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ABSTRACT 

 

Travel safety research works include the studies of risk factor investigation, crash 

detection, and crash frequency prediction. However, the existing studies are focused on the 

macro level, paying little attention to the specific crash type.  

In this study, eXtreme Gradient Boosting (XGBoost) method is applied to predict the 

occurrence of different types of crashes. A two-layer model is proposed. The first layer is used to 

distinguish potential crashes from crash-free observations and the second layer is used for crash 

type recognition. The results show that the proposed model can detect the potential accident and 

identify the crash type successfully, with accuracy levels of over 99% and 62%, respectively. 

Besides the crash type prediction model, this study provides a detailed analysis of the impacts of 

different risk factors on different types of crashes.  

From the traffic management perspective, the results of this study can prepare traffic 

managers for the potential threatens well in advance. From travelers’ perspective, the results of 

this study can be used to warn travelers of potential dangers before the trip so that a better trip 

planning can be made as well as alert them of the potential dangers during the trip. All of these 

actions are important for the travel safety management and can help protect people’s life and 

property. 

Keywords: Crash type, Crash prediction, Machine learning 
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CHAPTER 1: INTRODUCTION 

 

Traffic accident is one of the leading causes of injuries and deaths. The number of police 

reported crashes in 2018 is estimated to be 6,734,000 in the United States, leading to 36,560 

fatalities and 2,710,000 injuries, according to the Traffic Safety Facts Research Note published 

by the National Highway Traffic Safety Administration. Enormous loss such as productivity 

reduction, medical bill, legal and court expenditure, emergency cost, insurance fee, property 

damage, congestion cost and workplace loss that are caused by traffic crashes bring huge 

burdens to individuals and the whole society (Kahn & Gotschall, 2015). 

The transportation agencies have taken many measures and have made significant 

investment to improve travel safety. For example, the Federal Highway Administration has 

released the Highway Safety Improvement Program, from which more than 2 billion dollars are 

delivered every year to improve the travel safety level. The program stresses the importance of 

using a data-driven and strategic approach to reduce the number of fatalities and severe injuries 

through infrastructure-related improvements and provides 4 directions for substantive roadway 

safety study, namely, crash frequency, crash rate, crash type and crash severity. Researchers also 

spend a significant amount of effort in helping reduce traffic accident rate. Many methods have 

been proposed for crash prediction. However, these studies mainly focus on the macro level, 

identifying whether there would be a crash or predicting the crash frequency in the study area. 

The study of different types of crashes has not drawn enough attention. While it’s important to 

forecast potential crashes or find the crash-prone area, it’s also important to clearly understand 

the distinctions between different types of crashes as well as predict them accurately so that 

corresponding countermeasures for the particular type of crash can be provided in time to save 

people’s lives and property.  

Highway Safety Improvement Program Manual provides a guidance of three steps for 

identifying potential traffic crashes. The three steps are (1) Identifying key crash types, which 

helps select the crash types that have a high frequency of occurrence or would lead to severe 

consequences (2) Determining the characteristics of facilities where the key crashes occur (3) 

Setting thresholds for defining facilities of high risks and implementing the countermeasures. 

Research about different types of crashes is carried out in this study following the 

aforementioned guidance with some modifications.  The rest of this paper is organized as 
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follows: Chapter 2 introduces some previous studies which are closely related to vehicle crash 

prediction. Chapter 3 identifies the key crash types and investigates the impacts of risk factors on 

different types of crashes using the data resources obtained from the Virginia SmarterRoads 

platform. Chapter 4 introduces the proposed machine learning model for predicting different 

types of crashes. Chapter 5 discusses the results of the proposed model and compares it with 

some other models. Chapter 6 makes a conclusion of this study and points out 5 questions to be 

investigated in the future study. 
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CHAPTER 2: LITERATURE REVIEW 

 

Researchers have investigated various methods and plentiful data resources for the 

improvement of travel safety. Some researchers explored the relationship between ambient 

factors and traffic crashes and identified the most closely related factors to help transportation 

engineers design safer roads and present safer driving conditions. Others developed models to 

forecast the potential crashes so that the travelers can have a better trip planning and 

transportation engineers can prepare in advance. As indicated by (Hossain, Abdel-Aty, Quddus, 

Muromachi, & Sadeek, 2019), a proactive traffic management system would be needed, and the 

basic requirement of it is having a reliable crash prediction model. In this chapter, a 

summarization of widely adopted methods regarding crash prediction is made from the 

perspective of statistical method, machine learning method, and deep learning method, which is 

an evolution of machine learning method. In most studies, the crash prediction problem was 

explored mainly from two aspects, crash detection and crash frequency prediction. Both of them 

are included in this chapter. 

2.1 Statistical Method 

 

Due to that fact that the crash frequencies are random, discrete and non-negative 

numbers, many researchers chose to use the Poisson model to predict crashes. The Poisson 

model can be represented as p(n) =
λnexp⁡(−λ)

n!
⁡where p(n) is the probability of having n crashes 

over the study period, λ is the expected crash frequency, X is the vector of explanatory variables 

and β is the coefficient vector. However, the Poisson model requires that the mean and variance 

to be the same (mean = λ, variance = λ), which is not realistic for the crash data. Negative 

Binomial model releases this constraint by adding an error term to calibrate the expected crash 

frequency such that λ = exp⁡(βX + ε) where exp(ε) follows Gamma distribution. It has been 

proved in many studies that this method is more appropriate than the Poisson method to model 

the vehicle crash data of which variance exceeds the mean (Hadi, Aruldhas, Chow, & 

Wattleworth, 1995; Poch & Mannering, 1996).  

Highway Safety Manual adapted the Negative Binomial model and named it as Safety 

Performance Function (SPF) approach, to provide guidance for transportation engineers to 

estimate the crash frequency. To be more specific, for the task of estimating crashes on highway 
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segments, the function is expressed as exp⁡(a + β ln(AADT) + ln(Segment⁡Lenght)). For 

intersections, the function is expressed as exp⁡(a + β1 ln(AADTmajor) + β2 ln(AADTminor)) 

where AADTmajor and AADTminor are the annual average daily traffic of major intersections and 

minor intersections, respectively. However, the safety performance function used for one specific 

site cannot be directly applied for another site since the facility conditions may be different and 

the traffic pattern in different regions are different. Crash Modification Factors (CMFs) and 

Calibration factors (C) must be applied to adjust the predicted crash frequency according to site-

specific and local conditions. The adjusted predicted crash frequency can be calculated by 

C × CMFs × Predicted⁡crash⁡frequency⁡under⁡base⁡condition. For predicting long-term 

expected crash frequency, Empirical Bayes approach is adopted. The long-term expected crash 

frequency is calculated as ω × Adjusted⁡predicted⁡crash⁡frequency + (1 − ω) ×

Observed⁡crash⁡frequency, where the weight factor ω⁡reflects the reliability of the predicting 

model.  

Although being widely adopted, the Poisson model and the Negative Binomial model 

have some deficiencies. For example, as indicated by (Chang, 2005), if the rule of the Gamma 

distribution is not satisfied, the Negative Binomial model would not be valid for crash prediction. 

Some researchers suggested using the Poisson-lognormal model, which has a more relaxed 

constraint. The error term, exp(ε), of the Poisson-lognormal model follows the Lognormal 

distribution instead of the Gamma distribution. To overcome the problems of excessive non-

crash observations, some researchers proposed using Zero-inflated Poisson and Zero-inflated 

Negative Binomial model (Lee, Stevenson, Wang, & Yau, 2002; Miaou, 1994; V. Shankar, 

Milton, & Mannering, 1997). To incorporate the spatial and temporal correlations, additional 

random effect variables were introduced in the Poisson model and the Negative Binomial model 

(Johansson, 1996; V. N. Shankar, Albin, Milton, & Mannering, 1998). Observations were 

divided into several groups according to the when or where the crash happened. The expected 

crash frequency of the road section i belonging to the group⁡j was calculated as λij =

exp⁡(βXij)exp⁡(εj). The group-specific effect of the observation group⁡j was reflected by εj and 

exp⁡(εj) followed Gamma distribution. Some researchers also suggested using the Negative 

Multinomial Regression model to address the correlation problem. (Caliendo, Guida, & Parisi, 

2007) compared the capability of Poisson, Negative Binomial and Negative Multinomial 

regression model regarding accident detection on multilane rural roads. The result of the study 
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showed that the Negative Multinomial regression model considering over-dispersion impacts had 

the best prediction performance. 

There are many other innovative statistical models proposed in the past two to three 

decades. Each of them has its distinguished contribution to the travel safety study. However, for 

various reasons such as model complexity or transferability, the applications of them are yet very 

limited. The inherent limitations of the crash data as well as the strengths and deficiencies of the 

proposed statistical models were comprehensively analyzed in the study of (Lord & Mannering, 

2010) and (Mannering & Bhat, 2014).  

2.2 Machine Learning Method 

 

Machine Learning methods have some advantages over the statistical methods. First, 

while the statistical methods predefine the underlying relationship between the explanatory 

variables and the dependent variables, which would lead to the failure of the model if the 

assumptions are violated, machine learning methods do not require inherent assumptions. 

Second, machine learning methods can handle the problem of associations between the 

explanatory variables (Chang, 2005) and are able to capture complicated relationships while it 

might be difficult to be achieved in statistical models. Third, as mentioned in the study of (Lord 

& Mannering, 2010; Mannering & Bhat, 2014), the progress of transportation related research 

would be greatly promoted by new data resources provided by the emerging technologies. New 

data resources such as video surveillance data, satellite images, social media data, mobile sensing 

data and GPS trajectory data are available for travel safety study in some districts. Statistical 

models might not be able to handle these data resources very well. Last but not least, Machine 

Learning methods are able to predict vehicle crashes over a large area and a long time period, 

which might be difficult for statistical models.  

A number of studies were conducted to unveil the potential of using machine learning 

methods to predict crashes. The most widely adopted models are Logistic Regression, K Nearest 

Neighbor, Support Vector Machine and tree-based models. (Abdel-Aty, Uddin, Pande, Abdalla, 

& Hsia, 2004) proposed a matched case-control logistic regression method to detect freeway 

crashes using real-time traffic flow data. Several non-crash observations observed by the same 

loop detector of the crash site were collected and matched with the observations when crashes 

happened. A Logistic Regression model was applied to predict the crash occurrence. (Lv, Tang, 
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& Zhao, 2009) applied K-Nearest Neighbor (KNN) method to predict highway vehicle crashes 

using real-time traffic flow data. The average Euclidean distance of different classes was 

calculated to help select the accident precursors before training the KNN classifier. Support 

Vector Machine (SVM) method, of which the decision is made by finding the hyperplane that 

has the max distance to the closet element of each class, was also examined by many researchers. 

(X. Li, Lord, Zhang, & Xie, 2008) applied the SVM model and concluded that the SVM mothod 

outperforms the Negative Binomial method in terms of predicting vehicle crash frequency on 

rural frontage roads. (S. Chen, Wang, & van Zuylen, 2009) ensembled several SVM models to 

help detect freeway traffic accidents. Different combination schemes based on bagging, boosting 

and cross-validation committee were tested in the study and the results indicated that the 

ensemble technique can improve the accuracy of a single SVM in most cases. (Dong, Huang, & 

Zheng, 2015) investigated the possibility of using the SVM method for predicting crash risk 

(frequency) of different traffic analysis zones. The spatial association of analysis zones was 

revealed by 4 different spatial dependence matrices including the matrix of adjacency, the matrix 

of shared boundary length, the matrix of geometry centroid distance, and the matrix of crash-

weighted centroid distance. The study showed that SVM with radial based kernel outperformed 

the SVM with linear kernel and the Bayesian spatial model.  However, the SVM model has some 

limitations (Yu & Abdel-Aty, 2013). First, it’s necessary to have the feature selection process 

before building the model. If all the available variables are fed into the model without the 

knowledge of which variables are informative, the model may not be able to perform the task 

well. The second limitation is that the model may have unsatisfactory performance when 

handling datasets with a large number of samples.  

While the methods mentioned above use all of the input features collectively to decide 

the final result, the tree-based machine learning method has multiple decision steps that are 

organized in a hierarchical structure. One feature is used to make a binary decision in each step, 

and the final decision is made according to the leaf node. Thanks to this nature, it can graphically 

represent the analyzing process and thus provide straightforward guidance for the engineers to 

understand the interrelation. Many researchers examined the tree-based machine learning method 

for crash prediction. For instance, (Chang & Chen, 2005) proposed using classification tree 

method to predict accident rate on freeway segments. Highway geometry characteristics, traffic 

characteristics, and environment conditions are investigated. The graphical representation of the 
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tree provided by the authors indicated that high traffic volume, high precipitation, high grade and 

large curvature would lead to a relative high crash accident rate.  

While a single tree is built on the entire dataset and may not be robust, ensemble methods 

combine many weak learners to be a single strong learner. There are two ensemble methods, 

bagging and boosting. The bagging method uses the bootstrap sampling strategy to sample 

several subsets from the entire dataset with replacement and train a decision tree on each subset. 

The final result is the majority of or the average of the decisions made by trees. Boosting method 

create new learner in sequence, each one is formed to help improve the learner built in the 

previous step. The most representative model that applied the bagging method is the Random 

Forest model. Not only the observations but also the features are sampled randomly in the 

training process of the Random Forest model. Though being more robust than a single decision 

tree, it still has some deficiencies. Since the final prediction of random forest is based on the 

majority vote or the average of all outcomes, it may not be able to capture the precise value for 

the regression problem or may vote the wrong result if the parameters are not tuned well for the 

classification problem. Many studies have found that XGB, which is an implementation of the 

boosting method being proposed by (T. Chen & Guestrin, 2016), outperforms the Random Forest 

model. For example, (Schlögl, Stütz, Laaha, & Melcher, 2019) compared the classification 

capability of regression methods, SVM, bagging (Random Forest and Extremely Randomized 

Trees) methods, boosting (XGBoost) method and Bayesian Neural Network for incident 

detection. While both bagging and boosting methods have remarkably better performance than 

the other methods, the XGBoost method was better than the Random Forest method in general. 

Researchers have also adopted the XGBoost method for many other travel safety related tasks 

such as incident detection (Parsa, Movahedi, Taghipour, Derrible, & Mohammadian, 2020), 

crash severity forecast (Mokoatle, Marivate, & Esiefarienrhe, 2019) and accident duration 

prediction (Shan, Yang, Zhang, Shi, & Kuang, 2019). In the study of (Shan et al., 2019), the 

accident duration prediction problem is solved by using an ensembled XGBoost model. Several 

XGBoost binary classifiers were built and ensembled by a neural network. The study provided a 

new idea for exploring the complex traffic accident data.  
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2.3 Neural Network Method 

 

Several studies have examined the neural network method, from shallow neural networks 

to deep neural networks. (Chang, 2005) compared a 3-layer Artificial Neural Network (ANN) 

model with the Negative Binomial model for crash frequency prediction. The overall 

performance of the ANN model was better than the Negative Binomial model for highway 

sections with one or more accidents, while the Negative Binomial model had a better 

performance for sections with zero accidents. (Xie, Lord, & Zhang, 2007) compared Bayesian 

Neural Network (BNN) and Back Propagation Neural Network (BPNN) with the Negative 

Binomial model for traffic accident frequency prediction on rural frontage roads. The authors 

found that both of the neural network models had better performance than the Negative Binomial 

model while the BNN model outperformed the BPNN by incorporating the Bayesian inference. 

However, the study of (X. Li et al., 2008) compared this model with the Support Vector Machine 

(SVM) model and found that the two models had similar performance while less time was 

needed for SVM.  

Comparing with the shallow neural networks, Convolutional Neural Network (CNN) can 

capture the spatial information and have been widely adopted in image-enabled problems. 

(Wenqi, Dongyu, & Menghua, 2017) mapped the explanatory variables into state matrices and 

fed them into a CNN model with two hidden layers in order to detect crashes on highway 

segments. The model had better performance than the BPNN model. (Huang, Wang, & Sharma, 

2020) organized real-time traffic as images and fed them into a CNN model to detect crashes on 

highway segments given a specified traffic condition. The temporal information was also added 

into the model through the last fully connected layer. (Q. Chen, Song, Yamada, & Shibasaki, 

2016) trained a deep model of Stack denoise Autoencoder (SdAE) by using traffic accident data 

and GPS data to help understand the relationship between human mobility and traffic crashes. 

The model can generate real-time citywide accident risk map when given real-time GPS data. 

CNN method also enables traffic crash detection using video data (Formosa, Quddus, Ison, 

Abdel-Aty, & Yuan, 2020). However, the vision-based method requires the backup of a large 

amount of computing resources and information storage space.  

While the CNN model can capture the spatial information, Long Short Term Memory 

(LSTM) has very good performance on capturing the periodic information and has been widely 
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adopted in many sequence learning problems. With respect to the crash prediction problem, 

(Ren, Song, Liu, Hu, & Lei, 2017) proposed an updated LSTM model to predict average crash 

frequency per hour for each predefined grid cell (1KM*1KM) in Beijing for the same time 

period of recent 3 days. The model stacked 4 LSTM layers and 3 fully connected layer together. 

Average accident frequency in previous time periods was fed into the first LSTM layer and the 

location information of the grid cell was fed into the first fully connected layer. (J. Yuan, Abdel-

Aty, Gong, & Cai, 2019) used a 2-layer LSTM model to predict whether there would be a crash 

for signalized intersections in Florida for next 5 to 10 minutes. The inputs of the model included 

individual vehicle speed data, signal timing data and vehicle-counts data aggregated in 5 minutes 

as well as weather records in the nearest time period. The model had better performance than the 

conditional logistic model. 

Researchers have tried to capture spatial patterns and temporal dependency at the same 

time by using the CNN and LSTM together. (Z. Yuan, Zhou, & Yang, 2018) represented the 

entire Iowa State by a map with 128-by-64 grids and proposed a Hetero-ConvLSTM model to 

help predict daily crash frequency in each grid cell. Input features included road network, road 

conditions, satellite image, rainfall, weather conditions, traffic volume and time information, 

each being represented by a 128-by-64-by-1 tensor. The authors addressed the spatial 

heterogeneity issue by training several ConvLSTM models and combing their results together. 

(P. Li, Abdel-Aty, & Yuan, 2020) concatenated a two-layer LSTM model and a two-layer CNN 

model in parallel.  Real-time signal timing, queuing and waiting time, traffic volume, average 

vehicle speed and weather-related variables were feed into the parallel LSTM-CNN model to 

help predict crash risk on arterials in real time. The authors also compared the t-Distributed 

Stochastic Neighbor Embedding (t-SNE) of raw data with the extracted features from the last 

layer of the LSTM-CNN model.  The crash and non-crash events were almost separable when 

being presented by the extracted features, while were tangled together when being represented by 

the raw dataset. (Bao, Liu, & Ukkusuri, 2019) joined CNN, LSTM and ConvLSTM as a 

synthesis model to help predict the sum of the severity level of all potential crashes in each 

predefined grid cell in New York. Variables that are spatially varied but temporally static were 

fed into the CNN model, variables that were temporally varied but spatially static were fed into 

the LSTM model, variables that were both spatially and temporally varied were fed into the 
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ConvLSTM model. The output of the three sub-models were combined together as one dense 

vector and then transformed into the final output through several fully connected layers.  

2.4 Summary 

 

While the great contribution of the surveyed models to accident prevention cannot be 

ignored, it is worth noting that predicting different type of crashes so that specific 

countermeasure can be made is also important. However, limited research has been conducted 

for this purpose.  

Among all the existing studies related to the crash type prediction, most of them aimed at 

predicting a specific type of crash under a particular condition. For example, (Pande & Abdel-

Aty, 2006) identified the traffic flow regime of which rear end crash prone to happen by using 

methods including Kohonen Clustering Algorithm, Classification Tree, Multilayer Perceptron, 

and Normalized Radial Basis Function neural networks. (Abdel-Aty & Haleem, 2011) proposed 

using a Multivariate Adaptive Regression Splines model to predict vehicle angel crashes for 

unsignalized intersections. Random Forest model was applied to help screen the covariates. 

There are also works exploring the method of predicting multiple crash types though the number 

is extremely limited. For instance, in the study of (Christoforou, Cohen, & Karlaftis, 2011) 

freeway crashes were classified by the number of vehicles involved and the crash type. A 

binomial probit was built for each dependent variable separately and a multivariate probit model 

was applied jointly to estimate the probability of having each type of crash. Although the study 

had the merit of using multivariate probit model, of which dependent variables can be correlated, 

it had an important disadvantage, having many unknown coefficients to be estimated.  Although 

the structure of the synthetic model was simple, estimating the coefficients could be burdensome. 

For different regions, different coefficients would be needed since the traffic pattern varies from 

region to region. Thus, it might be inconvenient for some agencies to put this method into use.  

Also, it is worth noticing that most of the models mentioned in this chapter used traffic 

flow data as the primary input. While it must be admitted that real time traffic flow can reflect 

the true traffic condition, there are several deficiencies when applying it for crash prediction. The 

first and most important one is that real time traffic surveillance system is not as prevalent as 

expected. Realistically, there are many roads where traffic flow data are not available. The 

second one is that real time traffic flow data are not always accurately reported and sometimes 
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not be reported, which would lead to an inaccurate result. The problem of sensor malfunction has 

been a trouble for a long time and has not been completely solved. In this sense, real time traffic 

flow data may not be a reliable resource for crash prediction. The third one is that traffic 

managers may not be able to capture the risk instantly and may not have enough time to prepare 

countermeasures if the real time traffic flow data are the main inputs of the crash prediction 

model.  

Based on the above analysis, it can be concluded that a crash type prediction model that 

can be conveniently implemented and be widely applied in any target region and during any time 

interval of interest is worthy of exploration. 
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CHAPTER 3: DATA ANALYSIS 

 

The datasets used for this study are from the Virginia SmarterRoads platform. Three 

shapefiles are included, (1) Crashes shapefile, which records motor vehicle crashes that involve a 

fatality, injury, or property damage of over $1500. Figure 1 shows the percentage of crashes in 

each district of Virginia from 2010 to 2016. It is obvious that North Virginia, Richmond and 

Hampton Roads districts have much more crashes than the other districts. (2) Average Daily 

Traffic shapefile, which lists average daily traffic volume of roadway segments. The ADT 

information is visualized in Figure 2. (3) Speed Limits shapefile, which lists the truck speed 

limits and the car speed limit of each road segment. The speed limit information is visualized in 

Figure 3.  

 

Figure 1: Crash rates 

 

Figure 2: ADT 
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Figure 3: Speed limit 

 

3.1 Crash Type Statistics 

 

Virginia Department of Transportation (VDOT) keeps records of 16 types of crashes. 

Rear end crash is one of the most frequent traffic accidents and it accounts for more than 1/3 of 

all the crashes. Angle crash and Fixed object (off road) crash follow closely, each accounting for 

about 20% of all the crashes. The other types of crashes account for a relatively small 

percentage, less than 10%, of all the crashes. Severity levels are categorized into 5 classes, 

namely fatal crash, injury crash, pedestrian fatal crash, pedestrian injury crash and property 

damage crash. Crashes that involve pedestrians account for a small percentage of all the crashes 

and are not in the scope of this study. Figure 4 shows the percentage of different types of crashes 

that caused fatal crash, injury crash and property damage crash.  

Among all causes that lead to fatal crashes, fixed object crash shows the highest 

percentage, accounting for half of the fatal crashes. Angle crashes account for the second largest 

proportion. As for injury crashes, rear end crashes, angle crashes and fixed object crashes 

account for a similar proportion while rear end crashes account for a slightly higher proportion. 

For property damage crashes, the proportion of rear end crashes is the highest, followed by angle 

crashes and fixed object crashes. 
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Figure 4: Crash statistics by severity level 

 

It can be concluded that rear end crash, angle crash and fixed object crash are the three 

major types of crashes. So, this study mainly focuses on these three types of crashes. Figure 5 

shows the proportion of different types of crashes in each district. It is worth noting that different 

districts have different crash patterns. For example, in Northern Virginia, Richmond and 

Hampton Roads districts, the most frequently happened accidents are rear end crashes. Angle 

crash ranks the second. In Staunton, Culpeper and Salem, fixed object crash is the most common 

type of crashes. In Fredericksburg, the most frequently happened accidents are rear end crashes, 

followed by fixed object crashes and angle crashes. In Lynchburg and Bristol, the most 

frequently happened crashes are fixed object crashes, while rear end crashes and angle crashes 

share the same proportion. 

 

Figure 5: Statistics of major crashes by district 
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3.2 Risk Factor Analysis 

Analyzing crash records is the first step as well as the major method of understanding the 

characteristics of different types of crashes and evaluating travel safety for the future. While the 

real time traffic flow, video records and other real time traffic surveillance data may not be 

available for all the roads, information including time and date, light condition, location, posted 

speed limit, and road condition are always available in the traffic crash reports. In this section, a 

risk factor analysis for these 6 factors is performed to provide an insight of interpreting various 

types of crashes. 

3.2.1 Hour Index 

Figure 6 illustrates crash counts in different time periods. It is not surprising that the crash 

counts follow the same pattern as the traffic flow in a typical workday, having two peaks. More 

vehicles on roads would increase the possibility of having crashes. It can be observed that from 

00:00 to 06:00, fixed object crash takes the highest proportion among all crashes. As it gets closer 

and closer to regular working time, rear end crash becomes the major type of crashes. As time pass 

by, there are more and more angle crashes. From 21:00 to 24:00, the major type of crashes becomes 

fixed object crash again. 

 

 

Figure 6: Crash statistics by hour 
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3.2.2 Light Condition 

Light condition would affect drivers’ visibility and driving behaviors. For example, when 

driving at night without a sufficient amount of light, drivers could not see the surrounding 

objects clearly, and thus it would take more time to react to the roadside objects. Meanwhile, 

driving in darkness can be tiring and challenging due to the problem of poor visibility. However, 

when driving during daylight time, some drivers would be overconfident and thus have a low 

level of alertness, which may lead to a high risk of getting involved in accidents. Figure 7 

presents the statistics of light conditions when different types of traffic crash happened. 

During dawn time, while the proportion of rear end crashes is the highest among all types 

of crashes, fixed object crashes also account for a big proportion. A possible reason might be that 

drivers are in a hurry to work and drive fast. They focus on the traffic ahead without paying 

attention to the nearby obstacles. During the daylight period, the most common type of accidents 

is rear end crash. During the time periods when the light condition is good, such as dusk and road 

lighted time, while rear end is still the most common type of accidents, angle crashes also 

account for a large proportion. In darkness without road lights, the fixed object crash is the most 

common type of accidents. This may be caused by the limited range of vision in darkness and 

drivers’ inattention. Drivers may feel tired or even sleepy when driving at night, paying less 

attention to roadside objects. The lack of stimulations from light and color and the low visibility 

in darkness make the situation worse. To reduce such accidents, keeping a good light condition, 

having strict sanctions against fatigue and inattentive driving, and having a vehicle-based night 

vision system are necessary. 

 

Figure 7: Crash statistics by light condition 
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3.2.3 Roadway Type 

Different roadways are designed based on different design specifications under different 

budgets to serve for different transportation purposes, so their service levels are different. Figure 

8 shows the statistics of different types of accidents that happened on different roadways. 

It can be observed that on frontage roads and urban roads, angle crashes are the most 

frequently occurred accidents. The possible reason for this might be that comparing with the 

other types of roads, there are more turns, intersections and signal lights on these roads. 

Meanwhile, these roads are more crowded, having more vehicles within limited spaces. So, the 

probability of having angle crashes on these roads is higher than on the other roads. To reduce 

such traffic accidents, having a large buffer area around corners so that drivers have a good view 

and enough time to respond to other vehicles is important. On interstate highways, state routes 

and U.S. routes, rear end crashes are the most frequently occurred accidents. The possible reason 

for this could be that drivers are more likely to drive fast on these roads. Meanwhile, drivers 

have to drive longer time to reach the exist if they are driving on these roads. So, there is a great 

possibility of feeling tired and being distracted. To reduce such traffic accidents, having strict 

sanctions against overspeed, distractions and drunk driving as well as having more rest stations 

are important. On secondary routes, chances of having rear end crashes, fixed object crashes, 

angle crashes and other types of crashes are close. 

 

 

Figure 8: Crash statistics by roadway type 
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3.2.4 Car Speed Limit 

It has been proved by many researchers that driving speed is closely related with traffic 

accidents. Driving with high speed may lead to hydroplaning and vehicle being out of control. It 

also takes more time for drivers to react to the nearby vehicles and objects. However, driving 

with a low speed on roads where drivers are expected to drive with a relative high speed may 

also cause troubles to the traffic flow. Ideally, the actual driving speed of the accident vehicles 

and the average speed of the other vehicles around the accident zones should also be analyzed. 

However, only car speed limits and truck speed limits are provided in the dataset. Car speed 

limits are used for crash analysis here. Figure 9 shows the statistics of crashes by speed limits. It 

can be observed that when driving on roads of a relative low speed limit, drivers should take 

extra care of angle collisions. When driving on roads of a moderate speed limit, drivers should 

take extra care of rear end collisions. When driving on roads of a high speed limit, drivers should 

be more careful about fixed object collisions. 

 

Figure 9: Crash statistics by speed limit 

3.2.5 Weather Condition 

There have been many studies about the impacts of weather conditions on traffic crashes. 

However, the investigation of the association between weather conditions and crash types is 

insufficient. Figure 10 shows the statistics of different types of crashes by weather condition.  

It can be observed that in clear or cloudy days, the most frequent crashes are rear end 

crashes. Avoiding driving overspeed is still the top priority task.  In days with fog or blowing 

particles, drivers are struggling to watch the traffic ahead, paying less attention to the obstacles 
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nearby, so fixed object crashes happen most frequently. Transportation managers may need to 

restrict the use of roads during the time of such conditions. In mist and rainy days, both rear end 

and fixed object crashes are prone to happen. In snowy and sleet days, fixed object crashes 

happen most frequently. A road de-icing system would be crucial to reduce this type of accident. 

It is also worth noting that most crashes happen when the weather is clear or cloudy. It is 

surprising but reasonable since people would be less cautious when the weather is good. So, 

restricting the speed, eliminating distractions, and reminding the drivers to be concentrated 

would be important.  

 

Figure 10: Crash statistics by weather condition 

 

3.2.6 Surface Condition 

While weather condition affects driving safety through having impacts on drivers’ sight, 

road surface condition would have a direct impact on the friction between road and tire. When 

the road surface is dry, more attention should be given to preventing rear end crashes. On wet 

surfaces, preventions of all types of crashes are all important. When the road surface is icy, de-

icing materials should be placed in time. Mud, oil, water and some other liquid materials would 
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also make it difficult to control the direction and stop a car. Pavement cleaning would be 

essential to prevent fixed object crashes caused by these factors. Statistics of accident type by 

road condition are summarized in Figure 11. 

 

Figure 11: Crash statistics by road condition 
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CHAPTER 4: CRASH PREDICTION MODEL 

4.1 Model Design 

A two-layer model is proposed for predicting different types of crashes. The first layer is 

an XGBoost binary classifier, which is used for distinguishing potential crashes from crash-free 

observations. The second layer is an XGBoost multiclass classifier and is used for crash type 

recognition. If the feedback of first layer alarms that there would be a crash, the second layer 

would be triggered and tell what type of crash is most likely to happen. Sub-models used for the 

two layers are trained separately and stacked together to be an integrated model. The architecture 

of the model is shown in Figure 12. 

4.2 Data Processing 

In addition to the six risk factors that are analyzed in the previous chapter, the dataset of 

Average Daily Traffic (ADT) is also used to provide the traffic condition information for crash 

type prediction. The crash records are obtained from the Virginia SmarterRoads platform while 

the non-crash data records are generated artificially following two rules. The first rule is that the 

artificial data should follow the distribution as close to the real distribution as possible. The 

second rule is that the model should be simple and general. The non-crash records are created by 

the following steps.  

First, the distribution of crash records in each hour is calculated. It is an array of 1-by-24, 

being obtained by dividing the number of crash records in a certain hour by the total number of 

crashes.  Then, the relative non-crash records distribution is obtained by making “unit 1” minus 

the crash frequency in each time period. Again, an array of 1-by-24 dimension is attained, under 

the assumption that for each time period, the total probability of having a crash record and 

having a non-crash record is “unit 1”. Then, the hourly distribution of non-crash records is 

acquired by dividing each cell of the relative non-crash records distribution array by the sum of 

all the cells. Finally, an hour index is assigned to each record according to the hourly distribution 

of non-crash records. To assign the light condition, a cross table is made from crash data in order 

to find out the relationship between light condition and time (hour index). Then the light 

condition is assigned to each record according to its hour index and the corresponding light 

condition distribution. A route type ID is assigned to each record according to the distribution of 

non-crash records by each type of routes, using the same method for assigning the hour index. 
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Speed limit attribute was assigned according to the route type. A weather condition index is 

assigned to each record randomly since all kinds of weather condition would be encountered 

when applying the model for real world. The surface condition is assigned to each record 

according to the corresponding weather condition. 

 The crash records and non-records are concatenated together and shuffled randomly 

before being split as the training dataset and testing dataset. As a decision tree based algorithm, 

XGBoost can handle the correlation issue of input variables. It is safe to include all the available 

variables into the model and let the model figure out which variable are more important. Input 

variables are listed in Table 1. All the variables are label encoded before being fed into the 

model. 

 

Figure 12: Model structure 

Table 1: Input Variables 

Variables Type Details 

Hour Numerical 24 hours in a day 

Light 

Condition 

Categorical 

(Norminal) 

(1) Daylight (2) Dusk (3) Dawn (4) Darkness - Road Not L

ighted (5) Darkness - Road Lighted  

(6) Darkness - Unknown Road Lighting 

Route Type 
Categorical 

(Norminal) 

(1) Secondary Route (2) U.S. Route (3) State Route (4) 

Interstate (5) Frontage Route (6) Urban Route 

Speed Limit Numerical Speed limit of the road segment 

ADT Numerical ADT of the road segment 

Weather 
Categorical 

(Norminal) 

(1) Rain (2) Fog (3) Snow (4) Sleet/Hail (5) Mist (6) 

Smoke/Dust (7) Severe Crosswinds (8) Blowing Sand Soil 

Dirt, or Snow (9) No Adverse Condition (Clear/Cloudy) 

Road 

Surface 

Condition 

Categorical 

(Norminal) 

(1) Dry (2) Wet (3) Snowy (4) Icy (5) Muddy (6) Oil/Other 

Fluids (7) Water (Standing, Moving) (8) Slush (9) Sand, 

Dirt, Gravel 
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4.3 Extreme gradient boosting - XGBoost 

Given a dataset of n samples with m features, the goal of the XGBoost model is to predict 

the dependent variable 𝑦 by summing up the values obtained from K decision trees. The final 

predicted value of the sample 𝑥𝑖 can be formulated as 

 

𝑦̂𝑖 = 𝜙(𝑥𝑖) = ∑𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

, 𝑓𝑘𝜖⁡𝐹 (1) 

Where 𝑓𝑘 represents a decision tree and 𝐹 = {𝑓(𝑥) = 𝑤𝑞(𝑥)}(𝑞:⁡ℝ
𝑚 → 𝑇,𝑤 ∈ ℝ𝑇) represents the 

space made up of decision trees. 𝑇 is the total number of leaves in one tree. The structure of each 

tree is represented by 𝑞, and the weights of leaves are represented by 𝑤. The final prediction is 

obtained by summing up the values obtained from the leaf where the sample locates in each tree. 

The overall objective is to minimize Equation (2). 

 ℒ(𝜙) =∑𝑙(𝑦̂𝑖
𝑡 , 𝑦𝑖) +∑Ω(𝑓𝑘)

𝑘𝑖

 (2) 

Where 𝑙(𝑦̂𝑖
𝑡 , 𝑦𝑖) measures the difference between the predicted value and the ground truth, and Ω 

constrains the model complexity so that the overfitting problem can be avoided. The constraint 

term consists of two parts, the number of leaves and the weight of each leaf: 

 
Ω(𝑓) = 𝛾𝑇 +

1

2
𝜆‖𝑤‖2 (3) 

In XGBoost, trees are built in sequence and each tree is built to help overcome the defects 

existed in the previous trees. The value of the 𝑖𝑡ℎ  sample obtained at the 𝑡𝑡ℎ iteration is calculated 

as  𝑦̂𝑖
𝑡 =⁡ 𝑦̂𝑖

𝑡−1 + 𝑓𝑡(𝑥𝑖). To optimize the objective function, the second-order approximation is 

used. The objective function represented in Equation (2) is reformulated as  

 
ℒ (𝑡) =∑[𝑙(𝑦𝑖 ,

𝑛

𝑖=1

𝑦̂𝑖
𝑡−1) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡) (4) 

Where 𝑔𝑖 = ⁡𝜕𝑦̂(𝑡−1)𝑙(𝑦𝑖 , 𝑦̂
(𝑡−1)) and ℎ𝑖 = 𝜕

𝑦̂(𝑡−1)
2 𝑙(𝑦𝑖 , 𝑦̂

(𝑡−1)). The constant term 𝑙(𝑦𝑖 , 𝑦̂𝑖
𝑡−1) can 

be removed in the optimization process. By solving the above equations, the optimal weight 𝑤∗ 

of leaf 𝑗 for a fixed tree structure 𝑞(𝑥) is obtained: 

 
𝑤𝑗

∗ = −
∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

 
(5) 

The optimal value of Equation (4) is then achieved with the constant omitted: 
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ℒ̃ (𝑡)(𝑞) = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

𝑇

𝑖=1

+ 𝛾𝑇 

(6) 

Equation (6) is used for evaluating a specified tree structure 𝑞. Since enumerating all the possible 

tree structure is not feasible, a greedy algorithm is used for the branch splitting process. Starting 

from a single leaf, branches are added in the tree iteratively according to the loss reduction given 

in Equation (7). A large loss reduction indicates that splitting the node is beneficial.  

 
ℒ𝑠𝑝𝑙𝑖𝑡 =

1

2
[
(∑ 𝑔𝑖𝑖∈𝐼𝐿 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝐿

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑅

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼
] (7) 

Where 𝐼𝐿 and 𝐼𝑅  are the instances of the left node and the right node if choose to branch, while 𝐼 

represents the node before splitting and 𝐼 = 𝐼𝐿𝑈𝐼𝑅 . 

The above equations describe the key process of the XGBoost model. There are some 

other algorithms and techniques that have been adopted in XGBoost to help prevent over-fitting, 

reduce the computation cost as well as improve the predicting capability (T. Chen & Guestrin, 

2016).  The model can be used for both regression and classification tasks and has been widely 

used to solve real-world problems. 

4.4 Experiment Design 

4.4.1 Crash Detection 

 

For the binary classification problem, the following evaluation metrics are used: 

(a) Accuracy, which reflects the percentage of correctly identified samples, either truly 

positive or truly negative.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (8) 

𝑡𝑝 is the number of samples that are classified as positive and are real positive. 

𝑡𝑛 is the number of samples that are classified as negative and are real negative. 

𝑓𝑝 is the number of samples that are classified as positive but are real negative. 

𝑓𝑛 is the number of samples that are classified as negative and are real positive. 

(b) Recall, which is also called True Positive Rate or Sensitivity, reflects the percentage of 

samples that are classified as positive correctly out of all true positive samples. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (9) 

(c) Precision, which is the percentage of samples that are correctly identified as positive out  

of all samples that are identified as positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (10) 

(d) F1-score, which is defined as the harmonic mean of the precision and recall 

𝐹 − 1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

Grid-search technique is applied to find the best hyperparameters combination. For each 

combination, 3-fold cross validation is implemented and the average score of each evaluation 

criterion are documented. The hyperparameters tested and the combination that has the best 

overall performance are listed in Table 2. Evaluation scores of different combinations when 

using the learning rate 0.05 are visualized in Figure 13. 

 

Table 2:  Crash detection model hyperparameter tuning 

Hyperparameter Range Best Choice 

Learning rate 0.001,0.005,0.01,0.05,0.1 0.05 

Max depth 3,4,5,6,7,8 8 

Number of estimators 5,10,15,20,50,100 100 
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Figure 13: Crash detection model evaluation 

 

4.4.2 Crash Type Identification 

For the multi-class classification problem, the following evaluation metrics are used: 

(a) Average accuracy of classifying each class  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑀 =
∑

𝑡𝑝𝑖 + 𝑡𝑛𝑖
𝑡𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

3
𝑖=1

3
 

(12) 

(b) Macro recall, being used to define the capability of the classifier to identify each class  

 



27 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑀 =
∑

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑛𝑖

3
𝑖=1

3
 

(13) 

(c) Macro precision, being used to characterize the average effectiveness of each class 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 =
∑

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑝𝑖

3
𝑖=1

3
 

(14) 

(d) Macro F1-score, the harmonic mean of the macro precision and the macro recall 

𝐹 − 1𝑀 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑀
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑀

 (15) 

Grid-search and cross-validation techniques are applied again to find the best 

hyperparameters combination. Since the multi-class classification task is more difficult than the 

binary classification task, a more complex model would be needed. The hyperparameters tested 

and the best combination found are listed in Table 3. The model would achieve the best 

performance using 150 estimators with the max depth as 10, having the learning rate as 0.1. 

Evaluation scores of different combinations when learning rate is 0.1 are visualized in Figure 14. 

 

Table 3: Crash type identification model hyperparameter tuning 

Hyperparameter Range Best Choice 

Learning rate 0.01,0.05,0.1 0.1 

Max depth 3,5,8,10,15,20,25 10 

Number of estimators 10,15,20,50,100,150 150 
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Figure 14: Crash type identification model evaluation 
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CHAPTER 5: DISCUSSION 

5.1 Feature Importance 

 

To better understand the associations between risk factors and traffic crashes, the relative 

feature importance of the model according to the Gini metric is calculated and shown in Figure 

15 and Figure 16.  

 

Figure 15: Relative feature importance of the crash detection model 

 

Figure 16: Relative feature importance of the crash type identification model 

 

It can be observed that for the crash detection task, weather has the most, followed by the 

ADT. The other factors make a relatively small contribution. For the crash type identification 

task, route type plays an important role while the other features also provide much useful 

information. While it’s important to find the relative contribution of each feature, it’s also 

important to remember that the accidents are the consequences of interactions between various 

factors. For example, the study of (Golob & Recker, 2003) showed that rear end crashes are 

more likely to happen on dry roads during daylight time while fixed object crashes are more 

likely to happen on wet roads. Thus, when preparing countermeasures for different types of 

crashes, the combination of factors should be considered.  
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5.2 Model Comparison  

 

Logistic Regression model and Random Forest model are compared with the XGBoost 

model. For the crash detection layer, all the three methods achieve good performance, correctly 

classifying almost all the crash and crash-free samples. For the crash type identification layer, the 

performance varies from model to model. The performance measurements of the three models 

are listed in Table 4.  XGBoost model achieves the best performance, followed by the Random 

Forest model. Logistic Regression is inferior to both of the tree-based models, which indicates 

that the simple model cannot capture the complex associations between non-behavior risk factors 

and automobile crashes. Although the average accuracy of the XGBoost model and Random 

Forest model are very close to each other, and both models have room for improvement, it is 

worth noticing that the XGBoost model can sense the difference between different classes more 

accurately than the Random Forest model. The confusion matrices of the three models are shown 

in Figure 17. 

 

Table 4: Model performance comparison 

 Measurement Metrices 

 AccuracyM RecallM PrecisionM F − 1M 

Logistic Regression 0.54 0.48 0.51 0.45 

Random Forest 0.61 0.56 0.58 0.55 

XGBoost 0.62 0.57 0.59 0.57 

 

   

(a) Logistic Regression        (b) Random Forest                 (c) XGBoost  

Figure 17: Confusion matrix of the crash type identification layer 
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Besides the machine learning models, deep learning method has also been tested for this 

study, including a simple ANN model as well as the Convolutional-LSTM model proposed by 

(Shi et al., 2015) and applied by (Z. Yuan et al., 2018) for crash frequency prediction. For the 

ANN model, the inputs are the same as the inputs of the machine learning model listed in Table 

1. For the Convolutional-LSTM model, a spatial grid is created for the study area, each one 

representing a space of one square mile. The input variables are aggregated into each grid cell. 

The model has the same structure as the model proposed by (Z. Yuan et al., 2018). However, 

both of the models do not have satisfactory performance. The reasons for the poor performance 

are analyzed as follows. 

For the ANN model, it generates similar performance as the XGBoost model, with the 

cost of spending much longer time finding the best model structure and the corresponding 

parameters. Therefore, the shallow neural network may not be a good choice for the task 

performed in this study. For the Convolutional-LSTM model, the model performance is much 

worse than the XGBoost model. The major limitation comes from insufficient data resources. 

Without sufficient spatial information, the convolutional part of the model couldn’t capture the 

change in space even though it has the fantastic capability and has been proved to be powerful in 

many areas. Instead, a lot of information would be lost during the aggregation process. For 

example, using the average ADT in the grid cell instead of the ADT of each road segment as the 

input would make the prediction more difficult for the model. Meanwhile, the lack of temporal 

information makes the LSTM part of the model ineffectual. Detailed information such as 

visibility and precipitation per hour, real-time traffic flow data as well as pavement design, 

which have proven to be very useful in many studies related with travel safety, would be 

necessary to improve the result.  
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CHAPTER 6: CONCLUSION 

 

The result of this study can be applied to help improve travel safety level by predicting 

crashes and identifying the most likely type of crash, with an accuracy level of over 99% and 

62% respectively. From traffic management perspective, the prediction results can prepare traffic 

managers for the potential threatens well in advance. Directed and effective countermeasures can 

be made according to different type of crashes. From travelers’ perspective, the prediction results 

can be used to warn travelers of potential dangers before the trip so that they can make a better 

trip planning as well as alert them during the trip through the method of message signs and in-

vehicle broadcast. All of these actions are important for the proactive traffic management and 

can help protect people’s life and property. The other merit of this study is that the proposed 

model can be widely applied in any region of interest since the it is built basing on the crash data 

that are commonly recorded.  

However, the model still has room for improvement, such as improving the prediction 

accuracy and incorporating more conditions of crash types. To improve the accuracy level, more 

data resources such as land use, demographic, road geometry can be incorporated into the model. 

These data resources are usually available for each Metropolitan Planning Organization (MPO). 

As for real time traffic surveillance data, how to incorporate it into the model should be carefully 

considered. On the one hand, it has to be admitted that real time traffic flow can reflect the traffic 

conditions of the prediction period more accurate than the ADT data. On the other hand, using 

real time surveillance records for some roads might be unfair for the other roads since the fact 

that not all the roads are equipped with real time traffic surveillance devices. In this sense, 

establishing a comprehensive traffic surveillance system and having well-established crash 

reporting system would promote the development of proactive traffic management system.  

In the future study, the following 5 questions are going to be investigated. The first 

question is how to get real crash-free data.  Comparing with generating the fake crash-free data, 

obtaining the crash-free data from the real-world records would be more appropriate. For 

example, the weather information can be obtained from meteorological stations (Theofilatos, 

Chen, & Antoniou, 2019). The second question is what else risk factors should be included and 

how to incorporate them into the model. Various kinds of risk factors have been examined in 

past studies. A summary of the results of these studies is desired. Meanwhile, it is important to 
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stress that the risk factors should be selectively included in the prediction model so that the 

model can be conveniently implemented and be widely applied. The third question is how to 

clearly visualize or report the impact of the interactions between different risk factors on the 

crashes. As mentioned before, there are various kinds of factors that can impact road safety, and 

the accidents are the consequences of interactions between these factors. Visualizing or reporting 

the intricate interactions clearly and intuitively is an arduous task but would be a great help for 

transportation engineers to prepare the countermeasures. The fourth question is that what are the 

appropriate countermeasures for each specified condition. The last question is that if there is any 

other effective method that could predict the crashes and identify the crash type more accurately. 

Summing up, a proactive crash forecast and management system would be essential for travel 

safety improvement.  
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