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ABSTRACT

Deep neural networks have shown incredible performance for inference tasks

in a variety of domains. Unfortunately, most current deep networks are enor-

mous cloud-based structures that require significant storage space, which

limits scaling of deep learning as a service (DLaaS) and use for on-device in-

telligence. This work is concerned with finding universal lossless compressed

representations of deep feedforward networks with synaptic weights drawn

from discrete sets, and directly performing inference without full decom-

pression. The basic insight that allows less rate than näıve approaches is

recognizing that the bipartite graph layers of feedforward networks have a

kind of permutation invariance to the labeling of nodes, in terms of infer-

ential operation. We provide efficient algorithms to dissipate this irrelevant

uncertainty and then use arithmetic coding to nearly achieve the entropy

bound in a universal manner. We also provide experimental results of our

approach on several standard datasets.
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CHAPTER 1

INTRODUCTION

Deep learning has achieved incredible performance for inference tasks such

as speech recognition, image recognition, and natural language processing.

Most current deep neural networks, however, are enormous cloud-based struc-

tures that are too large and too complex to perform fast, energy-efficient

inference on device. Even in the cloud, providing personalized deep learn-

ing as a service (DLaaS), where each customer for an application like bank

fraud detection may require a different trained network, scaling to millions of

stored networks is not possible. Compression, with the capability of providing

inference without full decompression, is important. We develop new univer-

sal source coding techniques for feedforward deep networks having synap-

tic weights drawn from finite sets that essentially achieve the entropy lower

bound, which we also compute. Further, we provide an algorithm to use these

compressed representations for inference tasks without complete decompres-

sion. Structures that can represent information near the entropy bound while

also allowing efficient operations on them are called succinct structures [1–4].

Thus, we provide a succinct structure for feedforward neural networks, which

may fit on-device and may enable scaling of DLaaS in the cloud.

Over the past couple of years, there has been growing interest in compact

representations of neural networks [5–14], largely focused on lossy representa-

tions, see [15] for a recent survey of developed techniques including pruning,

pooling, and factoring. These works largely lack strong information-theoretic

foundations and may discretize real-valued weights through simple uniform

quantization, perhaps followed by independent entropy coding applied to

each. It is worth noting that binary-valued neural networks (having only a

network structure [16] rather than trained synaptic weights) can often achieve

high-fidelity inference [17, 18] and that there is a view in neuroscience that

biological synapses may be discrete-valued [19].

Neural networks are composed of nodes connected by directed edges. Feed-
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forward networks (multilayer perceptrons) have connections in one direction,

arranged in layers. An edge from node i to node j propagates an activation

value ai from i to j, and each edge has a synaptic weight wij that determines

the sign/strength of the connection. Each node j computes an activation

function g(·) applied to the weighted sum of its inputs, which we can note is

a permutation-invariant function:

aj = g

(∑
i

wijai

)
= g

(∑
i

wπ(i)jaπ(i)

)
(1.1)

for any permutation π. Nodes in the second layer are indistinguishable.

Taking advantage of this permutation invariance in the structure of neural

networks (previously unrecognized, e.g. [20]) for lossless entropy coding can

lead to rate reductions on top of any lossy representation technique that

has been developed [15]. In particular, the structure of feedforward deep

networks in layers past the input layer are unlabeled bipartite graphs where

node labeling is irrelevant, much like for nonsequential data [21–23]. By

dissipating the uncertainty in this invariance, lossless coding can compress

more than universal graph compression for labeled graphs [24], essentially a

gain of N logN bits for networks with N nodes.

The first main contribution of this work is determining the entropy limits,

once the appropriate invariances are recognized. Next, to design an appropri-

ate “sorting” of synaptic weights to put them into a canonical order where

irrelevant uncertainty due to invariance is removed; a form of arithmetic

coding is then used to represent the weights [25,26]. Note that the coding al-

gorithm essentially achieves the entropy bound. The third main contribution

is an efficient inference algorithm that uses the compressed form of the feed-

forward neural network to calculate its output without completely decoding

it, taking only O(N) additional dynamic space for a network with N nodes in

the layer with maximum number of nodes. Finally, the work provides exper-

imental results of our compression and inference algorithms on feedforward

neural networks trained to perform classification tasks on standard MNIST,

IMDB, and Reuters datasets.
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1.1 Overview

In this section, we describe the flow of the work. In Ch. 2, we discuss the

basic structure and invariant properties of a feedforward neural network (mul-

tilayer perceptron), and how it can be decomposed into substructures that

we call partially labeled bipartite graphs and unlabeled bipartite graphs. In

Ch. 3 and Ch. 4, we provide entropy bounds, universal compression algo-

rithms, and inference algorithms that need not require full decompression

for both partially labeled bipartite graphs and unlabeled bipartite graphs

as defined in Ch. 2, respectively. Chapter 5 provides two different compres-

sion algorithms based on the compression algorithms provided in Ch. 3 and

Ch. 4 respectively. Chapter 5 also provides an efficient inference algorithm

based on the inference algorithm provided in Ch. 3 that makes use of the com-

pressed feedforward neural network for inference without fully decompressing

it. Chapter 6 provides experimental results for the compression algorithms

and Ch. 7 concludes the work.

1.2 Bibliographical Note

The work on universal compression of densely connected neural networks was

presented in

• S. Basu and L. R. Varshney, “Universal Source Coding of Deep Neural

Networks,” in Proceedings of the IEEE Data Compression Conference,

Snowbird, Utah, 4-7 April 2017.

The work on succinctness was presented in

• S. Basu and L. R. Varshney, “Succinct Source Coding of Deep Neural

Networks,” in Proceedings of NeurIPS Compact Deep Neural Network

Representation with Industrial Applications Workshop (CDNNRIA),

Montreal, Canada, 7 December 2018.

And the complete work dealing with both universal compression that is

also succinct was presented at

• S. Basu and L. R. Varshney, “Universal and Succinct Source Coding of

Deep Neural Networks,” presented at Stanford Compression Workshop,

Palo Alto, California, 15 February 2019.
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A preprint for this work is available on ArXiv

• S. Basu and L. R. Varshney, “Universal and Succinct Source Coding of

Deep Neural Networks,” arXiv: 1804.02800 [cs.IT].
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CHAPTER 2

FEEDFORWARD NEURAL NETWORK
STRUCTURES

Feedforward neural network forms a very important class of neural network

structures where the connections between the nodes do not form a cycle.

Examples of such structures include densely connected neural networks, con-

volutional neural networks (CNNs) [27], and group equivariant convolutional

neural networks (GCNNs) [28–30]. In densely connected neural networks ev-

ery node in a layer in the network is connected to every node in the subsequent

layer whereas in convolutional neural networks the connections between con-

secutive layers are in the form of convolution of filters which provides trans-

lational equivariance making such neural networks extremely useful in the

domain of image processing. GCNNs is a generalization of CNNs which form

convolutional connections between layers just like CNNs, however, these net-

works are equivariant to more general form of transformations than in CNNs

which is possible because of use of specially designed filters. Another exam-

ple of a feedforward neural network is given by [31], that uses PR product

instead of inner product for computation to help improve the performance

of several state-of-the-art classification networks. Although, these networks

are a different form of computation, their structure remains the same as that

of densely connected feedforward neural networks. Hence, compression of

these networks are the same as densely connected neural networks modeled

in Sec. 2.1.

In Sec. 2.1, we discuss a probabilistic model for densely connected feedfor-

ward neural networks that we use for our work. In the subsequent sections,

we provide a discussion on CNNs, and GCNNs indicating the possible exten-

sion of the compression algorithms in our work to such architecture of neural

networks.

5



2.1 Dense Feedforward Neural Network Structures

Consider a K-layer feedforward neural network with each (for notational con-

venience) layer having N nodes, such that nodes in the first layer are labeled

and all nodes in each of the remaining (K − 1) layers are indistinguishable

from each other (when edges are ignored) due to the inferential invariance

discussed in (1.1). Suppose there are m possible colorings of edges (corre-

sponding to synaptic weights), and that connections from each node in a

layer to any given node in the next layer takes color i with probability pi,

i = 0, . . . ,m, where p0 is the probability of no edge. The goal is to univer-

sally find an efficient representation of this neural network structure. We will

first consider optimal representation for two smaller substructures that form

the layers of feedforward neural networks (after recognizing the invariance),

and then return to the problem of optimally representing the full network.

The problem of neural network inference without the need to decode is in-

terspersed in describing representations for the substructures and the full

network (in Ch. 3 and Ch. 5, we consider the problem of inference without

the need to decode for partially labeled bipartite graphs and feedforward

neural networks respectively).

Let us define the two aforementioned substructures: partially labeled bi-

partite graphs and unlabeled bipartite graphs, see Fig. 2.1.

Definition 1. A partially labeled bipartite graph consists of two sets of ver-

tices, U and V . The set U contains N labeled vertices, whereas the set V

contains N unlabeled vertices. For any pair of vertices with one vertex from

each set, there is a connecting edge of color i with probability pi, i = 0, . . . ,m,

with p0 as the probability the two nodes are disconnected. Multiple edges

between nodes are not allowed.

Definition 2. An unlabeled bipartite graph is a variation of a partially labeled

bipartite graph where both sets U and V consist of unlabeled vertices.

In unlabeled bipartite graphs, for simplicity, in the sequel we assume there

is only a single color for all nodes and that any two nodes from two different

sets are connected with probability p.

To construct the K-layer neural network from the two substructures, one

can think of it as made of a partially labeled bipartite graph for the first

and last layers and a cascade of K − 2 layers of unlabeled bipartite graphs
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(a) Partially labeled bipartite
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V if they are not connected in
the figure.
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(b) Unlabeled bipartite graph.

Figure 2.1: Two structures for densely connected feedforward neural
network layers.

for the remaining layers. An alternative construction is also possible: the

first two layers are still a partially labeled bipartite graph but then each time

the nodes of an unlabeled layer are connected, we treat it as a labeled layer,

based on its connection to the previous labeled layer (i.e. we can label the

unlabeled nodes based on the nodes of the previous layer it is connected to),

and iteratively complete the K-layer neural network.

2.2 Convolutional Neural Network

The convolutional neural network [27] is a very popular class of neural net-

works where each layer is connected to the next layer by a form of convo-

lution of filters. This design of neural networks gained popularity because

of its applicability in image, video, audio processing tasks. The key to the

efficient design of CNN is because of its efficient use of parameters via pa-

rameter sharing, filters capturing local information in data, and equivariance

to translation of input. Next, we present a simplified form of a convolutional
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layer, and then we show that it is equivariant to translations.

Let the feature maps in the input layer be represented by f : Z 7→ R and

let ψ : Z 7→ R represent a filter. Then, the output of the neurons in the next

layer is given by

[f ~ ψ](x) =
∑
y∈Z

f(y)ψ(y − x) (2.1)

Now we show the equivariance of a layer in CNN to translations. Let Lt

denote translation of a layer by t. Then, from the definition of equivariance

in Appendix A, we need to show that [[Ltf ] ~ ψ](x) = Lt[[f ~ ψ]](x).

[[Ltf ] ~ ψ](x) =
∑
y∈Z

f(y − t)ψ(y − x)

=
∑
y∈Z

f(y)ψ(y + t− x)

=
∑
y∈Z

f(y)ψ(y − (x− t))

= Lt[[f ~ ψ]](x)

The property of equivariance in CNNs make the features translate in a

predictable way when the input is translated which helps improve its perfor-

mance compared to densely connected neural networks. The use of filters and

convolution also reduces the number of free parameters available in a convo-

lutional layer compared to a densely connected layer. Hence, the probabilistic

model used in Sec. 2.1 cannot be directly used for this structure. A modified

model that probabilistically captures the reduced number of free parameters

in CNNs can improve on our algorithm for densely connected neural network

layers. Next, we discuss a generalization of CNNs called GCNNs.

2.3 Group Equivariant Convolutional Neural Network

Group Equivariant Convolutional Neural Network is a generalization of CNNs

in the sense that these networks are equivariant to group transformations in-

stead of just translations. The basics about groups are provided in Appendix
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A. As in CNNs, let the feature maps in the input layer be represented by

f : G 7→ R and let ψ : G 7→ R represent a filter. Then, the output of the

neurons in the next layer of a GCNN for a group G is given by

[f ~ ψ](g) =
∑
h∈G

f(h)ψ(g−1h) (2.2)

Now, we show that GCNNs are equivariant to group transformations corre-

sponding to any group G. That is for any transformation Lu correspond-

ing to an element u ∈ G, we need to show that [[Luf ] ~ ψ](g) = Lu[[f ~

ψ]](g), where [[Luf ] ~ ψ](g) =
∑

h∈G f(u−1h)ψ(g−1h), and Lu[[f ~ ψ]](g) =∑
h∈G f(h)ψ((u−1h)

−1
g). The proof for this follows:

[[Luf ] ~ ψ](g) =
∑
h∈G

f(u−1h)ψ(g−1h)

=
∑
h∈G

f(h)ψ(g−1uh)

=
∑
h∈G

f(h)ψ((u−1h)
−1
g)

= Lu[[f ~ ψ]](g)

9



CHAPTER 3

REPRESENTING PARTIALLY LABELED
BIPARTITE GRAPHS

We first compute the entropy bound for representing partially labeled bipar-

tite graphs, then introduce a universal algorithm for approaching the bound,

and finally an inference algorithm that need not fully decompress to operate.

3.1 Entropy Bound

Consider a matrix representing the edges in a partially labeled bipartite

graph, such that each row represents an unlabeled node from V and each

column represents a node from U . A non-zero matrix element i indicates

there is an edge between the corresponding two nodes of color i, whereas

a 0 indicates they are disconnected. Observe that if the order of the rows

of this matrix is permuted (preserving the order of the columns), then the

corresponding bipartite graph remains the same. That is, to represent the

matrix, the order of rows does not matter. Hence the matrix can be viewed as

a multiset of vectors, where each vector corresponds to a row of the matrix.

Using these facts, we calculate the entropy of a partially labeled bipartite

graph. To that end, we define the following terms.

Definition 3. Let B(N, p) be a random bipartite graph model in which

graphs are randomly generated on two sets of vertices, U and V , having

N labeled vertices each, with edges chosen independently between any two

vertices belonging to different sets with probability p.

Definition 4. Let Bp(N, p) be a partially labeled random bipartite graph

model generating graphs in the same way as a random bipartite graph model,

except that the vertices in the set V in the generated graphs are unlabeled.

Definition 5. We say that a bipartite graph, b is isomorphic to a partially

labeled bipartite graph bp if bp can be obtained by removing labels from all
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the vertices in set V of b, keeping all the edge connections the same. The set

of all bipartite graphs, b, isomorphic to a partially labeled bipartite graph,

bp, is represented by I(bp).

Definition 6. The set of automorphisms of a graph, Aut(b) for b ∈ B(N, p),

is defined as an adjacency-preserving permutation of the vertices of a graph;

|Aut(b)| denotes the number of automorphisms of a graph b.

Definition 7. A graph g is called asymmetric if |Aut(g)| = 1; otherwise it

is called symmetric.

Our proofs for entropy of random bipartite graphs follow that of [24] for

entropy of random graphs.

Theorem 1. For large N , and for all p satisfying p� lnN
N

and 1−p� lnN
N

,

the entropy of a partially labeled bipartite graph, with each set containing N

vertices and binary colored edges is N2H(p)− log2(N !) + o(1), where H(p) =

p log2
1
p

+ (1− p) log2
1

1−p , and the notation a� b means b = o (a).

Proof. For a randomly generated bipartite graph, b ∈ B(N, p) with k edges,

we have

P (b) = pk(1− p)(N2−k)

Now, for each bp ∈ Bp(N, p), there exist |I(bp)| corresponding b ∈ B(N, p)

that are isomorphic to bp. Hence,

P (bp) = |I(bp)|P (b)

Considering only the permutations of vertices in the set V , we have a total

of N ! permutations. Given that each partially labeled graph bp corresponds

to |I(bp)| number of bipartite graphs, and each bipartite graph b ∈ B(N, p)

corresponds to |Aut(b)| (which is equal to |Aut(bp)|) number of adjacency-

preserving permutations of vertices in the graph, from [32,33] one gets that:

N ! = |Aut(bp)| × |I(bp)|

By definition, the entropy of a random bipartite graph, HB, is N2H(p)

where H(p) = p log2
1
p

+ (1 − p) log2
1

1−p . The entropy of a partially labeled
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graph is:

HBp = −
∑

bp∈Bp(N,p)

P (bp) log2 P (bp)

= −
∑

bp∈Bp(N,p)

|I(bp)|P (b) log2 (|I(bp)|P (b))

= −
∑

b∈B(N,p)

P (b) log2 P (b)−
∑

bp∈Bp(N,p)

P (bp) log2 |I(bp)|

= −
∑

b∈B(N,p)

P (b) log2 P (b)−
∑

bp∈Bp(N,p)

P (bp) log2
N !

|Aut(bp)|

= HB − log2N ! +
∑

bp∈Bp(N,p)

P (bp) log2 |Aut(bp)|

= HB − log2N ! +
∑

bp∈Bp(N,p) is symmetric

P (bp) log2 |Aut(bp)|+∑
bp∈Bp(N,p) is asymmetric

P (bp) log2 |Aut(bp)|

Now [34] shows that for all p satisfying the conditions in this theorem, a

random graph G(N, p) on N vertices with edges occurring between any two

vertices with probability p is symmetric with probability O(N−w) for some

positive constant w. We have stated and proved Lem. 17 in Appendix B to

provide a similar result on symmetry of random bipartite graphs which will

be used to compute its entropy.

Note that |Aut(bp)| = 1 for asymmetric graphs, hence∑
bp∈Bp(N,p) is asymmetric

P (bp) log2 |Aut(bp)| = 0

We know that N ! = |Aut(bp)| × |I(bp)|, hence |Aut(bp)| ≤ N !. Therefore,

HBp ≤ HB − log2N ! +
∑

bp∈Bp(N,p) is symmetric

P (bp)N log2N

≤ HB − log2N ! +O( log2N
Nw−1 )

Hence, for any constant w > 1,

HBp ≤ N2H(p)− log2N ! + o(1)

12



This completes the proof.

We can also provide an alternate expression for the entropy of partially

labeled graphs with m possible colors that will be amenable to comparison

with the rate of a universal coding scheme.

Lemma 2. The entropy of a partially labeled bipartite graph, with each

set containing N nodes and edges colored with m possibilities is N2H(p) −
log2(N !) + E[

∑(m+1)N

i=1 log2 (ki!)], where H(p) =
∑m

i=0 pi log2
1
pi

and the kis

are non-negative integers that sum to N .

Proof. As observed earlier, the adjacency matrix of a partially labeled bi-

partite graph is nothing but a multiset of vectors. From [21], we know that

the empirical frequency of all elements of a multiset completely describes

it. Each cell of the vector can be filled in (m + 1) ways corresponding to

m colors or no connection (color 0), hence there can be in total (m + 1)N

possible vectors. The probability of a vector with the ith element having Ki

appearances is:

Pr[Ki = ki] =

(
N

k0, k1, . . . , k(m+1)N

) (m+1)N∏
i=1

πkii

Here, πi is the probability of occurrence of each of the possible vectors. In the

ith vector, let the number of edges with color j be nj. Then, πi =
∏m

j=0 p
nj
j .

Hence, the entropy of the multiset is:

E[log2
1

Pr[Ki=ki]
] = E

[∑
log2 ki!

]
+ E

[∑
ki log2

1
πi

]
− log2N !

and

E[
∑

ki log2
1
πi

] = E

 ∑
(n0,n1,...,nm)

(
n(n0,n1,...,nm)

(
m∑
j=0

nj log2
1
pj

))
where n(n0,n1,...,nm) represents the number of vectors having nj edges of color

j. By linearity of expectation and rearranging terms, we get:

∑
(n0,n1,...,nm)

m∑
j=0

log2
1
pj
E[njn(n0,n1,...,nm)]

13



Now,

Pr[n(n0,n1,...,nm) = l] =

(
N

l

)((
N

n0, . . . , nm

) m∏
j=0

p
nj
j

)l(
1−

(
N

n0, . . . , nm

) m∏
j=0

p
nj
j

)N−l

⇒ E[njn(n0,n1,...,nm)] = njN

((
N

n0, n1, . . . , nm

) m∏
j=0

p
nj
j

)

Thus,

E[
∑

ki log2
1
πi

] =
m∑
j=0

N log2
1
pj

 ∑
(n0,n1,...,nm)

nj

((
N

n0, n1, . . . , nm

) m∏
j=0

p
nj
j

)
=

m∑
j=0

N2pj log2
1
pj

= N2H(p)

3.2 Universal Lossless Compression Algorithm

Next we present Alg. 1, a universal algorithm for compressing a partially la-

beled bipartite graph based on arithmetic coding, and its performance anal-

ysis.

Lemma 3. If Alg. 1 takes L bits to represent the partially labeled bipartite

graph, then E[L] ≤ N2H(p)− log2N ! + E[
∑(m+1)N

i=1 log2 ki!] + 2.

Proof. We know, for any node encoded with α with the encodings of its child

nodes (α0, α1, . . . , αm), that (α0, α1, . . . , αm) is distributed as a multinomial

distribution,M(α0, α1, . . . , αm;α, P ). So, using arithmetic coding to encode

all the nodes, the expected number of bits required to encode all the nodes

is

E

[∑
log2

1

α!
∏m

i=0
(pi)αi

αi!

]
(3.1)

Here, the summation is over all non-zero nodes of the (m+1)-ary tree. Hence

(3.1) can be simplified as

E[
∑

αi log2
1
pi

] + E[
∑

log2 αi!]− log2N !

14



Algorithm 1 Compressing a partially labeled bipartite graph.

Encode the total number of multisets in the root node of an (m + 1)-ary
tree using an integer code and initialize depth, d = 1.
Form m + 1 child nodes of the root node, and use arithmetic code
to encode the ith child node with the number xi, the number of vec-
tors with dth cell having the ith color under the multinomial distribu-
tion. The vector (xd,0, xd,1, . . . , xd,m) follows a multinomial distribution
M(xd,0, xd,1, . . . , xd,m;N,P ), where P represents the probability vector
(p0, p1, . . . , pm). Increase depth by 1.
while d ≤ N do

for each of the nodes at the current depth do
Form m + 1 child nodes of the current node (say, the current node
is encoded with the number α), and use arithmetic code to encode
the child node of color i with the number αi, where αi represents
the number of vectors with the dth column having color i and all
previous columns from 1 to d having the same colors in the same
order as that of the ancestor nodes of the child node starting from the
root node. Here, (α0, α1, . . . , αm) follows a multinomial distribution
M(α0, α1, . . . , αm;α, P ).

end for
increase the depth by 1.

end while
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When the term E[
∑

log2 αi!] is summed over all nodes, then all terms

except those corresponding to the nodes of depth N + 1 cancel, i.e.

E[
∑(m+1)N

i=1 log2 (ki!)]. Similarly, the term E[
∑
αi log2

1
pi

] can be simplified

as N2
∑m

i=0 pi log2
1
pi

, since in the adjacency matrix of the graph, each cell

can have colors from 0 to m with probability pi, and for each color i, the

expected number of cells having color i is N2pi. Thus, we find

E

[∑
log2

1

α!
∏m

i=0
(pi)αi

αi!

]
= N2H(p)− log2 (N !) + E

(m+1)N∑
i=1

log2 ki!


Since we are using an arithmetic coder, it takes at most 2 extra bits [35,

Ch. 13.3].

Theorem 4. The expected compressed length generated by Alg. 1 is within 2

bits of the entropy bound.

Proof. The result follows from Lem. 2 and Lem. 3 by comparing the entropy

expression of a partially labeled random bipartite graph with the expected

length in using Alg. 1.

Theorem 4 states that space saving using this method can be made close to

the theoretical limit. However, the theoretical limit in itself depends on the

value of N , and hence analysis of the theoretical limit directly gives us the

amount of space saving obtained. Note that the theoretical limit tells us that

the space saving can be as much as N logN for large N for partially labeled

bipartite graphs with each layer having N nodes, however, since the size of

the graph is O(N2), the fraction of bits saved reduces as N increases. On

the other hand, for small values of N , the theoretical limit does not allow us

to save around N logN bits. Hence there is a trade-off between the amount

of bits saved and the fraction of bits saved, i.e. for small values of N , the

fraction of bits saved is more whereas as N increases, the fraction of bits

saved decreases but the amount of bits saved increases.

3.3 Inference Algorithm

Algorithm 1 achieves near-optimal compression of partially labeled bipartite

graphs, but we also wish to use such graphs as two-layered neural networks
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without fully decompressing. We next present Alg. 2 to directly use com-

pressed graphs for the inference operations of two-layered neural networks.

Structures that take space equal to the information-theoretic minimum with

only a little bit of redundancy while also supporting various relevant opera-

tions on them are called succinct structures [3] as defined next.

Definition 8. If L is the information-theoretic minimum number of bits

required to store some data, then we call a structure succinct if it represents

the data in L+o(L) bits, while allowing relevant operations on the compressed

data.

Algorithm 2 Inference algorithm for compressed network.

1: Input: X = [x0, x1, . . . , xN−1], the input vector to the neural network,
and L, the compressed representation of the partially labeled bipartite
graph obtained from Alg. 1.

2: Output: Y = [y0, y1, . . . , yN−1], the output vector of the neural network,
and L, the compressed representation as obtained from input.

3: Initialize: Y = [y0, y1, . . . , yN−1] = [0, 0, . . . , 0], d = 0, the number of
neurons processed at the current depth, j = 0, an empty queue Q, and
an empty string L1 which would return the compressed representation
L once the algorithm has executed. Let wi represent the weight corre-
sponding to color i.

4: Enqueue Q with N , decoded from L using integer coding.
5: while Q is not empty and d ≤ N − 1 do
6: f = Q.pop().
7: i = 0.
8: while i ≤ m and f > 0 do
9: Using arithmetic decoding, decode the child node of f from L cor-

responding to color i and store it as c.
10: Encode c back in L1 using arithmetic coding.
11: Enqueue c in Q.
12: Add xd × wi to each of yj to y(j+c−1).
13: j = (j + c) mod N .
14: if j equals 0 and at least one non-zero node has been processed at

the current depth then
15: d = d + 1.
16: end if
17: i = i+ 1.
18: end while
19: end while
20: Update the Y vector using the required activation function.
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Algorithm 2 is a breadth-first search algorithm, which traverses through

the compressed tree representation of the two-layered neural network and

updates the output of the neural network, say Y , simultaneously. Note that

the Y vector obtained from Alg. 2 is a permutation of the original Ỹ vector

obtained from the original uncompressed network. Observe that each element

of Ỹ has a corresponding vector indicating its connection with the input to

the neural network, say X, and when all these elements are sorted in a

decreasing manner based on these connections, it gives Y . This happens

due to the design of Alg. 2 in giving the same Y vector independent of the

arrangement in Ỹ .1

Proposition 5. Inference output Y obtained from Alg. 2 is a permutation

of Ỹ , the output from the uncompressed neural network representation.

Proof. We need to show that the Y obtained from Alg. 2 is a permutation

of Ỹ , obtained by direct multiplication of the weight matrix with the input

vector and passed through the activation function without any compression.

Say we have an m×1 vector X to be multiplied with an m×n weight matrix

W , to get the output Ỹ , an n× 1 vector. Then, Ỹ = W TX, and so the jth

element of Ỹ , Ỹj =
∑m

i=1W
T
j,ixi. In Alg. 2, while traversing a particular depth

i, we multiply all Yjs with XiWi,j and hence when we reach depth N , we get

the Y vector as required. The change in permutation of Ỹ with respect to Y

is because while compressing W , we do not encode the permutation of the

columns, retaining the row permutation.

Proposition 6. The additional dynamic space requirement of Alg. 2 is O(N).

Proof. It can be seen that Alg. 2 uses some space in addition to the com-

pressed data. The symbols decoded from L are encoded into L1, hence, the

combined space taken by both of them at any point in time remains almost

the same as the space taken by L at the beginning of the algorithm. However,

the main dynamic space requirement is because of the decoding of individual

nodes, and the queue, Q. Clearly, the space required for Q, storing up to

two depths of nodes in the tree, is much more than the space required for

decoding a single node.

1Based on this invariance in the output of the compressed neural network, we can rear-
range the weights of the next layers of the neural network accordingly before compressing
them to get a K-layered neural network with the desired output as done in Ch. 5.
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We next show that the expected space complexity corresponding to Q is

less than or equal to 2(m+ 1)N(1 + 2 log2 (m+2
m+1

)) using Elias-Gamma integer

codes (with a small modification to be able to encode 0 as well) for each entry

in Q. Note that Q has nodes from at most two consecutive depths, and since

only the child nodes of non-zero nodes are encoded, and the number of non-

zero nodes at any depth is less than N , we can have a maximum of 2(m+1)N

nodes encoded in Q. Let α0, ..., αk be the values stored in the child nodes of

non-zero tree nodes at some depth d of the tree, where k ≤ (m + 1)N . If

k < (m + 1)N , let αk+1, ..., α(m+1)N be all zeros. Let S be the total space

required to store Q. Using integer codes, we can encode any positive number

x in 2 log2 (x) + 1 bits, and to allow 0, we need 2 log2 (x+ 1) + 1 bits [36].

Thus, the arithmetic-geometric inequality implies

S ≤ 2

(m+1)N∑
i=0

2 log2 (αi + 1) + 1

 ≤ 2N(m+ 1) + 4N(m+ 1) log2 (m+2
m+1

).

Theorem 7. The compressed representation formed in Alg. 1 is succinct in

nature.

Proof. From Prop. 5 and Prop. 6 we know that the additional dynamic space

required for Alg. 2 is O(N), while the entropy of a partially labeled bipartite

graph is O(N2). Thus, from the definition of succinctness, it follows that the

structure is succinct.

Next, we will find the time complexity of Alg. 2.

Proposition 8. The time complexity of Alg. 2 is O(mN2).

Proof. The time taken by Alg. 2 is the sum of time taken while decom-

pressing the nodes and then compressing back each node of the tree, and

computing the output using the decompressed node values. Assuming that

multiplication takes constant time, the time taken for performing compu-

tations to get the output Y is O(N2), since for any i ∈ {0, . . . , N − 1},
xi is multiplied to yj for all j ∈ {0, . . . , N − 1} at most once. The tasks

of compression and decompression essentially take the same time, hence we

will simply show that the time taken for compression is O(mN2). Encoding

a tree node formed in Alg. 1 having value K with its parent node having
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value N , where K ∈ {0, . . . , N}, using arithmetic coding involves forming

the cumulative distribution table of K in O(N) time and finding the interval

corresponding to K in the distribution table in O(1) time. Hence, in the tree

formed in Alg. 1, compressing a node having parent node with value N takes

time O(N) time. Now, there can be at most m+1 nodes with any particular

parent node. Thus, compression of the tree using arithmetic coding will take

O((m + 1)T ) time, where T is the sum of all the node values in the tree.

Also, note that the sum of node values in any layer can be at most N and

the depth of the tree can at most be N , hence T ≤ N2. Thus, the time

complexity of Alg. 2 is O((m+ 1)N2).
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CHAPTER 4

UNLABELED BIPARTITE GRAPHS

Next we consider an unlabeled bipartite graph for which we construct the

adjacency matrix similarly as before, but now the possible entries in each

cell will be binary corresponding to whether or not there is an edge. We first

compute the entropy bound for representing unlabeled bipartite graphs, and

then introduce a universal algorithm for approaching the bound.

4.1 Entropy Bound

Although the structure is slightly different from the previous case, it also

has some interesting properties. The connectivity pattern is independent of

the order of the row vectors and column vectors in this bipartite adjacency

matrix. We say that a matrix has undergone a row permutation if the order

of the rows of the matrix is changed while keeping the order of cells in each

row unchanged. Similarly, we say that a matrix has undergone a column

permutation if the order of the columns of the matrix is changed while keeping

the order of cells in each column unchanged. We say that a matrix has

undergone a valid rearrangement is if it has undergone a sequence of row

and column permutations. Note that under any valid rearrangement, the

unlabeled bipartite graph remains unchanged. Let A represent the adjacency

matrix of a bipartite graph and aij be the cell in the matrix at row i and

column j. Say a valid rearrangement of A transforms it to some matrix, A′,

then, if a cell at row i and column j of A has moved to row k and column

l of the matrix A′ after transformation, then note that the set of cells in

row i of A is the same as the set of cells in row k of A′. We call this set

of cells at row i the row block corresponding to the cell aij, since this set of

cells corresponding to aij does not change under any valid rearrangement.

Similarly, we call the set of cells at column j, the column block corresponding
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to the cell aij.

We will next show that the entropy of an unlabeled random bipartite graph

is N2H(p)−2 log2(N !)+o(1). To that end, we need the following definitions.

Definition 9. Let Bu(N, p) be an unlabeled random bipartite graph model

generating graphs in the same way as a random bipartite graph model, except

that the vertices in both the sets, U and V , are unlabeled, but the sets U

and V themselves remain labeled, i.e. two sets of unlabeled vertices having

the same edge connections as that of a random bipartite graph.

Definition 10. We say b is isomorphic to bu if bu can be formed by removing

labels from all the vertices of b, keeping all the edge connections the same.

The set of all bipartite graphs isomorphic to an unlabeled bipartite graph,

bu, is represented by I(bu).

Theorem 9. For large N , and for all p satisfying p � lnn
n

and 1 − p �
lnn
n

, the entropy of an unlabeled bipartite graph, with each set containing

N vertices and binary colored edges is N2H(p) − 2 log2(N !) + o(1), where

H(p) = p log2
1
p

+ (1− p) log2
1

1−p , and the notation a� b means b = o (a).

Proof. From Thm. 1, we know that for a graph b ∈ B(N, p) with k edges,

P (b) = pk(1− p)(N2−k)

For each bu ∈ Bu(N, p), there exist |I(bu)| number of corresponding b ∈
B(N, p). Thus we have

P (bu) = |I(bu)|P (b)

Considering the permutations of vertices in the sets V and U themselves,

we have a total of (N !)2 permutations. Given that each unlabeled graph bu

corresponds to |I(bu)| number of bipartite graphs, and each bipartite graph

b ∈ B(N, p) corresponds to |Aut(b)| (which is equal to |Aut(bu)|), we get

the number of adjacency-preserving permutations of vertices in the graph,

from [32,33], as:

(N !)2 = |Aut(bu)| × |I(bu)|

We also know that the entropy of random bipartite graph, HB, is N2H(p).
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The entropy of an unlabeled graph is:

HBu = −
∑

bu∈Bu(N,p)

P (bu) log2 P (bu)

= −
∑

bu∈Bu(N,p)

|I(bu)|P (b) log2 (|I(bu)|P (b))

= −
∑

b∈B(N,p)

P (b) log2 P (b)−
∑

bu∈Bu(N,p)

P (bu) log2 |I(bu)|

= −
∑

b∈B(N,p)

P (b) log2 P (b)−
∑

bu∈Bu(N,p)

P (bu) log2
(N !)2

|Aut(bu)|

= HB − 2 log2N ! +
∑

bu∈Bu(N,p)

P (bu) log2 |Aut(bu)|

= HB − 2 log2N ! +
∑

bu∈Bu(N,p) is symmetric

P (bu) log2 |Aut(bu)|+∑
bu∈Bu(N,p) is asymmetric

P (bu) log2 |Aut(bu)|

We will next use a result, Lem. 18 in Appendix B, on symmetry of random

bipartite graphs to compute entropy.

Note that |Aut(bu)| = 1 for asymmetric graphs and so:∑
bu∈Bu(N,p) is asymmetric

P (bu) log2 |Aut(bu)| = 0

We know that (N !)2 = |Aut(bu)| × |I(bu)|, hence |Aut(bu)| ≤ (N !)2. There-

fore,

HBu ≤ HB − 2 log2N ! +
∑

bu∈Bu(N,p) is symmetric

P (bu)2N log2N

≤ HB − 2 log2N ! +O( log2N
Nw−1 )

Further, note that HB = N2H(p) where H(p) = p log2
1
p

+ (1 − p) log2
1

1−p .

Hence, for any constant w > 1,

HBu ≤ N2H(p)− 2 log2N ! + o(1)
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4.2 Universal Lossless Compression Algorithm

In this section, we provide a lossless compression algorithm for unlabeled

bipartite graph which is optimal up to the second-order term. Algorithm 3

takes the adjacency matrix of an unlabeled bipartite graph as input and

outputs two tree structures which are invariant to any valid rearrangement of

the graph. Then these trees are compressed as follows: we perform a breadth

first search on each of the trees and the child nodes of a node with value,

say Nx, are first stored using dlog2 (Nx+ 1)e bits and then the bit-stream

produced after the completion of the breadth first search is compressed using

an arithmetic encoder. Note that binomial distribution has been used for

arithmetic coding, with p as the probability of existence of an edge between

any two nodes of the bipartite graph and q = 1 − p as the probability that

the two nodes are disconnected.

It can be observed that the structure of the trees formed in Alg. 3 is the

same as in [24] except that there are two trees in our algorithm and the first

tree does not lose an element from the root node on its first division. Let

us now define a tree structure which will be useful for the analysis of the

performance of the algorithm.

Definition 11. Let Tn,d,p be a class of random binary trees such that any

tree Tn,d,p ∈ Tn,d,p has depth (n − 1) and is generated in the following way:

(1) The root node is assigned the value n and placed at depth 0. (2) If d > 0,

then starting from depth, t = 0 to t = d − 1, divide each of the nodes with

non-zero values at the current depth into two child nodes such that the sum of

the values assigned to the child nodes is equal to that of the parent node (say

N), and the left child node has value N1 distributed as binomial distribution,

N1 ∼ Binomial(N, p). Else, if d = 0, skip this step. (3) Starting from depth

t = d to t = n − 2, subtract the value of the leftmost node with non-zero

value and divide each of the non-zero nodes at the current depth into two

child nodes in the same way as in the previous step using the updated node

values after subtraction. That is, the sum of the values of the child nodes

is equal to that of the updated value of the parent node, and the left child

node has value assigned to it using binomial distribution. We write Tn,d,p
as Tn,d when p is clear from context, and we use the notations Tn,0 and Tn

interchangeably.
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Algorithm 3 Compressing an unlabeled bipartite graph.

1: Choose any cell containing 1 (call it 1-cell) from the adjacency matrix
(or any cell containing 0 (0-cell) only if no 1-cell is available) and using
valid rearrangements make this cell the top left element of the matrix.
Call it the parent cell. Initially, all cells are unmarked.

2: Form two trees t1 and t2, and store N in the root nodes of each of the
trees. Initialize depth, d = 1.

3: while depth of t1 ≤ N + 1 do
4: Divide every non-empty leaf node at the current depth of tree t1 into

two child nodes. The left child denotes the number of 1-cells that are
unmarked in the column block containing the parent cell; similarly the
right child denotes the remaining 0-cells that are unmarked.

5: Mark all unmarked cells in the column block containing the parent cell.
6: Remove an element from the leftmost node of the tree t2.
7: Choose any cell from the newly formed leftmost child of the tree t1 as

the parent cell.
8: Divide all the leaf nodes at the current depth of the tree t2 into two

child nodes. The left child denotes the number of unmarked 1-cells
in the row block containing the parent cell; similarly the right child
denotes the remaining 0-cells that are unmarked.

9: Choose any cell from the newly formed leftmost child of the tree t2 as
the parent cell.

10: Mark all the unmarked cells in the row block containing the parent
cell.

11: Remove an element from the leftmost node of the tree t1.
12: Increase depth of t1 and t2 by 1.
13: end while
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Let Nx be the number of elements in some node x of either of the trees

formed in Alg. 3 (say T , where T can be t1 or t2 formed in the algo-

rithm). Then the total number of bits required for encoding the tree be-

fore using arithmetic coding is
∑

x∈T and Nx≥1dlog2 (Nx + 1)e. Define L1 =∑
x∈T and Nx>1dlog2 (Nx + 1)e and L2 =

∑
x∈T and Nx=1dlog2 (Nx + 1)e. Let L̂1

and L̂2 be the length of bit-streams corresponding to L1 and L2 respectively

after being compressed using arithmetic coding. So, the total expected bit

length is E [L1]+E [L2] before using arithmetic coding, and E
[
L̂1

]
+E

[
L̂2

]
after using arithmetic coding. Now define

an,d = E

 ∑
x∈Tn,d and Nx>1

dlog2 (Nx + 1)e


bn,d =

∑
x∈Tn,d

Nx −
∑

x∈Tn,d and Nx=1

Nx

Now we bound the compression performance of Alg. 3. The proof for this

bound is based on a theorem for compression of graphical structures [24] and

before stating our result and its proof, we recall two lemmas from there.

Lemma 10. For all integers n ≥ 0 and d ≥ 0,

an,d ≤ xn

where xn satisfies x0 = x1 = 0 and for n ≥ 2

xn = dlog2 (n+ 1)e+
n∑
k=0

(
n

k

)
pkqn−k(xk + xn−k)

Lemma 11. For all n ≥ 0 and d ≥ 0,

bn,d ≥ yn −
n

2
,

such that yn satisfies y0 = 0 and for n ≥ 0,

yn+1 = n+
n∑
k=0

(
n

k

)
pkqn−k(yk + yn−k)
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Theorem 12. If an unlabeled bipartite graph can be represented by Alg. 3 in

L bits, then E[L] ≤ N2H(p)−2N log2 (N) + 2(c+ Φ(log2 (N + 1)))(N + 1) +

o(N), where c is an explicitly computable constant, and Φ(log2 (N + 1)) is a

fluctuating function with a small amplitude independent of N .

Proof. We need to find the expected value of the sum of all the encoding-

lengths in all nodes of both trees. The expected value of length of encoding

for both trees can be upper-bounded by an expression provided in [24].

Let us formally prove that both encodings are upper-bounded by this ex-

pression. If E[Lt1 ] and E[Lt2 ] are the number of bits required to represent

trees t1 and t2, respectively, then the following equations hold.

E[Lt1 ] = aN,1 + N(N+1)
2
− bN,1

E[Lt2 ] = aN,0 + N(N−1)
2
− bN,0

Similarly, E
[
L̂t1

]
and E

[
L̂t2

]
are the number of bits required to represent

trees t1 and t2 after using arithmetic coding, respectively. Using Lem. 10 and

Lem. 11, and bounds on xn and yn from [24] it follows that for any d ≥ 0:

E
[
L̂t1

]
≤ N(N+1)

2
H(p)−N log2N + (c+ Φ(log2 (N + 1)))(N + 1) + o(N)

E
[
L̂t2

]
≤ N(N−1)

2
H(p)−N log2N + (c+ Φ(log2 (N + 1)))(N + 1) + o(N)

Hence, the sum:

E
[
L̂t1

]
+E

[
L̂t2

]
≤ N2H(p)−2N log2N+2(c+Φ(log2 (N + 1)))(N+1)+o(N)

where c is an explicitly computable constant and Φ(log (N + 1)) is a fluctu-

ating function with a small amplitude independent of N . This completes the

proof.

It can be observed that by using Alg. 3 for unlabeled bipartite graphs, we

save roughly N log2N bits when compared to compressing partially labeled

bipartite graph using Alg. 1.
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CHAPTER 5

DEEP NEURAL NETWORKS

Now we return to the K-layer neural network model from Ch. 2. First we

extend the algorithm for unlabeled bipartite graph to compress K-layered

unlabeled graph, and then store the permutation of the first and last layers.

This gives us an efficient compression algorithm for a K-layered neural net-

work, saving around (K−2)×N log2N bits compared to standard arithmetic

coding of weight matrices. Algorithm 4 takes the feedforward neural network

in the form of its weight matrices as input and outputs K tree structures

which are invariant to any valid rearrangement of the weight matrices. Then

these trees are compressed similar to unlabeled bipartite graphs in Ch. 3 as

follows: we perform a breadth first search on each of the trees and the child

nodes of a node with value, say Nx, are first stored using dlog2 (Nx+ 1)e bits

and then the bit-stream produced after the completion of the breadth first

search is compressed using an arithmetic encoder. The binomial distribution

has been used for arithmetic coding, with p as the probability of existence of

an edge between any two nodes of the bipartite graph and q = 1− p as the

probability that the two nodes are disconnected.

5.1 Universal Lossless Compression Algorithm Using

Unlabeled Bipartite Graphs

Theorem 13. Let L be the number of bits required to represent a K-layer

neural network model using Alg. 4. Then E[L] ≤ (K − 1)N2H(p) + (K −
2)NH(p)− (K − 2)N logN + K(c + Φ(log (N + 1)))(N + 1) + o(N), where

c is an explicitly computable constant, and Φ(log (N + 1)) is a fluctuating

function with a small amplitude independent of N .

Proof. The encoding of Alg. 4 is similar to the encoding of Alg. 3. For all

trees, the child nodes of any node with non-zero value Nx are stored using
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Algorithm 4 Compressing a K-layer unlabeled graph.

1: Form root nodes of K binary trees t1, t2, . . . , tK corresponding to K layers
of the neural network, and store N in the root node of all the trees,
corresponding to the N neural network nodes in each of the layers.

2: Initialize iteration number, i = 1, and layer number, j = 1. Let Γ(j)
represent the set of indices of trees corresponding to layers neighboring
to the jth layer of the neural network.

3: while depth of i ≤ N do
4: while depth of j ≤ K do
5: Selection: Select a node of the neural network from layer j that

corresponds to one of the neural network nodes in the leftmost non-
zero node of tj and subtract 1 from the leftmost non-zero node of
tj.

6: Division: Divide every non-empty leaf node of the trees tk for k ∈
Γ(j) into two child nodes based on the connections of the neural
network nodes corresponding to the leaf nodes with the selected
node in the previous step. The left child denotes the number of
neural network nodes not connected to the selected node; similarly
the right child denotes the neural network nodes connected to the
selected node.

7: Increment j by 1.
8: end while
9: Increment i by 1.

10: end while
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[log2Nx + 1] bits. Let the number of bits required to encode the jth layer

be Lj. These bits are further compressed using an arithmetic coder, which

gives us, say, L̂j bits for the jth layer. Observe that the trees for the first

and Kth layer belong to TN,0 and TN,1 respectively. Hence, based on results

from previous sections,

E
[
L̂1

]
+E

[
L̂K

]
≤ N2H(p)−2N log2N+2(c+Φ(log2 (N + 1)))(N+1)+o(N)

But the binary trees formed for the layers 2 to K−1 are different. Instead

of a subtraction from the leftmost non-zero node at each division after the

first d divisions as in a Tn,d type of tree, in these type of trees, let us call

them T 2
n,d type of trees, subtraction takes place in every alternate division

after the first d divisions. We will follow the same procedure for compression

of t2 to tK−1 as for t1 and tK , i.e. we will encode the child nodes of a node

with value Nx with [log2Nx + 1] bits followed by an arithmetic coder. Now

define,

a2n,d = E

 ∑
x∈T 2

n,d and Nx>1

dlog2 (Nx + 1)e


b2n,d =

∑
x∈T 2

n,d

Nx −
∑

x∈T 2
n,d and Nx=1

Nx

We show that a2n,d ≤ xn and b2n,d ≥ yn− n
2

for xn and yn as defined in Lem. 10

and Lem. 11, respectively. These are stated and proved as Lem. 19 and

Lem. 20 in Appendix B.

Returning to the proof, since the trees ti for i ∈ {2, . . . , K − 1}, are all of

the same type, we will have the same expected length of coding for each of

them. Let the expected encoding length for a tree ti for i ∈ {2, . . . , K − 1}
before using arithmetic coding be E [Li], and that after using arithmetic

coding be E
[
L̂i

]
. Then,

E [Li] = N(N + 1) + a2N,1 − b2N,1

Using upper bounds proved in Lem. 19 and Lem. 20, from [24], we know
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that

E
[
L̂i

]
≤ (N2 +N)H(p)−N log2N + (c+ Φ(log2 (N + 1)))(N + 1) + o(N)

where c is an explicitly computable constant and Φ(log (N + 1)) is a fluctu-

ating function with a small amplitude independent of N . Further, since we

need to store the permutation of the input and output layers, we need to

store another 2dN log2Ne bits. This completes the proof.

5.2 Universal Lossless Compression Algorithm Using

Partially Labeled Bipartite Graphs

Now consider an alternative method to compress a deep neural network,

using Alg. 1 iteratively to achieve efficient compression.

Theorem 14. Let L be the number of bits required to represent a K-layer

neural network model through iterative use of Alg. 1. Then E[L] ≤ (k −
1)(N2H(p) − log(N !) + E[

∑(m+1)N

i=1 log (ki!)]) + log2N ! + c, where H(p) =∑m
i=0 pi log 1

pi
, the kis are as defined in Lem. 2, and c is a constant represent-

ing the amount of additional bits required by an arithmetic coder for initiating

and finishing encoding.

Proof. If we focus only on the first two layers of the neural network model,

then by Lem. 2, it can be compressed in less than N2H(p) − logN ! +

E[
∑(m+1)N

i=1 log (ki!)] number of bits. Once the first two layers are encoded,

one can label the nodes of the second layer based on the relationship of its

connectivity with the nodes of the first layer, and treat the second layer

as a labeled layer. Also, the third layer is unlabeled and hence Alg. 1

can be used again to compress the second and third layer using less than

N2H(p)− logN !+E[
∑(m+1)N

i=1 log (ki!) number of bits. This, can be repeated

until all layers are encoded. Further, we also need to store the permutation

of the outer layer of the neural network, which takes an additional log2N !

bits.

Hence, iteratively encoding the K layers gives:

E[LK ] ≤ (K − 1)

N2H(p)− logN ! + E[

(m+1)N∑
i=1

log (ki!)] + log2N ! + c


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where c is the additional number of bits that an arithmetic coder takes to

start and finish encoding.

We have developed two different compression algorithms for feedforward

neural networks. The compression algorithm based on partially labeled graph

appears to be inefficient compared to the one based on unlabeled bipartite

graph since after removing invariances from each layer, it treats the hidden

layer as a labeled layer for compressing the next hidden layer, introducing

some redundancy. However, both algorithms are asymptotically optimal up

to the second-order term. Further, the algorithm based on the partially

labeled graph is easier to implement and also enables easy updates in the

compressed structure. Hence, in the next section, we provide an inference al-

gorithm that makes use of compressed representation of a feedforward neural

network generated using the iterative algorithm introduced in this section.

5.3 Inference Algorithm

Inference for a K-layered neural network is just an extension of Alg. 2. In

particular, the output of Alg. 2 becomes the input for the next layers. How-

ever, one important point to consider in compression, so as to ensure the

inference algorithm of the K-layered neural network still works, is to appro-

priately rearrange the weight matrices. Note that Alg. 2 outputs the Y in

a specific pattern, i.e. the output Y is sorted based on the connections of

output nodes with the input nodes; thus for the algorithm to work, we need

to sort the weight matrix corresponding to the next layer accordingly before

compressing them. Also, note that the last weight matrix connecting to the

output layer of the K-layered neural network need not be compressed since

it is desirable to preserve the ordering of the output layer nodes.

Theorem 15. The compressed structure obtained by the iterative use of

Alg. 1 is succinct.

Proof. Since each layer is computed one at a time in inference and the extra

space required during the inference task of a two-layered neural network is

stored only temporarily, the extra dynamic space requirement for a K-layered

remains the same as for the two-layered neural network described in Alg. 2.
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Hence, the compressed representation for the K-layered neural network is

succinct.

Next we provide the time complexity for inference using Alg. 2 iteratively

and compare it with inference on an uncompressed neural network.

Proposition 16. The time complexity of Alg. 2 used iteratively on a K-

layered neural network for inference is O(mKN2). The time complexity for

inference on an uncompressed neural network is O(KN2).

Proof. From Prop. 8, we already know that the time complexity of Alg. 2

is O(mN2). Clearly, iteratively using Alg. 2 K times takes O(mKN2) time.

Further, each layer of an uncompressed neural network requires O(N2) com-

putation due to matrix multiplication of a vector of size 1×N with a weight

matrix of size N ×N . Hence, K such layers take O(KN2) time.
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CHAPTER 6

EXPERIMENTS

To validate and assess our neural network compression scheme, we trained

feedforward neural networks using stochastic gradient descent on three

datasets, and quantized them using different quantization schemes before us-

ing our lossless compression scheme. The three datasets used are the MNIST

dataset [37], IMDB movie reviews sentiment classification dataset [38], and

the Reuters-21578 dataset [39]. The weights of each of the trained networks

were uniformly quantized using 17, 33, and 65 quantization levels in the in-

terval [−0.16, 0.16]. We trained a feedforward neural network of dimension

784× 50× 50× 50× 50× 10 on the MNIST dataset using gradient descent

to get an accuracy of 95.9% on the test data. The test accuracy of the quan-

tized networks are 87.1%, 94.3%, and 94.9% for quantization levels of 17, 33,

and 65 respectively. Similarly, for the IMDB dataset, a feedforward neural

network of dimension 1000×128×64×2 was trained which gives a test accu-

racy of 85.9%. The quantized networks give test accuracy of 77.9%, 84.7%,

and 85.5% for quantization levels of 17, 33, and 65 respectively. For the

Reuters-21578 dataset, we trained a feedforward neural network of dimen-

sion 1000 × 200 × 100 × 46 to get a test accuracy of 77.0%. The quantized

networks give test accuracy of 72.9%, 75.9%, and 76.4% for quantization

levels of 17, 33, and 65 respectively.

The weight matrices from the second-to-last layer were rearranged based on

the weight matrices corresponding to the previous layers as needed for Alg. 2

to work. These matrices, except the last matrix connected to the output,

were compressed using Alg. 1 to get the compressed network, and arithmetic

coding was implemented by modification of an existing implementation.1 The

compressed network performed exactly as the original quantized network (as

1Nayuki, “Reference arithmetic coding,” https://github.com/nayuki/Reference-
arithmetic-coding, Nov. 2017. Our implementations can be found at https://github.

com/basusourya/DNN
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it should have) since our compression is lossless. We observe that the extra

memory required for inference is negligible when compared to the size of the

compressed network. Detailed results from the experiments and dynamic

space requirements are described in Tab. 6.1, Tab. 6.2, and Tab. 6.3 for

the MNIST, IMDB, and Reuters datasets respectively, where H(p) is the

empirical entropy calculated from the weight matrices.

In these tables, the term MNH(p) − N log2N represents an approxima-

tion to the theoretical bounds in Thm. 13 and 14 since computing the exact

bounds is difficult. The parameters “Avg. queue length” and “Max. queue

length” represent the average and maximum dynamic space requirements

for Alg. 2 respectively. The fact that these two parameters have small val-

ues compared to the size of the network implies that inference without full

decompression of the network takes marginal additional dynamic space.

Tables 6.4 and 6.5 measure the time needed for Alg. 2. Table 6.4 gives a

comparison between time taken for inference using compressed and uncom-

pressed neural networks. The experiments were run using a naive Python

implementation on a system with 12GB RAM, Intel(R) Xeon(R) CPU @

2.20GHz processor. Note that in Tab. 6.4 and 6.5, the neural networks are

named after the data they were trained on and their quantization levels for

conciseness, and that the number of parameters is the number of weights

in a network. Table 6.5 provides the distribution of time taken by differ-

ent components of Alg. 2. In particular, in Tab. 6.5 “% pmf computation”

and “% arithmetic decoding + re-encoding” denote the percentage of time

taken for computation of the pmf for arithmetic coder, and for decoding and

re-encoding respectively. Results show that time taken for making inference

using compressed networks is considerably higher than corresponding uncom-

pressed neural networks, but seemingly not impractical on an absolute scale.

We further investigate the time taken by different components of Alg. 2 in

Tab. 6.5. It can be observed that roughly 90% of the time taken in Alg. 2

is due to arithmetic encoding/decoding and probability matrix computation.

Arithmetic coding is an essential component of our inference algorithm and

so computational performance is also governed by efficient implementations

of arithmetic coding. Efficient high-throughput implementations of arith-

metic coding/decoding have been developed for video, e.g. as part of the

H.264/AVC and HEVC standards [40, 41]. Such efficient implementations

would likely improve time required for our algorithms considerably.
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Table 6.1: Experiments for the MNIST dataset for Alg. 1 and Alg. 2.

Shape of weight
matrix (M ×N)

Quantization
level

MNH(p)−
N log2N

Observed
length
(bits)

Avg. queue
length
(bits)

Max. queue
length
(bits)

M = 784, N = 50
17 152426 149994 150 257
33 188286 188165 151 397
65 223936 225998 155 778

M = 50, N = 50
17 9456 10254 152 255
33 11743 11853 154 251
65 14017 13480 180 396

M = 50, N = 50
17 9456 10304 156 290
33 11743 11892 165 336
65 14017 13465 194 569

M = 50, N = 50
17 9456 10383 153 245
33 11743 12004 173 475
65 14017 13688 178 520

Table 6.2: Experiments for the IMDB dataset Alg. 1 and Alg. 2.

Shape of weight
matrix (M ×N)

Quantization
level

MNH(p)−
N log2N

Observed
length
(bits)

Avg. queue
length
(bits)

Max. queue
length
(bits)

M = 1000, N = 128
17 436597 422241 384 625
33 562773 548951 385 825
65 689138 676129 389 1379

M = 128, N = 64
17 27615 41878 193 331
33 35690 49486 204 618
65 43778 56822 226 910

Table 6.3: Experiments for the Reuters dataset Alg. 1 and Alg. 2.

Shape of weight
matrix (M ×N)

Quantization
level

MNH(p)−
N log2N

Observed
length
(bits)

Avg. queue
length
(bits)

Max. queue
length
(bits)

M = 1000, N = 200
17 731756 711156 600 954
33 927898 909230 602 1444
65 1124189 1107635 606 1739

M = 200, N = 100
17 72664 87618 301 462
33 92278 106227 307 822
65 111907 124906 336 1481
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Table 6.4: Comparison of inference time for compressed and uncompressed
neural networks.

Network name No. of parameters Uncompressed

inference time

Compressed

inference time

MNIST17 46700 0.06 sec 2.30 sec
MNIST33 46700 0.06 sec 2.81 sec
MNIST65 46700 0.06 sec 3.34 sec
IMDB17 136192 0.17 sec 6.4 sec
IMDB33 136192 0.17 sec 7.41 sec
IMDB65 136192 0.17 sec 8.91 sec
Reuters17 220000 0.26 sec 10.14 sec
Reuters33 220000 0.26 sec 12.07 sec
Reuters65 220000 0.27 sec 14.99 sec

Table 6.5: Percentage time taken by different components of Alg. 2.

Network name No. of parameters % pmf computation % arithmetic

decoding +

re-encoding

MNIST17 46700 12 82
MNIST33 46700 15 80
MNIST65 46700 19 76
IMDB17 136192 9 84
IMDB33 136192 11 83
IMDB65 136192 14 80
Reuters17 220000 10 83
Reuters33 220000 12 82
Reuters65 220000 16 79
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CHAPTER 7

CONCLUSION

Data and models that are stored in memory and used for computation are

often no longer of conventional type such as sequential texts or images, but

rather could include structural data such as artificial neural networks, con-

nectomes, phylogenetic trees, or social networks [24, 42]. Moreover there is

growing interest in using neural network models for on-device intelligence

and for scaling cloud-based intelligence, but high-performing deep neural

networks are too large in size. To ameliorate this storage bottleneck, we

have developed lossless compression algorithms for feedforward deep neural

networks that make use of their particular structural invariances in infer-

ence and can act as a final stage for other lossy techniques [15]. Given that

there may be limited prior knowledge on the statistics of synaptic weight

and structure, our compression schemes are universal and yet asymptotically

achieve novel entropy bounds. Further, we show that the proposed com-

pressed representations are succinct and can be used for inference without

complete decompression. These compression algorithms can also be directly

used in fully connected layers of other variants of neural networks, such as

convolutional neural networks or recurrent neural networks.

In future work, we plan to investigate optimal quantization of real-valued

synaptic weights using ideas from functional quantization [43], but taking

into account our novel form of entropy coding.
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APPENDIX A

BASICS OF GROUP THEORY

First we will define a group and then define the notion of equivariance.

Definition 12. A group (G, ◦) is a set G equipped with a binary operator

◦ such that the following axioms are satisfied for (G, ◦).

• Closure: For any g1, g2 ∈ G, then g1 ◦ g2 ∈ G.

• Associativity: For any g1, g2, g3 ∈ G, then g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3.

• Identity: There exists an e ∈ G, such that g ◦ e = e ◦ g for all g ∈ G.

• Inverse: For any g ∈ G, there is a corresponding g−1, such that g◦g−1 =

g−1 ◦ g = e.

Next we define the notion of equivariance of a function φ with respect to

a group G.

Definition 13. A function φ(·) : X 7→ Y is equivariant to a group G if

g ◦ φ(x) = φ(g ◦ x) for all g ∈ G and x ∈ X .
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APPENDIX B

PROOFS

Lemma 17. For all p satisfying p � lnN
N

and 1 − p � lnN
N

, a random par-

tially bipartite graph is symmetric with probability O(N−w) for any positive

constant w.

Proof. Define B = ({U, V }, E), a partially labeled bipartite graph with two

sets of vertices U and V and set of edges E. Let π : U ∪ V → U ∪ V be the

permutation of vertices in the sets U and V . Further, since the vertices in

U are labeled, we take π(u) = u for u ∈ U . Following the definitions of [34],

for a vertex v ∈ V , we define a defect of v with respect to π to be

Dπ(v) = |Γ(π(v))∆π(Γ(v))|

where Γ(v) is the set of neighbors of v and ∆ denotes the symmetric difference

of two sets, i.e., A∆B = (A−B)∪ (B −A) for two sets A and B. Similarly,

one can define a defect of B with respect to π to be

Dπ(B) = max
v
Dπ(v)

and the defect of a graph B can be defined as

D(B) = min
π 6=identity

Dπ(B)

A graph B is symmetric if and only if D(B) = 0 [24]. We will next show

that D(B) > 0 with high probability, for which we will define a few terms

and prove some preliminary results. Let π be a permutation of vertices in V

such that it fixes all but k vertices. Let Z be the set of vertices, {u|π(u) 6= u}
and

X =
∑
u∈P

Dπ(u)

Observe that, by definition, Dπ(u) is a binomially distributed random vari-
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able and E[Dπ(u)] = 2p(1 − p)N . Thus, E[X] = 2p(1 − p)kN . Note that

X depends only on the edges of the graph adjacent to the vertices in Z, and

adding or deleting any such edge (u, v), for u ∈ U and v ∈ V , will only affect

Dπ(v) and Dπ(π−1(v)) each at most by 1. Since X is a sum of binomially

distributed random variables, each of which is formed from mutually inde-

pendent binary choices with some probability, it is a random variable formed

from mutually independent probabilistic binary decisions, such that say with

probability pi it takes one of the two decisions. If the choices made for X can

be indexed by i, and let c be a constant such that changing any such choice

i would change X by at most c, then set σ2 = c2
∑

i pi(1− pi). In our case,

c = 2, hence, σ2 = 4Nkp(1 − p). For all positive t < 2σ
c

, it is shown in [44]

that

P (|X − E[X]| > tσ) ≤ 2e−
t2

4

Set ε = ε(N, p) such that ε = o(1) and ε2Np(1− p)� lnN . Then, for some

positive constant α

P (|X − E[X]| > εNkp(1− p)) ≤ 2e−αε
2Nkp(1−p)

=⇒ P (|X − E[X]| ≤ εNkp(1− p)) > 1− 2e−αε
2Nkp(1−p)

Thus there exists a vertex u in Z such that Dπ(u) ≥ (E[X]−εNkp(1−p))
k

=

(2−ε)Nkp(1−p) with probability at least 1−2e−αε
2Nkp(1−p). Since, Dπ(B) =

max
v
Dπ(v), we have

P (Dπ(B) ≤ (2− ε)Np(1− p)) ≤ 2e−αε
2Nkp(1−p)

Note that there are
(
N
k

)
k! possible permutations such thatN−k vertices are

fixed; thus, there exists a permutation π such that D(B) < (2− ε)Np(1− p)
with probability less than

N∑
k=2

(
N

k

)
k!× (2e−αε

2Nkp(1−p))

As [24] shows,
∑N

k=2

(
N
k

)
k!× (2e−αε

2Nkp(1−p)) is O(N−w) for any positive con-

stant w. Hence, a partially labeled random bipartite graph can be symmetric

with probability at most O(N−w).

Lemma 18. For all p satisfying p � lnN
N

and 1 − p � lnN
N

, a random un-
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labeled bipartite graph is symmetric with probability O(N−w) for any positive

constant w.

Proof. Define B = ({U, V }, E), an unlabeled bipartite graph with two sets

of vertices U and V and set of edges E. Let π : U ∪ V → U ∪ V be the

permutation of vertices in the sets U and V with constraints that π(u) ∈ U
if u ∈ U and similarly π(u) ∈ V if u ∈ V . Following the definitions of [34],

for a vertex v ∈ U ∪ V , we define a defect of v with respect to π to be

Dπ(v) = |Γ(π(v))∆π(Γ(v))|

where Γ(v) is the set of neighbors of v and ∆ denotes the symmetric difference

of two sets, i.e., A∆B = (A−B)∪ (B −A) for two sets A and B. Similarly,

one can define a defect of B with respect to π to be

Dπ(B) = max
v
Dπ(v)

and the defect of a graph B can be defined as

D(B) = min
π 6=identity

Dπ(B)

A graph B is symmetric if and only if D(B) = 0 [24]. We will next show

that D(B) > 0 with high probability, for which we will define a few terms

and prove some preliminary results. Let π be a permutation of vertices in

U ∪ V such that it fixes all but k vertices. Let Z be the set of vertices,

{u|π(u) 6= u} and

X =
∑
u∈P

Dπ(u)

Observe that, by definition, Dπ(u) is a binomially distributed random vari-

able and E[Dπ(u)] = 2p(1 − p)N . Thus, E[X] = 2p(1 − p)kN . Note that

X depends only on the edges of the graph adjacent to the vertices in Z,

and adding or deleting any such edge (u, v), for u ∈ U and v ∈ V , will

only affect Dπ(u), Dπ(π−1(u)), Dπ(v) and Dπ(π−1(v)) each at most by 1.

Since X is a sum of binomially distributed random variables, each of which

is formed from mutually independent binary choices with some probability, it

is a random variable formed from mutually independent probabilistic binary

decisions, such that say with probability pi it takes one of the two decisions.
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If the choices made for X can be indexed by i, and let c be a constant such

that changing any such choice i would change X by at most c, then set

σ2 = c2
∑

i pi(1− pi). In our case, c = 4, hence, σ2 = 16Nkp(1− p). For all

positive t < 2σ
c

, it is shown in [44] that

P (|X − E[X]| > tσ) ≤ 2e−
t2

4

Set ε = ε(N, p) such that ε = o(1) and ε2Np(1− p)� lnN . Then, for some

positive constant α

P (|X − E[X]| > εNkp(1− p)) ≤ 2e−αε
2Nkp(1−p)

=⇒ P (|X − E[X]| ≤ εNkp(1− p)) > 1− 2e−αε
2Nkp(1−p)

Thus there exists a vertex u in Z such that Dπ(u) ≥ (E[X]−εNkp(1−p))
k

=

(2−ε)Nkp(1−p) with probability at least 1−2e−αε
2Nkp(1−p). Since, Dπ(B) =

max
v
Dπ(v), we have

P (Dπ(B) ≤ (2− ε)Np(1− p)) ≤ 2e−αε
2Nkp(1−p)

Note that there are at most maxk1,k2
(
N
k1

)(
N
k2

)
k1!k2! possible permuta-

tions such that k1 + k2 = k and N − k vertices are fixed. Also,

maxk1,k2
(
N
k1

)(
N
k2

)
k1!k2! ≤ Nk. Thus, there exists a permutation π such that

D(B) < (2− ε)Np(1− p) with probability less than

2N∑
k=2

Nk × (2e−αε
2Nkp(1−p)).

As [24] shows,
∑N

k=2N
k×(2e−αε

2Nkp(1−p)) isO(N−w) for any positive constant

w. It follows that
∑2N

k=2N
k×(2e−αε

2Nkp(1−p)) is also O(N−w) for any positive

constant w. Hence, an unlabeled random bipartite graph can be symmetric

with probability at most O(N−w).

Lemma 19. For all integers n ≥ 0 and d ≥ 0,

a2n,d ≤ xn
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where xn satisfies x0 = x1 = 0 and for n ≥ 2

xn = dlog2 (n+ 1)e+
n∑
k=0

(
n

k

)
pkqn−k(xk + xn−k)

Proof. From Alg. 4, observe that a20,d = a21,d = a22,0 = 0. For n ≥ 2, observe

the following recursion relations for a2n,d:

a2n+1,0 = dlog2 (n+ 1)e+
n∑
k=0

(
n

k

)
pkqn−k(a2k,1 + a2n−k,2k+1)

a2n,d = dlog2 (n+ 1)e+
n∑
k=0

(
n

k

)
pkqn−k(a2k,d−1 + a2n−k,2k+d−1)

We will prove the lemma using induction on both n and d. For the base

cases, observe that for n = 0 or 1, a2n,d ≤ xn. Further, for n = 2 and d = 0,

a22,0 ≤ x2. Now, assuming that a2i,j ≤ xi for i < n, and for i = n and j < d,

we want to show that a2n,d ≤ xn. We will consider the following two cases.

Case d = 0: From the recursion relation of xn it follows

that xn = dlog (n+ 1)e +
∑n−1

k=1

(
n
k

)
pkqn−k(xk + xn−k) + (pn +

qn)(
∑n−1

k=1

(
n
k

)
pkqn−k(xk + xn−k)) + (pn + qn)2(xn), which implies that,

xn(1 − (pn + qn)2) = dlog (n+ 1)e +
∑n−1

k=1

(
n
k

)
pkqn−k(xk + xn−k) + (pn +

qn)(
∑n−1

k=1

(
n
k

)
pkqn−k(xk + xn−k)).

Similarly, a2n,0 ≤ a2n+1,0 = dlog (n+ 1)e+
∑n

k=0

(
n
k

)
pkqn−k(a2k,1 + a2n−k,2k+1)

implies that, a2n,0 ≤ dlog (n+ 1)e +
∑n−1

k=1

(
n
k

)
pkqn−k(a2k,1 + a2n−k,2k+1) +

(pn + qn)(a2n,1) which in turn implies that, a2n,0 ≤
dlog (n+ 1)e +

∑n−1
k=1

(
n
k

)
pkqn−k(a2k,1 + a2n−k,2k+1) + (pn +

qn)(
∑n−1

k=1

(
n
k

)
pkqn−k(a2k,0 + a2n−k,2k)) + (pn + qn)2(a2n,0), which yields

a2n,0(1− (pn + qn)2) ≤ dlog (n+ 1)e+
n−1∑
k=1

(
n

k

)
pkqn−k(a2k,1 + a2n−k,2k+1)

+ (pn + qn)(
n−1∑
k=1

(
n

k

)
pkqn−k(a2k,0 + a2n−k,2k))

Further,
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a2n,0(1− (pn + qn)2) ≤ dlog (n+ 1)e+
n−1∑
k=1

(
n

k

)
pkqn−k(xk + xn−k)

+ (pn + qn)(
n−1∑
k=1

(
n

k

)
pkqn−k(xk + xn−k))

implies that

a2n,0(1− (pn + qn)2) ≤ dlog (n+ 1)e+
n−1∑
k=1

(
n

k

)
pkqn−k(xk + xn−k)

+ (pn + qn)(
n−1∑
k=1

(
n

k

)
pkqn−k(xk + xn−k))

which implies that a2n,0 × (1− (pn + qn)2) ≤ xn × (1− (pn + qn)2).

Case d > 0: a2n,d = dlog2 (n+ 1)e +
∑n

k=0

(
n
k

)
pkqn−k(a2k,d−1 + a2n−k,2k+d−1)

implies that a2n,d ≤ dlog2 (n+ 1)e+
∑n

k=0

(
n
k

)
pkqn−k(xk + xn−k) which yields

a2n,d ≤ xn.

Lemma 20. For all n ≥ 0 and d ≥ 0,

b2n,d ≥ yn −
n

2
,

such that yn satisfies y0 = 0 and for n ≥ 0,

yn+1 = n+
n∑
k=0

(
n

k

)
pkqn−k(yk + yn−k)

Proof. First observe that b0,d = b1,d = b2,0 = 0, and for n ≥ 2, b2n,d forms the

following recursion relation.

b2n+1,0 = n+
n∑
k=0

(
n

k

)
pkqn−k(b2k,1 + b2n−k,2k+1)

b2n,d = n+
n∑
k=0

(
n

k

)
pkqn−k(b2k,d−1 + b2n−k,2k+d−1)
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We will use induction on both n and d to prove the claim. For the base

cases, clearly for n = 0 or n = 1, b2n,d ≥ yn − n
2
. Also for n = 2 and d = 0,

b2n,d ≥ yn− n
2

holds. Now, assuming that b2i,j ≥ yi− i
2

for i < n, and for i = n

and j < d, we want to show that b2i,j ≥ yi− i
2
. We will consider the following

two cases.

Case d = 0: b2n,0 = (n−1)+
∑n−1

k=0

(
n−1
k

)
pkqn−k−1(b2k,1 + bn−k−1,2k+1) which

implies b2n,0 ≥ (n − 1) +
∑n−1

k=0

(
n−1
k

)
pkqn−k−1(yk − k

2
+ yn−k−1 − n−k−1

2
) that

leads to b2n,0 ≥ yn − n−1
2

and finally, b2n,0 ≥ yn − n
2
.

Case d > 0: b2n,d = n+
∑n

k=0

(
n
k

)
pkqn−k(bk,d−1 + b2n−k,2k+d−1) implies b2n,d ≥

yn+1 − n
2
. From [24], we know that yn+1 ≥ yn, and so b2n,d ≥ yn − n

2
.
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