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ABSTRACT

As security and privacy on the web become topics of significant concern, there have been

increased efforts to expedite the deployment of encryption-based transport- and link-layer

protection mechanisms such as HTTPS. Although encryption protects the data being trans-

mitted between a client and a server, site visits generate unique traffic patterns due to

contents of the site and the manner in which the server responds to user requests for site

resources. These patterns can be learned by an adversary, and then be used to predict which

site (or web page within a site) a user is visiting—a technique known as web fingerprinting.

Web fingerprinting allows an adversary to compromise user privacy even in the presence of

encryption mechanisms or anonymity systems, such as the Tor network.

In this thesis, we examine how changes to a site’s configuration (i.e., the size of the site,

site content, hosting strategies, etc.) can influence an adversary’s ability to successfully

fingerprint a user’s visit to a site over the web and Tor. We pay particular attention to the

impact of HTTP/2 and Server Push—new web standards which significantly change network

traffic patterns by altering the order in which site resources are served. Additionally, we ex-

periment with padding site sizes, renaming site resources, and hosting sites from both single

and multiple servers in order to observe the effect of each of these changes on fingerprinting

accuracy.

In order to collect traces from sites that reflect our experimental changes, we create mod-

els of real-world sites and onion services that capture the resource dependency structures of

the original sites. We then modify these models to reflect our desired configuration changes

and serve them via HTTP/1.1 and HTTP/2 with server push. We collect traces of visits

to these models conducted over the web, as well as the Tor network, and evaluate the per-

formance of state-of-the-art fingerprinting classifiers on both sets of traces. We find that

HTTP/2 with server push can successfully reduce fingerprinting accuracy when compared

to HTTP/1.1, and that real-world sites visited over the web benefit from single-server host-

ing, site padding, and constant-length Huffman-encoded resource names. We also find that

HTTP/2 with server push reduces the fingerprintability of regular sites and onion services

accessed over the Tor network, but inconsistencies in our data prevent us from drawing

any conclusions regarding the efficacy of site padding, resource renaming, and single- vs.

multi-server hosting when fingerprinting Tor traffic. We suggest future work that should

help gather more conclusive results for our Tor experiments.
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CHAPTER 1: INTRODUCTION

The protection of user privacy is a major point of concern in the modern web. Protocols

such as HTTPS have been seeing widespread deployment as site developers, researchers, and

browser vendors attempt to curtail adversarial efforts to tamper with or intercept user data

[1]. Virtual private networks are also becoming increasingly popular as a means for users

to practice safer browsing1. Security through encryption and cryptographic means are now

the basis of most modern web protocols and security best-practices—data is encrypted to

prevent an unwanted adversary from reading it, and digital signatures have become the de

facto standard for proving one’s identity on the web.

Anonymity systems—such as the Tor network—have also arisen as an alternative browsing

approach for users concerned about remaining anonymous while browsing the web. Tor

protects user anonymity by ensuring that no hop along a communication pathway is made

aware of the original sender’s identity, or the final destination of the communication. Because

of its ability to protect the identities of clients, the Tor network has become a crucial tool for

proponents of the free-web and users attempting to circumvent state-level censors. It is also

host to numerous hidden onion services, which are not reachable via the regular Internet

and often host sensitive content that may be deemed objectionable by a censoring body.

Link- and transport-layer encryption technologies—such as HTTPS and TLS—are useful

for protecting the integrity and confidentiality of network traffic, and anonymity systems—

such as Tor—are designed to protect the identity of their users from entities within the

network. However, despite the defenses they provide, both mechanisms cannot protect

against an inherent aspect of web browsing across any medium: visiting a specific site

generates a unique pattern of network traffic that can be used to reveal sensitive information

about a user’s browsing. This technique—known as web fingerprinting2—can be used to learn

what site (or page within a site) someone is visiting, by analyzing traffic generated by their

web browser.

The success of a web fingerprinting attack relies on the fact that each web site being

visited has a unique page structure. In order for a browser to display the contents of a page,

it must perform a complex set of interactions with one or more web servers to download all

of the resources used to specify a site’s appearance, structure, and behavior. These client-

server(s) interactions create unique patterns of traffic that are identifiable despite the use

of encryption and various masking strategies [2]. Factors such as packet directions, inter-

1https://www.vpnmentor.com/blog/vpn-use-data-privacy-stats/
2We use the term web fingerprinting in place of the popular website fingerprinting as the underlying

techniques apply both within and across sites.
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packet latencies, and the number and size of downloaded resources all contribute towards

constructing a discernible profile for a given web page. New protocols—such as HTTP/2

and its Server Push feature [3]—streamline the client-server interactions by introducing

optimizations over HTTP/1.1 and changing the resulting traffic patterns. Although these

changes are motivated by performance, we aim to investigate what impact they have on web

fingerprinting performance. We are particularly interested in the server push mechanism,

as it fundamentally alters the request-response pattern for downloading site resources—a

change that should reflect quite heavily in the network trace of a site visit. In this study,

we examine how non-intrusive changes to a web page’s content and hosting strategies can

change the profile of client-server traffic patterns, and in turn, impact the success of site

fingerprinting over the web and Tor.

Deployment of the HTTP/2 protocol has been gaining speed, but the use of server push in

the wild is still relatively rare.3. We therefore perform our experiments in a synthetic setting

in which we can serve modern websites over HTTP/2 with server push enabled, regardless

of whether the original sites support the protocol. To make our simulated setting as realistic

as possible, we collect web page models from the 99 most popular sites, as ranked by Alexa

[4], as well as 20 real-world active onion services. These models capture the dependency

structure of the pages, as well as the sizes and types of each individual site resource, thus

capturing the core features that influence the network trace of loading a page. We serve

these models over the web and Tor, and collect network traces of the model sites using both

HTTP/1.1 and HTTP/2 with server push. In the Tor setting, we also evaluate whether

hosting site resources on a single server provides any benefit over hosting resources across

multiple web servers per site. We use state-of-the-art web fingerprinting techniques [5, 6, 7]

to evaluate each model-configuration’s susceptibility to fingerprinting.

Throughout the remainder of this thesis, we make the following contributions:

1. Measure HTTP/2’s impact on fingerprinting over the web: We find that there

is a notable drop in classifier accuracy when a site is served via HTTP/2 with server

push enabled. Without any other changes to the site’s configuration, HTTP/2 with

server push reduces fingerprinting accuracy from 80% to 74%.

2. Site padding and constant-length Huffman-encoded resource names: We

identify three sources of information that contribute to fingerprintability: the length

of the site name/URL, the names of the resources that are pushed, and the total size of

the page. We investigate the option of padding site models to mitigate the information

3https://http2.netray.io/stats.html
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learned through these sources, and find that with an average padding overhead of 25%

of the site’s original size, fingerprinting accuracy falls to 68%. In order to address

information learned through resource names, we rename all site resources to have names

of the same Huffman-encoded length. This further lowers fingerprinting accuracy to

62%. We note that these figures are comparable to existing padding protocols in the

literature [8, 9, 10] but can be implemented without changing the web transport and

application layer protocols.

3. Measure fingerprintability of padded, HTTP/2-enabled models over Tor:

We extend our findings from fingerprinting over the web to fingerprinting over the Tor

network. We host both regular sites and onion services as models and access them

over the Tor network under various site configurations (e.g. padded vs. unpadded,

HTTP/1.1 vs HTTP/2 with server push). We find that HTTP/2 with server push

seems to marginally lower fingerprinting accuracy over Tor, though not to the same

degree as it does over the regular web. We get mixed results regarding the impact of

site padding on Tor fingerprinting.

4. Single- vs. multi-server resource hosting: We note that real-world sites often

host their resources on multiple web servers. We test whether this has any bearing

on site fingerprintability by hosting each Tor model from a single server, as well as

multiple servers. We find that hosting all site resources from a single server reduces

Tor fingerprinting accuracy for regular sites. However, onion services generally seem

to be more fingerprintable when served from a single server.

We provide a background of web page structure, HTTP/2, Tor, and web fingerprinting in

Chapter 2. We then detail our experiments with measuring the impact of HTTP/2 on web

fingerprinting in Chapter 3. Chapter 4 discusses takeaways from our initial experiments over

the web, and how we might apply them to our next experiments over Tor. Our experiments

with fingerprinting regular sites and onion services over Tor are detailed in Chapter 5, along

with a discussion of the results and how they can be improved moving forward. Finally, we

conclude in Chapter 6.
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CHAPTER 2: BACKGROUND AND RELATED WORK

In this section, we discuss various aspects of browsing on the modern web, including web

page structure, HTTP/2, and the Tor network. We then describe web fingerprinting and

how the aforementioned mechanisms can impact the success of an adversary attempting to

classify network traffic.

2.1 WEB PAGE STRUCTURE

Modern web pages are content-rich amalgamations of numerous resources that are all

rendered together in a browser to provide users access to the sites and web services they are

familiar with. Some of these resources include images, scripts, fonts, stylesheets, and frames

that may include additional documents. When a user visits a URL, the browser requests

and downloads the site’s base HTML document, which provides the browser with references

to the embedded resources required to fully render the web page. The browser individually

requests and downloads each of these embedded resources, and recursively requests any

resources that may be present in the embedded resources. This process continues until

the browser has fully downloaded all components required to render the site. Figure 2.1

demonstrates a sample web page structure modeled by a dependency graph.

Due to the one-by-one nature of requesting and downloading resources, the time required

to download a site grows linearly with the number of site resources (i.e. the size of the site).

According to the HTTP Archive, the median desktop WordPress site in February 2020 con-

tained 88 embedded resources, and therefore made 88 resource requests [11]. Each of these

requests introduces its own latency, since the size of the resource will directly impact the

number of round trips required to download the resource. This delay compounds with the

latency caused by parsing resources to identify further requests. Importantly, site resources

may be hosted on servers from various domains, meaning that the browser may have to

initiate multiple ClientHello’s and establish multiple TLS connections—each with its own

setup latency. Browsers and web servers have introduced various techniques to streamline

the page load process, including connection reuse, simultaneous parallel connections, incre-

mental resource parsing, resource scheduling and prioritization, etc. While these reduce the

performance overhead created by multiple site resources, they do not completely eliminate

it.
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hello.js 
welcome.png welcome.css 

welcome.woff2 helloworld.js hello.css example.jpg hello.bmp format.css a.woff2 

example.html 

welcome.html 

login.html 

Figure 2.1: The structure of an example web page. The site resources include HTML doc-
uments (.html), stylesheets (.css), images (.bmp, .png, .jpg), scripts (.js), and fonts (.woff2).
The arrows represent the dependency structure of the page; each resource points to other
resources that it references/causes to be loaded.

2.2 HTTP/2 AND SERVER PUSH

One of the primary culprits behind high latency connections is HTTP/1.1’s tendency

to open multiple TCP connections to a server. Ironically, this solution was engineered in

order to reduce latency by enabling concurrent data streams. However, given the large size

of most modern web pages, the number of concurrent connections can grow too large and

cause network congestion, packet loss, and weaker performance [12]. This performance hit

is further compounded by the fact that HTTP/1.1’s repetitive headers are prone to clogging

the initial TCP congestion window [3]. The SPDY protocol [13]—which has since evolved

into HTTP/2—was developed to address these issues.

These protocols establish a single TCP connection to an endpoint, and multiplex all of

their HTTP requests and responses over the connection, thereby reducing network load. In

order to efficiently pipeline across the single TCP connection, requests can be scheduled

asynchronously, and can be prioritized to prevent head-of-line blocking and ensure that the

most important resources are handled first. HTTP/2 also compresses headers to truncate

redundant header data and allow multiple requests to be compressed into a single packet [3].

2.2.1 Server Push

HTTP/2 also introduces a feature known as server push, which enables the preemptive

serving of site resources. This is motivated by the fact that certain requests from a client
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can allow a server to predict future requests. Consider the site modeled in Figure 2.1. Based

on the dependency tree of the site, it is clear that a client requesting example.html will

certainly end up requesting resources such as welcome.html, welcome.png, etc. Therefore,

when the server receives a request for example.html, it will proactively send resources in the

site dependency tree without waiting for explicit requests from the client.

Under the right circumstances, this ”pushing” can eliminate some of the latency introduced

when a client has to parse an incoming resource and request embedded resources one-by-

one. However, server push does not improve performance in all cases. Wang et al. note that

server push can induce extra overhead by redundantly pushing unneeded or cached resources

depending on push configurations and client latencies [12]. Zimmermann et al. find that

suboptimal push strategies can also stall browser rendering pipelines by pushing resources

in the wrong order [14, 15]. Recent research suggests that optimal push strategies may be

quite complex and involved [16], and determining these strategies is the subject of ongoing

work [17]

One of our goals in this work is to identify the privacy implications of the HTTP/2

server push mechanism under various web fingerprinting schemes. We posture that HTTP/2

with server push fundamentally changes the behavior of site traffic patterns, and that these

changes can somehow impact the success of an adversary attempting to fingerprint users’

browsing sessions.

2.3 THE TOR NETWORK

The Tor network is an anonymity communication system built as an overlay network. It

aims to improve user privacy on TCP-based applications via onion routing—an approach

that ensures that each relay node (or onion router) in a communication pathway only knows

the current packet’s previous and next hop nodes. By building a path—or circuit—across

multiple relays to the endpoint, a client can ensure that no single node in the transmission

gains full knowledge of the participants involved in a communication [18]. By maintaining

this property, onion routing allows Tor users to remain anonymous by separating their iden-

tity from their browsing. As of April, 2020, Tor is used by an estimated 2,000,000 daily

users worldwide, and consists of approximately 7,000 volunteer relays [19].

2.3.1 Tor Circuits

Communication over the Tor network occurs over client-constructed circuits, each con-

taining three relays: an entry guard, a middle relay, and an exit relay. In order to send
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traffic over the circuit, clients use local software known as an onion proxy, which is responsi-

ble for communicating with the entry guard. The onion proxy forwards client traffic to the

entry guard, which then forwards communication to the middle relay. The middle relay will

forward communication to the exit relay, which is responsible for communicating with the

endpoint on the client’s behalf. Note that the entry guard and middle relay will not know the

destination of the communication (provided the client is using end-to-end encryption such as

HTTPS), since the destinations they forward to are the middle and exit relays respectively.

Similarly, the exit relay will not know the original client from which the communication

originates, since its ”client” will be the middle relay. Clients cycle between a set of three

entry guards for 30 to 60 days at a time, and randomly choose a middle and exit relay for

each circuit. Circuits are changed every 10 minutes to prevent deanonymization [20]. Note

that randomly selecting the final two relays in the circuit can lead to variable performance

over the Tor network, depending on latencies between any two hops in the circuit.

Once a client has established a circuit, they can communicate with the destination via

multiple streams. Each of these streams corresponds to a single TCP connection between

the exit relay and the destination server, and this system allows for multiplexed TCP com-

munication over a Tor circuit. Communication over the Tor network utilizes TLS, and data

is sent in fixed-size 512 byte cells [18]. This uniform cell size serves as a rudimentary pro-

tection against adversaries attempting to identify traffic based on individual packet sizes.

As we will see in section 2.4.3, this protection falls short under more nuanced fingerprinting

approaches.

2.3.2 Onion Services

Onion services, also known as location-hidden services, enable users to provide TCP ser-

vices over Tor without revealing their IP address. These services are only available via the

Tor network, and are accessed via self-certifying onion domains ending in .onion.

Rendezvous Points

Since onion services never reveal their IP address, clients must have another way of estab-

lishing a communication with them. This is achieved via the use of rendezvous points. An

onion service establishes several onion routers as introduction points to which a client can

connect to. The client chooses an onion router as their rendezvous point and communicates

the rendezvous point to the onion service via the introduction point. The client will also in-

clude a hash of the service’s public key and an optional authorization token in their message
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to the introduction point. The client and onion service will then establish circuits to the

rendezvous point and begin communication. The service’s hostname will be self-certifying

and is represented as x.y.onion, where x is the authorization token provided by the client,

and y encodes the hash of the service’s public key [18]. While this approach is efficient and

secure, it can lead to human-unreadable hostnames that are comprised of random base32

strings.

Content of Onion Sites

Since they protect the location of servers, onion services are generally used to host services

that would be censored or restricted by a powerful state-level adversary. These services range

from news boards dedicated to free press and anti-censorship, to more illegal operations such

as counterfeit document and weapons marketplaces. A study by Biryukov et al. crawled

the onion service domain space, and determined that 56% of the active services providing

HTTP(S) access were dedicated to politics, anonymity, security, and other generally permit-

ted services or discussions on the regular Internet. However, the remaining 44% was related

to drugs, adult content, counterfeit products, identity theft, and weapons [21].

Due to the sensitive and sometimes illegal nature of their content, many onion services

are the target of governments attempting to shut them down. Note that even benevolent

onion services, such as news and discussion sites dedicated to free speech, may be the target

of large or well-funded adversaries who deem the activity of the service detrimental to their

goals. As such, fingerprinting onion services and their users is of particular interest to

many adversaries worldwide. Recent work has shown that large onion services are easily

fingerprinted despite traffic obfuscation attempts [22].

2.4 WEB FINGERPRINTING

Web fingerprinting (WF) is a technique that allows an adversary to predict and/or identify

a user’s browsing activity by determining patterns or salient features in their web traffic.

Useful features for web fingerprinting include packet sizes, counts, directions, and timings—

all or most of which can be learned even if the traffic is encrypted or being served over an

anonymity system or VPN [23, 24]. As mentioned earlier, web fingerprinting would be useful

to adversaries attempting to censor or block traffic to certain sites, or to build user browsing

profiles. Such adversaries could exist in the form of state-owned ISP’s, or other malicious

middlemen within the network.
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2.4.1 Closed- vs. Open-World

At its core, web fingerprinting is a classification problem in which an adversary wishes to

identify which site—out of a set of possible sites—a user is visiting. In order to do so, the

adversary must gather traffic patterns generated by the set of possible sites, identify features

that may aid in the classification task, and train a machine learning model on the gathered

data. This scenario is referred to as the closed-world, since the adversary is assuming that

the user will only make site visits within a reasonably finite set of websites. In the closed-

world, the adversary has a sufficient number of traffic samples for each of the sites within the

set to train their classifier on. The closed-world approach was favored by many pioneering

WF studies, as its assumptions were sufficient for identifying which features of a site or web

page were susceptible to fingerprinting [25, 26, 27, 28]. However, the approach has come

under scrutiny for not being representative of the real world, in which the set of sites a user

could visit is far too large for any realistic adversary to collect data on and train a classifier

[29, 30]. In order for an adversary to take the closed-world approach and ensure coverage

of the entire Internet, they would have to gather traffic data for every site/web page on the

Internet, which is simply unrealistic.

An alternate strategy which satisfies the shortcomings of the closed-world approach, is

known as the open-world approach. In this scenario, an adversary trains on traffic samples

for a finite set of sites, but assumes that the user may visit sites outside of this set. This

places a greater focus on building classifiers that can generalize, but note that it is impossible

for a classifier to identify a site or page that it has not been trained on. Rather, open-world

classifiers will predict whether a sample occurs within the closed-world on which it was

trained (in which case it also predicts the site), or whether it occurs outside of the set

altogether.

In this study, we take a closed-world approach to our experiments, as we are interested

in identifying how various changes to site configurations can impact the accuracy of a fin-

gerprinting adversary. An open world approach would not render our results invalid or

unrealistic, since a closed-world classifier would in fact achieve higher accuracy than an

open-world one (due to its finite and known sample set). If changes in accuracy apply to a

closed-world scenario, then they will certainly apply to the more general open-world scenario.

2.4.2 Fingerprinting over the Web

It has long been known that object sizes—which are not protected by HTTPS—can reveal

sensitive pieces of information that clue an adversary in on the site a user is visiting [31].
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These findings led to the development of the first WF attacks, which would pinpoint pages

within a single website [25, 32]. Later attempts began to employ the more traditional closed-

world approach, and would identify pages from a set of potential sites [26].

A significant amount of work has gone into engineering the features that are used for web

classification. As machine learning techniques have evolved and classifiers have become more

refined, most approaches have settled on packet direction, order, and size as being the most

important features for fingerprinting success. Some studies have also explored variations and

combinations of these features, such as cumulative sizes of packets in a specific direction [33].

Recent work has noted the importance of packet bursts—a sequence of packets in the same

direction—in fingerprinting [5], as they are representative of the request-response pattern of

a site and can therefore help recover the site structure. We note that HTTP/2 with server

push significantly changes the burst structure by changing the order and frequency at which

resources are served, and thus has the potential to impact fingerprinting success.

Defenses

Initial work on defenses against web fingerprinting focused on ad hoc approaches that

modified some of the aggregate features used in early fingerprinting work [34, 35, 36]; how-

ever, these have been shown to be largely ineffective by more sophisticated machine learning

techniques [37, 2]. Recent studies have focused on variants of constant rate defenses [9, 8]—

where the server and client communicate with each other using a constant-rate stream—as

this approach has a provable bound on the amount of information available to a web fin-

gerprinting attacker, i.e., the total amount of data transferred in each direction (plus the

rate, in cases when it is adjustable). Certain constant-rate defenses even focus specifically

on limiting the information revealed via packet burst sizes [38].

An idealized version of an HTTP/2 page load with server push resembles a constant-

rate download, since a single request from the client is satisfied by a download of all the

resources comprising a page, and as such, should present a limited amount of information

for fingerprinting. Therefore, one of our goals is to evaluate this high-level intuition using

actual HTTP/2 implementations in browsers and web servers.

2.4.3 Fingerprinting over Tor

Since Tor was built for the express purpose of providing user anonymity and privacy,

fingerprinting attacks against Tor traffic can be especially dangerous or compromising. Tor

users access sensitive data over the network—either by using Tor to circumvent censorship
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restrictions, or by accessing onion services—and adversaries who can successfully fingerprint

Tor traffic may use the learned information for malevolent purposes.

The first attempt to fingerprint Tor simply attempted to port early WF approaches to

Tor traffic [28]. The classification only yielded a 3% accuracy with a set of 775 sites, due

to the fact that it focused heavily on packet length frequencies. The use of uniformly sized

512-byte Tor cells means that packet sizes do not serve as a useful classification feature for

an adversary. However, researchers have identified other avenues of fingerprinting success

over the past decade.

It turns out that some of the more nuanced approaches mentioned in section 2.4.2 apply

well to fingerprinting Tor traffic, and can achieve 90-91% accuracy in closed-world scenar-

ios. The k-NN attack makes use of packet orderings and burst patterns [5], the CUMUL

attack measures cumulative packet lengths of sequences of traffic (groups of packets moving

in the same direction) [33], and the k-FP attack makes use of the number of packets in

a particular sequence [6]. All of these approaches share some important aspects in their

classification features—none of them focus on the size of individual packets, and all of them

incorporate packet direction metrics. This strategy has informed the current generation of

Tor fingerprinting, which has adopted deep learning to achieve far more accurate results.

Sirinam et al. introduced Deep Fingerprinting (DF) in 2018, as the first deep learning-

based fingerprinting approach for Tor that outperformed the previously mentioned WF

strategies [7]. This work builds off of earlier attempts to automate feature extraction for WF

attacks via deep learning [39, 40], and achieves a 98.3% accuracy in a closed-world scenario.

Such performance is achieved by learning features from a simple bit-wise representation of

packet directions in the original trace. Later studies have incrementally improved upon DF

by providing more scalable, generalizable, and efficient deep learning models [41, 42, 43],

but all follow the same approach of extracting features from packet direction representa-

tions. Again, we note that HTTP/2 with server push fundamentally changes site packet

sequence frequencies—as all resources are pushed at once given a single request from the

user—and that this change may impact the accuracy of a deep learning approach that relies

heavily on packet direction to make its classification.

Defenses

Proposed WF defenses for Tor also follow a constant-rate philosophy in order to minimize

the information leaked via packet bursts. WTF-PAD uses adaptive padding to only pad

traffic when channel usage is low, thereby making it more difficult to identify concrete

packet bursts [10]. Walkie-Talkie forces the Tor client to communicate with the server in
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half-duplex mode, which causes non-overlapping packet bursts in either direction. Small

amounts of padding and packet delay are added to cause similarities between the traces of

different sites, therefore making classification more challenging [38].
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CHAPTER 3: MEASURING THE IMPACT OF HTTP/2 ON WEB
FINGERPRINTING

In this chapter, we build an understanding of how HTTP/2 and server push impact the

fingerprinting landscape. We also suggest small changes to site configurations that can make

successful fingerprinting of a site more difficult1.

3.1 EXPERIMENTAL SETUP

To understand how HTTP/2 and server push affect fingerprinting, we perform a head-to-

head comparison between HTTP/1.1 and HTTP/2 with server push. Normally this would

be done by fingerprinting traces collected from sites served via HTTP/1.1, and comparing

the results to traces collected from sites served via HTTP/2. Unfortunately, the deployment

of HTTP/2 among web servers is still sparse, and the use of sever push is even more limited.

In order to address this issue, we create a synthetic experimental environment in which we

can serve the same web pages using both protocols. This allows us to collect traces for

fingerprinting that are representative of both HTTP/1.1 and HTTP/2 deployments.

To ensure that our synthetic traces are realistic, we model the structure of our test web

pages after the structure of actual popular web sites. The following sections describe our ap-

proach for creating and serving these models, as well as the trace collection and fingerprinting

techniques we used.

3.1.1 Constructing Web Page Models

As discussed in Section 2.1, a web page is comprised of a number of different types of

resources that can be represented as a dependency tree. We wanted the model pages for our

synthetic environment to accurately mimic the structure of real web pages, so that they would

be representative of real-world sites. To do so, we first perform a web crawl of the the 100

most popular websites—as listed by the Alexa ranking system [4]—with a headless version

of the Chromium browser. We use the Chrome DevTools protocol2 to intercept network

events such as requestWillBeSent, responseReceived, dataReceived, and loadingFinished. This

allows us to keep track of the requests and responses that are being sent and received by the

browser during the loading of the page. From the responses field in the request metadata,

1The work in this chapter was jointly performed with, and draws from prior work by Weiran Lin
(weiranl@andrew.cmu.edu)

2https://chromedevtools.github.io/devtools-protocol/
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<head>
<l ink rel=” s t y l e s h e e t ” href=” sheet0 . c s s ”>
<script src=” s c r i p t 0 . j s ”></ script>
<body>
<img src=”img0 . g i f ”>
<iframe src=” index1 . html”></ iframe>
< !−−AAAAA[ . . . ] AAA−−>
</body>

Figure 3.1: The top-level HTML file in a web page model, which loads a stylesheet
(sheet0.css), a script (script1.js), an image (img0.gif), and another HTML file in an iframe
(index1.html).

we can extract the type of the resource that is being requested—document (i.e., HTML file),

stylesheet, script, image, or font—as well as its size. Additionally, by tying request URL’s

to specific resources, we are able to learn what previously loaded resource is responsible for

loading another resource—e.g., a script might load a font, a stylesheet might load an image,

etc.—through the initiator information in the responseReceived event.

We then create a web page model that replicates the structure attributes captured during

our crawl. In our model, we create ”dummy” resources that correspond to each resource

in the real page with the same resource type. We also maintain the dependency structure

of the real-world site by inserting necessary references to other resources within the model

resource. For example, in Figure 2.1, the top-level HTML file, example.html, loads an im-

age, welcome.png, another html page, welcome.html, a stylesheet, welcome.css, and a script,

hello.js. Likewise, our top-level model file correspondingly contains references to modeled

versions of each of these resources, as shown in Figure 3.1. It also contains a comment that

pads the model resource to the same size as the original example.html. The padding comment

varies in length depending on the size of the target resource.

Since non-page-root resources can also load dependenciees, we include directives to request

dependencies in any model resource that loads further resources. For example, script0.js,

which models hello.js in Figure 2.1, will include JavaScript commands to load another script,

a stylesheet, a document, an image, and a font; it will then be padded to the same size as

hello.js using comments. To model images, we create a 1× 1 pixel GIF file with a comment

section that pads the object to the size of the original image (we found that serving an

invalid image file would cause the browser to abort the load). The dependency structure of

the resulting model is shown in Figure 3.2

We have to use special handling for fonts, as Chromium does not load a font unless it
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index.html 

index0.html script0.js img0.gif sheet0.css font0.woff 

script1.js sheet2.css img1.gif index1.html img2.gif 

sheet1.css 

font1.woff 

Figure 3.2: A model of the example web page from Figure 2.1. The file types and sizes all
match the resources used in original page. The dependency structure closely mimics the
original, but note that there is a deviation in how the font0.woff and sheet1.css are loaded.

is actually used to render some text. We therefore add a text element styled to use the

loaded font inside an HTML file. In our testing, however, we discovered that Chromium

reports that a font load is initiated by the HTML file in which it is used, even if the font

is specified in a separate stylesheet (CSS file). This means that our model will miss a

dependency when a font is loaded by a stylesheet. For this reason, font0.woff in Figure

3.2, which models welcome.woff2 in Figure 2.1, depends only on the main page and not the

stylesheet sheet0.css, which models welcome.css. We found that a similar problem occurs

when a stylesheet loads a second sheet using the @import directive. This results in another

discrepancy for the dependency structure of sheet1.css in Figure 3.2, which models format.css

in Figure 2.1. However, since our goal is to create representative web pages, rather than

perfectly model each site, we determined that these slight deviations to the original page

were acceptable within reason.

To validate the loading behavior of our models, we load the model web pages through

headless Chromium and use the DevTools protocol to note the request and response sizes,

types, and order; we find that the models match the original web page behavior.

3.1.2 Trace Collection

We now detail the methods used to host our model sites, as well as those used to collect the

traces used for fingerprinting. Our site models are hosted using the Caddy web server3, pages

3https://caddyserver.com/
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are loaded via headless Chromium. The Caddy web server supports both HTTP/1.1 and

HTTP/2 with (or without) server push, which allows us to model the differences between

both protocols by making a simple configuration change to the server when hosting our

models. Therefore, we configure the server to use HTTPS and HTTP/1.1 or HTTP/2,

depending on the test being performed. We note that some of the modeled websites were

originally served over HTTP, but we use HTTPS in our experiments, motivated by the trend

towards greater HTTPS deployment. In order to best simulate communication between a

client and server on isolated machines and wholly separate networks, the Caddy server and

Chromium browser are run in separate Docker containers connected by an isolated network.

The browser container queries the site model and concurrently runs tcpdump to produce a

PCAP file that serves as our web trace. We process the PCAP file to filter out DNS packets,

omit any TCP packets that carry no data, and record only the sizes, directions, and timings

of each packet. These attributes are then used as input for fingerprinting.

As points of comparison, we also collected packet traces of headless Chromium loading

the original sites.

3.1.3 Classification Techniques

To perform web fingerprinting, we use the features developed by Wang et al. [5] for

their k-nearest neighbors classifier. Each packet stream is converted into a vector of 3766

features capturing distributions of packet counts, sizes, bursts, etc. However, Hayes and

Danezis demonstrate that a random forest classifier using the same set of features achieves a

higher classification accuracy [6]—hence we use a random forest classifier in our work. Later

work has explored using different features [33] as well as deep learning [40] for classification;

however, we use the random forest technique because it allows us to perform an analysis of

feature importance. Having a measure of which features are contributing to fingerprinting

success allows us to formulate techniques to mitigate the impact of those features.

In our classification, we first perform recursive feature elimination with a step size of 100 to

prune the 3766 features down to the 100 most relevant ones. We also compute the accuracy

using all 3766 features, but in our experience, the classifier performs better on the reduced

feature space. In our experiments, we use closed-world classification, as it generally yields

higher classifier performance and thus better highlights the information disparities resulting

from protocol changes.
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Table 3.1: Summary of results.
Experiment Accuracy
Original sites 91.3%± 4.3%
One model per site, HTTP/1.1 99.9%± 0.5%
One model per trace, HTTP/1.1 80.2%± 3.8%
HTTP/2 with server push 74.2%± 4.3%
HTTP/2 without server push 80.4%± 2.5%
HTTP/2 with 25% padding 68.5%± 4.6%
HTTP/2 with 25% padding, padded file names 62.1%± 4.8%

3.2 EXPERIMENTS AND RESULTS

We next discuss the experiments we performed and their results. A summary of the

experimental results can be found in Table 3.1.

3.2.1 Sites and Models

We collect 30 traces each from the top 100 web sites as ranked by Alexa [4]. Traces are

collected in a round robin fashion to account for changes in a site’s content over the duration

of the collection phase. However, one of the websites was down during our collection, and

we are therefore left with 99 × 30 = 2970 traces for our experiment. We note that our

random forest classifier, as described in 3.1.3, performs very well on these traces: it has a

classification accuracy of 91.3%± 4.3%.4

We use each of the 30 traces to create a unique model for the relevant site. We note that,

as many of the real-world web pages we load are dynamic with constantly changing content,

different traces can—and often do—result in different page models. For example, Figure 3.3

shows that many sites exhibit significant variance in the total size of all the objects that

are downloaded. This creates significant challenges for fingerprinting, when predictions are

partially reliant on classifying resource sizes. For example, when we collect 30 traces using

only a single model per site (i.e., using 1× 99 models), served over HTTP/1.1, our classifier

achieves 99.9%± 0.5% accuracy. On the other hand, using a different model for each trace

and each site (i.e., using 30× 99 models) causes the accuracy to fall to 80.2%± 3.8%.

One point of concern is that the classification accuracy of the synthetic sites is lower

than that of the real sites. We hypothesize that this is due to differences in how resources

are served in our experiment versus the real world. In our experiment, all resources for a

site are served from a single Caddy web server instance, whereas real sites typically access

4All of the accuracy numbers in this chapter are obtained using 10-fold cross-validation; we use two
standard deviations of the accuracy scores across the folds to approximate a 95% confidence interval.
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Figure 3.3: The distribution of total page size across 30 traces for each of the 99 sites in
our data set. Each distribution is shown as a box plot, where the dashed line represents
the median, boxes capture the interquartile range, the whiskers represent the range, and
individual points represent absent outliers.

several origins at a time (image servers, ad servers, etc.) in order to load their resources,

using separate connections with potentially varying latencies. We do note that there is a

trend towards serving a large fraction of a site’s resources via content distribution networks

(CDNs) [44, 45], and CDNs are developing technology such as the HTTP/2 origin frame [46]

to allow serving more components via a single server connection. We attempt to address

this issue in Chapter 5 by building site models that incorporate the multi-origin nature of

most sites.

A second factor that may be contributing to the lower accuracy is that we change the

site names of the models to be of a uniform length. We discovered that the size of the

ClientHello packet is directly proportional to the length of the site name, due to the name

being embedded inside a Server Name Indication (SNI) extension. In our data set, the site

name lengths have 3.2 bits of entropy. By padding the names to the same length, we are able

to eliminate this extra source of fingerprinting and focus only on the impact of the protocol.

3.2.2 HTTP/2 Server Push

To evaluate the impact of HTTP/2 with server push on fingerprinting, we configure Caddy

to use HTTP/2 and to push all of the site resources in a model as soon as the top-level HTML

is requested. We then collected 30 × 99 traces using Chromium and tcpdump. The traces

were fingerprinted using the same random forest classifier and yielded a lower accuracy of

74.2%± 4.3%. Therefore, we conclude that HTTP/2 with server push is able to reduce the
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amount of information available to fingerprinting, most likely due to changes it makes to

traffic burst patterns (as hypothesized in 2.2.1).

HTTP/2, of course, introduces a number of other changes over HTTP/1.1 in addition

to sever push. To understand the influence those changes have on our measured HTTP/2-

with-server-push accuracy, we conduct a second set of experiments that use HTTP/2 but

not server push. The resulting accuracy is 80.4%± 2.5%, which is virtually identical to the

HTTP/1.1 scenario.

3.2.3 Reducing Fingerprintability with Padding

As can be observed in Figure 3.3, there is some variability in the total size of the download

between different instances of the same web page. Higher size variability between different

instances of the same site makes it harder to accurately fingerprint that particular site.

However, some pages are significantly less variable; 4 out of 99 sites have exactly the same

total size across all page loads. These sites are therefore easy to fingerprint based on total

size alone. Moreover, there are large disparities in the range of total site sizes: the smallest

site transfers less than 500 KB, whereas the largest transfers over 10 MB. In fact, if we train

a random forest classifier on a single feature—the total number of bytes downloaded—we

get an accuracy of 58.1%± 2.8%.

We therefore consider adding padding to reduce the amount of information that can be

learned from the site size alone. We use a simple padding scheme: if a site transfers k bytes,

we pick x uniformly at random from the range [0, α] and add k ·x bytes of padding, resulting

in an average of kα/2 extra bandwidth overhead. To implement this in our test setting,

we add an extra JavaScript file that contains k · x bytes of comments for each model, and

link to it from the main HTML page of the corresponding model. In practice, to avoid the

overhead associated with parsing the JavaScript dependency, an empty image could be used.

As an alternate approach, the server could possibly be configured to push a padding file not

referenced by any resource in the dependency tree. The results of the padding experiments

are shown in Figure 3.4 for various average padding sizes.

We see that even a small amount of padding results in a reduced accuracy: at 10% average

padding, the accuracy is 70.0%± 7.1%, and with 25%, the accuracy drops to 68.5%± 4.6%.

For comparison, we experiment with serving the padded web page over HTTP/1.1. The

resulting accuracy (at 10% padding) is 79.1%± 4.3%. The web page structure available for

fingerprinting ensures that padding in HTTP/1.1 has little to no effect.

We also try training a classifier on the total padded size alone. We note that the accuracy

is dramatically lower, suggesting that other factors are contributing to fingerprinting success.
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Figure 3.4: Results of adding padding to
pages served with HTTP/2 server push,
compared to the classification results that
only use the total download size.

Figure 3.5: Feature selection for HTTP/2
with 25% padding.

3.2.4 Feature Analysis

To understand what features impact the fingerprinting accuracy of our classifier, we per-

form a feature importance analysis. We first use recursive feature elimination—similarly to

the method described in 3.1.3—to reduce the 100 features down to 20 by eliminating one

feature at each step. We then perform a greedy search to find the most impactful features

among those 20. We start by using each individual feature to classify the data set and using

10-fold cross validation to compute the classification accuracy µi and standard deviation σi.

We then pick the feature yielding the highest accuracy, i∗ = arg maxi µi, and pair it with

all remaining features to calculate µi∗+j to identify the next most significant feature. We let

Si denote the set of the best i features picked in this way; i.e., S1 = {i∗}, S2 = {i∗, j∗}. We

continue the algorithm until the improvement from adding a new feature is less than one

standard deviation, i.e., µSk
− σSk

< µSk+1
.

Since some feature choices result in similar classification accuracies, instead of picking the

unique set Si at each step, we also consider any sets S ′i such that µSi
−σSi

< µS′i
+σS′i . This

creates a small combinatorial increase in the number of sets considered, but the approach

remains largely greedy without considering all
(
20
i

)
combinations.

When we apply this analysis to the previous classifier that uses HTTP/2 with no padding,

the four features that are selected are (in order):

• 1: total number of packets received

• 3: total page load time

• 3705: maximum burst size
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Figure 3.6: Distribution of values for feature 3727: size of the 12th packet

• 3727: size of the 12th packet in the trace

The accuracy of using these features is shown in Figure 3.5. We note that the first three

features are strongly correlated to the total size of the downloaded data. The last feature,

however, seems quite arbitrary, and is a little unexpected; upon inspection, this packet in

the trace generally ranges from 154 to 156 bytes. However, the distribution is different for

different sites, as shown in Figure 3.6.

Upon further inspection, this packet contains the first Push Promise—an indication to

the client that the server intends to push a resource without requiring a request from the

client—which includes the file name of the first file pushed by the Caddy server. We note

that the name of the first pushed file can range in length from 8 characters (img0.gif) to 10

characters (sheet0.css), depending on the resource file type, which explains the difference in

the lengths.

3.2.5 Site Resource Renaming

Having identified the 12th packet as a significant source of fingerprintability, we now detail

a remedy to nullify this feature. We observe that the file names of site resources present in

HTTP/2 Push Promise packet headers are Huffman encoded. Therefore, it is possible for

different Push Promise packets to vary in size depending on the Huffman encoded bit-length

of the contained file name.

In order to address this issue, we rename all site resources—except index.html—to be of

a constant 61-bit Huffman encoded length. We first pad all of the file extensions (.js, .gif,

etc.) to have a 40-bit Huffman encoded representation. This is done by prepending each

file extension with a string of characters X, such that X.extension can be represented as a

40-bit Huffman encoding. For example, the .js file extension is padded to aabb.js and the

.css extension is padded to bbz.css. Each site resource is then given a unique 3-character
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identifier which can be represented by a 21-bit Huffman encoding. Identifiers are generated

from a set of characters with 7-bit Huffman encodings. This identifier is prepended to the

file’s corresponding Huffman-padded file extension in order to generate the final resource file

name. As an example, a valid rename for a script file would be PETaabb.js.

We observe that enforcing constant Huffman file lengths has a noticeable effect on finger-

printing success when paired with the padding scheme specified in 3.2.3. Classifier accuracy

drops from 68.5%± 4.6% before resource renaming, to 62.1%± 4.8% after renaming.
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CHAPTER 4: INFORMING AN EXPLORATION OF TOR
FINGERPRINTING

After completing the experiments discussed in Chapter 3, we wanted to shift our focus

towards performing fingerprinting on Tor traffic. More particularly, we wanted to see whether

our findings would hold true in the Tor setting as well. In this chapter, we discuss how the

results of the previous chapter inform the direction and framing of our experiments with

Tor.

4.1 CHANGES TO SITE CONFIGURATION

We start by observing how different changes in site configuration impacted classification

accuracy for our random forest classifier. These variations included padding site names to the

same length, serving the site via HTTP/2 with server push, adding padding to each model,

and renaming model resources to constant-length Huffman-encoded names. All of these

adjustments managed to decrease classification accuracy compared to the model baseline

of 80.2% ± 3.8%. Our most significant decrease in accuracy (62.1% ± 4.8%) came when

all of these site configuration changes were applied simultaneously. Given that Tor traffic

patterns exhibit different behavior than regular web traffic, we frame our next experiments to

understand whether the aforementioned changes can provide the same (or similar) benefits

under a Tor browsing context. Essentially, we aim to conclude whether a change that reduces

fingerprinting accuracy over the regular Internet will also reduce fingerprinting accuracy over

Tor.

4.1.1 Onion Services

Tor also provides a unique opportunity to measure our site configuration changes under

a fundamentally different model—onion services. As detailed in 2.3.2, connecting to an

onion service is a more involved process than connecting to a regular service over the Tor

network, as a rendezvous point must be established for traffic to funnel through. We are

curious to see whether the idiosyncrasies of onion services impact their susceptibility to our

configuration changes, and if so, to what degree. Since the safety of onion services is heavily

tied to their ability to remain anonymous and unidentifiable, we believe that it is important

to understand what strategies can be used to make fingerprinting onion services as difficult

as possible. By looking at the results of Chapter 3, we hypothesize that the site changes we

introduced may make onion services harder to fingerprint.
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4.1.2 Gaming the State-of-the-Art

All state-of-the-art Tor fingerprinting techniques rely on deep learning approaches that

focus primarily on a single source of feature extraction: packet direction. We note that

frequencies of packets heading in either direction are heavily tied to the traffic burst patterns

of a given site. The more bursts present in a packet trace, the more transients that can be

picked up by the classifier to build a profile of the site. Importantly, HTTP/2 with server

push drastically changes the packet burst patterns exhibited during a site load by pushing

all resources at once, rather than waiting for individual requests for each resource. This

should, in theory, reduce the number of bursts in a packet trace, thereby making it more

difficult for the classifier to extract features. We therefore want to test whether HTTP/2

with server push adversely affects the accuracy of state-of-the-art Tor classifiers by nature

of their own classification strategies.

4.2 HOSTING SITE RESOURCES ACROSS MULTIPLE SERVERS

As noted in 3.2.1, our original site models are all served from a single server per model.

This is not representative of real-world sites, which often host resources across multiple

servers and require clients to request these resources from their respective servers. Therefore,

we attempt to remedy this issue moving forward by creating site models that host resources

across multiple server instances. We also see whether this change in how sites are hosted

has an impact on our classification success across both HTTP/1.1 and HTTP/2 scenarios.
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CHAPTER 5: MEASURING THE IMPACT OF HTTP/2 AND SITE
HOSTING CONFIGURATIONS ON FINGERPRINTING OVER THE TOR

NETWORK

This chapter covers our experiments with fingerprinting site models over the Tor network

under conditions engineered in Chapter 3. We also build site models that serve resources

from multiple virtual servers in order to more closely represent real-world site hosting. Addi-

tionally, we examine how these conditions affect fingerprinting performance on onion services.

5.1 EXPERIMENTAL SETUP

Our general approach to setting up our Tor testbed remains relatively similar to the

previous experiment. Real-world sites are still modeled in order to be re-hosted under our

engineered configurations. However, certain nuances of multi-host site representations, onion

services, and communication over the Tor network cause us to make slight changes to the

way we model, host, and communicate with our site models.

5.1.1 Constructing Multi-host Web Page Models

In this experiment, we construct site models for the 20 most popular sites—as listed by

the Alexa ranking system [4]—under two representations: single-host (where all resources

are served from the same server) and multi-host (where resources are served from multiple

servers as deduced from the original site traces). We create 30 models per site under each

representation, and single-host site models are constructed in the same manner detailed in

3.1.1.

Constructing multi-host site models requires us to pay closer attention to the originating

server of each resource, as detailed by the server value in the responses field of the request

metadata. For each site model, we separate resources based on the domain names of their

hosting server. Consider a model of the homepage for the Chinese web portal QQ, qq.com.

All resources served from the homepage will be denoted by a server value of qq.com. Other

resources from the homepage may be served from different servers, such as apis.map.qq.com,

btrace.qq.com, and view.inews.qq.com among other locations. The server value of these

resources reveals them as such.

A new model Caddy server is created for each host accessed throughout the page load, and

each is responsible for hosting the resources served by the corresponding host. Importantly,

the only model server that has an index.html file is the model homepage server, since this
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<head>
<l ink rel=” s t y l e s h e e t ” href=” sheet0 . c s s ”>
<script src=

” https : //www−g s t a t i c−com . t o r s i t e s . t t a t . xyz/ s c r i p t 0 . j s ”>
</ script>
<body>
<img src=” https : // i−yt−img−com . t o r s i t e s . t t a t . xyz/img0 . g i f ”>
<iframe src=” index1 . html”></ iframe>
< !−−AAAAA[ . . . ] AAA−−>
</body>

Figure 5.1: The top-level HTML file in a web page model, which loads a stylesheet
(sheet0.css) and another HTML file (index1.html) from the top-level server. The script
(script1.js) and image (img0.gif) are sourced from different model servers as denoted by
their URLs.

is the server that will be handling the incoming site request. The site dependency tree is

built in the same manner as our single-host models, but references to resources hosted on

servers other than the requesting server are made via complete URLs indicating the server

and filename of the target resource. This is necessary because the client must be able to

request each foreign resource from a separate server with its own unique URL. An example

index.html snippet for a multi-host model is given in Figure 5.1.

In this example, the model consists of 3 servers—the top level responding server hosting

index.html, index1.html, and sheet0.css; and 2 external hosts, www-gstatic-com.torsites.ttat.xyz

and i-yt-img-com.torsites.ttat.xyz, responsible for hosting script0.css and img0.gif respec-

tively. www-gstatic-com.torsites.ttat.xyz is the model representation of the real-world host,

www.gstatic.com, and i-yt-img-com.torsites.ttat.xyz represents real-world host, i.yt.img.com.

Note that resources loaded from external hosts may also reference resources stored on

other external hosts. These resources must specify the full URLs of their target resources.

This is especially important when a script is using the document.write directive to modify

the top-level index.html to request an external target resource. Even if the target resource

is hosted locally from the perspective of the writing script (i.e. on the same server as the

script performing the document.write), it is an external resource from the perspective of the

client, since it is hosted on a different server than the top-level responding host. As such, a

full URL must be specified to ensure that the client requests the resource from the correct

destination after parsing the modified index.html.
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5.1.2 Modeling Onion Services

In order to test our configuration changes on more critical and Tor-unique browsing, we

create single- and multi-host models for 20 different onion services. Once again, we create 30

models per site under each representation. While there are onion directories which provide

lists of various onion services by category, they are not reliable for maintaining up-to-date

lists of active services. Onion services often periodically change their hostname, or are

subject to being taken down or moved, and as a result, many entries in the aforementioned

directories point to inactive links. Instead, we use the regularly updated and filtered Real-

World Onion Sites repository1 to select 20 active onion services to model. We note that

this repository performs content filtering to only include ”clean” services (i.e. no nudity,

exploitation, drugs, etc.), and excludes sites with an “onion-only” presence. Although this

biases the content of our example sites, we argue that it makes no impact on the validity of

our experiments, which are focused on fingerprinting onion services based on their structure

and mechanisms.

Since onion services are only accessible via the Tor network, we cannot use the Chromium

browser as-is to communicate with them. Instead, we modify the Mida web measurement

tool2 to access the Tor network via the Tor SOCKS proxy. Each Mida crawl is executed in

its own Docker container, and outputs crawl metadata that is used to build a site model.

Single-host site models are built as described in 3.1.1, and multi-host models are built under

guidelines similar to those outlined in 5.1.1. There is, however, one key distinction: since we

want to gather traces that are representative of traffic to an onion service, we must host the

models as onion services themselves. This involves establishing 20× 30 = 600 unique onion

services—one for each of our site models—and pointing each onion service to the server

responsible for hosting its corresponding model’s homepage. We achieve this by adding the

snippet of code shown in Figure 5.2 to the torrc of our host system and restarting the

Tor daemon. This causes the Tor daemon to establish onion service descriptors for each

service—detailing introduction points and the service’s public key—and publish them to the

directory server, thereby making our onion services publicly accessible.

We note that our multi-host onion service models make a few digressions from their original

representations. It is possible for an onion service site external resource to be hosted on

another onion service rather than a regular web server, and we observed this behavior in a

few of the services that we modeled. However, due to time constraints, we were not able to

host external resources on onion services, since doing so would cause a significant increase

1https://github.com/alecmuffett/real-world-onion-sites
2https://mida.sprai.org/
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HiddenServ iceDir / var / l i b / to r/<model−name>
HiddenServicePort 443 127 .0 . 0 . 1 : <model−port>

Figure 5.2: The configuration lines added to the torrc for each onion service we wish
to establish. For each model, we replace <model-name> with the model’s name, and
<model-port> with the port on which the local server is hosting the model. This allows us
to tie a public key/onion hostname to each model, and to redirect incoming HTTPS requests
to the required server port.

in the number of onion services we needed to establish, and would greatly increase the time

required for our Tor daemon to publish the onion service descriptors. Therefore, we only host

the model homepage and resources served by the home server on our model onion services;

all external resources are hosted by regular HTTPS server instances.

5.1.3 Trace Collection

In order to gather our model traces over the Tor network and model a Tor browsing

context, we use a Dockerized version of the Mida web measurement tool, which uses headless

Chromium to contact sites via a Tor SOCKS proxy. The proxy establishes a connection with

a Tor entry guard before serving as the browser’s access point to the Tor network. Each trace

is collected from a separate Dockerized Mida instance, meaning that a fresh Tor connection

is established for each crawl. This ensures that our trace collection gathers examples across

a wide variety of Tor circuits and provides greater coverage of potential user connection

characteristics. After the crawl has completed, each Docker container outputs a PCAP file

which we use as our web trace. The trace is filtered to exclude any non-IPv4 and non-TCP

packets before being processed for classification.

We once again host our site models using the Caddy web server over HTTPS. This allows

us to serve models over both HTTP/1.1 and HTTP/2 with server push. Site models each

have their own unique URL, are hosted on a separate machine from the trace collector,

and are hosted simultaneously via a single Caddy server which parses incoming requests

and serves the desired site. This means we are able to collect traces from model A as well

as model B without having to start a fresh server instance for model B. Since Tor exit

relays must resolve each unique URL and each crawl is conducted from a separate Docker

container with a unique Tor circuit, our hosting method should adequately model real-world

communication to separate URLs in both single- and multi-host settings.
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5.1.4 Classification Techniques

We perform closed-world fingerprinting of our traces with the Deep Fingerprinting (DF)

classifier3, as developed by Sirinam et al. [7]. The neural network is run with the hyperpa-

rameters specified in the original work, and we process our packet traces to satisfy the input

constraints of the DF classifier. Each trace is divided into packets of 1500 bytes each, and

the directions of these packets are recorded as a vector with elements in the range [−1,+1].

Outgoing packets from the client (the Mida Docker container) are recorded as a +1, and

incoming packets to the client are recorded as a −1. If the trace exceeds 5000 packets in

length, only the first 5000 packets are recorded; likewise, traces that do not reach a length

of 5000 packets have their vectors zero-padded to a length of 5000 elements. This data rep-

resentation is noticeably simpler and more lightweight than what was used for our random

forest classifier in Chapter 3, since the DF classifier relies entirely on packet directions in

order to perform feature extraction. As a result, we can ignore metrics such as packet size.

More advanced deep learning-based Tor fingerprinting approaches have been designed

in the year following DF’s release, including Var-CNN [42] and triplet fingerprinting [41].

These approaches focus on constructing deep learning classifiers that can achieve strong

performance with more realistic adversarial models, i.e. less training data gathered over a

much more limited set of sites. However, we use DF as our classifier for this work since it is

the best documented and most accessible implementation available, and since we are focused

on recognizing trends in fingerprinting given site configurations rather than commenting on

the outright accuracy or usability of our classifier.

5.2 EXPERIMENTS AND RESULTS

We conduct a total of 12 classifications split evenly between one of two scenarios: classify-

ing regular sites and classifying onion services. Each scenario is tested with 6 experiments,

as detailed below. A summary of the experimental results can be found in Table 5.1.

1. Unpadded models, single host, HTTP/1.1: The control models for single-host

testing. Models are served from a single host and do not have any of the anti-

fingerprinting mechanisms introduced in Chapter 3. Models do not possess 25%

padding or resource filenames padded to a constant Huffman length. Models are served

via HTTP/1.1.

2. Padded models, single host, HTTP/1.1: Models are served from a single host

3https://github.com/deep-fingerprinting/df
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Table 5.1: Summary of results. Experiments are numbered.
Model Experiment Accuracy

Regular
sites

1. Unpadded, single host, HTTP/1.1 58.0%± 3.8%
2. Padded, single host, HTTP/1.1 54.9%± 7.8%
3. Padded, single host, HTTP/2 with server push 54.7%± 5.8%
4. Unpadded, multiple hosts, HTTP/1.1 67.1%± 7.5%
5. Padded, multiple hosts, HTTP/1.1 68.2%± 6.3%
6. Padded, multiple hosts, HTTP/2 with server push 65.7%± 5.4%

Onion
services

7. Unpadded, single host, HTTP/1.1 76.7%± 7.2%
8. Padded, single host, HTTP/1.1 78.3%± 7.2%
9. Padded, single host, HTTP/2 with server push 56.7%± 2.7%
10. Unpadded, multiple hosts, HTTP/1.1 75.2%± 5.3%
11. Padded, multiple hosts, HTTP/1.1 65.53%± 13.0%
12. Padded, multiple hosts, HTTP/2 with server push 65.5%± 7.8%

with 25% padding and resource filenames padded to a constant Huffman length. Mod-

els are served via HTTP/1.1.

3. Padded models, single host, HTTP/2 with server push: Models are served

from a single host with 25% padding and resource filenames padded to a constant

Huffman length. Models are served via HTTP/2 with server push enabled.

4. Unpadded models, multiple hosts, HTTP/1.1: The control models for multi-

host testing. Models are served from multiple hosts and do not have any of the

anti-fingerprinting mechanisms introduced in Chapter 3. Models do not possess 25%

padding or resource filenames padded to a constant Huffman length. Models are served

via HTTP/1.1.

5. Padded models, multiple hosts, HTTP/1.1: Models are served from multiple

hosts with 25% padding and resource filenames padded to a constant Huffman length.

Models are served via HTTP/1.1.

6. Padded models, multiple hosts, HTTP/2 with server push: Models are served

from a single host with 25% padding and resource filenames padded to a constant

Huffman length. Models are served via HTTP/2 with server push enabled.

5.2.1 Collecting Classification Data

Similarly to our experiments in Chapter 3, we collect 30 traces for each of the sites we wish

to model (both regular and onion services). Traces are once again collected in a round-robin
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fashion to account for site content changes over the duration of the collection period. Once

the sites have been modeled and hosted using the configurations required for the desired

experiment (e.g. single- vs. multi-host, HTTP/1.1 vs HTTP/2, etc.), we collect 5 traces per

site model—each from a separate Mida run—giving us a total of 30 × 5 = 150 traces per

model. Over a set of 20 sites per experiment, this yields a final dataset of 150× 20 = 3000

traces per experiment with which to train and test the DF classifier. Since each model crawl

establishes a new Tor circuit, we have the opportunity to model communication through a

wide range of Tor entry guards; in fact, throughout our experiments across both regular and

onion services, we establish Tor circuits through 2493 unique entry guard relays. Considering

that the Tor network only consists of about 7000 total relays, this likely means our models

were collected over circuits spanning a fair portion of the overall Tor network.

Following the methodology used by Sirinam et al. to evaluate their DF classifier [7], we

split each dataset into training, testing, and validation sets based on an 80%/10%/10% split.

For each of the 20 sites being classified, we randomly sample 120 out of its 150 traces and

add them to the overall training set for the experiment. Out of the remaining 30 traces, we

randomly sample 15 for the experiment’s validation set and add the remaining 15 to the test

set. After this has been done for all 20 sites, we are left with a training set of 2400 traces,

and 300-trace testing and validation sets.

In order to mitigate any biases caused by unfavorable or favorable data splits, we create 10

separate datasets for each of the 12 classifications. Each of these datasets is independently

sampled from the same set of traces, and allows us to evaluate classifier performance across

a wider range of training and testing data. The accuracy scores reported throughout the

remainder of this chapter are calculated by taking the mean accuracy of the 10 trials for

each classification ± a single standard deviation of the accuracies.

5.2.2 Unpadded vs. Padded Site Models

The first goal of these experiments was to see whether padding the site models as we did

in Chapter 3 would cause any decrease in fingerprinting accuracy when sites were visited

over Tor. To this end, we compare the results of unpadded models served over HTTP/1.1

to those of padded models served over HTTP/1.1. We note that for regular sites served via

a single host, and onion sites served via multiple hosts, adding padding manages to decrease

classification accuracy; in the case of regular sites, accuracy drops from 58.0% ± 3.8% to

54.9% ± 7.8%, and in the case of onion services, we see a drop from 75.2% ± 5.3% to

65.5%± 13.0%.

However, regular sites served from multiple hosts and onion services served from a single
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host show little difference in accuracy when comparing padded and unpadded models. In

fact, the padded models in both of these cases yield a marginally higher classification accu-

racy than the standard unpadded models; we see an accuracy increase from 67.1% ± 7.5%

to 68.2%±6.3% for regular site models, and an increase from 76.7%±7.2% to 78.3%±7.2%

for onion services.

Based on these results, we cannot draw any confident conclusions about the efficacy of

site padding as a fingerprinting defense over Tor. While we observe decreased classification

accuracy in some cases, we also see relatively unchanged and slightly higher accuracies in

other cases. This could be due to faults in our data (discussed in 5.3), or more complex

factors such as the relationships between Tor cells and site content, or idiosyncrasies in the

traffic patterns of onion services.

5.2.3 HTTP/1.1 vs. HTTP/2 with Server Push

When comparing the results of padded models collected over HTTP/2 with server push,

to those of padded models collected over HTTP/1.1, we see a general trend indicating that

HTTP/2 with server push could make Tor fingerprinting slightly less accurate. In the case

of single-host regular site models, we see a reduction in accuracy—albeit a small one—

from 54.9%± 7.8% when served via HTTP/1.1, to 54.7%± 5.8% when served via HTTP/2

with server push. Likewise, multi-host regular site models exhibit an accuracy drop from

68.2%± 6.3% to 65.7%± 5.4%.

The largest drop in classification accuracy is seen with onion services hosted via a single

host. While serving these models over HTTP/1.1 yields a classification accuracy of 78.3%±
7.2%, using HTTP/2 with server push sees the classifier fall to an accuracy of 56.7%±2.7%.

This accuracy drop, however, is not reflected as dramatically in the multi-host onion service

models. The classification accuracies for these models are virtually identical regardless of

which protocol they are served with. Serving them via HTTP/1.1 yields an accuracy of

65.53% ± 13.0%, which is negligibly higher than the 65.5% ± 7.8% accuracy achieved with

HTTP/2 and server push. Regardless, we believe that the general trend demonstrates that

HTTP/2 with server push can provide a certain degree of fingerprinting protection over

regular HTTP/1.1.

5.2.4 Single- vs. Multi-host Models

Coming into this experiment, we believed that serving site models over multiple hosts

would more closely represent real-world site structure, and would therefore yield higher
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accuracies from fingerprinting techniques designed for fingerprinting real-world sites. If this

were the case, then we would be able to recommend serving sites from a single host as a

potential fingerprinting defense. We see this assumption reflected in the case of our regular

site models—experiments 4, 5, and 6 all achieve higher classification accuracies than 1, 2,

and 3 (see Table 5.1).

However, we do not see the same results in our onion service models. With the exception

of models served via HTTP/2—which see single-host models yield a classification accuracy

of 56.7% ± 2.7% compared to multi-host models’ 65.5% ± 7.8%—our onion services are, in

fact, less fingerprintable when served via multiple hosts.

Once again, we cannot make a decisive claim as to whether serving sites from a single host

is an effective fingerprinting defense given the discrepancies in results. It appears as though

regular sites benefit from being served via a single host, and perhaps testing non-Tor models

with multiple hosts (as suggested in Chapter 3) would shed further light on this hypothesis.

5.2.5 Regular Sites vs. Onion Services

As a general observation, we note that our onion service models are far more fingerprintable

than our models of regular sites. We see 3 onion service experiments with classification

accuracies exceeding 70%, while the most accurate regular site experiment has an accuracy of

roughly 68%. Similarly, the onion service experiment with the lowest classification accuracy

of 56.7% ± 2.7% is still more fingerprintable than the 2 least fingerprintable regular site

experiments.

This increased fingerprintability is concerning given the highly sensitive nature of many

onion services, and the risky stakes under which their users operate. Given that the world of

onion services and their users is far smaller than that of regular sites, an adversary who can

successfully fingerprint a user’s connection to an onion service may be able to do significant

and actionable damage. While the observed accuracies could be due to issues with our

data, if they are indeed representative of the fingerprintability of real-world onion services

compared to regular sites, they may have some interesting implications.

5.3 EVALUATION OF RESULTS

In this section, we take a closer look at our results to determine why they exhibit certain

patterns. We address the issues present in our experiments and make suggestions for future

work.
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Figure 5.3: Distribution of experiment accuracies across 10 classification trials. Accuracies
for each experiment are sorted in increasing order

5.3.1 Baseline Classifier Accuracy

After running the DF classifier on 10 datasets for each of the 12 experiments, we get the

results listed in Table 5.1. We note that our accuracies for the unpadded models (which serve

as our base representations of sites) range from 58.0% ± 3.8% to 76.7% ± 7.2% depending

on the experiment. Strangely, these are far lower than the reported baseline accuracies for

the DF classifier; Sirinam et al. demonstrate that the DF classifier achieves 90% accuracy

in their experiments with just 50 traces per site, and with 1000 traces per site, can achieve

98.3% accuracy [7].

We believe that this discrepancy in overall accuracy is likely due to faults in our model

construction, which are making them inconsistent with real world sites and onion services.

As an example, our multi-host onion service models did not host external resources on other

onion services, even though we observed this behavior in our crawls of real-world onion

services. Given more time, we would re-create our models to remedy this issue. Future

work on this project should certainly involve a closer examination of our model-construction

strategies, as well as our site-hosting methodologies to ensure that they are as realistic and

representative as possible.

5.3.2 Accuracy Spreads Within Experiments

We observe that the accuracies of numerous experiments fluctuate heavily across their

spread of trials, as demonstrated in Figure 5.3. For example, Experiment 11 achieves a wide
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spread of accuracies, ranging from as low as 45% to as high as 82%. These large variations

across such a small sample space are likely the reason for our inconclusive data.

We believe that the demonstrated distribution is caused by poorly constructed datasets for

certain trials. Since we are randomly sampling traces into training, validation, and testing

sets, the lower accuracy trials occur when the test set is constructed with classes that are

less present in the training set. Since we are reporting the classification accuracy as the

mean of the 10 trials per experiment, a few poorly constructed datasets—and therefore,

poor classifications—will skew the final results far more heavily than if we were to conduct

more trials. Future work in this space would involve conducting more classification trials

with more varied datasets in order to smooth out the results shown in Figure 5.3.

5.3.3 Additional Future Work

For future revisions of this experiment, we would begin by collecting more traces over a

wider variety of sites (both regular and onion services). We limited ourselves to 20 sites for

each type of model due to time restraints, but it would be far more valuable to test Tor

fingerprinting over larger closed- and open-world scenarios which are more representative of

real-world adversarial scenarios. Furthermore, we would evaluate our models under more

recent deep learning-based classifiers, such as Var-CNN [42], and triplet fingerprinting [41].

Knowledge gained through these experiments could also be used to conduct a more thor-

ough investigation of onion service fingerprintability. It would be interesting to explore how

changes in site configuration impact onion services of different categories, such as news ser-

vices vs. video hosting services. Understanding these implications could inform which types

of services are most at risk, and what defenses they can employ to remain anonymous.

Finally, we would experiment with more nuanced HTTP/2 server push configurations. As

suggested by previous work [14, 15, 17], push configurations can be extremely involved and

require significant engineering to perform optimally. We would therefore attempt to further

understand server push best-practice, and would create our site models respectively.
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CHAPTER 6: CONCLUSION

Despite efforts to bolster web security via improved cryptographic measures and the adop-

tion of more secure protocols, web fingerprinting poses a serious threat to the privacy and

safety of users online. Not only does it allow an adversary to learn what sites and ser-

vices users are accessing, but it gives malicious adversaries the knowledge required to target

these services in more coordinated efforts. A web fingerprinting attack can even be successful

against the traffic of anonymity systems such as Tor, which are host to users accessing critical

and sensitive data. Early ad hoc defenses against web fingerprinting were easily circumvented

with more advanced fingerprinting strategies, and newer defenses focus on constant-rate so-

lutions that often require changes to transport and application layer protocols—changes

that make adopting the defenses costly and difficult to deploy at a wide scale. In this thesis,

we explored the feasibility and effectiveness of using changes to a site’s configuration as a

lightweight, easy-to-deploy fingerprinting defense.

We examined the impact of various factors—including HTTP/2 with server push, site

padding, and single- vs. multi-server resource-hosting—on the accuracy of fingerprinting

over the web and Tor. To achieve this, we created models of websites and onion services by

crawling their real-world counterparts and creating site models that reflected the original

sites’ dependency structures, resources, and sizes. We then modified and hosted these models

as required to test the impact of each of the aforementioned factors on fingerprinting success.

In order to conduct our experiments, site models were hosted via the Caddy server, which

allowed us to serve them via HTTP/2 with server push. Our first experiments involved

measuring fingerprinting performance on the web, and we used a random forest classifier to

fingerprint site visits to each of our models. We found that serving a model via HTTP/2

with server push caused a significant reduction in fingerprinting accuracy when compared

to the same model being served via HTTP/1.1. Additionally, we found that adding a small-

to-moderate amount of padding to a site’s content, as well as renaming all site resource

names to be of a constant Huffman-encoded length, can further decrease fingerprinting ac-

curacy. When we paired HTTP/2 with server push with our padding and resource-renaming

approaches, we were able to reduce fingerprinting accuracy from 80% to 62%.

In our second set of experiments, we used the Deep Fingerprinting classifier to evaluate

fingerprinting performance against our models when they were served via the Tor network. In

addition to conducting experiments with regular sites, we modeled, hosted, and fingerprinted

20 real-world onion services. We also evaluated fingerprinting performance when sites were

served from a single server, as opposed to multiple servers (which more closely resembles
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real-world hosting practices). We found that HTTP/2 with server push marginally lowered

fingerprinting accuracy over Tor, and that serving regular site models from a single server

made them more difficult to fingerprint. However, onion services seemed more fingerprintable

when served from a single server. We were also not able to make a conclusive statement

in regards to the impact of site padding on fingerprinting over Tor; due to inconsistencies

present in our Tor data, we believe that refinements need to be made in our site modeling,

and that more fingerprinting data needs to be gathered as part of future work.

Excluding our Tor inconsistencies, however, we can issue a set of recommendations to most

non-onion service websites that wish to reduce their users’ susceptibility to fingerprinting

over the web:

1. Serve as many site components as possible from a single server

2. Use HTTP/2 and server push on that server (also applicable to onion services)

3. Normalize/pad the length of a site name (SNI) and the request URLs of all site re-

sources

4. Add a small-to-moderate amount of randomized padding in the form of an unused,

pushed web page component

5. Rename site resources to be of a constant Huffman-encoded length

We note that all of these steps can be implemented using existing tools, while allowing

users to browse with off-the-shelf browsers that support the HTTP/2 protocol.
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