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ABSTRACT 

 

   Terminal sire selection is a critical factor in modern day swine production as it has the 

ability to influence characteristics that affect the financial stability of the producer and packer 

while concomitantly influencing the eating experience of the consumer. Pietrain pigs are often 

utilized in swine production as they increase feed efficiency and improve both carcass and lean 

yields whereas, Duroc pigs are known for fast growth and improved overall meat quality. Three 

experiments were conducted to evaluate the effects of Duroc and Pietrain sire lines on growth 

performance, carcass cutability, and early and aged pork quality. For these three experiments, the 

MIXED procedure of SAS was used to evaluate the fixed effects of sire line, sex, and their 

interactions on pork quality and considered significant at P<0.05. In the first study, an American 

purebred (AP) Pietrain terminal sire line (n=135) was selected for feed efficiency and lean tissue 

accretion while a European crossbred, 25% Pietrain, (EC) terminal sire line (n=114) was chosen 

for lean tissue accretion and carcass merit. As expected, EC sired pigs had an increased (P=0.03) 

standardized fat free lean (FFL) by 1.63% units. American Pietrain sired pigs had darker loins 

and chops as early ventral visual color was increased (0.46 units, P<0.001), early ventral L* was 

decreased (0.89 units, P=0.05), early chop visual color was increased (0.14, P=0.03), and early 

chop L* was decreased (1.18, P=0.03). Overall, EC sired pigs were leaner, while AP sired pigs 

had darker (early) loins and chops. In a second experiment, a Duroc terminal sire line (n=160), 

selected for premium meat quality based programs (MQ), was compared to a Duroc terminal sire 

line (n=144) that was selected for competitive growth and performance (GP). Overall (d0-98), 

GP sired pigs had increased G:F (0.01 kg/d, P=0.03), while MQ sired pigs had darker, heavier 

marbled loins as early ventral L* was decreased (1.67, P=0.01) and early ventral visual marbling 

was increased (0.28, P<0.01). Aged ventral visual marbling was increased (0.28, P<0.001) in 



iii 
 

MQ sired pigs. Belly thickness and flop were increased (P<0.01) by 0.19 cm and 3.5 cm, 

respectively in MQ sired pigs. Ultimately, GP sired pigs had increased G:F, but MQ sired pigs 

had improved pork quality. In a third experiment, pigs were sourced from 2 different sire lines of 

Duroc ancestry. Red (n=160) and Green (n=160) represented either a P26 Duroc sire line or a 

competitor Duroc sire line. Overall, Green sired pigs had increased average daily gain (ADG; 

0.07, kg/d, P<0.001), while Red sired pigs had increased FFL (1.31%, P<0.01). Loin marbling 

scores were higher (P≤ 0.01) in both the aged ventral (0.48) and chop (0.36) of Green sired pigs. 

Additionally, Green sired pigs had thicker and firmer bellies as indicated by increased (P<0.001) 

belly thickness (3.97 vs. 3.59) and belly flop (19.64 vs. 15.63). Ultimately, Red sired pigs were 

leaner leading to greater carcass merit, but Green sired pigs had increased ADG and improved 

pork quality characteristics. Lastly, pork hot carcass weights (HCW) have increased from 82 to 

96.5 kg over the last 25 years. As carcasses become heavier, chops become more tender. One 

possible explanation for this increase in tenderness is increased ADG or growth rates in pigs that 

reach heavier weights. Therefore, 634 pigs (Duroc or Pietrain sire ancestry) were sourced from 4 

separate groups which were raised over two and a half years. Pigs were raised under the same 

conditions and divided into three groups based on ADG (kg/d) from 12-26wk of age; slow 

(<0.96kg/d, n=96), intermediate (0.96-1.16kg/d, n=452), and fast (≥1.17kg/d, n=86). Overall 

ADG was increased (P<0.001) in fast growing pigs by 0.15 kg/d. Aged ventral visual color was 

increased (P=0.03) in fast and intermediate growing pigs by 0.23 units. Intermediate growing 

pigs had firmer loins (P=0.04) by 0.07 units. Ventral a* increased as growth rate increased 

(P=0.04) indicating fast growing pigs had the reddest loins (9.77 vs. 9.26 vs. 8.99). Instrumental 

tenderness did not differ (P=0.51) between growth rate groups. While faster growth rates 

improved aged ventral visual color, instrumental tenderness did not differ between groups.   
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CHAPTER 1:  REVIEW OF THE LITERATURE 

 

INTRODUCTION 
 

 The United States is a large contributor to the world’s pork supply as it is the third-ranked 

country in total pork production and produces over 10% of the world’s pork (National Pork 

Board, 2017). Additionally, the U.S. is second in total world pork exports and is responsible for 

approximately 29% of the world’s pork exports (National Pork Board, 2017; USMEF, 2019). 

While domestic markets are extremely important, export marketing opportunities also play a 

significant role in pork production as said markets can add significant value to carcasses when 

compared to domestic prices. For the United States, there is value in exporting carcasses, carcass 

primals, or offal in large volumes to some countries, but there is also value in exporting targeted, 

high-quality cuts to others. At the end of 2019, the value of a commercial pig destined for export 

in the U.S. was increased by $66.70 per head as compared to being sold on the domestic market 

(USMEF, 2019). That being said, it is important to keep in mind that export markets differ, as 

consumers in various countries perceive “quality” very differently.  

  In 2019,  the top importers of U.S. pork were Mexico, Hong Kong/China, and Japan 

(USMEF, 2019). Mexico imported the most pork on a volume basis, whereas China imported the 

most offal and variety meat, and Japan imported the most on a value basis (USMEF, 2019). In 

Mexico, consumers prefer light colored pork cuts with less intramuscular fat (Lowell, et al., 

2019). China is rather unique such that most of their products are purchased on wet or open 

markets therefore, consumer preference data is rather limited; however, one study reported 

consumers prefer a light red, lean product (Grunert, et al., 2015). Japanese consumers prefer high 

quality, dark-colored, and highly-marbled primal cuts (Lowell et al., 2019; Suzuki et al., 2005). 
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Given the different goals needed to meet the demands of these markets, proper sire line selection 

is key.   

Pietrain and Duroc terminal sires are commonly used in commercial swine production 

systems as they target different markets, which meet various consumer demands. Pietrain sired 

pigs are known for being feed efficient and increasing carcass and lean meat yields (Lowell, 

2019). On the contrary, Duroc-sired pigs are fast growing and utilized in scenarios in which pork 

quality is of high value as they are known for improving ultimate pH, marbling, and water-

holding capacity (Edwards et al., 2003b; Lowell et al., 2018). That being said, Pietrain terminal 

sire lines can be used to target Mexican and Chinese export markets as consumers prefer lean 

product. Duroc terminal sire lines can target Japanese export markets as those consumers value 

product of improved pork quality.  

Therefore, the objective of this literature review is to evaluate early and aged pork quality 

characteristics of Pietrain and Duroc terminal sire lines in order to suffice consumer preferences 

of different markets. This literature review will also encompass the effects of growth 

performance, carcass characteristics, and carcass composition between the two different breeds.  

Furthermore, the USDA recently reported that over the last 25 years, pork hot carcass 

weights (HCW) have increased from 82 to 96.5 kg (USDA, 2019). This change in pork HCW 

witnessed by the packing industry directly affects the profitability of both producers and packers. 

With that, this literature review will also review the effect of increasing HCW on early and aged 

pork quality characteristics.  

CARCASS CHARACTERISTICS 
 

 Typically, pork HCW and standardized fat-free lean percentage (FFL) are the key 

components used to determine the economic value of a pork carcass by packers. Standardized 



3 
 

FFL is largely affected by back fat depth, which can be measured by probes between the 3rd/4th 

rib to the last rib. There are multiple procedures that can be used by packers and researchers in 

order to determine FFL (Burson & Berg, 2001). For ribbed carcasses, FFL is calculated by using 

the equation, (8.588 + (0.465 × HCW, lb) – (21.896 × 10th rib fat thickness, in) + (3.005 × 10th 

rib loin muscle area, in2)) / HCW, lb) × 100. However, it is important to note that carcasses are 

normally not ribbed in industry settings by packers, but rather for research purposes. Carcasses 

are normally unribbed in which FFL can be calculated using the equation, (23.568 + 0.503 × 

(HCW, lb) – 21.348 × (last rib back fat thickness, in.)). A Fat-O-Meter can also be used to 

determine FFL using the equation, (15.31 + 0.51 × (warm carcass wt., lb.) – 31.277 × (last rib 

back fat thickness, in.) + 3.813 x (loin muscle depth, in.)).   

While HCW and FFL are the most common carcass characteristics valued by the packer, 

carcass yield can also be calculated. Carcass yield is calculated by dividing HCW by ending live 

weight (ELW) and is expressed as a percentage. During recent years, live hogs and pork 

carcasses have gotten heavier thusly-influencing total carcass yield. In 2019, the ELW of 

domestic hogs was reported to be approximately 130 kg, which yields a 97.5 kg carcass with 

approximately 1.4-1.8 cm back fat at the last rib, a 55-56% FFL, and a 75% carcass yield (USDA 

Economic Research Service, 2020; USDA, 2020). 

CARCASS COMPOSITION 
 

 Generally speaking, carcasses are composed of bone, muscle, fat, and skin, each of which 

has its own innate value as determined by consumers with differing wants, tastes, and 

preferences. Keeping that in mind, carcass composition can and often is evaluated in multiple 

ways. Traditionally, most processors further fabricate pork carcasses into shoulders (butts and 

picnics), loins, hams, and bellies. Currently, of an entire carcass, loins make up 25.12%, butts are 
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10.27%, picnics are 11.25%, spareribs are 4.66%, hams are 24.56%, and bellies are 16.43% of an 

entire carcass (USDA, 2020). Additionally, bone-in lean cutting yield, bone-in carcass cutting 

yield, and boneless carcass cutting yield, can be determined using the following equations 

(Lowell et al., 2019):  

Bone-in lean cutting yield, % = [(trimmed ham (NAMP #402), kg + bone-in trimmed Boston 

butt (NAMP #406), kg + bone-in picnic (NAMP #405), kg + trimmed loin (NAMP #410), kg) / 

chilled left side weight, kg]×100 

Bone-in carcass cutting yield, % = [(bone-in lean cutting yield components + natural fall belly 

(NAMP #408), kg) / chilled left side weight, kg] × 100  

Boneless carcass cutting yield, % = [(inside ham (NAMP #402F), kg + outside ham (NAMP 

#402E), kg + knuckle (NAMP #402H), kg) + inner shank, kg + lite butt, kg + Canadian back 

(NAMP #414), kg +tenderloin (NAMP #415A), kg + sirloin (NAMP #413D), kg) + boneless 

Boston butt (NAMP #406A), kg + boneless picnic (NAMP #405A), kg + natural fall belly 

(NAMP #408), kg)) / chilled left side weight] × 100   

PORK QUALITY 
 

 Consumer interpretation and subsequent definition of “pork quality” changes as you 

move throughout the globe, in part due to varying preferences and purchasing decisions found 

amongst different countries. In the United States, visual color and marbling are what drive 

consumer purchasing decisions (Moeller et al., 2010). That said, we know that multiple traits 

influence pork quality, which in general, is assessed on the loin. These include but are not 

limited to color, marbling, tenderness, juiciness, and flavor (Moeller et al., 2010; Ngapo et al., 

2007).  

Ultimate pH 
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The process of exsanguination causes a loss of circulation therefore muscles no longer 

have access to oxygen and cannot regulate body heat or remove waste. Due to lack of oxygen, 

muscles transition into anaerobic metabolism, which requires ATP; however, in the anaerobic 

state, ATP production is rather hard as energy is limited. Through the process of glycolysis, 

pyruvate is converted to lactate. With the loss of circulation, muscles lose the ability to maintain 

cell membrane integrity thus causing a calcium influx. In turn, the muscles will contract. Stored 

glycogen in the muscle is broken down into pyruvate which is then further broken down into 

lactic acid. However, without circulation, there are no means to remove lactate and therefore, it 

accumulates in the muscle thus, causing a build-up of hydrogen ions (H+). This in turn causes pH 

to decline from 7.2 to an ultimate pH of 5.6 in 24 h (Matarneh, et al., 2007). Extent of pH decline 

is dependent upon the availability of stored glycogen within a muscle at the time of slaughter. 

Ultimate pH is important as it has been shown to significantly influence many quality 

characteristics including water-holding capacity (WHC), color, and tenderness (Boler et al., 

2010). Atypical extremes in ultimate pH are often associated with two product defects that occur 

in the packing industry: pale, soft, and exudative (PSE) meat and dark, firm, and dry (DFD) 

meat. The combination of rapid pH decline and elevated temperatures of muscle postmortem 

result in PSE meat whereas a limited pH decline results in DFD meat. The ultimate pH of normal 

meat ranges from 5.5-5.7 whereas meat with an ultimate pH below 5.4 would be considered PSE 

meat and meat with an ultimate pH above 6.0 is considered DFD meat (Adzitey & Nurul, 2011, 

Matarneh, et al., 2007). Ultimate pH greatly influences color more specifically as it reaches the 

isoelectric point (5.2) such that lean tissue becomes pale colored negatively impacting consumer 

appeal (Boler et al., 2010). This happens by means of rapid pH decline and higher body 

temperatures, which leads to protein denaturation and decreased WHC.   
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Water-holding Capacity 
 

Lean tissue is approximately 75% water, which is held within the myofibrils of the 

muscle cell (Huff-Lonergan & Lonergan, 2005). Three types of water occur within lean tissue 

and all influence WHC. Bound water is bound to proteins and tightly held within lean tissue. 

Immobilized water is held more loosely, but their charges are bound with water and each other. 

Free water has the ability to move as it pleases, but only the capillary system has the ability to 

hold this water in place.  

As previously mentioned, it is possible for pH to reach an isoelectric point of 5.2 where 

the positive and negative charges of the protein are attracted to each other, but the protein cannot 

hold those charges (Huff-Lonergan & Lonergan, 2005). This causes an inability for the protein to 

bind and retain water. Therefore, the WHC of protein is improved as ultimate pH moves further 

away from the isoelectric point. This can be determined by various means including drip loss, 

purge loss, or cook loss methods. 

Color 
 

Consumers deem visual color as being indicative of overall freshness and quality, thus 

most make their purchasing decisions accordingly (Mancini & Hunt, 2005). As previously stated, 

both ultimate pH and WHC influence color making all of these traits somewhat dependent upon 

one another. Myoglobin is the heme iron that gives meat its red color. Myoglobin will go through 

partial denaturation when pH declines at a fast rate causing paler colored lean muscles however, 

carcasses with higher ultimate pH have darker colored lean muscles that retain more water (Huff-

Lonergan et al., 2002). Fresh pork color can be measured both subjectively (NPPC color score) 

and (or) objectively (instrumental color score). NPPC color scores consist of a scale of 1-6 with 

1 being extremely pale and 6 being extremely dark whereas instrumental color is a means by 
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which color can be objectively quantified using a range in numbers.  One way of measuring 

objective color is to utilize a Minolta Chromameter which outputs color values using a 

Commission Internationale de l’Eclairage (CIE) scale of L* a* and b*. Instrumental L* is a 

measurement of lightness on a scale of 0 (black) to 100 (white) meaning that lower L* values 

would indicate darker colored loins as compared to increased L* values would indicate paler 

colored loins. One study reported a 5 unit difference in L* has the ability to impact a consumers 

purchasing decision (Norman et al., 2003). Increased a* values indicate redder loins as 

instrumental a* is a measurement of redness on a scale of -60 (green) to 60 (red).  Additionally, a 

greater b* indicates more yellow loins as instrumental b* is a measurement of yellowness on a 

scale of -60 (blue) to 60 (yellow).  

In addition to ultimate pH and WHC, myoglobin content, the current state of myoglobin, 

and muscle fiber type also contribute to fresh pork color. As previously mentioned, myoglobin is 

the pigment protein primarily responsible for the red color associated with meat. Hemoglobin 

and cytochrome also contribute to pork color yet to a lesser extent as they can be trapped in 

arteries and veins (Suman & Joseph, 2013). The state of myoglobin depends upon the state of 

iron which can either be reduced (ferrous/Fe2+) or oxidized (ferric/Fe3+); (Suman & Joseph, 

2013). Myoglobin can exist in any of the four redox states and all contribute to lean color in their 

own respective way (Mancini & Hunt, 2005). Consumers generally prefer the oxymyoglobin and 

carboxymyoglobin forms of myoglobin due to a cherry-red appearance where the heme is 

reduced (Mancini & Hunt, 2005). Deoxymyoglobin is also a reduced heme, yet unlike both 

oxymyoglobin and carboxymyoglobin, the color is purple in appearance (Mancini & Hunt, 

2005). The fourth and final form of myoglobin is metmyoglobin which has an oxidized heme and 

appears brown (Mancini & Hunt, 2005).  
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In general, muscles are often classified as being red or white based upon their muscle 

fiber composition. Although muscles are generally referred to as one or the other in terms of 

color, most muscles are a combination of both fibers (Aberle et al., 2012). In general, oxidative 

fibers are termed red fibers as they have a high myoglobin content, have an increased lipid 

content, and are found in endurance muscles as they contract slowly. Glycolytic muscle fibers 

have a decreased myoglobin content thus, they are referred to as white fibers. Additionally, 

glycolytic fibers have a decreased lipid content and are found in power type muscles as they are 

known for fast contraction. There are four types of muscle fibers; type I (red, oxidative, and 

slow), type IIA (red, oxidative and glycolytic, and fast), type IIX (white, glycolytic, and fast), 

and type IIB (white, glycolytic, and fast); (Lee et al., 2010).  

Marbling 
 

Intramuscular fat (IMF) or marbling is defined as fat within an actual muscle that is 

stored as droplets within muscle fibers. Marbling can be evaluated subjectively by a trained 

personnel using standards set forth by the NPPC in which marbling scores range from 1 to 10; 1 

being equivalent to 1% intramuscular lipid content and 10 equaling 10% intramuscular lipid 

content (NPPC, 1999). Extractable lipid percentage can be determined by means of a solvent 

method such that the solvent extracts lipid from lean tissue and the extractable lipid is expressed 

as a percentage. Marbling is a moderately heritable trait and can be influenced by antemortem 

production factors including breed types and diet rations. Typically, hogs are bred with the 

intentions of being utilized for lean type markets or meat quality type markets. In general, lean 

type pigs have less intramuscular fat and extractable lipid when compared to meat quality type 

pigs (Ellis et al., 1996).  
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Marbling is often associated with the quality of eating experience as IMF positively 

influences tenderness, juiciness, and flavor (Brewer et al., 2001; Hocquette et al., 2010). Thusly, 

intramuscular fat is often associated with an acceptable eating experience as marbling has been 

significantly correlated with tenderness (Huff-Lonergan et al., 2002). Consequently, greater 

amounts of marbling should result in decreased shear force values (more tender). However, 

recent work has concluded that marbling may not be indicative of overall consumer eating 

experience, more specifically tenderness, as it was once thought to be (Richardson et al., 2018; 

Wilson et al., 2017). Additionally, one study determined marbling was not correlated with 

juiciness (Huff-Lonergan et al., 2002).   

It has been reported that a minimum of 3% intramuscular fat is needed in order for 

consumers to rate pork as acceptable and palatable (Savell et al., 1988). Another study reported 

that once IMF levels were above 2.5%, flavor and juiciness were significantly enhanced 

(Fernandez et al., 1999). A benchmark study by the National Pork Board determined that the 

average marbling score of center-cut pork loin chops found in the store currently is 2.30, based 

on NPPC standards (Newman, David, 2017).  

Sensory Characteristics 
 

Historically, consumers use both color and marbling to forecast their overall eating 

experience, and more specifically tenderness and juiciness (Lonergan et al., 2007; Wood et al., 

2004). Repeat purchase behavior is extremely valuable in the meat packing industry and sensory 

characteristics (tenderness, juiciness, and flavor) often factor into these purchasing decisions. 

Consequently, it is important that scientists are able to measure and quantify the aforementioned 

sensory characteristics.  To do so, both trained taste panelists or consumer panelists are utilized. 

In addition to panelists, tenderness can be measured by instrumental means using slice shear 
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force (SSF) or Warner-Bratzler shear force (WBSF) method. Instrumental tenderness measures 

the amount of force needed to break through muscle fibers mimicking human chewing therefore, 

as shear force values increase, meat is considered less tender. If chops have a shear force value 

of ≤ 4.4 kg for WBSF or ≤ 20.0 kg for SSF they are considered tender (ASTM, 2018). 

Additionally, when the change in shear force value is greater than 0.5 kg for WBSF or 4.6 kg for 

SSF, consumers are able to detect the difference (ASTM, 2018).  

Degree of doneness or endpoint cooking temperature is known to significantly influence 

both juiciness and tenderness (Moeller, et al., 2010).  In years past, it was recommended that 

pork loin chops be cooked to a final internal endpoint temperature of 71˚C due to the risk of 

Trichinella spiralis. However, production practices have changed over the years ultimately 

reducing the risk of contracting the parasite. These changes include moving pig production 

indoors, tightening biosecurity measures, and managing diet rations to only include milled feed. 

Therefore, the National Pork Board decreased the recommended endpoint cooking temperature 

of pork from 71˚C to 63˚C in 2011. A recent study conducted at the University of Illinois 

compared degree of doneness and pH on sensory characteristics (Honegger et al., 2019). A panel 

of consumers evaluated sensory characteristics of pork loin chops at varying degrees of doneness 

and determined ultimate pH has minimal effects on those characteristics except for juiciness such 

that it increases with ultimate pH. Nevertheless, the findings demonstrated that a lower final 

endpoint cooking temperature reflected increased tenderness, juiciness, and flavor scores 

amongst consumers as opposed to increased pH.   

HAM QUALITY 
 

 Though most pork quality measurements are collected from the loin, other primal cuts 

contribute to the value of pork carcasses and must be evaluated separately. Despite also being a 
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lean cut, ham quality and loin quality are not correlated (Arkfeld et al., 2016). Domestically, 

fresh pork hams are generally dry cured, smoked, or further processed before reaching the 

consumer as opposed to selling fresh, uncured ham and ham products. With that, the extent of 

literature measuring fresh ham quality characteristics in the United States is relatively limited in 

comparison to both the loin and belly. However, for extended shelf life purposes, it has been 

recommended that the semimembranosus (SM) muscle of a fresh ham with increased IMF levels 

and an ultimate pH above 5.5 be used for dry cure ham production (Peloso et al., 2010). 

Historically, when assessing ham quality, ultimate pH and objective color by means of L*, a*, 

and b*, are the most commonly evaluated quality characteristics. The SM or inside ham muscle 

is used most often in literature to evaluate objective color measurements (Boler et al., 2011). 

Additionally, one report argues the best indicator of overall ham quality is ultimate pH measured 

in the SM of a fresh ham at 24 hours post exsanguination (Alviset et al., 1995, Boutten et al., 

2000). 

 Supply chain benchmarking research conducted by Person et al (2005) evaluated the SM 

of fresh hams for instrumental color (L*, a*, and b*) and ultimate pH. In this particular analysis, 

the SM of fresh hams were evaluated for instrumental color score (L* = 59.19, a* = 6.95 and b* 

=11.05) and ultimate pH (6.02). A separate study conducted six years later evaluated 

instrumental color (L*, a*, and b*) and ultimate pH of the SM from pigs fed ractopamine versus 

a control group (Boler et al., 2011). Instrumental color scores for the control group were 47.47, 

9.74, and 3.27, respectively, with an ultimate pH of 5.71. While these studies were different from 

each other in their own right, instrumental color scores were very different between studies 

suggesting that more research is needed to better understand fresh ham quality.  

https://www.sciencedirect.com/science/article/pii/S0309174099001485#bBIB1
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Within fresh pork hams, it is not uncommon to see two-toning which is due to a contrast 

in pigmentation within the muscles of the ham (McKeith & Pringle, 2013). It has also been 

suggested that two-toning could possibly be due to the amount of myoglobin in adjacent 

muscles. However, one study argues that a better possible explanation for the two-toning 

phenomenon seen in ham muscles is the size and number of muscle fibers in adjacent muscles 

(McKeith & Pringle, 2013). A study compared two-toned hams with normal hams and 

determined normal hams have a significantly higher ultimate pH of the gluteus medius at 24 

hours by 0.12 units (McKeith & Pringle, 2013). This study also measured instrumental color (L*, 

a*, and b*) of the SM and determined normal hams had significantly darker, more red, and less 

yellow SM muscles than two-toned hams. Overall, this study concluded ultimate pH was most 

strongly related to the two-toning phenomenon seen in hams as opposed to other characteristics 

evaluated. A separate study sorted hams by instrumental L* values of a specified zone within a 

ham muscle (Stufft, et al., 2016). It was determined that within the dark ham group, myoglobin 

content was increased in the specified region when compared to lighter colored regions. 

Although these hams were not considered two-toned, the difference in myoglobin content 

between dark and light colored regions within one ham does suggest that myoglobin content 

could be a possible explanation for the two-toning phenomenon.  

BELLY QUALITY 
 

  Belly quality can be defined differently by the consumer or the processor. Recently, the 

consumer has driven the demand for leaner bellies as consumers are willing to pay more for 

uniform slices with a higher lean to fat ratio (Soladoye et al., 2015; Wright et al., 2005). 

Although the consumer is willing to pay more for leaner bacon, processors value thicker bellies 

as they often lead to increased slicing yields and higher profits as compared to thinner bellies 
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(Person et al., 2005). With increased consumer demand for leaner bellies, packers lost nearly $97 

million in revenue due to decreased product yields from thin bellies in 2005 (Wright et al., 

2005). The loss in revenue promoted the importance of measuring belly thickness as it has the 

potential to be indicative of processing yields. A sharpened probe is inserted into designated 

midpoints along the latitudinal and longitudinal axis of the belly in order to measure thickness.  

 Historically, as pigs become leaner, belly composition is compromised. This can be 

partially attributed to an increase in polyunsaturated fat (PUFA) concentrations and decreased 

saturated fatty acid (SFA) concentrations which in turn, affect production and slicing yields 

(Person et al., 2005; Soladoye et al., 2017). Reductions in slicing yields are of concern for the 

processor as this negatively affects overall profitability. Fat firmness is an important 

characteristic that can be assessed by means of belly flop or evaluating the proportion of SFA. 

The belly flop test is performed in which bellies are typically placed over a v-shaped smoke 

stack bar and the greater the distance between the ends of the belly, the firmer the belly. It is 

possible that longer bellies have more impact on belly flop scores such that they are heavier and 

the impact of weight will increase bending of the bellies (Soladoye, et al., 2017). Iodine value 

(IV) can also be measured as a means to determine overall carcass firmness and therefore, belly 

firmness. A sample from the belly is evaluated to determine the percentage of unsaturation of a 

fatty tissue thusly as percentage of unsaturated of fatty acids decreases, the more firm the belly is 

considered to be.  

  As fresh bellies are further manufactured into cured bellies and then sliced into bacon, 

many characteristics are evaluated including pump uptake percentage, cooked yield percentage, 

and sliced yield percentages. Additionally, individual bacon slices are commonly evaluated for 

quality parameters. Although a standard grading system for bacon slices is nonexistent, 
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processors tend to classify slices as grade 1 or grade 2 which is dependent upon overall 

uniformity, lean to fat, and consumer appeal (Soladoye et al., 2017). Individual slice lean to fat 

can be measured using Adobe Photoshop CC 2018 (Adobe Systems Inc., San Jose, CA) as lean 

to fat areas can be individually outlined and measured (Lowell et al., 2019). Additionally, this 

software analysis is able to measure length, width, and total area of each individual slice. 

Quantifying an “acceptable” belly thickness or firmness is rather hard as this value is 

absent in present literature. However, one review sorted bellies into three groups; thin 

(approximately 2.0 cm), average (approximately 2.5 cm), and thick (approximately 3.0 cm) belly 

thicknesses (Person et al., 2005). This study determined that bellies within the “thick” group had 

the highest slicing yields. As expected, “thin” bellies produced the largest percentage of #2 

slices, comparable to grade 2 slices and were considered of lesser value.  

RATE OF GAIN 
 

As previously mentioned, pork HCW have increased over the last 25 years (USDA, 2019). 

Heavier carcasses can be attained by heavier birth weights, weaning weights, or increased growth 

rates. A previous study evaluated varying growth rates in pigs and determined that fast growing 

pigs consistently had heavier body weights from birth to 170 days, increased ADG from birth to 

finishing, and heavier carcasses when compared to average and slow growing pigs (He et al., 

2016). Throughout this study the majority of pigs with light birth weights remained in the slow 

growth category from birth to finishing and needed an extra 10 to 14 days to reach final market 

weight, on average, when compared to pen mates (He et al., 2016). It is possible that slow growing 

pigs which remain in that category did not receive an adequate amount of milk and colostrum at 

birth; therefore, they lacked the essential amount of nutrients needed to thrive (He et al., 2016; 

Mahan & Lepine, 1991). Additionally, it is possible that slow growing pigs have less muscle fibers 
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in general therefore, limiting their capability of muscle growth as compared to average and fast 

growing pigs (He et al., 2016; Rehfeldt et al., 2000). Additionally, this study determined that fast 

growing pigs had more back fat and larger loineye areas when compared to average and slow 

growing pigs (He et al., 2016). Therefore, it is possible to conclude that early weights (birth and 

weaning) and average daily gain of pigs could be related.   

One study evaluated the effects of increased HCW, which ranged from 53 to 129 kg, on 

early and aged pork quality (Harsh et al., 2017). Overall, at 1 d postmortem, heavier carcasses had 

lower ultimate pH values, but interestingly enough, loins from heavy carcasses were darker 

(instrumental L*) and redder (instrumental a*; P<0.0001). At 20 d postmortem, loins were darker 

as instrumental L* values decreased and subjective visual color scores increased as HCW 

increased (P≤0.01). Additionally, loins were firmer (P<0.0001) at 1 d and 20 d postmortem as 

subjective firmness scores increased as HCW increased. At 20 d postmortem, subjective visual 

marbling scores increased (P<0.01) as HCW increased indicating loins from heavier carcasses 

were heavier marbled. Finally, as carcass weight increased, chops became more tender as evident 

by a decrease in SSF, however HCW only attributed 3% of variation in SSF. Additionally, as HCW 

increased, overall cook loss decreased (P<0.001).  

Additionally, a separate study also evaluated the effects of increased HCW, which ranged 

from 78 to 145 kg, on early and aged pork quality (Price et al., 2019). It was determined that 

heavier carcasses exhibited an increase in back fat (P<0.001) ultimately leading to a decrease 

(P<0.0001) in estimated lean. As HCW increased, at 1 d postmortem, instrumental b* increased 

(P<0.01) indicating loins from heavier carcasses appeared more yellow. Excluding instrumental 

b*, there were no other observed effects on early quality characteristics as HCW increased 

(P≥0.13). As carcass weight increased, SSF decreased thus, chops became more tender, however 
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HCW only attributed 8% of variation in SSF. Additionally, as HCW increased, overall cook loss 

decreased (P<0.0001). Based upon the findings of the two previously mentioned studies, it could 

be concluded that heavier carcasses result in more tender chops.  

 As carcasses are becoming heavier, many characteristics, both antemortem and 

postmortem, are affected. In addition to the importance of feed conversion, a review of heavy 

weight pigs emphasized the importance of utilizing sire lines selected for lean growth in order to 

extend adequate weight gain during growth without detrimentally impacting meat quality (Wu et 

al., 2017). This review reported values based upon an average of multiple studies in which pigs 

were raised to heavier weights with the ultimate goal of predicting how certain characteristics 

would change as market pigs increased in weight by 10 kg (Wu et al., 2017). 

 In terms of growth performance, as pigs get heavier, it was estimated that ADG decreased 

by 0.004 kg/d and ADFI increased by 0.08 kg/d. Given that the greatest input cost that a swine 

producer incurs is feed expense, such an increase in ADFI is concerning. This highlights the 

need for increases in overall feed efficiency. When carcass characteristics were evaluated, 

carcass yield, back fat, and LEA increased by 0.41%, 0.18 cm, and 1.8 cm2, respectively; 

however, FFL decreased by 0.78% units. Additionally, as pigs got heavier, belly yields increased 

by 0.32%, but loin, shoulder, and ham yields decreased by 0.13%, 0.16%, and 0.17%, 

respectively. Finally, in terms of pork quality, L*, ultimate pH, and drip loss decreased by 0.25 

units, 0.01 units, and 0.11%; however, a*, b*, and WBSF increased by 0.30 units, 0.05 units, and 

0.06 kg.  

PIETRAIN AND DUROC TERMINAL SIRE LINES 
 

Growth Performance of Pietrain and Duroc-Sired Pigs  
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 In general, growth performance and feed efficiency are traits of high economic value and 

considered moderately heritable (Mote & Rothschild, 2020). Historically, there are minimal 

studies that directly compare overall growth performance between Duroc and Pietrain-sired pigs 

during finishing. However, it has been relatively well established that Pietrain-sired pigs are 

often selected in commercial swine production as they improve feed efficiency and increase both 

carcass and lean yields (Werner et al., 2010); whereas Duroc-sired pigs are selected to improve 

meat quality, but have been noted for fast growth performance (Gil et al., 2008; NPPC, 2011).  

 Recently, a study at the University of Illinois evaluated Duroc and Pietrain-sired pigs 

throughout a 3-phase finishing system (Lowell et al., 2019). The Duroc terminal sire was 

selected for a combination of both growth performance and meat quality traits while the Pietrain 

terminal sire was selected for feed efficiency and lean tissue accretion. Birth weight did not 

differ between the two different sire lines, but Duroc sired pigs were heavier (P<0.001) at 

weaning by 0.63 kg compared to Pietrain sired pigs. It was determined that during phase 1 (d0-

35), Pietrain-sired pigs had increased (P<0.001) G:F by 0.02 kg and during phase 3 (d71-98), 

Duroc-sired pigs had increased (P<0.01) ADFI by 0.21 kg/d. While the increase in G:F was 

relatively small, Pietrain-sired pigs did in fact have increased performance during phase 1, based 

off the trait they were selected for; however, Duroc-sired pigs were not superior in growth 

performance which is interesting as that was the trait they were selected for.  

 In a separate study, growth performance of Duroc and Pietrain-sired pigs were evaluated 

and while some pigs were either immunologically castrated, surgically castrated, or left intact, it 

is important to note that data being referenced only represents the effect of sire line (Morales et 

al., 2013). This study found that Duroc-sired pigs exhibited increased (P<0.001) ADG from days 

87 to 137, 137 to 164, and overall by 0.20, 0.15, and 0.18 kg/d, respectively (Morales et al., 
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2013). It is plausible that the conflicting conclusions presented is due to a lack of comparative 

growth performance data of Duroc and Pietrain sire lines and/or because of the vast genetic 

improvement in both the Duroc and Pietrain lines over the last decade.  Nevertheless, it is 

apparent that more research is needed to better understand the growth performance of these sire 

lines when utilized within modern production programs.  

Carcass Characteristics and Composition of Pietrain and Duroc-Sired Pigs  
 

 Though there are limited studies directly comparing Duroc and Pietrain pigs, in general, 

Duroc pigs are fatter than Pietrain pigs (Edwards et al., 2003b; Ellis et al., 1996; Lowell et al., 

2019). Therefore, this results in Pietrain pigs having increased FFL (Edwards et al., 2003b; 

Lowell et al., 2019). Additionally, one study noted that LEA was increased by 3.0 cm2 in Pietrain 

sired pigs (Edwards et al., 2003b). When considering carcass composition, this often consists of 

primal and subprimal weights in addition to carcass cutability calculations. In general, Pietrain 

pigs tend to have increased percent of chilled side weights for primals and subprimals (Edwards 

et al., 2003; Lowell et al., 2019; Morales et al., 2013), but Duroc pigs have increased primal and 

subprimal weights (Edwards et al, 2003; Morales et al., 2013). Additionally, one study reported 

Pietrain pigs have increased bone-in carcass cutting yield and bone-in lean cutting yield 

compared to Duroc pigs (Lowell et al., 2019). These results suggest that Pietrain-sired pigs have 

leaner carcasses with increased carcass cutting yields whereas Duroc-sired pigs hold an 

advantage in terms of primal and subprimal weights.   

Pork Quality of Pietrain and Duroc-Sired Pigs   

Although Pietrain-based sires undoubtedly increase lean meat yields, they are often not 

selected for meat quality characteristics. Previous literature has reported that Pietrain pigs may 

contain one copy of the mutated ryanodine receptor gene which is linked to “Porcine Stress 

Syndrome” or PSS (Barbut et al., 2008; Edwards et al., 2003a). The Porcine Stress Syndrome has 
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detrimental effects on pork quality including PSE meat, which has been linked to the halothane 

gene. However, efforts have been made by both producers and packers in an attempt to reduce 

and eliminate PSE meat. From a producer standpoint, Pietrains utilized in modern day pork 

production are often tested for the halothane gene to ensure they are not used in commercial 

production (Barbut et al., 2008). Additionally, the packing industry has implemented branded 

pork programs which has led to decreased cases of PSE meat (Barbut et al., 2008). Unlike 

Pietrain pigs, Duroc-sired pigs are often selected for swine breeding programs that have 

intentions of improving overall meat quality (Edwards et al., 2003b; Lowell et al., 2019; NPPC, 

1995).  

In general, Duroc pigs have darker loins than Pietrain pigs (Edwards et al., 2003b) 

(Lowell et al., 2019), but the absolute difference between breeds varies between studies. Duroc-

sired pigs have increased IMF content when compared to other swine breeds, but especially 

European breeds, which includes Pietrain pigs (Cilla et al., 2006; Damon et al., 2006; Lowell et 

al., 2019). Additionally, ultimate pH is increased in Duroc pigs suggesting an increased capacity 

to hold water when compared to Pietrain pigs (Edwards et al., 2003b; Lowell et al., 2019). In 

fact, older studies comparing Pietrain and Duroc pigs concluded Duroc pigs had superior WHC 

when compared to Pietrain pigs (Lonergan & Lonergan, 2005; Melody et al., 2004). But these 

studies may reflect the prevalence of PSE meat in older Pietrains. More recently, purge loss did 

not differ between Duroc and Pietrain-sired pigs  (Lowell et al., 2018). In terms of instrumental 

tenderness of loin chops, results are also mixed with some reporting no differences between 

breeds (Edwards et al., 2003) and others a slight advantage in tenderness among Pietrain pigs 

(Lowell et al., 2019).  
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Comparisons of fresh ham quality of Duroc and Pietrain-sire pigs is nonexistent in the 

literature. Therefore, emphasizing the need for fresh ham quality research between these breeds. 

Additionally, fresh belly, cured belly, and bacon slice quality of Duroc and Pietrain-sired pigs is 

minimal in the literature. Again, this highlights the need for more research; specifically with 

bellies and bacon, as this is a profitable industry in the United Studies. However, one study 

evaluated belly and bacon characteristics amongst Duroc and Pietrain-sired pigs and barrows and 

gilts (Lowell et al., 2019). Not surprisingly, Duroc-sired pigs had thicker and firmer bellies as 

compared to Pietrain-sired pigs. Duroc-sired pigs also had a greater cooked yield percentage and 

bacon fat percentage; therefore, it is not surprising that Pietrain-sired pigs had leaner bacon 

slices. These results suggest that in addition to superior loin quality, Duroc-sired pigs also have 

superior belly quality characteristics.  

CONCLUSION 
 

 Based on varying consumer preferences and export market demands, it is important to 

identify appropriate sire lines to fit these markets. Based on these varying preferences, deciding 

on a concrete definition for pork quality can be difficult as different countries hold different 

attributes of quality to higher standards. However, what remains the same is color, marbling, 

tenderness, juiciness, and flavor all influence pork quality and consumer purchasing decisions. 

Therefore, sire lines are extremely valuable for producers in order to achieve the traits they are 

selecting for in their designated markets. Currently, both Pietrain and Duroc terminal sire lines 

are used in the swine industry. Pietrain-based terminal sires are often selected to increase both 

carcass and lean yields whereas Duroc-based terminal sires improve meat quality, but also grow 

relatively quickly. Understanding the growth performance, carcass characteristics and 
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composition, and pork quality of these breeds impact genetic companies, producers, packers, and 

the consumer. Therefore, the importance of understanding these characteristics is invaluable.  
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CHAPTER 2: EFFECT OF PIETRAIN SIRE LINES ON EARLY AND AGED PORK 

QUALITY 

 

ABSTRACT 
 

 Originally from Europe, Pietrain pigs have been incorporated into commercial swine 

production in the United States for many years as they are known for increasing feed efficiency, 

carcass yields, and lean meat yields. The objective of this study was to evaluate two separate 

Pietrain sire lines and their effects on growth performance, carcass characteristics, early and aged 

loin quality, early ham quality, and early belly quality. An American purebred terminal sire was 

chosen for feed efficiency and lean tissue accretion, which produced 135 pigs for the trial. A 

European crossbred (25% Pietrain) terminal sire was chosen for lean tissue accretion and 

produced 114 total pigs. The MIXED procedure of SAS was used to evaluate the fixed effects of 

sire line, sex, and the interaction between sire line and sex, and effects were considered 

significant at P<0.05. Overall (d0-91/98), average daily gain (ADG) tended to increase (P=0.07) 

in European barrows by 0.03 kg/d day compared to American sired pigs, but gain to feed (G:F) 

did not differ (P=0.76) between sire lines. European sired pigs had a greater (P=0.04) boneless 

carcass cutting yield (51.36 vs. 50.55%) as compared to American sired pigs. American sired 

pigs had darker loins as indicated by increased (P<0.001) early ventral visual color (3.72 vs. 3.26 

units) and decreased (P=0.05) early ventral L* (51.10 vs. 51.99 units). Early chop visual color 

was increased (P=0.03) by 0.14 units and early chop L* was decreased (P=0.03) by 1.18 units 

indicating American sired pigs had darker colored chops. Both early ventral and chop visual 

marbling and ultimate pH did not differ between sire lines (P≥0.27). American sired pigs had a 

greater (P<0.001) extractable lipid by 0.54% as compared to European sired pigs. American 

sired pigs had darker, heavier marbled, and firmer aged loins as ventral visual color, marbling, 

and firmness were increased (P≤0.02) by 0.16, 0.39, and 0.19 units, respectively. Aged visual 
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chop marbling was increased (P<0.001) by 0.39 units in American sired pigs. Aged chop pH, 

instrumental tenderness, and cook loss did not differ (P≥0.20) between sire lines. European sired 

pigs had thicker and firmer bellies as belly thickness and flop were increased (P≤0.01) by 0.23 

cm and 2.94 cm, respectively. Early ham visual color score (2.30 vs. 3.10 units) and instrumental 

L* (54.92 vs. 57.82 units) was decreased (P<0.001) for American sired pigs meaning they had 

darker hams. Ultimately, European sired pigs tended to have increased ADG and thicker bellies, 

but American sired pigs had improved loin quality and darker hams.  

INTRODUCTION 
 

 Terminal sire selection is a crucial component of commercial swine production as 

terminal sires have the ability to influence growth performance, carcass characteristics, and meat 

quality traits. Although European swine producers have utilized Pietrain terminal sires longer 

than U.S. producers, Pietrain pigs are essential in modern day swine production in the United 

States (Edwards et al., 2003a). Pietrain pigs are known to increase feed efficiency and improve 

carcass and lean meat yields (Werner et al., 2010), but do not excel in terms of meat quality 

when compared to other terminal sires, especially Durocs (Gil et al., 2008). As Mexico is one of 

the largest importers of U.S. pork, the Pietrain pig is of high value such that Mexican consumers 

value lean product over products with improved pork quality (Edwards et al., 2003b; Lowell et 

al., 2018; Murphy et al., 2015). In addition to higher lean yields, Pietrain terminal sires also yield 

heavier muscled carcasses; however, as Pietrain terminal sires have been selected over time for 

specific traits, overall back fat and intramuscular fat content has decreased (Morales et al., 2013). 

This raises some concern as less back fat is associated with thinner bellies and poorer bacon 

processing characteristics. Within this study, two separate sire lines were used to evaluate pork 

quality parameters including loin, ham, and belly quality. The objective of this study was to 
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compare those characteristics between an American purebred Pietrain sire line and a European 

crossbred Pietrain sire line. The American sire line was selected for maximum feed efficiency 

and lean tissue accretion while the European sire line was selected for carcass merit and lean 

tissue accretion.  

MATERIALS AND METHODS 
 

Protocols used during the live phase portion of the experiment were approved by the Institutional 

Animal Care and Use Committee at the University of Illinois.  

Pig Background  
 

Pigs (249 total) from 2 different sire lines of Pietrain ancestry (Choice Genetics, West 

Des Moines, IA) were used in the trial.  An American, purebred Pietrain sire line selected for 

feed efficiency and lean tissue accretion provided 135 barrows and gilts. A European, 4-way 

proprietary crossbred (25% Pietrain) sire line selected for carcass merit and lean tissue accretion 

provided 114 barrows and gilts. Boars of both sire lines were mated to Camborough sows (Pig 

Improvement Company, Henderson, TN) and parity of the females was balanced between sire 

lines.  All pigs were housed in pens (1.58 m2/pig) of 3 pigs of the same sex and sire line. Floor 

space allowance was calculated using the equation (A = k * BW0.667) in order to calculate a k-

value (Gonyou et al., 2006). Each pen contained a feeder, nipple waterer, and a tri-bar slatted 

floor. Pigs were raised in blocks, approximately 2 weeks apart, based on farrowing group.  Block 

1 consisted of 69 pigs (36 barrows and 33 gilts) from the American Pietrain and 63 pigs (30 

barrows and 33 gilts) from the European Pietrain. Block 2 consisted of 66 pigs (33 barrows and 

33 gilts) from the American Pietrain and 51 pigs (24 barrows and 27 gilts) from the European 

Pietrain.  A total of 44 pens were used in block 1 (11 barrow and 11 gilt pens from the American 

Pietrain, and 11 barrow and 11 gilt pens from the European Pietrain).  A total of 39 pens were 
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used in block 2 (11 barrow and 11 gilt pens from the American Pietrain, and 8 barrow and 9 gilt 

pens from the European Pietrain.  Discrepancies in pen numbers were due to pig availability 

within each farrowing group.   

A 3-phase, 91 d feeding program was used for block 1 and a 98 d feeding program was 

used for block 2. Day 0 of the experiment was the first day of the grower phase and beginning of 

the feeding portion of the trial.  Pens of pigs were fed a grower diet from d 0 to d 35, an early 

finisher diet from d 36 to d 70, and a late finisher diet from d 71 through the end of the live phase 

(d 91 for block 1 and d 98 for block 2).  All 3 diets were formulated to be iso-caloric and 

contained no ractopamine hydrochloride or dried distillers grains with or without solubles. Day 0 

was considered the beginning of the feeding trial and pigs (10 weeks of age) were weighed to 

determine beginning weight. Pigs were also weighed at the end of each of the 3 feeding phases (d 

35, 70, & 91 or 98).  Daily feed allotments were recorded and data were summarized to calculate 

ADG, average daily feed intake (ADFI), and G:F. Day 91(block 1) and 98 (block 2) was 

considered the end of the feeding portion of the trial and all pigs were weighed in order to 

calculate overall ADG, ADFI, and G:F. At the end of the feeding trial, the heaviest pig from each 

pen (83 total pigs) was removed and transported to the University of Illinois Meat Science 

Laboratory (Urbana, IL) for slaughter. Two days later, the lightest pig from each pen (83 total 

pigs) was removed and transported to the University of Illinois Meat Science Laboratory for 

slaughter.    

Federally Inspected Abattoir Slaughter and Carcass Characteristics   
 

Pigs transported to the federally inspected abattoir (Rantoul, IL) were held in lairage for a 

minimum of 4 hours. Pigs were slaughtered under the supervision of the Food Safety and 

Inspection Service of the United States Department of Agriculture (USDA). Pigs were 
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immobilized using carbon dioxide and then terminated via exsanguination. Carcasses were 

weighed approximately 45 minutes postmortem to determine hot carcass weight (HCW). 

Carcasses were chilled using the blast chill method for approximately 2 hours. Last rib fat was 

measured on the left side of each carcass in the determined location of the last rib. Standardized 

fat-free lean percentage was calculated using the equation (23.568 + 0.503 × (HCW, lb.) - 21.348 

× (last rib back fat thickness, in.)) as described in procedure 2 for unribbed carcasses (Burson & 

Berg, 2001). 

University of Illinois Meat Science Laboratory Slaughter and Carcass Characteristics 
 

Pigs transported to the University of Illinois Meat Science Laboratory (Urbana, IL) were 

held in lairage for a minimum of 16 h prior to slaughter.  Pigs were provided ad libitum access to 

water but had no access to feed during this time.  Pigs were weighed immediately before 

slaughter to determine an ending live weight (ELW).  Pigs were slaughtered under the 

supervision of the Food Safety and Inspection Service of the United States Department of 

Agriculture (USDA).  Pigs were immobilized using head-to-heart electrical stunning and 

terminated via exsanguination.  Carcasses were weighed approximately 45 min postmortem to 

determine HCW.  Carcass yield was calculated by dividing the HCW by ELW and expressed as 

a percentage. 

  Carcasses were chilled at 4°C for a minimum of 20 h.  Estimates of carcass composition 

were determined on the left side of each carcass, which was separated between the 10th and 11th 

rib to expose the longissimus thoracis (LTL). Tenth-rib back fat thickness was measured at ¾ 

the distance of the LTL from the dorsal process of the vertebral column.  Loin eye area (LEA) 

was measured by tracing the surface of the LTL on acetate paper.  The LTL tracings were 

measured in duplicate using a digitizer tablet (Wacom, Vancouver, WA) and Adobe Photoshop 
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CS6.  The average of the two measurements was reported as LTL area.  Standardized fat-free 

lean (FFL) percentage was calculated using the equation (8.588 + (0.465 × HCW, lb) – (21.896 

× tenth rib fat thickness, in) + (3.005 × loin muscle area, in2)) / HCW, lb) × 100 as described in 

procedure 1 for ribbed carcasses (Burson & Berg, 2001). 

Carcass Fabrication 
 

Carcass fabrication followed the same method outlined by Boler et al. (2001). At 1d 

postmortem, the left side of each chilled carcass was weighed and then fabricated into a pork leg 

(NAMP #401), skin-on whole loin, pork shoulder (NAMP #403), neck bones (NAMP #421), 

jowl (NAMP #419), skin-on natural fall belly (NAMP #408), and spareribs (NAMP #416) to 

meet the specifications as described in the North American Meat Institute Meat Buyer’s Guide 

(NAMI, 2014). Each primal piece was weighed before further fabrication. Legs were skinned 

and trimmed of fat to meet the specifications of a NAMP #402 trimmed ham. Further fabrication 

of the hams followed the method outlined by Boler et al. (2012).  The loin was separated into an 

anterior and posterior portion, due to the separation at the location of the 10th and 11th rib to 

assess carcass composition. The anterior and posterior portions of the loin were skinned and 

trimmed of fat to meet the specifications of a NAMP #410 bone-in loin. Both halves of the 

trimmed, bone-in loin were weighed, as a set, to determine the weight of the whole skinless 

bone-in loin. Both the anterior and posterior portions were then fabricated, and weighed as a set, 

to meet the specifications of a NAMP #414 Canadian back loin, a NAMP #415A tenderloin, and 

a NAMP #413D sirloin.  The whole shoulder was skinned and trimmed of fat to meet the 

specifications of a skinned pork shoulder (NAMP #404). The Boston butt was separated from the 

picnic to form a NAMP #406 bone-in Boston butt and a NAMP #405 bone-in picnic, and then 

weighed individually.  The bones were removed from each piece to meet the specifications of a 
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NAMP #406A boneless Boston butt and a NAMP #405A boneless picnic with the triceps brachii 

(shoulder cushion) attached.  Carcass cutability was expressed as a percentage of chilled left side 

weight to account for variability in body weight (BW) and HCW.  The following equations were 

used to calculate cutability: 

Bone-in lean cutting yield, % = [(trimmed ham (NAMP #402), kg + bone-in trimmed Boston 

butt (NAMP #406), kg + bone-in picnic (NAMP #405), kg + trimmed loin (NAMP #410), kg) / 

chilled left side weight, kg]×100 

Bone-in carcass cutting yield, % = [(bone-in lean cutting yield components + natural fall belly 

(NAMP #408), kg) / chilled left side weight, kg] × 100  

Boneless carcass cutting yield, % = [(inside ham (NAMP #402F), kg + outside ham (NAMP 

#402E), kg + knuckle (NAMP #402H), kg) + inner shank, kg + lite butt, kg + Canadian back 

(NAMP #414), kg +tenderloin (NAMP #415A), kg + sirloin (NAMP #413D), kg) + boneless 

Boston butt (NAMP #406A), kg + boneless picnic (NAMP #405A), kg + natural fall belly 

(NAMP #408), kg)) / chilled left side weight] × 100   

Natural fall bellies, the semimembranosus muscle (SM), and Canadian back loins were collected 

to assess fresh belly quality, fresh ham quality, and fresh and aged loin quality.   

Early Postmortem Loin Quality Evaluation 
 

At 1 d postmortem, quality measurements for instrumental color, visual color, visual 

marbling, subjective firmness, and ultimate pH were conducted by trained University of Illinois 

personnel following the procedure outlined by Lowell et al. (2017).  Loins were re-faced and 

evaluated for quality parameters on the cut surface of the LTL posterior to the 10th rib.  

Oxygenation of myoglobin occurred at 4°C for approximately 20 minutes before quality 

measurements were evaluated. Instrumental L*(lightness), a* (redness), and b* (yellowness; CIE 
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1978) were measured with a Minolta CR-400 Chroma meter (Minolta Camera Co., Ltd., Osaka, 

Japan) using a D65 light source, 2° observer angle, an 8 mm aperture, and calibrated using a 

white tile.  Instrumental L* does not change within 30 min of oxygen exposure and instrumental 

a* values do not change after 10 min of oxygen exposure (Brewer et al., 2001).  Therefore, 20 

min was sufficient to allow for appropriate oxygenation of myoglobin.  Ultimate pH was 

measured on the ventral side of the LTL muscle in the approximate location of the 10th rib using 

a Reed data logger, calibrated at 4°C, fitted with a Hanna glass electrode (REED SD-230 Series 

pH/ORP Datalogger, 0.00 to 14.00 pH/0-199 mV; Hanna FC200B electrode). Visual color and 

marbling scores (NPPC, 1999), and subjective firmness scores (NPPC, 1991) were determined 

by a single technician.  After 1d postmortem quality measures were complete, loins were vacuum 

packaged and aged for 13 d at 4°C.  

Early Postmortem Ham Quality Evaluation  
 

Ham quality was evaluated on the medial side of the SM on day 1 postmortem.  Quality 

evaluations included instrumental color, visual color, and ultimate pH. Instrumental color (L*, 

a*, and b*) was measured with a Minolta CR-400 Chroma meter (Minolta Camera Co., Ltd., 

Osaka, Japan) using a D65 light source, open aperture, 2° observer angle, and 8 mm opening; 

calibrated with a white tile. Visual color was assessed by a single trained individual using a color 

scale range of 1 to 4 (1 being visually the darkest and 4 being visually the lightest). A Reed data 

logger was calibrated at 4°C, using a Hanna glass electrode (REED SD-230 Series pH/ORP 

Datalogger, 0.00 to 14.00 pH/0 to 199 mV; Hanna FC200B electrode) and used to measure 

ultimate pH of each SM.  

Early Postmortem Belly Quality 
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Block 1 bellies were evaluated on day 3 postmortem and block 2 bellies were evaluated 

on day 1 postmortem. A sharpened back fat probe was used to measure belly thickness at 3 

locations throughout the belly. At 50 percent of the width of the belly, thickness measurements 

were collected at 25%, 50%, and 75% of the belly length, anterior to posterior. Those 3 

measurements were averaged to determine belly thickness. Bellies were placed skin side down, 

over a stationary metal bar, and the distance between the inside edges were measured to obtain a 

belly flop distance. 

Aged Postmortem Loin Quality Evaluation 
 

Aged postmortem quality loin evaluation followed that outlined by Lowell et al. (2017). 

At 14 d postmortem, loins were removed from the packaging, allowed to drip for approximately 

20 minutes, and weighed. Purge loss (%) was calculated using the following equation:  

Purge Loss, % = [(1 d weight, kg – 14 d weight, kg) / 1 d weight, kg] ×100    

Loins were exposed to oxygen for at least 20 min and then quality measurements for 

instrumental color, visual color, visual marbling, subjective firmness, and aged ultimate pH were 

conducted on the ventral surface of the loins, using the same procedures as the 1 d postmortem 

quality evaluations. Ambient room temperature during evaluations was approximately 4°C. After 

quality evaluations were completed on the ventral surface of the loins, three loin chops from each 

loin were removed, posterior to the cut at the 10th rib, for evaluation of proximate composition 

(moisture and extractable lipid), cook loss, and Warner-Bratzler shear force (WBSF). Chops 

were sliced into 2.54 cm thick chops using a Bizerba deli slicer SE 12 D US (Bizerba USA Inc. 

Piscataway, NJ). Chop 1 was exposed to oxygen for at least 20 minutes before evaluation. Then, 

instrumental color, visual color and marbling, and subjective firmness were measured in the 

same manner as described above.  Chop 1 was then trimmed free of all subcutaneous fat and 
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secondary muscles, packaged in Whirl-Pak bags (Nasco, Ft. Atkinson, WI), and stored at -2°C 

until determination of moisture and extractable lipid. Chop 2 was vacuum packaged and stored at 

-2°C until determination cook loss (%) and WBSF. Chop 3 was vacuum packaged and stored at -

2°C as a backup sample. 

Cook Loss and Warner-Bratzler Shear Force 
 

The 2.54 cm thick chops were removed from the freezer at least 24 h prior to analysis and 

allowed to thaw thoroughly at approximately 1°C.  Analyses followed those outlined by 

Richardson et al. (2018). Chops were individually weighed and then cooked on a Farberware 

Open Hearth grill (model 455N, Walter Kidde, Bronx, NY, USA).  Chops were cooked, on one 

side, to an internal temperature of 31.5°C, flipped, and then cooked until they reached an internal 

temperature of 63°C, at which point they were removed.  Internal temperature, during cooking, 

was monitored using copper-constantan thermocouples (Type T, Omega Engineering, Stamford, 

CT, USA) placed in the approximate geometric center of each chop and connected to a digital 

scanning thermometer (model 92000-00, Barnat Co, Barrington, IL).  Chops were allowed to 

cool to approximately 25°C, and weighed again to determine percent cook loss.  Five 1.25 cm 

diameter cores were removed parallel to the orientation of the muscle fibers and sheared using a 

Texture Analyzer TA.HD Plus (Texture Technologies Corp., Scarsdale, NY/Stable Mirosystems, 

Godalming, UK) with a blade speed of 3.33 mm/s and a load cell capacity of 100 kg. The shear 

force value for the 5 cores were averaged and the average was reported as WBSF.  

Loin Proximate Composition 
 

Individual, trimmed loin chops were packaged in Whirl-Pak bags (Nasco, Ft. Atkinson, 

WI) and stored at -2°C until analysis.  Loin chops were thawed at 25°C and then homogenized in 

a Cuisinart (East Windsor, NJ) food processor.  Duplicate 10 g samples from each loin chop 
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were placed in a drying oven set at 110°C for at least 24 h. Moisture and extractable lipid content 

were determined using the chloroform-methanol solvent method described by Novakofski et al. 

(1989).        

Statistical Analysis  
 

Data were analyzed using the MIXED procedure of SAS (SAS Inst. In., Cary, NC) as a 2 

× 2 factorial arrangement (sire line × sex) of treatments in a randomized complete block design.  

Pen (83 total) served as the experimental unit for all fixed variables.  Fixed effects were sire line, 

sex, and the interaction between sire line and sex.  Block (n=2) served as random variable.  

Effect of sire line, sex, and the interaction between sire line and sex was considered significant at 

P<0.05.  Least squares means were separated using a probability of difference (PDIFF) statement 

in the MIXED procedure of SAS.  Normality of residuals was tested using the UNIVARIATE 

procedure of SAS.  Homogeneity of variances was tested using the Levene’s hovtest option in 

the GLM procedure of SAS.  

RESULTS 
 

Growth Performance, Carcass Characteristics, and Cutability 
 

Birth weight did not differ between sire lines (P=0.40), but weaning weight increased 

(P<0.01) by 0.45 kg in European pigs compared with American pigs (Table 2.1). During the 

initial feeding phase (d0-35), ADG, ADFI, and G:F did not differ between sire lines (P≥0.34). In 

phase 2 (d36-70) and 3 (d71-91/98), ADG, and G:F did not differ (P≥0.16) between sire lines, 

but ADFI was 3-4% greater in European-sired pigs compared with American sired pigs. During 

phase 3 American-sired pigs had an increased (0.0463 vs. 0.0458; P=0.01) k-value compared to 

European pigs. Overall (d0-d91/98) ADG, ADFI, and G:F did not differ (P≥0.06) between sire 

lines.  
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 On carcass data collected from the heaviest and lightest pig in each pen, ELW, HCW, and 

carcass yield did not differ (P≥0.10) between sire lines (Table 2.2). European sired pigs had 

increased (P<0.001) LEA by 5.19 cm2 and FFL by 1.63% units. American sired pigs had more 

tenth rib back fat (1.98 vs. 1.82 cm; P=0.03) in comparison to European sired pigs. On carcass 

data collected from the second heaviest pig in each pen, HCW was increased in (P=0.02) by 2.48 

kg in European sired pigs. Last rib back fat and FFL did not differ (P≥0.33) between sire lines.  

 The cutability of each primal and of the carcass overall are displayed in tables 2.3 

(shoulder), 2.4 (loin), 2.5 (ham), 2.6 (belly and other cuts), and 2.7 (overall). European sired pigs 

had heavier whole shoulders (13.22 vs. 12.88 kg; P=0.03), bone-in Boston butts (4.23 vs. 4.10 

kg; P=0.02), bone-in picnics (5.59 vs. 5.37 kg; P<0.01), and boneless Boston butts (3.94 vs. 3.82 

kg; P=0.04). Additionally, European sired pigs had heavier boneless picnics (4.10 vs. 3.89 kg; 

P<0.01) and boneless shoulders (8.04 vs. 7.71 kg; P=0.04). European sired pigs had increased 

percent of chilled side weight for boneless picnics (P=0.01) by 0.25% and boneless shoulders by 

0.33%. American sired pigs had an increased (P=0.02) percent of chilled side weight for jowls 

by 0.11% compared to European sired pigs.  

 European sired pigs had heavier trimmed loins (11.34 vs. 11.00 kg; P=0.03), Canadian 

backs (3.87 vs. 3.62 kg; P<0.001), tenderloins (0.46 vs. 0.44 kg; P=0.03), and boneless loins 

(5.22 vs. 4.92 kg; P<0.001). European sired pigs had increased (P<0.001) percent of chilled side 

weight for Canadian backs by 0.36% and boneless loins by 0.38%, compared to American sired 

pigs. Weights for whole loin, sirloin, backribs, and backbone did not differ between sire lines 

(P≥0.08).  

 European sired pigs had heavier whole hams (12.17 vs. 11.82 kg; P=0.01), trimmed hams 

(10.10 vs. 9.82 kg; P=0.02), inside hams (1.91 vs. 1.83 kg; P<0.01), outside hams (1.91 vs. 1.83 
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kg; P<0.01), and boneless hams (6.04 vs. 5.82 kg; P=0.01). European sired pigs had increased 

percent of chilled side weight for outside hams (P=0.04) by 0.15% compared to American sired 

pigs. Knuckle, inner shank, and lite butt weights did not differ between sire lines (P≥0.44).  

 Natural fall belly and sparerib weight did not differ between sire lines (P≥0.57); neither 

did percent of chilled side weight for either of these pieces (P≥0.10). Standardized trim weight, 

leaf fat weight, feet weight, and percent of chilled side weight for all 3 pieces did not differ 

between sire lines (P≥0.08).  

Bone-in carcass cutting yield and bone-in lean cutting yield did not differ between sire 

lines (P≥0.13). When compared to American pigs, European gilts had an increased (P=0.05) 

bone-in carcass cutting yield by approximately 1.65% as indicated by a sire line by sex 

interaction. European sired pigs had increased (P=0.04) boneless carcass cutting yields by 0.81% 

as compared to American sired pigs.  

Pork Quality  
 

 American sired pigs had an increased (P<0.001) early ventral visual color score by 0.46 

units and ventral subjective firmness by 0.32 units (Table 2.8). European sired pigs had an 

increased (P=0.05) early ventral L* by 0.89 units compared to American pigs. Early ventral 

marbling, a*, and b* did not differ (P≥0.23) between sire lines. American sired pigs had 

increased (P=0.03) early chop visual color score by 0.14 units and increased (P<0.001) 

extractable lipid (P<0.001) by 0.54% compared to European pigs. American barrows, American 

gilts, and European gilts had an increased (P=0.03) early chop visual color score compared to 

European barrows indicated by a sire line by sex interaction. European pigs had an increased 

(P=0.03) early chop L* by 1.18 units compared to American pigs. Early chop visual marbling, 

subjective firmness, a*, b*, pH, and moisture percent did not differ (P≥0.07) between sire lines.  
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 American sired pigs had increased (P≤0.02) aged ventral visual color (3.53 vs. 3.37 

units), visual marbling (2.43 vs. 2.04 units), and subjective firmness (3.61 vs. 3.42 units; Table 

2.9). Aged ventral L*, a*, b*, and purge loss did not differ (P≥0.21) between sire lines. Aged 

chop visual marbling was increased (P<0.001) by 0.39 units in American sired pigs as compared 

to European sired pigs. Aged chop visual color score, subjective firmness, L*, a*, b*, chop pH, 

WBSF, and cook loss did not differ (P≥0.09) between sire lines. However, there was a sire line 

by sex interaction (P=0.04) for WBSF. Within the American sired pigs, barrows were more 

tender than gilts, but within the European sired pigs, gilts were more tender than barrows thus, 

driving the sire line by sex interaction.  

 Belly thickness was increased (P<0.001) by 0.23 cm and belly flop was increased 

(P<0.01) by 2.94 cm in European sired pigs (Table 2.10). European sired pigs had increased 

(P<0.01) visual ham color by 0.80 units, ham L* by 2.9 units, and b* by 1.0 units compared to 

American sired pigs. Early ham a* and ham pH did not differ (P≥0.08) between sire lines.  

DISCUSSION 
 

In general, Europe has utilized the Pietrain pig much longer than U.S. swine producers 

(Edwards et al., 2003a); however, they are being incorporated into modern day swine production 

as they have increased feed efficiency and improve both carcass and lean meat yields. However, 

it is recognized that selecting Pietrain sires can be at the expense of pork quality characteristics 

when compared to other sire lines (Kušec et al., n.d.). Therefore, Pietrain terminal sires are often 

utilized in export markets where pork is purchased on a volume basis and consumer preference 

includes leaner pork cuts (Lowell et al., 2018). Therefore, the objective of this study was to 

evaluate the effects of an American purebred Pietrain sire, intended for feed efficiency and lean 
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tissue accretion, and a European crossbred Pietrain sire, intended for carcass merit and lean 

tissue accretion, and their effect on early and aged pork quality.  

European sired pigs were heavier at weaning, but ADG and G:F did not differ between 

the two sire lines. In the present study, k value was measured to determine the effect of floor 

space allowance on overall pig performance, whereas k represents the space allowance 

coefficient. American sired pigs had an increased k value indicating they had more space 

allowance in order to grow (Gonyou et al., 2006). Additionally, there were no differences in 

ELW, HCW, or carcass yield. However, European sired pigs had leaner carcasses, specifically at 

the 10th rib, with larger loin eyes, which ultimately led to an increase in FFL. Although bone-in 

carcass cutting yield and bone-in lean cutting yield did not differ between the two sire lines, 

European sired pigs had an increase in boneless carcass cutting yield. Overall, neither sire line 

was superior in regards to growth performance, but European sired pigs did have improved 

carcass merit. European sired pigs had a greater FFL by approximately 1.50% units, which is 

driven by an increase in LEA as there were no differences in HCW or back fat.  

In terms of loin quality, American sired pigs had slightly darker and firmer loins at both 

early and aged time points as well as slightly heavier marbled aged loins. At 1 d postmortem, 

American sired pigs had slightly darker chops with a greater amount of extractable lipid. 

Additionally, American sired pigs had heavier marbled aged chops. However, there were no 

differences amongst the two sire lines in regards to early and aged ultimate pH, purge loss, 

instrumental tenderness, or cook loss. Furthermore, European sired pigs had thicker and firmer 

bellies, while American sired pigs had darker and slightly less yellow colored hams. Thus, 

overall, American sired pigs exceled in both loin and ham quality whereas European sired pigs 
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held the advantage in overall belly quality. While statistically differently, the scope of difference 

in loin quality characteristics was comparatively small.   

CONCLUSION 
 

Pietrain terminal sires are often utilized in swine production as they are feed efficient and 

increase both carcass and lean meat yields. The objective of this study was to compare an 

American purebred Pietrain sire, selected for feed efficiency and lean tissue accretion, and a 

European crossbred Pietrain sire, selected for carcass merit and lean tissue accretion, and their 

effect on early and aged pork quality. Overall, there were no differences in growth performance, 

but European sired pigs were leaner and had improved carcass merit. Additionally, American 

sired pigs exhibited improved loin and ham quality characteristics whereas European sired pigs 

had thicker and firmer bellies. Therefore, for producers and packers that value lean meat yield, 

the European Pietrain sire line is the superior choice. On the contrary, when loin quality is at a 

premium, the American Pietrain sire line is the preferred choice.  
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FIGURES 

 

Figure 2.1. The effects of sire line and sex on instrumental tenderness using the Warner-Bratzler 

shear force (kg) method of aged pork loins.   
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Figure 2.2. The effects of sire line and sex on cook loss (%) of aged pork loins.   

 



TABLES 

Table 2.1. Main effects of sire line and sex on growth characteristics  

  Sire line   Sex       P-values 

Item American European    Barrows Gilts   SEM   

Sire 

Line Sex 

Sire line × 

Sex 

Pens, n 44 39  41 42  
     

Birth wt, kg 1.60 1.63  1.65 1.58  0.03  0.40 0.04 0.39 

Weaning wt, kg 6.63 7.08  6.89 6.82  0.32  < 0.01 0.63 0.32 

Phase 1 (d0-35)1            

   BW d0, kg 30.71 30.71  30.94 30.48  0.37  0.98 0.07 0.18 

   ADG, kg/d 0.94 0.95  1.01 0.88  0.04  0.51 < 0.001 0.95 

   ADFI, kg/d 2.07 2.05  2.20 1.92  0.06  0.34 < 0.001 0.87 

   G:F 0.45 0.45  0.45 0.45  0.01  0.46 0.70 0.75 

   BW d35, kg 63.65 63.65  66.27 61.02  1.86  1.00 < 0.001 0.54 

Phase 2 (d36-70)    
 

  
 

 
 

   
   ADG, kg/d 1.18 1.21  1.26 1.12  0.02  0.16 < 0.001 0.13 

   ADFI, kg/d 3.15 3.28  3.47 2.96  0.04  < 0.01 < 0.001 0.88 

   G:F 0.37 0.37  0.36 0.38  0.01  0.71 0.02 0.30 

   BW d70, kg 104.34 106.13  110.00 100.48  2.04  0.06 < 0.001 0.22 

Phase 3 (d71-91/98)2   
 

  
 

 
 

   
   ADG, kg/d 1.03 1.04  1.06 1.01  0.08  0.63 0.12 0.48 

   ADFI, kg/d 3.34 3.44  3.58 3.20  0.09  0.05 < 0.001 0.92 

   G:F 0.31 0.30  0.30 0.31  0.02  0.59 0.01 0.42 

   BW d91 & d98 129.17 131.40  135.59 124.99  3.74  0.08 < 0.001 0.52 

   k-value d91/98 0.0463 0.0458  0.0448 0.0474  < 0.001  0.01 < 0.001 0.49 

Overall (d0-91/98)   
 

  
 

 
 

   
   ADG, kg/d 1.04 1.07  1.11 1.00  0.01  0.07 < 0.001 0.87 

   ADFI, kg/d 2.79 2.85  3.01 2.63  0.02  0.06 < 0.001 0.78 

   G:F 0.37 0.37   0.36 0.38   < 0.01   0.76 < 0.001 0.43 
1Pigs were approximately 10 wks old on d0.          

2Block 1 was harvested on day 91. Block 2 was harvested on day 98.       
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Table 2.2. Main effects of sire line and sex on carcass characteristics.1               

  Sire Line  Sex    P-values  

Item    American  European    Barrows  Gilts    SEM   

Sire 

Line Sex 

Sire 

line × 

Sex 

Pens, n  44 39  41 42       

University of Illinois1             
Ending live weight, kg  129.22 128.66  134.28 123.60  5.44  0.81 < 0.001 0.38 

HCW, kg2  100.12 102.01  105.08 97.05  3.19  0.10 < 0.001 0.81 

Carcass yield, %   78.38 79.28  78.84 78.82  0.63  0.27 0.98 0.36 

Loin muscle area, cm2  46.73 51.92  49.25 49.40  2.48  < 0.001 0.87 0.45 

10th rib back fat depth, cm  1.98 1.82  2.15 1.65  0.14  0.03 < 0.001 0.77 

Standardized fat-free lean, %3  52.66 54.29  52.22 54.73  1.23  < 0.001 < 0.001 0.77 

Federally Inspected Abattoir4             
HCW, kg  97.28 99.76  102.66 94.38  3.31  0.02 < 0.001 0.62 

Last rib back fat depth, cm  3.39 3.53  3.89 3.03  0.11  0.33 < 0.001 0.18 

Standardized fat-free lean, %5   48.07 47.61   46.23 49.45   0.47   0.45 < 0.001 0.18 
1Values are based on data collected from the heaviest and lightest pig in each pen.       
2HCW includes the left and right sides with leaf fat and standardized trim still intact.        
3Standardized fat-free lean = ((8.588 + (0.465 x HCW, lb) - (21.896 x fat depth, in) + (3.005 x LTL area, in2)) ÷ HCW) x 100,  

(Burson and Berg, 2001).  
4Values are based on data collected from the second heaviest pig in each pen.        
5Standardized fat-free lean = ((23.568 + (0.503 x HCW, lb) - (21.348 x fat thickness, in))÷HCW) x 100, (Burson and Berg, 2001).   
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Table 2.3. Main effects of sire line and sex on shoulder carcass 

cuts.                

  Sire Line  Sex    P-values  

Item    American European    Barrows  Gilts    SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  44 39  41 42       

Whole shoulder, kg  12.88 13.22  13.59 12.51  0.40  0.03 < 0.001 0.73 

   % chilled side wt  25.53 25.69  25.54 25.68  0.71  0.42 0.50 0.69 

Bone-in Boston, kg  4.10 4.23  4.32 4.01  0.15  0.02 < 0.001 0.69 

   % chilled side wt  8.12 8.22  8.12 8.22  0.25  0.25 0.28 0.75 

Bone-in picnic, kg  5.37 5.59  5.68 5.28  0.14  < 0.01 < 0.001 0.97 

   % chilled side wt  10.66 10.86  10.68 10.84  0.23  0.06 0.12 0.78 

Boneless Boston, kg  3.82 3.94  4.02 3.74  0.14  0.04 < 0.001 0.45 

   % chilled side wt  7.57 7.67  7.56 7.68  0.24  0.36 0.26 0.48 

Boneless picnic, kg  3.89 4.10  4.14 3.85  0.05  < 0.01 < 0.001 0.88 

   % chilled side wt  7.71 7.96  7.76 7.91  0.07  0.01 0.08 0.91 

Neckbones, kg  1.10 1.11  1.22 1.09  0.08  0.60 0.18 0.40 

   % chilled side wt  2.18 2.17  2.11 2.24  0.16  0.81 0.01 0.51 

Jowl, kg  1.57 1.55  1.67 1.45  0.07  0.39 < 0.001 0.44 

   % chilled side wt  3.11 3.00  3.14 2.97  0.13  0.02 < 0.001 0.28 

Clear plate, kg  0.75 0.77  0.79 0.73  0.04  0.59 0.17 0.17 

   % chilled side wt  1.48 1.50  1.48 1.50  0.07  0.79 0.86 0.18 

Boneless shoulder, kg1  7.71 8.04  0.18 0.18  0.18  < 0.01 < 0.001 0.72 

   % chilled side wt   15.28 15.61   15.30 15.59   0.31   0.04 0.07 0.52 
1Boneless shoulder = boneless Boston butt (NAMP # 406A), kg + boneless picnic (NAMP 

#405A), kg.    
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Table 2.4. Main effects of sire line and sex on loin carcass cuts.              

  Sire Line  Sex    P-values  

Item    American  European    Barrows  Gilts    SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  44 39  41 42       

Whole loin, kg 13.36 13.73  14.19 12.90  0.41  0.08 < 0.001 0.69 

   % chilled side wt 26.41 26.55  26.62 26.34  0.72  0.53 0.22 0.52 

Trimmed loin, kg 11.00 11.34  11.45 10.89  0.20  0.03 < 0.001 0.38 

   % chilled side wt 21.79 22.00  21.51 22.28  0.29  0.24 < 0.001 0.19 

Canadian Back, kg 3.62 3.87  3.77 3.72  0.05  < 0.001 0.43 0.46 

   % chilled side wt 7.16 7.52  7.07 7.62  0.08  < 0.001 < 0.001 0.35 

Tenderloin, kg 0.44 0.46  0.46 0.45  0.01  0.03 0.17 0.48 

   % chilled side wt 0.88 0.89  0.86 0.91  0.01  0.34 < 0.01 0.34 

Sirloin, kg 0.86 0.88  0.88 0.86  0.03  0.09 0.12 0.06 

   % chilled side wt 1.70 1.72  1.66 1.76  0.04  0.50 < 0.001 0.07 

Backribs, kg 0.91 0.89  0.92 0.88  0.05  0.36 0.04 0.50 

   % chilled side wt 1.80 1.72  1.73 1.80  0.09  0.09 0.11 0.42 

Backbone, kg 2.16 2.20  2.23 2.14  0.10  0.34 0.03 0.57 

   % chilled side wt 4.28 4.28  4.20 4.36  0.18  0.96 0.02 0.60 

Boneless loin, kg1 4.92 5.22  5.11 5.02  0.07  < 0.001 0.21 0.32 

   % chilled side wt 9.75 10.13   9.60 10.29   0.11   < 0.001 < 0.001 0.25 
1Boneless loin = Canadian back loin (NAMP #414), kg + tenderloin (NAMP #415A), kg + sirloin (NAMP #413D), 

kg.  
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Table 2.5. Main effects of sire line and sex on ham carcass cuts.              

  Sire Line  Sex    P-values  

Item    American  European    Barrows  Gilts    SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  44 39  41 42       
Whole ham, kg  11.82 12.17  12.26 11.73  0.32  0.01 < 0.001 0.24 

   % chilled side wt  23.44 23.70  23.07 24.06  0.53  0.21 < 0.001 0.12 

Trimmed ham, kg  9.82 10.10  10.12 9.80  0.15  0.02 0.01 0.11 

   % chilled side wt  19.51 19.71  19.07 20.14  0.21  0.34 < 0.001 0.06 

Inside ham, kg  1.83 1.91  1.89 1.85  0.04  < 0.01 0.25 0.77 

   % chilled side wt  3.63 3.73  3.55 3.80  0.75  0.06 < 0.001 0.73 

Outside ham, kg  2.56 2.69  2.64 2.61  0.08  < 0.01 0.49 0.23 

   % chilled side wt  5.09 5.24  4.97 5.36  0.13  0.04 < 0.001 0.23 

Knuckle, kg  1.43 1.44  1.45 1.42  0.03  0.68 0.19 0.57 

   % chilled side wt  2.84 2.80  2.73 2.92  0.05  0.35 < 0.001 0.58 

Inner shank, kg  0.72 0.67  0.74 0.65  0.05  0.46 0.16 0.25 

   % chilled side wt  1.41 1.30  1.38 1.32  0.09  0.38 0.62 0.23 

Lite butt, kg  0.30 0.29  0.29 0.30  0.03  0.44 0.29 0.16 

   % chilled side wt  0.60 0.58  0.55 0.63  0.06  0.25 < 0.001 0.17 

Boneless ham, kg1  5.82 6.04  5.97 5.88  0.15  0.01 0.27 0.39 

   % chilled side wt   11.56 11.78   11.25 12.08   0.25   0.14 < 0.001 0.38 

1Boneless ham = inside ham (NAMP #402F), kg + outside ham (NAMP #402E), kg + knuckle (NAMP #402H), kg.  
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Table 2.6. Main effects of sire line and sex on belly and miscellaneous 

cuts.              

  Sire Line  Sex    P-values  

Item    American European   Barrows  Gilts    SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  44 39  41 42       

Natural fall belly, kg  7.06 7.13  7.43 6.76  0.30  0.57 < 0.001 0.46 

   % chilled side wt  13.96 13.79  13.94 13.81  0.52  0.30 0.44 0.37 

Spareribs, kg  1.73 1.73  1.76 1.70  0.71  0.97 0.01 0.23 

   % chilled side wt  3.43 3.37  3.31 3.49  0.13  0.10 < 0.001 0.26 

Miscellaneous Cuts             

   Standardized trim, kg  0.16 0.15  0.18 0.14  0.03  0.55 0.01 0.80 

   % chilled side wt  0.32 0.29  0.33 0.28  0.06  0.39 0.05 0.87 

   Leaf fat, kg  0.77 0.83  0.92 0.68  0.04  0.08 < 0.001 0.06 

   % chilled side wt  1.52 1.59  1.72 1.39  0.08  0.22 < 0.001 0.08 

   Front and back foot, kg  1.22 1.11  1.15 1.19  0.12  0.30 0.73 0.39 

   % chilled side wt   2.45 2.16   2.16 2.45   0.23   0.22 0.23 0.36 
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Table 2.7. Main effects of sire line and sex on carcass cutability.                   

  Sire Line  Sex    P-values   

Item    American  European   Barrows  Gilts    SEM   

Sire 

Line Sex 

Sire 

line × 

Sex  
Pens, n  44 39  41 42        

Bone-in carcass cutting yield, %1  74.00 74.59  73.41 75.18  1.45  0.26 < 0.01 0.05  

Bone-in lean cutting yield, %2  60.79 59.45  59.45 61.40  0.95  0.13 < 0.001 0.07  

Boneless carcass cutting yield, %3   50.55 51.36   50.13 51.77   1.14   0.04 < 0.001 0.23  
1Bone-in carcass cutting yield = [(trimmed ham, kg + bone-in Boston, kg + bone-in picnic, kg + trimmed loin, kg + natural fall belly, 

kg) ÷ left side chilled weight, kg] x 100.  
2Bone-in lean cutting yield = [(trimmed ham, kg + bone-in Boston, kg + bone-in picnic, kg + trimmed loin, kg) ÷ left side chilled 

weight, kg] x 100.  

3Boneless carcass cutting yield = [(inside ham, kg + outside ham, kg + knuckle, kg) + (Canadian back loin, kg + tenderloin, kg + sirloin, 

kg)+ (boneless Boston, kg + boneless picnic, kg) + (belly, kg)) ÷ left side chilled weight] x 100.   
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Table 2.8. Main effects of sire line and sex on early loin and chop face quality and color1         

  Sire Line  Sex    P-values  

Item    American  European   Barrows  Gilts    SEM   Sire Line Sex 

Sire line 

× Sex 

Pens, n  44 39  41 42       
Loin             
     Visual color2 3.72 3.26  3.50 3.48  0.06  < 0.001 0.73 0.32 

     Visual marbling3 1.92 1.84  1.94 1.82  0.11  0.27 0.09 0.61 

     Subjective firmness4 3.72 3.40  3.56 3.55  0.06  < 0.001 0.89 0.69 

     Lightness, L*5 51.10 51.99  51.56 51.53  0.50  0.05 0.95 0.70 

     Redness, a*6 9.84 10.14  9.93 10.04  0.19  0.23 0.67 0.39 

     Yellowness, b*7 7.97 8.27  8.11 8.13  0.20  0.23 0.93 0.90 
Chop             
     Visual color 3.48 3.34  3.36 3.45  0.07  0.03 0.17 0.03 

     Visual marbling 2.22 2.13  2.26 2.09  0.07  0.34 0.07 0.24 

     Subjective firmness 3.24 3.35  3.26 3.33  0.08  0.23 0.45 0.32 

     Lightness, L* 54.65 55.83  55.69 54.79  1.62  0.03 0.09 0.98 

     Redness, a* 8.82 9.04  8.99 8.86  0.45  0.41 0.62 0.84 

     Yellowness, b* 7.31 7.65  7.60 7.36  0.60  0.19 0.35 0.90 

     Chop pH 5.69 5.68  5.69 5.68  0.05  0.63 0.21 0.69 

     Moisture, % 73.49 73.59  73.28 73.79  0.15  0.33 < 0.001 0.46 

     Extractable Lipid, % 2.53 1.99   2.52 2.00   0.08   < 0.001 < 0.001 0.47 
1Early postmortem traits were evaluated 1 d postmortem         
2NPPC color based on the 1999 standards measured in half point increments where 1 = palest, 6 = darkest.   
3NPPC marbling based on the 1999 standards measured in half point increments where 1 = least amount of marbling, 6 =  

greatest amount of marbling.  
4NPPC firmness based on the 1991 scale measured in half point increments where 1 = softest, 5 = firmest.   
5L* measures darkness (0) to lightness (100; greater L* indicates a lighter color).     
6a* measures redness (greater a* indicates a redder color).        
7b* measures yellowness (greater b* indicates a more yellow color).        
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Table 2.9. Main effects of sire line and sex on aged loin and chop quality1               

  Sire Line  Sex    P-values  

Item    American  European    Barrows  Gilts    SEM   

Sire 

Line Sex 

Sire line × 

Sex 

Pens, n  44 39  41 42       
Loin             
     Visual color2 3.53 3.37  3.44 3.47  0.06  0.01 0.66 0.23 
     Visual marbling3 2.43 2.04  2.38 2.09  0.06  < 0.001 < 0.001 0.06 

     Subjective firmness4 3.61 3.42  3.53 3.51  0.06  0.02 0.76 0.76 

     Lightness, L*5 54.47 54.63  54.64 54.46  1.04  0.75 0.72 0.83 

     Redness, a*6 9.44 9.34  9.43 9.35  0.16  0.63 0.73 0.81 
     Yellowness, b*7 8.55 8.60  8.71 8.44  0.22  0.84 0.27 0.74 

     Purge loss, %8 3.49 3.79  3.72 3.56  0.25  0.21 0.50 0.46 

Chop             
     Visual color 3.73 3.65  3.67 3.71  0.04  0.16 0.35 0.17 

     Visual marbling 2.52 2.13  2.48 2.18  0.07  < 0.001 < 0.01 0.37 

     Subjective firmness 2.96 2.99  3.04 2.91  0.26  0.76 0.22 0.69 
     Lightness, L* 54.87 55.23  55.28 54.82  0.33  0.43 0.32 0.83 

     Redness, a* 8.92 9.07  8.96 9.03  0.22  0.51 0.77 0.83 

     Yellowness, b* 7.99 8.37  8.24 8.12  0.19  0.09 0.61 0.99 

     Chop pH 5.71 5.70  5.71 5.70  0.05  0.20 0.49 0.94 

     Warner-Bratzler shear force, kg9 2.52 2.55  2.52 2.55  0.05  0.72 0.70 0.04 
     Cook loss, % 15.59 15.46   15.29 15.75   1.08   0.77 0.31 0.07 
1Aged postmortem traits were evaluated 14 d postmortem          
2NPPC color based on the 1999 standards measured in half point increments where 1 = palest, 6 = darkest.    
3NPPC marbling based on the 1999 standards measured in half point increments where 1 = least amount of marbling, 6 = greatest amount 

 of marbling.  
4NPPC firmness based on the 1991 scale measured in half point increments where 1 = softest, 5 = firmest.    
5L* measures darkness (0) to lightness (100; greater L* indicates a lighter color).       
6a* measures redness (greater a* indicates a redder color).         
7b* measures yellowness (greater b* indicates a more yellow color).         
8Purge loss = [(1 d weight, kg - 14 d weight, kg) ÷ 1 d weight, kg] x 100.        
9Warner-Bratzler shear force evaluated on chops cooked to 63° C       
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Table 2.10. Main effects of sire line and sex on fresh belly and ham 

characteristics.              

  Sire Line  Sex    P-values  

Item    American  European    Barrows  Gilts    SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  44 39  41 42       
Belly characteristics             

Thickness, cm1  3.10 3.33  3.42 3.02  0.05  < 0.001 < 0.001 0.83 

Flop, cm  14.68 17.62  18.38 13.93  1.14  < 0.01 < 0.001 0.60 

Ham characteristics             

Visual color2  2.30 3.10  2.69 2.70  0.12  < 0.001 0.92 0.21 

Lightness, L*3  54.92 57.82  56.77 55.97  0.60  < 0.001 0.34 0.34 

Redness, a*4  10.21 10.20  10.06 10.35  0.27  0.96 0.44 0.69 

Yellowness, b*5  7.52 8.52  8.01 8.03  0.25  < 0.01 0.97 0.63 

Ham pH   5.82 5.77   5.80 5.78   0.03   0.08 0.47 0.85 
1Thickness was an average of measurements from 3 locations from the anterior to 

posterior.       
2Visual ham color was based on 4 point visual scale where 1=darkest and 

4=lightest.       
3L* measures darkness (0) to lightness (100; greater L* indicates a lighter 

color).       
4a* measures redness (greater a* indicates a redder 

color).          
5b* measures yellowness (greater b* indicates a more yellow color).         
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Table 2.11. Interaction means of carcass characteristics, cutability, and loin and chop quality between sire line and 

sex.     

  American  European    P-values  

Item    Barrow Gilt   Barrow Gilt   SEM   Sire Line Sex 

Sire 

line × 

Sex 

Pens, n  22 22  19 20       

Bone-in carcass cutting yield, %  73.64b 74.35b  73.18b 76.00a  1.51  0.26 < 0.01 0.05 

1 d chop visual color  3.51a 3.45a  3.22b 3.45a  0.08  0.03 0.17 0.03 

Warner-Bratzler shear force, kg   2.44a 2.60a   2.60a 2.49a   0.07   0.72 0.70 0.04 

a–bWithin a row, least squares means lacking a common superscript differ (P ≤ 0.05).       
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CHAPTER 3: EFFECTS OF DUROC SIRE LINES ON EARLY AND AGED PORK 

QUALITY 

 

ABSTRACT 
 

Duroc terminal sires are commonly used in commercial swine production, as they are 

known for producing animals that yield carcasses of high quality pork cuts, often sought after in 

both domestic and export markets. In order to meet the demands of different consumer markets, 

developing Duroc terminal sire lines that have the ability to improve both pork quality and 

growth performance data has become more important over the past few years. Therefore, the 

objective of this study was to evaluate the effect of 2 different Duroc sire lines and their effect on 

early and aged pork quality. The EB5 sire line (n=160) was intended for premium based 

programs, while the P26 sire line (n=144) was selected for competitive growth and performance. 

Sire line effect on carcass cutability, fresh ham and belly quality, and sliced bacon quality was 

also evaluated. The MIXED procedure of SAS was used to evaluate the fixed effects of sire line, 

sex, and the interaction between sire line and sex, and effects were considered significant at 

P<0.05. Average daily gain (ADG) did not differ (P≥0.08) between sire line throughout any of 

the phases, but gain to feed (G:F) was slightly increased (P=0.03) overall (d0-98) in P26 sired 

pigs. Standardized fat-free lean (FFL) was increased (P≤0.01) in P26 sired pigs at the University 

of Illinois (52.17 vs. 50.32%) and the federally inspected abattoir (50.11 vs. 48.85%) as 

compared to EB5 sired pigs. Bone-in carcass cutting yield, bone-in lean cutting yield, and 

boneless carcass cutting yield were increased (P<0.001) by 1.54, 1.92, and 1.69%, respectively, 

for P26 sired pigs. EB5 sired pigs had heavier marbled loins and chops as indicated by increased 

(P≤0.01) early ventral visual marbling (2.39 vs. 2.11 units) and early chop visual marbling (2.82 

vs. 2.55 units). EB5 sired pigs had darker, but less red, and less yellow loins as instrumental L*, 
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a*, and b* were decreased (P≤0.01) by 1.67, 1.11, and 1.27 units, respectively. Extractable chop 

lipid was increased (P<0.001) by 0.60% in EB5 sired pigs. Aged ventral and chop visual color 

did not differ (P=0.07) between sire lines, but aged ventral visual marbling was increased 

(P<0.001) by 0.28 units in EB5 sired pigs. EB5 sired pigs had increased (P<0.01) belly thickness 

(3.64 vs. 3.45 cm) and flop (22.20 vs. 18.70 cm) compared to P26 sired pigs. EB5 sired pigs had 

darker colored hams as indicated by decreased (P≤0.03) visual color score (3.15 vs. 2.84 units) 

and instrumental L* (57.23 vs. 54.68 units). Overall, P26 sired pigs had increased G:F, increased 

FFL, and increased cutting yields whereas EB5 sired pigs had heavier marbled loins and chops, 

thicker and firmer bellies, and darker hams.  

INTRODUCTION 
 

The Duroc pig is a significant and influential animal to the U.S. swine production 

industry as it is the second-most recorded breed in the United States (NPPC, 2011). Over the 

years, developing a Duroc-based terminal sire line that increases lean yields while improving 

meat quality has become extremely crucial to producers, packers, and the export market 

(Lonergan et al., 2001; Lowell et al., 2018; Schwab et al., 2007). It is important to keep in mind, 

however, that the pork industry has seen an upward trend in increasing HCW over the last 25 

years, making the challenge to produce leaner hogs, with acceptable growth performance, and 

improved meat quality somewhat challenging (Cisneros et al., 1996; Edwards et al., 2003; Price 

et al., 2019). However, selective breeding techniques have allowed the current Duroc terminal 

sire lines used in crossbreeding scenarios for commercial pig production to be known for 

improved growth rates and meat quality (NPPC, 1995).  While developing genetic lines of pigs 

selected for competitive lean growth and performance can improve growth performance and 

carcass characteristics, (Lonergan et al., 2001) reported selecting terminal sires for lean yields 
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and competitive growth has the potential to negatively affect pork quality (Cameron et al., 1999). 

Therefore, the objective of this study was to compare pigs from 2 different Duroc sire lines; one 

being intended for premium based meat quality programs and the other intended for competitive 

growth and performance. Early and aged loin quality characteristics were evaluated; in addition 

to early ham, fresh belly, and sliced bacon characteristics.  

 

MATERIALS AND METHODS 
 

Pig Background 
 

Pig background materials and methods were similar to chapter 2 except, pigs (304 total) 

from 2 different sire lines of Duroc ancestry (Choice Genetics, West Des Moines, IA) were used 

in the trial.  The first sire line (EB5), selected to produce pork used in premium-based programs, 

provided 160 barrows and gilts. The second sire line (P26), selected to compete with commercial 

lines in terms of growth, provided 144 barrows and gilts. All pigs were housed in pens 

(1.18m2/pig) of 4 pigs of the same sex and sire line. Block 1 consisted of 80 EB5 sired pigs (40 

barrows and 40 gilts) and 68 P26 sired pigs (28 barrows and 40 gilts). Block 2 consisted of 80 

EB5 sired pigs (40 barrows and 40 gilts) and 76 P26 sired pigs (36 barrows and 40 gilts).  A total 

of 37 pens were used in block 1 (10 barrow and gilt pens from EB5 sires, and 7 barrow and 10 

gilt pens from P26 sires).  A total of 39 pens were used in block 2 (10 barrow and gilt pens from 

EB5 sires, and 9 barrow and 10 gilt pens from P26 sires.  Discrepancies in pen numbers were due 

to pig availability within each farrowing group.   

A 3-phase, 98 d feeding program was used. Pens of pigs were fed a grower diet from d 0 

to d 35, an early finisher diet from d 36 to d 70, and a late finisher diet from d 71 to d 98.  Pigs 

were weighed at the end of each of the 3 feeding phases (d 35, 70, & 98).  Day 98 for each block 

was considered the end of the feeding portion of the trial.  On d 98, the heaviest pig from each 
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pen (76 total pigs) was removed and transported to the University of Illinois Meat Science 

Laboratory (Urbana, IL) for slaughter on d 99.  Also on d 99, the second heaviest and lightest 

pigs from each pen (152 total pigs) were removed and transported to a commercial scale 

federally inspected abattoir. The remaining pig (third heaviest) was slaughtered at the University 

of Illinois Meat Science Laboratory on d 101.  

Postmortem Characteristics  

 Slaughter methods and carcass characteristics of pigs harvested at the University of 

Illinois and a federally inspected abattoir are similar to chapter 2. Additionally, carcass 

fabrication, early postmortem loin quality evaluation, and early postmortem ham quality 

evaluation methods were similar to chapter 2.  

Early Postmortem Belly Quality 

Early postmortem belly quality evaluation methods were similar to chapter 2 except, 

fresh bellies were evaluated for length at the midpoint of the latitudinal axis and width at the 

midpoint of the longitudinal axis.  Belly thickness was calculated as the mean of 8 individual 

locations of the belly.  Thickness at each location was determined by forcing a sharpened probe 

through the lean side of the belly.  Measurements 1 to 4 were collected at the midpoint between 

the latitudinal axis and the dorsal edge at 20%, 40%, 60%, and 80% of the length of the belly 

starting at the anterior end.  Measurements 5 to 8 were collected at the midpoint between the 

longitudinal axis and the ventral edge at 20%, 40%, 60%, and 80% of the length of the belly 

starting at the anterior end.  After fresh belly quality had been evaluated, bellies were vacuum 

packaged and stored at -34°C for approximately 106 d until they were manufactured into bacon. 
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Aged Postmortem Loin Quality Evaluation 

Aged postmortem loin quality evaluation methods were similar to chapter 2 except, chop 

1 was trimmed free of all subcutaneous fat and secondary muscles, packaged in Whirl-Pak bags 

(Nasco, Ft. Atkinson, WI), and stored at -2°C until determination of moisture and extractable 

lipid. Chop 2 was used to determine 63°C cook loss, Warner-Bratzler Shear Force (WBSF) and 

cooked proximate analysis (moisture and extractable lipid). Chop 3 was used to determine 71°C 

cook loss, WBSF, and cooked proximate analysis (moisture and extractable lipid). Chop 4 was 

vacuum packaged and stored at -2°C until trained sensory panels could were conducted. Chop 5 

was vacuum packaged and stored at -2°C until consumer sensory panels could were conducted. 

Chop 6 was vacuum packaged and stored at -2°C as a backup sample. 

Cook Loss and Warner-Bratzler Shear Force 

Cook loss and WBSF methods were similar to chapter 2 except, chop 2 was cooked, on 

one side, to an internal temperature of 31°C, then flipped and cooked until a final internal 

temperature of 63°C. Chop 3 was cooked, on one side, to an internal temperature of 36°C, then 

flipped and cooked to a final internal temperature of 71°C.  

Raw Chop Proximate Composition 

Raw chop proximate composition methods were similar to chapter 2.  

Bacon Manufacturing and Slicing      

Frozen, vacuum packaged bellies were allowed to thaw at 4°C for approximately 6 d.  

Thawed bellies were skinned, yielding an NAMP #409 skinless belly, and then weighed to 

determine initial weight (green weight).  Bellies were repackaged and transported in a 

refrigerated truck to a USDA federally inspected bacon manufacturing facility for further 

processing.  Bellies were injected with a typical commercial cure solution formulated to deliver 
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1.5% sodium chloride (salt) in the final product with a target pump uptake of 13%.  Bellies were 

weighed immediately after injection to calculate pump uptake using the following equation: 

Pump Uptake = [(pumped weight – initial weight) / initial weight] × 100 

Injected bellies were hung on smoke house racks, from the anterior end using bacon combs 

inserted through the medial side of the belly, and thermally processed to an internal temperature 

of 53.3°C.  Bellies were chilled for approximately 24 h before slicing, and ultimately reached an 

internal temperature between -5.6°C and -4.4°C.  Chilled bellies were weighed to calculate 

cooked yield using the following equation: 

Cooked yield = [(cooked weight – initial weight) / initial weight] × 100 

Bellies were pressed and then sliced, anterior end first, to obtain a target of 22 to 27 slices per kg 

(10 to 12 slices per pound). Slices were sorted by trained personnel, based on grading procedures 

of the manufacturer, to remove incomplete slices, end pieces, and slices of unacceptable quality.  

Sliced bacon slabs were placed on U-boards and vacuum packaged individually such that 

anatomical orientation was maintained with 1 sliced bacon slab per package. Sliced bacon slabs 

were then transported to the University of Illinois Meat Science Laboratory for further analysis. 

Statistical Analysis  
 

Statistical analysis procedures were similar to chapter 2 except, pen (76 total) served as 

the experimental unit for all fixed variables.   

RESULTS 

 

Growth Performance, Carcass Characteristics, and Cutability  

 Birth weight (P=0.17) and wean weight (P=0.70) did not differ between sire lines (Table 

3.1). During phase 1 (d0-35), ADG, average daily feed intake (ADFI), and G:F did not differ 

(P≥0.25) between sire lines. However, there was a sire line by sex interaction (P=0.03) as EB5 
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and P26 barrows had increased ADFI during phase 1. During phase 2 (d36-70), ADFI was 

increased (P=0.01) by 0.07 kg/d for EB5 sired pigs. ADG and G:F did not differ (P≥0.19) 

between sire lines during phase 2. During phase 3 (d71-98) and overall, G:F was increased 

(P≤0.05) in P26 sired pigs compared to EB5 sired pigs. During phase 3 and overall, ADG and 

ADFI did not differ (P≥0.08) between sire lines.  

Of the pigs harvested at the University (first and third heaviest), ELW, HCW, carcass 

yield, and LEA did not differ (P≥0.06) between sire lines (Table 3.2). Tenth rib back fat was 

increased (P<0.001) by 0.38 cm in EB5 sired pigs. P26 sired pigs had an increased (P<0.001) 

FFL by 1.85% units compared to EB5 sired pigs. Of the pigs harvested at the federally inspected 

abattoir (second heaviest and lightest), HCW did not differ between sire lines (P≥0.75). 

However, EB5 sired pigs had increased (P<0.01) last rib back fat by 0.33 cm, while P26 sired 

pigs had an increased (P<0.01) FFL lean by 1.26% units.  

The cutability of each primal and of the carcass overall are displayed in tables 3.3 

(shoulder), 3.4 (loin), 3.5 (ham), 3.6 (belly and other cuts), 3.7 (overall). P26 sired pigs had 

heavier (P<0.01) whole shoulders (13.04 vs. 12.59 kg), bone-in Boston butts (4.12 vs. 3.93 kg), 

and boneless Boston butts (3.80 vs. 3.66 kg). P26 sired pigs also had heavier (P<0.001) bone-in 

picnics (5.53 vs. 5.24 kg), boneless picnics (4.03 vs. 3.79 kg), and boneless shoulders (7.84 vs. 

7.44 kg). Percent of chilled side weight was increased (P<0.001) by 0.67% for whole shoulders, 

0.30% for bone-in Boston butts, 0.45% for bone-in picnics, 0.43% for boneless picnics, and 

0.67% for boneless shoulders in P26 sired pigs. Percent of chilled side weight for boneless 

Boston butts was increased (P<0.01) by 0.23% for P26 pigs. EB5 sired pigs had an increased 

(P=0.05) percent of chilled side for jowls by 0.10% and heavier clear plates 0.04 kg. EB5 pigs 
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had increased percent of chilled side weight for clear plates by 0.10% compared to P26 sired 

pigs.  

P26 sired pigs had heavier (P≤0.01) trimmed loins (11.13 vs. 10.80 kg), Canadian backs 

(3.78 vs. 3.49 kg), tenderloins (0.47 vs. 0.45 kg), sirloins (0.88 vs. 0.82 kg), and boneless loins 

(5.14 vs. 4.76 kg). There was a sire line by sex interaction as both P26 barrows and P26 gilts had 

increased weights for Canadian backs (P=0.05) and boneless loins (P=0.04). Whole loin weight 

did not did differ between sire lines (P=0.10) but, percent of chilled side weight for whole loins 

was increased (P<0.001) in EB5 sired pigs by 0.70 kg. P26 sired pigs had increased (P≤0.03) 

percent of chilled side for trimmed loins by 0.45%, Canadian backs by 0.54%, tenderloins by 

0.03%, sirloins by 0.10%, and boneless loins by 0.67%. A sire line by sex interaction (P=0.01) 

existed as P26 sired gilts had an increased percent of chilled side weight for Canadian backs by 

0.69% and for boneless loins by 0.97%.    

P26 sired pigs had heavier (P≤0.01) whole hams (11.98 vs. 11.63 kg), trimmed hams 

(10.21 vs. 9.76 kg), outside hams (2.62 vs. 2.49 kg), inner shanks (0.69 vs. 0.66 kg), lite butts 

(0.29 vs. 0.25 kg), and boneless hams (6.83 vs. 6.46 kg). P26 sired pigs also had increased 

(P≤0.02) percent of chilled side for whole hams by 0.47%, trimmed hams by 0.72%, outside ham 

by 0.21%, knuckles by 0.20%, inner shanks by 0.04%, lite butts by 0.09%, and boneless hams by 

0.65%.  

 Natural fall belly weight did not differ (P=0.24) between sire lines however, percent of 

chilled side weight for natural fall bellies was increased (P=0.01) by 0.36% in EB5 sired pigs. 

Sparerib weight and percent of chilled side weight for spareribs was increased (P<0.001) in P26 

sired pigs by 0.13 kg and 0.22%. Standardized trim weight and percent of chilled side weight for 

standardized trim was increased (P=0.02) in EB5 sired pigs by 0.04 kg and 0.08%. Leaf fat 
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weight and percent of chilled side weight for leaf fat was increased (P≤0.01) by 0.13 kg and 

0.27% in EB5 sired pigs. Front and back foot weight was increased (P=0.01) by 0.04 kg in P26 

sired pigs.  

 P26 sired pigs had increased (P<0.001) bone-in carcass cutting yield by 1.54%, bone-in 

lean cutting yield by 1.92%, and boneless carcass cutting yield by 1.69%. A sire line by sex 

interaction indicated P26 gilts had an increased (P=0.02) boneless carcass cutting yield by 1.99% 

as compared to EB5 sired pigs.  

Pork Quality 

EB5 sired pigs had increased (P<0.01) early ventral visual marbling by 0.28 units (Table 

3.8). P26 sired pigs had increased (P=0.01) early ventral L* by 1.67 units and increased 

(P<0.001) early ventral a* (10.12 vs. 9.01 units) and b* (8.35 vs. 7.08 units). Early ventral visual 

color, subjective firmness, and ventral pH did not differ (P≥0.06) between sire lines. Early visual 

chop marbling and extractable lipid of chops cooked to 71˚ C was increased (P=0.01) by 0.27 

units and 0.52% in EB5 sired pigs. Early chop subjective firmness (3.00 vs. 2.67 units; P<0.01) 

was increased in EB5 sired pigs. Extractable lipid of chops cooked to 63˚ C (4.51 vs. 3.87%) and 

raw extractable lipid (3.74 vs. 3.14%) was increased (P<0.001) in EB5 sired pigs. Raw moisture 

was increased (P<0.01) in P26 sired pigs by 0.53%. Early chop visual color, chop L*, a*, and b* 

did not differ (P≥0.10) did not differ between sire lines.  

Aged ventral visual marbling (2.64 vs. 2.36 units; P<0.001), subjective firmness (3.43 vs. 

3.22 units; P=0.04), and aged ventral pH scores were increased (5.70 vs. 5.65 units; P<0.01) in 

EB5 sired pigs (Table 3.9). Aged ventral L* was increased (P=0.04) by 1.16 units and 

instrumental b* was increased (P=0.01) by 0.71 units in P26 sired pigs. P26 barrows had 

increased (P=0.05) aged ventral b* values by 1.04 units indicated by a sex by sire line 
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interaction. Aged ventral visual color, ventral a*, and purge loss did not differ (P≥0.07) between 

sire lines. Aged chop visual color, marbling, subjective firmness, L*, a*, and b* did not differ 

(P≥0.07) between sire lines. WBSF and cook loss of chops cooked to either 63˚ C or 71˚ C did 

not differ (P≥0.50) between sire lines.  

Belly length did not differ (P=0.28) between sire lines. Belly width was increased 

(P<0.01) by 1.09 cm in P26 sired pigs (Table 3.10). Belly thickness and flop was increased 

(P<0.01) by 0.19 cm and 3.5 cm in the EB5 sired pigs.  

Early ham visual color score and instrumental L* was increased (P≤0.03) by 0.31 units 

and 2.55 units in P26 sired pigs (Table 3.11). Early ham pH was increased (P<0.01) by 0.09 

units in EB5 sired pigs. Ham instrumental a* and b* did not differ (P=0.09) between sire lines. 

Cured Sliced Belly Quality 

There was a sire line by sex interaction (P=0.01) for belly trim loss as P26 sired gilts had 

an increased trim loss by 15.52% compared with EB5 sired pigs (Table 3.12). Natural fall 

weight, green weight, thaw loss, trim loss, pump uptake, cooked yield, slice yield (green) and 

slice yield (cooked) did not differ (P≥0.20) between sire lines.  

EB5 sired pigs had wider (P=0.04) blade slices by 0.15 cm and a greater (P=0.04) total 

slice area by 3.46 cm2 (Table 3.13). There was a sire line by sex interaction (P=0.02) for middle 

slice length and middle slice primary lean as both EB5 barrows and P26 gilts had longer slices 

and greater areas of primary lean than EB5 gilts and P26 barrows. A sire line by sex interaction 

(P=0.04) indicated EB5 barrows had wider middle slices than EB5 gilts, P26 barrows, and P26 

gilts by 0.19 cm. Flank slice secondary lean was increased (18.31 vs. 16.17 cm2; P=0.01) in P26 

sired pigs. P26 sired pigs had an increased (P<0.001) lean to fat ratio (0.83 vs. 0.70) and 
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percentage of lean (40.25 vs. 36.98%). EB5 sired pigs had an increased (P<0.001) percent of fat 

by 3.84% as compared to P26 sired pigs.  

DISCUSSION 
 

 Duroc-based terminal sires are often used in today’s commercial swine crossbreeding 

scenarios as they improve fresh pork quality and are of value in export markets as they meet 

consumer demands in other countries (Lowell et al., 2018). However, over the last 25 years, the 

average pork HCW has increased to 96.5 kg (USDA, 2019) and in turn, has caused some concern 

regarding the production of lean hogs with acceptable growth performance and pork quality 

(Cisneros et al., 1996; Edwards et al., 2003). In order to do this, multi trait selection of Duroc 

sire is of the utmost importance. Thus, the ultimate goal of this study was to evaluate the 

differences between two different Duroc sire lines; one intended for premium based programs 

and the other selected for competitive growth and performance. Economically, these traits are of 

high significance when considering breeding boars to females due to sheer economic breeding 

value (Miar et al., 2014). 

The P26 terminal sire used in this trial was selected for competitive growth; although, 

interestingly enough, there were no significant differences in birth weight, weaning weight, or 

ADG throughout any of the phases or overall. Although ADG was not affected, G:F was 

increased for P26 pigs during phase 3 and throughout the entire trial which is an important 

financial factor for producers. Considering feed costs make up nearly 2/3 of production costs, the 

importance of selecting animals that can efficiently convert feed to kilograms is extremely 

crucial (Hoque et al., 2009). There were no differences in ELW, HCW, carcass yield, or LEA 

between the two sire lines. However, P26 pigs were nearly 0.5 cm leaner at the 10th rib than EB5 

leading to an increase in FFL. In a similar study where Durocs were selected for lean growth 
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efficiency, the lean growth sire line had decreased tenth rib back fat and increased percent lean 

agreeing with the present study (Lonergan et al., 2001). P26 sired pigs had increased bone-in 

carcass cutting yield, bone-in lean cutting yield, and boneless carcass cutting yield compared 

with the EB5 sired pigs. Therefore, in terms of growth performance, carcass characteristics and 

cutability, the P26 pig was superior to the EB5. In terms of G:F, EB5 sired pigs were only 

slightly less efficient, but had considerably more back fat ultimately decreasing FFL when 

compared to P26 sired pigs.  

In terms of loin quality, EB5 pigs had darker, heavier marbled, and firmer loins at both 

early and aged time points. Furthermore, EB5 pigs had increased early visual marbling and 

subjective firmness in the chop face and greater extractable lipid. Ultimate pH was also increased 

in loins from EB5 pigs. However, WBSF of chops cooked to 63˚ C and 71˚ C did not differ 

between sire lines. Similar to loin results, EB5 sired pigs also had darker hams. While P26 sired 

pigs had wider bellies when compared to EB5 pigs, belly thickness and flop were increased in 

EB5 pigs. These differences did not alter commercial bacon processing characteristics, but EB5 

pigs had wider slices with increased total slice area. Therefore, in terms of pork quality, EB5 

pigs held the advantage. Although, EB5 pigs held the advantage in terms of meat quality, P26 

pigs were of acceptable ultimate pH (both early and aged) and considered tender as (< 3.09 kg).  

CONCLUSION 

 

 Duroc pigs are often selected to improve pork quality characteristics however; genetic 

advancements have been made in the swine industry allowing terminal sires to improve both 

pork quality and growth performance. This study aimed to evaluate Durocs and their effect on 

loin, ham, and belly quality. Overall, P26 sired pigs, which were selected for competitive growth 

and performance, were superior to EB5 sired pigs in terms of growth performance, carcass 
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characteristics, and cutability. For producers and exporters that value lean meat yield, the P26 

sire line is the superior choice. However, EB5 sired pigs, intended for premium meat based 

programs, produced higher quality pork in terms of both pork loin and belly quality. Though 

these pigs do not grow as fast or efficiently, if meat quality is at a premium, the EB5 sire line is 

the preferred choice.  
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TABLES 

Table 3.1. Main effects of sire line and sex on growth characteristics  

  Sire line   Sex       P-values 

Item EB5 P26   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n 40 36  36 40  
     

Birth wt, kg 1.59 1.64  1.62 1.61  0.05  0.17 0.70 0.32 

Weaning wt, kg 6.46 6.42  6.31 6.56  0.23  0.70 0.02 0.34 

Phase 1 (d0-35)1            

   BW d0, kg 26.51 26.60  26.67 26.45  0.32  0.30 0.02 0.82 

   ADG, kg/d 0.95 1.04  1.09 0.90  0.06  0.30 0.02 0.19 

   ADFI, kg/d 2.03 2.04  2.13 1.94  0.09  0.69 < 0.0001 0.03 

   G:F 0.47 0.53  0.53 0.47  0.04  0.25 0.20 0.28 

   BW d35, kg 59.27 59.62  61.03 57.86  1.04  0.61 < 0.0001 0.16 

Phase 2 (d36-70)    
 

  
 

 
 

   

   ADG, kg/d 1.07 1.04  1.11 1.00  0.06  0.19 < 0.0001 0.33 

   ADFI, kg/d 3.04 2.97  3.25 2.75  0.04  0.01 < 0.0001 0.17 

   G:F 0.35 0.35  0.34 0.36  0.02  0.93 0.02 0.08 

   BW d70, kg 96.86 95.97  100.01 92.81  3.20  0.30 < 0.0001 0.92 

Phase 3 (d71-98)   
 

  
 

 
 

   

   ADG, kg/d 1.09 1.15  1.19 1.04  0.11  0.08 < 0.0001 0.32 

   ADFI, kg/d 3.50 3.50  3.76 3.24  0.21  0.89 < 0.0001 0.21 

   G:F 0.31 0.33  0.32 0.32  0.01  0.05 0.55 0.09 

   BW d98, kg 127.27 128.10  133.35 122.02  0.60  0.31 < 0.0001 0.21 

Overall (d0-98)   
 

  
 

 
 

   

   ADG, kg/d 1.03 1.04  1.09 0.98  0.01  0.25 < 0.0001 0.15 

   ADFI, kg/d 2.81 2.78  2.99 2.60  0.07  0.14 < 0.0001 0.37 

   G:F 0.37 0.37   0.36 0.38   0.01   0.03 < 0.001 0.50 

1Pigs were approximately 10 wks old on d0. 
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Table 3.2. Main effects of sire line and sex on carcass characteristics  

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   Sire Line Sex 

Sire line × 

Sex 

Pens, n  40 36  36 40       

University of Illinois1  
  

 
  

      
Ending live weight, kg  127.81 129.44  133.81 123.45  0.64  0.07 < 0.001 0.95 

HCW, kg2  100.84 101.84  105.77 96.91  0.53  0.17 < 0.001 0.88 

Carcass yield, %   78.88 78.67  79.06 78.49  0.24  0.18 < 0.001 0.39 

Loin muscle area, cm2  43.92 45.90  44.63 45.19  0.76  0.06 0.59 0.62 

10th rib back fat depth, cm  2.41 2.03  2.37 2.06  0.07  < 0.001 0.00 0.88 

Standardized fat-free lean, %3  50.32 52.17  50.36 52.13  0.33  < 0.001 < 0.001 0.58 

Federally Inspected Abattoir4             

HCW, kg  93.75 93.19  95.10 91.84  1.28  0.75 0.07 0.82 

Last rib back fat depth, cm  3.18 2.85  3.22 2.81  0.15  < 0.01 < 0.001 0.88 

Standardized fat-free lean, %5   48.85 50.11   48.58 50.38   0.61   < 0.01 < 0.001 0.66 
1Values are based on data collected from the first and third heaviest pig in each pen.  
2HCW includes the left and right sides with leaf fat and standardized trim still intact.  

3Standardized fat-free lean = ((8.588 + (0.465 x HCW, lb) - (21.896 x fat depth, in) + (3.005 x LTL area, in2)) ÷ HCW) x 100,  

(Burson and Berg, 2001).  
4Values are based on data collected from the second heaviest and lightest pig in each pen.  
5Standardized fat-free lean = ((23.568 + (0.503 x HCW, lb) - (21.348 x fat thickness, in))÷HCW) x 100, (Burson and Berg, 2001).   
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Table 3.3. Main effects of sire line and sex on shoulder carcass cuts   

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  40 36  36 40       

Whole shoulder, kg  12.59 13.04  13.38 12.25  0.17  < 0.01 < 0.001 0.22 

   % chilled side wt  25.53 26.20  25.82 25.91  0.20  < 0.001 0.65 0.27 

Bone-in Boston, kg  3.93 4.12  4.19 3.86  0.10  < 0.01 < 0.001 0.56 

   % chilled side wt  7.98 8.28  8.10 8.16  0.16  < 0.001 0.44 0.83 

Bone-in picnic, kg  5.24 5.53  5.61 5.16  0.06  < 0.001 < 0.001 0.71 

   % chilled side wt  10.61 11.06  10.81 10.86  0.08  < 0.001 0.66 0.84 

Boneless Boston, kg  3.66 3.80  3.89 3.57  0.09  < 0.01 < 0.001 0.61 

   % chilled side wt  7.42 7.65  7.51 7.55  0.15  < 0.01 0.60 0.91 

Boneless picnic, kg  3.79 4.03  4.09 3.73  0.04  < 0.001 < 0.001 0.76 

   % chilled side wt  7.68 8.11  7.90 7.88  0.06  < 0.001 0.83 0.88 

Neckbones, kg  1.03 1.06  1.07 1.02  0.02  0.38 0.06 0.67 

   % chilled side wt  2.09 2.12  2.07 2.15  0.04  0.60 0.17 0.82 

Jowl, kg  1.53 1.49  1.60 1.42  0.04  0.16 < 0.001 0.49 

   % chilled side wt  3.09 2.99  3.08 3.00  0.11  0.05 0.12 0.53 

Clear plate, kg  0.89 0.85  0.95 0.79  0.04  0.05 < 0.001 0.19 

   % chilled side wt  1.80 1.70  1.83 1.67  0.07  0.02 < 0.001 0.14 

Boneless shoulder, kg1  7.44 7.84  7.98 7.30  0.13  < 0.001 < 0.001 0.63 

   % chilled side wt   15.09 15.76   15.41 15.43   0.18   < 0.001 0.86 0.98 

1Boneless shoulder = boneless Boston butt (NAMP # 406A), kg + boneless picnic (NAMP #405A), kg.  
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Table 3.4. Main effects of sire line and sex on loin carcass cuts   

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  40 36  36 40       

Whole loin, kg  13.72 13.50  14.31 12.90  0.23  0.10 < 0.001 0.72 

   % chilled side wt  27.78 27.08  27.63 27.23  0.30  < 0.001 0.02 0.45 

Trimmed loin, kg  10.80 11.13  11.28 10.66  0.08  < 0.01 < 0.001 0.54 

   % chilled side wt  21.92 22.37  21.77 22.51  0.10  < 0.01 < 0.001 0.17 

Canadian Back, kg  3.49 3.78  3.68 3.59  0.04  < 0.001 0.03 0.05 

   % chilled side wt  7.08 7.62  7.11 7.56  0.06  < 0.001 < 0.001 0.01 

Tenderloin, kg  0.45 0.47  0.47 0.46  0.01  0.01 0.25 0.39 

   % chilled side wt  0.92 0.95  0.90 0.97  0.01  0.03 < 0.001 0.28 

Sirloin, kg  0.82 0.88  0.86 0.85  0.01  < 0.01 0.51 0.14 

   % chilled side wt  1.67 1.77  1.66 1.79  0.03  0.01 < 0.001 0.08 

Backribs, kg  0.88 0.90  0.92 0.86  0.03  0.08 < 0.001 0.97 

   % chilled side wt  1.78 1.82  1.78 1.81  0.05  0.18 0.35 0.96 

Backbone, kg  2.09 2.11  2.15 2.06  0.05  0.57 0.05 0.45 

   % chilled side wt  4.24 4.25  4.14 4.35  0.11  0.92 0.01 0.47 

Boneless loin, kg1  4.76 5.14  5.01 4.89  0.06  < 0.001 0.05 0.04 

   % chilled side wt   9.67 10.34   9.67 10.34   0.08   < 0.001 < 0.001 0.01 

1Boneless loin = Canadian back loin (NAMP #414), kg + tenderloin (NAMP #415A), kg + sirloin (NAMP #413D), kg.  
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Table 3.5. Main effects of sire line and sex on ham carcass cuts   

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  40 36  36 40       

Whole ham, kg  11.63 11.98  12.06 11.54  0.09  < 0.001 < 0.001 0.78 

   % chilled side wt  23.62 24.09  23.30 24.41  0.29  < 0.001 < 0.001 0.69 

Trimmed ham, kg  9.76 10.21  10.13 9.85  0.12  < 0.001 < 0.01 0.89 

   % chilled side wt  19.84 20.56  19.56 20.84  0.35  < 0.001 < 0.001 0.50 

Inside ham, kg  1.73 1.79  1.75 1.77  0.02  0.10 0.54 0.18 

   % chilled side wt  3.53 3.61  3.39 3.75  0.05  0.26 < 0.001 0.26 

Outside ham, kg  2.49 2.62  2.58 2.53  0.04  0.01 0.30 0.22 

   % chilled side wt  5.07 5.28  4.99 5.36  0.10  0.02 < 0.001 0.13 

Knuckle, kg  1.33 1.44  1.40 1.36  0.02  < 0.001 0.03 0.43 

   % chilled side wt  2.70 2.90  2.71 2.89  0.05  < 0.001 < 0.001 0.18 

Inner shank, kg  0.66 0.69  0.69 0.66  0.01  0.01 0.01 0.60 

   % chilled side wt  1.34 1.38  1.33 1.39  0.03  0.02 < 0.01 0.90 

Lite butt, kg  0.25 0.29  0.26 0.27  0.01  < 0.001 0.31 0.92 

   % chilled side wt  0.50 0.59  0.51 0.58  0.03  < 0.001 < 0.001 0.85 

Boneless ham, kg1  6.46 6.83  6.69 6.60  0.07  < 0.001 0.17 0.73 

   % chilled side wt   13.13 13.78   12.92 13.99   0.20   < 0.001 < 0.001 0.28 
1Boneless ham = inside ham (NAMP #402F), kg + outside ham (NAMP #402E), kg + knuckle (NAMP #402H), kg + 

lite butt, kg+ inner shank, kg. 
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Table 3.6. Main effects of sire line and sex on belly and miscellaneous cuts   

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   Sire Line Sex 

Sire line 

× Sex 

Pens, n  40 36  36 40       

Natural fall belly, kg  7.30 7.19  7.66 6.84  0.07  0.24 < 0.001 0.95 

   % chilled side wt  14.78 14.42  14.42 14.41  0.13  0.01 < 0.01 0.78 

Spareribs, kg  1.75 1.88  1.88 1.75  0.05  < 0.001 < 0.001 0.64 

   % chilled side wt  3.56 3.78  3.63 3.71  0.11  < 0.001 0.04 0.98 

Miscellaneous Cuts             

Standardized trim, kg  0.18 0.14  0.19 0.13  0.03  0.02 < 0.001 0.44 

   % chilled side wt  0.36 0.28  0.37 0.27  0.05  0.02 < 0.01 0.39 

Leaf fat, kg  0.93 0.80  1.01 0.72  0.11  < 0.01 < 0.001 0.59 

   % chilled side wt  1.87 1.60  1.95 1.52  0.20  < 0.001 < 0.001 0.49 

Front and back foot, kg  1.11 1.15  1.16 1.11  0.01  0.01 < 0.001 0.58 

   % chilled side wt   2.26 2.31   2.23 2.35   0.02   0.07 < 0.001 0.90 
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Table 3.7. Main effects of sire line and sex on carcass cutability   

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   Sire Line Sex Sire line × Sex 

Pens, n  40 36  36 40       

Bone-in carcass cutting yield, %1  75.16 76.70  75.06 76.80  0.29  < 0.001 < 0.001 0.13 

Bone-in lean cutting yield, %2  60.36 62.28  60.26 62.38  0.23  < 0.001 < 0.001 0.28 

Boneless carcass cutting yield, %3   52.68 54.37   52.79 54.25   0.16   < 0.001 < 0.001 0.02 

1Bone-in carcass cutting yield = [(trimmed ham, kg + bone-in Boston, kg + bone-in picnic, kg + trimmed loin, kg + natural fall belly, kg) ÷  

left side chilled weight, kg] x 100. 

2Bone-in lean cutting yield = [(trimmed ham, kg + bone-in Boston, kg + bone-in picnic, kg + trimmed loin, kg) ÷ left side chilled weight, kg] x 

100. 

3Boneless carcass cutting yield = [(inside ham, kg + outside ham, kg + knuckle, kg, + lite butt, kg + inner shank, kg) + (Canadian back loin, kg + 

tenderloin, kg + sirloin, kg) + (boneless Boston, kg + boneless picnic, kg) + (belly, kg)) ÷ left side chilled weight] x 100.  
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Table 3.8. Main effects of sire line and sex on early loin and chop face quality and color1  

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   Sire Line Sex Sire line × Sex 

Pens, n  40 36  36 40       

Loin             

     Visual color2 3.81 3.68  3.79 3.71  0.06  0.15 0.35 0.63 

     Visual marbling2 2.39 2.11  2.38 2.12  0.06  < 0.01 < 0.01 0.60 

     Subjective firmness3 3.19 2.96  3.15 3.00  0.23  0.06 0.23 0.52 

     Lightness, L*4 49.72 51.39  50.54 50.57  1.02  0.01 0.95 0.89 

     Redness, a*4 9.01 10.12  9.63 9.50  0.76  < 0.001 0.64 0.12 

     Yellowness, b*4 7.08 8.35  7.83 7.61  0.79  < 0.001 0.42 0.15 

     Ventral pH 5.68 5.64  5.68 5.63  0.02  0.06 0.01 0.86 

Chop             

     Visual color 3.84 3.79  3.89 3.74  0.05  0.45 0.02 0.42 

     Visual marbling 2.82 2.55  2.82 2.54  0.07  0.01 0.01 0.51 

     Subjective firmness 3.00 2.67  2.99 2.68  0.08  < 0.01 0.01 0.46 

     Lightness, L* 56.12 57.33  56.63 56.86  1.09  0.10 0.80 0.94 

     Redness, a* 8.98 8.78  8.99 8.77  0.24  0.42 0.36 0.11 

     Yellowness, b* 6.82 7.25  7.19 6.88  0.23  0.11 0.25 0.13 

     63° C Moisture, % 66.07 66.30  66.28 66.09  0.17  0.34 0.41 0.30 

     63° C Extractable Lipid, % 4.51 3.87  4.49 3.92  0.26  < 0.001 < 0.01 0.14 

     71° C Moisture, % 64.51 64.77  64.44 64.84  0.25  0.39 0.20 0.62 

     71° C Extractable Lipid, % 4.92 4.40  5.02 4.30  0.25  0.01 < 0.001 0.36 

     Raw Moisture, % 72.38 72.91  72.56 72.73  0.24  < 0.01 0.37 0.42 

     Raw Extractable Lipid, % 3.74 3.14   3.75 3.14   0.18   < 0.001 < 0.001 0.18 
1Early postmortem traits were evaluated 1 d postmortem; 
2NPPC color based on the 1999 standards measured in half point increments where 1 = palest, 6 = darkest and where 1 = least 

amount of marbling, 6 = greatest amount of marbling.  
3NPPC firmness based on the 1991 scale measured in half point increments where 1 = softest, 5 = firmest.  
4L* measures darkness (0) to lightness (100; greater L* indicates a lighter color), a* measures redness (greater a* indicates a redder 

color), b* measures yellowness (greater b* indicates a more yellow color). 
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Table 3.9. Main effects of sire line and sex on aged loin and chop quality1  

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   Sire Line Sex Sire line × Sex 

Pens, n  40 36  36 40       
Loin             
     Visual color2 3.83 3.67  3.81 3.69  0.07  0.07 0.17 0.91 

     Visual marbling3 2.64 2.36  2.63 2.38  0.06  < 0.001 < 0.01 0.81 

     Subjective firmness4 3.43 3.22  3.45 3.20  0.07  0.04 0.01 0.97 

     Lightness, L*5 52.01 53.17  52.82 52.36  0.41  0.04 0.42 0.27 

     Redness, a*6 8.84 9.16  9.19 8.81  0.22  0.14 0.07 0.08 

     Yellowness, b*7 7.65 8.36  8.27 7.33  0.18  0.01 0.03 0.05 

     Purge loss, %8 8.64 9.08  8.28 9.45  0.81  0.31 0.01 0.17 

     Ventral pH  5.70 5.65  5.69 5.65  0.02  < 0.01 0.02 0.72 

Chop             
     Visual color 4.01 3.90  3.97 3.94  0.14  0.07 0.71 0.78 

     Visual marbling 2.66 2.48  2.77 2.38  0.17  0.08 < 0.001 0.10 

     Subjective firmness 2.65 2.48  2.51 2.63  0.08  0.11 0.27 0.42 

     Lightness, L* 53.60 54.61  54.23 53.98  0.93  0.17 0.73 0.62 

     Redness, a* 9.55 9.70  9.67 9.58  0.49  0.48 0.67 0.50 

     Yellowness, b* 8.20 8.39  8.35 8.24  0.56  0.40 0.63 0.49 

     Warner-Bratzler shear force 63° C, kg 2.74 2.79  2.69 2.84  0.05  0.50 0.05 0.16 

     Cook Loss 63° C, % 18.53 18.81  17.94 19.40  0.41  0.61 0.01 0.93 

     Warner-Bratzler shear force 71° C, kg 3.11 3.09  3.11 3.09  0.08  0.82 0.83 0.85 

     Cook Loss 71° C, % 23.30 23.48   23.40 23.37   1.44   0.81 0.98 0.26 
1Aged postmortem traits were evaluated 14 d postmortem  
2NPPC color based on the 1999 standards measured in half point increments where 1=palest, 6=darkest.  
3NPPC marbling based on the 1999 standards measured in half point increments where 1=least amount of marbling, 6=greatest amount of 

marbling.  
4NPPC firmness based on the 1991 scale measured in half point increments where 1=softest, 5=firmest.  
5L* measures darkness (0) to lightness (100; greater L* indicates a lighter color). 
6a* measures redness (greater a* indicates a redder color). 
7b* measures yellowness (greater b* indicates a more yellow color).  
8Purge loss = [(1 d weight, kg - 14 d weight, kg) ÷ 1 d weight, kg] x 100. 
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Table 3.10. Main effects of sire line and sex on fresh belly characteristics   

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  40 36  36 40       

Length, cm  68.73 68.36  69.41 67.68  0.60  0.28 < 0.001 0.49 

Width, cm  26.67 27.76  27.37 27.06  0.50  < 0.01 0.40 0.25 

Thickness, cm1  3.64 3.45  3.77 3.32  0.08  < 0.01 < 0.001 0.35 

Flop, cm   22.20 18.70   22.60 18.57   0.97   < 0.01 < 0.001 0.99 

1Thickness was an average of measurements from 8 locations from the anterior to posterior.    
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Table 3.11. Effects of sire line and sex on 1 d fresh ham characteristics   

  Sire Line  Sex    P-values  

Item    EB5 P26   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  40 36  36 40       

Visual color1 2.84 3.15  3.05 2.94  0.17  0.03 0.42 0.64 

Lightness, L*2 54.68 57.23  55.50 56.42  0.92  0.02 0.39 0.28 

Redness, a*3 10.41 11.13  10.59 10.95  0.30  0.09 0.39 0.34 

Yellowness, b*4 7.88 8.73  8.11 8.50  0.43  0.09 0.45 0.24 

Ham pH   5.67 5.58   5.64 5.60   0.13   < 0.01 0.15 0.80 

1Visual ham color was based on 4 point visual scale where 1=darkest and 4=lightest. 

2L* measures darkness (0) to lightness (100; greater L* indicates a lighter color). 

3a* measures redness (greater a* indicates a redder color). 

4b* measures yellowness (greater b* indicates a more yellow color).  



89 
 

Table 3.12. Main effects of sire line and sex on cured belly and bacon characteristics   

 Sire line  Sex    P - values 

Item EB5 P26   Barrows Gilts   SEM   

Sire 

line Sex  

Sire Line × 

Sex 

Pens, n 40 36  36 40       

Natural fall wt, kg 7.30 7.19  7.66 6.84  0.07  0.25 < 0.0001 0.95 

Thawed wt, kg 7.22 7.10  7.57 6.75  0.07  0.22 < 0.0001 0.96 

Thaw loss, % 1.10 1.24  1.06 1.28  0.08  0.24 0.06 0.65 

Green wt, kg 6.19 6.08  6.53 5.74  0.06  0.20 < 0.0001 0.63 

Trim loss, % 14.26 14.53  13.75 15.04  0.26  0.32 < 0.0001 0.01 

Pumped wt, kg 6.90 6.79  7.29 6.41  0.07  0.27 < 0.0001 0.55 

Pump uptake, % 10.22 10.51  10.31 10.42  0.20  0.64 0.64 0.69 

Cooked wt, kg 6.29 6.16  6.64 5.81  0.07  0.15 < 0.0001 0.55 

Cooked yield, % 101.56 101.33  101.74 101.15  0.18  0.35 0.02 0.16 

Sliced wt, kg 6.11 5.96  6.45 5.61  0.07  0.15 < 0.0001 0.45 

Slice Count 225.38 226.49  232.98 218.89  2.17  0.71 < 0.0001 0.06 

Slice yield (Green), % 98.53 98.01  98.84 97.71  0.46  0.41 0.07 0.24 

Slice yield (Cooked), % 97.03 96.72   97.16 96.58   0.42   0.59 0.32 0.47 
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Table 3.13. Main effects of sire line and sex on cured sliced belly characteristics  

 Sire line  Sex    P - values 

Item EB5 P26   Barrows Gilts   SEM   Sire line Sex  Sire Line × Sex 

Pens, n 40 36  36 40       
 Blade Slice            
     Length, cm 24.01 24.01  24.17 23.84  0.19  0.99 0.13 0.31 

     Width, cm 4.06 3.91  4.18 3.80  0.05  0.04 < 0.001 0.25 

     Total Slice Area, cm2 94.15 90.69  97.28 87.56  1.22  0.04 < 0.001 0.07 

     Primary Lean Area, cm2 35.79 37.92  37.31 36.40  1.45  0.16 0.54 0.32 

     Secondary Lean Area, cm2 6.87 6.94  6.53 7.28  0.69  0.93 0.43 0.17 

Middle Slice            
     Length, cm 24.23 24.27  24.23 24.27  0.15  0.82 0.87 0.02 

     Width, cm 3.51 3.46  3.58 3.39  0.05  0.39 < 0.01 0.04 

     Total Slice Area, cm2 88.45 86.10  91.00 83.55  1.21  0.15 < 0.001 0.08 

     Primary Lean Area, cm2 23.65 24.73  23.80 24.57  0.59  0.35 0.19 0.02 

     Secondary Lean Area, cm2 13.99 14.35  14.17 14.17  0.36  1.00 0.46 0.46 

 Flank Slice            
     Length, cm 23.00 22.98  22.89 23.08  0.30  0.94 0.50 0.49 

     Width, cm 4.00 3.98  4.02 3.96  0.06  0.44 0.80 0.77 

     Total Slice Area, cm2 91.61 90.55  91.67 90.50  1.61  0.57 0.53 0.57 

     Primary Lean Area, cm2 29.89 31.00  29.77 31.13  0.77  0.30 0.20 0.44 

     Secondary Lean Area, cm2 16.17 18.31  17.57 16.91  0.62  0.01 0.44 0.86 

Average Slice1            
     Length, cm 23.74 23.75  23.77 23.73  0.18  0.97 0.85 0.11 

     Width, cm 3.86 3.78  3.93 3.71  0.04  0.15 < 0.01 0.13 

     Total Slice Area, cm2 91.41 89.11  93.31 87.20  1.18  0.14 < 0.01 0.13 

     Primary Lean Area, cm2 21.36 22.48  21.91 21.93  0.61  0.08 0.96 0.06 

     Secondary Lean Area, cm2 12.34 13.20  12.76 12.79  0.41  0.13 0.96 0.28 

Percentage of Lean, % 36.98 40.25  37.25 39.99  0.94  < 0.001 < 0.001 0.12 

Percentage of Fat, % 53.75 49.91  53.75 49.91  1.10  < 0.001 < 0.001 0.16 

Lean : Fat 0.70 0.83   0.70 0.83   0.04   < 0.001 < 0.001 0.09 
1Average slice image analysis was the mean of the image analysis evaluated on blade end, middle, and flank end slices.  
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Table 3.14. Interaction means of carcass characteristics, cutability, and loin and chop quality between sire line and sex  

  EB5  P26    P-values  

Item    Barrow Gilt   Barrow Gilt   SEM   

Sire 

Line Sex 

Sire 

line × 

Sex 

Phase 1 ADFI, kg/d   2.09a 1.97b  2.18a 1.91b  0.09  0.69 < 0.001 0.03 

Canadian Back, kg  3.58b 3.40c  3.79a 3.78a  0.06  < 0.001 0.03 0.05 

Canadian back % chilled side wt  6.96c 7.21b  7.27b 7.96a  0.09  < 0.001 < 0.001 0.01 

Boneless loin, kg  4.88b 4.65c  5.13a 5.14a  0.07  < 0.001 0.05 0.04 

Boneless loin % chilled side wt  9.48c 9.86b  9.85b 10.83a  0.12  < 0.001 < 0.001 0.01 

Boneless carcass cutting yield, %  52.21c 53.14b  53.37b 55.36a  0.24  < 0.001 < 0.001 0.02 

Aged ventral b*  7.67c 7.63c  8.88a 7.84bc  0.27  0.01 0.03 0.05 

Belly trim loss, %   13.96bc 14.56b  13.54c 15.52a  0.34  < 0.001 0.32 0.01 

Middle slice length, cm  24.47a 23.98b  24.00ab 24.55a  0.23  0.87 0.82 0.02 

Middle slice width, cm  3.68a 3.35b  3.49b 3.43b  0.07  < 0.01 0.39 0.04 

Middle slice primary lean, cm2   24.24ab 23.06b   23.38b 26.09a   0.88   0.35 0.19 0.02 
a–bWithin a row, least squares means lacking a common superscript differ (P ≤ 0.05). 
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CHAPTER 4: EFFECT OF DUROC SIRE LINES (BLINDED) ON EARLY AND AGED 

PORK QUALITY 

ABSTRACT 

 

Over the past 20 years, the industry has shifted from paying pig producers on a live 

weight basis to paying on a lean percent of carcass basis. This has strengthened the importance 

of developing genetic lines that increase growth performance while still improving pork quality. 

Today, Duroc terminal sires are often used in swine production because they can efficiently 

execute both of these intentions. The objective of this study was to compare pigs from a P26 

Duroc sire line and a competitor sire line in order to determine how the P26 sire line matches 

with competitors in industry. Early and aged loin quality characteristics were evaluated in 

addition to early ham and belly quality characteristics. Pigs (n=320) were sourced from 2 

different sire lines of Duroc ancestry. Red and green colors represented either a P26 Duroc or a 

competitor Duroc sire. A Red and Green sire line each provided 160 barrows and gilts. The 

MIXED procedure of SAS was used to evaluate the fixed effects of sire line, sex, and the 

interaction between sire line and sex, and effects were considered significant at P<0.05. Red 

sired pigs had heavier (P<0.001) birth (1.55 vs. 1.36 kg), weaning (6.46 vs. 5.85 kg), and 

allocation weights (23.74 vs. 22.65 kg). Overall (d0-98), average daily gain (ADG) was 

increased (P<0.001) by 0.07 kg/d in Green sired pigs as compared to Red sired pigs. Red sired 

pigs were leaner (P≤0.01) at both the tenth and last rib by 0.19 and 0.25 cm, respectively. Red 

sired pigs had an increased (P<0.01) standardized fat free lean (FFL) by 1.31% units. Green 

sired pigs had increased (P≤0.01) early ventral visual marbling (2.51 vs. 2.08 units), early chop 

visual marbling (2.61 vs. 2.31 units), early chop a* (8.95 vs. 8.32 units), and extractable lipid 

(3.31 vs. 2.84%). Early ventral visual color, instrumental color (L*, a*, and b*), and pH did not 
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differ (P≥0.08) between sire lines. Green sired pigs had increased (P≤0.01) aged ventral visual 

marbling (2.78 vs. 2.30 units), aged chop visual marbling (2.65 vs. 2.29 units), and aged chop 

subjective firmness (3.19 vs. 3.04 units). Aged ventral visual color, aged ventral instrumental 

color (L*, a*, and b*), aged ventral pH, and instrumental tenderness did not differ (P≥0.16) 

between sire lines. Green sired pigs had increased (P<0.001) belly thickness by 0.38 cm and 

belly flop by 4.01 cm. Ultimately, Red sired pigs had heavier early weights and were leaner 

whereas Green sired pigs had faster growth rates and improved pork quality characteristics. 

INTRODUCTION 

 

 Nearly 35 years ago, hogs were sold on a live weight basis (Hayenga et al., 1985); 

however, over time, incentive-based marketing systems have been introduced to the industry 

making lean percent of carcasses even more valuable (Schwab et al., 2007).  Producers and 

packers have been working together to deliver leaner products to the consumer for the last 20 

years (Chen et al, 2002). One way to accomplish this is through the development of superior 

genetics. Duroc pigs are often selected as terminal sires in U.S. swine production as they increase 

growth rate and performance and enhance meat quality (NPPC, 1995). Duroc terminal sires 

typically have increased visual color, visual marbling, and subjective firmness for early and aged 

ventral loins and chops when compared to other breeds (Edwards et al., 2003; Lowell et al., 

2019). Duroc sired pigs also have improved belly quality as they have increased belly thickness 

and belly flop indicating thicker and firmer bellies (Lowell et al., 2019). The objective of this 

study was to compare pigs from either a P26 Duroc sire line or a competitor sire line in order to 

determine how the P26 sire line matched to competitors in industry. Early and aged loin quality 

characteristics were evaluated in addition to early ham and belly quality characteristics. 
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MATERIALS AND METHODS 

 

Pig Background  

Pigs (320 total) from 2 different sire lines of Duroc ancestry were used in the trial.  

Personnel of this trial were fully blinded to pig ancestry therefore genetic lines were represented 

by colors (Red and Green). Red and green colors represented either a P26 Duroc (Choice 

Genetics, West Des Moines, IA) or a competitor Duroc sire. The first sire line (Red) provided 

160 barrows and gilts. The second sire line (Green) provided 160 barrows and gilts. All pigs 

were housed in pens (1.18m2/pig) of 4 pigs of the same sex and sire line. Block 1 consisted of 60 

Red sired pigs (28 barrows and 32 gilts) and 100 Green sired pigs (44 barrows and 56 gilts). 

Block 2 consisted of 100 Red sired pigs (52 barrows and 48 gilts) and 60 Green sired pigs (36 

barrows and 24 gilts).  A total of 40 pens were used in block 1 (7 barrow and 8 gilt pens from 

Red sires, and 11 barrow and 14 gilt pens from Green sires).  A total of 40 pens were used in 

block 2 (13 barrow and 12 gilt pens from Red sires, and 9 barrow and 6 gilt pens from Green 

sires.  Discrepancies in pen numbers were due to pig availability within each farrowing group. 

All other pig background information was similar to chapter 2.   

A 3-phase, 98 d feeding program was used similar to chapter 3. Diet composition was 

identical to the diet described in chapter 2. On d 98, the heaviest pig from each pen (80 total 

pigs) was removed and transported to the University of Illinois Meat Science Laboratory 

(Urbana, IL) for slaughter on d 99.  Also on d 99, the second heaviest and lightest pigs from each 

pen (160 total pigs) were removed and transported to a commercial scale federally inspected 

abattoir. The remaining pig (third heaviest) was slaughtered at the University of Illinois Meat 

Science Laboratory on d 101.       
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Harvest Procedures and Carcass Fabrication  

 For pigs harvested at the University of Illinois Meat Science Laboratory, all procedures 

followed chapter 2, however, last rib back fat was also measured in the determined location of 

the last rib. Harvest procedures for the federally inspected abattoir and carcass fabrication 

procedures mimicked chapter 2.  

Early Quality Evaluation 

 Early loin quality and early ham quality evaluation procedures followed those outlined in 

chapter 2. Early belly quality evaluation procedures followed chapters 2 and 3.  

Aged Postmortem Loin Quality Evaluation 

Aged loin quality evaluation procedures followed those outlined in chapter 2, however, 

four chops from each loin were removed for further evaluations. Chop 1 was used to determine 

moisture and extractable lipid. Chop 2 was used to determine cook loss (%) and WBSF. Chop 3 

was used for trained sensory panels.  Chop 4 was saved and used as a backup sample. 

Cook Loss, Warner-Bratzler Shear Force, & Loin Proximate Composition 

Cook loss, WBSF, and loin proximate composition followed the procedures outlined in 

chapter 2.  

Statistical Analysis   

Data were analyzed using the MIXED procedure, similar to chapter 2, with pen (80 total) 

serving as the experimental unit.  

RESULTS 
 

Growth Performance, Carcass Characteristics, and Cutability  

 Birth weight, weaning weight, and allocation weight were increased (P≤0.01) in Red 

sired pigs by 0.19, 0.61, and 1.09 kg, respectively (Table 4.1). During phase 1 (d0-35), ADG, 
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average daily feed intake (ADFI), and gain to feed (G:F) did not differ (P≥0.08) between sire 

lines. Green gilts had an increased G:F during phase 1 by 0.02 units compared to Red sired pigs 

as indicated by a sire line by sex interaction (P=0.02). During phase 2 (d36-70), ADG was 

increased by 0.09 kg/d and ADFI was increased by 0.19 kg/d in Green sired pigs (P<0.001). 

During phase 3 (d71-98), ADG and ADFI was increased (P<0.001) by 0.10 and 0.27 kg/d in 

Green sired pigs. Overall ADG and ADFI was increased (P<0.001) by 0.07 and 0.17 kg/d in 

Green sired pigs. Phase 2, 3, and overall G:F did not differ (P≥0.11) between sire lines.  

Of the first and third heaviest pig in each pen, Green sired pigs had increased (P<0.001) 

ELW and HCW, by 5.1 and 4.76 kg (Table 4.2). Green sired pigs had increased (P<0.01) carcass 

yield (78.98 vs. 78.40%) and last rib back fat depth (2.78 vs. 2.53 cm). Red gilts had the lowest 

carcass yield by 0.72% indicated by a sire line by sex interaction (P=0.03). Tenth-rib back fat 

was increased (P=0.01) in Green sired pigs by 0.19 cm. Standardized fat-free lean was increased 

(P<0.01) in Red sired pigs by 1.31% units. LEA did not differ (P=1.00) between sire lines. Of 

the second and fourth heaviest pig in each pen, HCW did not differ (P=0.10) between sire lines. 

Last rib back fat was increased (P<0.01) by 0.37 cm in Green sired pigs; therefore, increasing 

(P<0.01) FFL by 1.66% units in Red sired pigs.  

The cutability of each primal and of the carcass overall are displayed in table 4.3 

(shoulder), 4.4 (loin), 4.5 (ham), 4.6 (belly and other cuts), 4.7 (overall). Green sired pigs had 

heavier (P≤0.04) whole shoulders by 0.27 kg, bone-in picnics by 0.24 kg, boneless picnics by 

0.16 kg, and jowls by 0.05 kg. Percent of chilled side weight for whole shoulders was increased 

(P≤0.02) by 0.68%, bone-in Boston butts by 0.43%, boneless Boston butts by 0.40%, neckbones 

by 0.13%, and boneless shoulder by 0.50% in Red sired pigs. Bone-in Boston butt, boneless 

Boston butt, neckbone, clear plate, and boneless shoulder weights did not differ (P≥0.07) 
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between sire lines. Green sired pigs had heavier whole loins (12.78 vs. 12.21 kg; P<0.01), 

trimmed loins (10.42 vs. 10.11 kg; P=0.02), and backribs (0.82 vs. 0.78 kg; P<0.01). Percent of 

chilled side weight was increased (P≤0.01) for trimmed loins by 0.43%, Canadian backs by 

0.41%, tenderloins by 0.07%, sirloins by 0.11%, backbones by 0.21%, and boneless loins by 

0.58%. Red gilts had the highest percent of chilled side weight for backbones by 0.26% as 

indicated by a sire line by sex interaction (P=0.01). Canadian back, tenderloin, sirloin, backbone, 

and boneless loin weights did not differ (P≥0.41) between sire lines.  

 Whole hams were heavier (P≤0.05) by 0.61 kg, trimmed hams by 0.44 kg, inside hams by 

0.14 kg, outside hams by 0.08 kg, knuckles by 0.04 kg, inner shanks by 0.06 kg, and boneless 

hams by 0.29 kg in Green sired pigs. A sire line by sex interaction indicated Green barrows had 

the heaviest whole hams (P<0.001) by 0.36 kg. A sire line by sex interaction (P<0.001) indicated 

both Green and Red barrows had heavier trimmed hams by 0.11 kg and Green barrows and 

Green gilts had heavier inner shanks by 0.02 kg. Red gilts had the lightest knuckles by 0.08 kg 

and boneless hams by 0.44 kg as indicated by a sire line by sex interaction (P=0.04). Lite butts 

were heavier (P<0.01) by 0.02 kg in Red sired pigs. A sire line by sex interaction (P<0.01) 

indicated Green barrows had the heaviest lite butts by 0.03 kg. Percent of chilled side weight for 

outside hams (5.43 vs. 5.31%; P=0.05) and lite butts (0.62 vs. 0.55%; P<0.001) was increased in 

Red sired pigs. Green barrows had the lowest percent of chilled side for lite butts by 0.12% as 

indicated by a sire line by sex interaction (P=0.01). Percent of chilled side weight for inner 

shanks was increased (P=0.01) by 0.05% in Green sired pigs.  

 Natural fall belly weight and percent of chilled side weight for natural belly weight was 

increased (P<0.001) by 0.66 kg and 0.68% in Green sired pigs. Percent of chilled side weight for 

spareribs was increased (P<0.001) by 0.17% in Red sired pigs. Sparerib weight did not differ 
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(P=0.84) between sire lines. Leaf fat and front and back foot weight was increased (P<0.01) by 

0.10 kg and 0.08 kg in Green sired pigs. Percent of chilled side weight for leaf fat was increased 

(P=0.01) by 0.16% in Green sired pigs. Standardized trim weight did not differ (P=0.96) 

between sire lines.  

Red sired pigs had an increased (P<0.01) bone-in lean cutting yield by 1.07% and an 

increased (P=0.02) boneless carcass cutting yield by 0.54%. Bone-in carcass cutting yield did not 

differ (P=0.08) between sire lines.  

Pork Quality 

Early ventral visual marbling was increased (2.51 vs. 2.08 units; P<0.001) in Green sired 

pigs (Table 4.8). Green barrows had the highest amount of early ventral visual marbling by 0.37 

units as indicated by a sire line by sex interaction (P=0.04). Early ventral visual color, subjective 

firmness, L*, a*, b*, and pH did not differ (P≥0.08) between sire lines. Green sired pigs had 

increased early chop visual marbling (2.61 vs. 2.31 units; P=0.01), chop a* (8.95 vs. 8.32 units; 

P=0.01), and extractable lipid percentage (3.31 vs. 2.84%; P<0.01). Green barrows had increased 

(P=0.05) early chop subjective firmness by 0.16 units as indicated by a sire line by sex 

interaction (P=0.05). Early chop visual color, subjective firmness, L*, b* and moisture did not 

differ (P≥0.07) between sire lines.  

Aged ventral visual marbling was greater (P<0.001) in Green sired pigs as compared to 

Red sired pigs by 0.48 units (Table 4.9). Aged ventral visual color, subjective firmness, L*, a*, 

b*, purge loss, and pH did not differ (P≥0.16) between sire lines. Green sired pigs had increased 

(P<0.01) aged chop visual marbling (2.65 vs. 2.29 units) and chop subjective firmness (3.19 vs. 

3.04 units) compared to Red sired pigs. Aged chop visual color, L*, a*, b*, WBSF, and cook loss 

did not differ (P≥0.09) between sire lines.  
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Green sired pigs had increased (P<0.001) belly thickness (3.97 vs. 3.59 cm) and belly 

flop (19.64 vs. 15.63 cm) compared to Red sired pigs (Table 4.10). Belly length and width did 

not differ (P≥0.91) between sire lines. Fresh ham visual color, L*, a*, b*, and pH did not differ 

(P≥0.28) between sire lines.   

DISCUSSION 
 

 Market trends in the pork industry have changed over time such as any industry. More 

specifically, the industry has shifted from paying producers for pig ELW to a lean percentage 

based off carcass FFL (Hayenga et al., 1985; Schwab et al., 2007). Because of this shift in 

industry, the importance of selecting terminal sire lines that can enhance both growth 

performance and pork quality parameters are of value. Duroc pigs are often chosen as terminal 

sires in commercial swine crossbreeding scenarios as they improve fresh pork quality and 

increase growth rates and performance (Lowell et al., 2018, NPPC, 1995). Various traits 

including ADG, back fat, lean yield, pH, cook loss, and intramuscular fat are heritable traits in 

Duroc sired pigs (Cabling et al., 2015). Thus, the objective of this study was to compare pigs 

from either a P26 Duroc sire line or a competitor sire line in order to determine how the P26 sire 

line matched to competitors in industry. Early and aged loin quality characteristics were 

evaluated as well as fresh ham and belly quality characteristics.  

While Red sired pigs started out at heavier early weights (birth, weaning, and allocation), 

Green sired pigs had increased ADG ultimately finishing at heavier ELW. Although there were 

differences in ADG, there were no differences amongst G:F between the two sire lines. 

Additionally, Green sired pigs had heavier carcasses therefore, they had an increased overall 

carcass yield. Red sired pigs were leaner at both the tenth and last rib; consequently, they had 

increased FFL. Additionally, Red sired pigs had a greater bone-in lean cutting yield and boneless 
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carcass cutting yield by approximately 1% and 0.50%, respectively. Therefore, in terms of 

growth performance, Green sired pigs were superior to Red sired pigs. While Green sired pigs 

had heavier carcasses and greater carcass yields, Red sired pigs had leaner carcasses with 

increased FFL. However, the magnitude of difference in back fat was rather small.  Red sired 

pigs held the advantage over Green sired pigs in terms of carcass cutability. 

In terms of loin quality, Green sired pigs had heavier marbled loins at both 1 d and 14 d 

postmortem. Additionally, Green sired pigs had heavier marbled and redder aged chops with 

increased extractable lipid at 1 d postmortem. Green sired pigs also had heavier marbled and 

firmer aged chops. However, both early and aged visual color and instrumental color scores did 

not differ between the two sire lines. Additionally, there were no differences observed in ultimate 

pH, instrumental tenderness, or cook loss values. In terms of fresh belly characteristics, Green 

sired pigs had thicker and firmer bellies as belly thickness and belly flop values were increased 

for that sire line. Furthermore, in regards to fresh ham quality characteristics, there were no 

differences observed between the two sire lines. Therefore, Green sired pigs were superior in 

pork quality as compared to Red sired pigs. However, while statistically not different, Red sired 

pigs were considered acceptable for both ultimate pH and instrumental tenderness.  

CONCLUSIONS 

 Duroc sired pigs have historically possessed better pork quality than other breeds and 

more recently have improved growth performance compared to previous years. In this study, 

pigs from either a P26 Duroc sire line or a competitor sire line were compared in order to 

evaluate how the P26 sire matched to competitors in industry. Overall, Green sired pigs had 

increased ADG, ELW, and carcass yields, but Red sired pigs were leaner thus, were superior in 
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regards to FFL. Additionally, Red sired pigs held the advantage regarding carcass cutability. 

However, overall, Green sired pigs were superior in terms of both pork quality and belly quality. 
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TABLES 

Table 4.1. Main effects of sire line and sex on growth characteristics  

  Sire line   Sex       P-values 

Item Green Red   Barrows Gilts   SEM   Sire Line Sex 

Sire 

line × 

Sex 

Pens, n 40 40  40 40  
     

Birth wt, kg 1.36 1.55  1.50 1.41  0.09  < 0.001 0.01 0.51 

Weaning wt, kg 5.85 6.46  6.25 6.07  0.10  < 0.001 0.11 0.23 

Allocation wt, kg 22.65 23.74  23.29 23.10  0.24  < 0.01 0.58 0.65 

Phase 1 (d0-35)1            

   BW d0, kg 24.67 25.75  25.33 25.08  0.34  < 0.01 0.45 0.86 

   ADG, kg/d 0.93 0.87  0.96 0.84  0.04  0.32 0.05 0.83 

   ADFI, kg/d 1.92 1.89  2.00 1.81  0.09  0.50 < 0.001 0.99 

   G:F 0.47 0.46  0.46 0.47  < 0.01  0.08 0.07 0.02 

   BW d35, kg 55.81 55.67  56.74 54.73  1.88  0.86 0.01 0.07 

Phase 2 (d36-70)    
 

  
 

 
 

   

   ADG, kg/d 1.12 1.03  1.14 1.01  0.01  < 0.001 < 0.001 0.87 

   ADFI, kg/d 3.14 2.95  3.22 2.87  0.11  < 0.001 < 0.001 0.91 

   G:F 0.36 0.35  0.35 0.35  0.01  0.11 0.93 0.60 

   BW d70, kg 95.03 91.68  96.56 90.16  1.58  < 0.01 < 0.001 0.14 

Phase 3 (d71-98)   
 

  
 

 
 

   

   ADG, kg/d 1.18 1.08  1.18 1.08  0.01  < 0.001  < 0.001  0.61 

   ADFI, kg/d 3.54 3.27  3.61 3.20  0.07  < 0.001 < 0.001 0.47 

   G:F 0.33 0.33  0.33 0.34  < 0.01  0.97 0.01 0.64 

   BW d98, kg 127.95 122.10  129.65 120.39  1.34  < 0.001 < 0.001 0.14 

Overall (d0-98)   
 

  
 

 
 

   

   ADG, kg/d 1.05 0.98  1.07 0.97  0.01  < 0.001 < 0.001 0.11 

   ADFI, kg/d 2.83 2.66  2.88 2.60  0.03  < 0.001 < 0.001 0.35 

   G:F 0.373 0.368   0.367 0.375   0.008   0.18 0.03 0.68 

1Pigs were approximately 10 wks old on d0. 
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Table 4.2. Main effects of sire line and sex on carcass characteristics on pigs slaughtered at the University of Illinois Meat Science Laboratory 

  Sire Line  Sex    P-values  

Item    Green  Red   Barrows Gilts   SEM   Sire Line Sex 

Sire line 

× Sex 

Pens, n  40 40  40 40       

University of Illinois1  
  

 
  

      

Ending live weight, kg  125.67 120.57  127.52 118.71  1.42  < 0.001 < 0.001 0.20 

HCW, kg2  99.29 94.53  100.59 93.23  1.28  < 0.001 < 0.001 0.10 

Carcass yield, %   78.98 78.40  78.87 78.51  0.16  < 0.01 0.03 0.03 

Loin muscle area, cm2  45.09 45.09  44.95 45.23  1.57  1.00 0.72 0.35 

10th rib back fat depth, cm  2.16 1.97  2.25 1.88  0.05  0.01 < 0.001 0.44 

Last rib back fat depth, cm  2.78 2.53  2.84 2.47  0.15  < 0.01 < 0.001 0.26 

Standardized fat-free lean, %3  50.02 51.33  49.64 51.71  1.21  < 0.01 < 0.001  0.56 

Federally Inspected Abattoir4             

HCW, kg  90.99 88.66  90.69 88.96  1.65  0.10 0.22 0.51 

Last rib back fat depth, cm  2.86 2.49  2.85 2.50  0.10  < 0.01 < 0.01 0.57 

Standardized fat-free lean, %5   50.14 51.80   50.17 51.77   0.32   < 0.01 < 0.01 0.83 

1Values are based on data collected from the first and third heaviest pig in each pen.        
2HCW includes the left and right sides with leaf fat and standardized trim still intact.        
3Standardized fat-free lean = ((8.588 + (0.465 x HCW, lb) - (21.896 x 10th rib back fat depth, in) + (3.005 x LTL area, in2)) ÷ HCW) x 100,  

(Burson and Berg, 2001).  

4Values based on data collected from the second and fourth heaviest pig in each pen.       
5Standardized fat-free lean = ((23.568 + (0.503 x HCW, lb) - (21.348 x last rib back fat thickness, in))÷HCW) x 100, (Burson and Berg, 2001).   
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Table 4.3. Main effects of sire line and sex on shoulder carcass cuts  

  Sire Line  Sex    P-values  

Item    Green Red   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  40 40  40 40       

Whole shoulder, kg  12.44 12.17  12.74 11.86  0.10  0.04 < 0.001 0.22 

   % chilled side wt  25.97 26.65  26.25 26.37  0.15  < 0.001 0.44 0.72 

Bone-in Boston, kg  3.77 3.77  3.89 3.65  0.07  0.99 < 0.001 0.19 

   % chilled side wt  7.85 8.28  8.02 8.10  0.24  < 0.001 0.28 0.98 

Bone-in picnic, kg  5.63 5.39  5.70 5.32  0.13  < 0.01 < 0.001 0.36 

   % chilled side wt  11.76 11.87  11.81 11.82  0.16  0.28 0.95 0.57 

Boneless Boston, kg  3.46 3.46  3.57 3.35  0.07  0.97 < 0.001 0.17 

   % chilled side wt  7.21 7.61  7.37 7.44  0.23  < 0.001 0.27 0.93 

Boneless picnic, kg  4.05 3.89  4.12 3.82  0.11  < 0.01 < 0.001 0.42 

   % chilled side wt  8.43 8.54  8.49 8.48  0.14  0.13 0.80 0.44 

Neckbones, kg  0.93 0.94  0.95 0.93  0.02  0.65 0.38 0.98 

   % chilled side wt  1.94 2.07  1.95 2.06  0.04  0.02 0.03 0.38 

Jowl, kg  1.34 1.29  1.37 1.26  0.05  0.04 < 0.001 0.06 

   % chilled side wt  2.79 2.82  2.81 2.80  0.07  0.54 0.81 0.21 

Clear plate, kg  0.78 0.74  0.81 0.71  0.03  0.07 < 0.001 0.90 

   % chilled side wt  1.61 1.62  1.67 1.57  0.09  0.80 < 0.01 0.51 

Boneless shoulder, kg1  7.50 7.37  7.70 7.17  0.06  0.12 < 0.001 0.24 

   % chilled side wt   15.64 16.14   15.86 15.92   0.11   < 0.001 0.56 0.66 

1Boneless shoulder = boneless Boston butt (NAMP # 406A), kg + boneless picnic (NAMP #405A), kg.  
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Table 4.4. Main effects of sire line and sex on loin carcass cuts   

  Sire Line  Sex    P-values  

Item    Green  Red   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire 

line × 

Sex 

Pens, n  40 40  40 40       

Whole loin, kg  12.78 12.21  13.03 11.96  0.14  < 0.01 < 0.001 0.43 

   % chilled side wt  26.65 26.69  26.80 26.54  0.11  0.81 0.10 0.41 

Trimmed loin, kg  10.42 10.11  10.54 9.99  0.09  0.02 < 0.001 0.38 

   % chilled side wt  21.73 22.16  21.70 22.18  0.19  < 0.01 < 0.01 0.39 

Canadian Back, kg  3.53 3.54  3.60 3.47  0.05  0.85 0.02 0.15 

   % chilled side wt  7.36 7.77  7.42 7.71  0.06  < 0.001 < 0.01 0.78 

Tenderloin, kg  0.45 0.46  0.46 0.44  0.01  0.41 0.01 0.38 

   % chilled side wt  0.94 1.01  0.96 0.99  0.04  < 0.001 0.02 0.66 

Sirloin, kg  0.86 0.86  0.87 0.85  0.02  0.89 0.41 0.72 

   % chilled side wt  1.79 1.90  1.79 1.90  0.03  < 0.01 < 0.01 0.52 

Backribs, kg  0.82 0.78  0.82 0.78  0.02  < 0.01 0.01 0.89 

   % chilled side wt  1.72 1.71  1.69 1.74  0.02  0.64 0.03 0.30 

Backbone, kg  1.80 1.80  1.84 1.76  0.10  0.99 0.01 0.20 

   % chilled side wt  3.75 3.96  3.80 3.92  0.25  < 0.01 0.03 0.01 

Boneless loin, kg1  4.84 4.86  4.93 4.77  0.07  0.73 0.02 0.19 

   % chilled side wt   10.09 10.67   10.16 10.60   0.07   < 0.001  < 0.001 1.00 

1Boneless loin = Canadian back loin (NAMP #414), kg + tenderloin (NAMP #415A), kg + sirloin (NAMP #413D), kg.  
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Table 4.5. Main effects of sire line and sex on ham carcass cuts   

  Sire Line  Sex    P-values  

Item    Green Red   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire 

line × 

Sex 

Pens, n  40 40  40 40       

Whole ham, kg  11.67 11.06  11.70 11.04  0.21  < 0.001 < 0.001 0.03 

   % chilled side wt  24.33 24.26  24.09 24.49  0.17  0.56 < 0.01  0.19 

Trimmed ham, kg  10.01 9.57  10.06 9.51  0.19  < 0.001 < 0.001 0.03 

   % chilled side wt  20.86 21.00  20.73 21.12  0.18  0.35 0.01 0.27 

Inside ham, kg  1.88 1.74  1.85 1.77  0.07  < 0.001 < 0.01 0.32 

   % chilled side wt  3.92 3.82  3.82 3.92  0.11  0.06 0.03 0.97 

Outside ham, kg  2.55 2.47  2.57 2.45  0.04  0.05 < 0.01 0.19 

   % chilled side wt  5.31 5.43  5.30 5.44  0.05  0.05 0.03 0.87 

Knuckle, kg  1.39 1.35  1.39 1.36  0.02  0.03 0.12 0.04 

   % chilled side wt  2.91 2.96  2.85 3.02  0.02  0.15 < 0.001 0.27 

Inner shank, kg  0.74 0.68  0.73 0.69  0.03  < 0.001 < 0.01 0.05 

   % chilled side wt  1.55 1.50  1.51 1.54  0.04  0.01 0.11 0.23 

Lite butt, kg  0.26 0.28  0.27 0.27  0.01  < 0.01 0.77 < 0.01 

   % chilled side wt  0.55 0.62  0.56 0.61  0.02  < 0.001 0.01 0.01 

Boneless ham, kg1  6.82 6.53  6.81 6.54  0.16  < 0.01 < 0.01 0.04 

   % chilled side wt   14.22 14.34   14.04 14.52   0.18   0.41 < 0.01 0.40 

1Boneless ham = inside ham (NAMP #402F), kg + outside ham (NAMP #402E), kg + knuckle (NAMP #402H), kg + 

lite butt, kg+ inner shank, kg. 
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Table 4.6. Main effects of sire line and sex on belly and miscellaneous cuts   

  Sire Line  Sex    P-values  

Item    Green Red   Barrows Gilts   SEM   

Sire 

Line Sex 

Sire line 

× Sex 

Pens, n  40 40  40 40       

Natural fall belly, kg  7.17 6.51  7.08 6.60  0.12  < 0.001 < 0.001 0.15 

   % chilled side wt  14.94 14.26  14.57 14.63  0.09  < 0.001 0.63 0.54 

Spareribs, kg  1.73 1.73  1.78 1.67  0.01  0.84 < 0.001 0.32 

   % chilled side wt  3.61 3.78  3.68 3.72  0.04  < 0.001 0.27 0.70 

Miscellaneous Cuts             

Standardized trim, kg  0.16 0.16  0.19 0.13  0.01  0.96 < 0.01 0.38 

   % chilled side wt  0.34 0.35  0.39 0.30  0.02  0.46 < 0.01 0.48 

Leaf fat, kg  0.80 0.70  0.85 0.64  0.02  < 0.01 < 0.001 0.59 

   % chilled side wt  1.66 1.50  1.75 1.41  0.04  0.01 < 0.001 0.73 

Front and back foot, kg  1.12 1.04  1.11 1.05  0.01  < 0.01 0.01 0.60 

   % chilled side wt   2.33 2.29   2.28 2.34   0.03   0.29 0.09 0.67 
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Table 4.7. Main effects of sire line and sex on carcass cutability   

  Sire Line  Sex    P-values  

Item    Green Red   Barrows Gilts   SEM   Sire Line Sex Sire line × Sex 

Pens, n  40 40  40 40       

Bone-in carcass cutting yield, %1  77.17 77.56  76.86 77.87  0.15  0.08 < 0.001 0.87 

Bone-in lean cutting yield, %2  62.25 63.32  62.33 63.24  0.20  < 0.01 < 0.01 0.97 

Boneless carcass cutting yield, %3   54.88 55.42   54.64 55.67   0.15   0.02 < 0.001 0.52 

1Bone-in carcass cutting yield = [(trimmed ham, kg + bone-in Boston, kg + bone-in picnic, kg + trimmed loin, kg + natural fall 

belly, kg) ÷ left side chilled weight, kg] x 100. 

2Bone-in lean cutting yield = [(trimmed ham, kg + bone-in Boston, kg + bone-in picnic, kg + trimmed loin, kg) ÷ left side chilled 

weight, kg] x 100. 

3Boneless carcass cutting yield = [(inside ham, kg + outside ham, kg + knuckle, kg, + lite butt, kg + inner shank, kg) + (Canadian 

back loin, kg + tenderloin, kg + sirloin, kg) + (boneless Boston, kg + boneless picnic, kg) + (belly, kg)) ÷ left side chilled weight] x 

100.  
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Table 4.8. Main effects of sire line and sex on early loin and chop face quality and color1  

  Sire Line  Sex    P-values  

Item    Green Red   Barrows Gilts   SEM   Sire Line Sex Sire line × Sex 

Pens, n  40 40  40 40       

Loin             

     Visual color2 3.51 3.58  3.60 3.49  0.08  0.43 0.22 0.49 

     Visual marbling2 2.51 2.08  2.39 2.20  0.10  < 0.001 0.04 0.04 

     Subjective firmness3 3.26 3.19  3.24 3.21  0.06  0.16 0.54 0.30 

     Lightness, L*4 52.06 53.34  52.14 53.26  1.67  0.08 0.11 0.42 

     Redness, a*4 9.22 9.30  9.19 9.33  0.41  0.83 0.66 0.41 

     Yellowness, b*4 7.56 7.71  7.48 7.78  0.54  0.60 0.27 0.69 

     Ventral pH 5.56 5.57  5.58 5.55  0.03  0.55 < 0.01 0.55 

Chop             

     Visual color 3.69 3.71  3.79 3.61  0.10  0.76 0.03 0.25 

     Visual marbling 2.61 2.31  2.64 2.28  0.08  0.01 < 0.01 0.12 

     Subjective firmness 2.83 2.72  2.80 2.75  0.21  0.07 0.35 0.05 

     Lightness, L* 55.60 56.01  55.33 56.29  0.79  0.52 0.12 0.32 

     Redness, a* 8.95 8.32  8.75 8.52  0.27  0.01 0.36 0.98 

     Yellowness, b* 7.60 7.19  7.39 7.40  0.53  0.13 0.97 0.39 

     Moisture, % 73.31 73.55  73.22 73.64  0.24  0.09 < 0.01 0.82 

     Extractable Lipid, % 3.31 2.84   3.31 2.84   0.09   < 0.01 < 0.01 0.93 
1Early postmortem traits were evaluated 1 d postmortem   
2NPPC color based on the 1999 standards measured in half point increments where 1 = palest, 6 = darkest and where 

1 = least amount of marbling, 6 = greatest amount of marbling.  
3NPPC firmness based on the 1991 scale measured in half point increments where 1 = softest, 5 = firmest.  
4L* measures darkness (0) to lightness (100; greater L* indicates a lighter color), a* measures redness (greater a* 

indicates a redder color), b* measures yellowness (greater b* indicates a more yellow color). 
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Table 4.9. Main effects of sire line and sex on aged loin and chop quality1 

  Sire Line  Sex    P-values  

Item    Green  Red    Barrows Gilts   SEM   Sire Line Sex Sire line × Sex 

Pens, n  40 40  40 40       
Loin             

     Visual color2 3.62 3.48  3.60 3.49  0.10  0.16 0.27 0.80 

     Visual marbling2 2.78 2.30  2.66 2.43  0.12  < 0.001 0.03 0.58 

     Subjective firmness4 3.14 3.08  3.16 3.06  0.07  0.20 0.04 0.10 

     Lightness, L*5 52.28 52.05  51.65 52.69  0.39  0.68 0.07 0.50 

     Redness, a*5 8.27 8.17  8.29 8.16  0.30  0.61 0.48 0.73 

     Yellowness, b*5 6.91 6.81  6.77 6.95  0.85  0.69 0.45 0.94 

     Purge loss, % 4.32 4.26  4.02 4.56  0.35  0.90 0.28 0.90 

     Ventral pH  5.57 5.57  5.59 5.56  0.02  0.95 0.02 0.69 

Chop             

     Visual color 3.48 3.45  3.56 3.37  0.09  0.75 0.02 0.88 

     Visual marbling 2.65 2.29  2.66 2.28  0.09  < 0.01 < 0.01 0.57 

     Subjective firmness 3.19 3.04  3.13 3.11  0.03  < 0.01 0.59 0.18 

     Lightness, L* 54.02 53.72  53.35 54.39  0.76  0.63 0.08 0.32 

     Redness, a* 8.76 8.36  8.62 8.51  0.31  0.09 0.63 0.07 

     Yellowness, b* 7.48 7.13  7.23 7.38  0.52  0.15 0.51 0.22 

     Warner-Bratzler shear force, kg9 2.63 2.71  2.71 2.64  0.05  0.30 0.33 0.47 

     Cook Loss, % 20.60 20.83   20.94 20.49   0.40   0.68 0.42 0.20 
1Early postmortem traits were evaluated 1 d postmortem   
2NPPC color based on the 1999 standards measured in half point increments where 1 = palest, 6 = darkest and where 1 = least 

amount of marbling, 6 = greatest amount of marbling.  
4NPPC firmness based on the 1991 scale measured in half point increments where 1 = softest, 5 = firmest.  
5L* measures darkness (0) to lightness (100; greater L* indicates a lighter color), a* measures redness (greater a* indicates a 

redder color), b* measures yellowness (greater b* indicates a more yellow color). 
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Table 4.10. Main effects of sire line and sex on fresh belly characteristics   

  Sire Line  Sex    P-values  

Item    Green  Red    Barrows Gilts   SEM   Sire Line Sex 

Sire line 

× Sex 

Pens, n  40 40  40 40       

Belly  
  

 
  

      

Length, cm  69.71 69.67  70.30 69.07  0.31  0.92 0.01 0.61 

Width, cm  24.59 24.62  24.71 24.49  0.17  0.91 0.34 0.13 

Thickness, cm1  3.97 3.59  3.95 3.60  0.04  < 0.001 < 0.001 0.46 

Flop, cm  19.64 15.63  18.82 16.45  1.16  < 0.001 0.01 0.39 

Ham              

Visual color2  3.11 3.05  3.10 3.06  0.10  0.65 0.78 0.65 

Lightness, L*3  57.40 56.85  57.26 56.99  0.55  0.48 0.74 0.50 

Redness, a*3  10.45 10.54  10.41 10.57  0.47  0.80 0.65 0.83 

Yellowness, b*3 8.41 8.36  8.41 8.36  0.26  0.90 0.91 0.59 

Ham pH   5.75 5.73   5.75 5.73   0.04   0.28 0.31 0.09 

1Thickness was an average of measurements from 8 locations from the anterior to posterior.  

2Visual ham color was based on 4 point visual scale where 1=darkest and 4=lightest. 
3L* measures darkness (0) to lightness (100; greater L* indicates a lighter color), a* measures redness (greater a* 

indicates a redder color), b* measures yellowness (greater b* indicates a more yellow color).L* measures darkness (0) 

to lightness (100; greater L* indicates a lighter color). 
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Table 4.11. Interaction means of carcass characteristics, cutability, and loin and chop quality between sire line and sex  

  Green  Red    P-values  

Item    Barrow Gilt   Barrow Gilt   SEM   

Sire 

Line Sex 

Sire 

line × 

Sex 

Pens, n             

   Phase 1 Gain : Feed  0.46b 0.48a  0.46b 0.46b  0.01  0.08 0.07 0.02 

   MSL carcass yield %  78.99a 78.97a  78.76a 78.04b  0.20  < 0.01 0.03 0.03 

   Whole ham, kg  11.88a 11.47b  11.52b 10.61c  0.23  < 0.001 < 0.001 0.03 

   Trimmed ham, kg  10.17a 9.85b  9.96ab 9.18c  0.21  < 0.001 < 0.001 0.03 

   Knuckle, kg  1.39a 1.40a  1.39a 1.31b  0.02  0.03 0.12 0.04 

   Inner shank, kg  0.75a 0.73ab  0.71b 0.65c  0.03  < 0.001 < 0.01 0.05 

   Lite butt, kg  0.30a 0.27b  0.27c 0.25b  0.01  < 0.01 0.77 < 0.01 

   Lite butt, % chilled side wt  0.50b 0.59a  0.62a 0.62a  0.02  < 0.001 0.01 0.01 

   Boneless ham, kg  6.88a 6.77a  6.75a 6.31b  0.17  < 0.01 < 0.01 0.04 

   Backbone, % chilled side wt  3.77b 3.74b  3.83b 4.09a  0.26  < 0.01 0.03 0.01 

   Early ventral visual marbling  2.69a 2.32b  2.08bc 2.08c  0.12  < 0.001 0.04 0.04 

   Early chop subjective firmness   2.91a 2.74b   2.69b 2.75b   0.21   0.07 0.35 0.05 

a–cWithin a row, least squares means lacking a common superscript differ (P ≤ 0.05). 
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CHAPTER 5: EFFECT OF VARYING GROWTH RATES ON EARLY AND AGED 

PORK LOIN AND CHOP QUALITY 

ABSTRACT 
 

The pork industry has observed an upward trend in ending live weights, resulting in 

heavier hot carcass weights (HCW). Heavier HCW positively influences loin tenderness; 

however, the mechanism of this effect is unclear. One possibility is increased growth rate, 

associated with greater HCW, resulting in more tender loins. The objective was to determine the 

effect of growth rate on early and aged pork quality. Pigs (n=634) were divided into three groups 

based on average daily gain (kg/d) from 12-26wk of age; slow (< 0.96kg/d, n=96), intermediate 

(0.96-1.16kg/d, n=452), and fast (≥ 1.17kg/d, n=86). The MIXED procedure of SAS was used to 

evaluate the main effects of growth rate, breed, sex, and their interactions on loin quality. Birth 

and weaning weight did not differ between growth rate (P≥0.15) but, overall ADG was increased 

(P<0.001) in fast growing pigs by 0.15 kg/d. Bone-in lean cutting yield decreased (P<0.001) as 

growth rate increased meaning slow growing pigs had the highest yield by 1.46%. Early ventral 

subjective firmness was slightly increased (P=0.03) in intermediate growing pigs by 0.21 units 

compared to slow growing pigs. Early ventral and chop visual color, marbling, and instrumental 

color (L*, a*, and b*) did not differ between growth rates (P≥0.13). Aged ventral visual color 

was increased (P=0.03) in fast and intermediate growing pigs by 0.23 units. Intermediate 

growing pigs had firmer loins (P=0.04) by 0.07 units. Ventral a* increased as growth rate 

increased (P=0.04) indicating fast growing pigs had the reddest loins (9.77 vs. 9.26 vs. 8.99 

units). Aged ventral marbling, ultimate pH, purge loss, cook loss, instrumental tenderness, chop 

moisture, and extractable lipid did not differ (P≥0.32) between growth rate groups. Both ELW 

and HCW increased as growth increased, but Duroc-sired pigs were heavier than Pietrain-sired 
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pigs in the slow growth rate category. Between all growth rate groups, slow growing Pietrain-

sired pigs had the smallest loin eye areas (LEA). While faster growth rates improved aged 

ventral visual color, instrumental tenderness did not differ between growth rate groups.   

INTRODUCTION 

 Over the last few years, the packing industry has been witnessing changes in swine 

ending live weights (ELW) ultimately affecting HCW. From 1995 to 2019, pork HCW have 

increased from 82 kg to 96.5 kg (USDA, 2019). Currently, it is expected that this trend will 

continue over the next few years. Previous studies have determined that as carcasses are 

becoming heavier, chops are becoming more tender (Harsh et al., 2017; Price et al., 2019). 

However, the mechanism underlying these effects is still unclear. What has been relatively 

established is that as carcasses become heavier it can be attributed to heavier pigs at birth and 

weaning in addition to increased average daily gain (ADG) or growth rate. On average, light 

weight pigs took 10-14 days longer to reach market weight and had reduced overall ADG when 

compared to heavy weight pigs of the same age (Mahan & Lepine, 1991). 

  Previously, the mechanism behind slow growth rates in pigs was evaluated. It was 

determined that when comparing slow, average, and fast growing pigs, body weight in pigs is 

consistently increased in fast growing pigs from birth to 170 days of age (He et al., 2016). 

Additionally, this study determined that fast growing pigs consistently had increased ADG from 

birth throughout the final phases of finishing and heavier carcasses when compared to average 

and slow growing pigs. This could suggest that birth and weaning weights and growth rates of 

pigs are possibly related. It was also reported that fast growing pigs had more back fat and larger 

loin eye areas in comparison to average and slow growing pigs; however, this study did not 

evaluate the effects of growth rate on pork quality (He et al., 2016). A separate study evaluated 



119 
 

low birth weights in pigs and its effect on meat tenderness and ultimately determined that light 

weight pigs had paler colored (early L*) and less tender loins when compared to heavy weight 

pigs of the same age  (Gondret et al., 2006). Therefore, the objective of this study was to evaluate 

the effect of varying growth rates on early and aged pork quality. Based upon past studies, which 

determined heavy carcasses improved chop tenderness, it was hypothesized that pigs belonging 

to the fastest growth rate group would have more tender loin chops.  

MATERIALS AND METHODS 

Protocols used during the live phase portion of the experiment were approved by the 

Institutional Animal Care and Use Committee at the University of Illinois.  

Pig Background  

Pigs (634 total) were from either Pietrain or Duroc ancestry (Choice Genetics, West Des 

Moines, IA). Pigs were raised in 4 separate groups at the University of Illinois Swine Research 

Center over a time period of 2.5 years. Group 1 consisted of 80 Duroc and 80 Pietrain pigs, 

Group 2 consisted of 162 Pietrain pigs, and Groups 3, and 4, consisted of 152, and 160, Duroc 

pigs, respectively. All pigs were housed in pens of the same sex and sire line. Groups 1, 3, and 4 

consisted of 4 pigs per pen and group 2 consisted of 3 pigs per pen. The discrepancy in total pigs 

per pen is due to number of available pigs sire line per group. Within groups, pigs were raised in 

blocks, approximately 2 weeks apart, based on farrowing dates. All pigs were fed the same diets 

as outlined in chapter 2. Day 0 was considered the beginning of the feeding trial and pigs (10 

weeks of age) were weighed to determine beginning weight. Pigs were raised in a 3-phase 

rotational program and weighed at the end of each of the 3 feeding phases (d 35, 70, & 91/98).  

Daily feed allotments were recorded and data were summarized to calculate ADG, average daily 

feed intake (ADFI), and gain to feed (G:F). ADG was calculated on an individual pig basis 
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whereas ADFI and G:F were calculated by pen. Overall ADG of each pig was calculated in order 

to split pigs into slow, intermediate, and fast growth rate groups (Figure 5.1). The standard 

deviation of the mean was used to determine the intermediate growth rate group, one standard 

deviation below the mean was the slow growth rate group, and one standard deviation above the 

mean was the fast growth rate group. 

Due to a scheduling conflict, block 1 of group 2 was harvested on d 91 and block 2 of 

group 2 was harvested on d 98. Groups 1, 3, and 4 were all harvested on d 98. Depending on the 

group, d 91 or d 98 was considered the end of the feeding portion of the trial and all pigs were 

weighed in order to calculate overall ADG, ADFI, and G:F.  For groups 1, 3, and 4 the heaviest 

pig from each pen was removed on d 98 and transported to the University of Illinois Meat 

Science Laboratory (Urbana, IL) for slaughter on d 99. Also on d 99, the second heaviest and 

lightest pigs from each pen were removed and transported to a commercial scale federally 

inspected abattoir. The remaining pig was slaughtered at the University of Illinois Meat Science 

Laboratory on d 101. For group 2, the heaviest pig from each pen was transported to the 

University of Illinois Meat Science Laboratory on d 91 and d 98 to be harvested on d 92 and d 

99.  Also on d 92 and d 99 the second heaviest pig from each pen was removed and transported 

to a commercial scale, federally inspected abattoir to be harvested. On d 93 and d 100, the 

lightest pig in each pen was transported to the University of Illinois Meat Science Laboratory to 

be harvested on d 94 and d 101.  

Harvest Procedures and Carcass Fabrication 

 Harvest procedures for the federally inspected abattoir and the University of Illinois Meat 

Science Laboratory follow those outlined in chapter 2. Carcass fabrication procedures also 

followed those outlined in chapter 2.  
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Loin Quality Evaluation 

 Early and aged postmortem quality procedures followed those outlined in chapter 2. For 

all groups, chop 1 was used to determine early quality measurements and proximate 

composition. Chop 2 was used to determine cook loss (%) and Warner-Bratzler Shear Force 

(WBSF). Proximate composition, cook loss, and WBSF procedures follow those outlined in 

chapter 2. 

Statistical Analysis  

Within the population, pigs were divided into three groups based on ADG, reported in 

kg/d, from 12-26wk of age; slow (< 0.96kg/d, n= 96), intermediate (0.96-1.16kg/d, n= 452), and 

fast (≥ 1.17kg/d, n= 86). The standard deviation of the mean of ADG was calculated in order to 

categorize the intermediate growth rate group. Slow growing pigs were considered one standard 

deviation below the mean and fast growing pigs were considered one standard deviation above 

the mean. Data were analyzed using the MIXED procedure of SAS (SAS Inst. In., Cary, NC) as 

a three-way ANOVA (rate × breed × sex) with trial as a random variable.  Pig (634 total) served 

as the experimental unit. Main effect of rate, breed, sex, and their interactions on growth 

performance, cutability, and pork quality characteristics were considered significant at P<0.05. 

Least squares means were separated using a probability of difference (PDIFF) statement in the 

MIXED procedure of SAS. Normality of residuals was tested using the UNIVARIATE 

procedure of SAS. Homogeneity of variances was tested using the Levene’s hovtest option in the 

GLM procedure of SAS.  

RESULTS 
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Distribution of Sex and Breed within ADG category  

The depiction of pigs distributed per growth rate category is represented in Figure 5.1 and 

Table 5.1. As expected, the majority of pigs fell within the intermediate growth rate category 

(n=452). The slow growth rate group had 96 pigs and the fast growth rate group had 86 pigs. The 

slow growth rate group had more gilts (n=85) as compared to the fast growth rate group (n=12). 

The fast growth rate group had more barrows (n=74) as compared to the slow growth rate group 

(n=11).  The slow growth rate group had slightly more Durocs than Pietrains (57 vs. 39 pigs). 

Growth Performance 

Birth weight did not differ between rate, sex, or breed (P≥0.06; Table 5.2). Weaning 

weight was increased by 0.69 kg (P<0.01) in Duroc pigs compared with Pietrain pigs, but 

weaning weight did not differ between rate or sex. Overall ADG was different (P<0.001) 

between growth rate groups with fast growing pigs having the highest overall ADG (1.21 vs. 

1.06 vs. 0.89 kg/d). There was a rate by sex interaction (P<0.01) for overall ADG (Figure 5.2). 

Overall ADG was not different between barrows and gilts in both the slow and fast growth rate 

groups. In the intermediate growth rate group, barrows had an increased overall ADG by 0.04 

kg/d compared to intermediate gilts.  

Carcass Cutability  

Bone-in lean cutting yield decreased (P<0.001) as growth rate increased thus, slow 

growing pigs had the greatest yield by 1.46% (Table 5.3). Gilts had an increased (P≤0.01) bone-

in carcass cutting yield by 1.67%, bone-in lean cutting yield by 1.11%, and boneless carcass 

cutting yield by 1.56% compared to barrows. Pietrain sired pigs had an increased (P≤0.02) bone-

in carcass cutting yield (75.65 vs. 74.22%), bone-in lean cutting yield (61.15 vs. 60.03%), and 
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boneless carcass cutting yield (53.42 vs. 52.46%) compared to Duroc sired pigs. All three-way 

interactions for carcass cutability characteristics were not significant (P≥0.06).  

Carcass Characteristics 

 There was a rate by breed interaction for both ELW and HCW (P<0.01; Table 5.6). Both 

ELW and HCW increased as growth rate increased, but within the slow growth rate groups 

Duroc-sired pigs had heavier ELW and HCW by 7.21 kg and 6.72 kg compared to Pietrain-sired 

pigs. There was also a rate by breed interaction (P=0.05) for LEA. In the intermediate and fast 

growth rate groups, LEA of Duroc and Pietrain pigs were not different from each other, but 

within the slow growth rate group Duroc-sired pigs had larger LEA by 4.08 cm2. In general, as 

growth rate increased, ELW, HCW, tenth rib back fat, and LEA all increased (P<0.001; data not 

shown) indicating fast growing pigs had heavier ELW by 10.96 kg and HCW by 8.46 kg as well 

as more tenth rib back fat by 0.18 cm and larger LEA by 2.32 cm. Barrows had increased 

(P≤0.01) ELW, HCW, and tenth rib back fat by 3.17 kg, 2.99 kg, and 0.28 cm, respectively, 

compared to gilts (data not shown). Duroc sired pigs had heavier HCW (101.01 vs. 98.62 kg; 

P=0.04) and increased tenth rib back fat (2.10 vs. 1.75 cm; P<0.001) compared to Pietrain sired 

pigs (data not shown).   

Early Loin and Chop Quality  

There was a rate by breed interaction (P=0.02) for early ventral visual marbling; within 

each growth rate group Duroc pigs had more marbling than Pietrain pigs. However, within the 

slow and fast growth rate group, the magnitude of difference between breeds was much larger 

than the intermediate growth rate group (slow = 0.77 units, intermediate = 0.34 units, fast = 0.77 

units; data not shown). There was a rate by sex interaction (P=0.02) for early chop L*. Within 

the slow and fast growth rate groups, gilts had decreased L* values compared to barrows, but in 
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the intermediate growth rate group gilts had increased L* values compared to barrows (data not 

shown). There was a breed by sex interaction (P=0.05) for early chop visual color. Within the 

Duroc breed, barrows had darker chops (0.09 units) compared to gilts, but within the Pietrain 

breed, gilts had darker chops (0.19 units) compared to barrows (data not shown). There was a 

rate by breed by sex interaction (P<0.01) for early ventral visual marbling (data not shown). In 

the intermediate and fast growth rate groups, Duroc and Pietrain barrows had heavier marbled 

loins (0.16; 0.39; 0.22; 0.08 units, respectively) compared to gilts. Within the slow growth rate 

group, Duroc barrows also had heavier marbled loins by 0.87 units compared to gilts, but within 

the Pietrain breed, gilts had heavier marbled loins by 0.23 units compared to barrows. For each 

of these interactions, the differences between sex or breed within a growth rate category was 

minimal.  

Early ventral subjective firmness was increased (P=0.03) in intermediate growing pigs by 

0.21 units compared to slow growing pigs; slow and fast growing pigs were not different from 

each other (Table 5.4). Barrows had increased (P≤0.02) early ventral visual marbling (2.22 vs. 

1.97 units), ultimate ventral pH (5.62 vs. 5.59 units), chop visual marbling (2.49 vs. 2.25 units), 

and extractable lipid (3.30 vs. 2.74%) compared to gilts. Gilts had increased (P<0.01) chop 

moisture by 0.50% compared to barrows. Duroc pigs had increased (P≤0.02) early ventral visual 

marbling (2.40 vs. 1.78 units), ultimate ventral pH (5.62 vs. 5.58 units), chop visual marbling 

(2.69 vs. 2.06 units), and extractable lipid (3.38 vs. 2.66%) compared to Pietrain pigs. Pietrain 

pigs had increased (P<0.01) chop moisture by 0.72% compared to Duroc pigs.  

Aged Loin and Chop Quality  

Aged loins from intermediate and fast growing pigs were subjectively darker (P≤0.05) 

than those of slow growing pigs by 0.23 units (Table 5.5). Aged ventral visual marbling was 
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increased (P<0.01) by 0.35 units in barrows as compared to gilts and increased in Duroc-sired 

pigs by 0.39 units as compared to Pietrain-sired pigs.  Aged ventral subjective firmness was 

increased (P=0.04) in the intermediate growth rate group by 0.20 units. Loins from fast growing 

pigs were more red (P≤0.05) by 0.51 units than those of intermediate or slow growing pigs, but 

L* and b* did not differ (P≥0.42) by rate. Aged ventral pH, purge loss, cook loss, and WBSF did 

not differ (P≥0.09) between rate, sex, or breed.  

DISCUSSION 
 

 Over the last 25 years, pork HCW have increased by approximately 18% (USDA, 2019). 

Previous studies have determined that loin chops from heavier carcasses are more tender than 

those from lighter carcasses (Harsh et al., 2017; Price et al., 2019), however, the mechanism of 

this change remains unclear. It is possible that heavier carcasses are derived from pigs with 

increased growth rates compared to their contemporaries. Therefore, it was hypothesized that fast 

growing pigs in the present study would yield both heavier carcasses and more tender loin chops 

as compared to intermediate and slow growing pigs.   

 In the present study, birth and weaning weight did not differ between growth rate groups; 

therefore, differences in ELW can be attributed solely to differences in ADG. Given the origin of 

these pigs was a series of sire line comparisons where pigs were allotted to treatment in an effort 

to minimize weight differences at the initiation of the trials (10 weeks of age), the lack of 

difference in birth and weaning weights is not as surprising. Others have noted that faster 

growing pigs did have increased birth and weaning weights (He et al., 2016). Ending live 

weights of pigs from the fast growing group were 11 kg heavier than intermediate and 26 kg 

heavier than slow-growing pigs. These differences persisted in HCW with the fast-growing 

group being 8 kg heavier than the intermediate and 20 kg heavier than the slow-growing group.  
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Additionally, fast-growing pigs were fatter and had larger LEA compared to the slower-growing 

groups. In a recent review regarding heavier weight pigs, it was reported that as market pigs 

increase in weight by 10 kg, it is expected that back fat will increase by 0.18 cm (Wu et al., 

2017).  Within the present study, as pigs increased in weight by approximately 9 kg, back fat 

increased by approximately 0.18 cm. The increase in LEA of the fast-growing group in the 

present study is 1.73 cm2 less in magnitude to previous reports (He et al., 2016).  

 Based off passed literature, it was hypothesized that chops from the fast growth rate pigs 

would be more tender than chops from intermediate and slow growing pigs. Using regression 

equations from past studies (Harsh et al., 2017; Price et al., 2019), it was determined that when 

cooked to 71˚ C, fast growing pigs would have SSF values of 12.91 and 11.52 when compared to 

slow growing pigs, which would have SSF values of 15.51 and 12.90. Additionally, both of these 

studies determined, as carcasses get heavier, cook loss deceases. Based upon a recent study, it 

could be concluded that as carcasses get heavier, loins will be darker at early and aged time 

points (Harsh et al., 2017). This study also concluded that at 20 d postmortem, heavier carcasses 

yielded heavier marbled aged loins. On the contrary, a separate study did not see any differences 

in color or marbling as carcasses got heavier at 1 d postmortem (Price et al., 2019).  

 Within the present study, there were no differences in WBSF or cook loss amongst 

growth rate groups. The carcasses used within this study were chilled at approximately 4˚ C for 

24 therefore, they were not blast chilled per normal industry settings. It is interesting to speculate 

the method used to chill carcasses could have attributed to the lack of difference in instrumental 

tenderness values. Carcasses of varying weights (light vs. heavy) chill at different rates such that 

it has become a concern in terms of pork quality (Overholt et al., 2019). Furthermore, the lack of 

difference in instrumental tenderness values could be attributed to the number of observations 
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within each growth rate category. However, this was an opportunistic study such that data from 

previous studies was utilized.  

 In terms of pork quality, intermediate growing pigs had slightly firmer loins as compared 

to slow growing pigs at early and aged time points; however, the slow and fast growing pigs 

were not different from each other. Additionally, fast and intermediate growing pigs had darker 

aged loins as subjective visual color scores were increased, but instrumental L* did not differ 

between growth rate groups. Fast growing pigs also had slightly redder aged loins as compared 

to intermediate and slow growing pigs. Overall, ultimate pH did not differ between the growth 

rate groups at 1 or 14 d postmortem. Although quality differences were observed, any differences 

in early and aged loin quality were minimal.   

CONCLUSION 

From reports of heavier weight carcasses in the literature, it was expected fast growing 

pigs would have more tender chops, but ultimately, growth rate did not alter tenderness in the 

present population of Duroc- and Pietrain-sired pigs. Therefore, the hypothesis that growth rate 

contributes to differences in tenderness between light and heavy carcasses is not supported. 

Additionally, intermediate and fast growing pigs had slightly darker loins and fast growing pigs 

had slightly more red loins, but the observed differences in pork quality characteristics were 

minimal.  
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FIGURES 

Figure 5.1. The depiction of pigs represented within each growth rate category as determined by overall ADG.  
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Figure 5.2. Effect of rate and sex on overall ADG whereas least square means lacking a common 

superscript differ (P ≤ 0.05).  
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TABLES 

Table 5.1. Number of pigs per rate, breed, and sex   

  Slow    Intermediate   Fast 

Item  Durocs Pietrains    Durocs Pietrains    Durocs Pietrains  

Barrows  5 6  149 77  38 36 

Gilts  52 33   140 86   8 4 
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Table 5.2. Main effects of rate, breed, and sex on growth performance   

 Rate   Sex  Breed     P-value1 

                

Item Slow Intermediate Fast   Barrows Gilts    Pietrain Duroc   SEM    Rate  Sex Breed  

Birth weight, kg 1.51 1.59 1.65  1.63 1.54  1.55 1.62  1.65  0.15 0.06 0.29 

Wean weight, kg 6.44 6.38 6.40  6.54 6.27  6.06 6.75  0.32  0.95 0.12 < 0.01 

Overall ADG  0.89c 1.06b 1.21a   1.06 1.05   1.05 1.05   < 0.01   < 0.001 0.12 0.73 

a–cWithin a row, least squares means of rate lacking a common superscript differ (P ≤ 0.05). 

1All interactions were not significant (P ≥ 0.13) except Rate x Sex interaction for overall ADG. See Figure 5.2. 
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Table 5.3. Main effects of rate, breed, and sex on carcass cutability   

 Rate   Sex  Breed     P-value1 

                

Item Slow Intermediate Fast   Barrows Gilts    Pietrain Duroc   SEM    Rate  Sex Breed  

Bone-in carcass cutting yield, %2 75.33 74.93 74.55  74.10 75.77  75.65 74.22  1.43  0.37 < 0.001 < 0.01 

Bone-in lean cutting yield, %3 61.88a 60.42b 59.45c  60.03 61.14  61.15 60.03  1.40  < 0.001 < 0.01 0.02 

Boneless carcass cutting yield, %4 53.18 53.00 52.65   52.16 53.72   53.42 52.46   1.15   0.43 < 0.001 0.01 
a–cWithin a row, least squares means of rate lacking a common superscript differ (P ≤ 0.05). 
1Interactions were not significant (P ≥ 0.06) 
2Bone-in carcass cutting yield = [(trimmed ham, kg + bone-in Boston, kg + bone-in picnic, kg + trimmed loin, kg + natural fall belly, kg) ÷ left side 

chilled weight, kg] x 100. 
3Bone-in lean cutting yield = [(trimmed ham, kg + bone-in Boston, kg + bone-in picnic, kg + trimmed loin, kg) ÷ left side chilled weight, kg] x 100. 
4Boneless carcass cutting yield = [(inside ham, kg + outside ham, kg + knuckle, kg, + lite butt, kg + inner shank, kg) + (Canadian back loin, kg + 

tenderloin, kg + sirloin, kg) + (boneless Boston, kg + boneless picnic, kg) + (belly, kg)) ÷ left side chilled weight] x 100.  
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Table 5.4. Main effects of rate, breed, and sex on early postmortem loin and chop quality1  

 Rate  Sex Breed   P-value6 

Item Slow Intermediate Fast Barrows Gilts  Pietrain Duroc SEM  Rate  Sex Breed  

Loin            
    Visual color2 3.50 3.55 3.49 3.56 3.47 3.49 3.53 0.11 0.76 0.28 0.71 

    Visual marbling3 2.18 2.04 2.05 2.22 1.97 1.78 2.40 0.10 0.42 0.01 < 0.001 

    Subjective firmness4 3.21b 3.42a 3.29ab 3.29 3.32 3.32 3.30 0.14 0.03 0.72 0.85 

    Lightness, L*5 51.23 50.75 51.01 51.04 50.95 51.07 50.93 1.14 0.69 0.87 0.85 

    Redness, a*5 9.36 9.75 10.01 9.64 9.78 9.86 9.55 0.33 0.32 0.65 0.36 

    Yellowness, b*5 6.54 6.74 6.86 6.72 6.71 6.94 6.48 1.17 0.72 0.98 0.20 

    Ventral pH 5.60 5.61 5.60 5.62 5.59 5.58 5.62 0.04 0.80 0.02 0.02 

Chop            
    Visual color 3.38 3.51 3.59 3.47 3.52 3.47 3.52 0.15 0.13 0.48 0.56 

    Visual marbling 2.27 2.36 2.49 2.49 2.25 2.06 2.69 0.12 0.36 0.02 < 0.001 

    Subjective firmness 2.90 3.02 2.99 2.98 2.96 2.90 3.04 0.18 0.48 0.84 0.22 

    Lightness, L* 54.88 54.33 55.08 55.39 54.13 55.11 54.41 1.73 0.47 0.06 0.42 

    Redness, a* 8.60 9.12 8.93 8.97 8.81 9.04 8.73 0.33 0.16 0.53 0.32 

    Yellowness, b* 6.24 6.41 6.25 6.54 6.06 6.58 6.02 1.08 0.76 0.08 0.12 

    Moisture, % 73.35 73.12 73.22 72.98 73.48 73.52 72.93 0.25 0.32 < 0.01 < 0.01 

    Extractable lipid, % 2.95 2.99 3.11 3.30 2.74 2.66 3.38 0.25 0.72 < 0.01 < 0.01 

a–cWithin a row, least squares means of rate lacking a common superscript differ (P ≤ 0.05). 
1 Early postmortem traits were evaluated 1 d postmortem 
2 NPPC color based on the 1999 standards measured in half point increments where 1 = palest, 6 = darkest. 

3 NPPC marbling based on the 1999 standards measured in half point increments where 1 = least amount of marbling, 6 = greatest amount of marbling 
4 NPPC firmness based on the 1991 scale measured in half point increments where 1 = softest, 5 = firmest 
5 L* measures darkness (0) to lightness (100; greater L* indicates a lighter color),  a* measures redness (greater a* indicates a redder color), and  b* measures 

yellowness (greater b* indicates a more yellow color). 
6 All interactions were not significant (P ≥ 0.11) except loin visual marbling  rate x breed (P=0.02) and rate x breed x sex (P<0.01), chop visual color (P=0.05), and 

chop L* (P=0.02)  
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Table 5.5. Main effects of rate, breed, and sex on aged postmortem loin and chop quality 1  

 Rate  Sex Breed  P-value6 

Item Slow Intermediate Fast Barrows Gilts  Pietrain Duroc SEM  Rate  Sex Breed  

Loin            
    Visual color2 3.28b 3.51a 3.51a 3.44 3.43 3.36 3.52 0.11 0.03 0.86 0.11 

    Visual marbling3 
2.31 2.37 2.36 2.52 2.17 2.15 2.54 0.10 0.87 

< 

0.01 

< 

0.01 

    Subjective firmness4 3.23b 3.43a 3.36ab 3.41 3.27 3.37 3.30 0.15 0.04 0.07 0.45 

    Lightness, L*5 52.93 52.32 52.81 52.76 52.61 53.07 52.30 1.08 0.42 0.77 0.26 

    Redness, a*5 8.99b 9.26b 9.77a 9.35 9.33 9.19 9.49 0.54 0.04 0.92 0.28 

    Yellowness, b*5 7.05 7.13 7.28 7.18 7.12 7.27 7.03 0.84 0.83 0.81 0.50 

    Ventral pH 5.62 5.63 5.64 5.63 5.63 5.61 5.65 0.04 0.49 0.73 0.09 

    Purge loss, % 5.79 6.07 5.93 5.74 6.11 6.04 5.81 1.33 0.74 0.31 0.62 

Chop            
    Cook loss, % 19.09 18.55 18.65 18.57 18.95 18.21 19.31 1.18 0.63 0.48 0.11 

    WBSF, kg 2.62 2.55 2.61 2.54 2.64 2.54 2.65 0.11 0.51 0.13 0.18 
a–cWithin a row, least squares means of rate lacking a common superscript differ (P ≤ 0.05). 
1 Early postmortem traits were evaluated 1 d postmortem 
2 NPPC color based on the 1999 standards measured in half point increments where 1 = palest, 6 = darkest. 
3 NPPC marbling based on the 1999 standards measured in half point increments where 1 = least amount of marbling, 6 = 

greatest amount of marbling 
4 NPPC firmness based on the 1991 scale measured in half point increments where 1 = softest, 5 = firmest 
5 L* measures darkness (0) to lightness (100; greater L* indicates a lighter color),  a* measures redness (greater a* 

indicates a redder color), and  b* measures yellowness (greater b* indicates a more yellow color). 
6 All interactions were not significant (P ≥ 0.07)  
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Table 5.6. Rate by breed interaction effects   

 Slow   Intermediate   Fast    

Item  Duroc Pietrain   Duroc Pietrain   Duroc Pietrain   SEM  

ELW, kg 117.11c 109.9d  127.56b 128.26b  138.81a 138.93a  2.32 

HCW, kg  92.36c 85.64d  101.01b 100.96b  109.65a 109.25a  2.01 

Carcass yield, % 78.53 77.99  78.92 78.84  78.83 78.97  0.72 

LEA, cm 47.44a 43.36b  48.75a 49.02a  50.03a 52.38a  2.93 

Tenth rib back fat, cm 1.90 1.39   2.15 1.81   2.25 2.06   0.15 
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Table 5.7. Rate by sex interaction effects              

 Slow   Intermediate   Fast    

Item  Barrows  Gilts    Barrows  Gilts    Barrows  Gilts    SEM  

Early chop L* 56.49a 53.26b   53.99b 54.67a   55.68a 54.47b   2.06 
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