
c© 2020 Sanket Makarand Kanjalkar

SUCCINCT PUBLICLY AUDITABLE MPC WITH UNIVERSAL SETUP

BY

SANKET MAKARAND KANJALKAR

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Adviser:

Assistant Professor Andrew Miller

ABSTRACT

In recent years, Multiparty computation as a service (MPCSaaS) is gaining popularity

as a promising approach for building privacy-preserving communication systems. Although

there has been significant improvement in the efficiency and robustness of such protocols, in

this thesis, we argue that these properties might not be enough for many MPC applications.

Specifically, we need unconditional public auditability, which means that everyone can check

that a given (secure) computation was performed correctly, even in the scenario where all

the participants involved in the computation are corrupted. We also desire this auditability

to be public, meaning any party that did not participate in the computation can audit it.

We improve upon the previous state of the art adaptive Trinocchio by Veeningen [1] in three

ways: 1) Our auditor has constant pairing cost 2) Our proof sizes are reduced by a factor of

three, and 3) we do not rely on a circuit-specific setup.

In this work, we show the first construction of auditable robust MPC that supports fast

verification, succinct proof size with one time universal, and updatable setup. Importantly,

we provide auditability without significantly compromising the performance of the underly-

ing Shamir secret shared MPC protocol, i.e, adding auditability only incurs a linear compu-

tation overhead and constant round communication overhead. We implement and evaluate

our construction report various performance metrics.

ii

To my parents, my brother, and my late aaji, ajoba.

iii

ACKNOWLEDGMENTS

I thank my advisor Assistant Professor Andrew Miller for his guidance and advice, without

whom all the three research papers that I am a part of would not have been possible. I would

like to extend special thanks to Ye Zhang for his collaborations and the original idea for this

project. I would also like to thank Pratyush Mishra for his help in understanding Marlin [2]

paper. We also thank developers of zexe [3] and marlin [4] codebase which we build upon.

Lucky are the people who get to research full-time on things they like, and for that, I would

like to extend a special thanks to Ruben, who got me started on my journey in bitcoin. I

would like to thank Pieter, Andrew, Mario, and countless other unnamed people in bitcoin

(Internet Relay Channels)IRC channels who helped me understand cryptocurrencies better.

Writing a thesis and doing academic research requires more than just technical advice.

For that, I have countless people to thank for. I am especially grateful to my roommate

Ankit, whose guidance, advice, and assistance have helped through everything at Univesity

of Illinois at Urbana-Champaign(UIUC). I would like to specially acknowledge all my friend

circles: Aurangabad Junta, Libidos Junta, Suwon Junta, Decentralized Systems Lab, Tam-

parature++, and the Core group for their support. The support from Anand, Ankit, Ashwin,

Ayushi, Bai, Chirantan, Karan, Kiriti, Palash, Sahil, Samrat, Unnat was invaluable. Lastly,

I would like to thank my parents, grandparents, and my brother, without whom this would

not have been possible.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Our Contributions . 3

CHAPTER 2 PRELIMINARIES . 5
2.1 Multi Party Computation . 5
2.2 MPC Modes of Operation . 6
2.3 Cryptographic Commitments . 7
2.4 Zero Knowledge Proofs . 10
2.5 SNARKS for R1CS . 11

CHAPTER 3 RELATED WORK . 13

CHAPTER 4 AUDITABLE MPC OVERVIEW . 15
4.1 Offline Phase . 15
4.2 Online Phase . 16

CHAPTER 5 SECURITY DEFINITIONS AND IDEAL FUNCTIONALITIES . . . 18
5.1 Polynomial Evaluation Commitment(PEC) Scheme 18
5.2 Indexed Relations with Commitments . 20
5.3 Secure Function Evaluation from Adaptive SNARKS 21

CHAPTER 6 OUR CONSTRUCTION . 24
6.1 Constructions for Polynomial Commitment Scheme 24
6.2 Construction of Adaptive Zk-SNARK . 26
6.3 Auditable MPC: Offline Phase . 28
6.4 Online Phase: Client Input Processing . 29
6.5 Online Phase: Computing QAP and Witness 30
6.6 Online Phase: Generation of Marlin Proof by MPC 31
6.7 High-Level Overview of Proof Generation . 31
6.8 Auditor Verification . 36
6.9 Auditable MPC using Marlin . 37
6.10 Subprotocols . 39

CHAPTER 7 ANALYSIS AND SECURITY PROOFS 42
7.1 Detailed Protocol Analysis . 42
7.2 Security Proofs . 43

v

CHAPTER 8 EVALUATION . 47
8.1 Prover Cost . 47
8.2 Auditor Cost . 48
8.3 Proof Size . 49
8.4 Communication Cost . 49

CHAPTER 9 FINAL REMARKS . 51
9.1 Conclusion . 51
9.2 Future work . 51

APPENDIX A FFT POLYNOMIAL OPERATIONS 52

REFERENCES . 53

vi

CHAPTER 1: INTRODUCTION

In the past several years, there have been lots of innovations in increasing the perfor-

mance of Multi Party Computation(MPC). Protocols like SPDZ [5], beaver’s trick [6] have

increased the performance by pushing out expensive computation to an offline phase to en-

sure a faster online phase. Furthermore, protocols like HoneybadgerMPC [7] and Blinder [8]

provide robustness and tolerate malicious parties. MPC as service(MPCSaaS) is also gain-

ing popularity because it allows clients to export the MPC computation to a set of cloud

servers. MPCSaaS has been successfully deployed in practice for identifying the wage gap in

gender differences [9] and cryptocurrency trusted parameter generation [10]. Applications

like Callisto [11], MPC joins the dark side [12] and FuturesMex [13] also show promising

applications for MPCSaaS. We note that all currently deployed MPC solutions offers secu-

rity guarantees under the condition that a less certain threshold number of the servers are

corrupted.

The need for auditability: Having conditional robust and efficient MPC protocol is not

always enough: for many practical applications, we desire unconditional public auditability.

For example, in a secure voting application, we would want to maintain the correctness of

outcome even if all computing servers and participants are corrupted. Furthermore, we

want any party, even those who did not even take part in the computation to verify the

Integrity of computation.

We note that most MPC implementations only provide conditional security and if the

threshold condition is not satisfied even the Integrity (or correctness) does not hold. Ideally,

in the election application using secure MPC, we want to ensure Confidentiality: privacy of

which voter voted for which candidate, Availability: the election should not be susceptible

to DoS(Denial of service) attacks and Integrity: the candidate with the maximum votes

should win the election. A loss of Confidentiality and Availability can lead to loss of privacy

and denial of service attacks, but a compromise in Integrity can lead to the wrong election

outcome, which might have far worse consequences. To summarize, we want to maintain

Confidentiality and Availability when possible, but in the case that it is not possible, we

would still like to preserve Integrity.

Table 1.1 shows the security guarantees provided by various MPC protocols. MPC

toolkits like Viff [14], SPDZ [5], Mascot [15], Overdrive [16], EMP [17], SCALE-MAMBA [18],

HYPERMPC [19] provide Confidentiality and Integrity if number of faults f is less than or

equal to the threshold t. Toolkits like HoneyBadgerMPC [7] provide Confidentiality, Integrity

and Availability if f ≤ t. However, none of the above mentioned toolkits provide any security

1

guarantees if f > t. In this work, we show to how to add auditability to already existing

protocols in order to provide Integrity if f > t.

f ≤ t f > t
non-robust MPC Conf, Int 7

non-robust auditable MPC Conf, Int Int
robust MPC Conf, Int, Avail 7

robust auditable MPC Conf, Int, Avail Int

Table 1.1: Security guarantees of MPC protocols: Conf, Int, Avail refer to Confidentiality,
Integrity and availability. f, t represent the actual number of faults and the maximum faults
tolerated by the MPC system.

Auditable MPC for generic protocols: Over the past two decades, lots of research

by Schoenmakers et al. [20], Küsters et al. [21], Sako et al. [22] and Moran et al. [23] have

considered a publicly auditable election protocols. Recently, Chen et al. [24] also propose

a public auditable RSA modulus construction that can support thousands of parties and

offers security against an arbitrary number of corrupted parties. Even among the few known

useful applications of MPC already in deployment, such as RSA modulas construction , it’s

already important that they satisfy public auditability. When this has been provided, it’s

for a custom protocol. So far, none of the implementations of generic MPC frameworks have

provided this feature.

Fast auditor with one-time universal setup: In MPCSaaS setting typically involves

low powered clients sending outsourcing computation to the high-power servers. Thus, in

order to audit the computation, the computation proof size must be small, and proof veri-

fication must be fast. Fast auditing is crucial in applications like secure election and cryp-

tocurrency parameter generation, where the computation proofs are to be checked by a large

number of low powered participants. Previous work by Baum et al. . [25] gave the first con-

struction for auditable MPC; however, it involved the auditor reading the entire transcript,

which would be inefficient for many practical applications.

Snarks have gained popularity as a for fast enable verifying NP statements. Over the years,

numerous constructions [26] [2] [27] [28] [29] [30] of ZK-snarks have been proposed improving

efficiency, proof size and verification times. In almost all of the constructions, proofs are

verified with respect to plaintext inputs of the verifier; but for our reactive auditable(Refer

section 2.2.2) MPC application, we want such proofs to able to be adaptive, meaning

computations can be chosen after the input data has been committed.

Amongst the adaptive SNARKs, the hash-first approach suggested by Fiore et al. [31]

for adaptive verifiable computations on outsourced data is not zero-knowledge. The con-

struction by Lipmaa [32] for CaP SNARKs is zero knowledge but relies on a subset-sum

2

language instead of R1CS language. In more detail, even tough the Subset-Sum and R1CS

languages are both NP-complete, most MPC computations are more naturally expressed as

R1CS constraints whereas expressing the same in Subset Sum language would incur practi-

cal concrete overhead. Finally, another construction by Veeningen [1] shows how to adapt

Trinocchio [33] for secure function evaluation. It, however, relies on a trusted third party to

compute a circuit-specific setup for every new unknown computation. Generating a trusted

setup server as a practical problem as to how to instantiate this party. The servers cannot

be trusted to create this setup as our trust model involves all malicious servers. A one-setup

can include the setups for some known circuits, but such a scenario one cannot change the

computation after the setup. For deployment of auditable MPCSaaS, providers cannot

know what computations the clients will be performing. Even if the client computations

are known beforehand, clients can, at a later time, can request to update the computation

because of implementation bugs or performance improvements. For a circuit-specific setup,

it is not possible to update the computation without invoking a trusted third party.

Our construction uses Marlin [2] instead of Pinocchio [34] and thus does not require a

trusted party for such a computation. The setup used marlin(and thus our construction)

is also updatable [35] so that parameters for the setup can be updated and the soundness

guarantees hold as long as there is at least one honest party in the update chain,

1.1 OUR CONTRIBUTIONS

• First construction for fast auditable MPC with the one-time universal

setup: Our construction is the first to fast verification while relying on a one-time

setup. We improve the previous state of the artwork by Veeningen [1] in three ways: 1)

Our pairing costs in auditing is constant whereas the Veeningen’s construction had to

do pairings linear in the statement size and 2) Our proof sizes are 1/3 of that Veenin-

gen’s construction and 3) importantly, our construction uses a one-time universal setup

instead of circuit-specific one.

• Generation of Pre-processing arguments by MPC: Marlin gave a new compiler

design for constructing zk-SNARKs from Algebraic Holographic proofs and polynomial

commitments. However, in Marlin [2], the prover knows the entire witness and thus

easily construct such a marlin proof for R1CS(Rank-1 Constraint System). We show

how to create Marlin proof for a relation where the witness and statements are secret

shared across a set of parties. In order to facilitate the creation of Marlin proof

via MPC, we formally suggest an MPC based polynomial commitment scheme where

3

MPC servers holding shares of polynomials can commit, evaluate, or create witness

of the opened polynomial without opening the polynomial. This commitment scheme

borrows core ideas of “interpolate in the exponent” from VSS literature, and we deem

construction to be of independent interest.

• Novel approach to adaptive pre-processing arguments: In Marlin, the verifier

has access to the statement and can verify the proof with respect to the statement.

However, in an auditable MPC scenario, the auditor only has access to commitments

of the statements and must make sure that proof is consistent with the commitment.

Previous approaches to adaptive zk-SNARKs [1] divided the Pinocchio [34] proof into

multiple blocks and embedded the statement in each block. Our new approach uses a

commitment technique that allows building a polynomial commitment from Pedersen

commitments to the evaluations that can be used for checking evaluations. To im-

prove auditor efficiency, we also suggest a new commitment scheme based on Lipmaa’s

work [32] that can be of independent interest.

• We implement and evaluate our construction. In our experiments with 32 MPC servers,

10,000 constraints, and 8 statement size, our prover time is less than 3 seconds, auditing

time less than 25ms, proof size is ≈ 1.7Kb, total MPC communication overhead is

700Kb with three additional rounds of communication.

4

CHAPTER 2: PRELIMINARIES

Secure multi-party computation (also known as MPC) helps parties to jointly compute a

function over their inputs while keeping those inputs private. Informally, it is a function that

has secret inputs and public output. The computation must preserve security properties,

even is some(less than a threshold) of the parties collude and maliciously attack the protocol.

Consider an auction example where parties want to compute the winning bid such that only

the winning bid and nothing else is revealed.

We first informally define the security properties of interest for this application:

• Correctness/Integrity: The winning bid is correctly computed. A person with a lower

bid cannot win

• Privacy: Participants only learn the winning bid and nothing else

• Independence of Inputs: Participants cannot bid 0.01$ more than the highest bid to win

the auction

• Fairness: Participants cannot abort the auction if their bid is not the highest. If one

party learns the outcome, all parties must learn the outcome.

• Guaranteed Output delivery: Parties cannot abort the protocol.

2.1 MULTI PARTY COMPUTATION

There are two ways of doing Multi-party computation: 1) Shamir secret sharing(SSS) [36]

based and 2) Garbled circuits protocols [37] [38]. For this thesis, we focus on SSS based

Multi prty computation.

2.1.1 Shamir Secret Sharing

Secret sharing is a technique for distributing a secret amongst a group of participants,

each of whom is allocated a share of the secret. The secret can be reconstructed only when

a sufficient number of shares of different types are combined. Individual shares do not reveal

any information about the secret on their own. In general, given any-share, at least t + 1

parties are required to reconstruct the corresponding secret. We first recall some techniques

from [39] [5] [40] which are used in MPC for practise.

5

Figure 2.1: Shamir Secret Sharing illustration

For prime p and a secret s ∈ Fp, JsK denotes Shamir secret sharing [36](SSS) in a (n, t)

setting. In more detail, a degree-t polynomial φ : Fp → Fp is sampled such that φ(0) = s.

The share JsKit is same as evaluation φ at evaluation point i ∈ Fp. We omit the superscript

and/or subscript when it is clear from context. When constructing a secret we check whether

2t + 1 correspond to the same polynomial and evaluate the secret at φ(0). (Refer Figure

2.1.1)

2.2 MPC MODES OF OPERATION

In our construction of auditable MPC, we make the distinction between data clients and

input clients. Data clients only provide secret-shared input to MPC parties, while the input

client chooses the computation f , which is to be performed upon the data. We say the

protocol is adaptive if the function f can be chosen after the inputs are committed.

2.2.1 Single-shot MPC

In this style of MPC computation, the protocol executes in a single shot. Clients submit

their inputs, servers carry out the respective computation, and send back the result to the

clients. After the execution of the protocol, the auditor can check the validity of the results.

As shown in [1], it is possible to guarantee input-independence in Single-shot MPC using

aborts and non-malleable input commitments. Figure 2.2 shows the protocol in detail.

Input independence is an important property in an auction application where the parties

may not want their bids to input on other bids. For example, if a Pederson commitment

scheme is committing inputs, client B can commit to value Cx+1 using a commitment for

6

value Cx from client A. In the scenario where all servers are corrupted, we wish to compute

the result, the servers would reveal x as an input of client A and use x + 1 as the input of

client B making him win the auction with a small marginal price.

2.2.2 Reactive MPC

In a continuous style of computation, the MPC servers maintain a state of the application.

The application interacts with 1) client inputs, 2) previous outputs of computation, and 3)

public inputs to update its state. The application may also optionally reveal/open some

part of the state to the result parties. This model allows us to capture the scenarios where

an input to another completely different style of MPC might be an output of the previous

computation. Let Sold and Snew denote the state of MPC computation after computing a

circuit C .xi denotes the client inputs, yj denotes the output of the previous computations.

Each server would have a share of state JSK, the share of previous computations output yj,

a share of a secret client of input xi, and public inputs xpub. The MPC state update rule

would then be shown by:

JSnewK = MPC(C, JSoldK, JxiK, JyjK, xpub) (2.1)

The auditor can, at any time, check whether the outputs and the latest state of the MPC

are consistent with the operations carried out MPC.

Note that input independence is not possible in reactive MPC across multiple rounds. In

the scenario where all servers are corrupted, the servers will directly know the input and

finish the computation for a particular round of MPC. The parties in the next round of

MPC can know the inputs of servers from the first round and choose their inputs based on

the inputs from the previous round. In the same auction example, where the bidding servers

maintain a state of top k bids. In every MPC round, a new party submits the new bids; the

server updates the state to reflect the correct top k bids. When all servers are corrupted, the

next input client can collude the servers to know the current max bid and bid accordingly.

2.3 CRYPTOGRAPHIC COMMITMENTS

A non-interactive commitment scheme consists of a pair of probabilistic polynomial time

algorithms Setup,Comm. The setup algorithm Setup(1λ)→ pp generates public parameters

pp for the scheme, and for security parameter λ. The commitment algorithm Comp defines

a function Commpp(m, r) outputs a commitment to the message m with randomness r.

7

Client input processing for ensuring input independence
Data-clients I1, I2, . . . , Im have input xi ∈ F respectively. Input Clients Iinp also knows the
function f which they want to compute their data upon.

1. A trusted third party performs Keygen for a keyed trapdoor commitment family and
distributes the keys cki to each data client.

2. Each data-client computes commitment to the inputs (Ccki(xi)) and posts it on the
bulletin board

3. The input-client then choose a function f to compute upon and submits it to the
MPC servers for desired computation.

4. Each data-client provides the input to the MPC servers. The MPC servers obtain
JxiK and for each client check whether the inputs are consistent with the commitment
Ccki(xi) posted on the bulletin board.

5. If the commitments do not match or a party fails to open the commitment, then
abort. Otherwise proceed with MPC computation.

Figure 2.2: MPC input independent processing

Informally, Commitments satisfy hiding and binding properties.

1. Commitment does not leak any information about m

2. Commitment cannot be opened in two different ways.

2.3.1 Pedersen Commitments

Pedersen [41] showed how to information theoretically hide a secret popularly known as

Pedersen commitments. The commitment is scheme is as follow: Let G be a group in which

Discrete log is considered hard.

• Setup(1λ)→ g, h: Sample random generators g and h such that the discrete log between

them in unknown.

• Commpp(m, r)→ gmhr: The commitment to a message m is simply a product of group

elements gm and hr where r is sampled randomly.

Pedersen commitments also follow the linear homomorphirsm property:

Comm(x1; r1) + Comm(x2; r2) = Comm(x1 + x2; r1 + r2) (2.2)

8

2.3.2 Polynomial Commitments

Polynomial commitments [42] help a prover commit to a polynomial, so to prove that

evaluations are correct without revealing the full polynomial. Polynomial commitments

have been implicit in all cryptographic protocols.

A PolyCommit scheme consists of the following algorithms.

• Setup(1, t) generates system parameters SP to commit to a polynomial over of degree

bound t. Setup is run by a trusted or distributed authority. SP can also be standardized

for repeated use.

• PolyCommit(SP, φ(·)) outputs a commitment C to a polynomial φ(·) for the system

parameters SP, and some associated decommitment information aux.

• CreateWitness(SP, φ(·), i, aux) outputs 〈i, φ(i), wi〉, where wi is a witness for the decom-

mitment information for the evaluation φ(i) of φ(·) at the index i.

• VerifyEval(SP, C, i, φ(i), wi) verifies that φ(i) is indeed the evaluation at the index i

of the polynomial committed in C. If so, the algorithm outputs accept, otherwise it

outputs reject.

A PolyCommit scheme must satisfy the following properties:

• Correctness: If C, aux ← Commit(SP, φ(·)) and wi, auxi ← CreateWitness(SP, φ(·),i,
aux), then the correct evaluation of φ(i) is successfully verified by VerifyEval (SP, C,

i,φ(i), wi, auxi).

• Polynomial Binding: If C, aux ← Commit(SP, φ(·)), then except with negligible

probability, an adversary can not create a polynomial φ′(·) such that

VerifyPoly(SP, C, φ(·)′, aux) = 1 if φ(·) 6= φ′(·).

• Evaluation Binding: If C, aux← Commit(SP, φ(·)) and

wi, auxi ← CreateWitness(SP, φ(·), i, aux) then except with negligible probability, an ad-

versary can not create an evaluation φ(j), witness wj, and decommitment information

auxj such that VerifyEval(SP, C, i, φ(j), wj, auxj) = 1 if i 6= j.

• Hiding: Given C and wi for any i, an adversary either

– Can only determine φ(·) or φ(i) with negligible probability given bounded com-

putation (Computational Hiding)

– Can not determine any information about φ(·) or φ(i), even given unbounded

computation (Unconditional Hiding)

9

2.4 ZERO KNOWLEDGE PROOFS

Proofs of knowledge allow any prover to demonstrate knowledge of a satisfying witness to

some NP statement. We are primarily interested in three properties of these proof systems,

namely Correctness, Soundness, and Zero-Knowledge.

2.4.1 Bird’s Eye View of Zero Knowledge Proofs

We informally state the three properties for brevity:

• Correctness/Completeness: If the statement is true, the honest verifier will be con-

vinced of this fact by an honest prover after a successful protocol execution.

• Soundness: If the statement is false, no cheating prover can convince the honest verifier

that it is true, except with some negligible probability.

• Zero-knowledge: If the statement is true, no verifier learns anything other than the

fact that the statement is true.

2.4.2 Reference String Models

• The common reference string, also known as crs model, captures the setup in which

all involved parties get access to the same string. This string is often called the crs.

• The structured reference string, also is known as srs model, captures the setup in

which all involved parties get access to the same string, which has some structure and

is generated by trapdoors. This string is often called the srs. No parties must have

the knowledge of trapdoors used in constructing these structured reference strings.

• A universal structured reference string (u-srs) allows a single setup to support all cir-

cuits of some bounded size. Some u-srs constructions are updatable, meaning an open

and dynamic set of participants can contribute secret randomness to it indefinitely.

Throughout this thesis, we refer to u-srs as srs as the universality is clear from the context.

Finally, the gold standard for setups is the “no trusted setup” model in which the crs is

sampled randomly. Therefore, there is no possibility of backdoor and vastly increases the

confidence in the system.

10

2.4.3 Metrics for Comparison of Proof Systems

We describe some metrics to compare different proof systems.

• Trusted setup, and it is type: There can be three broad categories for trusted

setup. 1) No trusted setup, 2) circuit-specific trusted setup, and 3) Universal Trusted

setup.

• Prover time: The amount of time required by the prover to generate a proof. The

common proving time for circuits are O(n), O(n log n)

• Verification time: The amount of time required by the verifier to validate a proof.

The common proving time for circuits are O(1), O(log n), O(n). In standard literature,

we say that verification is fast if the at-most O(log n)

• Proof size: The size of non-interactive proof generated by the prover. The common

proof sizes for circuits are O(n), O(
√
n), O(1), O(log n)

2.5 SNARKS FOR R1CS

2.5.1 Indexed Relations

Marlin defines Snarks for indexed relations Ras a set of triples (i, x, w) where i is the

index, x is the statement instance and w is the corresponding witness. The corresponding

language L(R) is then defined by the set of pairs (i,x) for which there exists a witness w

such that ((i, x, w)) ∈ R. In standard circuit satisfaction case, the i corresponds to the

description of the circuit, x corresponds to the partial assignment of wires(also known as

public input) and w corresponds to the witness.

Indexer I is a ppt machine that is responsible for creating polynomials from the circuit

index i. Given two interactive algorithms A and B, we denote by 〈A(x), B(y)〉(z) the output

of B(y, z) when interacting with A(x, z).

2.5.2 Marlin: Preprocessing zkSNARKs with Universal SRS

Marlin considers argument systems for indexed relations with the two following features:

• Security is proved under the SRS model.

• Anyone can publicly and deterministically preprocess a given circuit in an offline phase,

in order to avoid recurring online costs for reusing the same circuit.

11

A preprocessing argument with universal SRS is a tuple of four algorithms ARG = (G, I,P,V).

A ppt G samples an SRS srs that supports circuits up to a fixed number of constraints. The

indexer I is a deterministic polynomial-time algorithm that uses srs and circuit index i

satisfying the srs constraint bound, outputs an index proving and verification key ipk, ivk.

Prover P uses ipk instead of i to provide a proof π for a indexed relation R which is then

verified by the verifier V using ivk.

12

CHAPTER 3: RELATED WORK

Zk-SNARKs(Zero-knowledge Succinct Non-Interactive arguments of knowledge) have risen

as a popular solution for fast verification of arithmetic relations. Over the past decade, sev-

eral SNARKs like Pinocchio [34], Groth’s constructions [43] [44] [45] and many others have

made the pairing based Zk-SNARKs practical. Most of these pairing approaches required

circuit-specific common reference string (srs), which requires a trusted third party to gen-

erate toxic waste (setup parameters which must be known be known to anybody). On the

other hand, approaches like bulletproofs [27], STARKs [46] [47] [48] [49] [50] [51], hyrax [28]

and ZKboo [52] [53] rely on uniform random string(urs) do not have such toxic waste but

suffer from practical performance drawbacks in verification time. As a compromise between

these approaches, a one-time universal setup [35] [26] [54] [55] [2] has emerged as a popular

alternative to achieve the efficiency of pairing-based approaches with minimal only one-time

toxic waste that is not circuit specific. We base our construction on a state of the art

universal updatable Zk-SNARK Marlin [2] and show how to adapt the Zk-SNARK proof

generation via MPC.

The idea of auditing a protocol has been around for a while. For example, auditable

protocols have been studied extensively in electronic voting applications and secret shar-

ing applications. The term public verification was introduced by Cohen and Fischer in

1985 [56]. In a popular work called Helios [57], the authors proposed the first web-based

open audit voting system. A majority of research in auditing protocols has focused on au-

diting specific applications like elections [20] [21] [22] [23], auctions [58] [59] or secret shared

dealing [20] [60] [61]. In a recent work Diogenes, by Chen et.al [24] propose a strong notion

of security with identifiable-abort along with public-auditability for an RSA modulus

The notion of public auditable MPC for general arbitrary computations was first intro-

duced by Baum et al. [25]. The authors base their work on celebrated SPDZ [62] [5] and

suggest the first theoretical auditable SPDZ protocol. However, the protocol suggested by

Baum et al. involves the auditor looking at the entire protocol transcript, and hence the

audit phase has verification time and proof size linear in the size of the computation. In a

client-server MPSaaS model, where lightweight clients want to audit the protocol execution,

a linear audition is prohibitively expensive. Constructions from LegoSnark [63] show how

to compose different “Commit and Prove”(CaP) SNARKs from different gadgets. Trinoc-

chio [33] protocol offers a multi-party based construction for Pinocchio proof generation.

Veeningen showed [1] how to make the Trinocchio protocol adaptive(computations are

chosen after the input data is committed), which closely resembles our work. The construc-

13

tion from Veeningen [1] relies on a circuit-specific setup and invoking a trusted third party

for new circuit computation, whereas our construction has no such drawback. Secondly,

Veeningen’s construction only considers a single-shot execution of MPC because of which

it faces no communication cost for MPC computation. In order to avoid the extra commu-

nication, they outsource the combination of proofs to the auditor, which makes the total

proof size proportional to the number of servers. Our construction supports reactive MPC

style computations (using outputs of previous rounds as inputs to new MPC rounds), and

our proof size does not increase with the number of MPC servers but instead incurs three

rounds of communication overhead. Third, in order to achieve input independence (parties

cannot choose their input on inputs of other parties), Veeningen’s construction introduced

a keyed-commitment scheme even when all MPC servers are corrupt. We show that it is

not possible to achieve input independence when all servers are corrupt in a reactive MPC

and therefore base our construction on a simpler commitment scheme. For single-shot MPC,

we also show how to extend our construction to achieve input independence for single-shot

MPC using a new commitment scheme. Finally, because of statement embedding the proof

checking, the auditor in Veeningen’s construction has pairing cost linear in the number of

commitments while we only incur a penalty in group operations(far cheaper than pairings)

and keep constant pairing costs.

14

CHAPTER 4: AUDITABLE MPC OVERVIEW

We first describe the primary operations of our system at a high level. We have two

main phases in our computation: The offline phase and the online phase. The offline phase

carries out the expensive part of the computation. The online phase includes interaction

between MPC servers to compute the desired user function and generation of proof of correct

execution. The auditor can collect the proofs from the bulletin board and verify that the

computation was carried out correctly. Figure 4 shows the high-level overview describing

the components in our protocol.

4.1 OFFLINE PHASE

The offline phase of auditable MPC includes the following components.

• The one-time setup creation for universal Snarks: This setup should only be carried

out once.

• Generating the MPC pre-processing elements for random shares and beaver triples: In

order to facilitate fast online multiplication of MPC servers, it is necessary to consume

offline generated beaver triple shares and random element shares. Thus, it is critical

to ensure a steady supply rate of pre-processed elements.

• Marlin Indexed circuit generated indexer prover and verification keys: This phase

should be run every time there is a request for a new computation indexing or an

update to an existing computation.

The one-time setup is the source of toxic waste in our scheme and must be carried out by a

trusted party or a collection of trusted parties [64]. Pre-processed elements are used in MPC

to speed up online computation. It is possible to have an auditable MPC proof for robust

Figure 4.1: High Level overview of of auditable MPC protocol

15

offline phase as done in [25], but we majorly focus on online phase for this work. Finally,

Marlin relies on pre-processing some circuit index in a deterministic fashion. Anyone can

pre-process an index and check whether the corresponding proving and verification keys are

correct. In practice, one can assume that proving and verification keys for standard circuits

are readily available and would not require recomputing the keys again. In chapter 6, we

will describe the details of the construction.

4.2 ONLINE PHASE

In the online phase, the clients provide the inputs and servers to engage in an MPC

protocol to compute the desired function. We divide our Online Phase into further three

parts:

• In the input phase, the input parties Ii provide commitments of their input on the

bulletin board. These commitments are later used as part of the proof to verify the

computation results. In a single-shot case, these commitments can also ensure that

input value independence across parties. First, the input parties’ secret shares their

input values to the MPC servers. The servers then use robust interpolation in the

exponent to check whether the shares are consistent with the ones provided by the

input party.

• In the Compute phase, the MPC servers carry our the MPC protocol to obtain the

secret shares of the output. After computing the output shares at each server, the

servers engage in another MPC protocol to compute the Marlin proof for that given

circuit. This computation involves servers combining the input and output(only in re-

active MPC) share commitments to create a statement commitment. Servers interact

amongst each other to produce polynomial evaluation proofs of secret shared poly-

nomials required in Marlin protocol and post a single combined proof to the bulletin

board while maintaining the soundness and zero-knowledge property of Marlin. The

single proof can either be a simple Multi-signature or a threshold signature of 2t+1

parties.

• In the audit phase, the auditor checks that the marlin proof correctly verifies. Nor-

mally in zero-knowledge proofs, a component of verification equation based on the

statement is computed locally by the verifier. Instead, in an auditable MPC scenario,

where the auditor does not have access to the statement, the proof supplies the state-

ment component of the verification equation(still not revealing anything about the

16

statement) to the auditor. The auditor checks 1) the claimed statement component is

consistent with input and output commitments of computation, and 2) that the marlin

proof verifies correctly.

17

CHAPTER 5: SECURITY DEFINITIONS AND IDEAL FUNCTIONALITIES

In this section, we will formally define our SNARK definitions along with security guaran-

tees. We first define a new scheme for committing the evaluations of a polynomial and state

the security proofs. We then define our construction for adaptive snark and finally give an

informal outline for the ideal functionality of auditable MPC.

5.1 POLYNOMIAL EVALUATION COMMITMENT(PEC) SCHEME

We now define a new polynomial evaluation commitment scheme that is required for our

application. The primary operations that we wish to support are the creation of a polynomial

commitment from commitments to evaluations and checking the evaluation proofs for that

polynomial commitment.

Our polynomial evaluation commitment scheme over a field F is defined by the following

set of algorithms PEC = (Setup,Commiteval, Interpolate,Open,Check).

• Setup(1λ, D)→ ckeval, ckpoly, rkpoly, td : On input a security parameter λ (in unary), and

a maximum degree bound D ∈ N, Setup samples and outputs some public parameters

ckeval, ckpoly, rkpoly and trapdoor td.

• Commiteval(ckeval, evals, points, ω) → ceval Given input evaluation committer key ckeval,

univariate polynomial evaluations evals = [evali]
n
i=1 at evaluation points points =

[pointi] over a field F, Commiteval outputs commitments ceval = [cevali]
n
i=1 to the evalu-

ations evals = [evali]
n
i=1. The randomness ω = [ωi]

n
i=0 is used if the commitments are

required to be hiding.

• interpolate(ckpoly, ceval)→ c: On input ckeval vector, ceval = [cevali]
n
i=1, interpolate outputs

a commitment to the interpolated polynomial corresponding the evaluations of the

committed in ceval.

• Open(ckpoly, p, q;ω)→ v, π On inputs ckpoly, uni-variate polynomial p over a field F, a

query point q consisting of tuples ∈ F , Open outputs an evaluation v and evaluation

proof π. If the commitment is hiding, the ω used must be consistent with the one used

in commiteval.

• Check(rkpoly, c, q, v, π) ∈ {0, 1}: On input rk, commitments c = [ci]
n
i=1, a query q ∈ F ,

claimed evaluations v for q and evaluation proof π, check outputs 1 if π attests that

all the claimed evaluations corresponding the committed polynomial is correct.

18

Further, we want our definitions to satisfy the following properties: For simplicity, we only

state our definitions for a single query though it can be extended to multiple queries too.

• Completeness: We say that PEC is complete if for all adversaries the following holds

Pr



deg(p) ≤ D

⇓

Check(rkpoly, c,q, v, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ckeval, ckpoly, rkpoly, td← Setup(1λ,D)

(evals, points, q, ω)← A(ckeval, ckpoly, rkpoly; z)

ceval ← Commiteval(ckeval, evals, points;ω)

c← interpolate(ckeval, ceval)

p← Lagrange interpolate(evals, points)

v ← p(q)

π ← Open(ckpoly, p, q;ω)


= 1

(5.1)

• Extractable: We say that our Snark is extractable if for every size bound D ∈ D, every

efficient adversary A1 there exists an efficient extractor E such that for every A2 the

following holds:

Pr


Check(rkpoly, c,q, v, π) = 1

⇓

deg(p) ≤ D and v = p(q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ckeval, ckpoly, rkpoly, td← Setup(1λ,D)

(Ceval, st)← A1(ckeval, ckpoly, rkpoly; z)

c← interpolate(ckeval, ceval)

p← EA1(ckeval, ckpoly, rkpoly; z)

v, π, q ← A2(ckeval, ckpoly, rkpoly)


= negl(λ)

(5.2)

• Zero knowledege: There exists a polynomial-time simulator S = (Setup, Commit, Open)

such that, for every maximum degree bound D ∈ N, and efficient adversary A = (A1),

both of the worlds are perfectly indistinguishable.

Real World

ckeval, ckpoly, rkpoly ← PEC.Setup(1λ,D)

evals, points, q;ω ← A1(ckeval, ckpoly, rkpoly)

ceval ← Commiteval(ckeval, evals, points;ω)

c← PEC.interpolate(ckeval, ceval)

π ← Open(ckpoly, p, q;ω)

Ideal World

ckeval, ckpoly, rkpoly, td← S.Setup(1λ,D)

evals, points, q;ω ← A1(ckeval, ckpoly, rkpoly)

ceval ← Commiteval(ckeval, evals, points;ω)

c← PEC.interpolate(ckeval, ceval)

π ← S.Open(ckpoly, 0poly, v, q;ω)

(5.3)

19

5.2 INDEXED RELATIONS WITH COMMITMENTS

We extend the indexed relations defined in Section 2.5.1 to the following indexed commit-

ment relations. Given indexed relation xR and ckeval = [cevali]
n
i=1 from the above described

polynomial commitment scheme, we define:

Rckeval := {(Cx, i,x, r,w)) : ∀i Cxi = PEC.Commiteval(ckevali , xi, i, ri) ∧ (x, i,w) ∈ R} (5.4)

Put simply, an adaptive zk-SNARK is a zk-SNARK for indexed relation with the constraint

that inputs must satisfy the commitments. We next define our adaptive ZK-SNARK defini-

tion:

5.2.1 Adaptive Preprocessing Arguments with Universal SRS

Let PEC(Polynomial Evaluation commitment scheme) be a scheme for committing poly-

nomial evaluations generated for a suitable degree bound d sufficient to capture the largest

index of interest. Further, let PEC.Setup(1λ, D) → ckeval, ckpoly, rkpoly, td.

We define an adaptive Preprocessing arguments with universal SRS for extractable trap-

door commitment scheme PEC and relation Rckeval is a tuple of four algorithms (G, I,P,V).

• G(N) → srs: is ppt generator which when given a size bound N ∈ N, samples an SRS

srs that supports indices of size up to N.

• Isrs(i)→ ipk, ivk: The indexer algorithm takes in a circuit index i < N outputs indexer

proving key and indexer verification key.

• P(ipk, ckeval,Cx,x, r,w) → π: The prover is a ppt which on input ipk, evalution com-

mitter keys ckeval, statement x, commitment randomness r and witness w outputs a

proof π. Note that ipk also contains ckpoly.

• V(ivk, rkpoly,Cx, π) → {0, 1} : V is a ppt which upon input index verification key ivk,

polycommit receiver key rkpoly, polynomial commitment Cx and a proof π outputs

either 0 or 1. In the subsequent definitions, we model V(ivk,Cx, π) assuming rpoly is a

part of ivk.

We next list the properties which we want our definition to satisfy:

20

• Perfect Completeness:

Pr


(Cx, i,x, r,w) /∈ Rckeval

∨

〈P(ipk, ckeval,Cx,x, r,w),V(ivk,Cx)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣

srs← G(N)

ckeval ← PEC.Setup

(Cx, i,x, r,w)← A(srs)

ipk, ivk← Isrs(i)

 = 1 (5.5)

• Extractable: We say that our Snark is extractable if for every size bound N ∈ N and

efficient adversary A = (A1,A2) there exists an efficient extractor E such that

Pr


(Cx, i,x, r,w) /∈ Rckeval

∧

〈A2(st),V(ivk,Cx)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

srs← G(1λ,N)

ckeval ← PEC.Setup

(Cx, i, st)← A1(srs; z)

(x, r,w)← EA1(srs; z)

ipk, ivk← Isrs(i)


= negl(λ) (5.6)

• Zero Knowledge: We say that our Snark is zero knowledge if there exists a simulator

S = (Setup, Prove) if for every efficient adversary A = (A1,A2) it holds that

Pr


(Cx, i,x, r,w) ∈ Rckeval

∧

〈P(ipk, ckeval,Cx,x, r,w),A2(st)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣

srs← G(N)

ckeval ← PEC.Setup

(Cx, i,x, r,w), st)← A1(srs)

ipk, ivk← Isrs(i)

 =

Pr


(Cx, i,x, r,w) ∈ Rckeval

∧

〈S.Prove(tdsrs, tdcomm,Cx, i),A2(st)〉 = 1

∣∣∣∣∣∣∣∣
srs, tdcomm, tdsrs ← S.Setup1(N)

(Cx, i,x, r,w), st)← A1(srs)

 (5.7)

5.3 SECURE FUNCTION EVALUATION FROM ADAPTIVE SNARKS

Next, we show how to securely evaluate a function for auditable MPC using the above

ZKSnark. We consider two scenarios:

21

• The first scenario lets us capture the case where all function is securely evaluated

without any of the parties learning any input.

• The second scenario lets us capture the case where the correct output is delivered even

when all the servers are corrupted.

As an extended version of this, we plan to include proof in the Universal Composable(UC)[65]

setting, but for the scope of this thesis, we only write a simple explanation.

5.3.1 Conditional Privacy: f ≤ t case

First, we show an informal description of the functionality for the private function execu-

tion that is satisfied when f ≤ t. Figure 5.1 shows the description for an ideal functionality

Ideal functionality for secure private MPC
Data-clients I1, I2, . . . , Im have input xi ∈ F respectively. Input Clients Iinp also knows the
function f which they want to compute their data upon. Adversary can corrupt upto f ≤ t
servers and any number of corrupt input parties.

• Honest Input parties send bid to the Ideal functionality

• Adversary sends inputs bid of the corrupted parties to the ideal functionality. The
adversary can modify the bids or not send the bids at all. (denoted by ⊥)

• Adversary chooses a function f and sends it to ideal functionality.

• Ideal functionality computes the function y = f(x1, . . . , xm). y = ⊥ if any xi = ⊥.

• Ideal functionality sends y to all the parties and the adversary.

Figure 5.1: Conditional private function evaluation

The adversary learns all the inputs of the corrupt parties xi, the function f and the output

of function y.

5.3.2 Unconditional Correctness

Next we show an informal description of the functionality for the unconditional correct

case. Figure 5.2 shows the description for an ideal functionality

22

Ideal functionality for Unconditionally Correct function execution
Data-clients I1, I2, . . . , Im have input xi ∈ F respectively. Input Clients Iinp also knows the
function f which they want to compute their data upon. Adversary can corrupt upto t ≤ n
(possibly all) servers and any number of corrupt input parties.

• Honest Input parties send bid to the Ideal functionality

• Adversary sends inputs bid of the corrupted parties to the ideal functionality.

• The Ideal functionality sends inputs of all honest parties to the adversary.

• Input client chooses a function f and sends it to ideal functionality.

• Ideal functionality computes the function y = f(x1, . . . , xm). y = ⊥ if any xi = ⊥.

• Ideal functionality then sends y to the adversary and gets value r. Modeling aborts

• If r = ⊥, send ⊥ to the input parties or otherwise send y to all the parties(honest
and malicious).

Figure 5.2: Unconditionally Correct function execution

The adversary learns all the inputs of the corrupt parties xi, the function f and the

output of function y. This functionality guarantees input privacy, correctness but not the

independence of inputs, fairness, and guaranteed output delivery.

23

CHAPTER 6: OUR CONSTRUCTION

6.1 CONSTRUCTIONS FOR POLYNOMIAL COMMITMENT SCHEME

We now show two constructions for PEC schemes. The first construction based on Pedersen

commitments PEC.Peddoes not require any trusted setup, while the second scheme based on

Lipmaa’s construction [32] PEC.Poly uses polynomial commitments that require a trusted

setup. On the other hand, the verification in PEC.Ped requires n exponentiation and n group

multiplications whereas PEC.Poly requires only n group operations. Our implementation uses

PEC.Ped scheme for faster prototyping.

6.1.1 Construction using Pedersen Commitments

Our polynomial evaluation commitment scheme PEC.Ped over a cyclic group G is con-

structed as follows: (Setup,Commiteval, Interpolate,Open,Check).

• Setup(1λ, D) → ckeval, ckpoly, rkpoly, td : Sample random generators g and h = gtd and

return ckeval = (g, h), ckpoly = (g, h), rkpoly = (g, h), td.

• Commiteval(ckeval, evals, points;ω) → ceval Parse ckeval = (g, h). Then the commitment

to a evaluations evals = [evali]
n
i=1 returns ceval = [gevalihri]ni=1 where ri is sampled

randomly according to randomness ω.

• interpolate(ckpoly, ceval)→ c: c = ckeval

• Open(ckpoly,p, q;ω) → v, π: Obtain the interpolated randomness ri from ω(must the

be same as the one used for Commiteval). Interpolate r polynomial with evaluations ri

and return v, π = (p(q), r(q)).

• Check(rkpoly, c, q, v, π) ∈ {0, 1}: Parse rkpoly = (g, h), c = [gevalihri]ni=1, Check

Πn
i=1[(g

evalihri)`i(q)]
?
= gvhπ (6.1)

where `i(X) denotes the Lagrange polynomial at evaluation point i (or ωi in case of

FFT).

24

6.1.2 Construction using Polynomial Commitments

Our construction for Auditable MPC on Marlin relies on creating a Polynomial commit-

ment to a polynomial from commitments off the shares of evaluations. Our key idea is that

commit to an evaluation(share) of the polynomial by committing to a Lagrange polynomial

multiplied by the share. We can later homomorphically combine the commitments to shares

to obtain a commitment to the polynomial, which we can provide polynomial evaluation

proofs. For our construction, it is beneficial to use this scheme instead of the previous one

based on Pedersen 6.1.1 commitments because 1) we are already using polynomial com-

mitments in an underlying protocol, so the setup step is already performed and 2) this

commitment scheme is compatible with polynomial commitment batching techniques that

we can use for more efficiency.

We first list some preliminaries that we use in this scheme. Let a = (a0, a1, . . . , an−1) be

a evaluation vector of length n which we wish to commit. Further, let For simplicity, we

assume n is a power of two, and let

• ω be the n-th primitive root of unity in a field Fp.

• vH(X) denote the vanishing polynomial over the multiplicative subgroup set H defined

by Πi=n−1
i=0 (X − ωi) = Xn − 1. Note that vH(ωi) = 0∀i ∈ N.

• `i(X) be Πj 6=i
X−ωj

ωi−ωj be ith Lagarange polynomial that is unique and has degree n− 1

such that `i(ω
i) = 1 and for `i(ω

j) = 0 for j 6= i.

Clearly, we can evaluate the interpolated polynomial by viewing the ai as evaluations of the

polynomials. another popular choice for independent polynomials in polycommit scheme is

1, X,X2, . . . , Xn−1.

La(X) = Σn
i=1ai`i(X) (6.2)

We define our scheme base don Lip’16 [32]’s construction with three major adaptations.

• Lip’16 schemes uses evaluations of `i(β) for a trapdoor secret β. We instead use the

standard 1, X,X2, and create a polynomial commitment using Kate style polynomial

commitments. Since our ZKsnark for Marlin uses the same CRS, it allows us to use

standard polycommit proof batching techniques for efficiency.

• Lip’16 scheme was based on PKE assumptions and hence required double the elements

in CRS and double the commitment size. Although it is possible to adapt our scheme

to use plain model under knowledge assumptions, similar to marlin, we use AGM to

obtain an efficient construction.

25

• We highlight how to construct a polynomial commitment for giving evaluation proofs

of polynomial, which is not shown in Lip’16. (Lip’16 was designed to commit and

prove snark and not as polycommit scheme, so it was not required for them to satisfy

the evaluation proof properties).

Let 〈group〉 = (G1,G2,GT , q, g, h, e) where G1,G2,GT are groups of a prime order q, g

generates G1, h generates G2, and e : G1×G2 → GT is a (non-degenerate) bilinear map. Let

PC = Setup,Trim,Commit,Open,Check be the polynomial commitment scheme as mentioned

in 2.3.2. We define PEC.Poly as follows:

• Setup(1λ,D) :: Sample Σ as follows

Σ :=

(
g gα gα

2
. . . gα

D

gγ gαγ gγα
2
. . . gγα

D

)
. (6.3)

ckpoly := (Σ, D), ckeval := ([g`i(X)]ni=1, g
vH(X)), rkpoly := (D, gγ, hα), td := (α, γ) (6.4)

• Commiteval(ckeval, evals, points;ω) → ceval: Parse ([g`i(X)]ni=1, g
vH(X)) = ckeval and parse

points as points = [ωj]ni=1 for some j. Compute the commitment to evaluations evals =

[evali]
n
i=1 as follows: return ceval = [(g`j(X))evaljgrivH(x)]ni=1 where ri is sampled randomly

according to randomness ω. Note that all the terms can be computed directly from

the ckeval.

• interpolate(ckpoly, ceval)→ c: return c = Πn
i=1ceval,i. Note that this returns a polynomial

commitment to the polynomial whose shares are committed by ceval.

• Open(ckpoly,p, q;ω)→ v, π: Same as regular polycommit open operation as described

in Sec 2.3.2

• Check(rkpoly, c, q, v, π) ∈ {0, 1}: Same as regular polynomial commitment operation as

described in Sec 2.3.2

6.2 CONSTRUCTION OF ADAPTIVE ZK-SNARK

Our construction for an adaptive Preprocessing arguments((G, I,P,V)) with universal SRS

for extractable trapdoor commitment scheme PEC and relation Rckeval is shown in 6.1. It is

possible to instatiate PEC with any of the above PEC.Ped or PEC.Poly

Next, describe how to implement the Marlin prover algorithm by using Multi-party com-

putation where the servers only know shares to witness and statement and wish to compute

26

Adaptive Zk-Snark using Marlin
Let PEC = (Setup,Commiteval, Interpolate,Open,Check) be a polynomial evaluation commit-
ment scheme. We can instantiate our scheme with any of the above constructions PEC.Ped
or PEC.Poly. Further let Gm, Im,Pm,Vm be a preprocessing argument from Marlin. Let Cx

be the commitments to the statement x with the associated randomness r. Prover knows
(i,x, r,w,Cx). Verifier only knows Cx.

• G(N)→ srs: Use the same Σ as defined in PEC.Setup and obtain ck, rk := ckpoly, rkpoly

• Isrs(i) → ipk, ivk: Our indexer would be same as the indexer in Marlin Im. Same as
in Marlin, our indexer would output commitments to polynomials indexed by R1CS
matrices A,B and C.

• P(ipk, ckeval,Cx,x, r,w)→ π:

1. Sample a random statement element xb from the domain of state-
ment elements and create a evaluation commitment to it using Cb

x ←
PEC.Commiteval(PEC.ckeval, x

b, .;ω)

2. Use augmented statement commitment C′x = (Cx,C
b

x) as the starting transcript
for Fiat Shamir and execute the marlin prover with updated statement as x||xb,
i.e execute Pm(ipk,x||xb, w) to obtain πm.

3. Let x̂(X), β1 be the interpolated polynomial used the statement poly-
nomial by the prover and prover second challenge respectively. Invoke
PEC.open(ckpoly, x̂(X), β1;ω) to get evaluation and it’s corresponding proof as

(̂x)(β1), πc.

4. return π = (πm, πc, x̂(β1),C
b

x).

• V(ivk, rkpoly,Cx, π)→ {0, 1} :

1. Parse proof π as (πm, πc, x̂(β1),C
b

x) and compute augmented statement commit-
ment as C′x = (Cx,C

b

x)

2. Invoke the marlin verifier routine bm ← V′m(ipk,, x̂(β1), π). which is same as
Vm(ipk, x, π) but 1) uses Cx as Fiat Shamir transcript and 2) directly uses the
value x̂(β1) instead of computing it from the x statement. Let bm be the returned
bit by the verifier.

3. Obtain a polynomial commitment Cxx̂ from PEC.Interpolate(C′x)

4. Invoke PEC.check(vkpoly, Cx̂, β1, x̂(β1)) to get result bit bc.

5. return 1 iff both bm = 1 bc = 1.

Figure 6.1: MPC input independent processing

27

the MPC proof. Let us first recap about the Offline operations required for our construction.

We then next suggest our protocol for auditable MPC, which uses this MPC prover.

6.3 AUDITABLE MPC: OFFLINE PHASE

6.3.1 Marlin Universal Setup

Similar to Marlin [2] and Sonic [26], we prove security under the universal SRS model

where parties have access to long structured universal reference string. Since our srs is the

same as of Marlin, our construction also follows the updatable srs property. Informally,

SRS is updatable [35] if there exists an update algorithm that can be run at any time by

anyone to update the SRS, with the guarantee that security soundness, completeness, and

zero-knowledge holds as long as there is at least one honest updater since the beginning of

time. This property has practical significance as it helps in organizing MPC ceremonies for

creating this reference strings [64] [10]. We refer the reader to Groth’s first work [35] on the

formal definitions of updatable srs and ignore the details in favor of simplicity.

Depending on the model of the adversary in ZK proof games, we need to sample different

crs. Similar to Sonic [26] and Marlin [2], we consider Algebraic Group Model(AGM) by

Fuchsbauer et al. [66] which requires a simpler CRS. Note that we could also use the plain

model to prove Marlin under knowledge assumptions, but comes at the cost of double the

proof elements. Appendix B in Marlin [2] shows how to modify the construction with a

different crs to add proof under standard knowledge assumptions in the plain model.

Universal srs construction: On input a security parameter λ, and a maximum de-

gree bound D ∈ N , PC.Setup samples public parameters committer key and receiver key.

〈group〉 = (G1,G2,GT , q, g, h, e) where G1,G2,GT are groups of a prime order q, g generates

G1, h generates G2, and e : G1 ×G2 → GT is a (non-degenerate) bilinear map.

Σ :=

(
g gα gα

2
. . . gα

D

gγ gαγ gγα
2
. . . gγα

D

)
. (6.5)

ck := (Σ, D), rk := (D, gγ, hα)

6.3.2 Generating the MPC pre-processing elements

Pre-processed elements are used in MPC to speed the online computation. Beaver triples [6]

are used for the evaluation of multiplications in an MPC setting with t-shares. Each beaver

28

triple is a triplet of t-shares JxKt, JyKt and JzKt such that z = x ∗ y. We can use these triples

to evaluate the multiplication of shares [a]t and [b]t by making use of the following equations.

M = Open(JaKt − JxKt)

N = Open (JbKt − JyKt)

JabKt = M ∗N +M ∗ JyKt +N ∗ JxKt + JzKt

(6.6)

The shares of random numbers are generated by sampling a random polynomial of degree

t and distributing the shares to all parties. We assume a robust offline phase to generate

these triples.

6.3.3 Marlin Circuit Indexing

Informally, the indexer I receives as input the index i to be pre-processed and outputs

one or more univariate polynomials over F encoding i. The uni-variate polynomials are then

committed to using a extractable polynomial commitment scheme. For our purpose, it is

essential that the indexer process for generating polynomial commitments to the indexer

polynomials, as well as the creation of index polynomials, is entirely deterministic for a

given circuit and srs. Anyone can publicly pre-process a given index (e.g., a circuit) in

an offline phase, in order to avoid incurring costs related to the index in (any number of)

subsequent online phases that check different instances. For our purpose, we assume that

the commitments to the indexed polynomials for circuits of interest are already published

onto the bulletin board. We refer the reader to section 4 of Marlin [2] for details of the

indexer algorithm.

6.4 ONLINE PHASE: CLIENT INPUT PROCESSING

Every Data Input client Ii would carry out to following protocol to submit its input xi to

the MPC servers. We describe the protocol in two modes, the first mode does not provide

input Independence, but the second mode provides input Independence. Note that in the

reactive MPC scenario, the only first mode is applicable. The steps in blue show the steps

required for operating in the second mode.

At a high level, the above simply provides the servers with shares of client inputs and the

randomness used with an additional commitment check to ensure against malicious clients.

We present two different schemes for evaluating the Comm operation in the above scheme.

The difference between the two schemes does not show up in the client input phase but in

29

Client input processing for ensuring input independence
Data-clients I1, I2, . . . , Im have input xi ∈ F respectively. Input Clients Iinp also knows the
function f which they want to compute their data upon.

1. Every Ii get inputs shares of two random pre-processed value Jr1,iK and Jr2,iK from
the MPC servers.

2. Client opens r1,i =open(Jr1,iK) and r2,i =open(Jr2,iK), samples another random value
rxi sends yi = r1,i + xi and ri = r2,i + rxi .

3. The client posts the commitment Cxi = Comm(xi, rxi) to the bulletin board.

4. In the single-shot scenario carry out the protocol listed in 2.2

5. Finally servers compute JxiK = yi − JriK, JrxiK = y′i − Jr′iK and save JxiK as the party
input share. The servers check the commitment to Cxi = Comm(JxiK, JrxiK). The
servers abort the protocol if the check fails.

Figure 6.2: MPC input processing

auditor cost, which we will describe later.

• Clients make a Pederson commitment of the form Cxi = gxihrxi and servers use protocol

mentioned in Figure 6.4 to check whether the commitment is correct

• Clients our new protocol as mentioned in section 6.1.2 to commit to the inputs. Servers

can similarly use a variant of figure 6.4 to check the commitment.

6.5 ONLINE PHASE: COMPUTING QAP AND WITNESS

It is worth noting that the MPC computation described and the SNARK circuit might

not be the same. For SSS based MPC, if the circuit is described as an arithmetic circuit, the

values for witnesses are exactly the values for the ZKSNARK. If a custom MPC protocol

is used, one has to handcraft an R1CS corresponding to that protocol to generate a proof

for it. It remains an interesting research question to create efficient SNARK circuits from

the MPC program specification. What remains is how to compute the solution of the QAP

using multi-party computation. Trinocchio [33] suggests a protocol for handling split gate

and inversion MPC gates. For simplicity, we restrict ourselves to the case where the input

is provided as an arithmetic circuit.

After receiving the Input circuit, the servers carry out the MPC protocol to evaluate it

and store the witness for proof computation.

30

6.6 ONLINE PHASE: GENERATION OF MARLIN PROOF BY MPC

We now show how to adapt the existing marlin protocol to make it adaptive and suitable

for auditable MPC application. Before we go into technical details of marlin, we first revise

some of the notations used in this section.

Notation: Informally, R1CS is a relation given by the tuple, (i, x, w) = ((A,B,C), x, w)

where i is index of the relation, x is the statement and w is the witness and z = (x,w) such

that Az ◦ Bz = Cz. Let nA, mA denote the number of variables of number of constraints

in matrix A and |A| denote the number of non-zero elements in A. All ĝ denote a low

degree extension of the function g. F denotes the field on primes, g(X) ∈ Fd[X] denotes a

polynomial of degree at most d over a field F. b denotes the bound on number of queries to

the polynomial. H, K, X denote the multiplicative subgroups of F such that |H| is minimal

size such that |H| ≥ max(nA,mA, nB,mB, nC ,mC), |K| ≥ max(|A|, |B|, |C|) and |X| ≥ |x|.
vH(X) denotes the vanishing polynomial on multiplicative group H. PC be a polycommit

scheme which is extractable and hiding with standard definitions for PC.setup, PC.commit,

PC.open, PC.createwitness, PC.verifyeval. r(X, Y) denotes the derivative polynomial over H

defined by: r(X, Y) = X|H|−Y |H|

X−Y . Let M denote the set of matrices A,B,C and rM(X, Y) =∑
κ∈H r(X, κ)M̂(κ, Y). Let Cp(X) denote a polynomial commitment of the poly p(X) which

is extractable and hiding.

In our setting, we are running n instances of marlin protocol, one at each server. Each

server computes the R1CS circuit in the marlin and calculates the share of the output. In

our application, let the MPC circuit have k number of outputs. In case of reactive MPC,

the statement x would be (x1, x2, . . . , xm, o1, o2, . . . , ok) where (x1, x2, . . . , xm, are inputs to

the MPC statement and o1, o2, . . . , ok are outputs of the MPC computation. Whereas in the

scenario of one-shot MPC, where the output is revealed, the statement x only consists of

(x1, x2, . . . , xm. All other wire values which are not input or output would be the witness.

Values in J.K denote the secret shared elements while the values in blue denote the public

values.

6.7 HIGH-LEVEL OVERVIEW OF PROOF GENERATION

In the online phase, the clients and servers engage in an MPC protocol. We are not

instantiating N MPC provers one at each server; rather, the MPC servers combined together

act as a single prover with each having individual share elements. While engaging in the

MPC protocol, clients post commitments to their inputs onto the bulletin board, whereas

all MPC servers together act of the prover and post the protocol messages to the bulletin

31

board. In each round of the marlin protocol, the servers use MPC to generate commitments

to certain polynomials from shares of evaluations of the polynomials. In the last round,

based on the challenges from the verifier, the servers again engage in an MPC protocol to

provide evaluation proofs of the polynomials at the verifier chosen challenge points. The

MPC servers post these polycommits, evaluation proofs, and another marlin interactive

proof message onto the bulletin board.

After a round MPC protocol has been executed, the auditor looks at the proof messages

from the bulletin board and verifies the proof messages and outputs True with overwhelming

probability if and only if the protocol was executed correctly. Next, show the adaptations

we had to make for each round.

6.7.1 Prover Initialize

1. MPC servers engage in protocol Figure 6.4 to create commitments to the outputs from

the shares of the output. The servers post the output commitments to the bulletin

board. The bulletin board now has commitments for all statement elements(input and

output).

2. Each servers computes a share of solution vector JziK = (JxiK, JwiK) to the QAP derived

from R1CS.

3. For achieving zero knowledge purposes of underlying Holographic proof, we addition-

ally need to have a additional degree b = 1 into the x̂ (x interpolated) polynomial. We

do this by adding an extra dummy output statement chosen by the server. Note that

x̂(X) ∈ F|I|+|O|+b[X] where |I|, |O| denote the input domain size and output domain

size of the MPC. Similar to x̂(X), the provers also construct a r̂(X) polynomial(with

a hiding bound) consisting of random masks given by the client.

6.7.2 Marlin First Round

With the prover initialized, we now engage in Marlin protocol. Instead of the statement

being the public value, in this case, our public input is a commitment to the statement

elements.

In the Marlin protocol, the prover first engages in a rowcheck protocol to attest the relation

ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X). The prover computes z := (x,w), zA := Az, zB := Bz

and zC := Cz. It computes a ŵ(X) ∈ F|w|+b[X], ẑA(X) ∈ F|H|+b[X], ẑB(X) ∈ F|H|+b[X],

ẑC(X) ∈ F|H|+b[X].

32

The prover then computes h0(X) such that

ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X) (6.7)

Sample s(X) ∈ F2|H|+b−1[X] and compute σ1 :=
∑

κ∈H s(κ). This s(X) would help us in

achieving zero knowledge.

In an MPC setting however, all servers have access to shares of JzK = (JxK, JwK) which was

previously computed in prover Initialize step. Therefore, we directly operate on shares locally

to compute shares of polynomials. Each server computes JzAK := AJzK, JzBK := BJzK and

JzCK := CJzK. It computes a Jŵ(X)K ∈ F|w|+b[X], JẑA(X)K ∈ F|H|+b[X], JẑB(X)K ∈ F|H|+b[X],

JẑC(X)K ∈ F|H|+b[X]. Recall the b is an additional degree added for zero-knowledge.

The MPC servers then computes Jh0(X)K such that

Jh0(X)K =
JẑA(X)KJẑB(X)K− JẑC(X)K

vH(X)
(6.8)

Ideally, the multiplication for JẑA(X)KJẑB(X)K would require beaver multiplication. But

we the same optimization from Marlin to force ẑC(X) to be equal to ẑA(X)ẑB(X). The

way to think about this is that all MPC servers combined together act as a single prover

with each server having individual share elements. So, all optimizations to Marlin are still

applicable to at MPC servers as a whole, but not an individual share level. Similarly, we

use another optimization in Marlin to sample Js(X)K such that Jσ1K is 0. Both of these

optimizations combined allow us to skip the above row check and σ1 round.

The servers use protocol from fig 6.5 to create the commitments Cw(X), CzA(X), CzB(X),Cs(X)

from local evaluations of the respective polynomial shares and publish it to the blockchain.

To Summarise, in the first round, the servers:

1. Create the polynomials JẑA(X)K, JẑB(X)K, Jŵ(X)K, Jŝ(X)K using the methods described

above.

2. Send the commitments Cw(X), CzA(X), CzB(X),Cs(X) to the bulletin board.

3. Verifier sends a challenge α, ηA, ηB, ηC ∈ F. In non-interactive proof, the prover com-

putes himself using random oracle using a transcript that contains the commitments

to the statement elements and the above four polynomial commitments.

33

6.7.3 Marlin Second Round

Prover computes the polynomial

q1(X) = s(X) + r(α,X)

(∑
M

ηM ẑM(X)

)
−

(∑
M

ηMrm(α,X)

)
ẑ(X)) (6.9)

Prover then divides q1(X) by vH(X) to get h1(X) and g1(X) such that

q1(X) = h1(X)vH(X) + g1(X)X (6.10)

In the marlin variant, each MPC server computes the share of the polynomial Jq1(X)K as

follows:

Jq1(X)K = Js(X)K + r(α,X)

(∑
M

ηMJẑM(X)K

)
−

(∑
M

ηMrM(α,X)

)
Jẑ(X)K (6.11)

The quantities in blue represent the public polynomials which don’t rely on any secret data.

Note that r(X, Y) = X|H|−Y |H|

X−Y is the derivative polynomial as defined earlier, α, ηA, ηB, ηC

are challenges which are public and finally rM(X, Y) =
∑

κ∈H r(X, κ)M̂(κ, Y) which is also

a public polynomial since r(X, Y), M̂(X, Y) are both public polynomials. Recall that M̂ is

a low degree extension of the R1CS matrix M where M ∈ {A,B,C} and hence public.

Finally, each server then divides Jq1(X)K by vH(X) using the divmod protocol listed in fig

6.8 to get Jh1(X)K and Jg1(X)K such that:

Jq1(X)K = Jh1(X)KvH(X) + Jg1(X)KX (6.12)

and deg(Jg1(X)KX) < deg(vH(X)). Recall that σ1 was chosen to be zero as an optimization

in the previous round. Again, as before the MPC servers compute Ch1(X), Cg1(X) using

protocol from fig 6.5 from the local shares of Jh1(X)K, Jg1(X)K
To summarize, the MPC servers in the second round.

1. Prover carries our Marlin locally to compute h1(X), g1(X) using the challenges from

previous round.

2. Use fig 6.5 to create Ch1(X), Cg1(X) from local polynomial shares.

3. Server challenge β1 is sampled from F\H based on the transcript of first transcript

plus the commitments Ch1(X), Cg1(X).

34

6.7.4 Marlin third round

Note that the third and fourth rounds do not use any secret shared input, and thus this

protocol can be thoroughly carried out in the open. All the polynomials in this round

r(X, Y), ˆM(X, Y) are all public, and hence there is no difference between the marlin pro-

tocol and the secret shared version. We state the third and fourth rounds from Marlin for

completeness. Each MPC computes the polynomial

q2(X) = r(α,X)

(∑
M

ηMM̂(X, β1)

)
(6.13)

and the sum-check result

σ2 =
∑
κ∈H

r(α, κ)

(∑
M∈A,B,C

ηMM̂(κ, β1)

)
(6.14)

Each server then divides q2(X) by vH(X) to get h2(X) and g2(X) such that

q2(X) = h2(X)vH(X) + g2(X)X + σ2/|H| (6.15)

and deg(g2(X)X) < deg(vH(X)). Such a division is similar to protocol 6.8 except that it

is carried out in the open instead of secret shared form. Servers can then use standard

PC.commit() to create commitments Ch2(X), Cg2(X) which are extractable and hiding. MPC

servers sample β2 from F\H using Fiat Shamir using transcript upto the current round.

6.7.5 Marlin fourth round

Again, as with the previous round, all the operations in this round are public and carried

out in the open. So, everything is the same as the Marlin fourth round. Sum-check for the

term: ∑
M∈{A,B,C}

ηM
vH(β2)vH(β1) ˆvalM(X)

(β2 − ˆrowM(X))(β1 − ĉolM(X))
(6.16)

σ3 =
∑
κ∈K

∑
M∈{A,B,C}

ηM
vH(β2)vH(β1) ˆvalM(κ)

(β2 − ˆrowM(κ))(β1 − ĉolM(κ))
(6.17)

Compute a(X) and b(X) deterministically from indexed ˆrow(X), ĉol(X), ˆval(X). We

ignore the exact details for now, but this is done publicly based on challenges and public

indexer values.

35

Find h3(X) and g3(X) such that

h3(X)vK(X) = a(X)− b(X)(Xg3(X) + σ3/|K|) (6.18)

. Finally, compute Ch3(X), Cg3(X) using PC.commit() since all polynomials are public. The

prover samples sends a challenge β3 sampled from F according to fiat sharmir.

6.7.6 Prover Poly Evaluation proofs

After the four rounds, the prover needs to provide proofs of evaluation of polycommits.

The prover posts a proof for all the polynomials pi(X) with commitments Cpi(X) at eval-

uation points βj using PC.createwitness(βj, Cpi(X), pi(X)). To create a proof for public

polynomials p(X), we would standard PC.open (βj, Cpi(X), pi(X)). If we want to create an

evaluation proof on a secret shared polynomial, we use a create witness protocol described

in fig 6.6.

In standard marlin protocol, the prover and the verifier both had access to the statement,

but in our scenario, the auditor does not have that access. Instead, we additionally need

to provide the value x̂(β1) proof that the value was correct. Depending on the commitment

scheme used by the clients, the proof will consist of r̂(β1) of Pederson commitment or a

PC.createwitness proof for the new scheme we mention.

6.8 AUDITOR VERIFICATION

The auditor check comprises of two main components: a) Marlin proof check and b) Input

consistency check. The first check verifies that marlin proof was correctly produced and

prover indeed knows the corresponding witness corresponding to the claimed evaluation of

x polynomial. The second check comprises checking whether the claimed evaluation for x

polynomial is consistent with the statement commitments. All the round checks are the

same as they are in marlin, which we refer the reader to the Marlin paper [2].

6.8.1 Input Consistency Check

With the above checks, the auditor has verified that the MPC system computed the

circuit correctly, however, the auditor still does not know whether the inputs used by the

MPC system was indeed the same inputs provided by the prover. That is, it needs to check

36

whether the polycommit to ˆx(X) is consistent with the input commitments from the input

parties.

There are two main ways of checking the consistency based on which commitment schemes

the client used.

• If Pedersen Commitments are used as the choice of commitment, the proof consists of

claimed evaluations xc(β1) and rc(β1). The verification then consists of interpolating

the commitments to the statement polynomials in the exponent using 6.4 to get a value

gx(β1)hr(β1). The auditor can then himself compute whether gx(β1)hr(β1)
?
= gxc(β1)hrc(β1)

• If our new commitment scheme is used, the client provides a proof that the commitment

was evaluated correctly using standard PC.open for x(X) at β1. Note that this proof

can be batched with other proofs at β1 for efficiency. The client uses PC.interpolate()

as detailed in section 6.1.2 to the commitment for verifying the proofs.

We leave evaluating the trade-offs between the commitment scheme as a part of continued

work. Our initial results, we suspect that the second scheme might be more efficient than

the first one because of support for batching proofs. When reporting evaluations, we only

consider the implementation based on Pedersen schemes.

6.9 AUDITABLE MPC USING MARLIN

Figure 6.3 shows the auditable MPC protocol using the constructions for adaptive zk-

SNARKS, marlin based MPC prover and Polynomial Evaluation commitment schemes. This

construction follows the functionalities for secure private function evaluation 5.1 and uncon-

ditional correct execution 5.2. We leave the UC proof as future work.

37

Auditable MPC using universal SRS
Data-clients I1, I2, . . . , Im have input xi ∈ F respectively. Input Clients Iinp also knows
the function f which they want to compute their data upon. Let PEC be Polynomial
Evaluation Commitment scheme as defined in section 5.1

1. Perform the Setup for the PEC scheme and universal CRS for Marlin and send the
evlaution commitment keys ckeval to clients, verifation key vkpoly to the auditor and
the crs, ckeval, ckpoly to the servers.

2. For the MPC computations, robustly pre-process the MPC random values and beaver
triples. For the snark computation, pre-process the indexes for known computations.
That is, the servers deterministically pre-processes the indexes for set of known func-
tions (Fs = f1, f2....fk).

3. Each data-client computes commitment to the inputs (Cxi) using
PEC.Commiteval(ckeval, xi)

4. The input-client then choose a function f to compute upon and submits it to the
MPC servers for desired computation.

5. Each data-client provides the input using protocol Fig 6.2 to the MPC servers. The
MPC servers obtain JxiK and for each client check whether the inputs are consistent
with the commitment Cxi posted on the bulletin board by using protocol 6.5. If the
commitments do not match, then the servers abort.

6. If the function f is already pre-processed (i.e f ∈ Fs), then send already pre-processed
indexpk to the MPC servers and indexvk to the auditor. If the circuit is not al-
ready pre-processed, then the servers run the indexer on circuit obtain corresponding
indexpk, indexvk and send them to respective parties and post the indexpk, indexvk on
bulletin board.

7. Generate a adaptive zk-SNARK proof π by using the MPC prover construction in
6.6 for the statement commitments with n inputs and k server outputs Cstmt =
([Cxi]

n
i=1, [Co]

k
i=1) using ipk obtained in the previous step.

8. The auditor audits that the function was correctly executed based on input commit-
ments Cxi from the clients, output commitments Cok from the servers, and proof π
by invoking verification routine of adaptive zk-snark as desribed in 6.1

Figure 6.3: Auditable MPC with universal SRS

38

6.10 SUBPROTOCOLS

In this section, we list the sub-protocols which we use for different operations in our

construction

Robust Interpolation in the exponent
Input: Secret shared values JxiK from each server Pi.
Output: Pederson Commitment to x of the form gxhr.
Guarantees: If t < n/3, then servers don’t learn anything from x.
For each MPC server Pi:

• Use pre-processed random shares JriK to compute share commitment CJxiK = gJxiKhJriK.

• Send commitment CJxiK to all other servers Pj

• Use robust interpolation in the exponent to compute the commitment gxhr. In more
detail, we note that all the Lagrange polynomials are fixed for the given set of n
parties. After receiving all the shares, we check easily the evaluate a candidate
interpolation result polynomial gp(x)hp

′(x) at any point we desire. We can use that to
check whether 2t+ 1 shares agree on some polynomial in the exponent. After finding
such polynomial, we evaluate it at 0 in the exponent and return gf(0)hr(0) as gxhr

Figure 6.4: Robust Interpolation in the exponent

MPC Polynomial Commitments from shares of evaluations
Input: Secret shared evaluations of a polynomial Jxi1K, . . . , JxikK from each server Pi.
Output: Hiding polynomial commitment gp(X)hr(X) to polynomial p(x) at degree at most
k − 1 which respects the evaluations x1, . . . , xk.
Guarantees: If t < n/3, then servers don’t learn anything from p(X).
For each MPC server Pi:

• Obtain a sharing of the polynomial Jp(X)K by locally interpolating at shares of eval-
uations Jxi1K, . . . , JxikK. Use pre-processed random shares Jri1K, . . . , JrikK to construct
shares of hiding polynomial Jr(X)K

• Compute CJp(X)K = PC.commit(ck, Jp(X)K , Jr(X)K) and send the commitment
CJp(X)K to all other parties.

• Use robust interpolation in the exponent to compute the commitment gp(X)hr(X).
The interpolation is carried out similarly to the method described in Figure 6.4

Figure 6.5: MPC Polynomial Commitments from shares of evaluations

39

MPC Secret shared polynomials Create Witness
Input: Secret shared polynomials: Secret shares of evaluations of a polynomial
Jxi1K, . . . , JxikK from each server Pi and a evaluation point β.
Output: Let p(X) be the interpolated polynomial interpolated from the by com-
bining the shares of the evaluations. The output consists of (π, p(β)) where π =
PC.createwitness(p(X), β).
Guarantees: If t < n/3, then servers don’t learn anything from p(X) apart from p(β)
For each MPC server Pi:

• Obtain a sharing of the polynomial Jp(X)K by locally interpolating at shares of evalu-
ations Jxi1K, . . . , JxikK. Use same hiding polynomial Jr(X)K which was used to creating
the polycommit.

• Compute Jφ(X)K = Jp(X)K−p(β)
X−β , Jφ̂(X)K = Jr(X)K−r(β)

X−β and send the commitment CJφ(X)K

= gJφ(X)KhJφ̂(X)K along with Jr(β)K to all other parties.

• Use robust interpolation in the exponent to compute the commitment gφ(X)hr(X) and
r(β). The interpolation is carried out similarly to the method described in 6.4

Figure 6.6: MPC secret shared polynomials Create witness

MPC Secret shared polynomials Evaluation
Input: Secret shared polynomials: Secret shares of evaluations of a polynomial
Jxi1K, . . . , JxikK from each server Pi and a evaluation point β.
Output: Let p(X) be the interpolated polynomial interpolated from the by combining the
shares of the evaluations. The output consists of p(β).
Guarantees: If t < n/3, then servers don’t learn anything from p(X) apart from p(β)
For each MPC server Pi:

• Obtain a sharing of the polynomial Jp(X)K by locally interpolating at shares of eval-
uations Jxi1K, . . . , JxikK.

• Evaluate Jp(β)K and send it all other parties..

• Use regular Lagrange interpolation to obtain the value p(β).

Figure 6.7: MPC secret shared polynomials evaluate

40

Divmod operations on secret shared polynomials.
Input: Secret shared polynomials: Secret shares of evaluations of a polynomial a(X) as
(Jxi1K, . . . , JxikK), and another publicly known polynomial b(X).
Output: Secret shared evaluations of resultant polynomial r(X) after the corresponding
arithmetic operation Jq(X)K, Jr(X)K = Ja(X)K/b(X) such that q(X)b(X) + r(X) = a(X)
and degree(r(X)) ¡ degree(b(X)).
Guarantees: If t < n/3, then servers don’t learn anything from a(X), b(X), r(X)
For each MPC server Pi:

• Obtain a sharing of the polynomial Ja(X)K by locally interpolating at shares of eval-
uations Jxi1K, . . . , JxikK.

• Use FFT based divmod on local shares of polynomials Ja(X)K to compute the shares
of Jq(X)K, Jr(X)K. Appendix A shows the details of the polynomial division operation
that can be our in n log n

Figure 6.8: Secret shared polynomial division with remainder by a publicly known polyno-
mial

41

CHAPTER 7: ANALYSIS AND SECURITY PROOFS

7.1 DETAILED PROTOCOL ANALYSIS

size/cost(bytes) Time Complexity
Comm |π| Prover Auditor Setup

Vee’17
G1 - 3|X| + 8 O(n) 6|X| + 12 pair. circ
G2 - - - -
Fq - - O(m+ n log n) -

This
work

G1 N(N − 1)(|X|+ 12) 13 + |X| 21 v-MSM(3m) + 7 v-MSM(N) 1 v-MSM(|X|) + 2 univ
G2 - - - 3(2*) pairings
Fq 14N(N − 1) 23 O(N +m logm) O(logm)

Table 7.1: M,N,m, n represents the maximum size of circuit, number of MPC parties, total
number of gates and number of multiplication gates respectively. Comm, π represent the
total communication cost across all MPC servers and proof size.v-MSM(m) denote variable-
base multi-scalar multiplications (MSM) each of size m. It is possible to reduce the pairings
to 2 pairings, however our implementation currently does not support it.

Next, we show a detailed analysis of our protocol in terms of the exact number of group

elements in (G1 and G2) and field elements(Fq). Note that Vee’17 does not report a detailed

breakdown of proof elements, so we use the O() asymptotic, as shown in their paper. We

note that despite our setup being universal, our proof size and auditor size are smaller than

those of Vee’17 construction.

The reason for our efficiency is because of different approaches to construction where the

Vee’17 construction incurs penalty because of having to check pairings for each statement

element. Although Vee’17 prover does not show the exact prover computation numbers, we

believe that the prover they have will be faster than ours because of access to circuit-specific

encoding in the exponent. This is to be expected as Marlin Prover [2] is about 3-4 times

slower than Groth16 [45], which is the state of the art circuit-specific snark. We believe that

if one can apply our ideas to Groth’16 SNARK, it possible to overcome these limitations. We

leave exploring that as a future work as we were interested in diverse applicability Universal

Setup.

Table 7.1 shows the detailed comparison of our work with the previous work by Veenin-

gen [1]. Adaptive Trinochio construction in Vee’17 had an auditor do pairings of the order of

statement size |X| whereas our construction only uses three pairings. Note that it is possible

to use an optimization detailed in Section 9 of Marlin [2] to reduce this cost to 2 pairings.

42

However, our implementation does not currently support this, and hence we report our cost

as three pairings instead of two.

- Message Type G1 G2 Fq
Initial Round commitments |X|(N − 1) - -
First Round commitments 4(N − 1) - -

Second
Round

commitments 4(N − 1) - -
PolyEval proofs 6(N − 1) - 6(N − 1)

evaluations - - 8(N − 1)

Table 7.2: Communication Cost breakdown per server per round. N represents the number
of MPC servers and |X| is the statement size.

Table 7.2 shows the detailed round wise communication cost analysis for each round. In

the initial round, the servers exchange the commitments to shares of statements; hence the

per-server cost is |X|. In the first round, the servers commit to the secret shared polynomials

w,mask, za, zb. The second round of communication consists of 3 separate messages sent

together: 1) Commitments to g1 and h1, 2) evaluation proofs for g1, h1, w,mask, za, zb at β1

and 3) evaluations of x and r polynomials.

7.2 SECURITY PROOFS

In this section, we will show that completeness, extraction, and zero-knowledge properties

of our adaptive zk-snarks described in section 6.1. We show the following proofs assuming

an Extractable PEC scheme.

• Perfect Completeness:

Proof : By inspection

• Extractable: We say that our Snark is extractable if for every size bound N ∈ N and

efficient adversary A = (A1,A2) there exists an efficient extractor E such that

Pr


(Cx, i,x, r,w) /∈ Rckeval

∧

〈A2(st),V(ivk,Cx)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

srs← G(1λ,N)

ckeval ← PEC.Setup

(Cx, i, st)← A1(srs; z)

(x, r,w)← EA1(srs; z)

ipk, ivk← Isrs(i)


= negl(λ) (7.1)

43

The output proof from A2 would be of the form (prfmar, v, πcomm,C
b

x). We construct our

extractor E as follows:

• Use the Commitment Extractor Ecomm to extract inputs and randomness x, r from

augment statement commitments Cx,C
b

x.

• Use the marlin extractor EMar with above extracted statement x and prfmar to get

witness w. The constructions of this extractor is described in Section 8.3 of Marlin [2]

paper.

• Use the same i as the one output by the A1 and output (x, r,w, i)

We need to show that, if A = (A1,A2) produces a verifying proof, the extractor fails only

with negligible probability and the returned values are in Rckeval .

Suppose that E fails with non-negligible probability ε, then either two extractors (Ecomm
or EMar) fail or the output (x, r,w, i) /∈ Rckeval

• If EMar fails, then we can construct an adversary that makes the extractor fail to either

break 1) the soundness of underlying Algebraic Holographic Proof(AHP) or 2) succeed

in the extractability game for the PC scheme. We defer the reader to Section 8.3 of

Marlin paper [2] for details.

• If Ecomm fails with non-negligible probability, then we can break the extraction game

for the PEC scheme.

It remains to show that the values returned by the extractor are in with high probability

in R. Recall that:

Rckeval := {(Cx, i,x, r,w)) : ∀i Cxi = PEC.Commiteval(ckevali , xi, i, ri) ∧ (x, i,w) ∈ R} (7.2)

By properties of the extractor Ecomm, we know that openings to the commitments Cx are

(x, r) and now we need to show that (x, i,w) ∈ R. Let the interpolated polynomial for all

x be x̃(X).

Note that in regular Marlin execution, the value v is computed the verifier himself based

on the statement x. We need show that with high probability that the v is exactly the same

of x̂(β1). Suppose that this were not the same, v 6= x̂(β1). i.e x̃(β1) 6= x̂(β1) which means

that x̂(X) 6= x̃(X).

From the completeness of underlying AHP Marlin protocol, we know that

ẑ(X) := ŵ(X)vH(X) + x̂(X) (7.3)

44

is true for all the values of X. Therefore, the equation can only hold true for x̃ with prob-

ability |X|/|F| for a randomly sampled challenge β1 from the verifier. |X| is the statement

length and also the degree of the polynomial x̂.

• Zero Knowledge: We say that our Snark is zero knowledge if there exists a simulator

S = (S.Setup, S.Prove) if for every efficient adversary A = (A1,A2) it holds that

Pr


(Cx, i,x, r,w) ∈ Rckeval

∧

〈P(ipk, ckeval,Cx,x, r,w),A2(st)〉 = 1

∣∣∣∣∣∣∣∣∣∣∣

srs← G(N)

ckeval ← PEC.Setup

(Cx, i,x, r,w), st)← A1(srs)

ipk, ivk← Isrs(i)

 =

Pr


(Cx, i,x, r,w) ∈ Rckeval

∧

〈S.Prove(tdsrs, tdcomm,Cx, i),A2(st)〉 = 1

∣∣∣∣∣∣∣∣
srs, tdcomm, tdsrs ← S.Setup(N)

(Cx, i,x, r,w), st)← A1(srs)

 (7.4)

We need to the simulator with access to the trapdoor can generate proofs that can indis-

tinguishable from real proofs. In other words, our simulator S is given given commitments

to the Cx and needs to construct proofs using the trapdoors from commitment scheme and

trapdoor from marlin. Our simulator works as follows:

Simulator for Adaptive ZK Construction in 6.1

• Recall that our proof consists of four elements (prfmar, v, πcomm,C
b

x). First, the sim-
ulator samples a random polynomial x̂ of deg(|Cx|) + deg(|Cb

x |). Note that all the
information simulator needs is the length of the augmented statement.

• Using the trapdoors of the PEC, open the commitments Cx to corresponding evalu-
ations of x̂′ over a pre-selected domain. Extend the polynomial by degree b to get
a resultant polynomial x̂. Create a commitment to the additional bevaluations as
(|C ′bx |).

• Run the marlin simulator with x̂ to obtain a fake proof prf ′mar and obtain the evaluation
x̂(β1).

• Interpolate the commitments Cx using PEC.interpolate to obtain a polynomial com-
mitment cp for the x̂ and provide a evaluation proof π′comm for the correct value x̂(β1).

• return the proof (prf ′mar, x̂(β1) π
′
comm, (|C ′bx |)).

Figure 7.1: Simulator construction for adaptive zk-snark

45

The figure 7.1 shows the construction for simulator satisfying the above definition for our

construction in 6.1. Next, we provide a proof about the indistinguishably for the ideal and

real world for the adversary w.r.t our simulator.

First, we note that in the underlying AHP for x polynomial, we also have introduced a

query bound b in order to ensure zero knowledge of the evaluations of x upto b queries.

Informally, since the prover sampled x̂ such that deg(x̂) = deg(x) + b queries less than the

query bound b information theoretically does not reveal any information about x.

Similar to the construction in [51], we would construct a simulator AHP′ for the under-

lying AHP with changes that the first message of the prover also includes an encoding of

statement along with the encoding of witness and encoding of its linear combinations. These

encodings are protected against up to b queries because the encodings have degree bmore

than corresponding encodings. The rest of the simulator for the subsequent rounds proceeds

similarly to what is described in Marlin [2]. At the high level, all the subsequent messages

are hidden by adding the additional s polynomial and hence do not reveal any information.

From the marlin simulator with the trapdoors to srs which uses AHP′ instead of AHP

described in marlin, we know that prf ′mar and prfmar are indistinguishable. For the last proof

element C′bx is indistinguishable from Cb

x. Similarly, using the trapdoors tdcomm for PEC, we

can simulated proofs for (π′comm, x̂(β1)) are indistinguishable from (πcomm, v).

Although, we have argued about the individual distributions of prf ′mar and prfmar are same

and distributions for (πcomm, v,, and (π′comm, x̂(β1)). Similarly, we also showed that C′bx is

indistinguishable from Cb

x. The hiding property of the PEC scheme ensures that the simulator

by using the trapdoor trapcomm can perfectly simulate the evaluation and the commitments.

Since both of these distributions are independent and can individually be simulated we argue

that the joint distribution views of prover and simulator are identical.

46

CHAPTER 8: EVALUATION

In this section, we describe our implementation and evaluation for auditable MPC pro-

tocol. We build auditable MPC as a rust application built on top of Marlin codebase [4].

Our code is available at https://github.com/sanket1729/auditable mpc as a rust application.

We strive to make our benchmarks completely reproducible by dockerizing our setup and

one-line command to generate all the graphs in this section. The reader can refer to the

README for details.

We simulate the MPC behavior by using artificial delays in communication latency of

200ms and an uplink speed of 200Mbits/per second. We use these as worst-case communi-

cation latency and uplink speed as reported in [7] Appendix C. We report our performance

numbers on a single thread machine with a modern CPU processor with 1200 MHz. We use

BLS381 curve [67] for pairing friendly and fft optimizations. For the fast computation of

Lagrange interpolations and Lagrange interpolations in the exponent, we use preprocessed

VanderMonde matrices. We use Pedersen commitment as a choice a commitment for fast

prototyping of our construction. We will be conducting more benchmarks on the other

commitment scheme as a continued work.

Unlike regular SNARKS, where the proving/auditing and proof size are majorly defined by

the number of constraints, our system, because of MPC nature, is affected by other factors

detailed below. In the subsequent subsections, we show how the prover time, auditor time,

proof size, and communication cost are affected statement size, the number of constraints,

and the number of MPC servers involved. We vary our statement size from [22, 26], our

witness size from [210, 220] and number of MPC servers from [22, 26]. Our experiment

parameter ranges cover a wide range of circuits of interest, SHA256 circuit, for example, has

statement size 1, witness size ≈ 214. Practical MPC implementations range from 3 servers

to 50 servers [7]. For the generation of random circuits, we sample random R1CS instances

with only multiplication constraints as the addition in circuits is free in R1CS.

8.1 PROVER COST

As mentioned in the previous section, each server computation consists of three main

components: 1) Computing the underlying MPC circuit, 2) calculating the witness and

output wire values at each server, and 3) computing the Marlin proof by doing another

MPC amongst the servers. When we report prover time benchmarks, we only consider the

time for the third component in the proof. As our prover works in a round-wise synchronous

47

Figure 8.1: Prover cost as a function of
number of constraints. The different lines
indicate number of MPC servers

Figure 8.2: Auditor cost as a function of
statement length. The different lines in-
dicate the number of constraints

fashion, we consider a round-time for MPC as the worst time amongst all provers in that

round. As shown in 8.1 prover cost increases almost linearly with the number of constraints.

The different lines show the prover time with different number of servers. As expected, the

prover time overhead due to the extra communication cost is marginal compared to the

Marlin prover cost, and hence all the lines are almost overlapping. The effect of statement

size on prover time is insignificant because it is overshadowed by the polynomial commitment

operations on witness elements. The reason for that prover only has made a single group

exponentiation per statement value and that the statement length is typically far less than

the number of constraints.

8.2 AUDITOR COST

The auditor computation mainly consists of two 1) Verifying the marlin proof and 2) Car-

rying out the input consistency check. The first computation involves pairings to verify that

the claimed evaluations are consistent with the commitments, while the second operation

involves interpolating a polynomial in the exponent for the input consistency check. The

auditor cost is typically less than 30 ms and hence the exact measurement is susceptible to

CPU scheduling errors and other processes running along with it. Therefore, we report the

timings as the average over 100 auditor verifications for the same proof. Recall that our

auditor is oblivious to the number of servers used in the computation; therefore, the auditor

time does not depend on the number of MPC servers used. The first component of auditor

cost stays constant with the increasing number of constraints and statement size, while the

second component of auditor time increases linearly with statement size. Figure 8.2 shows

the auditor cost as a function of statement length. As expected, with the increase state-

48

Figure 8.3: Proof size as a function of out-
put statement size. Multiple lines show
the number of constraints

Figure 8.4: Communication Cost as a
function of number of MPC servers

ment size, the auditor cost increases. We note that after statement size ≈ 64, the second

component starts dominating the first component. 1

8.3 PROOF SIZE

Our auditable MPC proof is just a Marlin proof combined with statement commitments.

Typically in SNARKS, the statement is not considered a part of proof because the verifier

is assumed to have access to it. While it is reasonable to assume that the auditor already

has client input commitments, but the output commitments are computed by the servers at

proving time. Therefore, we explicitly model output statement commitments in proof size.

In particular, the commitment to the output to servers should also be a part of the proof.

As expected, the marlin proof is constant is size while our input checking component adds a

linear overhead in statement size. As shown in 8.3, proof size is a straight line against the

output statement size.

8.4 COMMUNICATION COST

Figure 8.4 shows the additional communication overhead incurred in proving due to the

three extra communication rounds we introduced. Our first round involves broadcasting

the commitments to secret shared statement values. In contrast, the second and third

rounds involve broadcasting commitments to secret polynomials and evaluations of secret

shared polynomials. Note that our communication cost does not depend on the number

1The x-label on the graph shows statement size of 2k, it is 2k - 2 where one statement is value 1, and one
auxiliary value for hiding the commitment

49

of constraints in the circuit, so we only show the total communication cost and statement

size in Fig 8.4. As expected, our communication cost is linear per server, and the total

communication cost is quadratic in the number of servers.

50

CHAPTER 9: FINAL REMARKS

9.1 CONCLUSION

Most deployed MPC solutions do not provide unconditional correctness in the case that

all servers are corrupted. In this work, we extend the current construction of auditable MPC

to reflect the

In this work, we show the first construction of auditable robust MPC, which supports

fast verification, succinct proof size with one time universal, and updatable setup. Impor-

tantly, we provide auditability without significantly compromising the performance of the

underlying Shamir secret shared MPC protocol, i.e., adding auditability only incurs a linear

computation overhead and constant round communication overhead. We implement and

evaluate our construction report various performance metrics.

9.2 FUTURE WORK

• The current scheme for auditable MPC uses an auditor that reads the entire statement

and then grows linearly in the size of the statement. It is possible to use Zk-rollup

techniques to reduce the size of these proofs.

• A Universal Composable(UC) model the auditable MPC functionality. The current

version is compatible with UC functionality, but reasoning about the proofs would

require a formal UC model to capture the auction application.

• It would be interesting to explore whether other snarks based on constructions of snarks

based on bulletproofs, Groth’16, and others can be modeled for auditable MPC.

51

APPENDIX A: FFT POLYNOMIAL OPERATIONS

This appendix lists the FFT operations used by MPC servers for addition, subtraction,

multiplication and division. This code is are based from class notes from CS577 class

2003 [68] from Iowa state university and has been taken from this stackoverflow answer [69].

This is not our contribution, we merely state this for completeness and self-containment of

this work.

def poly_divmod(u, v):

""" Fast polynomial division ‘‘u(x)‘‘ / ‘‘v(x)‘‘ of polynomials

with degrees m and n. """

if not u or not v:

return []

m = poly_deg(u)

n = poly_deg(v)

ensure deg(v) is one less than some power of 2

by extending v -> ve , u -> ue (mult by x^nd)

nd = int (2** ceil(log(n+1, 2))) - 1 - n

ue = poly_scale(u, nd)

ve = poly_scale(v, nd)

me = m + nd

ne = n + nd

s = poly_recip(ve)

q = poly_scale(poly_mul(ue, s), -2*ne)

handle the case when m>2n

if me > 2*ne:

t = x^2n - s*v

t = poly_sub(poly_scale ([1], 2*ne), poly_mul(s, ve))

q2 , r2 = poly_divmod(poly_scale(poly_mul(ue, t), -2*ne), ve)

q = poly_add(q, q2)

remainder , r = u - v*q

r = poly_sub(u, poly_mul(v, q))

return q, r

52

REFERENCES

[1] M. Veeningen, “Pinocchio-based adaptive zk-snarks and secure/correct adaptive func-
tion evaluation,” in International Conference on Cryptology in Africa. Springer, 2017,
pp. 21–39.

[2] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, “Marlin: Prepro-
cessing zksnarks with universal and updatable srs,” Cryptology ePrint Archive, Report
2019/1047, 2019, https://eprint. iacr. org . . . , Tech. Rep., 2019.

[3] “Zexe (zero knowledge execution) rust library,” 2019. [Online]. Available: https:
//github.com/scipr-lab/zexe

[4] “Marlin: rust library for preprocessing zksnarks,” 2019. [Online]. Available:
https://github.com/scipr-lab/marlin

[5] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, “Practical
covertly secure mpc for dishonest majority–or: breaking the spdz limits,” in European
Symposium on Research in Computer Security. Springer, 2013, pp. 1–18.

[6] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in Annual In-
ternational Cryptology Conference. Springer, 1991, pp. 420–432.

[7] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. Miller, “Honeybadgermpc
and asynchromix: Practical asynchronous mpc and its application to anonymous com-
munication,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 887–903.

[8] I. Abraham, B. Pinkas, and A. Yanai, “Blinder–mpc based scalable and robust anony-
mous committed broadcast,” 2020.

[9] A. Lapets, N. Volgushev, A. Bestavros, F. Jansen, and M. Varia, “Secure mpc for
analytics as a web application,” in 2016 IEEE Cybersecurity Development (SecDev).
IEEE, 2016, pp. 73–74.

[10] Z. J. Williamson, “The aztec protocol,” URL: https://github. com/AztecProto-
col/AZTEC, 2018.

[11] A. Rajan, L. Qin, D. W. Archer, D. Boneh, T. Lepoint, and M. Varia, “Callisto: A
cryptographic approach to detecting serial perpetrators of sexual misconduct,” in Pro-
ceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies,
2018, pp. 1–4.

[12] J. Cartlidge, N. P. Smart, and Y. Talibi Alaoui, “Mpc joins the dark side,” in Proceedings
of the 2019 ACM Asia Conference on Computer and Communications Security, 2019,
pp. 148–159.

53

https://github.com/scipr-lab/zexe
https://github.com/scipr-lab/zexe
https://github.com/scipr-lab/marlin

[13] F. Massacci, C. N. Ngo, J. Nie, D. Venturi, and J. Williams, “Futuresmex: secure, dis-
tributed futures market exchange,” in 2018 IEEE Symposium on Security and Privacy
(SP). IEEE, 2018, pp. 335–353.

[14] I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen, “Asynchronous multiparty
computation: Theory and implementation,” in International workshop on public key
cryptography. Springer, 2009, pp. 160–179.

[15] M. Keller, E. Orsini, and P. Scholl, “Mascot: faster malicious arithmetic secure compu-
tation with oblivious transfer,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 830–842.

[16] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: making spdz great again,” in Annual
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2018, pp. 158–189.

[17] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure multiparty computation,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 39–56.

[18] A. Aly, M. Keller, E. Orsini, D. Rotaru, P. Scholl, N. P. Smart, and T. Wood, “Scale–
mamba v1. 3: Documentation,” Technical Report, Tech. Rep., 2019.

[19] A. Barak, M. Hirt, L. Koskas, and Y. Lindell, “An end-to-end system for large scale
p2p mpc-as-a-service and low-bandwidth mpc for weak participants,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, 2018,
pp. 695–712.

[20] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme and its application
to electronic voting,” in Annual International Cryptology Conference. Springer, 1999,
pp. 148–164.

[21] R. Küsters, T. Truderung, and A. Vogt, “Accountability: definition and relationship to
verifiability,” in Proceedings of the 17th ACM conference on Computer and communi-
cations security, 2010, pp. 526–535.

[22] K. Sako and J. Kilian, “Receipt-free mix-type voting scheme,” in International Confer-
ence on the Theory and Applications of Cryptographic Techniques. Springer, 1995, pp.
393–403.

[23] T. Moran and M. Naor, “Receipt-free universally-verifiable voting with everlasting pri-
vacy,” in Annual International Cryptology Conference. Springer, 2006, pp. 373–392.

[24] M. Chen, U. Northeastern, C. Hazay, U. Bar-Ilan, Y. Ishai, Y. Kashnikov, D. Micciancio,
T. Riviere, M. Venkitasubramaniam, and R. Wang, “Diogenes: Lightweight scalable rsa
modulus generation with a dishonest majority.”

54

[25] C. Baum, I. Damg̊ard, and C. Orlandi, “Publicly auditable secure multi-party com-
putation,” in International Conference on Security and Cryptography for Networks.
Springer, 2014, pp. 175–196.

[26] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-knowledge snarks
from linear-size universal and updatable structured reference strings,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019,
pp. 2111–2128.

[27] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bulletproofs:
Short proofs for confidential transactions and more,” in 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 2018, pp. 315–334.

[28] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish, “Doubly-efficient zksnarks
without trusted setup,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 926–943.

[29] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transparent polynomial delegation and its
applications to zero knowledge proof.”

[30] B. Bünz, B. Fisch, and A. Szepieniec, “Transparent snarks from dark compilers,” Cryp-
tology ePrint Archive, Report 2019/1229, 2019, https://eprint. iacr. org . . . , Tech. Rep.,
2019.

[31] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and B. Parno, “Hash
first, argue later: Adaptive verifiable computations on outsourced data,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 1304–1316.

[32] H. Lipmaa, “Prover-efficient commit-and-prove zero-knowledge snarks,” International
Journal of Applied Cryptography, vol. 3, no. 4, pp. 344–362, 2017.

[33] B. Schoenmakers, M. Veeningen, and N. de Vreede, “Trinocchio: privacy-preserving out-
sourcing by distributed verifiable computation,” in International Conference on Applied
Cryptography and Network Security. Springer, 2016, pp. 346–366.

[34] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical verifiable
computation,” in 2013 IEEE Symposium on Security and Privacy. IEEE, 2013, pp.
238–252.

[35] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers, “Updatable and univer-
sal common reference strings with applications to zk-snarks,” in Annual International
Cryptology Conference. Springer, 2018, pp. 698–728.

[36] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp.
612–613, 1979.

55

[37] P. Mohassel, M. Rosulek, and Y. Zhang, “Fast and secure three-party computation:
The garbled circuit approach,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 591–602.

[38] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for machine learning,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2018, pp. 35–52.

[39] Z. Beerliová-Trub́ıniová and M. Hirt, “Perfectly-secure mpc with linear communication
complexity,” in Theory of Cryptography Conference. Springer, 2008, pp. 213–230.

[40] I. Damg̊ard and J. B. Nielsen, “Scalable and unconditionally secure multiparty compu-
tation,” in Annual International Cryptology Conference. Springer, 2007, pp. 572–590.

[41] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret shar-
ing,” in Annual international cryptology conference. Springer, 1991, pp. 129–140.

[42] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments to polynomials
and their applications,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2010, pp. 177–194.

[43] J. Groth, “Short pairing-based non-interactive zero-knowledge arguments,” in Interna-
tional Conference on the Theory and Application of Cryptology and Information Secu-
rity. Springer, 2010, pp. 321–340.

[44] J. Groth and A. Sahai, “Efficient non-interactive proof systems for bilinear groups,”
in Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2008, pp. 415–432.

[45] J. Groth, “On the size of pairing-based non-interactive arguments,” in Annual interna-
tional conference on the theory and applications of cryptographic techniques. Springer,
2016, pp. 305–326.

[46] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-interactive zero
knowledge for a von neumann architecture,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 781–796.

[47] E. Ben-Sasson, A. Chiesa, A. Gabizon, and M. Virza, “Quasi-linear size zero knowledge
from linear-algebraic pcps,” in Theory of Cryptography Conference. Springer, 2016,
pp. 33–64.

[48] E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner, “Interactive oracle
proofs with constant rate and query complexity,” in 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[49] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable zero knowledge via cycles
of elliptic curves,” Algorithmica, vol. 79, no. 4, pp. 1102–1160, 2017.

56

[50] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable zero knowledge with
no trusted setup,” in Annual International Cryptology Conference. Springer, 2019, pp.
701–732.

[51] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward, “Aurora:
Transparent succinct arguments for r1cs,” in Annual international conference on the
theory and applications of cryptographic techniques. Springer, 2019, pp. 103–128.

[52] I. Giacomelli, J. Madsen, and C. Orlandi, “Zkboo: Faster zero-knowledge for boolean
circuits,” in 25th {usenix} security symposium ({usenix} security 16), 2016, pp. 1069–
1083.

[53] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger,
D. Slamanig, and G. Zaverucha, “Post-quantum zero-knowledge and signatures from
symmetric-key primitives,” in Proceedings of the 2017 acm sigsac conference on com-
puter and communications security, 2017, pp. 1825–1842.

[54] S. Setty, “Spartan: Efficient and general-purpose zksnarks without trusted setup,”
Cryptology ePrint Archive, Report 2019/550, Tech. Rep., 2019.

[55] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge,” Cryptology ePrint
Archive, Report 2019/953, Tech. Rep., 2019.

[56] J. D. Cohen and M. J. Fischer, A robust and verifiable cryptographically secure election
scheme. Yale University. Department of Computer Science, 1985.

[57] B. Adida, “Helios: Web-based open-audit voting.” in USENIX security symposium,
vol. 17, 2008, pp. 335–348.

[58] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and mechanism
design,” in Proceedings of the 1st ACM conference on Electronic commerce, 1999, pp.
129–139.

[59] K. Sako, “An auction protocol which hides bids of losers,” in International Workshop
on Public Key Cryptography. Springer, 2000, pp. 422–432.

[60] E. Fujisaki and T. Okamoto, “A practical and provably secure scheme for publicly
verifiable secret sharing and its applications,” in International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 1998, pp. 32–46.

[61] M. Stadler, “Publicly verifiable secret sharing,” in International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 1996, pp. 190–199.

[62] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from
somewhat homomorphic encryption,” in Annual Cryptology Conference. Springer,
2012, pp. 643–662.

57

[63] M. Campanelli, D. Fiore, and A. Querol, “Legosnark: modular design and composition
of succinct zero-knowledge proofs,” in Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019, pp. 2075–2092.

[64] S. Bowe, A. Gabizon, and M. D. Green, “A multi-party protocol for constructing the
public parameters of the pinocchio zk-snark,” in International Conference on Financial
Cryptography and Data Security. Springer, 2018, pp. 64–77.

[65] R. Canetti, “Universally composable security: A new paradigm for cryptographic pro-
tocols,” in Proceedings 42nd IEEE Symposium on Foundations of Computer Science.
IEEE, 2001, pp. 136–145.

[66] G. Fuchsbauer, E. Kiltz, and J. Loss, “The algebraic group model and its applications,”
in Annual International Cryptology Conference. Springer, 2018, pp. 33–62.

[67] S. Bowe, “Faster subgroup checks for bls12-381.”

[68] 2003. [Online]. Available: http://web.cs.iastate.edu/∼cs577/handouts/polydivide.pdf

[69] 2003. [Online]. Available: https://stackoverflow.com/questions/44770632/
fft-division-for-fast-polynomial-division

58

http://web.cs.iastate.edu/~cs577/handouts/polydivide.pdf
https://stackoverflow.com/questions/44770632/fft-division-for-fast-polynomial-division
https://stackoverflow.com/questions/44770632/fft-division-for-fast-polynomial-division

	CHAPTER 11emINTRODUCTION
	Our Contributions

	CHAPTER 21emPRELIMINARIES
	Multi Party Computation
	Shamir Secret Sharing

	MPC Modes of Operation
	Single-shot MPC
	Reactive MPC

	Cryptographic Commitments
	Pedersen Commitments
	Polynomial Commitments

	Zero Knowledge Proofs
	Bird's Eye View of Zero Knowledge Proofs
	Reference String Models
	Metrics for Comparison of Proof Systems

	SNARKS for R1CS
	Indexed Relations
	Marlin: Preprocessing zkSNARKs with Universal SRS

	CHAPTER 31emRELATED WORK
	CHAPTER 41emAUDITABLE MPC OVERVIEW
	Offline Phase
	Online Phase

	CHAPTER 51emSECURITY DEFINITIONS AND IDEAL FUNCTIONALITIES
	Polynomial Evaluation Commitment(PEC) Scheme
	Indexed Relations with Commitments
	Adaptive Preprocessing Arguments with Universal SRS

	Secure Function Evaluation from Adaptive SNARKS
	Conditional Privacy: case
	Unconditional Correctness

	CHAPTER 61emOUR CONSTRUCTION
	Constructions for Polynomial Commitment Scheme
	Construction using Pedersen Commitments
	Construction using Polynomial Commitments

	Construction of Adaptive Zk-SNARK
	Auditable MPC: Offline Phase
	Marlin Universal Setup
	Generating the MPC pre-processing elements
	Marlin Circuit Indexing

	Online Phase: Client Input Processing
	Online Phase: Computing QAP and Witness
	Online Phase: Generation of Marlin Proof by MPC
	High-Level Overview of Proof Generation
	Prover Initialize
	Marlin First Round
	Marlin Second Round
	Marlin third round
	Marlin fourth round
	Prover Poly Evaluation proofs

	Auditor Verification
	Input Consistency Check

	Auditable MPC using Marlin
	Subprotocols

	CHAPTER 71emANALYSIS AND SECURITY PROOFS
	Detailed Protocol Analysis
	Security Proofs

	CHAPTER 81emEVALUATION
	Prover Cost
	Auditor Cost
	Proof Size
	Communication Cost

	CHAPTER 91emFINAL REMARKS
	Conclusion
	Future work

	APPENDIX A1emFFT POLYNOMIAL OPERATIONS
	REFERENCES

