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ABSTRACT

Cancer cells may mutate multiple times, from a normal state to a mutated state and vice

versa. Given our sequenced data, we can model the mutation process with a phylogenetic

tree. One representative model is the k-Dollo parsimony, where all observed mutations

mutate from a single normal cell and each character of a cell is gained at most once and lost

at most k times. We examine the 1-Dollo Phylogeny problem, does a 1-Dollo phylogeny, a

tree that follows the 1-Dollo parsimony model, exist for the observations.

Current algorithms to solve the 1-Dollo Phylogeny problem only tell us whether or not a

set of observations has a 1-Dollo phylogeny by outputting a single solution. We explore the

structure of 1-Dollo phylogenies and use our idea of a skeleton to develop an algorithm that

enumerates all 1-Dollo phylogenies for any set of observations. This algorithm runs much

faster than the naive brute force enumeration algorithm for random input. The implemen-

tation is here: https://github.com/sxie12/skeleton_solver.
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CHAPTER 1: INTRODUCTION

Cancer is a genetic disease characterized by the uncontrolled growth of cells which disrupt

the function of normal cells. It is caused by changes in the genes that control how cells

function. These cells mutate in a way that cause them to divide more than usual or not

go through the normal cell death process. These extra growths are called tumors. When

multiple, different mutations occur within the same tumor, this is known as intra-tumor

heterogeneity. These are often difficult to treat because of the various diverse cancer cells

[Heppner(1984)]. Knowing the mutation history of these cells gives us a better understanding

of why and how intra-tumor heterogeneity occurs. This may lead to more effective treatment

strategies [Tabassum and Polyak(2015)].

Phylogenetic trees are commonly used to model and reason about cancer progression

and also have clinical implications [Schwartz and Schaffer(2017)]. We consider a character-

based phylogeny tree T . The sequenced data are the leaves of the tree, called taxa. Each

taxon is the set of characters that we observed have mutated. The edges introduce changes

to the characters, which can be gained or lost. A gain of character c means every cell

corresponding to the leaves under that edge has a mutation of character c provided they do

not back mutate later. A loss of character c, known as a back mutation, means every cell

corresponding to the leaves under that edge does not have a mutation of character c when it

was sequenced. Multiple characters can be gained and/or lost on the same edge. We assume

all sequenced data start from a single normal cell. As the cell progresses, it mutates and

divides creating new cells with these mutations. These cells repeat the process, mutating on

their own independent of the others, causing the intra-tumor heterogeneity [Nowell(1976)].

We consider the more restrictive 1-Dollo parsimony model [Dollo(1893), Farris(1977)]. In

this model, each character is gained at most once and lost at most once. This is a special

case of the k-Dollo parsimony model, where each character is gained at most once and lost at

most k times. A 1-Dollo phylogeny is a tree that follows the 1-Dollo parsimony model. The

1-Dollo Phylogeny problem, abbreviated as 1-DP problem and also known as the persistent

phylogeny problem, is as follows: given sequenced data, does there exist a 1-Dollo phylogeny

for that data and if so, construct one [Bonizzoni et al.(2012)].

Currently, hardness of the 1-DP problem is open. In the first part of this paper, we

use exhaustively enumeration to identify patterns among small matrices that do not admit a

solution. We expect that these results will provide guidance to resolve the hardness question.

In the latter half, we explore the counting version of the 1-DP problem. How many

different 1-Dollo phylogenies can represent a given set of observations? Similar to the 1-
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DP problem, hardness of this is also open. Current treatments are normally based on a

single tree. However there may be multiple plausible phylogenies for the sequenced data.

To avoid drawing incorrect conclusions in downstream analysis, we need to consider all

possible trees [Pradhan and El-Kebir(2018)]. No algorithm other than the naive brute force

enumeration algorithm has been proposed for this problem before. We introduce the notion

of a skeleton for every 1-Dollo phylogeny and then propose an algorithm using this idea to

enumerate all possible 1-Dollo phylogenies. This algorithm runs in O(n(n+m+2)m2) whereas

the naive brute force enumeration algorithm runs in O(2kkmn) where k is the number of

zeros. It is much faster than the brute force algorithm in practice.

1.1 PRELIMINARIES

Suppose we sequence m different cells within the same tumor where each reading has n

characters. Assume the reading is completely accurate. This is not a safe assumption in

practice, but there are techniques to estimate the true values given the observations. We

represent the reading as an m by n binary matrix, B ∈ {0, 1}m×n, for convenience. The rows

are the individual readings and the columns are the characters. A 1 indicates the character

for that reading is at a mutated state and 0 indicates its at a normal state. We first consider

the simpler case of no loss edges. Consider the phylogeny for these observations where edges

are only gain edges or unlabeled. The definition of a perfect phylogeny for the binary case

follows.

Definition 1.1. [Estabrook et al.(1975),Gusfield(1991)]: A rooted tree T is a perfect phy-

logeny for a matrix B ∈ {0, 1}m×n if

1. T has m leaves that uniquely correspond to rows of B.

2. The root r of T is labeled by vector br = [0, 0, . . . , 0]T .

3. Nodes labeled with state i for character c form a connected subtree of T

This definition actually works for all matrices B ∈ {0, 1, . . . , k}m×n, not just binary ones.

The second and third conditions ensure each character is gained at most once and never lost.

This brings up the perfect phylogeny problem. Given an m by n binary matrix, does there

exist a perfect phylogeny for that matrix and if so, construct it? If the answer is yes, that

matrix is called a perfect phylogeny matrix. Gusfield showed the perfect phylogeny problem

can be solved in polynomial time. There exists a simple characterization for the perfect

phylogeny matrices.
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Theorem 1.1. Perfect Phylogeny Theorem [Gusfield(1991)]: A binary matrix B ∈ {0, 1}m×n

is a perfect phylogeny matrix if and only if it does not contain the submatrix0 1

1 0

1 1


or any permutation of its rows.

We call that submatrix a forbidden matrix. The naive check runs in O(m3n2) time.

Gusfield showed this can be checked and the phylogeny, if one exists, can be constructed by

a greedy constructive algorithm in O(mn) time [Gusfield(1991)].

Now consider the case where characters can back mutate. The formal definition of 1-Dollo

phylogeny follows.

Definition 1.2. [El-Kebir(2018)]: A rooted tree T is a 1-Dollo phylogeny for a matrix

B ∈ {0, 1}m×n provided that

1. T has m leaves that uniquely correspond to rows of B.

2. The root r of T is labeled by vector br = [0, 0, . . . , 0]T .

3. For each character c ∈ [n], there is at most one gain edge (u, v) in T such that bu,c = 0

and bv,c = 1.

4. For each character c ∈ [n], there is at most one loss edge (u, v) in T such that bu,c = 1

and bv,c = 0.

We impose an ordering of the gains and losses with the last three conditions. A character

must be gained before it can be lost. An explicit way to enforce this is with a state tree S

for each character.

Definition 1.3. [Fernàndez-Baca(2001)]: A state tree S is a rooted tree whose root is

labeled 0 and the other vertices are distinct values in the set {1, . . . , k+1} where k is the

number of vertices.

For the 1-DP problem, the state tree looks like a linked list with three vertices. Vertex 0

is the root, vertex 1 is its only child, and vertex 2 is a child of vertex 1. Every character has

the same state tree. A label of 0 indicates the character is not gained or lost. A label of 1

indicates the character is gained and not lost. A label of 2 indicates the character is gained

and then lost.
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A phylogeny T is consistent with a state tree S if for any pair of nodes (u, v) in T , if

u is an ancestor of v, then for all characters, the label of u for a character must be an

ancestor of the label of v for the same character in that character’s state tree. Given matrix

A ∈ {0, 1, . . . k + 1}m×n, the problem of finding a perfect phylogeny for A consistent with

a state tree S for each character is the cladistic perfect phylogeny problem. This problem

can be solved in O(mnk) time [Fernàndez-Baca(2001)]. Given matrix A and state trees

S = {S1, . . . , Sn}, define the (k+1) binary factor matrix B′ of (A, S) as

Definition 1.4. [Fernàndez-Baca(2001)]: Let matrix A ∈ {0, 1, . . . k + 1}m×n and state

trees S = {S1, . . . , Sn}. The binary factor matrix B′ ∈ {0, 1}m×n(k+1) = [b′i,j] of (A, S) has

entries

b′i,j =

1 if the vertex with value l is an ancestor of the vertex with value ai,q for Sc

0 otherwise

where q = b j
k+1
c+ 1 and l = (j mod (k + 1)) + 1.

The expansion of each character enforces the state tree ordering constraint. After the

expansion, the problem becomes the perfect phylogeny problem on an m × n(k + 1) size

matrix which can be solved with Gusfield’s perfect phylogeny algorithm in O(mnk) time.

For the 1-DP problem with A ∈ {0, 1, 2}m×n and the state tree described above, the binary

factor matrix B′ ∈ {0, 1}m×2n has entries

b′i,2j, b
′
i,2j+1 =


0, 0 if ai,j = 0

1, 0 if ai,j = 1

1, 1 if ai,j = 2

We relate A with B.

Definition 1.5. [El-Kebir(2018)]: Let B ∈ {0, 1}m×n. A matrix A ∈ {0, 1, 2}m×n is a

1-completion of B if ai,j ∈ {0, 2} when bi,j = 0 and ai,j = 1 when bi,j = 1.

Definition 1.6. [El-Kebir(2018)]: Let B ∈ {0, 1}m×n. A matrix A ∈ {0, 1, 2}m×n is a

1-Dollo completion of B if it does not contain any of the following submatricesi1 0

0 j1

i2 j2

 or

i1 1

0 2

i2 2

 or

2 0

1 j1

2 j2

 or

2 1

1 2

2 2


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where i1, i2, j1, j2 ∈ {1, 2}

Corollary 1.1. If matrix A ∈ {0, 1, 2}m×n is a 1-Dollo completion, then any submatrix of

A is also a 1-Dollo completion. Likewise, if A is not a 1-Dollo completion, any matrix with

A as a submatrix also is not a 1-Dollo completion.

All these definitions relate together.

Theorem 1.2. [El-Kebir(2018)]: Let B ∈ {0, 1}m×n. The following statements are equiv-

alent.

1. There exists a 1-Dollo phylogeny T for B.

2. There exists a 1-Dollo completion A or B.

3. There exists a 1-completion C of B such that the binary factor matrix B′ of (C, S) is a

perfect phylogeny matrix where S is a set of state trees with three vertices labeled with

values in {0, 1, 2}.

4. There exists a 1-completion C of B and perfect phylogeny T for C whose characters

are consistent with the state tree described above.

Due to this relationship, it suffices to look at any of these problems. This also allows

us to check if a 1-completion is a 1-Dollo completion and construct the 1-Dollo phylogeny

if so in O(mn) time. Therefore, the 1-DP problem is in NP, but it is open whether it is

NP-complete.

We mainly jump between the first two problems and exploit the relationship between them

for this paper. We will leave out “1-Dollo” from completion and phylogeny when

it is obvious from context.

5



CHAPTER 2: CHARACTERIZING INFEASIBLE INSTANCES

To gain insight on the hardness of the 1-Dollo phylogeny problem, we explore the sub-

matrices of binary matrices without a completion for the 1-DP problem to see if simple

forbidden matrix rules exist like in the perfect phylogeny case. Using the k-DP solver from

SPhyR [El-Kebir(2018)], we check all matrices up to size 5×5. Since the number of matrices

is the power set of the size of the matrix and the order of the rows do not matter, we remove

matrices that are the same up to permutation of its rows to save time. These matrices form

an equivalence class. As an example, the following matrices are in the same equivalence class

under row permutation. 1 1 0

0 1 1

1 0 1

 ≡
1 1 0

1 0 1

0 1 1

 ≡
0 1 1

1 0 1

1 1 0


We only need to run SPhyR on one of them so we pick the rightmost matrix because the

bitset representation of its rows, 011, 101, and 110, are in non decreasing order. This check is

executed during the generation of all matrices. Note we only removed row symmetry. There

may still be matrices which are the same up to permutation of its columns. For ideal results,

we want to ensure distinct rows and columns and remove all row and column symmetry.

This can be achieved using the Pólya enumeration theorem [Kerber(1988)].

A completion with a loss is a matrix that has a completion, but is not a perfect phylogeny.

We call a matrix without a completion trivial if it contains a submatrix that also does not

have a completion. Therefore, the non-trivial matrices are those where every submatrix has

a completion. We extend the definition of forbidden matrix from the perfect phylogeny case

to the 1-Dollo case. A matrix is a 1-Dollo forbidden matrix if it is a non-trivial matrix.

By corollary 1.1, any matrix that contains a 1-Dollo forbidden matrix does not have a

completion. Since we calculated the smaller matrices first, we were able to find the forbidden

matrices recursively using the smaller instances that do not admit a completion. However,

one has to be careful and sort the submatrices so the rows are in non decreasing order. Our

brute force results are in table 2.1.

The 4× 4 case is the smallest case where there exist matrices without a completion. The
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Size Computed Completion w/ loss No completion No completion w/o trivial
(1-Dollo forbidden matrices)

2x2 10 0 0 0
2x3 36 0 0 0
3x2 20 1 0 0
3x3 120 19 0 0
3x4 816 243 0 0
4x3 330 111 0 0
4x4 3876 2209 3 3
4x5 52360 38985 210 0
5x4 15504 11554 79 31
5x5 376992 326626 11814 1704

Table 2.1: Brute force results with SPhyR

three matrices we found without a completion for 4× 4 are
0 0 1 1

0 1 0 1

1 0 1 0

1 1 0 0

 ,


0 0 1 1

0 1 1 0

1 0 0 1

1 1 0 0

 ,


0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0


There is a pattern for these matrices. Every row and column contains exactly two ones.

They are symmetric with respect to column permutation. They are all the same in this

regard.

We look at them in a different representation. Let T be the set of taxa and C be the set

of characters. Consider the bipartite graph G(B) = (T,C,E) where B is a binary matrix

and E = {(ti, cj) | bij = 1}. An example of this graph for the leftmost 4 × 4 matrix listed

above is figure 2.1. The taxa are labeled in order from 1 to 4 and the characters are labeled

in order from A to D.

The resulting graphs for the above three matrices are all cycle graphs with eight vertices

in this representation. These matrices are also the same here. We redraw the above bipartite

graph as a cycle graph shown in figure 2.2.

The row and column symmetric representation may be related to this bipartite graph rep-

resentation, since they both have only one unique matrix for the 4×4 case. Our observation

in this representation led to two lemmas.

Lemma 2.1. If the bipartite graph G(B) is the cycle graph C2n with n ≥ 4 vertices, then B

does not have a completion.
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Figure 2.1: Bipartite graph G(B)

Figure 2.2: G(B) redrawn as a cycle graph

8



Proof. We show B does not have a completion by showing no phylogeny can be constructed

and applying theorem 1.2. Observe at most two taxa can have no losses because each

character is gained by two taxa. We have two cases.

1. If there are two taxa without losses, they share a common character c. Then the

phylogeny must branch out to gain the different character. Let those be a and b.

Each of those subtrees contain at least one child because there is one other taxon with

character a and same for b. However, both of these are on different branches and must

lose c. We are only allowed to lose c on one of these branches.

2. If there is one taxon without losses. Let the two characters it has be a and b. Consider

the tree. It starts with gain a and b. All other nodes must be descendants of this

internal node due to our restriction. There are two different taxa that have characters

a and b. Let those taxa have {a, c} and {b, d} respectively. These two must be on

separate branches because the first one has to lose b and second has to lose a. However

there exists a taxon which has to lose both a and b. Clearly this is not possible because

the losses occur on different branches.

In both cases, no phylogeny can be constructed.

Lemma 2.2. Let B ∈ {0, 1}n×n. If G(B) = C2n for n ≥ 4, then B is a 1-Dollo forbidden

matrix.

Proof. By above, B does not have a completion. We show all submatrices of B have a com-

pletion by greedily constructing the equivalent phylogeny for them. Consider submatrices

formed by removing rows and/or columns. Remember any submatrix of a matrix with a

completion also has a completion. We only need to consider the case when we remove one

row or one column of B because any submatrix of B will be a submatrix of either of these.

1. Remove one row. Assume without loss of generality that we removed the nth row.

Look at the underlying bipartite graph G(B). It is a linked list with character nodes

at its endpoints. Consider the linked list formed by removing all the character nodes

and adding an edge between two taxa nodes if they had an edge to the same character.

The resulting linked list is of the form {c1, c2}, {c2, c3}, . . . , {cn−1, cn} where the ci are

characters and each taxon node is represented by the set of characters in the taxon.

Consider the endpoints. Those taxa each have a character no other taxa have. Start

at either one of them. We start at the {c1, c2} taxon. Gain c1 and c2 in the tree. The

first taxon is set. Then lose c1 and gain c3 so the second taxon is set. Repeat this

process of lose ck and gain ck+2 for all k ≥ 2 until we finish with all the taxa. Each
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taxon is satisfied in the order they are in the linked list. Note the internal vertices in

the phylogeny form a linked list as well.

2. Remove one column. Assume without loss of generality that we removed the nth

column. This construction is similar to above. Again look at the bipartite graph G(B)

and apply the transformation above. The result is also a linked list, but of the form

{c1}, {c1, c2}, . . . , {cn−2, cn−1}, {cn−1}. In this case, the endpoints are taxa with exactly

one character. We start at {c1}. Gain that first so the first taxon is set. Then gain

c2 so the second taxon is set. Then lose c1 and gain c3 to complete the third taxon.

Repeat this process of lose ck and gain ck+2 for all k ≥ 2 until we finish with all the

taxa. Each taxon is satisfied in the order they are in the linked list. The phylogeny

looks very similar to the case above.

Hence, there exists a phylogeny in both cases.

We look at the 5 × 4 case next to see if those forbidden matrices follow a similar pat-

tern. However no obvious pattern is recognizable in either representation. Three of the 31

forbidden matrices for 5× 4 are
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1 1 1 1

 ,


0 0 0 1

0 1 0 0

0 1 1 1

1 0 1 0

1 1 0 1

 ,


0 1 0 1

0 1 1 0

1 0 1 0

1 0 1 1

1 1 0 0


Three of the 1704 forbidden matrices for 5× 5 are

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

1 0 1 0 1

1 1 0 1 0

 ,


0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

1 0 1 1 1

1 1 0 0 0

 ,


0 1 1 0 1

0 1 1 1 0

1 0 0 1 1

1 0 1 1 0

1 1 0 0 1


While the two state perfect phylogeny has a well characterized forbidden matrix of constant

size, the number of 1-Dollo forbidden matrices seems to grow as a function of m and n. There

does not appear to be a way to characterize all of them. These small forbidden matrices

may be useful in constructing big examples that do not admit a completion.
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CHAPTER 3: CHARACTERIZING SOLUTION SPACE

3.1 SKELETON

To create an enumeration algorithm for the counting version of 1-DP, we introduce the

notion of a backbone for all 1-Dollo phylogenies. We refer to it as a skeleton.

Define the following functions where v is any leaf of a 1-Dollo phylogeny.

• H(v) is the set of characters where there is a gain edge on the path from v to the root

of the tree.

• I(v) is the set of characters where there is a loss edge on the path from v to the root

of the tree.

• J(v) is the set of characters where there is a gain edge and no loss edge on the path

from v to the root of the tree.

Observation 3.1. For all leaves v in a 1-Dollo phylogeny T , H(v) \ I(v) = J(v).

A skeleton is similar to a 1-Dollo phylogeny except it does not contain loss edges. There-

fore, the definition is the same as the 1-Dollo phylogeny except for loss edges and the last

condition.

Definition 3.1. A skeleton of a tree T is a tree for a matrix B ∈ {0, 1}m×n that satisfies

the following conditions

1. T has m leaves that uniquely correspond to rows of B.

2. The root r of T is labeled by vector br = [0, 0, . . . , 0]T .

3. For each character c ∈ [n], there is at most one gain edge (u, v) in T such that bu,c = 0

and bv,c = 1.

Observation 3.2. For all leaves v in T , J(v) ⊆ H(v).

Define the following functions on skeletons, T , where v is any leaf of the skeleton and B

is the corresponding binary matrix.

• Ĥ(B, v) is the set of characters of v with value 0 in B.

• Î(B, v) is the set of characters of v with value 0 in B but is in gained on the path from

v to the root of the tree.
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• Ĵ(B, v) is the set of characters of v with value 1 in B.

Observe Ĥ = H, Î = I, and Ĵ = J .

Every taxon in our skeleton gained a superset of the characters required. Now, we want to

solve the “inverse” problem. Given the gains, we want to add loss edges so that the resulting

tree is a 1-Dollo phylogeny. To enforce the constraints, we use the state tree described in

the beginning. Let B′ is the binary factor matrix associated with this problem. We formally

define it below.

Definition 3.2. Let B ∈ {0, 1}m×n. B′ = σ(B, T ) is a m× 2 · n binary matrix where each

character in B correspond with two characters in B′. For each leaf v in T , each character c

in B maps to the following two in B′

• 00 if c is never gained, c 6∈ Ĥ(B, v).

• 10 if c is gained and cannot be lost, c ∈ Ĵ(B, v).

• 11 if c is gained and must be lost, c ∈ Î(B, v).

Definition 3.3. A rooted tree T ′ is a valid skeleton for B ∈ {0, 1}m×n if B′ = σ(B, T ′) is

a perfect phylogeny matrix.

Edges can have any number of labels. Because of this, we define a new condition to

compress the tree and establish uniqueness.

Definition 3.4. We call an edge (u, v) an internal edge if both u and v are internal vertices.

We say a tree T is φ(T ) if there are no internal edges with in-degree one.

Given these definitions, we make two observations. The proofs are in our main result.

Observation 3.3. A 1-Dollo phylogeny T has a unique valid skeleton T ′.

Note that there are equivalence classes of 1-Dollo phylogenies where each class consists of

phylogenies of branches of out-degree one.

Observation 3.4. A valid skeleton T ′ has a unique 1-Dollo phylogeny T provided φ(T ).

Note none of these observations depend on the matrix B. There may be multiple 1-Dollo

phylogenies for B.

We show a corollary that we will use in our main result.

Corollary 3.1. If a binary matrix A has a perfect phylogeny, then any submatrix of A also

has a perfect phylogeny.
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This follows directly from the fact that any submatrix of a matrix with a completion also

has a completion and the relationship established in Theorem 1.2.

Theorem 3.1. There exists a 1-Dollo phylogeny T for B if and only if there exists a valid

skeleton T ′ for B.

Proof. We first prove the (⇒) direction. Suppose we know there exists a 1-Dollo phylogeny,

T , for B. Then, we can create T ′ from T using the following algorithm.

1. Remove all labels of edges that introduce a loss edge

2. Collapse edges (u, v) if it does not have a label and v is not a leaf. This means remove

v and attach all the children of v to u.

The no loss edges condition is satisfied because we removed them in step 1. For all leaves v,

J(v) ⊆ H(v) because we did not modify the gain edges nor the position of the leaves relative

to the gain edges. All moves are fixed so the result is unique. All there is left to show is the

skeleton is valid. We show this by contradiction. Assume the skeleton is not valid. Thus

B′ = σ(B, T ′) has the submatrix 1 0

0 1

1 1


We choose two columns and three rows. Observe the two columns in B′ cannot come from

the same character in B because no character maps to 01. Let c, d be characters where c 6= d

and cl, cr be the left and right values of character c in B′. Observe if cl = 1, then it must

have gained c (and maybe lose) at some point. If cr = 1, it must have gained and lost c.

To simplify our proof, let 0 denote character was never gained, 1 denote the character was

gained and never lost, and 2 denote the character was gained and lost, like the state tree.

There are four cases for the columns we pick.

• cl, dl. The corresponding completed submatrix in B looks like1/2 0

0 1/2

1/2 1/2


where 1/2 means it could either be a 1 or a 2. These characters are gained and

potentially lost. We’ll show there is no 1-Dollo phylogeny for even gaining the edges.

There are two cases. Assume c is gained at or before d. Then the leaves corresponding

13



to the first and third rows are on a separate branch from the leaf corresponding to the

second row. Then d is gained, but since the second and third are on different branches,

it must be gained twice. This is not a valid phylogeny. Assume d is gained before c.

Then the leaves corresponding to the second and third rows are on a separate branch

from the leaf corresponding to the first row. Then c must be gained twice because the

first and third are on separate branches. In both cases, there is no 1-Dollo phylogeny

for B.

• cl, dr. The corresponding completed submatrix in B looks like1/2 0/1

0 2

1/2 2


We have two cases for the 0/1 entry.

– It is 0. Then there is no 1-Dollo phylogeny by the same reasoning as above

– It is 1. There are two cases. Assume c is gained at or before d. Then the first

and third are on a separate branch from the second. All of them have to gain d,

which means it must be gained twice. Now assume d is gained before c. There

are two subcases here. First is c is gained at or before d is lost. This means first

and third are on a separate branch from second. Then we require two losses of d

because second and third are on difference branches. If d is lost before c is gained,

then c must be gained twice because first and third are on different branches.

Therefore, there is no 1-Dollo phylogeny for B.

• cr, dl. The corresponding completed submatrix in B looks like 2 0

0/1 1/2

2 1/2


There is no 1-Dollo phylogeny for B using the same reasoning as above.

• cr, dr. The corresponding completed submatrix in B looks like 2 0/1

0/1 2

2 2


14



Observe the losses. Assume we can gain all the characters we need. Now we need to

lose those so they match the submatrix. This is not possible following the logic from

the first case. Losing them is the same as gaining them. Therefore, these is no 1-Dollo

phylogeny for B.

In all four cases, we show there is no 1-Dollo phylogeny for B. However, we know there is one,

namely T . This contradicts our assumption so B′ is conflict free and the skeleton, T ′, is valid.

Now, the (⇐) direction. We propose another algorithm to transform the skeleton to a

1-Dollo phylogeny.

1. Find all the leaves that require losses. Observe that leaf v requires losses if and only

if L(v) 6= ∅.

2. Construct an indicator matrix, C, where each row corresponds to a leaf, v, that require

losses and each character in the row is 1 if it is in the set I(v) and 0 otherwise.

3. Construct a perfect phylogeny TC for our indicator matrix C. We know one exists

because C is a submatrix of the conflict free matrix B′ = σ(B, T ′) along with the

corollary above.

4. Merge TC with our skeleton to get the 1-Dollo phylogeny. The loss edges we need to

add to the skeleton are exactly the edges in TC . Consider an edge (u, v) in TC where u

is the parent of v. All the leaves in the subtree of v in TC must be descendants of v in

the skeleton. Therefore, we can add vertex V ′ and edge (u′, v′) to our skeleton where

u′ is the lowest common ancestor of all the leaves in the subtree rooted at v in TC .

Then attach all the children of u′ to v′ so that v′ is now the lowest common ancestor of

those leaves. Process the vertices in topological order in TC so an edge is added before

any of the edges in the subtree rooted at the incoming vertex.

This gives us a tree that satisfies the condition to be a 1-Dollo phylogeny. It unique provided

that edges are allowed to have multiple labels because the perfect phylogeny is unique.

3.1.1 Additional optimizations

We can further optimize the algorithm by exploiting structure in our input B. Two of

them are below.
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Definition 3.5. Let B ∈ {0, 1}m×n be a binary matrix and c be a column of that matrix.

Define Ic(c) to be the set of taxa that have a 1 for column c in B.

A column in a binary matrix B ∈ {0, 1}m×n is nonzero if it has at least one 1.

Lemma 3.1. Let c and d be two nonzero columns in the binary matrix B ∈ {0, 1}m×n. If

Ic(d) ⊂ Ic(c) and c is not all 1, then the character corresponding to c is gained at or before

the character corresponding to d in all 1-Dollo phylogenies of B.

Proof. We prove this by contradiction. Let B ∈ {0, 1}m×n be a binary matrix with a

phylogeny T . Let c and d be two columns in B with Ic(d) ⊂ Ic(c) and c is not a column

of all 1s. Assume the character corresponding to d is strictly gained before the character

corresponding to c in T . Then consider the two columns (c d) in B and in the completion of

B. We have three cases for the two columns in B. (0 1) is not possible because Ic(d) ⊂ Ic(c).

1. They were (1 1). Then it will be the same in the completion of B. Observe there is at

least one taxon with this because every column has at least one 1.

2. They were (1 0). Then it must be (1 2) in the completion of B because d is strictly

gained before c. There is also at least one taxon with this because Ic(d) ⊂ Ic(c).

3. They were (0 0). There is at least one taxon in B with this because c is not the column

of all 1s. Then there is at least one taxon with (0 2) in the completion of B because d

is gained strictly before c.

Therefore, the completion of B has the submatrix1 1

1 2

0 2

 .

However, this is one of the forbidden submatrices. Therefore, there is no 1-Dollo phylogeny

of B where character d is strictly gained before character c.

Lemma 3.2. Let c and d be two nonzero columns in the binary matrix B ∈ {0, 1}m×n. If

Ic(d) ∩ Ic(c) = ∅ and there exists a row where there is a zero in both c and d. That row

cannot have a loss of c and d.
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Proof. We prove this by contradiction. Let B ∈ {0, 1}m×n be a binary matrix with a 1-Dollo

phylogeny. Let c and d be two columns in B with Ic(d)∩ Ic(c) = ∅ and there is a row where

there is a zero in both c and d. Assume characters c and d are in the same branch there

exists a leaf that loses both. Then the completion of B must contain the submatrix where

x1, x2 ∈ {0, 2} x1 1

2 2

1 x2


However, all of these are forbidden matrices so there is no completion where that row loses

both c and d.

Using these two, we can safely ignore skeletons that do not correspond to a 1-Dollo phy-

logeny.

3.2 ENUMERATION ALGORITHM

3.2.1 Description

We propose the skeleton solver, an algorithm that outputs all completions to an instance.

Since there is a valid skeleton for a matrix if and only if there is a 1-Dollo phylogeny for

that matrix and there is an algorithm to construct the phylogeny from the valid skeleton,

we generate all valid skeletons to get all phylogenies for an input. The input is an m by n

binary matrix. The output is a list of all completions in increasing order. A matrix X is

less than another Y if the concatenated bitset representation of each row of X is less than

that of Y . There are three main steps in the algorithm.

1. We first generate a skeleton. Skeletons only have gain edges so we try all trees with only

gain edges. We can efficiently construct all of them because there is a bijection between

these trees and Prufer sequences [Prüfer(1918)]. The Prufer sequence generates trees

with labels on its vertices. Since we want to label the edges, the tree will have one

more vertex than the number of characters. That “extra” vertex will be the root of

the tree. The directed edges are labeled as the value of the vertex its going to. We did

not use any optimizations that was listed in the previous section in this step.

2. To complete the skeleton, we have to decide the ancestor of each of the leaves given a

tree of only gain edges. There are multiple possibilities for each leaf so we try them
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all. Observe the condition for all leaves v is J(v) ⊆ H(v). Therefore, u is an ancestor

of leaf v if J(v) ⊆ H(u).

3. Now we check if the skeleton is a valid skeleton. We generate the matrix in definition

8 above and check if it has a perfect phylogeny.

3.2.2 Analysis

Theoretical runtime. We compute the big-O runtime for each step of the algorithm and

combine them in the end.

1. First, we compute all possible trees with the characters as gain edges. There are n

characters so we need a tree with n edges. This tree has n + 1 vertices. By Cayley’s

formula, there are (n+ 1)(n−1) of these trees, which correspond to Prufer sequences of

length n− 1. Constructing the tree from the Prufer sequence takes O((n− 1)2) time.

Hence, generating all trees takes O((n− 1)2(n+ 1)(n−1)) time.

2. Now we have to create a skeleton. There are m leaves and at most n + 1 possible

ancestors for each of them. In order to enumerate them, we create a sequence of

numbers where each position corresponds to a leaf and the value at that position is

the ancestor for that leaf. Reading this sequence takes O(m) time. We use bitset

representation for the labels of the vertices so checking if a leaf can be a descendant of

a vertex in the tree takes constant time. Therefore, the skeleton creation step requires

O(m(n + 1)m) time. This part runs much faster in practice because the number of

possible ancestors is usually small.

3. The last step is to determine if the given skeleton is valid. Use the O(mn) perfect

phylogeny algorithm proposed by Gusfield.

Therefore, the total runtime is O((n − 1)2(n + 1)(n+m−1)m2n) = O(n(n+m+2)m2). Only the

first step is deterministic. That gives this a lower bound runtime for the algorithm, which

is the runtime for enumerating the Prufer sequence. The brute force algorithm runs in

O(2kkmn) time where k is the number of zeros in B. Observe the extra k is there because

it requires k time to read the k digits in the binary string.

Real world runtime. We test how fast this algorithm is in practice and how it scales

based on the size. The input is grouped by the size of the matrix, each one containing fifty
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Size Total time (sec) Average time of each Total number of solutions

4× 4 0.052877 0.00105754 11342
4× 5 0.279887 0.00559774 20530
5× 5 2.13644 0.0427288 207018
5× 6 57.8506 1.157012 1403137
6× 6 80.7195 1.61439 760135

Table 3.1: Runtime results for fifty random matrices
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Figure 3.1: Graphs of runtime for fifty random matrices

random matrices. We randomly choose the number of zeroes uniformly from [bn+m
3
c, n ·m)

and then randomly generate a matrix with that number of zeroes. We limited each input

to fifty matrices and the size up to 6 × 6 because we noticed that the number of zeroes

significantly impacts the runtime. Later, we test random matrices up to 8× 8 where around

half the entries are zero. We ran everything on a 3.3GHz quad core i5 desktop processor

with 16GB of ram although the program only uses one thread. The results and graphs are

in table 3.1 and figure 3.1.

The algorithm runs fast on the small instances and slows down on the bigger ones as

expected. From the log scaled graph, it appears that the growth is exponential in the size.

The theoretical runtime we computed is exponential in n, but our values of n are close

which may be why we do not observe that. Nevertheless, our findings are consistent with

the exponential growth in the theoretical runtime. There is a minor discrepancy for the 5×6

case. That may be due to the usually large number of solutions. We explore that further in

the next section.

Now we test larger matrices up to 8×8. The entries of each matrix are generated uniformly
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Size Total time (sec) Average time of each Total number of solutions

6× 6 2.03385 0.040677 2772
6× 7 26.7019 0.534038 6792
7× 7 49.3069 0.986138 856
7× 8 423.769 8.47538 31
8× 8 1249.04 24.9808 0

Table 3.2: Runtime results for fifty bigger random matrices
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Figure 3.2: Graphs of runtime for fifty bigger random matrices

from {0, 1} so the expected number of zeroes is half the size of the matrix. Like before, each

input contains fifty random matrices. Our results are in table 3.2 and figure 3.2.

Again, the runtime is exponential on the size. It is tolerable for matrices up to size 7× 7,

but blows up after that. We do not recommend running instances larger than 8 × 8 based

on this data. The number of solutions should not be very high so using existing solvers for

a single solution is sufficient.

Real world runtime dependence on other factors Given the observations above, we

test how the number of zeroes and number of solutions affect the runtime in practice. We

first check how the runtime changes as the number of zeroes in the input changes since that

is easier to isolate and test. Observe the big-O runtime does not directly depend on the

number of zeroes in the matrix, unlike the brute force enumeration algorithm. We separate

the matrices by the proportion of zeroes and run one hundred randomly generated instances

of each. For example, 4× 4 (4) means 4 by 4 matrices where 4 of the entries are zeroes. The

results are in table 3.3.
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Size (zeroes) Total time (sec) Average time of each Total number of solutions

4× 4 (4) 0.007765 0.00007765 783
4× 4 (6) 0.013361 0.00013361 1268
4× 4 (8) 0.022636 0.00022636 2983
4× 4 (10) 0.054898 0.00054898 8296
4× 4 (12) 0.190477 0.001904775 37822
5× 5 (5) 0.046834 0.00046834 858
5× 5 (10) 0.115808 0.00115808 2213
5× 5 (15) 0.556503 0.00556503 8713
5× 5 (20) 10.6249 0.106249 469942
6× 6 (6) 0.497128 0.00497128 1202
6× 6 (12) 0.896287 0.00896287 1366
6× 6 (18) 3.40114 0.0340114 1359
6× 6 (24) 30.1174 0.301174 37140
6× 6 (30) 864.675 8.64675 6455296
7× 7 (7) 6.84749 0.0684749 1269
7× 7 (14) 10.3064 0.103064 1087
7× 7 (21) 27.0798 0.270798 147
7× 7 (28) 157.381 1.57381 878
7× 7 (35) 2168.46 21.6846 65032

Table 3.3: Runtime and number of zeroes

It appears that the number of zeroes does affect the runtime of the algorithm. This may be

because there are more possible ancestors for each taxon in the second step of our algorithm

and so, the solution space is much bigger.

If we look at the small instances, it appears that the number of solutions affect the running

time as well. However as we go to the bigger matrices, we see that is not the case. This

makes sense if our hypothesis above is correct. The solution space may be very large, but

the set of actual solutions is really small. It also makes sense intuitively because the number

of solutions should go down as we increase the size of the matrix.

We plot these results below. The left graphs are normal scaled and the right ones are log

scaled on the y-axis.
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Figure 3.3: 4× 4 runtime and number of zeroes
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Figure 3.4: 5× 5 runtime and number of zeroes
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Figure 3.5: 6× 6 runtime and number of zeroes
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Figure 3.6: 7× 7 runtime and number of zeroes

It appears that the runtime scales faster than exponential in the number of zeroes. It looks

quadratic in all four log scaled graphs. We suspected it was exponential in the number of

zeroes due to the runtime of the second step of our algorithm. However, we cannot explain

why all our tests conclude it is more than exponential.

Comparison with naive brute force We run the brute force algorithm on the small

input from the real world runtime test (with fifty matrices per input). Our results are in

table 3.4.
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Size Total time of skeleton solver (sec) Total time of brute force (sec)

4× 4 0.052877 0.053791
4× 5 0.279887 0.269775
5× 5 2.13644 8.60843
5× 6 57.8506 379.877
6× 6 80.7195 > 3600 (terminated)

Table 3.4: Brute force runtime comparison

Size (zeroes) Total time of skeleton solver (sec) Total time of brute force (sec)

4× 4 (4) 0.007765 0.002092
4× 4 (8) 0.022636 0.011281
4× 4 (12) 0.190477 0.170938
5× 5 (5) 0.046834 0.002805
5× 5 (10) 0.115808 0.046162
5× 5 (15) 0.556503 1.45705
5× 5 (20) 10.6249 47.4835
6× 6 (6) 0.497128 0.0057
6× 6 (12) 0.896287 0.207622
6× 6 (18) 3.40114 13.458
6× 6 (24) 30.1174 887.089
7× 7 (7) 6.84749 0.009881
7× 7 (14) 10.3064 0.938688
7× 7 (21) 27.0798 124.533

Table 3.5: Brute force runtime on number of zeroes comparison

They are similar in the small instances. However, the skeleton solver easily outdoes the

brute force algorithm in the larger ones. We terminated the brute force algorithm for the

6× 6 case after an hour. The file was an eighth complete so it may have taken eight hours

if we did not. These tests are consistent with our claim that the skeleton solver performs

much better than the brute force enumeration algorithm for random input. We show this

difference is because the skeleton solver beats the brute force algorithm on instances with

many zeros.

We run the brute force algorithm on the input from the zeroes test, skipping the ones

with too many zeroes. Table 3.5 summarizes the results.

The brute force algorithm is faster for the instances with fewer than 15 zeroes. It is only

faster by a negligible amount for the small instances. However, it is much faster for the 7×7

case although the skeleton solver’s runtime is still acceptable. This is due to the lower bound

of the skeleton solver. We recommend using the brute force algorithm if the input is big and
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contains few zeroes. As the number of zeroes increase, the brute force algorithm’s runtime

balloons as expected. The skeleton solver vastly outperforms the brute force algorithm for

those instances.

In addition to this runtime comparison, we did a check for correctness. All outputs match

which indicates the skeleton solver is likely correct.
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CHAPTER 4: CONCLUSION

We attempted to characterize the infeasible instances of the 1-Dollo phylogeny problem

and proposed the skeleton solver as a algorithm for the counting version of the 1-Dollo

phylogeny problem. Unfortunately we were not able to resolve hardness for 1-DP, but we

found potential avenues during our experiment.

Our analysis of the infeasible instances showed that unlike the perfect phylogeny problem,

the forbidden matrices in the 1-Dollo case does not appear to have a simple characterization.

Moreover, we suspect the number of forbidden matrices that is not a cycle graph in the

bipartite graph representation. is unbounded as well. There may be a simple characterization

of these graphs in the bipartite graph representation, but we were unable to establish one.

This appears to be a promising direction to search for those with a solid background in graph

theory. Another follow up is to redo the computation, but remove all symmetries this time.

A potential way to do this is by using the Pólya enumeration theorem.

Our skeleton solver algorithm is the first nontrivial algorithm proposed for the counting

version of the 1-Dollo phylogeny problem. It uses our concept of a skeleton to efficiently

enumerate all phylogenies. We showed it runs fast and beats the naive brute force enumera-

tion algorithm on practical instances. The need for such algorithm arises from how unlikely

a single phylogeny is the correct mutation history for a set of observations. With the set

of all possible phylogenies, one can analyze the structure and patterns of those to find the

most likely ones to model the observations. This can lead to better downstream inferences

and therefore, more effective treatments.

The skeleton solver can be used to gain insight on the structure of feasible instances for

1-DP. For example, one can find instances which only have a few phylogenies. Then see if any

patterns exist in those and check if they persist on random instances. We investigated a few

instances and found the two optimizations for the skeleton, but did not find any conclusive

patterns that did not depend on the input.

We end with questions that may speed up the skeleton algorithm. The big one we en-

countered and could not explain is for a fixed size, why does the runtime grow faster than

exponential on the number of zeroes? Answering this may help us identify and minimize the

bottleneck. Another question is can we reduce the number of trees we need to create in the

Prufer sequence? This is a lower bound on the runtime on the algorithm, which caused it to

run slower than the brute force algorithm on big instances with few zeroes. Optimizing this

step can lessen the gap. Finally, can the taxon tell us anything? Our optimizations were

based on the characters. Perhaps there are constraints between taxa in the phylogeny. We
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hope resolving any of these will make the algorithm acceptable for bigger instances.
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