
c© 2020 Ray Sun

ENVIRONMENTAL CURRICULUM LEARNING FOR EFFICIENTLY ACHIEVING
SUPERHUMAN PLAY IN GAMES

BY

RAY SUN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Adviser:

Professor Jian Peng

ABSTRACT

Reinforcement learning has made large strides in training agents to play games, including

complex ones such as arcade game Pommerman and real-time strategy game StarCraft II. To

allow agents to grasp the many concepts in these games, curriculum learning has been used

to teach agents multiple skills over time. We present Environmental Curriculum Learning,

a new technique for creating a curriculum of environment versions for an agent to learn in

sequence. By adding helpful features to the state and action spaces, and then removing

these helpers over the course of training, agents can focus on the fundamentals of a game

one at a time. Our experiments in Pommerman illustrate the design principles of ECL,

and our experiments in StarCraft II show that ECL produces agents with far better final

performance than without it, when using the same training algorithm. Our StarCraft II ECL

agent exceeds previous score records in a StarCraft II minigame, including human records,

while taking far less training time to do so than previous approaches.

ii

To Mom, Dad, and my sister, for their love and support.

iii

ACKNOWLEDGMENTS

Many thanks to my undergraduate research partners, Michael McGuire and David Long,

for their ideas and code contributions. Thanks to Professor Peng for his advising and support.

This work utilizes resources supported by the National Science Foundation’s Major Re-

search Instrumentation program, grant #1725729, as well as the University of Illinois at

Urbana-Champaign.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 2
2.1 Reinforcement Learning . 2
2.2 Pommerman . 3
2.3 StarCraft II . 4

CHAPTER 3 RELATED WORK . 7
3.1 Curriculum Learning . 7
3.2 Pommerman . 7
3.3 StarCraft II . 7

CHAPTER 4 METHODS . 9
4.1 Environmental Curriculum Learning . 9
4.2 Our Application of ECL . 11
4.3 Code Architecture . 12

CHAPTER 5 EXPERIMENTAL SETTINGS . 16
5.1 Pommerman . 16
5.2 StarCraft II . 21

CHAPTER 6 RESULTS . 27
6.1 Pommerman . 27
6.2 StarCraft II . 31

CHAPTER 7 DISCUSSION . 37
7.1 Implications . 37
7.2 Limitations . 37
7.3 Future Work . 38
7.4 Conclusion . 38

REFERENCES . 39

v

CHAPTER 1: INTRODUCTION

One of the fastest-moving branches of machine learning today is reinforcement learning.

Recently, several breakthroughs have been made in creating models to play games of increas-

ing difficulty, from the ancient but deep board game of Go to the team-based video game

Dota 2 [1, 2]. One of the greatest challenges yet is the real-time strategy game StarCraft

II, which has incredibly complex state and action spaces. Many different approaches have

been tried to address this challenge, but almost all of them require training for millions

of episodes. In this work, we present Environmental Curriculum Training (ECL), a new

method of curriculum learning. Making the environment easier for the agent by adding in-

formation in the state interface or simplifying the action interface, we can create a series of

environment versions as a training curriculum, from the easiest version to the final, original

problem. Our experiments in two games, Pommerman and StarCraft II, demonstrate that

curriculum learning leads to enhanced final performance, even using training algorithms that

make no progress at all on their own. Moreover, we show that environmental curriculum

training is sample efficient, reaching previous record scores with far fewer training episodes.

Chapter 2 introduces background concepts for understanding this paper. Chapter 3 dis-

cusses previous work related to this area, and how this work differs. Chapter 4 describes our

general methodology of environmental curriculum learning. Chapter 5 includes the details

of our experimental setup in Pommerman and StarCraft II. Chapter 6 contains the results of

our experiments in Pommerman and StarCraft II. We conclude in Chapter 7 by discussing

the implications of our results.

1

CHAPTER 2: BACKGROUND

This thesis presents a new technique in reinforcement learning, one of the most active fields

of machine learning research. The experiments that support the efficacy of this technique

were performed in two environments: the games Pommerman and StarCraft II. In this

chapter, the background information necessary for understanding this work is introduced:

basic concepts in RL, and the rules and features of Pommerman and StarCraft II.

2.1 REINFORCEMENT LEARNING

Reinforcement learning (RL) is a branch of machine learning. In reinforcement learning, we

are concerned with training an agent that interacts with an environment to maximize reward.

An agent is an actor that interacts with the environment, and can be formulated as taking

the current state as input and returning a chosen action for that state. An environment can

be formulated as its counterpart function, giving a reward value and the next state after the

given state and agent’s chosen action. Generally, an environment generates multiple states

in a sequence, each part of a timestep, as the agent chooses an action based on the state of

each timestep. Each of these sequences is called an episode, starting with a starting state

that does not depend on any previous state and ending with a terminal state.

The agent’s goal in an environment is defined to be maximizing its total discounted reward

for each episode. Rewards gained in the future are discounted when evaluated in the current

timestep, by being multiplied by a discount factor for every step removed that they are.

That is, for a given discount factor γ, current timestep i, and a sequence of future rewards

ri, ri+1, . . . , rn, the agent’s objective is to choose the action at timestep i that maximizes

J = ri + γri+1 + γ2ri+2 + . . .+ γn−irn =
n∑
j=i

γj−irj (2.1)

To create agents that maximize reward, reinforcement learning studies algorithms for how

to train agents, updating them based on past episodes and improving their reward over

time. Usually, these agents include neural networks, layers of computations and weights for

those computations. The agent improves by updating these weights: they are optimized by

computing a loss function based on observed episodes and adjusting the weights in a process

called stochastic gradient descent.

The neural networks in this work use 4 kinds of layers: convolutional, fully connected,

batch normalization, and ReLU. A convolutional layer processes a 2D input by multiplying

2

Figure 2.1: A Pommerman match between 4 players. Four bombs are currently planted,
and two have already exploded in a chain reaction and left flames behind on the right side.
There is a green blast range power-up near the top left, and a blue kick power-up near the
bottom right.

it with a smaller square of weights called a kernel, which is slid across the input matrix to

make all the multiplications. A fully connected layer yields a given number of outputs, each

as a linear function of all the inputs and layer weights. Batch normalization normalizes the

means and variances of its inputs when optimizing the network [3]. A ReLU (rectified linear

unit) returns max{xi, 0} for each element of a vector x. Also, we use the softmax activation

function to normalize mutually exclusive probabilities, which is given by

σ(z)i =
ezi∑K
j=1 e

zj
(2.2)

for a given vector z of unnormalized probabilities.

2.2 POMMERMAN

Pommerman is an arcade game, specifically created for AI research [4]. It is based on the

classic maze-based game series Bomberman. The game is played between multiple players on

a square board that players move around on (see Figure 2.1). At each timestep, players can

move one step in 1 of the 4 cardinal directions, or they can plant a bomb at their current

location (or they can do nothing). Bombs detonate after a fixed timer, destroying light

brown wooden boxes (making their squares traversable) and killing any players in the blast

3

Figure 2.2: A battle between opposing armies during a match of StarCraft II. One player’s
base on the left side, an important part of his economy, is under attack.

range. Exploding bombs also immediately detonate other bombs in their range (even if they

have remaining time on their timers), causing chain reactions of explosions. Bombs leave

behind flames for a short time, which kill any players that walk into them. The objective of

the game is to be the last surviving player.

When wooden boxes are destroyed by bombs, there is a random chance that a power-up

is left in its place. Players can gain power-ups by walking over them, and there are 3 types:

more ammo, increased blast range, and kick. By default, players can only plant one bomb

at a time, and must wait for it to explode before planting another. The ammo power-up

increases the number of bombs a player can plant at a time by 1. By default, bombs planted

by a player have a blast range of 1: they explode the tile the bomb is on and each of the 4

neighboring tiles. Each time a player gets a blast range power-up, the range of their bombs

extends in each of the 4 cardinal directions by 1. Finally, the kick power-up gives the player

the ability to kick bombs: if a player walks into a bomb, the bomb starts moving in the

direction kicked, moving by 1 square per timestep until it hits an object or detonates (by

default, players cannot walk into bombs).

2.3 STARCRAFT II

StarCraft II is a real-time strategy game for PC developed by Blizzard Entertainment,

released for PC in 2010. Players play as one of three races, expanding their base by building

4

buildings and making combat units to destroy the opposing base. The game involves many

different skills, including strategy, planning, multi-tasking, and reaction speed. The tasks

that a player must accomplish can be abstracted into two areas: macro, creating the correct

buildings and improving the economy; and micro, controlling combat units and executing

tactics to maximize their efficiency. Compared to other strategy games like chess, Star-

Craft II has additional challenges like incomplete information: the state of the opponent

is unknown, and effort must be devoted to uncovering information. Also unlike traditional

strategy games like chess, attention is a scarce resource. For example, the player must con-

trol a camera that can only view a small fraction of the battlefield at a time, restricting both

their observations and orders. These unique challenges have drawn reinforcement learning

researchers to create agents that learn StarCraft II.

2.3.1 StarCraft II Learning Environment

Due to research interest in StarCraft II, the RL research firm DeepMind partnered with

StarCraft developer Blizzard Entertainment to create an API for RL research, called the

StarCraft II Learning Environment (package name pysc2) [5]. The API features a compre-

hensive state interface, giving agents a view of the game as a stack of images plus some

scalars, and a hierarchical action interface, through which agents specify arguments for the

many different kinds of actions in the game. The StarCraft II Learning Environment also

includes a set of minigames, which focus on specific micromanagement skills and are signif-

icantly simpler to learn than the full game. Our StarCraft II experiments in this work are

about learning BuildMarines, the most complex of the minigames.

2.3.2 BuildMarines

In BuildMarines, the player plays as Terran (one of the three races in StarCraft II), and

the goal is to build as many Marines as possible. Marines are an infantry unit created out

of buildings called Barracks. In this minigame, the entire traversable map is small enough

to fit within the player’s camera, so it can all be viewed at once and the camera cannot be

moved. At the start of each episode, the player starts with 1 Command Center and 12 SCVs.

SCVs are the workers of the Terran race: they collect resources called minerals, and they

build buildings. The Command Center is a central building that makes additional SCVs,

and also where SCVs travel to to drop off their collected minerals.

Minerals are collected over time by workers, traveling between mineral patches and the

Command Center. The player also starts with 50 minerals. All units and buildings cost

5

minerals: an SCV costs 50 minerals, a Marine costs 50, a Barracks costs 150, and a Supply

Depot (see next paragraph) costs 50. The player can make more SCVs from the Command

Center to increase the rate of mineral income.

Besides minerals, there is another resource the player must manage: Supply. Supply is a

limit on the number of units (total count of SCVs and Marines) the player can have at one

time. If the Supply cap is reached, new units cannot be made. The player starts with 15

Supply, and can increase it by building a building called a Supply Depot, which increases

the Supply cap by 8. The Supply Depot is also a prerequisite for the Barracks; without at

least one Supply Depot already built, a Barracks cannot be made.

Thus, to create a Marine, the player must first build a Supply Depot, then a Barracks,

and then make a Marine using the Barracks. The objective of the minigame is to create as

many Marines as possible over the course of 15 minutes, after which the episode ends. The

agent receives a reward of 1 every time a Marine is created. There is no other reward and

no negative reward, even if a Marine dies. Thus, a player can use some Marines to kill other

Marines, staying below the Supply cap without reducing score.

6

CHAPTER 3: RELATED WORK

3.1 CURRICULUM LEARNING

Our work is a development of the idea of curriculum learning, which was introduced by

Bengio et al. in 2009 [6]. They found that training on examples in a meaningful order of

increasing complexity, introducing more concepts over time, produced better final accuracy

in experiments on word prediction. Curriculum learning was first applied in the field of

reinforcement learning by Narvekar et al. in 2016, by designing a curriculum of tasks based

on observed action trajectories of the learning agent [7]. Shortly afterwards, it found use in

first-person shooter games, in combination with Asynchronous Advantage Actor-critic (A3C)

[8]. In 2018, Narvekar and Stone developed a method to automatically generate curricula for

reinforcement learning, rather than manually crafting them [9]. Our work differs from prior

work by introducing a new way of manipulating environment state and action interfaces to

create a curricula of environment versions.

3.2 POMMERMAN

As a game designed specifically for research, Pommerman has been used in a variety of

experiments in reinforcement learning since its release in 2018 [4]. It has been the subject of

an annual competition at NeurIPS for multi-agent research, with some contestants utilizing

curriculum learning [10, 11]. Other agents have used imitation learning to learn Pommerman,

which is alike to curriculum learning in that it helps training by making the task easier in the

beginning [12]. Pommerman has also been used to study the use of shallow Monte Carlo tree

search for safe RL, the difficulty of exploration, and the comparative strengths of different

statistical forward planning methods [13, 14, 15]. Our experiments in Pommerman are not

novel by themselves, but they motivate the design of environmental curriculum learning.

3.3 STARCRAFT II

Recently, StarCraft II has become one of the most popular games in reinforcement learning

research. In 2019, DeepMind made a breakthrough by creating AlphaStar, a reinforcement

learning agent that was able to beat 2 professional StarCraft II players in the full game

(although with minor restrictions on race and map choice) [16]. However, AlphaStar was

not trained on the minigames of the StarCraft II Learning Environment, and would likely

7

take many more training episodes to learn them compared to other experiments due to

its model complexity. There have been many experiments on the minigames as well. The

record score for BuildMarines, the minigame that we experiment on in this work, was set

by DeepMind’s study of relational reinforcement learning, although it remained below the

human high score [17]. Other experiments in the minigames include a study of population-

based training of neural networks, although it did not have a good score for the BuildMarines

minigame in particular [18]. Curriculum learning has also been applied to StarCraft II, to

master the skill of micromanagement of units [19]. However, our work is the first to use

curriculum learning on the BuildMarines minigame, and our methodology is novel as well.

8

CHAPTER 4: METHODS

4.1 ENVIRONMENTAL CURRICULUM LEARNING

Here, we formally describe our technique of environmental curriculum learning (ECL) in

general terms. First, we start with an environment that we want our agent to learn. We’ll call

this the base or original environment, because we will modify it to create several versions

of the environment. We will consider this environment in terms of its state and action

interfaces, rather than the traditional viewpoint of it as a function mapping state-action

pairs to next states and rewards. So, the first step of environmental curriculum learning is

1. Identify the state and action interfaces of the base environment. The state interface of

an environment is the structure of the state input to the agent, i.e. the set of features

that make up the state. For example, in StarCraft II, the agent observes multiple layers

of images representing the layout of units, health, etc. on the map, as well as scalar

values like mineral count and supply. In this case, the state interface is each image

layer along with each of the scalar features. The action interface of an environment is

the set of possible actions that an agent can take.

2. Identify potential state or action helpers. Our goal is to initially make the environment

easier for our agent to learn and achieve reward, by either providing richer or more

structured information through the state, or simplifying the actions required to achieve

rewards. Figure 4.1 shows how state and action helpers change the agent’s interface

with the environment. Types of state helpers include

• Adding a state feature that combines existing input features in a more structured

way. While this doesn’t technically give the agent more information, it may

lower the agent’s burden of interpreting the raw input data. For example, if an

agent playing StarCraft II needs to compute how many buildings it has created by

looking at images of the map or relying on its memory, it can be assisted by adding

a scalar feature to the state that holds the number of buildings constructed.

• Adding a state feature that adds useful information that is not directly available

in the base environment. For example, in StarCraft II, you cannot see parts of

the map where you have no units, like your opponent’s base (this mechanism

is called Fog of War). To assist an agent learning StarCraft II, a state helper

can circumvent this restriction by adding data to the state for all of the map,

including parts unobserved in the base environment.

9

Figure 4.1: On the left, at the start of ECL, information from state helpers is added to the
state before the agent receives it, and action helpers modify the agent’s action before it is
returned to the environment. Over the course of training, helpers are removed one by one
(on the right), until all helpers are removed.

Types of action helpers include

• Making an action irrelevant by performing an action automatically for the agent

when it is necessary. For example, in StarCraft II, all players must make more

workers at the start of the game. To help an agent focus on learning other actions,

an action helper can automatically issue orders to the base environment on behalf

of the agent to make workers, so that the agent does not need to learn to take

this action.

• Combining a necessary sequence of actions into a single action. Sometimes, ac-

tions need to occur in sequences or patterns to have a useful result, and it can take

an agent a long time to learn the correct sequence before observing any reward.

By executing the entire sequence if the agent chooses a new, artificial action, the

agent can ignore learning the correct sequence while the helper is active.

3. Rank the helpers in order of increase ease/amount of help given to the agent. Each

helper changes the difficulty of the environment by a different amount. Some helpers

are bigger ”cheats” or are higher impact because they make the agent’s task much easier

or even trivial, while some helpers are only minor adjustments to the base environment.

In general, state helpers that add new information rather than combining existing

information should usually be more helpful. Action helpers that perform an action

automatically should generally be more helpful than those that combine a sequence of

actions into one action. However, the exact comparisons between helpers depends on

10

the given environment and helper details, so decisions must be made on a case-by-case

basis. Helpfulness can be hard to quantify, so deciding on an order may require some

human intuition. Fortunately, the precise order is not too important, as long as the

helpers are in rough ascending order of helpfulness.

4. Create the modified versions of the environment by adding each helper one by one.

First, take the ”least helpful” helper (as decided in the previous step), and add it

into the base environment to create the first modified version. Then, create the next

environment version by adding the next least helpful helper to the previously created

environment version. Continue making environment versions, each corresponding to

one more helper. In the end, there will be the same number of modified environments

as there are helpers, with one environment version including all of the helpers and one

version including only the least helpful helper.

5. Train the agent on each environment version in succession, starting from the easiest

environment and ending with the base environment. The easiest environment is the

environment version containing all the helpers, so the order of training is the reverse

order of creation (if the environments were created from closest to the base environment

to farthest). The amount of training for each environment before moving on to the

next environment can be decided in two ways. More simply, the agent can be trained

on each environment for a fixed number of episodes per environment, giving the same

training duration for each. A more flexible approach is training the agent on each

environment until the performance of the agent (as measured by average score per

episode) plateaus. When the performance of an agent is stable for a long time, that

usually indicates that the agent has learned as much as possible from the current

environment, and is ready to absorb more difficulty in the next one. After training in

this environment sequence, the agent will finally train on the base environment, and

learn the target task as it was originally formulated.

4.2 OUR APPLICATION OF ECL

To give an example of how environmental curriculum learning can be applied, we will

give an overview of its application to StarCraft II. In doing so, we will also show how we

derived the idea of environmental curriculum learning in the first place. Our experiments in

Pommerman were performed before we started in StarCraft II, and our Pommerman results

motivated our methodology of environmental curriculum learning.

11

Our novel technique of environmental curriculum learning is based on the idea of curricu-

lum learning in the past. Curriculum training has been used in the past in games between

multiple players, when an agent is trained against successively harder opponents. Our ex-

periments in Pommerman follow this sense of curriculum training. By warming up against a

random agent (easy to beat), we expect that our agent will perform better in the end against

a harder opponent (with a scripted strategy) compared to an agent that is trained against the

hard opponent from the beginning. Based on our observations of the Pommerman results,

we developed a new kind of curriculum learning to be used in StarCraft II.

In StarCraft II, we were concerned about creating agents to master a minigame called

BuildMarines. This minigame had no opponent; the player’s goal is to maximize their score of

Marines produced within 15 minutes. Since there is no opponent, curriculum learning cannot

be applied by increasing the difficulty of an opponent. Instead, we adjust the difficulty level

of the task by modifying the environment directly. After all, from a reinforcement learning

perspective, a scripted opponent is just one part of the environment, and changing any other

aspect of the environment in the course of training is no different from changing the scripted

opponent. To start training our agent at an easy difficulty, we scripted some of the necessary

actions for accomplishing the goal, e.g. building workers. That is, we added action helpers to

perform some actions automatically. (We did not use any state helpers in our experiments.)

As a result, the agent only had to learn part of the set of actions necessary to reach the

goal. Over the course of training, we disabled these helper scripts, increasing the difficulty

of the task. By automating some actions at first and then removing such automation, we

applied curriculum learning in a new way. Our hypothesis is that this kind of curriculum

learning through environment modification will have similar benefits to previous applications

of curriculum learning.

Details about the curriculum of opponents used in Pommerman and the curriculum of

environments used in StarCraft II will be described in the next chapter.

4.3 CODE ARCHITECTURE

The technique of environmental curriculum learning introduced in this work and our ex-

periments are enabled by a very modular code architecture. We developed a very general

framework that is capable of running any reinforcement learning experiment, using any

training algorithm and network and any environment. The framework consists of a collec-

tion of abstract classes, which are implemented by a corresponding set of concrete classes

for each experiment. Any general training logic that is common among RL experiments

is implemented in the abstract classes, reducing duplicate code. Without this framework,

12

Figure 4.2: A UML class diagram of the general abstract classes and the concrete classes
for the StarCraft II experiments. Agent, CustomEnvironment, Memory, and Model are ab-
stract classes used in both Pommerman and StarCraft II experiments. They are imple-
mented by PolicyGradientAgent, BuildMarinesEnvironment, PolicyGradientMemory,
and PolicyGradientNet for the StarCraft II experiments. BuildMarinesActuator is a
helper class used by BuildMarinesEnvironment to compute the transformation between
our custom environment and the original PySC2 environment.

switching between slightly different modifications of the original environment would be too

time-consuming to make environmental curriculum learning practical. Since the modularity

of our code is so essential to our technique, we will discuss the details here.

4.3.1 Agent

The core of our architecture is the abstract Agent class, which represents the agent be-

ing trained and how it interacts with the environment. The core functions are sample()/

13

forward() and train() (see Figure 4.2). sample() and forward() are used when playing

in the environment (either for data collection or testing), and returns the agent’s chosen

action for a given state (forward() may return a probability distribution across actions,

while sample() will always return a single action). train() invokes the main training rou-

tine for the agent, running gradient descent on collected experiences or any other type of

parameter adjustment. Two other important functions are state space converter() and

action space converter(). These functions are automatically called by the main loop in

Experiment when passing states from the environment to the agent and actions from the

agent to the environment. Any Agent class can optionally implement these functions to in-

sert a transformation between the environment and the agent. This is useful when training

multiple agents using basically the same environment, but each agent uses a slightly different

state or action interface.

4.3.2 CustomEnvironment

A concrete subclass of CustomEnvironment implements the mechanics of a simulation

environment for agent learning. CustomEnvironment follows the interface of OpenAI Gym

[20] by exposing reset() and step() functions to compute each step of the environment on

demand (see Figure 4.2). These functions are called by Experiment in the main training loop.

In many cases, such as Pommerman and StarCraft II, a library for an environment by a third

party is already available. However, these environments from different sources have different

interfaces, so they must be unified with wrappers that are subclasses of CustomEnvironment.

In addition, CustomEnvironment wrappers can also modify the behavior or state/action

spaces of external environments to better fit the needs of certain experiments, as we do here.

Thanks to the CustomEnvironment component of our framework, the implementation details

of various environments are hidden from the rest of the framework, and multiple different

environments can be plugged in easily.

4.3.3 Experiment and Other Classes

Experiment contains the main training loop in its train() function (see Figure 4.3),

which glues the other instantiated classes together by calling step() on the given instance

of CustomEnvironment and sample() and train() on the given Agent to run data collection

and training. The entire Python process is started by creating an Experiment and invoking

train().

Besides Agent and CustomEnvironment, there are other abstract classes that are used by

14

Figure 4.3: A UML class diagram of the container classes of the experimental framework.
AgentSettings and RunSettings hold all adjustable hyperparameters, and are used by
Experiment in its main training loop.

Experiment as placeholders for objects and data that exist in any experiment (see Figures

4.2 and 4.3). The Memory class stores the experiences that an agent observes during play,

and each subclass of Agent can implement its own Memory class to store different data

that is needed. The Model class represents the neural network used by an agent. Finally,

AgentSettings and RunSettings store adjustable hyperparameters, such as learning rate,

choice of optimizer algorithm, batch size, and training period.

15

CHAPTER 5: EXPERIMENTAL SETTINGS

5.1 POMMERMAN

5.1.1 Environment

In Pommerman, we trained an agent to play in a 1v1 format on a 8×8 board with a fixed

starting state (see Figure 5.1). The light brown wooden squares are destructible to bombs

laid by the players, and sometimes reveal power-ups when destroyed. The appearance and

location of power-ups is randomized in each episode. A player wins when the opposing player

dies by being near a bomb that explodes or walking into flames that are left for a short time

after a bomb explodes. The agent receives a reward of 1 at the end of an episode if it wins

and -1 if it loses. The episode can end in a draw if both players die on the same frame, in

which case the agent receives 0 reward.

Opponent

The opponent we trained against is a scripted opponent, whose strategy does not change

between episodes. In Pommerman, we applied an existing method of curriculum learning by

having a curriculum of two opponents. The first opponent was a random agent who took

each of the 6 actions with equal probability (moving in the 4 directions, laying a bomb,

or doing nothing). The second, more difficult opponent followed a script written by the

authors of the Pommerman environment (called SimpleAgent in the code). This scripted

agent plants bombs near wooden boxes or the opponent, runs away from existing bombs, and

moves towards power-ups that are close by. However, this agent does not try to aggressively

corner or attack the opponent for reliable wins. (We also tried training against an agent that

does nothing as the easy opponent, but found that episodes ran to their maximum length

and it was too difficult for the learning agent to find out how to kill the idle opponent and

win.)

State Input

At each timestep in a game, our agent observes 14 two-dimensional 8 × 8 images repre-

senting the board state and 6 scalar values. Ten of the 14 images represent the locations of

empty squares, wooden boxes, solid walls, bombs, flames, extra bomb power-ups, increased

16

Figure 5.1: The Pommerman map layout and starting positions used in our experiments.
The learning agent controls the bomber starting in the top left.

bomb range power-ups, kick power-ups, the player, and the opponent. Each of these loca-

tion images contain only the binary values 0 and 1, indicating the absence or presence of

the corresponding object. The other 4 images represent the blast range of existing bombs

on the field, the number of steps until their explosion, whether the bombs are moving (due

to being kicked), and how long current flames will last.

The 6 scalar values represent 3 values for each of the two players: their ammo (how many

more bombs the player can plant), the blast range of new bombs from that player, and

whether the player can kick. The scalar values are each represented as a 8 × 8 constant

matrix so that they can be processed along with the images in the initial convolutional

layers of the network.

5.1.2 Training Algorithm

Our Pommerman learning agent used Monte Carlo tree search and an actor-critic network

to choose its actions. During play, Monte Carlo tree search used the output of the actor-

critic network, as well as previous tree searches of prior timesteps, to choose an action. To

train and improve the agent, stochastic gradient descent was performed on the actor-critic

network to adjust its parameters.

17

Monte Carlo Tree Search

In Monte Carlo tree search (MCTS), random Monte Carlo rollouts are made to build a

tree of nodes and evaluate them, where each node is a game state [1]. The distribution of

nodes in these rollouts and their evaluations are determined by the actor-critic network and

previous rollouts.

Let (p, v) = fθ(s) represent the output of the network fθ for a game state s, consisting

of action probabilities p and scalar value v. The Monte Carlo tree consists of nodes of

game states s and edges (s, a) between them, where s is the parent node and a is the action

to transition to the child game state. For each edge (s, a), the following are stored: a

prior probability P (s, a) set to the policy output pa, a visit count N(s, a), and a Q value

Q(s, a). Each rollout begins at a given root state and chooses actions with the highest upper

confidence bound Q(s, a) + U(s, a), where

U(s, a) = c · P (s, a)

√∑
b∈A(s)N(s, b)

1 +N(s, a)
(5.1)

where c is a hyperparameter controlling exploration (higher → more exploration) and b ∈
A(s) are all the possible actions from s. In our implementation, c = 1.5. The rollout

continues choosing actions maximizing this upper confidence bound until it reaches a leaf

node l which has not been explored before. The network is used to initialize P (l, ·), V (l) =

fθ(l). For every edge traversed in the rollout, N(s, a) is incremented by 1 and Q(s, a) is

updated to be the mean value V (l) reached across rollouts with this edge:

Q(s, a) =

∑
l|l reached after (s,a) V (l)

N(s, a)
(5.2)

The Monte Carlo tree is used to take an action with probability distribution π proportional

to the exponentiated visit counts:

πa ∝ N(s, a)1/τ (5.3)

where τ is the temperature parameter (higher → more exploration). We set τ = 1 for the

first 30 steps of each game and τ = 0 afterwards (when τ = 0, the formula above is ignored

and the greedy action arg maxaN(s, a) is always taken).

18

Actor Critic Optimization

In each training iteration, games against the random or scripted opponent are generated

using MCTS as described above. These experiences are stored in an experience replay buffer,

which is used in each training iteration in randomly shuffled order. The network parameters

are updated with the gradients for the critic’s loss, which is the mean squared error between

the predicted future reward for each game state and the observed discounted reward (in our

case, the reward represents the winner as +1 or -1). After the critic is updated, the network

parameters are updated with the gradients for the actor’s loss, which is the cross entropy

loss between the current action probabilities and the best action according to the critic (that

is, the action leading to the game state with the highest expected future reward). We used

the Adam optimizer for all SGD updates [21].

5.1.3 Network Architecture

The actor-critic network used by our Pommerman agent is a deep residual network, using

the idea of residual connections from ResNet [22]. The first layer of the network is a con-

volutional layer with kernel size 3 × 3 and padding 1, transforming the 20 input channels

into 32 channels. This is followed by a batch normalization layer and a ReLU. Then, the

network contains 4 residual blocks in sequence, where each block consists of

1. Convolution of 32 output channels with kernel size 3× 3 and stride 1

2. Batch normalization

3. ReLU

4. Convolution of 32 output channels with kernel size 3× 3 and stride 1

5. Batch normalization

6. Skip connection adding the input of this block

7. ReLU

After the 4 residual blocks, there is another convolution of kernel size 3 × 3 and padding 1

that transforms the 32 channels into 4 channels, followed by another batch normalization

and ReLU. Then the 4 channels of 8× 8 images are flattened into a single 256-vector. This

vector goes through a 256-to-256 fully connected layer, batch normalization, and a ReLU

before the network separates into actor and critic branches.

19

For both actor and critic outputs, the 256-vector goes through another 256-to-256 fully

connected layer with batch normalization and ReLU activation, but the actor and critic

maintain separate weights for this linear layer. For the actor, there is a final 256-to-6 fully

connected layer that outputs unnormalized probabilities for the 6 possible actions. During

play, softmax is applied to normalize these probabilities before initializing MCTS nodes. For

the critic, there is a final 256-to-1 fully connected layer and a tanh activation to output a

predicted reward between -1 and 1.

5.1.4 Hardware

Our Pommerman experiments were run on the HAL computing cluster managed by the

National Center for Supercomputing Applications. We used a single node of the cluster for

our experiments, which had 2 20-core IBM POWER9 CPUs @ 2.4 GHz and 4 NVIDIA V100

GPUs (each with 5120 cores and 16 GB of HBM2 memory). However, our training code was

not multithreaded, so it only used one CPU core and one GPU. The node had 256 GB of

DDR4 RAM.

5.1.5 Hyperparameters

Episodes against random opponent 10,000

Episodes against scripted opponent 3,350

Training iteration period 4096 game steps

Batch size 32

Discount factor 0.99

Learning rate 0.0001

Denominator addend for numerical stability in Adam 10−8

Experience replay memory size 32,000 game steps

MCTS rollouts per game step 32

Temperature 1.0

Initial game steps using temperature 30

MCTS upper confidence bound coefficient (c) 1.5

Window size for averaging scores in results and graphs 200 episodes

Table 5.1: Hyperparameters for Pommerman experiments

20

5.2 STARCRAFT II

5.2.1 Environment

We performed our experiments in StarCraft II on the BuildMarines minigame in the

StarCraft II Learning Environment. To apply environmental curriculum learning to the

minigame, we made modifications to both the features of the state input and the action

interface (although the modification of the state was not a helper because we removed infor-

mation rather than adding information). Then we created a curriculum of 3 environments

that used 2 action helpers.

State Input

The original state given by the StarCraft II Learning Environment consists of 20 image

layers and over 38 scalar values. We simplified this input by filtering most of the features

out to reduce input noise and computational load, since we had limited resources. We kept

2 image layers and 8 scalars from the original state as our simplified state. The 2 image

layers represent the type of unit (including buildings) at each position on the screen, and

the amount of hit points (health) of any unit at each position on the screen. We chose a

resolution of 84×84 for the image layers, a common small screen size used in other StarCraft

II research. In the BuildMarines minigame, the entire map is small enough to fit within the

player’s observable camera, so these image layers represent the information of the whole map

at all times.

The 8 scalar features from the original state that we used are the number of minerals

the player has (currency mined by workers and spent on buildings and units), the current

Supply used, the current Supply cap (as given by the current number of Supply Depot

buildings), the amount of Supply currently used by Marines, the amount of Supply used by

workers, the number of Marines on the field, the current timestep number, and the number

of workers queued to be created at the Command Center. Note that the amount of Supply

used by Marines and the number of Marines are not necessarily the same, because Marines

in production take up Supply but do not exist yet.

Action Interface

In the BuildMarines minigame, all actions that are irrelevant to the goal of making marines

are removed from the action space. For example, the agent cannot choose to make buildings

21

besides Supply Depots or Barracks, or build any unit from a Barracks besides a Marine. We

further customized this action space by making the necessary steps towards building marines

explicit. That is, the action interface for our agent consists of 6 actions:

• NO OP: Do nothing

• MAKE SCV: Order the Command Center to construct an SCV worker

• MAKE MARINE: Order the Barracks to construct 1 Marine (all Barracks are selected as

a group so the Marine is added to the queue of the next free Barracks)

• BUILD DEPOT: Order a currently mining SCV worker to build a Supply Depot building

• BUILD BARRACKS: Order a currently mining SCV worker to build a Barracks building

• KILL MARINE: Order all Marines to attack a randomly chosen Marine (to free up Supply

while not reducing score)

Environmental Curriculum

To make the minigame easier for our learning agent at first, we created 2 action helpers.

Both action helpers involved taking a certain action at scheduled times automatically, so

that the agent did not need to learn those action timings itself. The first action helper

automatically inserts the MAKE SCV action multiple times at the start of the episode, because

in the beginning the player needs more workers to generate more minerals for the rest of

the episode. This helper keeps making SCVs until a total of 22 SCVs is reached, because

22 SCVs is the maximum number that can still mine minerals efficiently (when there are

too many, SCVs block each other from mining). Note that even if this target number is not

optimal, the agent will learn to make SCVs on its own in the environment without helpers,

so the agent can converge to the optimal number.

The second action helper periodically inserts the KILL MARINES action once Marines have

been created and are sitting on the field. At each timestep, this helper checks if there are

multiple marines and if the player has less than 50 minerals. If both of these conditions are

true, it inserts a KILL MARINES action. The first condition is necessary because otherwise the

KILL MARINES action does nothing. The second condition ensures that there is not another

useful action that the agent might want to take. All the other meaningful actions, which

create units or buildings, require at least 50 minerals. So if the player has less than 50

minerals, a KILL MARINES action does not waste an action. This helper makes the minigame

22

easier because killing Marines reduces the Supply used without reducing the score (number of

Marines made), so the player should kill Marines when possible to avoid having to construct

extra Supply Depots.

We decided that the second action helper is more helpful than the first action helper, since

the timing of taking the KILL MARINES action is more dependent on context (i.e. when you

have less than 50 minerals and no other actions to take), while the timing of the MAKE SCV

action is fixed and the same for every episode (at the start). Thus, it is easier to learn

the correct timing for creating workers compared to learning the timing for killing Marines.

Then the helper that automatically kills Marines makes a greater impact than the helper that

automatically makes SCVs in terms of reducing the difficulty. Following our methodology,

the most helpful helper should be removed first in the sequence of training. Thus, our

curriculum of environment versions is an environment with both helpers, an environment

with only the SCV helper, and an environment without either.

Action Interval

The StarCraft II Learning Environment allows an action to be taken every frame, where a

frame is 1/16 of a second. However, if we trained at this interval, episodes would be very long

in terms of timesteps. As a result, the agent would take a long time to finish an episode,

generating less data and making training slower. Since optimal play does not require an

action every 1/16 of a second, we sped up our training by using a step multipler of 16.

As a result, our agent takes an action every second instead of every 1/16 of a second, and

the frames in between are computed by the environment without any new actions (which

is equivalent to playing with no step multiplier but taking 1 real action and 15 no-ops for

every 16 frames).

5.2.2 Training Algorithm

Our StarCraft II agent uses the REINFORCE algorithm to update its policy network,

one of the oldest and simplest policy gradient algorithms. During play, the policy network

outputs probabilities for the 6 actions at each timestep, and these probabilities are sampled

to choose the action taken. The states seen, actions taken, and rewards received are stored

in an experience replay buffer, which is used in each training iteration in randomly shuffled

order.

23

The loss function used in the REINFORCE algorithm is cross entropy loss, given by

L = −
b∑
i=1

vi · log(π(si, ai)) (5.4)

where si, ai, vi are the state observed, action taken, and total discounted future reward

received, π(si, ai) is the network’s output probability for choosing ai at si, and b is the batch

size [23]. After computing this loss for a batch, the network weights are updated using

stochastic gradient descent and the Adam optimizer.

We found that as training went on, improvements required more fine-tuned adjustments

and hence smaller step sizes. To address this, we used a learning rate schedule, reducing

learning rate over the course of training. We started with a learning rate of 0.0001, and halved

the learning rate every 100 training iterations. When moving on to the next environment

version, the learning rate was reset to the initial 0.0001, so that the network could take

larger step sizes again to accommodate the new environment.

We also found that at the start of training, the agent tended to repeat useless actions

rather than exploring randomly. To encourage exploration, we used temperature to smooth

out the probabilities between actions. Then the sampled action probabilities become

π = σ(πo/T) (5.5)

where πo is the normalized output probabilities from the network, σ is the softmax function,

and T is the temperature. For each environment version, we started with a temperature of

1.0 and annealed it linearly to 0 over the first 16 training iterations. When the temperature

is 0, the network output probabilities πo are used directly (as if there is temperature is not

used).

5.2.3 Network Architecture

Like our Pommerman agent, our StarCraft II network is a residual network. However,

the residual blocks in this network use fully connected layers instead of convolutional layers.

The network begins with two convolutional layers of kernel size 3 × 3 and padding 1, each

followed by batch normalization and a ReLU. The first convolution goes from the 2 input

image channels to 32 channels, while the second convolution goes from 32 channels to 1

channel. That channel is then flattened into a vector of length 84× 84 = 7056. The vector

goes through 2 fully connected layers, each followed by batch normalization and a ReLU.

The first fully connected layer goes from 7056 nodes to 294 nodes, and the second layer from

24

294 to 8.

This 8-vector is then concatenated with the 8 scalar input features, making a vector of

length 16. These 16 values go through a fully connected layer to become 32 nodes, with

batch normalization and a ReLU. Then comes 2 residual blocks in sequence, where each

residual block consists of

1. Fully connected layer from 32 nodes to 32 nodes

2. Batch normalization

3. ReLU

4. Fully connected layer from 32 nodes to 32 nodes

5. Batch normalization

6. Skip connection adding the input of this block

7. ReLU

Finally, there is a fully connected layer taking the 32 nodes and outputting 6 values, rep-

resenting unnormalized probabilities for each of the 6 possible actions. When choosing an

action during play, softmax is applied to normalize these probabilities before sampling.

5.2.4 Hardware

Our StarCraft II experiments were run on a desktop computer with an Intel Core i7-4790K

CPU @ 4.0 GHz and a NVIDIA GeForce GTX TITAN Black GPU. It had 4 cores, 8 threads,

and 16 GB of DDR3 RAM.

25

5.2.5 Hyperparameters

Screen size 84× 84

Target number of SCVs for SCV helper 22

Environment step multiplier 16

Episodes with both helpers 30,000

Episodes with only SCV helper 24,000

Episodes without helpers 22,000

Training iteration period 16,000 game steps

Batch size 32

Discount factor 1.0

Initial learning rate 0.0001

Learning rate multiplier 0.5

Learning rate update period 100 training iterations

Denominator addend for numerical stability in Adam 10−8

Experience replay memory size 64,000 game steps

Initial temperature 1.0

Training iterations using temperature 16

Window size for averaging scores in results and graphs 100 episodes

Table 5.2: Hyperparameters for StarCraft II experiments

26

CHAPTER 6: RESULTS

6.1 POMMERMAN

6.1.1 Stage 1: Random Opponent

In the first stage of our Pommerman experiments, we trained our agent against the random

agent for 10,000 episodes. The agent saw the most improvement in the first 1,000 episodes of

training (see Figure 6.1). The agent’s average score stabilized after 2,000 episodes, staying

between 0.5 and 1.0 for the rest of training (which translate to winrates between 75% and

100%).

6.1.2 Stage 2: Scripted Opponent

In the second stage of our Pommerman experiments, we trained our agent against the

scripted agent, initializing the network with the final weights from stage 1. This stage ended

up being 2 separate training runs, because we made a hyperparameter change in the middle.

In the first run, we did not use temperature to encourage exploration at the start of each

episode (so temperature was 0, and the action with the highest visit count in the MCTS tree

was always taken). After training against the scripted agent for 1,750 episodes, we observed

that the agent experienced strong fluctuations in winrate (see Figure 6.2). We especially

noted that there were two steep dives in the average score over time. We hypothesized that

during these dives, the agent found a poor starting sequence of actions and stuck to that

sequence for many episodes. To resolve this issue, we set a temperature of 1.0 for the first 30

timesteps of each episode, so that the agent made a variety of starting actions and did not

get stuck. Our use of temperature resulted in more stable results in our second run against

the scripted opponent (see Figure 6.3).

In the first run (Figure 6.2), the agent loses winrate in the first 250 episodes, down to

an average score of -0.75 (12.5% winrate), before recovering. The agent learns how to

play against the new scripted opponent, and maintains an average score of about 0.4 (70%

winrate) for 750 episodes. Then the agent seems to get stuck in an ineffective strategy,

rapidly dropping to almost 0% winrate, before recovering again to -0.2 (40% winrate). At

this point, we paused training to apply temperature, before resuming in the second run.

In the second run, using temperature, the agent’s winrate is more stable (Figure 6.3). After

initial variance (the first 200 episodes show extreme winrates since the score is averaged over

27

Figure 6.1: The average scores of both agents over number of training episodes in stage 1
(against the random opponent). The blue line is the learning agent’s score and the orange
line is the random agent’s (the exact inverse). The red dashed line represents the high score
of the baseline agent without curriculum learning. Averages are taken over a moving window
of 200 episodes.

fewer episodes), the agent stabilizes around 0.3 (65% winrate). Over the course of 1,600

episodes, the winrate dips twice to about -0.15 (42.5% winrate), before recovering each time.

However, these dips are not as extreme as in the first run without temperature. The agent

peaks above 0.5 (75% winrate) before the end of the run.

6.1.3 Converged Strategy

Here, we will describe the general behavior of our curriculum learning agent when facing

the scripted agent, after training for 13,350 episodes across 2 opponents. Our agent uses

a mostly reactive strategy, waiting for the opponent to approach before aggressively coun-

terattacking. In the beginning, it plants some bombs to destroy wooden boxes to check

for power-ups, but otherwise it waits for the opponent to destroy the other wooden boxes

separating the two players. The opponent is scripted to plant a bomb next to the agent if

possible. After the opponent plants this bomb, the ECL agent springs into action, avoiding

the bomb and countering by moving towards the retreating opponent and planting its own

bombs. It can often create chain explosions by planting bombs near existing ones (even the

initial bomb placed by the opponent), which are too complex for the scripted agent to avoid

28

Figure 6.2: The average scores of both agents over number of training episodes in the first
half of stage 2 (against the scripted opponent). The blue line is the learning agent’s score
and the orange line is the scripted agent’s (the exact inverse). The red dashed line represents
the high score of the baseline agent without curriculum learning. Averages are taken over a
moving window of 200 episodes.

reliably. The agent picks up any power-ups that it can reach without crossing paths with the

opponent. With the kick power-up, it gains a considerable advantage, as it kicks bombs to-

wards the opponent when counter-attacking and increases the chance of a kill. This strategy

is good enough to win against the scripted agent 75% of the time. The players sometimes

tie when both die to the same chain of explosions (the agent seems to prioritize killing over

surviving), and occasionally the ECL agent loses when it gets trapped in a corner by the

opponent.

6.1.4 Winrate Comparison

To evaluate the effectiveness of curriculum learning, we trained an agent against the

scripted agent from scratch for comparison. This agent did not use the curriculum, and

initialized the network weights arbitrarily, like at the start of stage 1. We can see that

this agent made no real progress after 4,000 training episodes (see Figure 6.4). The highest

average score it achieved was -0.78, which translates to a winrate of 11%. Our agent that

used curriculum learning achieved a maximum average score of 0.5, or a winrate of 75%,

which is far better. The agent using curriculum learning was able to consistently beat the

29

Figure 6.3: The average scores of both agents over number of training episodes in the second
half of stage 2 (against the scripted opponent). The blue line is the learning agent’s score
and the orange line is the random agent’s (the exact inverse). The red dashed line represents
the high score of the baseline agent without curriculum learning. Averages are taken over a
moving window of 200 episodes.

Figure 6.4: The average scores of both agents over number of training episodes when against
the scripted opponent, without any prior training against the random agent. The blue line
is the learning agent’s score and the orange line is the scripted agent’s (the exact inverse).
The average is taken over a moving window of 200 episodes.

30

Figure 6.5: The average score over the course of stage 1, with both helpers. The figure on
the left displays the first run, and the figure on the right displays the second run after it.
The moving average is taken over the last 100 episodes. The red dashed line represents the
high score of our baseline agent without ECL, the green dashed line represents the previous
highest RL agent score, and the purple dashed line represents the human high score.

scripted agent, which was not possible without curriculum learning.

6.2 STARCRAFT II

6.2.1 Stage 1: Both Helpers

In the first stage of our StarCraft II experiments, we trained our agent using both SCV-

creation and Marine-killing action helpers for 30,000 episodes (see Figure 6.5). This stage was

broken up into 2 training runs in sequence, because our system was interrupted and we had

to resume in a second run. The second run is a direct continuation of the first: the network

weights were initialized to the last checkpoint of the first run, and no hyperparameters were

changed.

In the first run, the agent steadily climbed in average score, reaching above 125 after 13,000

episodes. The sharpest improvement was in the beginning, from below 70 to 90 in the first

2,000 episodes (although the first few data points are subject to increased variance due to

small averaging window). In the second run, the agent improved from 128 to above 140 over

17,000 episodes. We ended stage 1 at this point since the agent had already exceeded the

previous record for this minigame (Table 6.2), so it was clear that the agent had gained a

solid grasp on the game and was ready to move on without a helper.

31

Figure 6.6: The average score over the course of stage 2, with only the SCV helper. The figure
on the left displays the first run, and the figure on the right displays the second run after
it. The moving average is taken over the last 100 episodes. The red dashed line represents
the high score of our baseline agent without ECL and the green dashed line represents the
previous highest RL agent score.

6.2.2 Stage 2: Only SCV Helper

In the second stage, the agent continued training with the SCV-making helper and without

the Marine-killing helper, starting with the final network weights of stage 1. Our system

was interrupted again during training, so this stage was also performed over two runs like

stage 1 (again, nothing changed between runs). In this stage, the agent’s average score rose

steadily from 85 to 115 over the first 13,000 episodes, besides a dip in the first 500 episodes

(see Figure 6.6). (The second run appears to start from a low score due to the variance of

the small averaging window.) The score then plateaued, oscillating around 115, for about

11,000 episodes. At this point, with apparently no more gains to be made at this stage, we

moved onto stage 3.

6.2.3 Stage 3: No Helpers

We conclude our environmental curriculum learning in stage 3, training without any action

helpers. Due to the increased difficulty, the agent takes some time to get back to its high

score from stage 2 (see Figure 6.7). It improved rapidly over the first 5,000 episodes, from

below 70 to over 100. Score growth slowed in the next 5,000 episodes, until the agent peaked

at 125. After the peak, the average score reduced slightly to between 110 and 120, where

it remained for 12,000 episodes. Thus, the environmental curriculum agent achieved a high

score of 125 after 3 stages of 76,000 episodes total.

32

Figure 6.7: The average score over the course of stage 3, without helpers. The moving
average is taken over the last 100 episodes. The red dashed line represents the high score of
our baseline agent without ECL and the green dashed line represents the previous highest
RL agent score.

6.2.4 Converged Build Order

In StarCraft II, a build order describes a player’s starting strategy by listing what units and

buildings they make in the opening of a game. We can describe our agent’s final converged

strategy for the BuildMarines minigame through its build order. The timing of each item

in the build order is usually denoted by the current Supply of the player, but here we will

use timestamps so it is more generally understandable. Each episode, the agent builds units

and buildings in the following order:

Time Unit Time Unit Time Unit Time Unit

0:01 SCV 1:00 Barracks 1:51 SCV 2:25 Barracks

0:09 SCV 1:09 Barracks 1:56 SCV 2:29 Marine

0:16 SCV 1:26 Barracks 2:00 Marine 2:44 Barracks

0:19 SCV 1:32 Barracks 2:09 Marine 2:50 Barracks

0:30 Supply Depot 1:42 SCV 2:10 SCV

0:42 Supply Depot 1:49 SCV 2:12 Marine

0:50 Supply Depot 1:50 SCV 2:16 Marine

Table 6.1: The agent’s final build order by in-game timestamp.

33

Figure 6.8: The buildings that the final agent builds each episode (3 Supply Depots at the
top and 7 Barracks at the bottom), as viewed through the agent’s unit type input image
layer.

At 2:50, the agent has built 3 Supply Depots and 7 Barracks (see Figure 6.8). From this

point on, the agent repeatedly makes Marines and kills them, ordering a new Marine as soon

as 50 minerals are available and issuing attack orders while waiting for minerals. The final

score of each episode varies slightly between 110 and 120, due to the randomness of SCV

starting locations, Marine spawn locations, SCV and Marine pathing, the random choices of

which SCV to select to build a building and which Marine to attack, and slight differences

in action timing.

Notably, the agent creates 3 Supply Depots before making its first Barracks, which is

highly unusual in normal StarCraft II matches. The agent has optimized for making the

most Marines in 15 minutes, rather than doing what would make sense in a normal game

(as humans are biased to do). Also, the final agent only makes SCVs to a total of 16 before

building its first buildings (making the rest afterwards), differing from the SCV-making

action helper, which made all SCVs at the start. Thus, action helpers in ECL do not

constrain the agent’s final strategy, and the agent is able to optimize beyond them.

34

Figure 6.9: The average score of the baseline REINFORCE agent trained from scratch
without environmental curriculum learning. The moving average is taken over the last 100
episodes.

6.2.5 Score Comparison

Similar to our Pommerman experiments, we trained a baseline agent from scratch without

using any helpers, to evaluate the benefit of using environmental curriculum learning. This

baseline agent performed significantly worse than our ECL agent after 3 stages (see Figure

6.9). This baseline agent was able to learn to a certain extent, rising and peaking at an

average score slightly above 100. However, it was not able to improve beyond that, eventually

falling below an average score of 75. Thus, environmental curriculum learning enabled the

REINFORCE agent to achieve a much higher level of performance.

Table 6.2 shows how our results compare to prior work on the BuildMarines minigame.

Before this work, no reinforcement learning agent had ever surpassed the human record of

138. Our ECL agent surpassed this record by reaching 141 in stage 1, albeit with both

action helpers still active. Our agent’s final high score of 125 is comparable to the previous

reinforcement learning record of 123, set by DeepMind’s experiments on relational deep

reinforcement learning [17]. Our result is distinguished by a remarkable difference in sample

efficiency: the DeepMind relational agent was trained over 10 billion game steps, while

our ECL agent only experienced 44 million game steps (total across all 3 stages). Thus,

environmental curriculum learning achieves the same performance 227x more efficiently,

using just the basic REINFORCE update algorithm.

35

Agent Score Training Duration (steps)

DeepMind Human Player [5] 138 -

StarCraft Grandmaster [5] 133 -

Random Policy [5] < 1 -

FullyConv LSTM [5] 6 600,000,000

PBT-A3C [18] 0 1,000,000,000

DeepMind Relational Agent [17] 123 10,000,000,000

DeepMind Control Agent [17] 120 10,000,000,000

ECL Agent Stage 1 141 17,000,000

ECL Agent Stage 2 121 31,000,000

ECL Agent Stage 3 125 44,000,000

Baseline REINFORCE Agent 102 12,000,000

Table 6.2: Highest average scores and number of game steps trained in the BuildMarines

minigame for various agents. The training duration for the ECL agents are cumulative, e.g.

stage 2 includes steps from stage 1.

36

CHAPTER 7: DISCUSSION

7.1 IMPLICATIONS

The efficiency of environmental curriculum learning and its effectiveness even with simple

algorithms make it especially useful in two contexts: when limited samples can be taken, or

when only simple algorithms can be used. The former situation is studied by an active area of

research called sparse reinforcement learning, which focuses on the idea of sample efficiency

[24, 25]. Environmental curriculum learning could be useful in this area. In another context,

sometimes there are limitations on the complexity of training algorithms that can be used.

For example, in low power settings like embedded devices, any machine learning code must

be lightweight as possible, and deep complex networks cannot be supported. If RL training

needed to be run in such a situation, environmental curriculum learning could be potentially

be used to boost the performance of the simple training algorithms available.

7.2 LIMITATIONS

There are some issues that limit the applicability of environmental curriculum learning.

Our application of environmental curriculum learning requires fine-tuned control over the

environment, or at least some way to insert state and action helpers between the agent

and the environment. This is feasible in simulator-based training, where the environment is

all run in software, but may not be possible for real-world environments. However, adding

helpers could still be possible in some of these situations. For example, a robot could initially

learn by choosing from human-crafted sequences of actions, before taking over low level of

control later in the training. Another limitation of environmental curriculum learning is

that it often requires human knowledge or intuition to choose and craft helpers. Such

knowledge may not exist in all context, and sometimes intuition can be wrong. Even in our

own experiments, we found that our SCV-making helper did not create SCVs with optimal

timing. Slight misjudgments in helper design do not seem to hold back the final agent, but

helpers that are significantly worse may be useless.

Finally, the experiments used to evaluate environmental curriculum learning were only

done in one minigame of StarCraft II. To conclusively establish the efficacy of ECL, experi-

ments in other environments must be done as well.

37

7.3 FUTURE WORK

To further explore the possibilities of environmental curriculum learning, more experiments

need to be done. First and foremost, the potential of ECL will be much better known if it can

be tested in a variety of environments, perhaps even non-simulated environments. Besides

other environments, environmental curriculum learning can also be tested with other training

algorithms besides REINFORCE. Its effects might be magnified with more sophisticated

algorithms, or it might be maximally beneficial with only simple ones. These are some of

the many directions to continue studying environmental curriculum learning.

7.4 CONCLUSION

In this work, we presented a new approach to curriculum learning called environmental

curriculum learning, which involves modifying the environment to create stages of easier

versions. Our experiments in the BuildMarines minigame of the StarCraft II Learning En-

vironment demonstrated that ECL was able to achieve previous records with over 2 orders

of magnitude fewer training episodes. At one point during training, it even exceeded the

human record, which has never been done before by a learning agent. Our experiments in

Pommerman, which inspired environmental curriculum learning, confirmed previous research

that curriculum learning with a series of opponents outperforms training against only the

hardest opponent. Overall, curriculum learning is a very promising technique for simple and

efficient reinforcement learning.

38

REFERENCES

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. R. Baker, M. Lai, A. Bolton, Y. Chen, T. P. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go without human
knowledge,” Nature, vol. 550, pp. 354–359, 2017.

[2] OpenAI, “Openai five,” https://blog.openai.com/openai-five/, 2018.

[3] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” ArXiv, vol. abs/1502.03167, 2015.

[4] C. Resnick, W. Eldridge, D. Ha, D. Britz, J. Foerster, J. Togelius, K. Cho, and
J. Bruna, “Pommerman: A multi-agent playground,” CoRR, vol. abs/1809.07124,
2018. [Online]. Available: http://arxiv.org/abs/1809.07124

[5] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney, S. Pe-
tersen, K. Simonyan, T. Schaul, H. van Hasselt, D. Silver, T. P. Lillicrap, K. Calderone,
P. Keet, A. Brunasso, D. Lawrence, A. Ekermo, J. Repp, and R. Tsing, “Starcraft ii:
A new challenge for reinforcement learning,” ArXiv, vol. abs/1708.04782, 2017.

[6] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in ICML
’09, 2009.

[7] S. Narvekar, J. Sinapov, M. Leonetti, and P. Stone, “Source task creation for curriculum
learning,” in AAMAS, 2016.

[8] Y. Wu and Y. Tian, “Training agent for first-person shooter game with actor-critic
curriculum learning,” in ICLR, 2017.

[9] S. Narvekar and P. Stone, “Learning curriculum policies for reinforcement learning,”
ArXiv, vol. abs/1812.00285, 2019.

[10] C. Resnick, C. Gao, G. Márton, T. Osogami, L. Pang, and T. Takahashi, “Pommerman
& neurips 2018,” in NeurIPS, 2020.

[11] C. Gao, P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Skynet: A top deep rl agent
in the inaugural pommerman team competition,” ArXiv, vol. abs/1905.01360, 2019.

[12] H. Meisheri, O. Shelke, R. Verma, and H. Khadilkar, “Accelerating training in pom-
merman with imitation and reinforcement learning,” ArXiv, vol. abs/1911.04947, 2019.

[13] B. Kartal, P. Hernandez-Leal, C. Gao, and M. E. Taylor, “Safer deep rl with shallow
mcts: A case study in pommerman,” ArXiv, vol. abs/1904.05759, 2019.

[14] C. Gao, B. Kartal, P. Hernandez-Leal, and M. E. Taylor, “On hard exploration for
reinforcement learning: a case study in pommerman,” in AIIDE, 2019.

39

[15] D. P. Liebana, R. D. Gaina, O. Drageset, E. Ilhan, M. Balla, and S. M. Lucas, “Analysis
of statistical forward planning methods in pommerman,” in AIIDE, 2019.

[16] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. Czarnecki,
A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D. Horgan, M. Kroiss,
I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezh-
nevets, J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff,
T. Pohlen, D. Yogatama, J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lillicrap,
C. Apps, K. Kavukcuoglu, D. Hassabis, and D. Silver, “AlphaStar: Mastering the Real-
Time Strategy Game StarCraft II,” https://deepmind.com/blog/alphastar-mastering-
real-time-strategy-game-starcraft-ii/, 2019.

[17] V. F. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. P.
Reichert, T. P. Lillicrap, E. Lockhart, M. Shanahan, V. Langston, R. Pascanu, M. M.
Botvinick, O. Vinyals, and P. W. Battaglia, “Relational deep reinforcement learning,”
ArXiv, vol. abs/1806.01830, 2018.

[18] M. Jaderberg, V. Dalibard, S. Osindero, W. Czarnecki, J. Donahue, A. Razavi,
O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando, and K. Kavukcuoglu,
“Population based training of neural networks,” ArXiv, vol. abs/1711.09846, 2017.

[19] K. Shao, Y. Zhu, and D. Zhao, “Starcraft micromanagement with reinforcement learning
and curriculum transfer learning,” IEEE Transactions on Emerging Topics in Compu-
tational Intelligence, vol. 3, pp. 73–84, 2019.

[20] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “OpenAI Gym,” arXiv e-prints, p. arXiv:1606.01540, June 2016.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2015.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–
778, 2016.

[23] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning,” Machine Learning, vol. 8, pp. 229–256, 1992.

[24] Z. Qin, W. Li, and F. Janoos, “Sparse reinforcement learning via convex optimization,”
in ICML, 2014.

[25] Y. Yu, “Towards sample efficient reinforcement learning,” in IJCAI, 2018.

40

