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ABSTRACT

In this thesis1, we formulate the Gauss-Newton algorithm to make it viable

for running on distributed memory architectures and comparable to alternat-

ing least squares algorithm for CP decomposition. alternating least squares

may exhibit slow or no convergence, especially when high accuracy is re-

quired. CP decomposition problem can be formulated as a non-linear least

squares problem to apply iterative Newton-like methods. Direct solution of

linear systems involving an approximated Hessian is an expensive approach,

however, recent advancements have shown that use of an implicit representa-

tion of the linear system makes these methods competitive with alternating

least squares in terms of speed. We provide a parallel implementation of a

Gauss-Newton method for CP decomposition, which iteratively solves linear

least squares problems at each Gauss-Newton step. In particular, we lever-

age a formulation that employs tensor contractions for implicit matrix-vector

products within the conjugate gradient method. The use of tensor contrac-

tions enables us to employ the Cyclops library for distributed-memory ten-

sor computations to parallelize the Gauss-Newton approach with a high-level

Python implementation. In addition to that, we introduce a regularization

scheme for the Gauss-Newton method which shows better convergence re-

sults across a variety of tensors. We study the convergence of variants of the

Gauss-Newton method relative to alternating least squares for finding ex-

act CP decompositions as well as approximate decompositions of real-world

tensors.

1This thesis is based on the work [35] and acknowledges the work of all the authors
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Chapter 1

INTRODUCTION

1.1 Previous work and contributions

Nowadays, the alternating least squares (ALS) method, which solves quadratic

optimization subproblems for each factor matrix in an alternating manner, is

most commonly used and has become a target for parallelization [12,16], per-

formance optimization [20,33], and acceleration by randomization [8] for CP

decomposition. A major advantage of ALS is its guaranteed monotonic de-

crease of the residual. However, there are many cases where ALS shows slow

or no convergence when solution with high resolution is required, which is

also called the ’swamp’ phenomenon [22]. Swamps deteriorate both the run-

ning time and the convergence behavior of the ALS method. Consequently,

researchers have been looking at different alternatives to ALS, including var-

ious regularization techniques [19, 26], line search [23, 27, 32] and gradient

based methods [1, 28,31,38,42,44].

Of the variants of gradient based methods, one promising approach is to

perform the CP decomposition by solving a nonlinear least squares problem

using the Newton or Gauss-Newton methods [28, 43, 44]. These approaches

offer quadratic convergence and are better at avoiding the swamps inhibit-

ing performance of ALS. Naive solution of linear equations arising in these

method is expensive. For rank-R decomposition of an N dimensional tensor

with all the dimension sizes equal to s, standard algorithms either perform

Cholesky on the normal equations [28] or QR on the Jacobian matrix [44],

yielding a complexity of O(N3s3R3). However, the matrices involved in this

linear system are sparse and have much implicit structure. A recent ad-

vancement has shown that the cost of inverting the Hessian can be reduced

to O(N3R6) [31]. A successive study showed that the cost can be further

reduced to O(NR6), albeit the approach can suffer from numerical instabil-
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ity [42].

Another approach for performing Gauss-Newton with low cost is to lever-

age an implicit conjugate gradient (CG) method [38]. The structure of the

approximated Hessian can be leveraged to perform fast matrix-vector mul-

tiplications for CG iterations (with a cost of O(N2sR2) per iteration), an

approach that can also be augmented with preconditioning to accelerate CG

convergence rate [38]. In comparison to the aforementioned direct methods,

this iterative approach is substantially more scalable with respect to the CP

rank R. This advantage is critical in many applications of CP decomposi-

tion, as in many cases R ≥ s is needed (in general CP rank can be as high

as sN−1 for an order N tensor). Moreover, for the CP decomposition with

rank R < s, Tucker decomposition (or simply HoSVD) [46] can be used to

effectively compress the input tensor from dimensions of size s to R, and

then CP decomposition can be performed.

The main objective of this thesis is to investigate the behavior of Gauss-

Newton optimization with preconditioned CG on CP decomposition in high-

rank scenarios (with R ≥s or more generally when the rank is at least of the

smallest dimension size of the input tensor). We consider various approaches

to regularize Gauss-Newton with implicit CG, to understand their efficacy,

we quantify their ability to converge to exact CP decompositions of synthetic

tensor of various CP rank, as well as to approximating tensors arising in ap-

plications in quantum chemistry. With the best regularization strategy, we

find that Gauss-Newton is able to consistently find exact CP decompositions

for problems where ALS generally does not converge. Further, the Gauss-

Newton method obtains lower residuals in approximation. We present these

results in Chapter 5 .

The main contribution of this thesis is the parallel implementation of

Gauss-Newton with implicit CG, via a tensor-contraction-based formulation

of the method. We develop a distributed-memory implementation of the

method using the Cyclops library for parallel tensor algebra. Our imple-

mentation interpolates between a sequential approach based on the NumPy

library and the Cyclops backend, enabling both sequential and parallel exper-

imental studies. We detail our implementations in Chapter 4. We evaluate

the strong and weak scalability of the method on the Stampede2 supercom-

puter, and compare its performance to ALS for a variety of test problems.

Our results demonstrate that the Gauss-Newton method can converge faster
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both in sequential and parallel settings. These results are presented in Sec-

tion 5.3 and 5.4.

This thesis makes the following contributions:

• We cast the large matrix-vector multiplication into several tensor con-

tractions so that an existing library on parallel tensor contractions can

be utilized. Our analysis achieves the same computational cost as pre-

vious work [38].

• We propose and evaluate a new regularization strategy, and demon-

strate that it is well-suited for CP decomposition with Gauss-Newton.

• We provide the first parallel implementation of Gauss-Newton for CP

decomposition.

• We demonstrate that an implementation of parallel Gauss-Newton with

preconditioned CG can both converge faster and achieve higher conver-

gence probability for CP decomposition of both synthetic and application-

based tensors with high CP rank.

1.2 Notation and definitions

We use tensor algebra notation in both element-wise form and specialized

form for tensor operations [18]. For vectors, bold lowercase Roman letters

are used, e.g., x. For matrices, bold uppercase Roman letters are used, e.g.,

X. For tensors, bold calligraphic fonts are used, e.g., XXX .

An order N tensor corresponds to an N -dimensional array with dimensions

s1 × · · · × sN .

Elements of vectors, matrices, and tensors are denoted in subscript, e.g.,

xi for a vector x, xij for a matrix X, and xijkl for an order 4 tensor XXX . The

ith column of a matrix X is denoted by xi.

The mode-n matrix product of a tensor XXX ∈ Rs1×···×sN with a matrix

A ∈ RJ×sn is denoted by XXX ×n A, with the result having dimensions s1 ×
· · · × sn−1 × J × sn+1 × · · · × sN . Matricization is the process of reshaping

a tensor into a matrix. Given a tensor XXX the mode-n matricized version

is denoted by X(n) ∈ Rsn×K where K =
∏N

m=1,m 6=n sm and the matrix is
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augmented along the nth mode. We use parenthesized superscripts as labels

for different tensors and matrices, e.g., A(1) and A(2) are different matrices.

The Hadamard product of two matrices U ,V ∈ RI×J resulting in matrix

W ∈ RI×J is denoted by W = U ∗V , where wij = uijvij. The inner product

of matrices U ,V is denoted by 〈U ,V 〉 =
∑

i,j uijvij. The outer product

of K vectors u(1), . . . ,u(K) of corresponding sizes s1, . . . , sK is denoted by

XXX = u(1) ◦ · · · ◦ u(K) where XXX ∈ Rs1×···×sK is an order K tensor.

The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is defined

by

A⊗B =


a11B a12B . . . a1JB

a21B a22B . . . a2JB
...

aI1B aI2B . . . aIJB

 .

For matrices A ∈ RI×K =
[
a1, . . . ,aK

]
and B ∈ RJ×K =

[
b1, . . . , bK

]
,

their Khatri-Rao product resulting in a matrix of size (IJ) ×K defined by

A�B = [a1⊗b1, . . . ,aK ⊗bK ], where a⊗b denotes the Kronecker product

of the two vectors.

1.3 CANDECOMP/PARAFAC decomposition

The CP (canonical polyadic or CANDECOMC/PARAFAC) tensor decompo-

sition is widely used for data analytics in different scientific fields [11,13,21,

25, 34], machine learning applications [2, 5, 18], and quantum chemistry [41].

It is denoted by

XXX ≈ [[A(1), · · · ,A(N)]], where A(i) = [a
(i)
1 , · · · ,a(i)

r ], (1.1)

and serves to approximate a tensor by a sum of R tensor products of

vectors,

XXX ≈
R∑
r=1

a(1)
r ◦ · · · ◦ a(N)

r . (1.2)

An n order tensor is said to be in kruskal form if

XXX =
R∑
r=1

λra
(1)
r ◦ · · · ◦ a(N)

r .
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where ∀r ∈ {1 · · ·R}, λr ∈ R+ and ∀i ∈ {1 · · ·N}, ‖a(i)
r ‖ = 1.

The CP decomposition is unique under the scaling and permutation con-

straints as the corresponding vectors in the factor matrices can be reordered

arbitrarily

XXX = [[A(1), · · · ,A(N)]] = [[A(1)P , · · · ,A(N)P ]],

where P is a permutation matrix of size R×R
The indeterminacy in scaling arises to the fact that we can scale the vectors

of the corresponding factor matrices as follows

XXX =
R∑
r=1

(k(1)r a(1)
r ) ◦ · · · ◦ (k(N)a(N)

r ),

as long as k
(1)
r · · · k(N)

r = 1, ∀r ∈ {1 · · ·R}
As mentioned in [18] the most general result for uniqueness depends on the

concept of the rank of factor matrices, where the rank, rank(X) of a matrix

X is the number of linearly independent columns of the matrix. A sufficient

condition for uniqueness of the CP decompostion is:

N∑
n=1

rank(A(n)) ≥ 2R + (N − 1).

CP decomposition of an input tensor can be computed via different op-

timization techniques, such as variants of gradient descent [1, 28], defla-

tions [2, 3], and alternating least squares [18]. Two of these, namely Gauss-

Newton and alternating least squares will be discussed in the further chapters.
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Chapter 2

ALTERNATING LEAST SQUARES FOR
CP DECOMPOSITION

2.1 Alternating least squares algorithm

Alternating least squares algorithm aims to minimize the following objective

function iteratively:

f(A(1), . . . ,A(N)) :=
1

2
||XXX − [[A(1), · · · ,A(N)]]||2F , (2.1)

where XXX is the input tensor and [[A(1), · · · ,A(N)]] is the notation used as

in equations 1.1 and 1.2

The algorithm starts with an initialization of the factor matrices and pro-

ceeds via alternating minimization, i.e., in the ith subiteration, all the factor

matrices except the ith factor matrix are kept fixed and a quadratic subprob-

lem is solved for the best A(i) relative to the fixed factor matrices and input

tensor. Each quadratic subproblem maybe solved by computing and solving

for the normal equations. The normal equations with respect to the ith factor

matrix are derived in the following section.

The alternating minimization ensures that we have a decreasing residual

after each iteration but it has guarantees of converging to a local minima

under strict assumptions which may not always hold true [47]. Several other

works corroborate this claim and our experiments also demonstrate similar

results. Nevertheless, the algorithm is very simple which makes it easier to

incorporate conditions like non-negativity. Moreover, the algorithm is easy to

parallelize making it amenable for solving larger problems on the distributed

architecture.
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2.2 Normal equations

We derive the normal equations with respect to first factor matrix (as it is

simpler in notation but can be easily generalised for all factor matrices) by

taking the derivative of the objective function in 2.1 with respect to A(1) and

equating it to 0. The objective function in the elementwise notation with all

factor matrices except first factor matrix fixed is as follows

f(A(1)) =
1

2

∑
i1,···iN

(
xi1···iN −

∑
r

a
(1)
i1r
· · · a(N)

iNr

)(
xi1···iN −

∑
s

a
(1)
i1s
· · · a(N)

iNs

)
.

The derivative is as follows

(∇f(A(1)))i1s =
∑
i2,···iN

∑
r

(
a
(2)
i2r
· · · a(N)

iNr
a
(1)
i1s
· · · a(N)

iNs

)
−
∑
i2,···iN

xi1···iNa
(2)
i2s
· · · a(N)

iNs
.

(2.2)

Exchanging the sums in the first term and equating (∇f(A(1)))i1s = 0, we

get the following

∑
r

(
a
(1)
i1r

∑
i2,···iN

(
a
(2)
i2r
· · · a(N)

iNr

)(
ai2s · · · a

(N)
iNs

))
=
∑
i2,···iN

xi1···iNa
(2)
i2s
· · · a(N)

iNs
.

When written in matrix form these are the same equations derived in

several other previous works

A(1)
((

A(2)TA(2)
)
∗ · · · ∗

(
A(N)TA(N)

))
= X(1)

(
A(2) � · · · �A(N)

)
.

These can be generalised to the normal equations wrt nth factor matrix as

follows

A(n)Γ(n,n) = X(n)P
(n), (2.3)

where Γ(n,n) = (A(1)TA(1)) ∗ · · · ∗ (A(n−1)TA(n−1)) ∗ (A(n+1)TA(n+1)) · · · ∗
(A(N)TA(N)) and P (n) =

(
A(1) � · · · �A(n−1) �A(n+1) · · · �A(N)

)
.
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The Matricized Tensor Times Khatri-Rao Product or MTTKRP to com-

pute X(n)P
(n) is the main computational bottleneck of ALS [7]. Within

MTTKRP, the bottleneck is the contraction between the input tensor and

the first-contracted matrix, and we call this step first contraction of the

MTTKRP. Algebraically, this contraction can be written as the tensor times

matrix product, XXX ×iA(i)T . For a rank-R CP decomposition, this computa-

tion has the cost of 2sNR if sn = s for all n ∈ {1, . . . , N}.
The dimension-tree algorithm for ALS [6,17,30,48] uses a fixed amortiza-

tion scheme to update MTTKRP in each ALS sweep. This scheme only needs

to perform two first contraction calculations for each ALS sweep, decreasing

the leading order cost of a sweep from 2NsNR to 4sNR.
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Chapter 3

GAUSS-NEWTON FOR CP
DECOMPOSTION

3.1 Gauss-Newton algorithm

The Gauss-Newton (GN) method is a modification of the Newton’s method

to solve non-linear least squares problem for a quadratic objective function

defined as

φ(x) =
1

2
‖y − f(x)‖2,

where y is the given vector of points with respect to which we solve the least

squares problem, x is the solution vector required and f is the non-linear

function of x given in the problem. The gradient and the Hessian matrix of

φ(x) can be expressed as

∇φ(x) =JT
r (x)r(x),

Hφ(x) = JT
r (x)Jr(x) +

∑
i

ri(x)Hri(x),

where r(x) is the residual function defined as r(x) = y− f(x), Jr(x) is the

Jacobian matrix of the residual function with respect to x, and Hri(x) is

the Hessian matrix of the residual function ri with respect to x.

The Gauss-Newton method leverages the fact that Hri(x) is small in

norm when the residual is small, to approximate the Hessian as Hφ(x) ≈
JT
r (x)Jr(x). Consequently, the Gauss-Newton iteration aims to perform the

update,

x(k+1) = x(k) − (JT
r (x(k))Jr(x

(k)))−1JT
r (x(k))r(x(k)),

where x(k) represents the x at kth iteration. This linear system corresponds
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to the normal equations for the linear least squares problem,

Jr(x(k))(x(k+1) − x(k)) ∼= −r(x(k)).

The CP decomposition can be formulated as a non-linear least square prob-

lem in (2.1). We define the Jacobian tensor as

JJJ = [JJJ (1), . . . ,JJJ (N)]

for the N-dimensional CP decomposition, where JJJ (n) ∈ Rs1×···×sN×sn×R is the

Jacobian tensor for the residual tensor with respect to A(n), and is expressed

element-wise as

j
(n)
i1...iNkr

=

(
−

N∏
m=1,m 6=n

a
(m)
imr

)
δink. (3.1)

Another way to derive the Jacobian matrices is by unfolding the factor ma-

trices and the residual function as suggested in [1]. Factorization of the Hes-

sian to solve a linear system in Gauss-Newton has cost O(N3s3R3). More

advanced approaches to solving Hessian can achieve a cost of O(NR6) [42],

but this reduction is not substantial when CP rank is high, i.e., R ≥ s.

Alternatively, conjugate gradient (CG) with implicit matrix products can

be used to solve the linear least squares problems in this Gauss-Newton

method [38]. Instead of performing a factorization or inversion of the ap-

proximate Hessian matrix, this approach needs only to perform matrix vec-

tor products JTJv at each iteration (henceforth we drop the subscript r

from Jr and simply refer to J for the matrix form of the Jacobian and JJJ
for its tensor form). We derive the matrix vector product in terms of tensor

contractions in the following section.

3.2 Gauss-Newton with implicit Conjugate Gradient

With the Jacobian tensors defined in (3.1), the matrix-matrix product H =

JTJ can be expressed as an operator with the following form

h
(n,p)
krlz =

∑
i1...iN

j
(n)
i1...iNkr

j
(p)
i1...iN lz

.
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We can first take a look at the diagonal blocks of the Hessian

h
(n,n)
krlz =

∑
i1...iN

(
−

N∏
m=1,m 6=n

a
(m)
imr

)
δink
(
−

N∏
m=1,m 6=n

a
(m)
imz

)
δinl.

Taking the sum across in and interchanging sum and products we get

h
(n,n)
krlz = δkl

N∏
m=1,m 6=n

(∑
im

a
(m)
imr
a
(m)
imz

)
.

The off-diagonal terms are as follows

h
(n,p)
krlz =

∑
i1...iN

(
−

N∏
m=1,m 6=n

a
(m)
imr

)
δink
(
−

N∏
m=1,m 6=p

a
(m)
imz

)
δipl.

Taking a
(n)
inr

and a
(p)
ipr

out of the product and summing across in and ip, we

get

h
(n,p)
krlz =

∑
i1...ip−1ip+1...in−1in+1...iN

( N∏
m=1,m 6=n,p

a
(m)
imr

)
a
(p)
lr

( N∏
m=1,m 6=n,p

a
(m)
imz

)
a
(n)
kz .

Interchanging the sum and products,

h
(n,p)
krlz = a

(n)
kz a

(p)
lr

N∏
m=1,m 6=n,p

(∑
im

a
(m)
imr
a
(m)
imz

)
.

So, the Hessian can be written in the matrix form as follows

h
(n,p)
krlz =

δklΓ(n,n)
rz , if n = p

a
(n)
kz a

(p)
lr Γ(n,p)

rz , otherwise
, (3.2)

where Γ(n,p)
rz =

N∏
m=1,m 6=n,p

(∑
im

a
(m)
imr
a
(m)
imz

)
. (3.3)

Note that Γ(n,n) was also defined in (2.3). The matrix-vector product Hw

can be written as

Hw =
N∑
n=1

N∑
p=1

sp∑
l=1

R∑
z=1

h
(n,p)
krlz w

(p)
lz .
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The contractions in the innermost summation have the form,

∑
l,z

h
(n,p)
krlz w

(p)
lz =


∑
z

Γ(n,n)
rz w

(n)
kz , if n = p,∑

l,z

a
(n)
kz a

(p)
lr Γ(n,p)

rz w
(p)
lz otherwise.

(3.4)

Computation of
N∑
n=1

N∑
p=1

∑
l,z

h
(n,p)
krlz w

(p)
lz requires N2 contractions of the form∑

l,z

h
(n,p)
krlz w

(p)
lz for a total cost of O(N2sR2) when each mode of the input

tensor has size s and is O
(
N(

N∑
m=1

sm)R2
)

in the general case.

The right hand side is a list of matrices of GGG each of size si × R and can

be derived as follows

g
(n)
kr =

∑
i1...iN

j
(n)
i1...iNkr

(
xi1...iN −

∑
z

N∏
m=1

a
(m)
imz

)
.

Using the equation 3.1 for Jacobian,

g
(n)
kr =

∑
i1...iN

(
−

N∏
m=1,m 6=n

a
(m)
imr

)
δink

(
xi1...iN −

∑
z

N∏
m=1

a
(m)
imz

)
.

Interchanging sums and product and summing over in,

g
(n)
kr = −

∑
i1...in−1,in+1...iN

xi1...in−1,k,in+1,...iNa
(1)
i1r
. . . a

(n−1)
in−1r

a
(n+1)
in+1r

. . . a
(N)
iNr

+
∑
z

a
(n)
kz

N∏
m=1,m 6=n

∑
im

a
(m)
imz
a
(m)
imr
.

(3.5)

Equation 3.5 in the matrix form includes the right hand side encountered

in equation 2.3

G(n) = −X(n)P
(n) + A(n)Γ(n,n). (3.6)

The right hand side again includes the MTTKRP operation and can be

parallelized similar to ALS and Γ(n,n) and P (n) we defined in the equation 2.3

12



Algorithm 1 CP-GN: Gauss-Newton with preconditioned implicit CG for
CP decomposition

1: Input: Tensor XXX ∈ Rs1×···×sN , stopping criteria ε, CG stopping criteria εcg,
rank R

2: Initialize {A(1), . . . ,A(N)} so each A(n) ∈ Rsn×R is random
3: while

∑N
i=1 ‖G(i)‖F > ε do

. Using dimension tree with P (n) is defined as in (2.3)
4: Calculate M (n) = X(n)P

(n) for n ∈ {1, . . . , N}
5: for n ∈ {1, . . . , N} do
6: Calculate Γ(n,p) for p ∈ {1, . . . , N} based on (3.3)
7: G(n) ← A(n)Γ(n,n) −M (n)

8: end for
9: Define λ based on varying scheme described in Section ??

10:

{V (1), . . . ,V (N)} ← CP-CG(XXX , {G(1), . . . ,G(N)},
{A(1), . . . ,A(N)},
{Γ(n,p) : n, p ∈ {1, . . . , N}},
εcg, λ)

11: for n ∈ {1, . . . , N} do
12: A(n) ← A(n) + V (n)

13: end for
14: end while
15: return factor matrices {A(1), . . . ,A(N)} with A(n) ∈ Rsn×R

Also, note that the dimension trees can be used to save cost in the MT-

TKRP operations and moreover additional parallelization can be achieved by

creating copies of the intermediate tensors, i.e., using up more memory and

performing the MTTKRP operations in parallel as the same factor matrices

are used for each mode unlike ALS where the factor matrices are updated

after each subiteration

Our Gauss-Newton algorithm is summarized in algorithm 1.

3.3 Regularization for Gauss-Newton

Since the approximated Hessian is inherently rank-deficient [44], we incor-

porate Tikhonov regularization when solving the linear system, JTJ +λI, at

each iteration, which corresponds to the Levenberg-Marquardt algorithm [24].

The convergence behavior of the Gauss-Newton method for CP decomposi-

tion as well as the CG method used within each Gauss-Newton iteration is

sensitive to the choice of regularization parameter.
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A common approach to resolve the scaling indeterminacy for the linear

least squares problem is to use JTJ +λdiag(JTJ), however, this may not be

the best way to regularise as mentioned in [24] and we observe this case with

a constant λ parameter. There are several other approaches for choosing

the damping parameter and the diagonal matrix at each iteration to ensure

local convergence of the algorithm [24], but those are costly in the context

of CP decomposition, due to the computational and communication expense

associated with each iteration.

We provide a new heuristic approach for choosing the damping parameter

by varying the regularization at each step. Variable regularization has been

used in the past for the Gauss-Newton method, by increasing or decreasing

the parameter depending on the value of the objective function at the next

iteration [24]. We find that for CP decomposition, variation of the regular-

ization parameter is useful for getting out of swamps, and adjusting it eagerly

helps avoid the need for expensive recomputation of the objective.

In particular, we define an upper threshold and a lower threshold, and

initialize λ near the upper threshold. This larger value ensures that we take

steps towards the negative gradient direction, and enables CG to converge

quickly. Next, we choose a constant hyper parameter µ > 1 and update

the λ at each iteration with λ = λ/µ. This update is continued until λ

reaches the lower threshold, and then it is increased by the update λ = λµ

until it reaches the upper threshold value and then decreased again. The

lower threshold ensures that the conditioning of JTJ does not affect the CG

updates.

We show in Section 5.1 that this type of varying regularization can signifi-

cantly improve the convergence probability of Gauss-Newton method relative

to a fixed regularization parameter when an exact CP decomposition exists.

We find that this strategy is robust in speed and convergence probability

across many experiments.

3.4 Preconditioning for Gauss-Newton with implicit

Conjugate Gradient

Preconditioning is often used to reduce the number of iterations in conjugate

gradient. For CP decomposition, the structure of the Gauss-Newton approx-
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imate Hessian H = JTJ admits a natural block-diagonal Kronecker product

preconditioner [31]. Each of the N diagonal blocks H(n,n) has a Kronecker

product structure, H(n,n) = Γ(n,n) ⊗ I. Consequently, its inverse is

H(n,n)−1 = Γ(n,n)−1 ⊗ I,

which can be computed using O(R3) work per Gauss-Newton iteration and

applied in parallel with O(sR2) cost per CG iteration.

We can also use the Cholesky factorization Γ(n,n) = LLT ,

H(n,n) = Γ(n,n) ⊗ I = (LLT )⊗ I = (L⊗ I)(LT ⊗ I),

in which case application of H(n,n)−1 can be applied in a stable way via

triangular solve. However, we found that performing triangular solves via

ScaLAPACK [10] is a bottleneck for parallel execution as backward and for-

ward substitution have polynomial depth. Consequently, we compute the

inverse of Γ(n,n) and use tensor contractions to apply it in our parallel imple-

mentation.
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Chapter 4

IMPLEMENTATION

We implement both dimension tree based ALS algorithm and Gauss-Newton

algorithm in Python1. We leverage a backend wrapper for both NumPy and

the Python version of Cyclops Tensor Framework [37], so that our code can

be tested and efficiently executed both sequentially and with distributed-

memory parallelism for tensor operations. In addition, we write both the

ALS and Gauss-Newton optimization algorithms in an optimizer class, and

each ALS sweep / Gauss-Newton iteration is encapsulated as a step member

function in the optimizer class. This framework can be easily extended to

included other optimization algorithms for tensor decompositions. Cyclops

provides a high-level abstraction for distributed-memory tensors, including

arbitrary tensor contractions and matrix factorizations such as Cholesky and

SVD via ScaLAPACK [10]. The ALS implementation is based on previous

work [20] and uses dimension trees to minimize cost.

Our tensor contraction formulation of the Gauss-Newton method makes it

easy to implement with NumPy and Cyclops. Both libraries provide an einsum

routine for tensor contractions specified in Einstein summation notation. Us-

ing this routine, the Gauss-Newton method can be specified succinctly as in

the following code snippet, where lists of tensors are used to store the factor

matrices A(n), components of the input and output matrices (set of vectors)

W (p) and U (n), and matrices Γ(n,p).

u = []

for n in range(N):

u.append(zeros ((s,R)))

for p in range(N):

if n == p:

U[n] += einsum("rz,kz->kr",Gamma[n,p],W[p])

else:

1Our implementations are publicly available at https://github.com/

cyclops-community/tensor_decomposition.
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U[n] += einsum("kz,lr,rz,lz->kr", \

A[n],A[p],Gamma[n,p],W[p])

Listing 4.1: Implicit Matrix-Vector Product in GN Method

Our current implementation does not parallelize over the N2 matrix vec-

tor products yet. This is due to the fact that the Cyclops tensor framework

does not support contractions of ‘list of tensors’ yet. However, for the case

of equidimensional tensors, we can cast the list of factor matrices as a ten-

sor and cast the above contractions into two tensor contractions to achieve

parallelization over the N2 contractions. In the following code snippet we

have the batched contraction where the input and output list of matrices are

tensors VVV andRRR respectively,DDD is the list of Γ(n,n), GGG is a fourth order tensor

where the entries along the first two modes, nth and pth mode is Γ(n,p) when

n 6= p and a matrix of zeros of size R × R along the diagonal and AAA is the

list of factor matrices:

R = einsum("niz ,nzr ->nir",V,D)

R += einsum("niz ,pjr ,npzr ,pjz ->nir",A,A,G,V)

Listing 4.2: Implicit Matrix-Vector Product with batched tensor

contractions

Note that we still are computing extra work due to the zeros on the di-

agonal of GGG tensor and not computing the contractions with diagonal terms

of the Hessian concurrently which could be addressed with ’list of tensors’

contraction implemented leading to a single contraction which may even lead

to greater speed-ups for a CG iteration.
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Chapter 5

EXPERIMENTS

We performed numerical experiments to compare the performance of di-

mension tree based ALS algorithm and Gauss-Newton algorithm on both

synthetic and application tensors. Our experiments consider three types of

tensors:

Tensors made by random matrices (Random tensors. We create ten-

sors based on known uniformly distributed randomly-generated factor ma-

trices A(n) ∈ (a, b)s×R, XXX = [[A(1), . . . ,A(N)]].

Tensors made by Gaussian matrices (Gaussian tensors. We create

tensors based on known Gaussian distributed randomly-generated factor ma-

trices A(n) ∈ N (0, 1)s×R, XXX = [[A(1), . . . ,A(N)]].

Quantum chemistry tensors. We also performed CP decomposition on

the density fitting intermediate (Cholesky factor of the two-electron integral

tensor) arising in quantum chemistry. This CP decomposition yields the ten-

sor hypercontraction format of the two-electron integral tensor, which enables

reduced computational complexity for a number of post-Hartree-Fock meth-

ods [14]. Acceleration of CP decomposition for this quantity has previously

been a subject of study in quantum chemistry [15]. We leverage the PySCF

library [40] to generate the three dimensional compressed density fitting ten-

sor, representing the compressed restricted Hartree-Fock wave function of a

water molecule chain systems with a STO-3G basis set. We vary the number

of molecules in the system from 3 to 40, comparing the efficacy of ALS and

Gauss-Newton method under different settings.

Matrix multiplication tensor. A hard case for CP decomposition is the

matrix multiplication tensor, defined as an order three unfolding (combining

pairs of consecutive modes) of

tijklmn = δlmδikδnj.
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This tensor simulates multiplication of matrices A and B via

cij =
∑
klmn

tijklmnaklbmn =
∑
l

ailblj.

Its exact CP decompositions give different bilinear algorithms for matrix

multiplication, including classical matrix multiplication with rank s3/2 and

Strassen’s algorithm [39] with rank slog4(7). Determining the minimal CP

rank for multiplication of n-by-n matrices with n ≥ 3 (so s ≥ 9) is an open

problem [29] that is very important in theory and practice.

To maintain consistency throughout the experiments, we run CG till a

relative tolerance of 10−3. We use the metrics relative residual and fitness

to evaluate the convergence. Let X̃XX denote the tensor reconstructed by the

factor matrices, the relative residual and fitness are defined as follows,

r =
‖XXX − X̃XX‖F
‖XXX‖F

, f = 1− ‖X
XX − X̃XX‖F
‖XXX‖F

.

We collect our experimental results with NumPy backend on a Mac OS com-

puter with a 1.4 GHz i5 Quad-core Intel processor with a 16 GB 2133 MHz

LPDDR3 RAM and our results with Cyclops backend on the Stampede2 su-

percomputer Texas Advanced Computing Center located at the University

of Texas at Austin using XSEDE [45].

On Stampede2, we leverage the Knight’s Landing (KNL) nodes exclusively,

each of which consists of 68 cores, 96 GB of DDR RAM, and 16 GB of

MCDRAM. These nodes are connected via a 100 Gb/sec fat-tree Omni-Path

interconnect. We use Intel compilers and the MKL library for BLAS and

batched BLAS routines within Cyclops. We use 64 processes per node on

Stampede2 for all experiments.

We study the effectiveness of ALS and Gauss-Newton on CP decomposition

based on the following metrics:

Convergence likelihood. We compare the likelihood of the CP decompo-

sition to recover the original low rank structure of the input tensor with both

algorithms.

Convergence behavior. We compare the convergence progress w.r.t. exe-

cution time of ALS and Gauss-Newton for all the tensors listed above. Ex-

periments are performed with NumPy backend for small and medium-sized
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tensors, while the Cyclops backend is used for large tensors.

Parallel Performance. We perform a parallel scaling analysis to compare

the simulation time for one ALS sweep of the dimension tree based ALS algo-

rithm and the conjugate gradient iteration of the Gauss-Newton algorithm.

5.1 Convergence likelihood

We compare the convergence likelihood of CP decomposition for random low-

rank tensors, optimized with ALS algorithm and Gauss-Newton algorithm

with constant and varying regularization. We run the algorithms until the

residual norm is less than 5 × 10−5, or the norm of the update is less than

10−7, or a maximum of 500 and 10,000 iterations for Gauss-Newton and ALS,

respectively. The results are presented in Figure 5.1. We set the tensor order

N = 3, size in each dimension s = 4, and compare the convergence likeli-

hood under different CP ranks. These results are representative of behavior

observed across a variety of choices of s and R.

In figure 5.1a and 5.1b, we run Gauss-Newton and ALS on 100 problems

with factor matrices sampled from (0, 1) with 5 initializations each for CP

rank ranging from 3 to 9. The diameter of the circle and the side length of the

square are proportional to the number of problems converged for the corre-

sponding number of initializations in 5.1a. It is evident that Gauss-Newton

exhibits a higher probability of convergence than ALS as the circles are al-

ways bigger than the squares for higher number of initializations converged.

We can observe in 5.1b that Gauss-Newton with varying regularization is

more likely to reach a lower residual when compared with ALS (giving both

ample number of iterations).

In figure 5.1d, we compare Gauss-Newton with different regularization

techniques for tensors with the same set up and factor matrices sampled from

the standard Gaussian distribution for the harder cases (ranks 5 to 7) with

15 initializations. Plotting the number of converged initializations per prob-

lem for these variants over the ‘harder’ cases we observe that Gauss-Newton

with varying identity regularization performs better than varying diagonal

regularization which is better than the constant diagonal regularization at

convergence as the initializations converged for the corresponding techniques

are statistically greater corroborating our claim that varying regularization
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improves the probability of convergence.

In figure 5.1c, we run both algorithms with the same set-up and factor

matrices sampled from (−1, 1) with 5 and 15 initializations. A point in the

graph represents the probability of at least one initialization converging out

of the total initializations. We observe similar behaviour over the various

ranks, 6 being the most difficult to converge. However, with increasing the

initializations we observe increase in the convergence probability for both

the algorithms but Gauss-Newton with identity varying regularization out-

performs ALS.

In figure 5.1e, 5.1f and 5.1g, we compare all the algorithms with different

types of tensors under the same set up with 15 initializations. These plots

indicate that varying regularization improves convergence for both the vari-

ants of regularization in various types of tensors whereas ALS does not do

well at convergence for these 2 types of tensors for the ‘harder’ cases. More-

over, the cluster for the varying identity regularization for various tensors

suggests that the convergence probability of the method is invariant to how

the tensors were constructed.

In figure 5.1h, we find the CP decomposition of matrix multiplication ten-

sors with best known ranks [9] with a 100 initializations. For ALS algorithm,

we start with a high regularization parameter, λ = 0.01 and decrease it grad-

ually, by a factor of 2 after every 100 iterations, which is suggested in [36]

to increase the probability for finding the CP decomposition. We run ALS

for 20000 iterations and the convergence criteria is set at 10−8. For Gauss-

Newton method, we initialize it with 200 iterations of ALS with λ = 0.01

and then use Gauss-Newton with proposed regularization and with constant

λ = 10−3. We found that in this case using Armijo’s condition [4] for step-size

control increases the probability of convergence for Gauss-Newton method

which is more than both the constant and variable regularization strategy.

We do not observe the same pattern where varying the regularization in-

creases the convergence probability for Gauss Newton in this case as the

regularization is not on the L2 norm of the factor matrices as opposed to

ALS (which is shown to work better in this case). However, with Armijo’s

condition incorporated, convergence probability of Gauss-Newton is more

than ALS with the mentioned regularization strategy.
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5.2 Parallel Performance

We perform a parallel scaling analysis to compare the simulation time for

one dimension tree based ALS sweep and one conjugate gradient iteration of

the Gauss-Newton algorithm. For weak scaling, on p processors, we consider

order N = 3 tensors starting with dimension s = 800 and rank R = 800 and

growing both as p1/3 with increasing number of nodes p. Figure 5.2a shows

that with the increase of number of nodes, the time for both one ALS sweep

and one conjugate gradient iteration increases. This increase is expected,

as the amount of work per processor grows as p1/3. One conjugate gradient

iteration is consistently around 8 times faster than one ALS sweep for differ-

ent simulation sizes, and both approaches achieve good weak scalability. We

observe that explicit calculation and use of the inverse eliminates a signifi-

cant overhead associated with preconditioning using Cholesky and triangular

solves.

We also implement the all at once CG or batch CG as described in chap-

ter 4. A CG iteration speeds up by a factor of 3 approximately (exact value

of 2.91 ) with this implementation for each node count and demonstrates a

better weak scaling which is due to the fact that we extract more parallelism

over the N2 contractions by batching the contractions into a bigger tensor

contraction.

For strong scaling, we consider order N = 3 tensors with dimension size

s = 1600 and a rank R = 1600 CP decomposition. Figure 5.2b shows that the

conjugate gradient iteration time increases with the number of nodes, while

the ALS sweep time decreases at first, and increases with more than 32 nodes.

The conjugate gradient iteration involves smaller matrix multiplications, and

becomes dominated by communication and hence the contraction time does

not scale with increasing node counts, moreover for operations like calculating

norm the scaling becomes worse as they are latency bound and hence the time

increases for the iteration. For the batch CG we have a bigger contraction

which does scale a little bit which results in improving the scaling but the

time taken is dominated by the norm and inner product calculations which

take up about more than half time of the CG iteration.

The ALS sweep is dominated by the MTTKRP calculations, which are

more easily parallelizable and therefore make ALS achieves better scaling.

Overall, we observe that the Gauss-Newton CG iterations contain less par-
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allelism than MTTKRP, but are weakly scalable.

5.3 Exact CP decomposition

We compare the convergence behavior of different variants of the Gauss-

Newton algorithm with ALS for exact (synthetic) CP decomposition in Fig-

ure 5.3. We generate low rank tensors of different sizes, the smaller tensors

are tested with NumPy backend and the larger ones with parallel Cyclops

backend.

In Figure 5.3a we use CP decomposition on the gaussian low rank tensor

with tensor order N = 3, size of each dimension s = 80 and CP rank R = 120

with NumPy backend. We plot different types of regularization for Gauss-

Newton along with ALS to study the convergence behavior the best variants

of Gauss-Newton. We observe that Gauss-Newton with varying diagonal

regularization performs the best and the varying identity regularization is also

comparable. The sensitivity to regularization of the Gauss-Newton method

is revealed in the plot as constant regularization variants are very different

from each other. ALS algorithm does not make any improvement over a long

time and appears to be stuck in a swamp, suggesting Gauss-Newton method

is preferable for Gaussian tensors.

In Figure 5.3b, we consider the computation of CP decomposition for ran-

dom low rank tensor of order 3, size of each dimension s = 150 and rank

R = 200. Here we can observe that the diagonal constant regularization

may not be useful for this tensor as we don’t make any improvement over a

long time however, the other two variants with varying regularization con-

verge fast enough again suggesting that varying the regularization is a robust

technique for random tensors in terms of speed as well.

We test large random low-rank tensors in parallel with s = 500, R = 500

on 4 nodes with 256 processes as well as s = 2000, R = 2000 on 16 nodes

with 1024 processes using the Cyclops backend. Gauss-Newton with identity

varying regularization outperforms ALS in terms of speed and accuracy in

both the cases. For s = 500, R = 500 as shown in Figure 5.3c Gauss-Newton

with identity varying regularization converges to an exact solution about

1.25x faster than ALS which converges to a relative residual of around 10−6

and for the tensor made with standard gaussian matrices in Figure 5.3d ALS
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gets stuck in a swamp and Gauss-Newton converges to the exact solution in

about 300 seconds suggesting that for larger tensors Gauss-Newton maybe a

more suitable algorithm. For s = 2000, R = 2000 as shown in Figure 5.3e,

due to constraint in resources we let the algorithms run for a fixed time and

observe Gauss-Newton with identity varying regularization converging to a

lower relative residual of about 10−3 and ALS being about 1.3x slower than

Gauss-Newton (till the max run time).

Note that the irregularity in time taken of one Gauss-Newton iteration

arises because of the variable number of CG iterations taken to solve the

system of equations.

5.4 Approximate CP decomposition

We also compare the convergence behavior of Gauss-Newton method with

ALS for approximate CP decomposition, in which case the tensor recon-

structed from factor matrices can only approximate the input tensor rather

than fully recover it. We test on the quantum chemistry tensors (density

fitting intermediates). Our results are shown in Figure 5.4. We test the

problem with different input tensor sizes and different CP ranks. We run the

two small sized problems shown in Figure 5.4a, 5.4b with NumPy backend.

We observe that for both problems, Gauss-Newton method outperforms ALS

algorithm in speed and final fitness, both with the constant regularization pa-

rameter and the regularization variation scheme. In addition, Gauss-Newton

with constant regularization may suffers from low optimization stability, as

can be seen when λ = 10−5, or low accuracy, as can be seen when λ = 10−3.

The regularization variation scheme collects the advantages of both cases,

and can reach high accuracy with a stable convergence.

We run the large sized problems set up with 40 water molecules’ system

shown in Figure 5.4c, 5.4d in parallel with Cyclops backend. We observe

that for these large problems, Gauss-Newton also beats ALS in speed and

fitness. With CP rank equals 2,000, Gauss-Newton can reach the fitness of

0.952 in 5,000 seconds which is higher than the best fitness of ALS (0.94)

in about half the time (in 12,000 seconds), i.e., a speed up of more than

2x. The oscillations in Gauss-Newton maybe controlled by using a smaller

factor µ and the number of CG iterations can be reduced by using a lower
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regularization near the optimal solution so as to reduce the perturbation in

the system of equations. The observations are similar when we increase the

rank to 3000.
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(c) Input tensor size: 4520× 280× 280,
R = 2000
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Figure 5.4: Fitness vs time for the CP decomposition of quantum chemistry
tensors with different size and rank. The results (a) and (b) are collected
with the NumPy backend, while (c) and (d) are collected with the Cyclops
backend.
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Chapter 6

CONCLUSION

In this thesis, we provide a formulation for Gauss-Newton method for CP de-

composition which can leverage the advantage of parallel tensor contractions

for implicit matrix-vector products within the conjugate gradient method.

The use of tensor contractions enables us to employ the Cyclops library for

distributed-memory tensor computations to parallelize the Gauss-Newton ap-

proach with a high-level Python implementation. Our results demonstrate

good weak scalability for the Gauss-Newton method for the current imple-

mentation and also show room for improvement in scaling as well as speed

for the matrix-vector products. Additionally, we propose a regularization

scheme for Gauss-Newton method to improve convergence properties with-

out additional cost. We perform extensive experimentation on different kinds

of input tensors and compare the convergence and performance of the Gauss-

Newton method relative to ALS. We observe that the Gauss-Newton method

typically achieves better convergence as well as performance results for both

synthetic as well as real-life tensors with high CP rank.
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