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ABSTRACT 

 Maize is one of the most important crops and is grown all over the world. Like other 

plants, maize is attacked by numerous pathogens. Diseases account for 2 to 15% of maize yield 

losses annually, and foliar diseases are the most destructive in terms of yield. With an increasing 

world population, utilizing host plant resistance is an environmentally and economically friendly 

solution to assure food security. Maize is susceptible to numerous diseases. Thus, breeding 

multiple disease resistant (MDR) varieties is critical. While the genetic basis of resistance to 

multiple fungal pathogens has been studied in maize, less is known about the relationship 

between fungal and bacterial resistance.  

Bacterial leaf streak (BLS) is a foliar disease of maize caused by Xanthomonas vasicola 

pv. vasculorum. Since the first report of BLS in the United States in 2014, this disease has spread 

all over the Midwestern corn belt. Little is known about the disease cycle, and consequently, 

management is difficult. Host resistance will likely play a major role in controlling the disease, 

as there is no practical chemical control. Thus, we conducted quantitative trait locus (QTL) 

mapping for BLS resistance in three maize populations: the Z022 (B73 × Oh43 recombinant 

inbred line) NAM population, the Z023 (B73 × Oh7B recombinant inbred line) NAM 

population, and the DRIL78 (NC344 × Oh7B chromosome segment substitution line) population. 

A total of five QTL were detected across two of the mapping populations. One of the detected 

QTL for BLS resistance in the DRIL78 population, located in chromosomal bin 4.07, overlaps 

with a region that has also been identified for southern corn leaf blight (SCLB) resistance in this 

same population. These data will be useful for developing maize varieties resistant to BLS and to 

mitigate the impact of bacterial leaf streak on maize production. 
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Goss’s bacterial wilt and blight (GW) is an important foliar disease caused by 

Clavibacter nebraskensis. We evaluated an introgression line population, DRIL78, for GW in 

three different environments and conducted quantitative trait locus (QTL) mapping for each 

environment separately, as well as for the combined environments. We identified a total of ten 

QTL across multiple environments. We obtained the phenotypic data from the DRIL78 

population for three additional foliar diseases: northern corn leaf blight (NCLB), southern corn 

leaf blight (SCLB) and gray leaf spot (GLS) and conducted mapping analysis using the same 

methods. Multivariate analysis was then conducted to identify regions conferring resistance to 

multiple diseases. We identified 20 chromosomal bins with putative multiple disease effects. We 

identified five chromosomal regions (bin 1.05, 3.04, 4.06, 8.03, and 9.02) with the strongest 

statistical support for a role in MDR. By examining the phenotypic effects of each haplotype, we 

identified several regions associated with increased resistance to multiple diseases and three 

regions associated with opposite effects for bacterial and fungal diseases. Several promising 

candidate regions for multiple disease resistance in maize were identified in this study.  

The results presented in this thesis are useful for both breeding and to understand the 

basic biology of host plant resistance. I identified both single disease and MDR QTL, which will 

serve as a foundation for subsequent fine mapping analysis and can be useful for breeding 

resistant varieties.  

 

 

 

 

  



 iv 

ACKNOWLEDGMENTS 

 I would like to express the deepest appreciation to my advisor, Dr. Tiffany M. Jamann for 

her continuous support of my master’s studies and research, for her patience, enthusiasm and 

immense knowledge. She guided me on the road of critical thinking and scientific research. She 

also provided a lot of helpful suggestions and support when I felt lost. It is my pleasure and luck 

to work with her. Without her guidance and persistent help, this thesis would not have been 

possible. 

Besides my advisor, I would like to thank the rest of committee member: Dr. Alexander 

Edward Lipka and Dr. Carolyn J. Butts-Wilmsmeyer, for their insightful advice and 

encouragement on my projects. Their knowledge in statistics helped me avoid detours and 

mistakes on the analysis.  

I am grateful every member in Dr. Tiffany M. Jamann’s lab, especially for their help during 

the summer seasons. Without their help, there would have been no way for me to finish all the 

inoculations in time.  

My sincere thanks also go to my family: my father Qiyuan Qiu, my mother Xingjuan Huang, 

my grandfather Shuitu Qiu, my grandmother Dongzhao Yang and my little brother Jianbo Qiu, 

for encouraging me to pursue my dream and giving me support when I failed.  

Last but not least, I would like to thank my boyfriend, Dr. Chengtian Shen, for showing me 

the beauty life, and for his company and support. His attitude towards science and truth 

encourages me to keep studying and improving.  

 

 

 



 v 

TABLE OF CONTENTS 

 

CHAPTER 1: LITERATURE REVIEW .........................................................................................1 

CHAPTER 2: IDENTIFICATION OF QUANTITATIVE TRAIT LOCI ASSOCIATED  

WITH BACTERIAL LEAF STREAK OF MAIZE ......................................................................19 

CHAPTER 3: IDENTIFICATION OF LOCI THAT CONFER RESISTANCE TO  

BACTERIAL AND FUNGAL DISEASES OF MAIZE ...............................................................52 

 

 

 

 

 

 

 

 



 1 

CHAPTER 1: LITERATURE REVIEW 

Maize  

Wheat, rice, maize, potato and soybean are five major crops worldwide, contributing to 

18.3, 18.9, 5.4, 2.2 and 3.3% of the global human calorie intake respectively in 2013, according 

to the Food and Agriculture Organization of the United Nations (2018). Maize (Zea mays L) is 

one of the most important crops in the world. The United States, China and Brazil are the top 

three maize-producing countries, producing 31%, 24% and 8% of the total yield, respectively 

(Ranum, Peña‐Rosas et al. 2014). Maize can be used for food and industrial products including, 

for example, starch, fuel alcohol, and sweeteners.  

Important diseases of maize 

Maize productivity is at risk from pest pressure, including weeds, pathogens and animal 

pests. Maize is consistently attacked by a variety of pathogens, and the yield loss caused by 

diseases varies across years and regions. Maize is affected by about 100 pathogens, with a 

fraction of diseases present in a given environment (Ali and Yan 2012, Munkvold and White 

2016). Hence, maize plants need to defend themselves against a wide range of pathogens. The 

yield loss caused by diseases in the United States ranges from 2 to 15% annually (Munkvold and 

White 2016). In the United States and Ontario, Canada it is estimated that 13.5% of total 

production was lost due to diseases in 2015, 10.8% in 2016, and 6.7% in 2017 (Network 2018). 

There are four categories of maize diseases: root rots and seedling blights, foliar diseases, stalk 

rots and ear rots. Of the four categories, foliar and aboveground diseases are the most destructive 

during most years, accounting for about 52% of the total yield loss, according to a survey from 

2012 to 2015 of 22 corn-producing US states and Ontario, Canada (Mueller, Wise et al. 2016). In 

2017, the disease losses caused by foliar and aboveground diseases were estimated to account for 
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approximately 49% of the total yield loss due to the diseases (Network 2018). Of the foliar and 

aboveground diseases, Goss’s wilt (GW), gray leaf spot (GLS) and northern corn leaf blight 

(NCLB) are three of the most destructive diseases (Mueller, Wise et al. 2016, Network 2018). 

GW is a bacterial disease and GLS and NCLB are fungal diseases. Protecting maize from the 

infection by pathogens is thus important for food security. The losses due to diseases can be 

managed in high-density agricultural systems largely by growing resistant germplasm and 

pesticide applications (in some cases) (Balint-Kurti and Johal 2009). Host plant resistance is thus 

a crucial tool to protect crops. 

Bacterial leaf streak of maize and other selected diseases 

A total of five maize foliar diseases were selected for their importance in this study: 

Southern corn leaf blight (SCLB), NCLB, GLS, GW and bacterial leaf streak (BLS). GLS, GW 

and NCLB are the three most destructive diseases. GLS is a disease of global importance caused 

by the necrotrophic fungus Cercospora zeae-maydis. It can cause as much as a 50% yield loss 

(Ward, Stromberg et al. 1999). In the United States and Ontario, Canada from 2012 to 2015, 

GLS accounts for 5.4% of the total maize yield loss caused by diseases (Mueller, Wise et al. 

2016); in 2017, GLS accounted for 17.7% of the total disease loss (Network 2018).  GW, also 

referred to as Goss’s bacterial wilt and blight, is caused by Clavibacter michiganensis subsp. 

nebraskensis (Vidaver, Gross et al. 1981). Typical symptoms of GW include large, water-

soaked, discontinuous lesions. GW accounts for 4.8% of the yield losses caused by diseases of 

maize in the United States and Ontario, Canada from 2012 to 2015 (Mueller, Wise et al. 2016) 

and 10.2% in 2017 (Network 2018). Northern corn leaf blight (NCLB) is caused by the 

ascomycete Setosphaeria turcica, and cigar-shaped lesions are characteristic of NCLB. In the 
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United States and Ontario, Canada, 4.1% of the yield loss from diseases was due to NCLB in 

2012 to 2015 (Mueller, Wise et al. 2016) and 10.5% in 2017 (Network 2018).  

SCLB, although not as devastating as the other three diseases, has historically been 

important and is a major issue in some regions. In 1970, the losses in the United States due to an 

epidemic of SCLB were estimated at nearly one billion dollars (Ullstrup 1972). SCLB has the 

potential to cause up to 40% yield loss if the varieties are susceptible and the conditions are 

favorable (Byrnes, Pataky et al. 1989).  

Apart from the well-established diseases, there are new maize diseases emerging as 

potential threats to corn production in the United States. BLS of maize is one such disease. BLS 

is a foliar disease caused by Xanthomonas vasicola pv. vasculorum. Developing from small, 

water-soaked lesions, BLS causes narrow stripe-shaped, 2-3mm wide lesions the infected leaves. 

The lesions are parallel to leaf veins and are constricted to interveinal spaces (Lang et al. 2017). 

The symptoms usually spread from lower, older leaves to higher leaves. Following high wind 

events, the disease can develop in mid and upper leaves of the plant (Jackson-Ziems, Korus, and 

Adesemoye 2016). The color of the lesions can vary from yellow to brown. In some cases, 

particularly with some genotypes, the lesions can coalesce and extend the entire length the leaf, 

and the damage looks similar to drought injury (Munkvold and White 2016). The photosynthetic 

capacity of the plant is compromised in severe infections, and yield losses are likely. Control 

depends largely on host resistance, as practical chemical controls do not exist for BLS. 

BLS was first reported in South Africa in 1949 (Dyer 1949) and was limited to the 

African continent until recently. Sixty years after the initial description of the disease, 

researchers at the Universidad Católica de Córdoba, Argentina detected the symptoms of BLS on 

maize in northern Argentina in 2010 (Plazas, De Rossi et al. 2018). Since 2010, the disease 
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expanded from Córdoba Province to other corn-planting provinces in Argentina, affecting all 

commercial hybrids in the region. The positive identification of BLS in Argentina was officially 

reported in 2018 (Plazas, De Rossi et al. 2018). It was not until 2014 that BLS was first reported 

in Nebraska in the United States and subsequently was confirmed in Colorado and Kansas 

(Korus, Lang et al. 2017). The pathogen range now includes Colorado, Illinois, Iowa, Kansas, 

Minnesota, Nebraska, Oklahoma, South Dakota, and Texas (Lang, DuCharme et al. 2017, 

Damicone, Cevallos et al. 2018, Jamann, Plewa et al. 2019).  

Initially the casual organism of BLS was named Xanthomonas campestris pv. vasculorum 

(Xcv) (Young 1978). Subsequently, studies involving sequence analyses (MLSA), phylogenetic 

analysis, and whole-genome sequencing have resulted in the reclassification of Xanthomonas 

pathogens (Vauterin, Hoste et al. 1995, Hauben, Vauterin et al. 1997, Dookun, Stead et al. 2000, 

Aritua, Parkinson et al. 2008). Based on a phylogenetic analysis and a comparison of genome 

sequences and host ranges, Lang et al. (2017) proposed that the pathogen should be named X. 

vasicola pv. vasculorum comb. nov ( Cobb 1894; Lang, DuCharme et al. 2017). Detection assays 

for the positive identification of X. vasicola pv. vasculorum were developed based on whole-

genome sequencing (Lang, DuCharme et al. 2017).  

Qualitative and quantitative disease resistance in maize 

There are two types of disease resistance in plants: qualitative and quantitative. 

Qualitative resistance is race-specific and inherited by a single or a few genes with large effects, 

usually characterized by a gene-for-gene interaction. It is also known as vertical, complete, or 

major gene-based disease resistance. The gene-for-gene plant interaction involves two basic 

processes: perception of pathogen attack and the subsequent amplified defense response (Ellis, 

Dodds et al. 2000, Jones, Vance et al. 2016). Perception requires a receptor with a high degree of 
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specificity for pathogen strains, namely a disease resistance (R) gene. The term R gene is used to 

refer to a gene that confers qualitative effects (Poland, Balint-Kurti et al. 2009). R genes 

associated with specific diseases have been identified in maize. For example, the Ht genes (Ht1, 

Ht2, Ht3, ht4, Htnl, Html and NN) have been identified in mostly tropical germplasm and confer 

qualitative resistance to NCLB (Welz and Geiger 2000). However, the effectiveness of Ht genes 

depends on pathogen race, environmental conditions, factors like light intensity and temperature, 

which can limit the value of using them (Welz and Geiger 2000).    

Quantitative resistance, on the other hand, confers partial effects. Quantitative resistance 

is usually expressed as a reduction in disease with slowing disease progression, as opposed to the 

absence of disease. Quantitative disease resistance (QDR), also referred to as polygenic or 

oligogenic resistance, is usually race non-specific. It is typically conditioned by additive or 

partially dominant genes (Wisser, Balint-Kurti et al. 2006).  

Three are several important reasons for the interest in quantitative disease resistance in 

maize. First, maize has been a good system for disease resistance studies (Balint-Kurti and Johal 

2009). Maize is an important crop and any findings in maize can be directly applied to crop 

improvement efforts and also provide the framework to increase disease resistance in other 

species (Balint-Kurti and Johal 2009). The majority of disease resistance developed in the elite 

maize lines by breeders is quantitative in nature (Wisser, Balint-Kurti et al. 2006). Second, 

quantitative disease resistance is more durable than qualitative resistance in that qualitative 

disease resistance mediated by a few genes can be easily overcome by mutation in the pathogen. 

Third, the availability of R genes is limited in necrotrophic pathosystems. The majority of 

economically important diseases in maize are caused by necrotrophic pathogens, and resistance 

to necrotrophic pathogens is mostly quantitative instead of qualitative in nature (Poland, Balint-
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Kurti et al. 2009). Qualitative disease resistance usually relies on localized cell death at the point 

of pathogen penetration and is beneficial to necrotrophic pathogens. 

Despite the differences between qualitative and quantitative disease resistance, there is a 

great deal of gray area between the extremes (Poland, Balint-Kurti et al. 2009). Several studies 

have questioned whether the loci conditioning the two types of resistance are distinct. For 

example, Kamoun et al. (1999) found that plant resistance to oomycete plant pathogens, usually 

associated with the hypersensitive response – a programmed cell death response, is related to all 

forms of resistance to oomycete pathogens. (Kamoun, Huitema et al. 1999) suggested that there 

can be some overlap in the genetic mechanisms underlying quantitative and qualitative disease 

resistance. Considering the wide range of microbial pathogenesis strategies and the 

corresponding host-defense strategies, Poland et al. (2009) proposed four mechanisms 

underlying disease-associated QTL (dQTL): 1) genes regulating morphological and 

developmental phenotypes; 2) pattern-recognition receptors acting in basal defense; 3) 

component of chemical warfare; 4) defense signal transduction; 5) a weak form of R-genes; 6) a 

unique set of previously unidentified genes. 

Hundreds of QTL have been identified in maize for various diseases. A synthesis of fifty 

published studies by Wisser et al. (2006) reported 437 dQTL in maize. Wisser et al (2006) found 

that all the ten maize chromosomes harbor disease-associated QTL, and the confidence intervals 

of those QTL covered 89% of the maize genome. The distribution of disease-associated QTL is 

non-random: clusters of resistance loci were identified. With improvement in marker 

technologies available and the increasing ease of fine-mapping, significant progress in the 

cloning of genes controlling quantitative disease resistance has been made. Several genes that 

conditioning quantitative resistance had been cloned in maize: ZmWAK is the causal gene 
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underlying a head smut resistance QTL (Zuo, Chao et al. 2015). Head smut is caused by the 

fungal pathogen Sphacelotheca reiliana (Zuo, Chao et al. 2015). Htn1, which confers resistance 

to NCLB, was cloned and encoded a wall-associated receptor-like kinase (Hurni, Scheuermann 

et al. 2015).  

Multiple disease resistance in maize 

There is more than one definition of multiple disease resistance (MDR). MDR can refer 

to a host plant resistant to two or more diseases or to a gene or allele that confers resistance to 

more than one pathogen (Zwonitzer, Coles et al. 2010, Wiesner-Hanks and Nelson 2016). An 

inbred line or variety that has relatively high levels of resistance to two or more diseases is 

referred to as an MDR line or variety. Multiple disease resistance is under positive selection, and 

genetic variation conferring resistance to multiple diseases is thus hypothesized to exist 

naturally. MDR can be mediated by different genetic mechanisms. Wiesner-Hanks and Nelson 

(2016) proposed four genetic scenarios for MDR in plants: 1) several single disease-associated 

genes or loci stacked in a single plant genotype, in which genes and loci can be far apart; 2) 

several single disease-associated genes or loci that are physically linked so that they are always 

inherited together as a unit from one generation to the next (in linkage disequilibrium); 3) a 

single gene or locus that confers resistance to multiple diseases with comparable effect sizes; and 

4) a single gene or loci that is related to multiple pathogens but with different effect sizes.  The 

third scenario is referred to as even pleiotropy and the fourth scenario is referred to as uneven 

pleiotropy.  

Similar to tightly linked QTL causing positive correlation between diseases, QTLs that 

are linked in repulsion can cause the negative correlation between diseases, causing opposite 

effects for different diseases (Wiesner-Hanks and Nelson 2016). Take wheat as an example: the 
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Sr2 gene is a race non-specific wheat stem rust resistance gene (Hare and RA 1979, Spielmeyer, 

Sharp et al. 2003) and Fhb1 is the largest resistance QTL for fusarium head blight (Pumphrey, 

Bernardo et al. 2007). However, Sr2 and Fhb1 are not found together in cultivars because they 

are linked in repulsion on chromosome 3BS. With the assistance of DNA markers, 

recombination was detected between Sr2 and Fhb1 to couple them in a winter wheat population 

(Flemmig 2012). 

Several studies have identified regions associated with resistance to multiple diseases in 

maize. The co-localization of dQTL can imply a common genetic basis for MDR. In 1995, 

McMullen and Simcox (1995) reviewed a number of studies and placed the disease and pest 

resistance QTL in chromosomal bins. Chromosomal bins are used to describe the map position 

of QTL or genes. The maize genome was divided into 100 bins, with each chromosome divided 

into segments of approximately 20 centimorgans each (Gardiner, Coe et al. 1993, Davis, 

McMullen et al. 1999). By summarizing the dQTL, McMullen and Simcox (1995) found that 

many of the QTL mapped to the same chromosomal bin locations. All ten chromosomes 

contained dQTL. The distribution did not fit a random model, and dQTL clustered on all 

chromosomes, with the exception of chromosomes 7 and 9. Clusters of dQTL in bins 3.04 and 

6.01 were tightly linked while other clusters were distributed over 20 to 40 cM regions. On 

chromosome 3, bins 3.04 and bin 3.05 contain dQTL associated with Fusarium stalk rot and 

European corn borer and single factor genes for resistance to common rust, wheat streak mosaic 

virus, and maize mosaic virus. Additional potential resistance gene clusters were reported on 

chromosomes 1 and 9, where dQTL for resistance to S. turcica and leaf-feeding of various 

lepidopteran insect species (Welz and Geiger 2000).  
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As more dQTL were identified, additional disease resistance associated clusters were 

identified. Eleven years later, Wisser et al. (2006) synthesized fifty dQTL publications in maize 

for 11 different diseases. A total of 437 dQTL, 17 resistance genes and 25 R-gene analogs were 

reported and placed on a single consensus map. On every chromosome there was co-localization 

of dQTL for at least two different diseases. Bin 3.04 to 3.05, which had been previously 

identified as a potential MDR region (McMullen and Simcox 1995), was associated with six 

diseases. In the region from 315 to 375 cM on chromosomal 2 contained nine of the 11 dQTL; a 

50 cM chromosomal region from 450 to 500 cM on chromosome 4 had co-localized dQTL for 

eight diseases. However, the MDR chromosomal regions from these two synthesis studies were 

based on different mapping studies using different mapping populations. Different populations 

have different parental alleles, which constrains the usefulness of the identified MDR regions. 

Wisser et al. (2011) screened a diverse maize panel with 253 inbred lines representing 

much of the global variation among maize inbred lines for three fungal foliar diseases: GLS, 

NCLB and SCLB. The three fungal pathogens are all in the Dothideomycetes taxonomic class 

and share characteristics of pathogenesis. High positive (> 0.5) genetic correlations were 

detected between all pairwise disease combinations. Lines with relatively high resistance or 

susceptibility to all the three diseases were identified. Select MDR and MDS lines were used as 

the parental founder lines for chromosome segment substitution line (CSSL) populations. Those 

CSSL populations, where the recurrent parent was a susceptible and the donor resistant, were 

used to isolate the loci conferring MDR effects (Lopez-Zuniga, Wolters et al. 2019).  

Lopez-Zuniga et al. (2019) mapped resistance to three fungal diseases, SCLB, NCLB, 

and GLS in eight CSSL populations to identify loci that are associated with multiple diseases. 

The goal of the study was to confirm the findings from the association mapping and build a 
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resource useful for understanding multiple disease resistance. A total of eight BC3F4:5 CSSL 

populations comprising 1,611 lines were developed and evaluated for the three fungal diseases. 

Those populations are in the same genetic background; thus, four populations share the same 

recurrent parent Oh7B and the other four populations share the recurrent parent H100. In each 

population, lines were identified that were significantly more resistant than the recurrent parent 

for all the diseases. QTL associated with multiple diseases were identified: six QTL were 

associated with all the three diseases; two QTL were associated with resistance to SCLB and 

NCLB; seven were related to SCLB and GLS and two QTL for NCLB and GLS. However, due 

to the marker density and the constraints of the mapping population design, it is not clear if the 

clustering of QTL in the same chromosomal regions is due to single pleiotropic genes or closely 

linked.  

Individual genes that mediate pleiotropic effects for different pathogens have been 

identified. The maize panel screened by Wisser et al. (Wisser, Kolkman et al. 2011) shows 

rapidly decaying linkage disequilibrium within 1 or 2 kb, which is less than the average length of 

a maize gene, suggests that associated SNPs are caused by variants at specific genes. A 

glutathione S-transferase (GST) gene on chromosome 7 was found to be associated with modest 

levels of resistance to all three diseases. Another study from Yang et al. (Yang, He et al. 2017) 

identified a gene, ZmCCoAOMT2, on chromosome 9, which encodes a maize caffeoyl-CoA O-

methyltransferase, that underlies the MDR QTL qMdr9.02. qMdr9.02 confers effects for three 

major maize foliar diseases: NCLB, SCLB and GLS, and ZmCCoAOMT2 was found to confer 

quantitative resistance to both SCLB and GLS. The gene accounts for 10% and 6% of the 

variation of SCLB and GLS, respectively.  
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Most of the MDR studies focus exclusively on fungal diseases. The shared genetic 

architecture of fungal and bacterial diseases remains largely unknown. Only a few studies have 

identified clusters of resistance QTL for both bacterial and fungal diseases in the same genetic 

background. Chung et al. (2010) used near-isogenic line (NIL) populations to dissect resistance 

to fungal and bacterial diseases. Selected NILs with QTL associated to the resistance for NCLB 

were evaluated for anthracnose stalk rot, common rust, common smut and Stewart's wilt, in 

which Stewart's wilt is a bacterial disease. The results suggested that both qNLB1.02B73 and 

qNLB1.06Tx303 were also effective against Stewart's wilt. qNLB1.02B73 was also effective against 

common rust. In a following up study (Jamann, Poland et al. 2014), high-resolution mapping 

populations were constructed for qNLB1.06Tx303 and a candidate gene pan1 was found to be a 

susceptibility gene for NCLB and Stewart's wilt. In another study from Jamann et al. (2016), 

qNLB1.02B73 was fine-mapped to a 243-kb interval with four positional candidate genes, and two 

candidate genes (F-box gene and ZmREM6.3) were found to be highly expressed in the resistant 

line. A role of ZmREM6.3 in quantitative disease resistance was suggested in this study. 

Future directions 

Emerging maize disease can develop into unexpected and very serious pandemic. SCLB 

caused by race T of Cochliobolus heterostrophus, with the aid of favorable climate conditions, 

developed into a great epidemic in 1970-1971, causing enormous damage in the corn belt in the 

United States. This SCLB epidemic was attributed to a new race of the fungus that is highly 

virulent to corn with T-type cytoplasm, which was extensively used in hybrid seed production 

(Tatum 1971). The evolution of crop pests is not rare and genetic homogeneity in a crop means 

increased vulnerability to pests. With little information about new diseases, like BLS, limited 

management options are available. Resistant cultivars are a good way to control new diseases, 
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and lines with quantitative disease resistance QTL have the advantage of being durable and less 

race specific. Thus, identifying dQTL conferring effects for BLS is crucial to prevent it from 

developing into a devastating epidemic.  

Furthermore, relatively little is known about the relationship between bacterial and fungal 

resistance. For the most part, it is unknown whether the same alleles contribute resistance to both 

bacterial and fungal diseases. In order to increase our understanding of the mechanisms 

underlying resistance for pathogens from different kingdoms and also provide practical 

information for future disease-resistance breeding programs, we use introgression line 

populations with the same genetic background to identify chromosomal regions that are 

associated with fungal and bacterial disease resistance and evaluate their effects. This thesis will 

provide information on the genetic architecture of bacterial and fungal disease resistance in 

maize and the effects of the chromosomal segments on those diseases. 
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CHAPTER 2: IDENTIFICATION OF QUANTITATIVE TRAIT LOCI ASSOCIATED 

WITH BACTERIAL LEAF STREAK OF MAIZE 

ABSTRACT 

Bacterial leaf streak (BLS), a foliar disease of maize (Zea mays L.) caused by 

Xanthomonas vasicola pv. vasculorum, recently emerged in the Americas as a disease of major 

importance. Little is known about the disease cycle, and consequently, management is difficult. 

No chemical control is available. Host resistance will likely play a major role in controlling the 

disease, but to date, no data regarding the resistance of maize germplasm to X. vasicola pv. 

vasculorum have been published. The objective of this study was to examine the genetic 

architecture of resistance to BLS. We conducted quantitative trait locus (QTL) mapping for BLS 

resistance in three maize populations: the Z022 (B73 / Oh43 recombinant inbred line) nested 

association mapping (NAM) population, the Z023 (B73 / Oh7B recombinant inbred line) NAM 

population, and the DRIL78 (NC344 / Oh7B chromosome segment substitution line) population. 

A total of five QTL were detected across two of the mapping populations. Of the QTL detected, 

one conferred a moderate effect, whereas the others conferred small effects. We also examined 

the relationship between resistance to BLS and resistance to three foliar diseases of maize, which 

had been mapped previously. The only significant correlation we found for BLS was with 

northern corn leaf blight [caused by Exserohilum turcicum (Pass.) K. J. Leonard & Suggs] in one 

of the populations, although two of the five BLS regions were involved in resistance to other 

diseases. These data will be useful for developing maize varieties resistant to BLS and also 

mitigating the impact of bacterial leaf streak on maize production. 
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INTRODUCTION 

Bacterial leaf streak (BLS) of maize (Zea mays L.), caused by Xanthomonas vasicola pv. 

vasculorum (Cobb) comb. nov. (Xvv), recently emerged in the Americas, and little is known 

about host resistance to the disease (Damicone et al., 2018; Jamann et al., 2019; Korus et al., 

2017; Leite et al., 2019; Plazas et al., 2018). Bacterial leaf streak was first reported in South 

Africa in 1949 (Dyer, 1949) and was limited to the African continent until recently. In 2010, 

researchers detected BLS symptoms in northern Argentina, and since that time, the disease has 

expanded from Córdoba Province to other provinces in Argentina (Plazas et al., 2018). It was 

suspected that BLS was present in Brazil for some time, and the disease was recently positively 

confirmed (Leite et al., 2019). In the United States, BLS was first reported in Nebraska in 2014 

and subsequently was confirmed in Colorado and Kansas (Korus et al., 2017). After the initial 

reports of BLS in the United States, surveys were conducted in Oklahoma and Illinois, and the 

disease was found in both states (Damicone et al., 2018; Jamann et al., 2019). Currently, the 

pathogen range includes Colorado, Illinois, Iowa, Kansas, Minnesota, Nebraska, Oklahoma, 

South Dakota, and Texas (Damicone et al., 2018; Jamann et al., 2019; Lang et al., 2017). 

The sudden spread of BLS in North and South America is likely the result of a more 

virulent novel strain of Xvv (Perez-Quintero et al., 2019). The population of Xvv that has 

emerged in North and South America appears to be the result of horizontal genomic acquisitions 

of multiple gene clusters by Xvv, which infects maize, from X. vasicola pv. holcicola (Xvh), 

which infects sorghum [Sorghum bicolor (L.) Moench] (Perez-Quintero et al., 2019). It is 

unclear if the genomic acquisitions are specifically responsible for the increase in virulence and 

spread of the pathogen, but all 22 isolates of Xvv from North and South America sequenced to 

date carry these gene clusters from Xvh, whereas the isolates of Xvv from South Africa lack these 
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regions from Xvh (Perez-Quintero et al., 2019). The isolates of Xvv from North and South 

America also cause larger lesions on corn than isolates of Xvv from South Africa (Perez-Quintero 

et al., 2019). 

Initial research on the disease ecology of BLS in North America reported irrigation use, 

multiple years of corn in a crop rotation, the corn plant being at the V7 to R2 growth stage 

(Abendroth et al., 2011) and planting after 2 May as the most important predictors for Xvv 

incidence (Hartman 2018). Corn planted into a previous year’s corn residue is at greater risk for 

the disease, as the pathogen is able to survive in infected corn residue from the previous season 

(Ortiz-Castro et al., 2018). The disease is often most severe and frequently observed in irrigated 

fields (Damicone et al., 2018; Hartman 2018) where consistent moisture results in infections 

from inoculum that survives in residue. The V7 to R2 growth stage is also a good predictor of 

disease, probably as a result of secondary spread associated with rain and wind dispersal 

resulting in severe BLS symptoms being observed in both irrigated and nonirrigated fields mid-

season (Broders 2017; Ortiz-Castro et al., 2018). Moisture also seems to be important for Xvv to 

enter the plant. In preliminary experiments, Xvv cells were shown to cluster around the stomata 

of corn leaves and appeared to both enter and exit through stomata (Ortiz-Castro et al., 2018). In 

the same study, green fluorescent protein (GFP)-transformed strains of Xvv were found in the 

intercellular space and not in the vascular tissue. These data support previous inoculation 

experiments (Korus et al., 2017; Lang et al., 2017; Perez-Quintero et al., 2019; Plazas et al., 

2018) that only observed foliar symptoms caused by all evaluated maize-infecting Xvv from 

North and South America. Although the sugarcane (Saccharum spp.)-infecting strain does cause 

vascular infections of maize, recent phylogenomic assessment of the species X. vasicola has 
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determined that the maize-infecting strains of Xvv represent a distinct genetic lineage from those 

infecting sugarcane (Perez-Quintero et al., 2019; Studholme et al., 2019). 

Once Xvv has successfully entered the leaf, initial symptoms develop as water-soaked 

lesions and expand into narrow stripe-shaped, 2- to 3-mm-wide lesions on infected leaves that 

can vary from yellow to brown. Lesions are parallel to leaf veins and are constricted to 

interveinal spaces. Under high-humidity conditions, yellow droplets of bacterial exudate form on 

infected areas of the leaf (Coutinho and Wallis, 1991). Korus et al. (2017) reported that lesions 

can cover 40 to 50% of the leaf area. Because leaf area becomes necrotic, photosynthetic 

capacity of the plant is compromised in severe infections, and yield losses are likely. However, 

the true impact of the disease on yield has not yet been successfully quantified. 

Successful management of BLS has remained elusive as there are no chemical controls, 

and initial inoculum continues to increase in no-till corn–corn, corn–sorghum–corn, or corn–

soybean [Glycine max (L.) Merr.]–corn rotations, which currently cover large numbers of acres 

in Colorado, Illinois, Iowa, and Nebraska. As with other similar bacterial pathosystems [e.g., 

Goss’s bacterial wilt and leaf blight caused by Clavibacter michiganensis (Smith) Davis et al. 

subsp. nebraskensis (Vidaver & Mandel) Davis et al.], it is likely that host resistance will play a 

major role in controlling the disease. Bacterial leaf streak infects a wide variety of cultivars 

(Lang et al., 2017; Leite et al., 2019). Symptom type and severity vary among hybrids (Leite et 

al., 2019; Munkvold and White 2016), indicating there may be genetic control of the plant 

response to the disease. To date, no studies have been published on the genetic architecture of 

resistance to BLS, which would facilitate the development of resistant varieties. Understanding 

the genetic basis of BLS resistance is crucial for controlling the disease. 
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Several genes have been implicated in multiple disease resistance (MDR) in maize 

(Jamann et al., 2014; Wisser et al., 2011; Yang et al., 2017). Multiple disease resistance is 

defined as host resistance to two or more diseases, or a gene or allele that confers resistance to 

two or more diseases (Wiesner-Hanks and Nelson, 2016). In maize, foliar disease phenotypes are 

typically significantly correlated within populations, and regions conferring resistance to 

multiple diseases have been described (Balint-Kurti et al., 2010; Belcher et al., 2012; Chung et 

al., 2011; Jamann et al., 2016; Lopez-Zuniga et al., 2019; Zwonitzer et al., 2010). Hu et al. 

(2018) identified a locus for resistance to the Goss’s bacterial wilt and the leaf blight pathogen 

Clavibacter michiganensis subsp. nebraskensis that was associated with the resistant locus rp1 to 

Puccinia sorghi, which causes common rust of corn. Consequently, we hypothesized that regions 

important for resistance to BLS might also be important for other diseases. 

Maize is a model for quantitative genetics, and multiple genetic mapping populations are 

readily available (Wallace et al., 2014). The nested association mapping (NAM) population 

consists of 25 families of recombinant inbred lines (RILs), where each RIL family was 

developed by crossing a line chosen to maximize diversity to the inbred line B73 (Buckler et al., 

2009; McMullen et al., 2009). The NAM was designed to enable high-power and high-resolution 

mapping through joint linkage-association analysis (McMullen et al., 2009). The NAM has been 

used to map resistance to numerous quantitative traits, including resistance to gray leaf spot 

(GLS, caused by Cercospora zeae-maydis Tehon & E. Y. Daniels) (Benson et al., 2015), 

northern corn leaf blight [NCLB; caused by Exserohilum turcicum (Pass.) K. J. Leonard & 

Suggs] (Poland et al., 2011), and southern corn leaf blight [SCLB; Bipolaris maydis (Y. Nisik. & 

C. Miyake) Shoemaker] (Kump et al., 2011). Three related populations were selected to screen 

for BLS based on a preliminary evaluation of the NAM parental lines, and the MDR of NC344. 
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We selected two NAM populations, Z022 (B73 / Oh43) and Z023 (B73 / Oh7B), to screen for 

their reaction to BLS. Additionally, we screened a complimentary chromosome segment 

substitution line (CSSL) population, referred to as the disease resistance introgression line 78 

(DRIL78) population (NC344 / Oh7B) (Lopez-Zuniga et al., 2019). The populations allowed us 

to investigate the genetic architecture of resistance to BLS in maize and the relationship between 

multiple foliar diseases. 

Our objectives in this study were (i) to identify quantitative trait loci (QTL) for BLS 

resistance in the two NAM populations, Z022 and Z023, (ii) to identify QTL underlying BLS 

resistance in the DRIL78 population, and (iii) to compare resistance to BLS with resistance to 

other common foliar diseases that occur in the United States, including GLS, SCLB, and NCLB. 

MATERIALS AND METHODS 

Plant materials 

The NAM parents and three mapping populations were evaluated for BLS severity. We 

did a preliminary experiment to screen the 27 parental lines of the NAM population and selected 

the Z022 (B73 / Oh43) and Z023 (B73 / Oh7B) populations for further evaluation based on this 

experiment (Table 1) (Buckler et al., 2009; McMullen et al., 2009; Yu et al., 2008). Both NAM 

populations are S5 RILs. Seeds of the NAM parents were obtained from the US National 

Germplasm System, whereas seeds of the RIL populations were obtained from Dr. Paul Scott at 

Iowa State University. Additionally, DRIL78, a CSSL population with donor introgressions 

spanning the entire genome, was evaluated. The population was developed by crossing NC344, 

an MDR line, to Oh7B, a multiple disease susceptible line (Wisser et al., 2011). The 

nomenclature for the population is as follows: disease resistance introgression line (DRIL) 7 
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(code for NC344), 8 (code for Oh7B). Lopez-Zuniga et al. (2019) developed the population by 

crossing NC344 to Oh7B, and the progeny were backcrossed to the recurrent parent (Oh7B) for 

three generations, followed by four subsequent generations of self-pollination. Seeds of the 

DRIL78 population were obtained from Dr. Randall Wisser at the University of Delaware. 

Experimental design 

To evaluate more populations, screenings were conducted in Iowa and Illinois. The NAM 

populations were evaluated in Iowa, and the DRIL population was evaluated in Illinois. For the 

Iowa evaluation of the NAM parents and the Z022 and Z023 populations, plants (4 plants per 

pot) were grown in 946-mL plastic pots filled with a soil mix of peat moss–metro mix–coarse 

perlite (4:3:4) and placed in a growth chamber at 25 Celsius with a 16-h photoperiod in the 

Department of Plant Pathology and Microbiology at Iowa State University. All 27 NAM founder 

lines, 186 lines of the Z022 population, and 182 lines of the Z023 population were evaluated. 

The plants were fertilized once a week with 200 mL per pot of liquid fertilizer (15–5–15 N–P–K, 

Miracle-Gro, The Scotts Company), starting 2 wk after planting. Pots (1 pot per line) were 

arranged in a randomized complete block design, and two independent experimental runs were 

done for each population tested. A sweet corn variety, NK199, and hybrid variety, DKC 62-08, 

that both had been observed as susceptible to BLS in the field were used as susceptible controls. 

The DRIL78 population was evaluated in the greenhouse at the Plant Care Facility at the 

University of Illinois at Urbana-Champaign in 2017 to 2018. The room was maintained at 24.5 to 

26.5 Celsius during the day and 21 to 23 Celsius at night. Supplemental lighting was provided 

for 15 h d−1. Seeds were planted in general purpose potting mix (1 soil/1 peat/1 perlite) in a 3.77 

L (1-gallon) pot with one plant per pot. Each pot was amended with 8 g Osmocote (15–9–12 N–

P–K, Everris). Three seeds were planted per pot and seedlings were thinned to one plant per pot. 
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Due to limited space, an augmented design was used for the pot arrangement (Federer, 1961). A 

total of three replications were evaluated, with six blocks arranged in 16 rows and 18 columns 

per replication. Each replication was run as an independent greenhouse experiment planted on a 

different date. Included in each replication of the DRIL78 screening were 287 experimental 

units, including 233 entry lines and nine check lines that were replicated in all six blocks. Check 

lines were selected based on preliminary screenings and included the two parental lines (NC344 

and Oh7B), four BLS-susceptible lines (CML333, M162W, Ky21, and M37W), and three BLS-

resistant lines (Mo18W, CML103, and Hp301). Lines were randomized within blocks using the 

R (version 3.5.1) package “Agricolae” (De Mendiburu, 2014; R Core Team, 2018). 

Inoculation and disease evaluation 

Somewhat different inoculation and disease evaluation methods were used for the 

experiments conducted in Iowa and Illinois. For the NAM parents evaluated in Iowa and NAM 

RIL populations, we modified and optimized an inoculation method reported by Lang et al. 

(2017). We used Xvv strain X14, which was recovered from BLS symptomatic corn leaves 

collected from a commercial corn field in Iowa. To prepare inoculum, a single colony from a 

culture of the bacterium on glucose yeast extract (GYE) agar (20 g liter–1 glucose, 10 g liter–1 

yeast extract, 20 g liter–1 bacto agar) was grown in 10 mL of GYE broth at 200 rpm at 25 

Celsius overnight. Cells of X14 were collected by centrifugation at 5000g for 5 min and 

resuspended in sterile water, and then the inoculum suspension was adjusted to an optical density 

at 600 nm (OD600) of 0.01. Inoculation occurred when the plants were at the V3 developmental 

stage (Abendroth et al., 2011). Approximately 0.05 mL of inoculum was infiltrated into of the 

third leaf of each plant, on both sides of the main vein, 7.5 cm from the leaf tip. Thus, each plant 

had two lesions. The tip of a 1-mL syringe (with no needle attached) was placed against the 
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abaxial side, a finger on the adaxial side was used to apply gentle pressure, and the inoculum 

suspension was gently introduced into the leaf tissue through the stomata (Schaad et al., 1996). 

Immediately after inoculation, the area of infiltration was delineated with a permanent marker. 

Inoculated plants were returned to the growth chamber at 25 Celsius with a 16-h photoperiod. 

Seven days after inoculation, the total length of the third leaf and the total length of any lesion 

that developed in association with the point of inoculation on the third leaf were measured. 

We evaluated the DRIL78 population in Illinois and used a strain of Xvv, 16Xvv4.1, that 

was isolated from diseased leaf material collected in DeKalb County, Illinois, in 2016 (Jamann et 

al., 2019). A local strain was used because of biosafety considerations. After isolation, the isolate 

was stored in 30% glycerol at −80 Celsius. The strain was cultured for 2 to 3 d at 28 Celsius in 

nutrient broth. On the day of inoculation, the cells were suspended in 0.1 M NaCl, and the 

bacterial suspension was adjusted to an optical density at 600 nm of 0.20 (OD600) using a 

spectrophotometer. Inoculations were performed at the V4 to V5 stage by cutting the tip of the 

smallest emerging leaf from the whorl with scissors dipped in the bacterial suspension. After 

inoculation, the plants were placed in a mist chamber for 18 h. Lesion length was measured from 

the cut site to the furthest point of the lesion three times post inoculation, at 7, 14, and 21 d after 

inoculation. Leaf length measurements were not taken. Because of the larger pot size and 

greenhouse instead of growth chamber conditions used for the NAM populations, plants were 

scored for more time points for the DRIL population. 

Phenotypic data analysis 

For the NAM RIL populations, the severity of BLS observed at 7 d after inoculation was 

calculated as the percentage of total leaf length blighted. The area under disease progress curve 

(AUDPC) was not calculated for these populations because there was only one data point. 
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However, we took multiple lesion length measurements for the DRIL78 population, and those 

were used to calculate AUDPC scores using the following formula: 
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where yi refers to individual disease scores, ti equals time between ratings, and n represents the 

number of measurements (Wilcoxson et al., 1974). The function “audpc” from R (version 3.5.1) 

package “Agricolae” was used to calculate the AUDPC scores based on the lesion length 

measurements using the absolute method (De Mendiburu 2014; R Core Team 2018). The data 

were not normally distributed, so AUDPC scores were transformed using the one-parameter 

Box–Cox transformation function in the “MASS” package in R (R Core Team 2018; Ripley et 

al., 2018). The power parameter lambda value was 0.5858586 and was applied to calculate the 

transformed AUDPC data. All the subsequent analyses for DRIL78 were performed using the 

transformed AUDPC data. 

For each line, a best linear unbiased predictor (BLUP) was estimated using a model that 

included the transformed AUDPC data and the significant factors for each population 

(Supplemental File S1). Significant factors were identified for each population by fitting factors 

using the lmer() function from the lme4 package in R (version 3.5.1) and determining which 

factors were significant in the model (Bates et al., 2015; R Core Team 2018). The final model for 

the Z022 population included genotype and plant (nested within run); for the Z023 population, 

genotype and lesion (nested within plant and run) were included in the final model; for the 

DRIL78 population, the final model included genotype, replication, and block nested in 

replication (Table 2). All factors included in the final models were fitted as random factors. 
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Pearson’s product-moment correlation coefficients for AUDPC between the three 

different replications of the DRIL78 population were obtained using the R (version 3.5.1) 

function “cor.test” (R Core Team 2018). SAS software (version 9.4) was used to calculate the 

heritability for the DRIL78 population. The analysis was done using the PROC MIXED 

procedure according to Holland et al. (2010). Both the heritability on an individual plot basis and 

on a line-mean basis were calculated. Due to the limited amount of seed of the NAM RIL 

populations, those populations were only screened twice, and consequently, a heritability index 

was not calculated. 

Multiple disease resistance data analysis 

We examined the correlation between BLS, NCLB, SCLB, and GLS phenotypes for the 

two NAM RIL populations using phenotypic data reported herein for BLS, and data previously 

reported for NCLB, SCLB, and GLS (Benson et al., 2015; Kump et al., 2011; Poland et al., 

2011). The SCLB index scale used by Kump et al. (2011) was reversed to make it compatible 

with the other three disease scales, where a higher value indicates a more susceptible line. 

Similarly, we examined the correlations between BLS, NCLB, SCLB, and GLS phenotypes in 

the DRIL78 population using data reported in Lopez-Zuniga et al. (2019). Only lines with 

phenotypes for all the diseases were included in the analysis. For GLS, NCLB, and SCLB lower 

phenotypic scores indicated more disease and higher phenotypic scores indicated less disease 

(Lopez-Zuniga et al., 2019). The scale for BLS was different, with lower scores representing less 

disease on the leaf and higher scores indicating more disease. Consequently, the BLUP values 

for BLS were inverted by adding a negative sign so that the scales for all the four diseases were 

consistent. Pearson’s product-moment correlation coefficients between diseases were calculated 

using the R function “cor.test” (version 3.5.1) (R Core Team 2018). 
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QTL mapping 

For the two NAM RIL populations, 7386 single nucleotide polymorphism (SNP) markers 

(the 0.2 cM resolution linkage map) (Ogut et al., 2015), along with the BLUPs, were used for 

mapping. Ogut et al. (2015) generated the markers using genotyping-by-sequencing, filtered to a 

high-quality set of SNP markers, and used the markers to calculate a genetic map. Markers are 

publicly available at www.panzea.org. A total of 172 individuals in the NAM Z022 population 

and 163 individuals in NAM Z023 population were included in the analysis. The QTL analysis 

was conducted using the “qtl” package in R (version 3.5.1) (Broman et al., 2003). The “multiple 

imputation” interval mapping method was used in this study, using imputations with a step size 

of 1 and 0.005 error probability. Significance thresholds were determined by performing 1000 

permutations for each population and an experiment-wide error rate of 0.10. The interval 

estimate of the location of the QTL was obtained by Bayes credible interval method using the 

“bayesint” function. Intervals were expanded to the nearest flanking markers. The percentage 

variance explained by the QTL and the QTL effect sizes were estimated using the “fitqtl” 

function. 

A total of 194 lines from the DRIL78 population, including the recurrent parent, were 

used for analysis. The inclusion of the recurrent parent improves mapping power. A total of 241 

genotyped SNPs with map locations based on the IBM4 map were used for mapping (Fu et al., 

2006; Lopez-Zuniga et al., 2019). The genotypic dataset was generated using the Pioneer 

Illumina publicplex platform using 765 SNP markers and is available as supplemental data from 

Lopez-Zuniga et al. (2019). The DRIL78 BLUPs were used as the phenotypic dataset. The QTL 

analysis was performed using ICIMapping 4.0.6.0 and the “CSL: mapping of additive and 

digenic epistasis genes with chromosome segment substitution lines” function was used (Meng et 
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al., 2015). To control multicollinearity, the “by condition number” parameter was set as 1000. 

The “RSTEP-LRT-ADD” mapping method was used for QTL mapping, which enabled a 

likelihood ratio test based on stepwise regression analysis for determining the most significant 

markers (Meng et al., 2015). A total of 1000 permutations were conducted to determine the 

logarithm of odds (LOD) threshold representing an experiment-wide error rate of 0.10. Markers 

with LOD scores above the permutated threshold are reported as significant markers. Physical 

marker positions are based on the B73 RefGen_v3 sequence (Schnable et al., 2009). 

RESULTS 

Phenotypic distributions 

We conducted a pre-experiment to determine which populations to evaluate for BLS. The 

mean percentage leaf blight on the 27 NAM parent lines ranged from 13.5% for Ki11 to 92.4% 

for Oh7B (Table 1). The common NAM parent B73, placed among the top five most resistant 

lines, with 19.8% of the leaf length blighted. The NAM parent lines Oh43 and Oh7B had the 

least resistance to Xvv of all lines tested. Consequently, RIL subpopulations Z022 (B73 X Oh43) 

and Z023 (B73 X Oh7B) were selected for further analysis. We evaluated the DRIL78 

population because we knew that Oh7B was susceptible to BLS and NC344 had resistance to 

other common foliar diseases (Wisser et al., 2011), and we conjectured that it would also be 

resistant to BLS. To maximize the number of populations evaluated, the NAM populations were 

evaluated in Iowa and the DRIL population was evaluated in Illinois with slightly different 

methods and a different Xvv strain. 

The populations showed a wide range of disease phenotypes. All three populations 

showed transgressive segregation (Figure 1), regardless of the inoculation method. In the Z022 
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population, the mean percentage of leaf blighted by the pathogen was 44.4% and ranged from 

5.00 to 100%. In the Z023 population, the mean percentage of leaf blight was 56.9% and ranged 

from 0.80 to 100%. The BLUPs of the Z022 population exhibited a bell-shaped distribution 

(Figure 1). The two parental lines for the Z022 NAM population were symmetrically located, 

with the resistant parent B73 having a BLUP value of 24.7 and the susceptible parent Oh43 

having a value of 64.5 (Figure 1). The BLUP values of the Z023 RIL population were skewed 

toward susceptibility (Figure 1). The DRIL78 population showed a wide range of lesion lengths, 

from 0.10 to 57.6 cm. 

In all the three populations, genotype accounted for the highest proportion of the variance 

(Table 2). The heritability on an individual plot basis for the DRIL78 population was 0.231, and 

the heritability on a line–mean basis was 0.417. The correlations between the three replications, 

where each replication was a separate run, were all highly significant based on Pearson’s 

correlation test, with correlations ranging from 0.23 to 0.30. Heritability was not calculated for 

the Z022 and Z023 populations, as there were only two replications. Pearson’s correlation 

coefficients show the positive relationship between the two runs of each NAM population, with 

the value being 0.23 for Z022 and 0.29 for Z023.  

Linkage mapping 

A total of five significant QTL were identified across the three mapping populations 

(Table 3), with one QTL identified in the Z023 population, and four QTL identified in the 

DRIL78 population. No significant QTL were identified in the Z022 population. The largest 

effect QTL was located on chromosome 5 in the Z023 population, with a LOD score of 7.44, and 

accounted for 18.9% of the variation in the population. The other QTL, all identified in the 

DRIL78 population, were of smaller effect, with a maximum of 6.7% of the variance explained. 
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Both the resistant and susceptible parents were found to carry resistant alleles in the DRIL78 

population. In the Z023 population, the allele from the resistant parent B73 conferred resistance 

for the chromosome 5 QTL. 

We tested the effect of the phenotypic measurement parameter, lesion length, or 

percentage of leaf length blighted on our mapping results. Using the NAM populations for which 

both phenotypic measures were available, we conducted QTL mapping using BLUPs calculated 

based on lesion length data and compared it with the results generated using percentage of leaf 

length blighted. We did not identify any significant QTL using lesion length, indicating that 

percentage of lesion length blighted was a better phenotypic measure for either these 

populations, or for the method used to screen these populations (infiltration of Xvv into the third 

leaf of V4 plants). We did not collect percentage of leaf length blighted for the DRIL78 

population. 

Relationship between resistance to bacterial leaf streak and resistance to other foliar 

diseases 

Pearson’s correlation coefficients were calculated among BLS, SCLB, NCLB, and GLS 

in the NAM and DRIL78 populations (Table 4). In the NAM populations, the three fungal 

diseases were highly positively correlated, with correlation coefficients ranging from 0.460 to 

0.621 (P < 0.0001), but BLS was not significantly correlated with any of the fungal diseases (P > 

0.05). In the DRIL78 population, positive correlations between NCLB and SCLB (coefficient = 

0.158, P = 0.029) and between NCLB and GLS (coefficient = 0.152, P = 0.037) were detected. 

Bacterial leaf streak was positively correlated with NCLB (coefficient = 0.235, P = 0.001), 

indicating that lines that are resistant to NCLB tend to be resistant to BLS as well. A strong 

relationship was not detected between resistance to BLS and SCLB or GLS. 
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To further examine the relationships among BLS, NCLB, SCLB, and GLS, we compared 

QTL locations for the four diseases. The same marker (PZA01187-1) on chromosome 4 that was 

significant for BLS in DRIL78 was also significant for SCLB in the same population (Lopez-

Zuniga et al., 2019). For both diseases, the NC344 allele increases resistance and the percentages 

of variance explained by this QTL were similar (5.11% for BLS and 5.81% for SCLB). The 

Z023 chromosome 5 QTL region included significant genome-wide association mapping 

associations for SCLB (Kump et al., 2011) and NCLB (Poland et al., 2011) in the NAM. 

DISCUSSION 

This is the first study to evaluate maize germplasm for resistance to Xvv. To increase the 

number of populations evaluated, we conducted disease screenings in two states. Due to local 

constraints, we used different strains and slightly different methods at each location. It is 

important to note that we observed transgressive segregation in all populations, regardless of 

inoculation method. Although different strains were used to screen different populations, no 

significant differences in genetic diversity or virulence among North American isolates of Xvv 

have been identified (Perez-Quintero et al., 2019), so we do not expect differences between data 

from the two states to be due to the pathogen isolates used. There are no standardized methods 

for BLS evaluation, as this is a recently emerged disease. Lang et al. (2017) compared leaf 

infiltration with stab injection into stems and found that disease symptoms were less variable 

with leaf infiltrations. Previous studies have not examined cut assays. The bacterium enters 

through natural openings and wounds and then moves in the intercellular space and does not 

enter the vasculature (Ortiz-Castro et al., 2018). Although one inoculation method introduces 

bacteria to the vasculature (cut) and the other does not (infiltration), both methods are forcibly 

introducing the bacteria into the leaf tissue, and similar phenotypic rankings are expected. We 
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found similar correlations between replications for both inoculation methods, indicating similar 

reproducibility between the two inoculation methods. It is possible that different resistance 

mechanisms are at play between cut and infiltration inoculations, and this may help explain the 

lack of overlap between NAM and DRIL QTL. 

Using three mapping populations, we identified five significant QTL across five 

chromosomes in two populations. The Z022 QTL on chromosome 5 explained 18.9% of the 

phenotypic variation in the population and was the largest effect QTL we identified. This QTL 

could be useful for marker-assisted selection. The DRIL78 QTL located on chromosomes 2 and 

4 had negative additive values, indicating that the resistant donor (NC344) alleles increased 

resistance, whereas for the other two QTL, the allele from the resistant parent increased 

susceptibility. It is common for a resistant parent to contribute susceptibility alleles or for 

favorable alleles to be conferred by lines with unfavorable phenotypes (Balint-Kurti et al., 2007; 

Tanksley et al., 1996). We examined whether any of the identified regions harbored genes that 

might be expected to confer resistance to this disease but did not identify any strong candidate 

genes. Although transgressive segregation was detected in all three populations, no significant 

QTL were detected in the Z022 population. Two possible reasons could explain this: (i) the 

phenotypic difference between the parental lines in the Z022 population was smaller than that of 

the Z023 population, and (ii) BLS resistance is a polygenic trait, and we did not have sufficient 

power to detect small effects in this population. Overall, resistance to BLS appears to be 

controlled by multiple loci, and we detected several QTL with minor to moderate effect sizes. 

This is similar to the genetic architecture of resistance to many other diseases in maize (Wisser et 

al., 2006). 
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It is interesting to note that we did not identify any QTL in common across all three 

populations. Several explanations are possible: (i) only the parents of one of the populations 

segregate for resistant and susceptible alleles, so QTL are not identified in the other populations; 

(ii) QTL conferred small effects and due to inherent differences among populations, and low 

power LOD scores may have remained below the threshold for detection in other populations; 

(iii) low marker coverage may have impeded QTL identification in the DRIL78 population; and 

(iv) populations were evaluated in different environments using different techniques. Using the 

same environmental conditions, inoculation method, and phenotyping method may result in 

overlap in QTL findings. We did not want to contribute to the spread of this pathogen, so we 

conducted all of our screenings in controlled conditions. It would be interesting to compare 

mapping results in field conditions with those in controlled conditions. 

Phenotyping method can affect mapping results, so we examined how the two different 

phenotypic measurement parameters, lesion length and percentage of leaf length with lesions, 

influenced mapping results. For the NAM populations, percentage of leaf length covered by 

lesion was a more robust phenotype. We detected QTL using lesion length percentage, but not 

using lesion length. Further testing is required to determine the interaction between inoculation 

method and phenotypic measurement parameter. It is possible we may have obtained different 

QTL mapping results if we had used percentage lesion length as the phenotype for the DRIL78 

population. Nevertheless, we did identify four QTL for this population, more than for the other 

two populations combined. This suggests that both phenotypic measurement parameters are 

valid. 

We examined the relationship between BLS and other common foliar diseases in the 

United States to determine whether lines resistant to other diseases with known genetic 



 

 37 

architectures and confirmed resistance genes were also resistant to BLS. High positive 

correlations for the three foliar fungal diseases (NCLB, SCLB, and GLS) have been shown 

previously, indicating that lines resistant to one of these diseases tend to be resistant to the other 

diseases as well (Wisser et al., 2011). No significant correlations were found with our BLS data 

from the NAM populations we screened. For the DRIL78 population, resistance to BLS was 

significantly positively correlated with resistance with NCLB (coefficient = 0.235, P = 0.001), 

but not SCLB or GLS. It is common for different populations to have different correlations for 

similar diseases, and this may result from the different genetic structure of the populations. In 

maize, the relationship between fungal and bacterial diseases has been explored. Previously, 

Cooper et al. (2018) observed a significant correlation among Goss’s bacterial wilt, leaf blight, 

and NCLB, but not among Goss’s bacterial wilt, leaf blight, and GLS or SCLB. The lack of 

correlation between disease phenotypes may be due to different diseases being controlled by 

different genetic mechanisms. 

We examined whether any regions that confer resistance to BLS also conferred resistance 

to NCLB, SCLB, or GLS. Two MDR regions were identified, one in the Z023 population, and 

the other in the DRIL78 population. In the Z023 population, the confidence interval for the BLS 

QTL encompassed significant genome-wide association mapping associations for resistance to 

SCLB and NCLB in the NAM populations (Kump et al., 2011; Poland et al., 2011). The 4.07 

region identified for BLS resistance in the DRIL78 population overlaps with a region that has 

also been identified for SCLB resistance in this same population (Lopez-Zuniga et al., 2019). For 

both diseases, the NC344 allele confers resistance. Interestingly, however, the phenotypic data 

for SCLB and BLS were not correlated in the DRIL78 population. The lack of correlation may 

be due to the small effect size of this QTL and lack of overlap for other QTL in this population. 
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The colocalization of QTL may be a false positive, which is supported by the absence of a 

correlation at the population level. These BLS QTL did not colocalize with any known MDR 

genes. These findings suggest that the relationship between measurements of resistance to 

multiple foliar diseases is complex. The perception of bacteria and fungi by the innate immune 

system differs, and thus different resistance mechanisms to these different pathogens are 

possible. A closer study of the relationship between resistance to bacterial and resistance to 

fungal foliar pathogens is warranted. 

This study is the first report on the genetic architecture of resistance to BLS. The family-

mean basis heritability for DRIL78 (NC344 / Oh7B) population was 0.417, indicating that 

progress can be made in breeding for this disease. Furthermore, we report five BLS resistance 

QTL located on chromosomes 1 through 5 across two mapping populations. We did not detect 

any large-effect QTL but one moderate-effect QTL and several small-effect QTL, indicating that 

BLS resistance is polygenic. The BLS QTL in bin 4.07 in the DRIL78 population was previously 

reported as effective against SCLB (Lopez-Zuniga et al., 2019), whereas the Z023 BLS 

resistance QTL in bin 5.05 has been reported as responsible for resistance to NCLB and SCLB 

(Kump et al., 2011; Poland et al., 2011). Overall, this research improves our understanding of 

BLS resistance in maize, which can be useful for future maize disease resistance studies and 

breeding for BLS resistance. 
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TABLES AND FIGURE 

Table 1. Mean percentage leaf blight and standard deviation of the 27 maize nested 

association mapping (NAM) parent lines inoculated with X. vasicola pv. vasculorum. 

NAM parent Mean percentage leaf blight† SD 

 %  

Ki11 13.5 4.2 

Ki3 17.0 7.3 

CML 103 17.2 6.9 

M37W 18.0 10.3 

B73 19.8 5.9 

CML 228 20.8 9.8 

Mo18W 24.1 9.8 

B97 27.7 14.9 

Tzi 8 28.8 17.3 

M162W 31.3 13.4 

NC350 32.3 13.4 

Mo17 32.3 43.4 

DKC 62-08 32.5 23.0 

Ky21 34.9 12.9 

CML 52 35.3 13.8 

Il14H 36.7 14.4 

Ms71 37.3 17.4 

Tx303 37.7 18.2 

CML 322 37.8 13.4 

CML 277 42.1 12.8 

CML 69 42.8 12.7 

CML 333 43.3 12.6 

P39 48.3 13.0 

CML 247 52.5 19.8 

NC358 52.6 22.0 
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Table 1. (cont.)   

HP301 55.1 15.3 

KN199 59.2 24.6 

Oh43 79.3 11.8 

Oh7B 92.4 7.1 

† Calculated as the percentage of total leaf length blighted. 
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Table 2. Variance component estimates and their standard errors for factors included in 

the analysis. Factors, variance estimates, and standard errors included in the mixed model for 

the intermated NC344  Oh7b introgression line (DRIL78) population, NAM Z022 (B73  Oh43) 

population, and Z023 (B73  Oh7B) population are shown. All factors included in this table were 

significantly different from zero (P < 0.05). 

Population Factor Variance SE 

    

DRIL78 Genotype 31.5 5.61 

 Replication 4.21 2.05 

 Replication: block 9.50 3.08 

 Error 82.2 9.07 

    

NAM Z022 Genotype 219 14.8 

 Run: plant 6.61 2.57 

 Error 280 16.7 

    

NAM Z023 Genotype 244 15.6 

 Run: plant: lesion† 2.16 1.47 

 Error 298 17.2 

† Each plant had two lesions. The lesions were on the same leaf and were located on either side 

of the midrib. 
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Table 3. Significant quantitative trait loci (QTL) detected in the NC344  Oh7b 

introgression line (DRIL78) population and the NAM Z023 (B73  Oh7B) population. 

Population Chr.† Physical position‡ Bin§ Peak marker LOD¶ A# R2†† 

  bp      

DRIL78 2 20,542,104 2.03 PHM4425-25 3.12 −1.38 6.67 

DRIL78 4 178,611,318 4.07 PZA01187-1 2.76 −1.86 5.11 

DRIL78 3 206,100,399 3.08 PHM9672-9 2.70 1.76 4.96 

DRIL78 1 144,982,957 1.05 PHM4695-5 2.66 1.61 4.90 

NAM Z023 5 183,863,194 5.05 M3912 7.44 6.80 18.9 

† Chr., chromosome. 

‡ Physical position of peak marker (RefGen_v3). 

§ Bin, chromosome bin location for significant QTL (Davis et al. 1999). 

¶ LOD, logarithm of odds value at the position of the peak likelihood of the QTL. A permutation 

test (1000 permutation replicates) was used to determine the LOD threshold. All QTL reported 

were significant with a Type I error value of 0.10. 

# A, additive effect estimates of the detected QTL. Effects are in terms of the disease rating scale 

used. For the DRIL78 population, a negative value indicates that the NC344 allele increases 

resistance; for the NAM Z023 population, a positive value indicates the B73 allele increases 

resistance. 

† R2, percentage of variance explained by the marker associated QTL. 
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Table 4. Correlation for multiple disease resistance in the nested association mapping 

(NAM) recombinant inbred line populations and the NC344  Oh7B introgression line 

(DRIL78) population. Pearson’s correlations were calculated by comparing best linear unbiased 

predictors for bacterial leaf streak, southern corn leaf blight, northern corn leaf blight, and gray 

leaf spot. Data were curated from this study and previous studies for the correlation analysis 

(Benson et al. 2015; Kump et al. 2011; Lopez-Zuniga et al. 2019; Poland et al. 2011) 

Population(s) Disease 
Southern corn 

leaf blight 

Northern corn 

leaf blight 
Gray leaf spot 

DRIL78 Bacterial leaf streak −0.099 0.235** 0.075 

 Southern corn leaf blight  0.158* 0.044 

 Northern corn leaf blight   0.152* 

NAM Z022 & Z023 Bacterial leaf streak −0.003 −0.022 0.079 

 Southern corn leaf blight  0.621**** 0.460**** 

 Northern corn leaf blight   0.448**** 

* Significant at the 0.05 probability level (0.01 < P < 0.05). 

** Significant at the 0.01 probability level (0.001 < P < 0.01). 

*** Significant at the 0.001 probability level (0.0001 < P < 0.001). 

**** Significant at the 0.0001 probability level (P < 0.0001). 
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Figure 1. Phenotypic distributions for bacterial leaf streak (BLS). Lesion and leaf lengths 

were assessed and best linear unbiased predictors (BLUPs) were calculated based on those 

measurements for the three populations (DRIL78, Z022, and Z023). The phenotypic data shown 

are expressed as BLUPs, including the intercept. 
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CHAPTER 3: IDENTIFICATION OF LOCI THAT CONFER RESISTANCE TO 

BACTERIAL AND FUNGAL DISEASES OF MAIZE 

ABSTRACT 

Crops are hosts to numerous plant pathogenic microorganisms. Maize has several major 

disease issues; thus, breeding multiple disease resistant (MDR) varieties is critical. While the 

genetic basis of resistance to multiple fungal pathogens has been studied in maize, less is known 

about the relationship between fungal and bacterial resistance. In this study, we evaluated a 

disease resistance introgression line (DRIL) population for the foliar disease Goss’s bacterial wilt 

and blight (GW) and conducted quantitative trait locus (QTL) mapping. We identified a total of 

ten QTL across multiple environments. We then combined our GW data with data on four 

additional foliar diseases (northern corn leaf blight, southern corn leaf blight, gray leaf spot, and 

bacterial leaf streak) and conducted multivariate analysis to identify regions conferring resistance 

to multiple diseases. We identified 20 chromosomal bins with putative multiple disease effects. 

We examined the five chromosomal regions (bin 1.05, 3.04, 4.06, 8.03, and 9.02) with the 

strongest statistical support. By examining how each haplotype effected each disease, we 

identified several regions associated with increased resistance to multiple diseases and three 

regions associated with opposite effects for bacterial and fungal diseases. In summary, we 

identified several promising candidate regions for multiple disease resistance in maize and 

specific DRILs to expedite interrogation.  

INTRODUCTION 

Plants need to defend themselves from many pathogenic microbes present in their 

environment. Furthermore, the widespread cultivation of varieties with limited genetic diversity 

increases the risk of pathogen attack (Strange and Scott 2005). Crops are seldom attacked by just 
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a single pathogen, and thus, breeding is usually conducted for resistance to multiple pathogens 

(Khush 1989, Ceballos, Deutsch et al. 1991). Multiple disease resistance (MDR) is defined as 

host plant resistance to more than one disease and is controlled by single to many genes (Nene 

1988, Wiesner-Hanks and Nelson 2016). Despite the widespread need across many crops for 

multiple disease resistant varieties, little is known about the genetic determinants of MDR. A few 

cloned disease resistance quantitative trait loci (QTL) have been shown to provide protection 

against multiple diseases including Lr34 and Lr67 in wheat (Krattinger, Lagudah et al. 2009, 

Moore, Herrera-Foessel et al. 2015) and GH3-2 in rice (Fu, Liu et al. 2011). Genes conferring 

resistance to multiple diseases include those that encode signaling pathways, pathogen 

recognition, hormone-associated defense initiation, antimicrobial peptides, sugar signaling and 

partitioning pathways, and cell death-related pathways (Wiesner-Hanks and Nelson 2016). A 

more thorough understanding of MDR in crops will facilitate the development of varieties 

resistant to multiple diseases. 

Maize is a staple cereal affected by over 32 major diseases that can cause substantial 

yield losses (Mueller, Wise et al. 2016, Munkvold and White 2016). Foliar diseases can cause 

significant production constraints, particularly in conducive environments. A survey from 2012 

to 2015 showed that foliar diseases of maize lead to the largest estimated yield losses in the 

northern U.S. corn belt in non-drought years (Mueller, Wise et al. 2016). Pesticides are available 

to manage fungal foliar diseases but are costly and have environmental impacts (Bartlett, Clough 

et al. 2002, Paul, Madden et al. 2011). No labeled effective chemical control is available for the 

major bacterial foliar diseases. An effective and environmentally benign method of disease 

management is host plant resistance (Nelson, Wiesner-Hanks et al. 2018). The heritability for 

foliar diseases are moderate to high, indicating breeding to develop resistant varieties is possible 



 

 54 

(Ceballos, Deutsch et al. 1991, Dingerdissen, Geiger et al. 1996, Zwonitzer, Coles et al. 2010, 

Lopez-Zuniga, Wolters et al. 2019). 

Many MDR mapping studies in maize have focused on fungal diseases, and less is known 

about the relationship between resistance to fungal and bacterial diseases. In a synthesis study 

Wisser, Balint-Kurti et al. (2006) examined the relationship between fungal, bacterial, and viral 

resistance and identified loci that conferred resistance to fungal and bacterial diseases. 

Subsequent studies identified regions, and even genes, that confer resistance to the three most 

significant fungal foliar diseases – southern corn leaf blight (SCLB), northern corn leaf blight 

(NCLB), and gray leaf spot (GLS) (Zwonitzer, Coles et al. 2010, Belcher, Zwonitzer et al. 2012, 

Yang, He et al. 2017, Lopez-Zuniga, Wolters et al. 2019). Relatively few regions have been 

identified that confer resistance to both a fungal and a bacterial pathogen in maize (Chung, 

Longfellow et al. 2010, Chung, Poland et al. 2011, Jamann, Poland et al. 2014, Jamann, Luo et 

al. 2016, Hu, Ren et al. 2018, Qiu, Kaiser et al. 2019). In this study, we focused on two bacterial 

diseases bacterial leaf streak (BLS) and Goss’s bacterial wilt and blight (GW), as well as three 

fungal diseases: SCLB, NCLB, and GLS. 

Goss’s wilt and bacterial blight is one of the most destructive foliar diseases of maize 

(Mueller, Wise et al. 2016) and is caused by Clavibacter nebraskensis (Li, Tambong et al. 2018). 

The blight phase of the disease is characterized by water-soaked tan to gray linear lesions with 

irregular margins parallel to, but not bounded by, leaf veins. The bacteria colonize the xylem, 

and vascular wilt symptoms can develop in susceptible lines (Schuster 1975, Jackson, Harveson 

et al. 2007, Mbofung, Sernett et al. 2016). The bacteria usually enter the leaves through wounds, 

but can also enter through natural openings in the absence of wounding in high-humidity 

conditions (Mallowa, Mbofung et al. 2016). First identified in 1969 (Schuster, Compton et al. 
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1972), GW is now found throughout the midwestern United States and in Canada (Schuster 

1975, Malvick, Syverson et al. 2010, Howard, Harding et al. 2015, Singh, Hollier et al. 2015, 

Mueller, Wise et al. 2016). 

Bacterial leaf streak caused by Xanthomonas vasicola pv. vasculorum (Xvv), is an 

emerging disease in the Americas (Korus, Lang et al. 2017, Damicone, Cevallos et al. 2018, 

Jamann, Plewa et al. 2019, Leite, Custodio et al. 2019). The bacteria enter and exit through 

wounds and stomata to colonize intercellular spaces, but do not enter the vasculature (Ortiz-

Castro, Jacobs et al. 2018). NCLB, GLS, and SCLB are among the most important fungal foliar 

diseases. NCLB is of global importance and is caused by the hemibiotrophic pathogen, 

Exserohilum turcicum. In inoculated trials using susceptible germplasm, NCLB caused a 30 to 

62% grain yield reduction (Raymundo and Hooker 1981, Perkins and Pedersen 1987). Humid 

conditions and moderate temperatures favor NCLB development. Gray leaf spot is also of global 

importance and is caused by the necrotrophic fungi Cercospora zeae-maydis and Cercospora 

zeina. It can cause as much as a 50% yield loss (Ward, Stromberg et al. 1999) and develops 

quickly in high humidity conditions. Southern corn leaf blight, caused by Bipolaris maydis, is 

usually found in hot and humid regions and can cause up to a 40% yield loss if the varieties are 

susceptible and the conditions favorable (Byrnes, Pataky et al. 1989). All the diseases are 

favored by high humidity environments. There are overlapping pathogenesis and tissue-level 

pathogen localization between diseases. For example, the pathogens causing NCLB and GW 

both colonize the xylem (Chung, Longfellow et al. 2010, Mbofung, Sernett et al. 2016) and for 

both BLS and GLS the pathogen enters the stomata (Beckman and Payne 1982, Ortiz-Castro, 

Jacobs et al. 2018).  
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We conducted linkage mapping for GW in a disease resistance introgression line (DRIL) 

population. We selected a DRIL population because it was developed to study multiple disease 

resistance (Lopez-Zuniga, Wolters et al. 2019). Data for BLS (Qiu, Kaiser et al. 2019), SCLB, 

NCLB, and GLS (Lopez-Zuniga, Wolters et al. 2019) were combined with the GW data to 

examine MDR. We evaluated the DRIL78 population, which is an ideal population for this 

study, as the donor line NC344 is resistant and the recurrent parent Oh7B susceptible for all the 

diseases studied (Cooper, Rice et al. 2019, Lopez-Zuniga, Wolters et al. 2019, Qiu, Kaiser et al. 

2019). Thus, we hypothesized that we could identify regions for resistance to fungal and 

bacterial pathogens in this population. 

Multivariate analysis was used to identify potential MDR loci. Multivariate analysis 

based on Mahalanobis distance (Md) has been used for genome scans in both human and plant 

studies (Tian, Gregersen et al. 2008, Lotterhos, Card et al. 2017, Luu, Bazin et al. 2017). In this 

study, we used Md to combine the mapping results from the five diseases. Md is not trait-

specific; instead, it is a test for outlier markers across all traits and takes multiple mapping result 

datasets into consideration. The outlier markers, reported as putative MDR markers, are those 

that do not follow the pattern of the majority of the data point cloud (Rousseeuw and Van 

Zomeren 1990).  

The overall objective of this study was to compare the genomic basis of resistance to 

fungal and bacterial diseases in maize. Mapping was conducted for GW using phenotypic data 

collected in three environments and combined with previously published studies for BLS, 

NCLB, SCLB, and GLS (Lopez-Zuniga, Wolters et al. 2019, Qiu, Kaiser et al. 2019). Here, we: 

1) identify novel QTL associated with GW through linkage mapping; 2) explore the relationship 
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between the five diseases in this population; and 3) estimate the effect of potential MDR 

haplotypes on the five diseases. 

MATERIALS AND METHODS 

Plant materials 

Chromosome segment substitution population DRIL78 is an ideal population for multiple 

disease evaluation, as the parents are multiple disease resistant (NC344) and multiple disease 

susceptible (Oh7B) (Wisser, Kolkman et al. 2011, Cooper, Rice et al. 2019, Lopez-Zuniga, 

Wolters et al. 2019, Qiu, Kaiser et al. 2019). This population was developed by a cross between 

NC344 and Oh7B, three generations of backcrosses, and four subsequent generations of self-

pollinating via single-seed descent to obtain BC3F4:5 lines (Lopez-Zuniga, Wolters et al. 2019). 

Phenotypic evaluation 

The DRIL78 population was planted in three environments: Urbana 2016, Monmouth 

2017, and Urbana 2017. The Urbana trials were conducted at the University of Illinois Crop 

Science Research and Education Center South Farms located in Urbana, IL. The Monmouth trial 

was conducted at the University of Illinois Monmouth Research Station located in Monmouth, 

IL. In Urbana 2016, 260 lines were evaluated for GW in one replication. In 2017, 229 and 233 

lines were evaluated in Monmouth and Urbana, respectively, each with two replications. 

Differences in the number of lines evaluated was due to seed availability. For Monmouth and 

Urbana 2017, we generated an incomplete block design using the agricolae package in R 

(Version 3.5.1) (R Core Team 2018, de Mendiburu and de Mendiburu 2019). For Monmouth 

2017 and Urbana 2017, Oh7B was included in each block, along with the resistant check line 

NC344 or NC258. NC344 was not included in every block due to seed availability. For Urbana 

2016, we used an augmented incomplete block design with one replication. In this location, the 
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parental lines NC344 and Oh7B were included in each block. Seed was machine planted with 20 

kernels per plot. Plots were 3.2 meters with 0.76 m alleys between each plot and row spacing of 

0.762 meters. Fields were managed using standard agronomic practices for central Illinois.  

Disease evaluation 

Clavibacter michiganensis subsp. nebraskensis isolate 16Cmn001 was used for the GW 

inoculations. We inoculated the plants twice, once at the V4 stage and a second time at the V7 

stage (Abendroth, Elmore et al. 2011), as described by Cooper, Balint-Kurti et al. (2018). We 

assessed the extent of necrosis using a visual percentage rating on a per plot basis with 5% 

intervals starting about two weeks after the first inoculation date. A rating of 0% represented no 

disease in the plot, while 100% indicated that all the foliage was necrotic (Poland and Nelson 

2011). In Urbana 2016, two visual ratings were taken 17 days apart; in Urbana 2017, two ratings 

were taken 18 days apart; in Monmouth 2017, three ratings were taken with 8 and 9 days 

between ratings. We calculated the area under the disease progress curve (AUDPC) scores for 

each plot in R (Version 3.5.1) (R Core Team 2018) using the audpc function in the agricolae 

package (de Mendiburu and de Mendiburu 2019) (File S1).  

Statistical analysis 

Least Square Means (LSMeans) were estimated for GW for each environment (2016 

Urbana, 2017 Urbana, and 2017 Monmouth) and for the combined multienvironment dataset 

using AUDPC values and the lmer function in the R package lme4 (Doran, Bliese et al. 2007). 

Linear mixed models were constructed for each environment and the combined dataset and are 

listed below: 

Urbana 2016: 𝑌𝑖𝑗𝑘 = 𝜇 + 𝐺𝑖 + 𝐵𝑗 + 𝜖𝑖𝑗𝑘; 

Urbana 2017, Monmouth 2017: 𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝐺𝑖 + 𝑅𝑗 + 𝐵(𝑅)(𝑗)𝑘 + 𝜖𝑖𝑗𝑘𝑙; 
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Combined dataset: 𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝐺𝐸𝑖𝑗 + 𝑅(𝐸)(𝑗)𝑘 + 𝐵(𝑅(𝐸))
(𝑗𝑘)𝑙

+ 𝜖𝑖𝑗𝑘𝑙𝑚; 

where μ is the overall mean, G is the fixed genotype (introgression line) effect, B is the random 

blocking effect, R is the random replication effect, E is the random environment effect, and GE is 

the random genotype-by-environment interaction effect. Blocks are nested within replications 

within environments. Only significant factors were included in the models. We examined the 

skewness of the data using the skewness function from the e1071 package (Dimitriadou, Hornik 

et al. 2009). Heritability on both a plot and family-means basis were calculated for GW with 

SAS (version 9.4) using PROC MIXED, as described by Holland, Nyquist et al. (2003). 

We calculated LSMeans for the BLS data based on the raw measurements from Qiu, 

Kaiser et al. (2019). The model included genotype as a fixed factor, and replication and block 

nested within replication as random factors. We obtained LSMeans for SCLB, NCLB, and GLS 

from Lopez-Zuniga, Wolters et al. (2019).  

Multiple comparison tests were conducted using the LSMeans calculated for each disease 

individually to identify the lines that were significantly different from the recurrent parent Oh7B 

using the function glht, with a Dunnett's p-value adjustment, in the package multcomp in R 

(Hothorn, Bretz et al. 2016). 

Disease Correlations  

We conducted Pearson’s product-moment correlation tests between LSMeans for the 

diseases (ten total comparisons) in R using the cor.test function. The parent lines were not 

included. SCLB, NCLB, and GLS were rated using a 1-9 rating scale, where 1 indicated 100% 

leaf area affected by the pathogen and 9 indicated no disease; BLS phenotypes were lesion 

length measurements where small values indicate shorter lesions; GW ratings were rated using a 

percentage scale based on the severity of the disease with 0% suggesting no disease. To have a 
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uniform scale for correlation analysis, we multiplied the BLS and GW LSMeans values by -1. 

With this modification, low values indicated more severe infections for all datasets. 

Linkage mapping 

A total of 190 lines, including the recurrent parent Oh7B, were shared across all five 

datasets. We used the LSMeans for 190 lines and 237 single nucleotide markers from Lopez-

Zuniga, Wolters et al. (2019) to conduct linkage mapping for each of the five diseases (File S2). 

The software ICIMapping 4.0.6.0 with the options "CSL" and "RSTEP-LRT-ADD" mapping 

were used to conduct QTL analysis (Meng, Li et al. 2015). We conducted 1000 permutations 

with a 0.10 Type I error rate to determine the logarithm of odds (LOD) threshold. We 

recalculated the LOD threshold for each disease. The physical positions of markers with LOD 

values exceeding the threshold are reported based on B73 RefGen_v3 coordinates (Schnable, 

Ware et al. 2009). 

Multivariate analysis 

We conducted multivariate analysis to identify QTL associated with more than one 

disease using the methods described in Lopez-Zuniga, Wolters et al. (2019). The five diseases 

each served as a variable and the “robust Mahalanobis distance” method was used to combine 

the five variates to detect outlier markers. In this study, Mahalanobis distance (Md) was 

calculated based on the five negative log10 p-values of the LOD scores derived from the five 

single-disease mapping results. Outlier markers were detected based on p-values for Md. The 

detailed steps of multivariate analysis are described below: (i) conduct linkage mapping analysis 

with ICIMaping for each trait in the population independently; (ii) obtain trait-specific, 

permutation-based LOD thresholds and trait-specific marker LOD values from the mapping 

results; (iii) calculate p-values for each marker for each disease based on the following function: 
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to account for the variation in LOD significance thresholds between different mapping studies 

(Nyholt 2000); (iv) convert p-values into negative log10 p-values; (v) calculate Mahalanobis 

distance based on negative log p-values (Md-p) for each of the diseases in R with OutlierMahdist 

function in rrcovHD package (Todorov 2018), as described by Lotterhos, Card et al. (2017); (vi) 

calculate p-values for Md-p for each marker (Rousseeuw and Van Zomeren 1990). To control for 

multiple comparisons, the false discovery rate (FDR) was calculated by adjusing the p-values 

using the "BH" method (Benjamini and Hochberg (1995) with the p.adjust function in R. 

Markers were declared to be significant using a 1% FDR. 

Haplotype effect calculation 

The maize genome has previously been divided into 100 bins which we used here to 

delineate disease resistance-associated segments of the genome (Davis, McMullen et al. 1999). 

The chromosomal bin for each marker that passed the 1% FDR Md-p test and the single-disease 

linkage mapping analysis was recorded. We considered bins with at least three significant Md-p 

markers as candidate MDR regions. The selected MDR regions were delimited by the position of 

the two flanking significant markers. To calculate the haplotype effect for each region, we 

identified lines with introgressions in the MDR regions and then calculated, using the raw 

AUDPC data, the difference between the mean AUDPC for those lines and the mean AUDPC for 

the recurrent parent Oh7B (Belcher, Zwonitzer et al. 2012). Because different scales were used 

for each disease and we wanted to compare between diseases, we standardized the haplotype 

effect by Oh7B.  
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Finally, we conducted a t-test using the percentage change to determine whether there 

was a significant difference between Oh7B phenotype and introgression line effect. The null 

hypothesis was that there is no difference between Oh7B and the haplotype effect (percent 

change=0). 

RESULTS  

Characterization of germplasm 

As expected, the recurrent parent Oh7B was the susceptible parent for all the diseases we 

examined. Of the five diseases, the parents were the most phenotypically similar for BLS. Using 

Dunnett’s multiple comparison test, we detected significant differences between the donor and 

recurrent parent for all diseases except BLS. Similar to what has been reported previously for 

fungal disease phenotypes (Lopez-Zuniga, Wolters et al. 2019), there was substantial 

transgressive segregation for the bacterial diseases (Figure 2). Like the fungal diseases, the 

DRIL78 population included lines with transgressive segregation for GW only in the direction of 

susceptibility, indicating NC344 may donate alleles for both resistance and susceptibility. In 

contrast, transgressive segregation for BLS occurred in both directions, suggesting that resistance 

to BLS in NC344 and Oh7B is conditioned by complementary sets of alleles. Using our data, we 

calculated the heritability for GW: heritability on a plot basis was 0.53 (s.e.= 0.03) and on a 

family-mean basis was 0.78 (s.e. = 0.02), indicating that progress can be made from inbred line 

evaluations in breeding for this disease.  

Using a Dunnett’s multiple test comparison, we examined whether there were DRILs that 

were significantly more resistant or susceptible than the recurrent parent. For GW, 16 of the 258 

lines, or 6.2% of the lines tested, were significantly different than Oh7B (Table 5). Despite the 

presence of transgressive segregants for susceptibility to BLS, none of the DRILs were 
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significantly more susceptible than Oh7B; however, three lines were significantly more resistant 

than Oh7B.  

Correlation between diseases 

We tested pairwise correlations among the five diseases. A total of five out of ten 

pairwise correlation tests were significant (P < 0.05); the two bacterial diseases were not 

significantly correlated. Of the correlations that were significant, coefficients ranged from 0.15 

to 0.31 (Table 6). For the three fungal diseases, as previously reported, resistance to NCLB was 

significantly and positively correlated with resistance to SCLB and GLS, while the correlation 

between resistance to GLS and SCLB was positive but not significant (Lopez-Zuniga, Wolters et 

al. 2019). Here, we found significant and positive correlations among pairs of bacterial and 

fungal diseases (GW and NCLB; GW and GLS; BLS and NCLB). Given the genomic structure 

of the DRIL population, these correlations suggest that loci conditioning MDR to bacterial and 

fungal diseases exist in this population. 

Identification of multiple disease resistant lines 

The correlations between diseases suggested that MDR loci exist in this population, so 

we tested whether the same DRILs that were significantly more resistant or susceptible than the 

recurrent parent for multiple diseases. Only 5.3% of the lines (10 of 189 lines) were significantly 

different than Oh7B for more than one disease, and there were seven unique two disease 

combinations. Only one line was significantly different than Oh7B for the combination of the 

two bacterial diseases. There were four bacterial/fungal disease combinations, all of which 

included GW, with seven lines that were significantly more resistant to the combination of a 

bacterial and fungal pathogen. The remaining two lines were significantly different than Oh7B 

for a combination of two fungal diseases (SCLB and GLS; NCLB and GLS). For NCLB and 
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SCLB there were lines that were resistant to the respective fungal disease, but susceptible to 

GW. No lines were significantly different than Oh7B for more than two diseases.  

GW linkage mapping  

The genotype and environment interaction accounted for some variance; thus, single 

environment mapping analysis was also conducted for GW. We conducted linkage mapping for 

GW for three individual environments, as well as the combined dataset. A total of ten QTL on 

chromosomes 1 through 6, and 9 were detected (Table 7). Six of the QTL were stable, as they 

were consistently detected across multiple environments or in the combined dataset. The QTL 

detected in chromosomal bin 2.07 (qGW2.07; peak marker PHM14412-4) was detected in all 

three individual environments and the combined dataset. The QTL in chromosomal bin 3.06, 

4.06 and 9.02 were detected in more than one environment, and the additive effect estimates and 

percentage of variance explained by these QTL were similar across datasets.   

We examined the additive effect estimates and percentage of variance explained by the 

significant markers. The GW QTL were of small effect, with the largest-effect QTL, namely 

qGW2.07, accounting for 8.96% of the phenotypic variation in the combined dataset. The other 

QTL explained from 3.73% to 8.84% of the phenotypic variance. The QTL detected on 

chromosomes 2, 3 and 9 had negative additive effect estimates, indicating that the NC344 allele 

confers resistance. The QTL with positive additive effect estimates on chromosome 1, 3, 4 and 6 

indicate that the Oh7B allele confers resistance. On chromosome 3, two QTL were identified 

within the same bin. NC344 conferred the resistant allele for both QTL on bin 3.04.  

Multivariate multiple disease mapping 

Across all diseases, we detected 18 significant markers in the single-trait mapping, with 

two markers for BLS, five for GW, four for SCLB, three for NCLB and six for GLS. The 
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markers detected in the single-trait mapping were designated “single-trait markers.” Among the 

18 single-trait markers, two were shared by multiple diseases (GW and SCLB; GW, and GLS) 

(Figure 3). Across the single-trait analyses, chromosomes 1 through 4 were all associated with 

more than one disease (Figure 3).  

Multivariate analysis was conducted to detect MDR regions using the robust 

Mahalanobis distance method (Rousseeuw 1985, Rousseeuw and Van Zomeren 1990). At a 1% 

false discovery rate, 54 out of 237 markers were detected as related to one or more diseases. The 

54 significant markers included all 18 single-trait markers. Several regions emerged as likely 

MDR candidates. We identified the largest number of significant markers on chromosomes 1 (10 

significant markers), 3 (8 significant markers), and 8 (9 significant markers). On chromosome 4, 

6 and 10, several markers exceeded the multi-trait threshold, indicating that even markers with 

relatively low LOD scores for individual diseases can have a high multi-trait Md value (Lopez-

Zuniga, Wolters et al. 2019). We observed four co-localized QTL in bin 8.03 and three in bin 

9.02. The two regions with markers that were identified for more than one disease in the single 

trait analysis, specifically bin 3.04 (GW and SCLB) and bin 4.06 (GW and GLS), were also 

detected in the Md test. In all, five regions with the strongest statistical support, and that have 

been examined in previous studies, were selected to examine their role in resistance to multiple 

diseases. 

Haplotype effect analysis 

We hypothesized that some haplotypes may have opposite effects on bacterial and fungal 

diseases, e.g., a region may confer resistance to a fungal disease but susceptibility to a bacterial 

disease. We selected MDR regions located in bins 1.05, 3.04, 4.06, 8.03 and 9.02 to test this 

hypothesis. We estimated the effect of the haplotype at each of the selected regions, referred to 
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as the haplotype effect, on disease severity for each of the diseases (Figure 4). The MDR region 

at bin 8.03 was associated with resistance to GW, NCLB and GLS; bin 9.02 was associated with 

resistance to GW, SCLB and GLS. While the introgressions conditioned resistance relative to 

Oh7B for these two bins, the effect sizes varied. These may be examples of uneven pleiotropy, 

whereby an MDR locus has varying effect sizes for different diseases (Wiesner-Hanks and 

Nelson 2016), or tight linkage. Some regions conferred contrasting effects for the diseases 

examined: the haplotypes at bins 1.05, 3.04 and 4.06 had an opposite effect for GW as compared 

to the other diseases. The NC344 haplotype at bin 1.05 was associated with resistance to SCLB 

and GLS, but susceptibility to GW. The introgressions in bin 3.04 conferred resistance to all the 

three fungal diseases, but susceptibility to GW. Lines with introgressions at bin 4.06 were more 

resistant to BLS and SCLB, but more susceptible to GW as compared to Oh7B.  

DISCUSSION 

The heritability of GW resistance in this population was relatively high and on par with 

previous GW studies (Ngong-Nassah 1992, Singh, Andersen et al. 2016, Cooper, Balint-Kurti et 

al. 2018). High heritability has been reported for the three fungal diseases for this population, 

namely 0.76 for SCLB, 0.75 for NCLB, and 0.59 for GLS (Lopez-Zuniga, Wolters et al. 2019), 

indicating that progress can be made from inbred line evaluations in breeding for these diseases. 

Bacterial leaf streak had the lowest heritability of the diseases examined in this population: 0.42 

(Qiu, Kaiser et al. 2019).  The GW QTL we identified were relatively stable across multiple 

environments in the single trait analysis. The QTL in bins 1.05, 2.07 and 9.02 were consistently 

detected and colocalized with previously identified QTL (Singh, Andersen et al. 2016, Cooper, 

Balint-Kurti et al. 2018).  
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A central objective of this study was to investigate the relationship between resistance for 

multiple diseases. Previous studies demonstrated that resistance for the three fungal diseases, 

namely SCLB, NCLB, and GLS, are correlated with each other. For instance, high positive 

(>0.5) genetic correlations were detected in a diversity panel between resistance to all the 

pairwise fungal disease combinations in 253 inbred maize lines (Wisser, Kolkman et al. 2011). 

The DRIL78 correlations for the fungal diseases are not as strong compared to other populations, 

as no correlation was detected between resistance to SCLB and GLS (Lopez-Zuniga, Wolters et 

al. 2019). Resistance between these two diseases are typically significantly and highly correlated 

(Zwonitzer, Coles et al. 2010). We previously reported a significant positive correlation between 

resistance to a bacterial (GW) and a fungal disease (NCLB) in a different population (Cooper, 

Balint-Kurti et al. 2018). The significant relationship indicates the possibility of MDR in this 

population.  

Despite the differences between fungal and bacterial pathogens, some of the pathogens 

can infect the same tissue types, specifically the vasculature. SCLB and GLS are non-vascular 

diseases (Beckman and Payne 1982, Minker, Biedrzycki et al. 2018), while GW and NCLB are 

vascular diseases (Mbofung, Sernett et al. 2016, Minker, Biedrzycki et al. 2018). Only one 

vascular/vascular (NCLB and GW) disease correlation combination was identified. Most 

combinations were of a vascular and non-vascular disease (NCLB with BLS, NCLB with SCLB, 

NCLB with GLS, and GLS with GW), indicating that either resistance may be linked but not 

pleiotropic or that there is another resistance mechanism at play that does not interfere with the 

pathogen’s growth within specific plant tissues.  

We found evidence of regions conferring resistance to more than one disease from the 

single disease analysis. The same marker was effective for two disease combinations, 
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specifically for the combination of GW and SCLB in bin 3.04 and for the combination of GW 

and GLS in bin 4.06. This is consistent with the Dunnett’s multiple comparison test, where lines 

effective against these two disease combinations were identified. The Pearson’s product 

correlation coefficients were significant for the combination of GW and GLS. Interestingly, in 

both instances, the QTL protect against a combination of a vascular bacterial disease and a non-

vascular fungal disease. 

To examine MDR in the DRIL78 population, multi-disease post-mapping analysis based 

on Md was conducted. All 18 of the markers detected in the single-trait mapping analysis were 

significant in the Md analysis. One possible explanation for this is that significant Md values can 

arise only due to one trait so that if a marker was highly significant for one disease, it would be 

identified as an MDR marker as well. The fundamental idea of the Md approach is to identify 

outliers in multivariate space, and outliers can occur in any one of the dimensions (the five 

disease-trait dimensions in our case). For the 36 novel markers from the multivariate analysis, 

LOD values were not high enough to exceed the LOD threshold in the single-trait mapping 

analysis. However, when combining the five diseases together, creating a new variable Md-p, 

and testing for Md-p outliers, led to the identification of the additional markers. Lopez-Zuniga, 

Wolters et al. (2019) also noted this phenomenon when testing for MDR markers using an Md 

approach. 

We found that disease-associated QTL were distributed across all 10 chromosomes, but 

the QTL were not evenly distributed. This is in consistent with previous synthesis studies on the 

genomic distribution of disease QTL in maize (Wisser, Balint-Kurti et al. 2006). Based on the 

distribution of the single-trait and multi-trait QTL, we focused on five MDR regions to 

investigate further. Of these five regions, bins 1.05, 3.04, 8.03 and 9.02 have been reported 
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previously to be related to multiple diseases (McMullen and Simcox 1995, Wisser, Balint-Kurti 

et al. 2006, Ali, Pan et al. 2013, Cooper, Balint-Kurti et al. 2018, Lopez-Zuniga, Wolters et al. 

2019) in other populations. Lopez-Zuniga, Wolters et al. (2019) identified bin 1.05 for resistance 

to SCLB, NCLB and GLS, and bin 3.04 for SCLB and GLS. Another study in maize utilizing 

near-isogenic lines found that bin 3.03-3.04 and bin 9.02-9.03 were associated with SCLB, 

NCLB and GLS resistance (Belcher, Zwonitzer et al. 2012). In addition to the three selected 

fungal diseases, bin 3.04 was also found to harbor QTL conferring resistance to European corn 

borer, Fusarium stalk rot, common rust and maize mosaic diseases (McMullen and Simcox 

1995). 

We hypothesized that allele effect sizes differed at each locus for each disease and that 

some QTL had contrasting effects for different diseases. We found that some regions were 

associated with resistance to one disease and susceptibility to another, which is consistent with 

previous findings in other studies (Belcher, Zwonitzer et al. 2012). The introduction of resistance 

for one disease might unintentionally introduce susceptibility for a second disease. Fine mapping 

is required to determine whether the same gene is conferring resistance to one disease and 

susceptibility to another.  

The mechanisms underlying MDR in this population remain elusive. Of the combinations 

of diseases identified using the Dunnett’s and the multivariate tests, there was no clear pattern of 

pathogen kingdom or pathogenesis process in the MDR disease combinations. Thus, if there is a 

pleiotropic gene underlying these regions, the mechanism is not obviously associated with 

pathogen kingdom or the growth of the pathogen in the vasculature. It is important to note, 

however, that our study does not have the resolution to resolve these QTL to single genes, and it 

is likely that several of these cases are due to linkage, not pleiotropy. 
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In summary, a total of five QTL associated with resistance to GW in the combined-

environment mapping study were identified, one of which was consistent across all individual 

environments and the combined-environment mapping analysis. By combining GW mapping 

results with published data for NCLB, SCLB, GLS (Lopez-Zuniga, Wolters et al. 2019) and BLS 

(Qiu, Kaiser et al. 2019), we identified genomic regions associated with multiple disease 

resistance. Two markers were identified in the independent single-trait mapping analysis as 

conferring effects for two diseases. A total of 36 MDR-related markers were identified in the 

multivariate analysis. Disease QTL were distributed across all ten chromosomes, and we focused 

on five regions with QTL clustering. We found strong support for multiple disease resistance 

QTL at 1.05, 3.04, 4.06, 8.03 and 9.02 across multiple analyses. We found evidence of uneven 

pleiotropy and of QTL conferring contrasting effects for different diseases. This work deepens 

our understanding of multiple disease resistance in maize and the relationship between fungal 

and bacterial disease resistance.
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TABLES AND FIGURES 

Table 5. Dunnett’s multiple comparison test for five traits in DRIL78 population. A 

Dunnett’s multiple comparison test was conducted to identify lines that were significantly 

different than the recurrent parent Oh7B. For two disease combinations, all lines were more 

resistant to both diseases in the combination, except where noted otherwise. 

Disease Population Size Total # of lines significantly 

different than Oh7B  

(# more resistant/# more 

susceptible) 

BLS 229 3 (3/0) 

GW 258 16 (3/13) 

SCLB 216 23 (23/0) 

NCLB 216 6 (6/0) 

GLS 216 10 (10/0) 

BLS/NCLB 189 2  

BLS/GW 189 1  

SCLB/GLS 189 1  

SCLB/GW 189 2* 

NCLB/GLS 189 1 

NCLB/GW 189 2** 

GLS/GW 189 1 

* Both lines were more resistant to SCLB, but more susceptible to GW. 

** Both lines were more resistant to NCLB. Of those, one line was more resistant to GW, while 

the other was more susceptible to GW. 
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Table 6. Pairwise correlation coefficients for LSMeans in DRIL78 population. Phenotypic 

correlations were examined between the five diseases examined in this study. 

Disease BLS SCLB NCLB GLS 

GW 0.12 - 0.11 0.31 *** 0.24 *** 

BLS  - 0.11 0.23 ** 0.06 

SCLB   0.16 * 0.05 

NCLB    0.15 * 

* 0.05 

** 0.01 

*** 0.001 
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Table 7. Significant QTL detected in DRIL78 population for GW across all environments.  

 

§ Chromosome. 

¶ The physical position (RefGen_v3) of significant markers.  

§§ Chromosomal bin location of significant QTL (Davis, McMullen et al. 1999). 

† LOD value at the position of the peak likelihood of the QTL. A permutation test was conducted to 

determine the LOD threshold for the significant markers.  

‡ Additive effect estimates of the detected QTL. Effects are in terms of the disease rating scale used. A 

negative value indicates that the donor allele increases the disease resistance of the line in the population. 

# Percentage of the phenotypic variance explained by the detected QTL.  

Peak marker Chr. § cM Position ¶ Bin§§ Environment LOD† Add‡ PVE(%)# 

PHM12633-15 1 116.2 103,835,578 1.05 Combined 3.69 53.72 4.84 

PHM14412-4 2 127.4 203,610,640 2.07 

Combined 6.58 -63.65 8.96 

Urbana 2016 3.36 -71.34 6.16 

Urbana 2017 3.57 -55.10 5.39 

Monmouth 2017 4.40 -61.68 6.62 

PZA00348-11 3 68.94 32,780,891 3.04 Combined 3.38 49.76 4.42 

PHM5502-31 3 78.21 68,060,067 3.04 Monmouth 2017 3.32 65.67 5.00 

PHM1959-26 3 105.64 170,153,721 3.06 

Urbana 2016 4.26 -82.89 7.90 

Monmouth 2017 5.77 -79.25 8.84 

PHM15864-8 4 87.18 151,565,558 4.06 

Combined 2.83 57.70 3.73 

Urbana 2017 3.28 74.74 5.02 

PZA03092-7 5 64.27 12,049,611 5.02 Urbana 2016 3.24 -91.96 5.99 

PHM5529-4 6 126.27 167,219,234 6.08 Urbana 2017 4.83 56.39 4.83 

PHM5185-13 9 47.48 18,905,238 9.02 

Combined 4.76 -72.02 6.38 

Monmouth 2017 3.22 -73.97 4.81 

PZA00588-2 9 61.08 62,366,576 9.03 Urbana 2017 5.52 -74.93 8.54 
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Figure 2. Phenotypic distribution for DRIL78 (NC344×Oh7B) population of five traits. The 

two vertical lines indicate the least square means (LSMeans) of the two parental lines. The 

recurrent susceptible parent Oh7B is represented by the solid line and the donor resistant parent 

NC344 is represented by the dashed line. The LSMeans for BLS and GW were based on the 

lesion length measurement and percent leaf diseased where lower numbers indicate less disease; 

the LSMeans of SCLB, NCLB and GLS were based on a 1 to 9 scale where lower numbers 

indicate more disease.  
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Figure 3. Manhattan plot for multivariate analysis. The mapping results for the two bacterial 

diseases are represented with warm colors and the three fungal diseases in cold colors. The 

GW&SCLB and GW&GLS symbols indicate that the same SNP is significantly associated with 

both diseases.  The MO symbol corresponds to the markers that were not significant in the 

single-trait mapping analysis but were significant in the multi-trait composite analysis. The 

dotted line indicates the 1% FDR for the Md statistic. The dashed line represents the Md value 

for the minimum LOD threshold for the five mapping analyses. 
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Figure 4. Estimation of haplotype effect. The x-axis indicates the selected genomic regions, 

and the y-axis indicated the percentage change of disease severity of lines with an introgression 

at that region. The negative percentage value indicates that lines with an introgression in this 

region were more resistant than Oh7B and a positive value indicates that the lines were more 

susceptible. A t-test was conducted to examine the significance of bin effect. * indicates the 0.05 

significance level; ** indicates the 0.01 significance level and *** indicates that p-value was 

smaller than 0.001.  
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