

Remark 8.4. If V ⊆ Km is (K,K ′)-definable, then dim(V ) and mult(V ) are equal to
the dimension and multiplicity of V considered as a K-definable set relative to ACF, and
similarly for V ′ ⊆ (K ′)n. If V ⊆ Km is K-definable and V ⊆ (K ′)m′ is K ′-definable, then
dim(V ×V ′) = dim(V )+dim(V ′). If V and V ′ are irreducible, then V ×V ′ is irreducible and
mult(V ×V ′) = 1. The collection of all such irreducible sets V ×V ′ is a pseudo-cell collection
for T∩.
These observations lead immediately to a characterization of pseudo-denseness.

Lemma 8.7. Suppose V ⊆ Kx and V ′ ⊆ (K ′)y are irreducible, π and π′ are the coordinate
projections from V × V ′ to V and V ′, and Z ⊆ V × V ′ is an irreducible definable set in
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(K,K ′; f). Then Z is pseudo-dense in V × V ′ if and only if π(Z) is Zarski-dense in V and
π′(Z) is Zarski-dense in V ′.
Proof. Suppose π(Z) is Zariski-dense in V and π′(Z) is Zariski-dense in V ′. Using Re-
mark 8.3, Z has a pseudo closure of the form

(W1 ×W ′
1) ∪ . . . ∪ (Wn ×W ′

n)
where Wi is an irreducible K-definable subset of V , and W ′

i is an irreducible K ′-definable
subset of V ′ for i ∈ {1, . . . , n}. Using Lemma 8.6 and replacing the relevant sets with their
Zariski-closures in V and V ′ if necessary, we can arrange that Wi is closed in V , W ′

i is closed
in V ′, and hence Wi ×W ′

i is closed in V × V ′ for i ∈ {1, . . . , n}. As Z is irreducible, we must
have

Z ⊆Wi ×W ′
i for a single i ∈ {1, . . . , n}.

Thus Z has a pseudo-closure of the form W ×W ′ with W ⊆ V and W ′ ⊆ V ′ irreducible. As
π(Z) ⊆W , and π′(Z) ⊆W ′,W is Zariski-dense in V andW ′ is Zariski-dense in V ′. Applying
Remark 8.4, we get dim(W ×W ′) = dim(V × V ′). Since mult(V × V ′) = 1, it follows from
Lemma 8.6 that V ×V ′ is a pseudo-closure of Z. In particular, Z is pseudo-dense in V ×V ′.

Now suppose Z is pseudo-dense in V × V ′. Let W ⊆ V be a pseudo-closure of π(Z), and
let W ′ ⊆ V ′ be a pseudo-closure of π′(Z). As V × V ′ is a pseudo-closure of Z, we must have
dim(V ×V ′) ⩽ dim(W ×W ′). This forces dimW = dimV and dimW ′ = dimV ′. Since V and
V ′ are irreducible, mult(V ) = mult(V ′) = 1. Applying Lemma 8.6, π(Z) is pseudo-dense in
V , and π′(Z) is pseudo-dense in V ′. Since V and V ′ are irreducible, π(Z) is Zariski-dense
in V and π′(Z) is Zariski-dense in V ′, as desired. �

Suppose K is an algebraically closed field and σ is an automorphism of K. We say that σ is
a generic automorphism if for all irreducible K-definable sets V ⊆Km and Z ⊆ V × σ(V )
such that the projections of Z onto V and σ(V ) are Zariski-dense in V and σ(V ) respectively,
we can find a ∈ V such that (a, σ(a)) ∈ Z.
It is well known that (K;σ) ⊧ ACFA if and only if K ⊧ ACF and σ is a generic automor-
phism. This description of models of ACFA is often referred to as Hrushovksi’s geometric
characterization/axioms [56]. The following proposition clarifies the relationship between
this and our pseudo-topological characterization/axioms.

Proposition 8.11. Suppose K is an algebraically closed field and σ is an automorphism of
K. Then the following statements are equivalent:

(1) σ is a generic automorphism.
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(2) With I = {1,2}, (K,K; idK) viewed as an L1-structure, and (K,K;σ) viewed as an L2

structure for L1 and L2 as in Corollary 7.3, the L∪-structure (K,K; idK , σ) is approx-
imately interpolative.

Proof. We first show the backward direction. Suppose (2) holds, and let V and Z be
as in the definition of a generic automorphism. Set V ′ = σ(V ). Applying Lemma 8.7, we
find that Z as a (K,K; idK)-definable set is pseudo-dense in V × V ′. Also by Lemma 8.7,{(a, σ(a)) ∶ a ∈ K} as a (K,K;σ)-definable set is pseudo-dense in V × V ′. Therefore Z ∩{(a, σ(a)) ∶ a ∈K} ≠ ∅ by (2), which is the desired conclusion.

Conversely, suppose (1) holds. By Remark 8.4, (K,K)-definable sets of the form V ×V ′
with V and V ′ irreducible form a pseudo-cell collection. Hence, it suffices to fix V and V ′, and
show that X ∩ Y ≠ ∅ whenever X is a (K,K; idK)-definable set, Y is a (K,K;σ)-definable
set, and X and Y are each pseudo-dense in V × V ′. Using Remark 8.3, we can reduce to
the case when X and Y are irreducible. Let Y ∗ = (idK , σ−1)(Y ). Our job is to show that
there is (a, b) ∈ V ×V ′ with (a, b) ∈X and (a, σ−1(b)) ∈ Y ∗. By Lemma 8.7, we have that the
projections of Y ∗ and X onto V , of Y ∗ onto σ−1(V ′), and of X onto V ′ have Zariski-dense
image. Using generic flatness (see [32] or [61]), we can arrange that these maps are flat by
shrinking X, Y ∗, V , and V ′ if necessary. Let Y ∗ ×V X be the fiber product of Y ∗ and X

over V . Then

Y ∗ ×V X ⊆ (V × σ−1(V ′)) ×V (V × V ′) = V × σ−1(V ′) × V ′.
As flatness is preserved under base-change and composition, the obvious maps from Y ∗×V X
to σ−1(V ′) and to V ′ are flat. Let Z̃ be an irreducible component of Y ∗ ×V X and Z the
image of Z̃ in σ−1(V ) × V ′. As flat maps are open [35, Exercise III.9.1], the image of the
projections of Z̃ and hence of Z onto σ−1(V ′) and onto V ′ contain Zariski-open subsets of
σ−1(V ′) and V ′ respectively. By (1), Z contains a point of the form (σ−1(b), b). Hence, there
is a point of the form (a, σ−1(b), b) in Y ∗ ×V X. This implies that (a, σ−1(b)) is in Y ∗ and(a, b) is in X, which is our desired conclusion. �

Proposition 8.12 below, combined with Theorem 7.9, allows us to recover the fact that the
theory of difference fields has a model companion.

Proposition 8.12. Let T1 and T2 be as in Corollary 7.3. Then T ∗∪ exists.

Proof. By Proposition 7.1, T1 and T2 are bi-interpretable with ACF, so in particular they
are ℵ0-stable. It follows that T∩ is also ℵ0-stable, so T1 and T2 are automatically approximable
over T∩. T1 and T2 also define pseudo-denseness over T∩, using Lemma 8.7 and the fact that
ACF defines dimension and irreducibility. Thus T ∗∪ exists by Theorem 8.1. �
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Remark 8.5. Note that the proof of Proposition 8.12 does not use Proposition 8.11. It
follows from Corollary 7.3 that (K;σ) ⊧ ACFA if and only if (K,K; idK , σ) ⊧ T ∗∪ where
T ∗∪ is as in Proposition 8.12. Combining with the fact the (K;σ) ⊧ ACFA if and only if
σ is a generic automorphism, and the fact that the models of T ∗∪ are the approximately
interpolative models of T∪, we get an alternative proof of Proposition 8.11.

The proof we gave for Proposition 8.11 is purely at the level of structures and not theories.
This is technically harder but done to make a point: In addition to recovering the fact that
various theories in the literature have a model companion, the material we develop in this
section is the common abstraction of the proofs in the literature that these theories have
model companions.

Having finished our discussion of ACFA, we now return to the general case. In Proposi-
tion 8.2, we gave a concrete example of an expansion of T = Th(Z; 0,+,−) which is not
approximable over T . It is well known that T is superstable but not ℵ0-stable, so this
demonstrates that superstability is not sufficient for Proposition 8.10. For the reader who is
still looking for a free ride outside of the ℵ0-stable context, Proposition 8.13 will dash this
hope.

If dim1,dim2 are ordinal ranks on an L♢-theory T ♢ then we say dim1 is smaller than dim2

if dim1X ⩽ dim2X for all definable sets X.

Lemma 8.8. The theory T ♢ is ℵ0-stable if and only if it admits an ordinal rank dim such
that for every T ♢-model M♢, M♢-definable set X, and family (Xn)n∈N of pairwise disjoint
M♢-definable subsets of X, we have dimXn < dimX for some n. If T ♢ is ℵ0-stable, then
Morley rank is the smallest ordinal rank with this property.

Proof. It is well-known that Morley rank RM is an ordinal rank satisfying the hypotheses
when T ♢ is ℵ0-stable. Suppose dim is an ordinal rank satisfying the hypotheses. We will
show that RM(X) ⩽ dimX for all M♢-definable sets X in T ♢-models M♢. This implies that
RM is ordinal valued and hence that T ♢ is ℵ0-stable.

As RM and dim are preserved in elementary extensions, it suffices to fix an ℵ0-saturated
T ♢-modelM♢ and show RM(X) ⩽ dim(X) for allM♢-definable setsX. We show by induction
on ordinals α that if α ⩽ RM(X), then α ⩽ dim(X). If 0 ⩽ RM(X), then X is nonempty, so
0 ⩽ dim(X). If α is a limit ordinal and α ⩽ RM(X), then β ⩽ RM(X) for all β < α, so by
induction β ⩽ dim(X) for all β < α, and hence α ⩽ dim(X). If α = β+1 is a successor ordinal
and α ⩽ RM(X), then since M♢ is ℵ0-saturated, there are pairwise disjoint M-definable
subsets (Xn)n∈N of X such that β ⩽ RM(Xn) for all n. By induction, β ⩽ dim(Xn) for
all n, and by our assumption on dim there is some n such that dim(Xn) < dim(X). So
α ⩽ dim(X). �
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Proposition 8.13. Suppose L♢ is countable and dim♢ is an ordinal rank on a complete L♢-
theory T ♢. If T ♢ is not ℵ0-stable, then there is an expansion of T ♢ which is not approximable
over T ♢.
Proof. Suppose T ♢ is not ℵ0-stable. Applying Lemma 8.8, we obtain a T ♢-model M♢,
an M♢-definable set X with dim♢X = α, and a sequence (Xn)n∈N of pairwise disjoint M♢-
definable subsets of X such that dim♢Xn = α for all n. Since X and each Xn are definable
with parameters from a countable elementary submodel, we may assume M♢ is countable.

Given S ⊆ N, let AS = ⋃n∈SXn. We show that AS does not have a pseudo-closure for
uncountably many S ⊆ N. Suppose S ⊆ N is nonempty and X ′ is a pseudo-closure of AS.
As AS ⊆ X, we have dim♢X ′ ⩽ α. As S is nonempty, we have Xn ⊆ X ′ for some n, so
dim♢X ′ ⩾ α. Thus any pseudo-closure X ′ of AS has dim♢X ′ = α.

Now suppose S,S′ ⊆ N are nonempty and S /⊆ S′. We show any pseudo-closure of AS is
not a pseudo-closure of AS′ . Fix n ∈ S ∖ S′ and suppose X ′ is a pseudo-closure of AS. Then
dim♢X ′ = α, Xn is an M♢-definable subset of X ′ with dim♢Xn = α, but Xn is disjoint from
AS′ . Thus X ′ is not a pseudo-closure of AS′ .

Let J be an uncountable collection of nonempty subsets of N such that S /⊆ S′ for all
distinct S,S′ ∈ J. If S,S′ ∈ J are distinct, then AS and AS′ cannot have a common pseudo-
closure. As M♢ and L are countable, there are only countably many M♢-definable sets,
so there are uncountably many S ∈ J such that AS does not have a pseudo-closure. The
expansion of M♢ by a predicate defining any such AS is not approximable over M♢. It
follows that the theory of this expansion is not approximable over T ♢. �

We next give a useful characterization of definability of pseudo-denseness over an ℵ0-stable
theory. Lemma 8.6 motivates the following definition. Suppose M ′ is a model of T ′, M =
M′↾L, and X ′ ⊆Mx is M′-definable. Define

dim′X ′ = dimX and mult′X ′ = multX

where X is a pseudo-closure of X ′. The following corollary is an immediate consequence of
Lemma 8.6.

Lemma 8.9. For A ⊆Mx and M-definable X ⊆Mx, we have the following:

(1) A is pseudo-dense in X if and only if we have both dim′(X∩A) = dim(X) and mult′(X∩
A) = mult(X).

(2) If X is almost irreducible, then A is pseudo-dense in X if and only if dim′(X ∩A) is
the same as dim(X).

In general dim′ might not be an ordinal rank on T ′ as dim′(X ′) might be different from
dim′(X ′(N′)) where N′ is an elementary extension of M′. When T defines Morley rank, we
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can easily check that dim′ is an ordinal rank on T ′, which we will refer to as the induced
rank on T ′.
We say T defines multiplicity (or has the DMP) if for all L-formulas ϕ(x, y), ordinals α,
and n, there is an L-formula µα,n(y) such that for all M ⊧ T and b ∈My we have that

M ⊧ µα,n(b) if and only if dimϕ(M, b) = α and mult ϕ(M, b) = n.
In particular, if T defines multiplicity, then T defines Morley rank, and the induced rank on
T ′ is well-defined.
Proposition 8.14. Suppose T defines multiplicity. Then T ′ defines pseudo-denseness over
T if and only if T ′ defines induced rank.

Proof. Suppose T ′ defines pseudo-denseness and ϕ′(x, y) is an L′-formula. Let (X ′
b′)b′∈Y ′

be a family of subsets of Mx defined by ϕ′(x, y). Using the assumption that T ′ defines
pseudo-denseness and a standard compactness argument, we obtain a family (Xc)c∈Z defined
by a formula whose choice might depend on ϕ′(x, y) but not on M′, such that for every
b′ ∈ Y , X ′

b has a pseudo-closure which in a member of the family (Xc)c∈Z . It follows from
Proposition 8.10 that dim′(X ′

b′) = α for b′ ∈ Y if and only there is c ∈ Z such thatX ′
b is pseudo-

dense in Xc and dim(Xc) = α. As T defines multiplicity and T ′ defines pseudo-denseness, it
follows that T ′ defines induced rank.

Now suppose T ′ defines induced rank. Let C be the collection of almost irreducible subsets
of T -models. Then C is a collection of pseudo-cells for T . As T defines multiplicity, T defines
C-membership. So by Proposition 8.4, it suffices to show T ′ defines pseudo-denseness over C.
Let (X ′

b′)b′∈Y ′ and (Xc)c∈Z be a families defined by an L′-formula ϕ′(x, y) and an L-formula
ϕ(x, z). It follows from Lemma 8.6 that when Xc is in C, X ′

b′ is pseudo-dense in Xc if and
only if dim′(X ∩X ′) = dim(X). The desired conclusion follows. �

Remark 8.6. If T defines Morley rank, then mult′ is preserved under elementary extensions,
so we may speak of induced multiplicity on T ′. There is also an analogue of Proposition 8.14
which involves both dim′ and mult′: Suppose T defines Morley rank. Then T ′ defines pseudo-
denseness if and only if T ′ defines induced rank and induced multiplicity. We do not include
it here as we do not have an application in mind.

Theorem 8.4. Suppose T∩ is ℵ0-stable and defines multiplicity. If each Ti defines induced
rank, then T ∗∪ exists.

Proof. This is an immediate consequence of Theorem 8.1, Proposition 8.10, and Proposi-
tion 8.14. �
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Proposition 8.14 and Theorem 8.4 are mainly of interest because there are several situations
where the induced rank on T ′ is a natural notion of dimension, and its definability follows
from our general knowledge about T ′. Proposition 8.15 below presents a general class of
such situations.

The algebraic dimension adim(X) of an N-definable set X is the maximal k for which
there is a = (a1, . . . , an) ∈ X(N) such that (after permuting coordinates) a1, . . . , ak are acl-
independent over N . It is well-known that algebraic dimension is an ordinal rank on Th(N),
which coincides with Morley rank for strongly minimal theories. The following fact is also
well known (see [11, Lemma 2.2]).

Fact 8.1. A theory defines algebraic dimension if and only if it eliminates ∃∞.
Proposition 8.15. Suppose T is strongly minimal and acl′ agrees with acl in all T ′-models.
Then T ′ defines induced rank if and only if T ′ eliminates ∃∞.
Proof. Suppose M′ ⊧ T ′, and M = M′↾L. Since T is strongly minimal, dim = adim. We
write dim′ for the induced rank on T ′ and adim′ for the algebraic dimension in M′. Using
Fact 8.1, it suffices to show that dim′ = adim′.

If X ′ is an arbitrary M′-definable subset of Mx,

dim′(X ′) = min{adim(X) ∣X ⊆Mx is M-definable, and X ′ ⊆X}.
As acl′ = acl, whenever a ∈ X ′(M′) has k components which are acl′-independent over M ,
these components are also acl-independent over M , and we have a ∈ X(M′) for any M-
definable X such that X ′ ⊆X. Hence, adim′(X ′) ⩽ dim′(X ′).

Conversely, let X ⊆ Mx be a pseudo-closure of X ′, and n = adim(X). Then X ′ is not
contained in any M-definable set of smaller dimension. Since the set of M-definable sets of
dimension less than n is closed under finite unions, by compactness there is some a′ ∈X ′(M′)
which is not contained in any M-definable set of dimension less than n. If a′ does not have
n components which are acl′-independent over M , then since acl′ = acl, this dependence is
witnessed by a′ ∈ Y , where Y is M-definable and adim(Y ) < n. This contradicts the choice
of a′. �

As a demonstration of Proposition 8.14 and Proposition 8.15, we will revisit the theory of
algebraically closed fields with multiple valuations described in Section 7.2 and show that
this has a model companion. We need the following fact about algebraically closed valued
fields, which can be found in [82].

Fact 8.2. Suppose K is an algebraically closed field and R ⊆K is a nontrivial valuation ring.
Then the model-theoretic algebraic closure in (K;R) agrees with the field-theoretic algebraic
closure in K (which agrees with the model-theoretic algebraic closure in K).
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Applying Proposition 8.14, Proposition 8.15, and Fact 8.2 we recover the promised fact,
which is also the first part of Theorem 7.3.

Proposition 8.16. Suppose L∩ is the language of rings, and for each i ∈ I, Li extends L∩
by a unary relation symbol, Ti is the theory whose models are (K;Ri) with K ⊧ ACF and Ri

a nontrivial valuation ring on K. Then T ∗∪ exists.

In [81] and [43], the strategy to show that the theory of algebraically closed fields with
multiple valuations has a model companion involves:

(1) Identifying a class C of “generic” algebraically closed fields with multiple valuations.
(2) Showing that C consists precisely of the existentially closed models of the theory of

algebraically closed fields with multiple valuations.
(3) Showing that C is first-order axiomatizable.

For an algebraically closed field K and a family (Ri)i∈I of nontrivial valuation rings on K,
we say (K; (Ri)i∈I) is generic if whenever V ⊆Km is Zariski-closed and irreducible, J ⊆ I is
finite, Ui ⊆Km is vi-open in in V for i ∈ J , we have ⋂i∈J Ui ≠ ∅.
We will show that this notion of genericity agrees with our notion of approximately inter-
polative structure. This is a special case of the notions of genericity in [81] and [43]: they
work in a more general setting and use different terminology. We need the following lemma
about algebraically closed valued fields.

Lemma 8.10. Suppose K is an algebraically closed field, R ⊆ K is a nontrivial valuation
ring, V ⊆Km is irreducible, and X ⊆ V is (K;R)-definable. Let v be the valuation associated
to R and dim be the acl-dimension on (K;R). Then the following are equivalent:

(1) dimX = dimV .
(2) X is Zariski-dense (equivalently pseudo-dense) in V .
(3) X has nonempty interior in the v-topology on V .

Proof. Fact 8.2 together with Lemma 8.6 shows that (1) and (2) are equivalent. The proof
of [82, Proposition 2.18] shows that (2) implies (3). As every Zariski-closed set is v-closed,
it follows that any subset of V which is not Zariski-dense in V has empty interior in the
v-topology on V . �

Proposition 8.17. Suppose (K; (Ri)i∈I) has K ⊧ ACF and Ri a nontrivial valuation ring
on K for i ∈ I. Then following are equivalent:

(1) (K; (Ri)i∈I) is generic.
(2) With L∩ the language of rings and Li extending L∩ by a unary relation symbol for each

i ∈ I, (K; (Ri)i∈I) as an L∪-structure is approximately interpolative.
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Proof. The backward direction follows immediately from Lemma 8.10. It is easy to see
that the collection of irreducible varieties forms a pseudo-cell collection for ACF. Applying
Lemma 8.10 again, we get the forward direction. �

Remark 8.7. Proposition 8.17 can alternatively be obtained as a consequence of Theo-
rem 7.3, Corollary 8.1, the fact that T∩ is ℵ0-stable, and the result from [81] and [43] that
the generic models are the existentially closed models of T∪. The current proof of Proposi-
tion 8.17 again illustrates the point made in Remark 8.5 that the material we develop in this
section is the common abstraction of the proofs in the literature that various theories have
model companions

Note that a separate argument is needed to show that (K; (Ri)i∈I) as in Proposition 8.17
is generic if and only if (vi)i∈I is an independent family of valuations. We do not include a
proof of this result here, as we found no other way except to essentially repeat the argument
in [43].

In the same spirit but more closely related to the notion of induced dimension, we show how
the definition of generic predicates is related to approximately interpolative structures. The
proof that T ∗∪ exists for this example must wait until Section 8.5.

Proposition 8.18. Suppose M is an infinite one-sorted L-structure and P is a unary predi-
cate on M which is not in L. Set I = {1,2}, and let L1 = L and L2 = {P}. Then the following
are equivalent:

(1) P is a generic predicate.
(2) M∪ is approximately interpolative.

Proof. Note that T∩ is the strongly minimal theory of an infinite set with no structure, so
dim = adim. Let C be the collection of Mn as n ranges over N. From the fact that T∩ admits
quantifier elimination, it is easy to deduce that C is a pseudo-cell collection. Therefore,
by Proposition 8.3, it suffices to show that P is a generic predicate if and only if M∪ is
C-approximately interpolative, i.e., X1∩X2 ≠ ∅ whenever the M1-definable set X1 ⊆Mn and
the M2-definable set X2 ⊆Mn are pseudo-dense in Mn.

We first show that an M1-definable set X1 ⊆Mn is large if and only if X1 is pseudo-dense
in Mn. Let adim′ be the induced dimension on M1. As algebraic closure in T∩ is trivial, it
follows directly from the definitions that an M1-definable subset X1 of Mn is large if and
only if adim′(X1) = n. On the other hand, as adim′(X1) < n if and only if X1 is contained
in an M -definable set of Morley rank < n, and Mn has Morley degree 1 (as an M -definable
set), it follows by Lemma 8.6 that X1 is pseudo-dense in Mn if and only if adim′(X1) = n.

On the other hand, it follows from quantifier elimination that an M2-definable set X2 ⊆
Mn is pseudo-dense inMn if and only if it differs by an M∩-definable set of smaller dimension
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from a set of the form ∏n
i=1 Si, where Si ∈ {P,M ∖ P} for all 1 ⩽ i ⩽ n. So M∪ is C-

approximately interpolative if and only if every large M1-definable set meets every set of
this form, as desired. �

Remark 8.8. The notion of genericity introduced in [79] is also very close in spirit to the
notion of approximately interpolative structure. It is also possible to prove that these notions
are equivalent in the same fashion as Proposition 8.11, Proposition 8.17, and Proposition 8.18,
but that is outside the scope of this paper.

8.5. Toward ℵ0-categorical base

Throughout this section, we assume L has finitely many sorts and T is ℵ0-stable, ℵ0-
categorical, weakly eliminates imaginaries, and has no finite models. We write dim for
Morley rank on T and mult for Morley degree on T . We make extensive use of Proposi-
tion 8.10, which ensures that every subset of a model of T . Despite this, we consider this
section more of a first step toward developing the theory of interpolative fusions over an ℵ0-
categorical base, rather than a continuation of the preceding section. A full-fledged theory
should also cover Proposition 9.7.

The ℵ0-stable assumption also gives us the following “inductive” procedure to check whether
a subset is pseudo-dense in an almost irreducible set.

Lemma 8.11. Suppose X ⊆Mx is almost irreducible, D is a collection of almost irreducible
subsets of Mx such that any almost irreducible subset of Mx is almost equal to an element
in D, and A is a subset of Mx. For α < dimX, let Dα(A,X) be the collection of almost
irreducible Xα ∈D such that

dimXα = α, A is pseudo-dense in Xα, and Xα is almost a subset of X.

If Dβ(A,X) = ∅ for all α < β < dimX, then we have the following:

(1) If Dα(A,X) is infinite up to almost equality, then A is pseudo-dense in X.
(2) If Dα(A,X) is finite up to almost equality, X1

α, . . . ,X
n
α are the representatives of the

almost equality classes, and

A′ ∶= A ∖ n⋃
i=1

X i
α,

then Dβ(A′,X) = ∅ for all α ⩽ β < dimX, and A is pseudo-dense in X if and only if
A′ is.

Proof. As M is ℵ0-stable, A∩X has a pseudo-closure Y which is a subset of X by Propo-
sition 8.10. Suppose Dβ(A,X) = ∅ for all α < β < dimX. Then either dimY ⩽ α or
dimY = dimX. If Dα(A,X) is infinite up to almost equality, then dimY > α, and so
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dimY = dimX. The latter implies A is pseudo-dense in X by Lemma 8.6. Thus we get
statement (1).

Now suppose X1
α, . . . ,X

n
α and A′ are as stated in (2). Since A′ is a subset of A, Dβ(A′,X)

is a subset of Dβ(A,X) for all β. So in particular, Dβ(A′,X) = ∅ for all α < β < dimX.
Suppose Xα is an element of Dα(A′,X). Then A is also pseudo-dense in Xα and so Xα

is almost equal to X i
α with i ∈ {1, . . . , n}. As X i

α ∩ A′ = ∅, X i
α and Xα are both almost

irreducible, and dimX i
α = dimXα, it follows from Lemma 8.1 that A′ is not pseudo-dense in

Xα which is absurd. Thus,

Dα(A′,X) = ∅ for all α ⩽ β < dimX.

If A′ is pseudo-dense in X then clearly A is. Suppose A′ is not pseudo-dense in X. Then
A′ ∩X has a pseudo-closure Y ′ with dimY ′ < dimX. It follows that A has a pseudo-closure
Y which is a subset of Y ′ ∪X1

α ∪ . . . ∪Xn
α . It is easy to see that dimY < dimX, and so A is

not pseudo-dense in X. We have thus obtained all the desired conclusions in (2). �

The lemma above is hardly useful if the purpose is defining pseudo-denseness for a generalℵ0-stable theory. The issue is that many of the objects involved in the previous lemma are
not definable. Remarkably, many of them are definable when we additionally assume T isℵ0-categorical. We recall a number of facts about ℵ0-stable and ℵ0-categorical theories.

Fact 8.3. The first two statements below only require ℵ0-categoricity:

(1) T is complete.
(2) For all finite x, there are finitely many formula ϕ(x) up to T equivalence.
(3) T defines multiplicity.
(4) ([14], Theorem 5.1) M has finite Morley rank, that is, for all finite x, dimMx < ω.
(5) ([14], Theorem 6.3) if x is a single variable, and p ∈ Sx(M), then p is definable over

Mx ×Mx.

We now prove a key lemma that does not hold outside of the ℵ0-categorical setting.

Lemma 8.12. For each finite x there is an L-formula ψ(x, z) such that whenever M ⊧ T and
D = (Xc)c∈Z is the family of subsets of Mx defined by ψ(x, z), we have that every member
of D is almost irreducible and every almost irreducible subset of Mx is almost equal to a
member of D.

Proof. Fix M ⊧ T of the given T , and a finite tuple x of variables. We reduce the problem
to finding a formula ψ(x, z) independent of the choice of M such that with D = (Xc)c∈Z the
family of subsets of Mx defined by ψ(x, z), every almost irreducible X is almost equal to Xc

for some c ∈M z. The analogous statement also hold in other models of T as T is complete.
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As T defines multiplicity, we can modify ψ(x, z) to exclude the Xc which are not almost
irreducible.

We reduce the problem further to showing that every almost irreducibleX ⊆Mx is almost
equal to a subset of Mx which is M-definable over some element of Mw with ∣w∣ = 2∣x∣. Sup-
pose we have done so. By Fact 8.3(2), there are finitely many formulas ψ1(x,w), . . . , ψl(x,w)
such that every L-formula in variables (x,w) is T -equivalent to one of these. By routine ma-
nipulation, we can get a finite tuple z of variables and a formula ψ(x, z) such that for all
i ∈ {1, . . . , l} and d ∈Mw, there is c ∈M z with ψi(M, d) = ψ(M, c). Hence, we obtained the
desired reduction.

Let p ∈ Sx(M) be the generic type of X and peq the unique element of Sx(M eq) extending
p. By merging the sorts, we can arrange that ∣x∣ = 1. By Fact 8.3(5), there is c ∈ M2 such
that p is definable over c. Hence peq is definable over c and therefore stationary over acleq(c).
It follows that

q = peq↾Sx(acleq(c)) has mult(q) = 1.

Let X ′ ⊆Mx be defined by a minimal formula of q. Then X ′ is Meq-definable over acleq(c)
and X ′ is almost equal to X. Let X ′

1, . . . ,X
′
l be all the finitely many conjugates of X ′ by

Aut(M/c). Then ⋂li=1X
′
i is M-definable over c and is almost equal to X which is the desired

conclusion. �

A function up-to-permutation from Z ⊆ M z to Mw is a relation f ⊆ Z ×Mw satisfying
the following two conditions:

(1) For all c ∈ Z, there is d ∈Mw such that (c, d) ∈ f .
(2) If (c, d) and (c, d′) are both in f , then d is a permutation of d′.
A function up-to-permutation f determines an ordinary function f̃ ∶ Z → Mw/ ∼, where ∼
is the equivalence relation defined by permutations. We are interested in f instead of f̃ , as
it is possible that f is M-definable while f̃ is only Meq-definable. For C ⊆ Z, we will write
f(Z) for the set {d ∈Mw ∣ there is c ∈ C such that (c, d) ∈ f}.
It is easy to observe that ∣f̃(Z)∣ ⩽ ∣f(Z)∣ ⩽ ∣w∣!∣f̃(Z)∣ with f̃ as above. In particular, f(Z) is
finite if and only if f̃(Z) is.

The following fact only uses the assumption that T is complete and weakly eliminates imag-
inaries.

Fact 8.4. For all M ⊧ T , 0-definable Z ⊆M z, and 0-definable equivalence relation R ⊆ Z2,
there is w and a 0-definable function up-to-permutation from Z to Mw such that cRc′ in Z if
and only if f(c) = f(c′). Moreover, the choice of formula defining f can be made depending
only on the choices of L-formulas defining Z and R but not on the choice of M.
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Proposition 8.19. The theory T ′ defines pseudo-denseness over T if and only if T ′ elimi-
nates ∃∞.

Proof. For the forward direction, suppose T and T ′ are fixed, T ′ defines pseudo-denseness,
ϕ′(x, y) is an L′-formula, M′ ⊧ T ′, M =M′↾L, (X ′

b)b∈Y ′ is the family of subsets ofMx defined
by ϕ′(x, y). Our job is to show that the set of b ∈ Y ′ with infinite X ′

b can be defined by a
formula whose choice might depend on ϕ(x, y) but does not depend on M′. Let D = (Xc)c∈Z
be the family of subsets of Mx defined by an L-formula ψ(x, z) as described in Lemma 8.12.
Note that X ′

b is infinite if and only if there is c ∈ Z such that

X ′
b is pseudo-dense in Xc and dim(Xc) > 0.

By assumption, the set of pairs (b, c) with X ′
b pseudo-dense in Xc can be defined by a formula

whose choice does not depend on M′. By Fact 8.3, T defines multiplicity. In particular, the
set of c ∈ Z with dimXc > 0 can be defined by an L-formula whose choice does not depend
on M′. The desired conclusion follows.

For the backward implication, suppose T and T ′ are fixed, T ′ eliminates ∃∞, ϕ′(x, y) and
ψ(x, z) are an L′-formula and an L-formula, M′ ⊧ T ′, M =M′↾L, and (X ′

b)b∈Y ′ and (Xc)c∈Z
are the families of subsets of Mx defined by ϕ′(x, y) and ψ(x, z). Set

Pd = {(b, c) ∈M (y,z) ∣X ′
b is pseudo-dense in Xc}.

We need to show that Pd can be defined by an L′-formula whose choice might depend on
ϕ′(x, y) and ψ(x, z) but not on M′.

We first reduce to the special case where ψ(x, z) is a formula as described in Lemma 8.12.
Let δ(x,w) be a formula as described in Lemma 8.12 and (Xd)d∈W the family of subsets of
Mx defined by δ(x,w), and suppose we have proven the corresponding statement for δ(x,w).
We note that X ′

b is pseudo-dense in Xc for b ∈ Y ′ and c ∈ Z if and only if for all d ∈W with Xd

almost a subset of Xc and dimXd = dimXc, we have X ′
b is pseudo-dense in Xd. The desired

reduction follows from the special case and Fact 8.3, which states that T defines multiplicity.
We next make a further reduction. Note that by the reduction in the preceding para-

graph, D = (Xc)c∈Z is a family as described in Lemma 8.11, so we will set ourselves up to
apply this lemma. For α < dimMx, b ∈ Y , and c ∈ Z, we define Dα,b,c to be the set of d ∈ Z
such that dimXd = α, X ′

b is pseudo-dense in Xd, and Xd is almost a subset of Xc. In other
words, if Dα(X ′

b,Xc) is defined as in Lemma 8.11, then

d is in Dα,b,c if and only if Xd is in Dα(X ′
b,Xc).
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Set Pd0 to be the set of (b, c) ∈Pd with dimXc = 0. For α < γ ⩽ dimMx, set Pdγ = {(b, c) ∈
Pd ∣ dimXc = γ} and set

Pdγα = {(b, c) ∈Pd ∣ dimXc = γ and Dβ,b,c = ∅ for all α < β < γ}.
We reduce the problem further to showing Pdγα can be defined by an L′-formula whose choice
is independent of M′ for all α < γ ⩽ dimMx. Note that (b, c) ∈M (y,z) is in Pd0 if and only if
Xc ⊆ X ′

b and dim(Xc) = 0, so Pd0 can be defined by a formula whose choice is independent
of M′. Moreover, Pd = ⋃β<dimMx Pdβ and Pdβ = Pdββ−1, so by Fact 8.3(4) we obtained the
desired reduction.

We will show the statement in the previous paragraph by lexicographic induction on(γ,α). We first settle some simple cases. For γ = 1 and α = 0, the condition Dβ,b,c = ∅ for
all α < β < γ is vacuous, and the desired conclusion follows from the fact that T defines
multiplicity and T ′ eliminates ∃∞. Suppose we have proven the statement for all smaller
values of γ. It follows from Pdβ = Pdββ−1 that for all β < γ, Pdβ can be defined by an
L′-formula whose choice is independent of M′. Let

Zγ = {c ∈ Z ∣ dim(Xc) = γ}.
Note for β < γ and (b, c) ∈ Y × Zγ that d ∈ M z is in Dβ,b,c if and only if dimXd = β and(b, d) ∈Pdγβ. Using the fact that T defines multiplicity, we get for each β < γ that the family(Dβ,b,c)(b,c)∈Y ×Zγ can be defined by a formula independent of the choice of M′. We get from
Lemma 8.11 that (b, c) ∈M (y,z) is in Pdγ0 if and only if

dimXc = γ, Dβ,b,c = ∅ for all 0 < β < γ, and X ′
b is infinite.

Hence, Pdγ0 can be defined by an L′-formula independent of the choice of M′ by the assump-
tion that T ′ eliminates ∃∞ and Fact 8.3(3).

Suppose 0 < α < γ ⩽ dimMx and we have shown the statement for all lexicographic lesser
values of (γ,α) not just for the formula ϕ(x, y) but also for any similar chosen ϕ∗(x, y∗).
From the argument in the preceding paragraph, Pd0, . . . ,Pdγ−1 and (Dβ,b,d)(b,c)∈Y ×Zγ for each
β < γ can be defined by formulas independent of the choice of M′. By the assumption that T
weakly eliminates ∃∞ and Fact 8.4, there is w and a L-definable function up-to-permutation
f from Z to Mw defined by a formula whose choice does not depend on M′ such that for all
d1 and d2 in Z,

f(d1) = f(d2) if and only if Xd1 is almost equal to Xd2 .
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In particular, the family (f(Dα,b,c))(b,c)∈Y ×Zγ can be defined by a formula whose choice does
not depend on M′. As T ′ eliminates ∃∞, there is n such that

∣f(Dα,b,c)∣ > n∣w∣! implies f(Dα,b,c) is infinite.

Now let Y ∗ be the set of b∗ = (b, c, d1, . . . , dn) in Y × Z × . . . × Z where the product by Z is
taken n + 1-times such that the following properties hold:

(1) c ∈ Zγ and Dβ,b,c = ∅ for all 0 < β < γ.
(2) f(Dα,b,c) is finite.
(3) dimXdi = α and X ′

b is pseudo-dense in Zdi for i ∈ {1, . . . , n}.
(4) If dimXd = α and X ′

b is pseudo-dense in Zd for some d ∈ Z, then Xd is almost equal to
Xdi for some i ∈ {1, . . . , n}.

For each b∗ ∈ Y ∗, set
X ′
b∗ =X ′

b ∖ n⋃
i=1

Xdi .

Then by the induction hypothesis and Fact 8.3(3) the family (X ′
b∗)b∗∈Y ∗ can be defined by a

formula ϕ∗(x, y∗) whose choice does not depend on M′. We obtain Pd∗γα−1 from ϕ∗(x, y∗) in
the same fashion as we get Pdγα−1 from ϕ(x, y). The induction hypothesis implies that Pd∗γα−1

can be defined by formulas whose choice does not depend on M′. It follows from Lemma
8.11 that (b, c) ∈ Pdγα if and only if dimZc = γ and Dβ,b,c = ∅ for all α < β < γ and either of
the following hold:

(1) f(Dα,b,c) is infinite.
(2) There are d1, . . . , dn in Z such that b∗ = (b, c, d1, . . . , dn) is in Y ∗ and

X ′
b∗ is in Pd∗γα−1.

Thus Pdγα can be defined by a formula whose choice does not depend on M′ which completes
the proof. �

Combining Theorem 8.1, Proposition 8.10, and Proposition 8.19, we have proven the
following theorem.

Theorem 8.5. Suppose L has finitely many sorts, T∩ is an ℵ0-stable and ℵ0-categorial theory
with no finite models which weakly eliminates imaginaries, and Ti eliminates ∃∞ for all i ∈ I.
Then T ∗∪ exists.

The conditions of Theorem 8.5 are satisfied for instance when L∩ = ∅ and T∩ is the theory
of infinite sets. Hence, we recover Winkler’s “prehistoric results” on interpolative fusions,
Theorem 7.1 and Corollary 7.1. The following proposition combined with Theorem 7.7
allows us to recover Theorem 7.6, the other result from Winkler.
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Proposition 8.20. Suppose I = {1,2}, T1 and T2 are as in Section 7.5, and T1 eliminates∃∞. Then T ∗∪ exists.

Proof. We will verify the conditions of Theorem 8.5 to show that T ∗∪ exists. We have
assumed that T1 eliminates ∃∞. We saw in Section 7.5 that T2 is interpretable in the theory
of an infinite set, and hence so is its reduct T∩. So both T2 and T∩ are ℵ0-categorical andℵ0-stable. It follows that T2 eliminates ∃∞. It is also easy to see that T∩ admits weak
elimination of imaginaries. �

A similar argument allows us to deduce from Theorem 7.8 the fact that the theory of graphs
has a model companion. We also get from Theorem 7.9 that if T satisfies the conditions of
this section, then TAut has a model companion. We will leave the details to the reader.

The theory Tq of vector spaces over the finite field Fq with q elements is ℵ0-stable, ℵ0-
categorical, and weakly eliminates imaginaries. Thus any theory T ′ extending Tq defines
pseudo-denseness if and only if it eliminates ∃∞. This does not generalize to vector spaces
over characteristic zero fields, which are ℵ0-stable and weakly eliminate imaginaries, but are
not ℵ0-categorical. For example, let T be the theory of torsion-free divisible abelian groups
(vector spaces over Q). Let T ′ be ACF0, and note that T ′ is an expansion of T . Then T ′
does not define pseudo-denseness over T . Suppose M′ is an ℵ1-saturated model of T ′. Let

L = {(a, b, c) ∈M 3 ∶ ab = c}
and consider the definable family {La ∶ a ∈ M} where La = {(b, c) ∈ M 2 ∶ ab = c}. We leave
the easy verification of the following to the reader:

Lemma 8.13. Fix a ∈M . Then La is pseudo-dense in M 2 if and only if a ∉ Q.

As Q is countable and infinite it cannot be a definable set in an ℵ1-saturated structure. Thus
M′ does not define pseudo-denseness over (M ;+).
There is a natural rank rk on any ℵ0-categorical theory, described in [75, Section 2.3] and [15,
Section 2.2.1]. This rank is known to agree with thorn rank on ℵ0-categorical structures,
so it is an ordinal rank on rosy ℵ0-categorical theories. A special case of Theorem 8.3 is
that any expansion of the theory DLO of dense linear orders defines pseudo-denseness over
DLO with respect to rk (which agrees with the usual o-minimal dimension over DLO). This
fact, together with Proposition 8.19, and recent groundbreaking work on NIP ℵ0-categorical
structures [75, 74] motivates the following question.

Question. Suppose T is NIP, ℵ0-categorical, and rosy. If T ′ eliminates ∃∞ than must T
define psuedo-denseness over T (with respect to rk)?
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Unfortunately rk does not necessarily agree with Morley rank on ℵ0-stable, ℵ0-categorical
theories. One might hope that an approach to Question 8.5 would synthesize the ideas of
Section 8.5 and Section 8.3.
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CHAPTER 9

Preservation results

Throughout this chapter, we use the notational conventions of Chapters 5 and 6. We also
fix I, languages L◻ and theories T◻ for ◻ ∈ I ∪ {∪,∩}, and assume T ∗∪ exists.

We seek to understand when properties of the theories Ti are preserved in passing to the
interpolative fusion T ∗∪ . We have already seen a close connection between interpolative
fusions and model completeness, which we reformulate as a preservation result in the brief
Section 9.1 below. In order to understand definable sets and types, we often want something
stronger than model-completeness, so Section 9.2 and 9.3 are devoted to K-completeness of
T ∗∪ for various classes K (see Section 5.2).

Remark 9.1. Much of this chapter is devoted to K-completeness of T ∗∪ for various classes K
(see Section 5.2). By Remarks 5.2 and 6.2, if T ∗∪ is K-complete, then for any pair (A∪,M∪) ∈
K,

T ∗∪ ∪⋃
i∈I fdiagLi(Ai) ⊧ ThL∪(A)(M∪).

This allows us to understand certain L∪-types in terms of quantifier-free Li-types.

Many of the results in this chapter contain the hypothesis “suppose T∩ admits a stationary
independence relation which satisfies full existence in Ti for all i ∈ I”. When T∩ or Ti is
incomplete, we mean that this property holds in all consistent completions of these theories.
By Proposition 5.3, this hypothesis is always satisfied by ⫝f when T∩ is stable with weak
elimination of imaginaries. For example, this applies when T∩ is the theory of an infinite set
or the theory of algebraically closed fields. In the general case, elimination of imaginaries
for T∩ is easily arranged (see Remark 6.1).

9.1. Preservation of model-completeness

We interpret Theorem 6.3 as a first preservation result.

Theorem 9.1. Suppose each Ti is model-complete. Then T ∗∪ is model-complete, and every
L∪-formula ψ(x) is T ∗∪ -equivalent to a finite disjunction of formulas of the form

∃y ⋀
i∈J ϕi(x, y),

where J ⊆ I is finite and each ϕi(x, y) is a flat Li-formula.
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Proof. The first assertion follows immediately from Theorem 6.3. Since T ∗∪ is model-
complete, ψ(x) is T ∗∪ -equivalent to an existential L∪-formula ∃z ϕ(x, z). By Corollary 5.1,
ϕ(x, z) is equivalent to a finite disjunction of E♭-formulas. Distributing the quantifier ∃z
over the disjunction and applying Remark 6.2 yields the desired result. �

9.2. Preservation of acl- and bcl-completeness

Given ◻ ∈ I ∪ {∪,∩}, let acl◻(A) be the M◻-algebraic closure of a subset A of a T ∗∪ -model
M∪. The combined closure, ccl(A), of a subset A of M∪ is the smallest set containing A
which is acli-closed for each i ∈ I. More concretely, b ∈ ccl(A) if and only if

b ∈ aclin(. . . (acli1(A)) . . . ) for some i1, . . . , in ∈ I.
Theorem 9.2. Suppose T∩ admits a stationary independence relation ⫝ which satisfies full
existence in Ti for all i. If each Ti is acl-complete then T ∗∪ is acl-complete and acl∪ = ccl.

Proof. Theorem 9.1 shows T ∗∪ is model-complete. In order to apply Proposition 5.1, we
will show that the class of T ∗∪ -models has the disjoint ccl-amalgamation property.

So suppose A∪ is a ccl-closed substructure of a T ∗∪ -model M∪ and f ∶A∪ → N∪ ⊧ T ∗∪ is
an embedding. Let M∪ be a monster model of T̂∪ = ThL∪(N∪), so N∪ is an elementary
substructure of M∪. Let A′ = f(A) ⊆ N . Let p◻(x) = tpL◻(M/A) for each ◻ ∈ I ∪{∩}, where
x is a tuple of variables enumerating M . By acl-completeness of Ti, f ∶Ai → Ni is partial
elementary for all i ∈ I, so f ∶A∩ → N∩ is also partial elementary, and we can replace the
parameters from A in p◻(x) by their images under f , obtaining a consistent type p′◻(x) over
A′ for all ◻ ∈ I ∪ {∩}.

Fix i ∈ I. Since A is algebraically closed in Mi, A′ is algebraically closed in Mi. By full
existence for ⫝ in Ti, there is a realization M ′

i of p′i(x) in Mi such that M ′
i ⫝A′N in Mi.

Let qi(x) = tpLi(M ′
i/N).

For all i, j ∈ I, tpL∩(M ′
i/A′) = tpL∩(M ′

j/A′) = p′∩(x), so by stationarity for ⫝, tpL∩(M ′
i/N) =

tpL∩(M ′
j/N). Let q∩(x) be this common type, so q∩(x) ⊆ qi(x) for all i. We claim that⋃i∈I qi(x) is realized an an elementary extension of N∪.

By Lemma 6.2, the partial L∪(N)-type
⋃
i∈I(Ediag(Ni) ∪ qi(x))

is consistent, since each Li(N)-type (Ediag(Ni) ∪ qi(x)) contains the complete L∩(N)-type(Ediag(N∩) ∪ q∩(x)). Suppose it is realized by M ′′ in N′∪. Then M ′′ is the domain of a
substructure M′′∪ isomorphic to M∪ via the enumeration of both structures by the variables
x. Let f ′∶M∪ → M′′∪ be this isomorphism. Also Ni ≼ N′

i for all i ∈ I, and in particular
N′∪ ⊧ T∪. Since T∪ is inductive, there is an extension N∗∪ of N′∪ such that N∗∪ is existentially
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closed, i.e., N∗∪ ⊧ T ∗∪ . Since each Ti is model-complete, we have N′
i ≼ N∗

i for all i ∈ I, so M ′′
satisfies ⋃i∈I qi(x) in N∗∪. And since T ∗∪ is model-complete, N∪ ≼ N∗∪.

We view N∗∪ as an elementary substructure of M∪, and we view f ′ as an embedding
M∪ → N∗∪. If a ∈ A, then a is enumerated by a variable xa from x, and the formula xa = a
is in p∩(x). So f ′(a) satisfies the formula xa = f(a). This establishes the amalgamation
property.

For the disjoint amalgamation property, note that we have M ′′ ⫝A′N in M∩, so by
algebraic independence for ⫝, M ′′ ∩N = A′, and hence f ′(M) ∩N = f(A).

By Proposition 5.1, T ∗∪ is ccl-complete and every ccl-closed substructure is acl∪-closed.
It follows that for any set B ⊆M ⊧ T , acl∪(B) ⊆ ccl(B).

For the converse, it suffices to show acl∪(B) is acli-closed for all i ∈ I. Indeed,
acli(acl∪(B)) ⊆ acl∪(acl∪(B)) = acl∪(B).

So acl∪ = ccl, and T ∗∪ is acl-complete. �

Corollary 9.1. Assume T∩ admits a stationary independence relation which satisfies full
existence in Ti for all i. Suppose each Ti is bcl-complete. Then T ∗∪ is bcl complete and every
L∪-formula is T ∗∪ -equivalent to a finite disjunction of b.e. formulas of the form

∃y ⋀
i∈J ϕi(x, y),

where J ⊆ I is finite and ϕi(x, y) is a flat Li formula for all i ∈ J .
Proof. Theorem 5.1 implies Ti is acl-complete and bcli = acli for all i ∈ I. We have
bcl∪(A) ⊆ acl∪(A) for any subset A of a T∪-model. But also, for all i ∈ I,

acli(bcl∪(A)) = bcli(bcl∪(A))
⊆ bcl∪(bcl∪(A))
= bcl∪(A).

So bcl∪(A) is acli-closed for all i ∈ I, hence ccl(A) ⊆ bcl∪(A).
Theorem 9.2 implies T ∗∪ is acl-complete and ccl(A) = bcl∪(A) = acl∪(A). Applying

Theorem 5.1 again, T ∗∪ is bcl-complete.
It remains to characterize L∪-formulas up to equivalence. Theorem 5.1 shows every

L∪-formula is T ∗∪ -equivalent to a finite disjunction of b.e. formulas. Let ∃y ψ(x, y) be a
b.e. formula appearing in the disjunction. By Corollary 5.1, the quantifier-free formula
ψ(x, y) is equivalent to a finite disjunction of E♭-formulas ⋁mj=1 ∃zj θj(x, y, zj). Distributing
the quantifier ∃y over the disjunction, we find that ∃y∃zj θj(x, y, zj) is a b.e. formula.
Applying Remark 6.2 to the flat formula θj(x, y, zj) yields the result. �

152



We conclude with two counterexamples showing that the hypotheses on T∩ are necessary for
acl-completeness of interpolative fusions. In the first example T∩ is unstable with elimination
of imaginaries, and in the second example T∩ is stable but fails weak elimination of imagi-
naries. In neither example does T∩ admit a stationary independence relation which satisfies
full existence in Ti for all i.

Example 9.1. Let L∩ = {⩽} and Li be the expansion of L∩ by a unary predicate Pi for
i ∈ {1,2}. Let T∩ = DLO, and Ti be the theory of a dense linear order equipped with a
downwards closed supremum-less set defined by Pi for i ∈ {1,2}. Then T ∗∪ exists and has
exactly two completions: an L∪-structure M∪ is a T ∗∪ -model if and only if we either have
P1(M∪) ⊊ P2(M∪) or P2(M∪) ⊊ P1(M∪). In either kind of model ∅ is easily seen to be
algebraically closed. The completions of T ∗∪ are not determined by fdiagL1

(∅) ∪ fdiagL2
(∅),

so T ∗∪ is not acl-complete.

Example 9.2. Let L∩ = {E} where E is a binary relation symbol. Let Li = {E,Pi} where Pi
is unary for i ∈ {1,2}. Let T∩ be the theory of an equivalence relation with infinitely many
infinite classes. Let Ti be the theory of a T∩-model with a distinguished equivalence class
named by Pi. Then every model of T∪ is interpolative, so T ∗∪ = T∪. A T ∗∪ -model M∪ may
have P1(M∪) = P2(M∪) or P1(M∪) ≠ P2(M∪), so T ∗∪ has exactly two completions. Again,
acl∪(∅) = ∅ and the completions are not determined by fdiagL1

(∅)∪ fdiagL2
(∅), so T ∗∪ is not

acl-complete.

9.3. Preservation of quantifier elimination

When is quantifier elimination is preserved in interpolative fusions? In contrast to preser-
vation of model-completeness, acl-completeness, and bcl-completeness, we cannot obtain
quantifier elimination in T ∗∪ without tight control on algebraic closure in the Ti. In this
section we will assume each Ti admits quantifier elimination, hence Ti is bcl-complete and
bcli = acli for all i ∈ I by Theorem 5.1.

Theorem 9.3 below is motivated by some comments in the introduction of [60] on the failure
of quantifier elimination in ACFA.

Theorem 9.3. Assume T∩ admits a stationary independence relation which satisfies full
existence in Ti for all i. Suppose every Ti has quantifier elimination, and

acli(A) = acl∩(A) and AutL∩(acl∩(A)/A) = AutLi(acl∩(A)/A)
for all L∪-substructures A of T ∗∪ -models and all i ∈ I. Then T ∗∪ has quantifier elimination.

Proof. Theorem 9.2 shows T ∗∪ is ccl-complete. We will show T ∗∪ is substructure complete.
Suppose A∪ is an L∪-substructure of a T ∗∪ -model M∪, N∪ is another model of T ∗∪ , f ∶A∪ → N∪
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is an embedding. Any acl∩-closed subset of M is acli-closed for all i ∈ I. Hence,
acl∩(A) = acli(A) = ccl(A) for all i ∈ I.

As each Ti is substructure complete, f is partial elementary Mi → Ni, so f extends to a
partial elementary map gi∶acli(A) = acl∩(A) → Ni.

Fix j ∈ I. For all i ∈ I, g−1
i ○ gj is an L∩-automorphism of acl∩(A) fixing A pointwise, so

in fact it is an Li-automorphism of acl∩(A) by the assumption on the automorphism groups.
It follows that gj = gi ○ (g−1

i ○ gj) is an Li-embedding acl∩(A) → Ni. Since i was arbitrary, gj
is an L∪-embedding. But acl∩(A) = ccl(A), so by ccl-completeness, gj is partial elementary
M∪ → N∪, and hence so is gj ∣A = f . �

We prefer hypothesis which can be checked language-by-language, i.e., which refer only to
properties of Ti, T∩, and the relationship between Ti and T∩ rather than how Ti and Tj relate
when i ≠ j, or how Ti relates to T∪. The hypothesis of Theorem 9.3 is not strictly language-
by-language, because it refers to an arbitrary L∪-substructure A. However, there are several
natural strengthenings of this hypothesis which are language-by-language. One is to simply
assume the hypothesis of Theorem 9.3 for all sets A. Simpler language-by-language criteria
are given in the following corollaries.

Corollary 9.2. Assume T∩ admits a stationary independence relation which satisfies full
existence in Ti for all i. Suppose each Ti admits quantifier elimination. If either of the
following conditions hold for all sets A, then T ∗∪ has quantifier elimination:

(1) acli(A) = ⟨A⟩Li for all i ∈ I.
(2) acli(A) = dcl∩(A) for all i ∈ I.

Proof. We apply Theorem 9.3, so assume A = ⟨A⟩L∪ .
(1) We have A ⊆ acl∩(A) ⊆ acli(A) = ⟨A⟩Li = A.
(2) We have dcl∩(A) ⊆ acl∩(A) ⊆ acli(A) = dcl∩(A).
In both cases, the group AutL∩(acl∩(A)/A) is already trivial, so its subgroup AutLi(acl∩(A)/A)
is too. �

Corollary 9.3. Assume T∩ admits a stationary independence relation which satisfies full
existence in Ti for all i. Suppose each Ti admits quantifier elimination and a universal
axiomization. Then T ∗∪ has quantifier elimination.

Proof. Every Li-substructure of a model of Ti is an elementary substructure, and hence
acli-closed, so we can apply Corollary 9.2(1). �
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9.4. Consequences for general interpolative fusions

Many of the results above can be translated to the general case (when the Ti are not model-
complete) by Morleyization. This allows us to understand L∪-formulas and complete L∪-
types relative to Li-formulas and complete Li-types.

To set notation: For each i, Morleyization gives a definitional expansion L♢i of Li and an
extension T ♢

i of Ti by axioms defining the new symbols in L♢i . We assume that the new
symbols in L♢i and L♢j are distinct for i ≠ j, so that L♢i ∩L♢j = L∩. It follows that each T ♢

i has
the same set of L∩ consequences, namely T∩. We let L♢∪ = ⋃i∈I L♢i and T ♢∪ = ⋃i∈I T ♢

i . Then
every T∪-model M∪ has a canonical expansion to a T ♢∪ -model M♢∪, and by Remark 6.1, M∪
is interpolative if and only if M♢∪ is interpolative.

Proposition 9.1. (1) Every formula ψ(x) is T ∗∪ -equivalent to a finite disjunction of for-
mulas of the form ∃y⋀

i∈J ϕi(x, y)
where J ⊆ I is finite and ϕi(x, y) is an Li-formula for all i ∈ J .

(2) If M∪ is a T ∗∪ -model, then

T ∗∪ ∪⋃
i∈I EdiagLi(M) ⊧ EdiagL∪(M).

Proof. For (1), each Morleyized theory T ♢
i has quantifier elimination, hence is model-

complete, so we can apply Theorem 9.1 to the theory (T ♢∪ )∗ of interpolative T ♢∪ models.
This says (T ♢∪ )∗ is model-complete, and ψ(x) is (T ♢∪ )∗-equivalent to a finite disjunction of
formulas of the form ∃y ⋀i∈J ϕi(x, y), where each ϕi(x, y) is a flat L♢i -formula. But since L♢i is
a definitional expansion of Li, each formula ϕi(x, y) can be translated back to an Li-formula.

For (2), since (T ♢∪ )∗ is model-complete, we have

(T ∗∪ )♢ ∪ fdiagL♢∪(M) ⊧ EdiagL♢∪(M).
But fdiagL♢∪(M) = ⋃i∈I fdiagL♢i (M), and fdiagL♢i (M) is completely determined by EdiagLi(M),
so the result follows. �

We note that Proposition 9.1(2) is simply a restatement of Proposition 6.2(3), which we
think of as “relative model-completeness”.

We will now establish a sequence of variants on Proposition 9.1, with stronger hypotheses
and stronger conclusions.

Proposition 9.2. Assume T∩ admits a stationary independence relation which satisfies full
existence in Ti for all i. Then:

155



(1) Every formula ψ(x) is T ∗∪ -equivalent to a finite disjunction of formulas of the form

∃y ⋀
i∈J ϕi(x, y)

where J ⊆ I is finite, ϕi(x, y) is an Li-formula for all i ∈ J , and ⋀i∈J ϕi(x, y) is bounded
in y.

(2) If A is an algebraically closed subset of a T ∗∪ -model M , then

T ∗∪ ∪⋃
i∈I ThLi(A)(M) ⊧ ThL∪(A)(M).

Proof. Just as in the proof of Proposition 9.1, but this time using the fact that (T ♢∪ )∗ is
bcl-complete and applying Corollary 9.1. �

It follows from Proposition 9.2 that if T∩ admits a stationary independence relation which
satisfies full existence in Ti for all i, then the completions of T ∗∪ are determined by the
Li-types of acl∪(∅) for all i.

Proposition 9.3. Assume T∩ admits a stationary independence relation which satisfies full
existence in Ti for all i. Suppose further that

acli(A) = acl∩(A) and AutL∩(acl∩(A)/A) = AutLi(acl∩(A)/A)
for all L∪-substructures A of T ∗∪ -models and all i ∈ I. Then:

(1) Every formula ψ(x) is T ∗∪ -equivalent to a finite disjunction of formulas

∃y ⋀
i∈J ϕi(x, y)

where J ⊆ I is finite, ϕi(x, y) is an Li-formula for all i ∈ J , and ⋀i∈J ϕi(x, y) is bounded
in y with bound 1.

(2) If A is an L∪-substructure of a T ∗∪ -model M then

T ∗∪ ∪⋃
i∈I ThLi(A)(M) ⊧ ThL∪(A)(M).

Proof. Observing that Morleyization does not affect our hypotheses about acli and acl∩,
we find that (T ♢∪ )∗ has quantifier elimination, by Theorem 9.3. This gives us (2) as in the
proof of Proposition 9.1.

For (1), note that ψ(x) is (T ♢∪ )∗-equivalent to a quantifier-free formula. The result then
follows from Corollary 5.1 and Remark 6.2. �

Remark 9.2. As in Corollary 9.2(1), we can replace the hypotheses of Proposition 9.3 with:
T∩ admits a stationary independence relation which satisfies full existence in Ti for all i,
and for all sets A and all i ∈ I, acli(A) = ⟨A⟩Li . The assumption acli(A) = dcl∩(A) gives us
something stronger, see Remark 9.3 below.
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With a slightly strong assumption, we can get true relative quantifier elimination down to
Li-formulas in T ∗∪ .
Proposition 9.4. Assume T∩ admits a stationary independence relation which satisfies full
existence in Ti for all i. Suppose further that

acli(A) = acl∩(A) and AutL∩(acl∩(A)/A) = AutLi(acl∩(A)/A)
for all sets A and all i ∈ I. Then:

(1) Every formula is T ∗∪ -equivalent to a Boolean combination of Li-formulas.
(2) For any subset A of a T ∗∪ -models M,

T ∗∪ ∪⋃
i∈I ThLi(A)(M) ⊧ ThL∪(A)(M).

Proof. We first move to a relational language by replacing all function symbols by their
graphs. Then we proceed just as in the proof of Proposition 9.3, noting that when L♢∪ is
relational, a quantifier-free L♢∪-formula is already a Boolean combination of L♢i -formulas. �

Remark 9.3. Once again, as in Corollary 9.2(2), we can replace the hypotheses of Proposi-
tion 9.4 with: T∩ admits a stationary independence relation which satisfies full existence in
Ti for all i, and acli(A) = dcl∩(A) for all sets A and all i ∈ I. The assumption acli(A) = ⟨A⟩Li
does not suffice for this, because this condition is lost when moving to a relational language.

9.5. Preservation of stability and NIP

In this section we give applications of some of the technical work above.

Proposition 9.5. Assume the hypotheses of Proposition 9.4. If each Ti is stable (NIP), then
T ∗∪ is stable (NIP).

Proof. This follows immediately from Proposition 9.4(1) as stable (NIP) formulas are closed
under Boolean combinations. �

We can also use Proposition 9.4(2) to count types.

Proposition 9.6. Assume the hypotheses of Proposition 9.4, and suppose that I is finite. If
each Ti is stable in κ, then T ∗∪ is stable in κ. As a consequence, if each Ti is ℵ0-stable then
T ∗∪ is ℵ0-stable, and if each Ti is superstable, then T ∗∪ is superstable.

Proof. We consider Sx(A), where x is a finite tuple of variables, A ⊆M ⊧ T ∗∪ , and ∣A∣ ⩽ κ.
By Proposition 9.4(2), a type in Sx(A) is completely determined by its restrictions to Li
for all i ∈ I. Since the number of Li-types over A in the variables x is at most κ, we have∣Sx(A)∣ ⩽ ∏i∈I κ = κ, since I is finite. �
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We do not expect to obtain preservation of stability or NIP without strong restrictions on
acl, as in the hypotheses of Proposition 9.4. The proofs of Propositions 9.5 and 9.6 do not
apply to other classification-theoretic properties such as simplicity, NSOP1, and NTP2, as
these properties are not characterized by counting types, and formulas with these properties
are not closed under Boolean combinations in general. However, we can obtain preservation
results for some of these properties under more general hypotheses. These results will be
contained in future papers, beginning with [53].

Corollary 7.1, Proposition 9.4, the fact that a theory with trivial algebraic closure eliminates∃∞, and Proposition 9.5, together imply Corollary 9.4.

Corollary 9.4. Suppose acli is trivial for all i ∈ I. Then T ∗∪ exists. If M∪ ⊧ T ∗∪ then every
M∪-definable set is a Boolean combination of Mi-definable sets for various i ∈ I. If each Ti
is additionally stable (NIP) then T ∗∪ is stable (NIP).

The special case of Corollary 9.4 when T2 is the theory of dense linear orders is proven in
[71, Corollary 1.2].

9.6. Preservation of ℵ0-categoricity

In this section, we do not assume that the interpolative fusion T ∗∪ exists. Applying the
preservation results above, we show that T ∗∪ exists and is ℵ0-categorical provided that certain
hypotheses, including ℵ0-categoricity, on the Ti hold. This section is closely related to work
of Pillay and Tsuboi [64].

Proposition 9.7. Assume T∩ admits a stationary independence relation which satisfies full
existence in Ti for all i. Assume also that all languages have only finitely many sorts. Suppose
that each Ti is ℵ0-categorical and that there is some i∗ ∈ I such that acli(A) = acl∩(A) for all
i ≠ i∗. Then the interpolative fusion exists.

Proof. A T∪-model M∪ has the joint consistency property if for every finite B ⊆ M
such that B = acli∗(B) and every family (pi(x))i∈J such that J is a finite subset of I, pi(x)
is a complete Li-type over B for all i ∈ J , and the pi have a common restriction p∩(x) to L∩,
then ⋃i∈I pi(x) is realized in M∪.

Note that the joint consistency property is elementary. Indeed, by ℵ0-categoricity, there
is an Li∗-formula ψ(y) expressing the property that the set B enumerated by a tuple b
is acli∗-closed. Since B is finite, every complete type pi(x) over B is isolated by a single
formula. And the property that the Li-formula ϕi(x, b) isolates a complete Li-type over
B whose restriction to L∩ is isolated by the L∩-formula ϕ∩(x, b) is definable by a formula
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θϕi,ϕ∩(b). So the class of T∪-models with the joint consistency property is axiomatized by T∪
together with sentences of the form

∀y [(ψ(y) ∧⋀
i∈J θϕi,ϕ∩(y)) → ∃x ⋀

i∈J ϕi(x, y)] .
It remains to show that a structure M∪ is interpolative if and only if it has the joint

consistency property. So suppose M∪ is interpolative, let B and (pi(x))i∈J be as in the
definition of the joint consistency property, and suppose for contradiction that ⋃i∈J pi(x) is
not realized in M∪. Note that since B is acli∗-closed, it is also acli-closed for all i ≠ i∗, since
acli(B) = acl∩(B) ⊆ acli∗(B) = B.

Each pi(x) is isolated by a single Li-formula ϕi(x, b), and
M∪ ⊧ ¬∃x ⋀

i∈J ϕi(x, b).
It follows that the ϕi are separated by a family of L∩-formulas (ψi(x, ci))i∈J . Let C = B∪{ci ∣
i ∈ J}. By full existence for ⫝ in Ti, since B is acli-closed, pi(x) has an extension to a type
qi(x) over C such that for any realization ai of qi(x), a⫝B C. By stationarity, the types qi(x)
have a common restriction q∩ to L∩. Now for all i ∈ J , since ϕi(x, b) ∈ pi(x), ψi(x, ci) ∈ qi(x),
and hence ψi(x, ci) ∈ q∩(x). This is a contradiction, since {ψi(x, ci) ∣ i ∈ J} is inconsistent.

Conversely, suppose M∪ has the joint consistency property. Let (ϕi(x, ai))i∈J be a family
of formulas which are not separated. Let B = acli∗((ai)i∈J). Since Ti∗ is ℵ0-categorical, and
there are only finitely many sorts, B is finite. For each i ∈ J , there is an L∩-formula
ψi(x, b) such that M∪ ⊧ ψi(a, b) if and only if tpL∩(a/B) is consistent with ϕi(x, ai) (we
may take ψi(x, b) to be the disjunction of formulas isolating each of the finitely many such
types). Since the formulas ψi(x, b) do not separate the formulas ϕi(x, ai), there must be
some element a ∈ Mx satisfying ⋀i∈J ψi(x, b). Then p∩(x) = tpL∩(a/B) is consistent with
each ϕi(x, ai), so p∩(x) ∪ {ϕi(x, ai)} can be extended to a complete Li-type pi(x) over B.
By the joint consistency property, there is some element in Mx realizing ⋃i∈J pi(x), and in
particular satisfying ⋀i∈J ϕi(x, ai). �

A type-counting argument as in Proposition 9.6 now gives preservation of ℵ0-categoricity.

Theorem 9.4. Assume the hypotheses of Proposition 9.7, and let T ∗∪ be the interpolative
fusion. Assume additionally that I is finite. Then every completion of T ∗∪ is ℵ0-categorical.

Proof. Let T̂ be a completion of T ∗∪ . It suffices to show that for any finite tuple of variables
x, there are only finitely many L∪-types over the empty set in the variables x relative to T̂ .
Since acl∪ = acli∗ is uniformly locally finite, there is an upper bound m on the size of acl∪(a)
for any tuple a ∈Mx when M ⊧ T̂ .
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By Proposition 9.2, tpL∪(acl∪(a)) is determined by ⋃i∈I tpLi(acl∪(a)). So the number of
possible L∪-types of a is bounded above by the product over all i of the number of Li-types
of m-tuples relative to Ti. This is finite, since I is finite and each Ti is ℵ0-categorical. �

The presentation of the ℵ0-categorical theory of the random graph as an interpolative fusion
in Section 7.6 illustrates Theorem 9.4. Indeed, letting T1 and T2 be as in Section 7.6, T∩ is
the theory of two infinite sets with no extra structure, which is stable with weak elimination
of imaginaries, and algebraic closure in T2 is trivial and thus agrees with algebraic closure
in T∩.
We recover the following result of Pillay and Tsuboi.

Corollary 9.5 ([64, Corollary 5]). Assume T∩ is stable with weak elimination of imaginar-
ies. Let I = {1,2}, suppose T1 and T2 are ℵ0-categorical single-sorted theories, and suppose
acl1(A) = acl∩(A) for all A ⊆M 1. Then T∪ admits an ℵ0-categorical completion.

9.7. Preservation of NSOP1

We fix a completion T̂ of T ∗∪ and a monster model M∪ ⊧ T̂ . We also assume that T∩ is stable
with weak elimination of imaginaries, and we will additionally need to assume that T∩ has
3-uniqueness.

Let T be a stable theory. Suppose a1, a2, and a3 are tuples enumerating algebraically closed
sets, which are pairwise forking independent over a common algebraically closed subset A.
For 1 ⩽ i < j ⩽ 3, let aij be a tuple enumerating acl(ai, aj). Then T has 3-uniqueness if
tp(a12a13a23) is uniquely determined by tp(a12) ∪ tp(a13) ∪ tp(a23).
Hrushvoski [39] showed that a stable theory has 3-uniqueness if and only if it eliminates gen-
eralized imaginaries. Generalized imaginaries correspond to definable groupoids. Ordinary
amalgamation over algebraically closed sets in the sense of Proposition 5.3 requires weak
elimination of imaginaries in T∩. It is therefore natural that independent 3-amalgamation
in T̂ (the independence theorem, the main component in showing T̂ is NSOP1) requires
elimination of generalized imaginaries in T∩.
If T̂ is NSOP1, what relationship does ⫝K in M∪ have to ⫝K in Mi for i ∈ I? Note that
A⫝KM B implies acl∪(MA) ⫝KM acl∪(MB) in M by Theorem 5.4. Then by Lemma 5.7, we
have acl∪(MA) ⫝KM acl∪(MB) in Mi for all i. It is reasonable to hope that Kim forking
between acl∪(MA) and acl∪(MB) in some Mi is the only source of Kim forking between A
and B in M∪.
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For all A,B and M , we declare:

A⫝
M
B⇔ acl∪(MA) ⫝K

M
acl∪(MB) in Mi for all i ∈ I.

We use the axiomatic characterization of Theorem 5.6 to show T̂ is NSOP1 and ⫝= ⫝K.

Theorem 9.5. Suppose that each Ti is NSOP1 and T∩ has 3-uniqueness. Then T̂ is NSOP1

and ⫝M = ⫝KM for all M ≺M∪.

Proof. We show ⫝ satisfies the properties listed in Theorem 5.6.
Invariance, existence, monotonicity, symmetry: Clear from the definition, using the

corresponding properties of Kim independence in each Mi.
The independence theorem: We are given A,A′,B,C and M such that tpL∪(A/M) =

tpL∪(A′/M), A⫝M B, A′ ⫝M C, and B ⫝M C. By adding elements to A, A′, B, and C, we
may assume A = acl∪(MA), A′ = acl∪(MA”), B = acl∪(MB), and C = acl∪(MC). Then by
definition of ⫝, we have, for all i ∈ I, tpLi(A/M) = tpLi(A′/M), A⫝KM B, A′ ⫝KM C, and
B ⫝KM C in Mi.

Let B′ = cl(AB), C ′ = cl(A′C), and D = cl(BC). Let f ∶A → A′ be the bijection
established by the equality of types tpL∪(A/M) = tpL∪(A′/M).

For all ◻ ∈ I ∪ {∩}, let Σ◻ be the partial L◻-type
T◻ ∪∆L◻

B′ ∪∆L◻
C′ ∪∆L◻

D ∪ {xa = xf(a) ∣ a ∈ A}
∪ {¬δ(xa, xd) ∣ a ∈ A,d ∈D,δ(xa, d) Kim divides over M in M◻}

In the last part of the definition of Σ◻ above, xa and xd are the variables representing a and
d in the diagrams.

I claim it suffices to show ⋃i∈I Σi is consistent. Indeed, any model N of ⋃i∈I Σi is a model
of T∪, and hence embeds in a model M ′ of T ∗∪ . Since the induced embedding M → M ′ is
elementary, M ′ ⊧ T̂ , and we can embed M ′ in M in a way which maps the elements named
by (xd)d∈D to D (indeed, these elements satisfy ∆L∪

D , and hence the L∪-type of D in M ′,
since D is closed). Then taking A′′ to be the image of the elements named by (xa)a∈A, we
have that tpL∪(A′′B/M) = tpL∪(AB/M), since cl(A′′B) satisfies ∆L∪

B′ , and tpL∪(A′′C/M) =
tpL∪(A′C/M), since cl(A′′C) satisfies ∆L∪

C′ . And finally A′′ ⫝KM D in Mi for all i ∈ I, thanks
to quantifier-elimination and the definition of Σi.

By Robinson joint consistency, we just need to show that Σ∩, which is equal to Σi ∩Σj

for all i ≠ j, has a completion Σ∗∩ which is consistent with each Σi. Let Σ∗∩ be the partial
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L∩-type:
T∩ ∪∆L∩

B′ ∪∆L∩
C′ ∪∆L∩

D ∪ {xa = xf(a) ∣ a ∈ A}
∪ {¬δ(xa, xd) ∣ a ∈ A,d ∈D,δ(xa, d) Kim divides over M in M∩}
∪ {¬δ(xb, xc) ∣ b ∈ B′, c ∈ C ′, δ(xb, c) forks over A′ in M∩}
∪ {¬δ(xb, xd) ∣ b ∈ B′, d ∈D,δ(xb, d) forks over B in M∩}
∪ {¬δ(xc, xd) ∣ c ∈ C ′, d ∈D,δ(xc, d) forks over C in M∩}

First, I claim that Σ∗∩ is consistent with Σi for all i. We begin by applying Theorem 5.7(2)
in Mi. This gives us A′′ such that A′′ ≡MB A, A′′ ≡MC A′, and A′′ ⫝KM BC, and further
B ⫝rMA′′ C, A′′ ⫝rMB C, and A′′ ⫝rMC B.

Naming Bi = acli(A′′B), Ci = acli(A′′C), and Di = acli(BC), the instances of ⫝r mean
that Bi ⫝fA′′ Ci, Bi ⫝fBDi, and Ci ⫝fCDi in M∩. We also have that A′′ ⫝KM Di, and Bi, Ci,
and Di satisfy the subsets of ∆Li

B′ , ∆Li
C′ , and ∆Li

D on the variables which enumerate these sets.
By Theorem 5.7(1), after moving by an automorphism overMDi, we can findD′′ ≡MDi D

(so in particularD′′ satisfies ∆Li
D ) such that A′′ ⫝KM D′′ and A′′ ⫝rMDiD

′′. Since Bi and Ci are
both subsets of acli(MA′′Di), we have Bi ⫝fMDiD

′′ and Bi ⫝fMDiD
′′ in M∩. By transitivity

for ⫝f, Bi ⫝fBD′′ and Ci ⫝fCD′′.
Since Bi is acli-closed, we can find a realization B′′ of ∆Li

B′ over Bi such that B′′ ⫝fBi CiD′′.
In particular, by transitivity of ⫝f, B′′ ⫝fA′′ Ci and B′′ ⫝fBD′′.

Similarly, since Ci is acli, closed, we can find a realization C ′′ of ∆Li
C′ over Ci such that

C ′′ ⫝fCi B′′D′′. In particular, by transitivity of ⫝f, B′′ ⫝fA′′ C ′′ and C ′′ ⫝fCD′′.
All in all, B′′C ′′D′′ satisfies Σi ∪Σ∗∩.
Having shown consistency, it remains to show that Σ∗∩ is complete. To do this, we will

apply 3-uniqueness twice. Let B′∩ = acl∩(AB), C ′∩ = acl∩(A′C), and D∩ = acl∩(BC). By 3-
uniqueness, the restriction of Σ∩ to the variables labeling elements of B′∩∪C ′∩∪D∩ is complete.
Now we have to handle the rest of B′, C ′, and D. So suppose we have any realization of Σ∗∩.
We may assume the variables labeling D are interpreted by D, so as above we name by A′′
the interpretation of the variables labeling A, and set B′′ = cl(A′′B) and C ′′ = cl(A′′C), and
similarly for B′′∩ and C ′′∩ .

Let E = acl∩(B′′∩C ′′∩D∩) = acl∩(A′′BC). We will use E as the base algebraically closed
set for another application of 3-uniqueness. By the extra non-forking conditions added to
Σ∗∩, we have B′′ ⫝fA′′ C ′′, B′′ ⫝fBD, and C ′′ ⫝fCD. Using base monotonicity on the left
and right, we have B′′ ⫝fA′′BC C ′′, B′′ ⫝fA′′BCD, and C ′′ ⫝fA′′BCD, so B′′ ⫝fE C ′′, B′′ ⫝fED,
and C ′′ ⫝fED. By stationarity, this information determines tpL∩(B′′C ′′), tpL∩(B′′D), and
tpL∩(C ′′D) uniquely, and by 3-uniqueness, these types determine tpL∩(B′′C ′′D) uniquely.

162



Strong finite character: SupposeA⫝̸M B. Then for some i ∈ I, we have acl(MA) ⫝̸KM acl(MB)
in Mi. So there is some a′ ∈ acl(MA) and b′ ∈ acl(MB) such that a′ ⫝̸KM b′ in Mi.
Let ϕ(x′, b′,m) be an Li-formula in tpLi(a′/Mb′) which Kim divides over M in Mi, let
ψ(x′, a,m) be an L∪-formula isolating tpL∪(a′/MA), and let θ(y′, b,m) be an L∪-formula
isolating tpL∪(b′/MB). Note that by replacing ψ with ψ(x′, a,m) ∧ (∃⩽kx′ψ(x′, a,m)) for
some k, we may assume ψ(x′, c,m) has only finitely many realizations for any c.

I claim the following formula χ(x, b,m) witnesses strong finite character:

∃x′ ∃y′ [ϕ(x′, y′,m) ∧ ψ(x′, x,m) ∧ θ(y′, b,m)] .
Certainly we have χ(x, b,m) ∈ tpL∪(A/MB). Suppose we are given c such that M ⊧

χ(c, b,m). Then picking witnesses c′ and b′′ for the existential quantifiers, we have that
c′ ∈ acl∪(Mc) (since M ⊧ ψ(c′, c,m)) and b′′ ∈ acl∪(Mb) (since M ⊧ θ(b′′, b,m)). Further,
b′′ ≡MB b′, so ϕ(x′, b′′,m) Kim divides over M in Mi. Since M ⊧ ϕ(c′, b′′,m), we have
c′ ⫝̸KM b′′ in Mi, so c⫝̸M b.

At this point, we can conclude T̂ is NSOP1. To get the characterization of ⫝K, we need
to check one more property.

Witnessing: Suppose again A⫝̸M B. We use the same notation as in the proof of strong
finite character, and we seek to show that χ(x, b,m) Kim divides over M in M.

If not, then using Theorem 5.3, we can find a complete L∪-type p(x) over Mb which
contains χ(x, b,m) but does not Kim divide. Let e realize this type. Then we have e⫝KM b in
M, so by Theorem 5.4, acl∪(Me) ⫝KM acl∪(Mb) inM. But sinceM ⊧ χ(e, b,m), there is some
e′ ∈ acl∪(Me) and some b′′ ∈ acl∪(Mb) such that M ⊧ ϕ(e′, b′′,m). This is a contradiction,
since by Lemma 5.7 and the fact that tpL∪(b′′/M) = tpL∪(b′/M), ϕ(x′, b′′,m) Kim divides
over M in M. �

9.8. Preservation of simplicity

Further, we get preservation of simplicity whenever algebraicity in M∪ agrees with algebraic-
ity in Mi for all i. In other words, a failure of simplicity in the interpolative fusion of simple
theories Ti always comes from nontrivial interactions between algebraic closures.

Proposition 9.8. Suppose each Ti is simple, T∩ has 3-uniqueness, and for all i ∈ I,
acli(Nacl∪(Ma)) = acl∪(Na)

whenever a⫝KM N and M ≺ N ≺M∪. Then T̂ is simple.

Proof. By Theorem 9.5, T̂ is NSOP1, and we obtain a characterization of Kim independence
from the proof. By Theorem 5.5, it suffices to show that ⫝Ksatisfies base monotonicity over
models in M∪.
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So fix M ≺ N ≺M∪ and a⫝KM Nb. Then, for all i ∈ I, since Ti is simple, we have

acl∪(Ma) ⫝K
M

acl∪(Nb) ⇒ acl∪(Ma) ⫝f
M

acl∪(Nb)
⇒ acl∪(Ma) ⫝f

N
acl∪(Nb)

⇒ acli(Nacl∪(Ma)) ⫝f
N

acl∪(Nb)
⇒ acl∪(Na) ⫝K

N
acl∪(Nb).

So a⫝KN b in M∪, as desired. �

Remark 9.4. In the statement of Corollary 9.8, we have put the weakest possible hypothesis
on the interaction between cl and acli. In a typical application, we will actually have cl = acli

for all i ∈ I.
But it is worth noting that the weaker condition cl(Mab) = acli(cl(Ma)cl(Mb)) for all

i ∈ I suffices. This condition essentially says that cl has no binary algebraic dependencies
that are not already present in every acli, and it will allow us to recover the theorem that
when T is stable with weak elimination of imaginaries, the theory TA of T with a generic
automorphism is simple.
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