
© 2020 by Christopher Gartland. All rights reserved.



BILIPSCHITZ EMBEDDINGS AND NONEMBEDDINGS OF METRIC SPACES AND
RELATED PROBLEMS

BY

CHRISTOPHER GARTLAND

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Jang-Mei Wu, Chair
Professor Jeremy Tyson, Director of Research
Professor Marius Junge
Professor Denka Kutzarova



Abstract

This thesis is concerned with problems relating to the Lipschitz category of metric spaces. We are chiefly

interested in building machinery that can be used to deduce the existence or nonexistence of biLipschitz

embeddings from one class of metric spaces into another. We will discuss two families of results along these

lines.

The first family deals with the problem of biLipschitz embeddability of metric spaces into Banach spaces

with Radon-Nikodým property (henceforth, RNP spaces). A major role in this story is played by differentia-

tion theories of Lipschitz functions on metric measure spaces. Nonabelian Carnot groups are prime examples

of spaces which support a good differentiation theory, and as a consequence they do not biLipschitz embed

into any RNP space, as observed independently by Cheeger-Kleiner and Lee-Naor as a corollary of Pansu’s

theorem. In search of a nonlinear, metric characterization of the RNP, Ostrovskii found another class of

metric spaces that do not biLipschitz embed into RNP spaces, namely spaces containing thick families of

geodesics. His proof used an elementary martingale argument and involved no differentiation theory. Our

first result is that any metric space containing a thick family of geodesics also contains a subset and a proba-

bility measure on that subset that supports a weak differentiation theory for RNP-valued Lipschitz functions.

A corollary is a new nonembeddability result: the product of a Carnot group and an RNP space does not

contain a biLipschitz copy of a thick family of geodesics. A second result from this project is that, if the

metric space is a nonRNP Banach space, a subset consisting of a thick family of geodesics can be constructed

to support a true differentiation theory of RNP-valued Lipschitz functions, like the one supported by Carnot

groups. An intriguing question is whether the only obstructions to biLipschitz embeddability of complete

metric spaces into RNP spaces, like the ones arising from differentiation theory, are local. If this question

has a positive answer, it would imply that every complete, topologically discrete metric space biLipschitz

embeds into an RNP space. Our third result is a proof of this statement in the special case where the metric

space (X, d) is essentially uniformly discrete, meaning there is a θ > 0 such that |Bθ(p)| < ∞ for every

p ∈ X. This generalizes a result of Kalton who proved that every uniformly discrete metric space biLipschitz

embeds into an RNP space. Like Kalton, we prove our result by showing that the Lipschitz free space of X
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has the RNP.

The second family of results contained in this thesis is on the calculation of Markov convexity exponents

of Carnot groups and applications. Markov convexity, developed by Lee-Naor-Peres and Mendel-Naor, is

a biLipschitz and Lipschitz quotient invariant of metric spaces arising as a nonlinear generalization of the

property of p-convexity of Banach spaces. It depends only on the finite subsets of the metric space and is

thus of a different nature than theories of differentiation, which necessitate the existence of cluster points.

Our first main result from this family is that every Carnot group G of step r is Markov p-convex for all

p ∈ [2r,∞). Our second result is that this is sharp whenever G is a Carnot group with r ≤ 3 or a model

filiform group; such groups are not Markov p-convex for any p ∈ (0, 2r). This continues a line of research

started by Li who proved this sharp result when G is the Heisenberg group. Finally, we obtain the following

corollaries of these theorems, which are not attainable by differentiation methods: let G be a Carnot group

of step r such that r ≤ 3, G is a free Carnot group, or G is a jet space group. Let G′ be any Carnot group

of step r′ < r.

1. For any lattice Γ ≤ G, the biLipschitz distortion of the Γ-ball of radius R (with respect to a fixed finite

generating set) into G′ is & ln(R)
1

2r′ −
1
2r

ln(ln(R))
1

2r′ +
1
2r

.

2. G is not a Lipschitz quotient of any subset of G′.

3. G is not a Lipschitz quotient of any subset of Lp (or any p-convex space) for any p ∈ (1, 2r).

4. The model filiform group of infinite step is not a Lipschitz quotient of any subset of a superreflexive

Banach space.

The main question left open by this work is whether there is some Carnot group of step r that is Markov

p-convex for some p < 2r.
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Chapter 1

Introduction

1.1 Background

1.1.1 BiLipschitz Embeddings and Assouad’s Theorem

A metric space is a pair (X, d), where X is a set and d : X ×X → [0,∞) is a metric, or distance, satisfying

for all x, y, z ∈ X,

� d(x, y) = 0⇔ x = y (Positive definiteness)

� d(x, y) = d(y, x) (Symmetry)

� d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

We will often suppress notation and just write X instead of (X, d). Although the most important examples

of metric spaces are the (finite dimensional) Euclidean spaces (Rn, (x, y) 7→ ‖x − y‖2), the population is

much more varied - metric spaces range from graphs to (sub)Riemannian manifolds to infinite dimensional

Banach spaces. Metric spaces also support an extremely rich mapping theory; one may consider, for example,

categories whose mappings are continuous, uniformly continuous, quasisymmetric, quasi-isometric, coarse,

Lipschitz, or isometric, to name a few. The first two categories are fundamental to basic calculus. The

next two are central to geometric group theory and the proof of Mostow’s rigidity theorem ([Mos73]), and

the fifth gained popularity for its application to the Novikov conjecture ([Yu00]). It is, however, the sixth

category, and in particular biLipschitz embeddings, that are the concern of this thesis. Let us state the

relevant definitions here.

Definition 1.1. A map f : X → Y between metric spaces (X, dX) and (Y, dY ) is called Lipschitz or

a Lipschitz map if there exists an L < ∞ such that dY (f(x), f(y)) ≤ LdX(x, y) for all x, y ∈ X. The

smallest such L is called the Lipschitz constant of f . We also say that f is L-Lipschitz an L-Lipschitz

map. f is called biLipschitz or a biLipschitz embedding if there are 0 < D < ∞ and L < ∞ such that

dX(x, y) ≤ DdY (f(x), f(y)) ≤ LdX(x, y) for all x, y ∈ X. The least such L is called the biLipschitz
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distortion, or just distortion of f . We also say that f is L-biLipschitz or an L-biLipschitz embedding. If f is

also surjective, f is called an L-biLipschitz equivalence, or just biLipschitz equivalence and X and Y are said

to be biLipschitz equivalent. A 1-biLipschitz embedding is called an isometric embedding, and a 1-biLipschitz

equivalence is called an isometry. In this case X and Y are said to be isometric. If a set X is equipped

with two metrics such that the identity map between them is biLipschitz, then the metrics are biLipschitz

equivalent, or just equivalent.

Given x ∈ X and r ≥ 0, we let Br(x) denote the ball of radius r centered at x; Br(x) := {y ∈ X :

dX(x, y) ≤ r}. A surjective map f : X → Y is a Lipschitz quotient if there exist 0 < D < ∞ and L < ∞

such that Br(f(x)) ⊆ f(BDr(x)) ⊆ BLr(f(x)) for all r > 0, x ∈ X. We also say that f is an L-Lipschitz

quotient map.

The Lipschitz category also has its applications, especially to approximations in computer science. See

[Vem04] for applications of the Johnson-Lindenstrauss lemma ([JL84]) and [LN06] and [NY18] for a discussion

of the Sparsest Cut problem and the Goemans-Linial conjecture. Even so, our reasons for studying biLipschitz

embeddings are pure mathematical, and we hold that the theory has intrinsic interest for the wealth of

its results and diversity of its tools. Of the embeddings in the metric categories we named, biLipschitz

embeddings are the second most rigid behind isometric ones. Why study biLipschitz maps instead of isometric

ones then? We’ll give two reasons. The first is that it often happens that a particular mathematical structure

may be naturally equipped with an equivalence class of metrics, but not with any one particular metric. For

example, consider a finitely generated group Γ and a finite generating set S with e /∈ S and S−1 = S. Define

the Cayley graph of (Γ, S) by letting the vertex set be Γ and the edge set being all pairs (g, h) such that

g−1h ∈ S. Then we may equip this graph with the shortest path metric and obtain a metric on Γ. This

metric generally depends on the choice of generating set S, but any two finite generating sets yield biLipschitz

equivalent metrics. Thus, knowing only the algebraic structure of Γ, the statement “Γ biLipschitz embeds

into X” is well-defined, but the statement “Γ isometrically embeds into X” is not. Another reason is that

isometric embeddings are in many cases simply too rigid and lead to a void theory rather than a rich one.

Doubling Hölder spaces furnish such an example.

Definition 1.2. A metric space X is called doubling if there is C <∞ such that for every r > 0 and x ∈ X,

there is a finite set Y ⊆ X with |Y | ≤ C and ∪y∈YBr/2(y) ⊇ Br(x). A metric space (X, d) is called Hölder

if there is q > 1 such that dq satisfies the triangle inequality.

The isometric category does not allow for a rich embedding theory for these spaces into Euclidean spaces.

Theorem 1.1 ([LDRW18]). An infinite Hölder space does not isometrically embed into any Euclidean space.
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This is in sharp contrast to the biLipschitz category, which allows the for the beautiful Assouad embedding

theorem.

Theorem 1.2 ([Ass83]). Every doubling Hölder space biLipschitz embeds into some Euclidean space.

The doubling assumption in Assouad’s theorem is easily seen to be necessary, so the obvious question is

whether the Hölder assumption is necessary.

Question 1.1. Does every doubling metric space admit a biLipschitz embedding into a Euclidean space?

The answer to this question is trivial if “biLipschitz” is replaced with “isometric”. Indeed, let X =

{w, x, y, z} and

d(a, b) :=


0 a = b

1 {a, b} ∈ {{w, x}, {x, y}, {y, z}, {z, x}}

2 {a, b} ∈ {{w, y}, {x, z}}

X can be pictured as the vertices of a square, where the distance between adjacent vertices is 1 and opposite

vertices is 2. X is doubling since |X| <∞, but admits no isometric embedding into a Euclidean space. This

is because Euclidean spaces have the property that if w, x, y, z ∈ Rn and ‖w − x‖ = ‖x− y‖ = 1
2‖w − y‖ =

‖z − y‖ = ‖w − z‖, then x = w+y
2 = z. Of course, this argument does not apply equally well to biLipschitz

embeddings, since |X| < ∞ implies that it does biLipschitz embed into R. Nevertheless, the answer to

Question 1.1 is a resounding NO, and the examples and tools used to provide this answer are the starting

points for the research in this thesis.

1.1.2 The Heisenberg Group

Definition 1.3. Let H denote R3 equipped with the binary operation (x, y, t) ∗ (x′, y′, t′) = (x + x′, y +

y′, t+ t′− 2xy′+ 2x′y). This binary operation is a group product, and H is called the Heisenberg group. We

denote the abelianization map πab : H→ R2, πab(x, y, t) = (x, y). Let ‖(x, y, t)‖K := ((x2 + y2)2 + t2)
1
4 and

dK((x, y, z), (x′, y′, z′)) := ‖(x, y, z)−1 ∗ (x′, y′, t′)‖K . dK is a metric on H, called the Korányi metric. When

we refer to the Heisenberg group, we are typically referring to the metric space (H, dK).

The Heisenberg group is doubling, and it was observed by Semmes ([Sem96]) that Pansu’s differentiation

theorem implies that no Euclidean space admits a biLipschitz embedding of the Heisenberg group, thus

negatively answering Question 1.1 (see Section 1.3.3 for background on Pansu’s theorem). Later, Cheeger-

Kleiner and Lee-Naor independently extended this observation to Banach spaces with the Radon-Nikodým

property (henceforth, RNP, see Section 1.3.1 for further background).
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Definition 1.4. A Banach space V has the RNP, or is an RNP space if every Lipschitz map R → V is

differentiable Lebesgue-almost everywhere.

Theorem 1.3 ([CK06], Theorem 6.1; [LN06], Section 1.2). H does not biLipschitz embed into any RNP

space.

Li found a fundamentally different proof of the non-biLipschitz embeddability of the Heisenberg group

into Hilbert space using Markov convexity (see Section 1.1.6 for background on Markov convexity). The

proof is fundamentally different because Markov convexity is a finitary notion, as opposed to differentiation

which requires cluster points.

Theorem 1.4 ([Li16], Theorem 1.1, Corollary 1.3). H is Markov p-convex if and only if p ≥ 4. Consequently,

H does not biLipschitz embed into Hilbert space.

A question left open by the work of Li is whether a similar statement holds true for Carnot groups of

higher step (H has step 2, see Section 1.3.3 for background on Carnot groups).

Question 1.2. If G is a Carnot group of step r, is G Markov p-convex if and only if p ≥ 2r?

The Banach space L1([0, 1]) is not an RNP space, but despite this fact it also admits no biLipschitz

embedding of the Heisenberg group.

Theorem 1.5 ([CK10]). H does not biLipschitz embed into L1([0, 1])

The proof method used here by Cheeger-Kleiner is still differentiation-based. A stronger, quantitative

version of this theorem was found by Naor-Young in [NY18] using method of quantitative rectifiability.

Importantly, it also solved a strong version of the Goemans-Linial conjecture (see [NY18] for a discussion).

The differentiation theorem of Pansu is a generalization of Rademacher’s theorem from Euclidean spaces

to Carnot groups. In [Che99], Cheeger found an even vaster generalization of Rademacher’s theorem for a

class of metric measure spaces called PI spaces (see Section 1.3.4). In addition to the Heisenberg group,

one of the first and most important examples of a PI space is Laakso space, our next example of a doubling

space non-biLipschitz embeddable into Euclidean spaces.

1.1.3 Laakso Space

Definition 1.5. We define a sequence of metric graphs G0, G1, . . . recursively, as follows:

� G0 consists of two vertices connected by a single edge, whose length is 1. The metric on G0 is denoted

d0.

4



G0

G1

G2

G∞

π0

π1

π2

Figure 1.1: The Laakso diamond graphs. Each new graph Gi+1 is obtained from Gi by replacing each edge
with a copy of G1, scaled down so that the diameter of Gi+1 remains 1. There are 1-Lipschitz surjections
πi+1 : Gi+1 → Gi, and the Laakso space, G∞, is defined to be the inverse limit of this system.

� Each new graph Gi+1 is obtained from Gi by replacing each edge of Gi with a copy of G1, shown in

Figure 1.1, scaled down so that the diameter of Gi+1 remains 1. That is, the length of each edge in

Gi+1 is one fourth of the length of each edge in Gi. Gi+1 is equipped with the shortest path metric

di+1.

There are canonical 1-Lipschitz surjections πi+1 : Gi+1 → Gi defined by collapsing each scaled down copy of

G1 back onto the edge which it replaced. Laakso space, G∞, is defined to be the inverse limit metric space

of the system. Specifically, G∞ is the set {x ∈ Π∞i=0Gi : ∀i, πi(xi+1) = xi} equipped with the metric d∞

defined by d∞(x, y) := limi→∞ di(xi, yi).

In the form we present, Laakso space was actually first introduced by Lang-Plaut in [LP01], inspired by

a construction of Laakso in [Laa00]. In any case, it has become conventional in the field to refer to G∞ as

Laakso space.

In [LP01, Theorem 2.3], Lang-Plaut proved that Hilbert space does not admit a biLipschitz embedding

of Laakso space. In [CK09], Cheeger-Kleiner extended this to RNP spaces using the theory of differentiation

on metric measure spaces.

Theorem 1.6 ([CK09], Corollary 1.7). G∞ satisfies the differentiability nonembeddability criterion into

RNP spaces (see Definition 1.26). Consequently, G∞ does not biLipschitz embed into any RNP space.
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In [Ost14b], Ostrovskii proved a nonlinear characterization of RNP spaces as those that do not admit

biLipschitz embeddings of a class of metric spaces called thick families of geodesics (see Theorem 1.8 and

Definition 1.6). As a consequence, he provided a different proof of the non-biLipschitz embeddability of

Laakso space into RNP spaces.

Theorem 1.7 ([Ost16], Example 3.3). G∞ contains a thick family of geodesics. Consequently, G∞ does not

biLipschitz embed into any RNP space.

Ostrovskii’s method of proof via martingales and is quite elementary compared to that of Cheeger-Kleiner.

1.1.4 The RNP and Thick Families of Geodesics

It’s been known since 1973 that Lipschitz maps from separable Banach spaces to RNP spaces are, in a

suitable sense, differentiable almost everywhere. This is due independently to [Aro76], [Chr73], and [Man73]

(see [BL00, section 6.6]). It follows that the RNP is inherited under biLipschitz embeddability of Banach

spaces, since it is inherited under isomorphic embeddability. It is then natural to ask for a purely metric

characterization of the RNP - one that does not rely on the linear structure. This question was asked by

Bill Johnson in 2009 and answered in 2014 by Ostrovskii (see [Ost14b, Section 1]).

Theorem 1.8 ([Ost14b], Corollary 1.5). A Banach space does not have the RNP if and only if it admits a

biLipschitz embedding of a thick family of geodesics.

Definition 1.6. Let (X, d) be a metric space and p, q ∈M . A p-q geodesic is an isometric embedding from

some closed bounded interval into X mapping the left endpoint of the interval to p and the right endpoint

to q. The distance function d is said to be geodesic if there exists a p-q geodesic for every p, q ∈ X. A family

of p-q geodesics Γ with common domain [a, b] is said to be concatenation closed if for every c ∈ [a, b] and

γ1, γ2 ∈ Γ with γ1(c) = γ2(c), the concatenated curve γ defined by γ(t) = γ1(t) if t ∈ [a, c], γ(t) = γ2(t) if

t ∈ [c, b], also belongs to Γ.

Given α > 0, a concatenation closed family of p-q geodesics Γ sharing a common domain [a, b] is said

to be α-thick or an α-thick family of geodesics if for every γ ∈ Γ and a = t0 < t1 < . . . tk = b, there exist

a = q0 < s1 < q1 < s2 < . . . sj < qj = b and γ̃ ∈ Γ such that

� {ti} ⊆ {qi}

� γ(qi) = γ̃(qi)

�
∑j
i=1 d(γ(si), γ̃(si)) ≥ α
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A concatenation closed family of p-q geodesics Γ sharing a common domain [a, b] is said to be thick or a

thick family of geodesics if it is α-thick for some α > 0.

Remark 1.1. Informally, a family of geodesics is concatenation closed if for any γ1, γ2 in the family, the

geodesic obtained by concatenating an initial segment of γ1 and a terminal segment of γ2 also belongs to the

family. Informally, a concatenation closed family of p-q geodesics is α-thick if for any geodesic γ in the family

and any finite set of points F in the image of γ, there is another geodesic γ̃ in the family that intersects γ

at each point of F (but possibly more points), and so that the deviation of γ̃ from γ between their points of

intersection adds up to at least α.

On the other hand, according to another intriguing result of Ostrovskii, the Heisenberg group does not

admit a biLipschitz embedding of a thick family of geodesics. This is due to Theorem 1.4 the fact that

Markov convexity is inherited under biLipschitz embeddings, and the following result of Ostrovskii.

Theorem 1.9 ([Ost14a],Theorem 1.5). Metric spaces admitting a biLipschitz embedding of a thick family of

geodesics are not Markov p-convex for any p. Consequently, H does not admit a biLipschitz embedding of a

thick family of geodesics.

So although containing a thick family of geodesics is a necessary condition for the non-biLipschitz em-

beddability of Banach spaces into RNP Banach spaces, the same is not true of general metric spaces, even

for quasi-convex ones such as H.

Question 1.3. When does a metric space fail to biLipschitz embed into RNP spaces?

1.1.5 Uniformly Discrete Metric Spaces

The proofs of Theorems 1.3, 1.6, and 1.8 actually imply something stronger than non-biLipschitz embed-

dability, namely non-local biLipschitz embeddability.

Definition 1.7. A metric space (X, dX) is said to locally biLipschitz embed into a class of metric spaces

Y if for every x ∈ X, there are an open set Ux ⊆ X and a metric space Yx ∈ Y such that x ∈ Ux and Ux

biLipschitz embeds into Yx.

Differentiation methods (and also the closely related martingale methods) are inherently local, so in fact

we know that the Heisenberg group and Laakso space do not locally biLipschitz embed into RNP spaces.

As far as we are aware, these are the only known techniques used to prove non-biLipschitz embeddability.

Thus, a specific form of Question 1.3 is:
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Question 1.4. Are the only obstructions to the biLipschitz embeddability of complete metric space into

RNP spaces local? That is, if a complete metric space X locally biLipschitz embeds into RNP spaces, must

X biLipschitz embed into some RNP space?

An example where the hypothesis is trivially satisfied is when the metric space is discrete. In this case,

Question 1.4 takes the form:

Question 1.5. Does every complete, discrete metric space biLipschitz embed into an RNP space?

The strongest partial result towards a positive answer to Question 1.5 is due to Kalton.

Definition 1.8. A metric space (X, d) is called uniformly discrete if there is θ > 0 such that d(x, y) ≥ θ for

all x 6= y ∈ X.

Theorem 1.10 ([Kal04], Proposition 4.4). If X is uniformly discrete, then LF (X) has the RNP.

This theorem implies uniformly discrete metric spaces isometrically embed into RNP spaces, since every

metric space X isometrically embeds into its Lipschitz free space LF (X) (see Definition 1.17).

1.1.6 The Ribe Program and Markov Convexity

See [Nao12] and [Nao18] for good surveys on the Ribe program.

Definition 1.9. A Banach space V is finitely representable in another W if there exists λ <∞ such that for

any finite dimensional F ⊆ V , there is an injective linear map T : F → W with ‖T‖‖T−1‖ ≤ λ. Properties

of Banach spaces that are preserved under mutual finite representability are called local.

In [Rib76], Ribe showed that if two Banach spaces E,F are uniformly homeomorphic, then they are

mutually finitely representable. This theorem implies that local properties are really metric properties,

suggesting that each should have a reformulation that involves only the metric structure of the Banach

space and not the linear structure. The research program concerned with finding these reformulations is

known as the Ribe program. The program was initiated by Bourgain in [Bou86] in which he made the

first substantial contribution by characterizing superreflexive Banach spaces as those which do not admit

biLipschitz embeddings of the binary trees of depth k with uniform control on the biLipschitz distortion.

Another major contribution to the Ribe program is a purely metric reformulation of p-convexity (see Section

1.3.1 for background on superreflexivity and p-convexity). The metric property Markov p-convexity was

originally defined by Lee-Naor-Peres in [LNP09] and proved by Mendel-Naor in [MN13] to be a reformulation

of p-convexity. Here are the specifics:
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Definition 1.10 ([MN13], Definition 1.2). Let {Xt}t∈Z be a Markov chain on a state space Ω. Given an

integer k ≥ 0, we denote by {X̃t(k)}t∈Z the process which equals Xt for time t ≤ k and evolves independently

(with respect to the same transition probabilities) for time t > k. Fix p > 0. A metric space (M,d) is called

Markov p-convex if there is Π <∞ so that for every Markov chain {Xt}t∈Z on a state space Ω, and for every

f : Ω→M ,
∞∑
k=0

∑
t∈Z

E[d(f(Xt), f(X̃t(t− 2k)))p]

2kp
≤ Πp

∑
t∈Z

E[d(f(Xt+1), f(Xt))
p]

Set Πp(M) equal to the least value of Π so that the above inequality holds (whenever it exists). Πp(M) is

called the Markov p-convexity constant of M .

Definition 1.11. Fix p > 0. A metric space (X, d) is 4-point p-convex if there exist a symmetric function

ρ : X ×X → [0,∞) and constants C,K <∞ such that for all x, y, w, z ∈ X,

1

C
d(x, y) ≤ ρ(x, y) ≤ Cd(x, y)

and

ρ(y, x)p +
ρ(y, z)p

2
+
ρ(y, w)p

2
− ρ(x, z)p

2p
− ρ(x,w)p

2p
≥ ρ(z, w)p

K

Theorem 1.11 (Theorem 1.3, [MN13]). A metric space that is 4-point p-convex is Markov p-convex, and a

Banach space is p-convex if and only if it is 4-point p-convex if and only if it is Markov p-convex.

We have already seen an application of Markov convexity in Theorem 1.9. Here is another very interesting

application.

Theorem 1.12 ([LNP09], Lemma 3.8). If a finitely generated group Γ admits a nonconstant, bounded

harmonic function, then Γ is not Markov p-convex for any p. Consequently, Γ does not biLipschitz embed

into any superreflexive Banach space.

In addition to Theorem 1.4, the following is known about the Markov convexities of Carnot groups.

Theorem 1.13 ([Li14], Proposition 7.2 and Theorem 7.4). Every graded nilpotent Lie group of step r is

Markov 2(r!)2-convex.

1.2 Summary of Results

1.2.1 Thick Families of Geodesics and Differentiation

See Chapter 2 for further discussion and proofs of the statements in this subsection.
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We sought to study nonembeddability into RNP spaces (Question 1.3) in more detail. The Heisenberg

group (Theorem 1.9) shows that it can not be determined using thick families of geodesics.

Question 1.6. Is there a more general RNP non-biLipschitz embeddability criterion that works equally well

for thick families of geodesics and the Heisenberg group? The Heisenberg group satisfies the differentiability

nonembeddability criterion into RNP spaces (see Definition 1.26 and the proceeding examples) - do thick

families of geodesics also satisfy this criterion?

We prove that the answer to this question is yes if the notion of differentiability is weakened. The type of

RNP LDS (see Definition 1.24) we construct is weaker than a true RNP LDS because the almost everywhere

approximation of RNP-valued Lipschitz functions by their derivative only holds on some sequence of scales

tending to 0 instead of all scales. More specifically, we prove Theorems 2.3 and 2.9, which can be summarized

as:

Theorem 1.14 (Summary of Theorems 2.3 and 2.9). For any complete metric space M containing a thick

family of geodesics, there exist a compact subset X∞, Borel probability measure µ∞ on X∞, Lipschitz map

π : X∞ → [0, 1], Borel subset S∞ ⊆ X∞, a sequence of scales ri(x) ↘ 0 for almost every x ∈ X∞, and a

nonprincipal ultrafilter U(x) on N for each x ∈ S∞ such that:

2.3 µ∞(S∞) > 0, and for every x ∈ S∞ the tangent cone T
ri(x),U(x)
x X∞ admits no continuous injection

into R.

2.9 For every RNP space B and Lipschitz map f : X∞ → B, for µ∞-almost every x ∈ X∞, f is differen-

tiable at x with respect to π along the sequence of scales (ri(x))∞i=0.

As a corollary, we obtain a new proof of nonembeddability into RNP spaces:

Corollary 1.1. A metric space M containing a thick family of geodesics does not biLipschitz embed into

any RNP space.

The proof is the same as for the true differentiation nonembeddability criterion into RNP spaces (see

Theorem 1.21).

Proof. Let B be an RNP space and assume there is a biLipschitz map f : M → B. We may assume

M is complete. Let X∞ ⊆ M , µ∞, S∞, ri(x), and U(x) be as in the statement of Theorem 1.14. Since

µ∞(S∞) > 0, there exist a point x ∈ S∞ and a nonprincipal ultrafilter U(x) such that f is differentiable at

x along (ri(x))∞i=0 with respect to π and T
ri(x),U(x)
x X∞ admits no continuous injection into R. The function

f being differentiable with respect to π at x along (ri(x))∞i=0 implies that there exists a unique linear map
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f ′(x) : R → B such that, for every nonprincipal ultrafilter U , the blowup of f at x, fx : T
ri(x),U
x X∞ → B,

exists and factors though the blowup of π at x, πx : T
ri(x),U
x X∞ → R, and f ′(x) : R → B. That is,

fx = f ′(x) ◦ πx. Since T
ri(x),U(x)
x X∞ admits no continuous injection into R, πx cannot be injective, which

by the factorization implies fx cannot be injective, in turn implying f cannot be biLipschitz.

Theorem 1.14 actually proves a stronger statement, Corollary 2.1. We postpone the proof until Section

2.7. We chose to give a separate proof Corollary 1.1 because it is easier and requires no knowledge of Carnot

groups.

Corollary 2.1. A complete metric space M containing a thick family of geodesics does not biLipschitz embed

into the product metric space G×B, where G is a Carnot group and B is an RNP space.

At the time of this writing, Theorems 1.8 and 1.9 were the only known nontrivial means by which one

could prove nonembeddability of thick families of geodesics into metric spaces. Suppose G is a nonabelian

Carnot group, such as the Heisenberg group, and B is an RNP which is not superreflexive, such as `1. Then

G embeds into no RNP space by the differentiation nonembeddability criterion, so Theorem 1.8 does not

apply to G × B, and B is not Markov p-convex for any p, so Theorem 1.9 does not apply to G × B. That

non-superreflexive spaces are not Markov p-convexity for any p follows from the fundamental theorem of

Mendel-Naor on Markov convexity ([MN13, Theorem 1.3]), and Pisier’s renorming theorem (Theorem 1.17).

Thus, Corollary 2.1 is a genuinely new nonembeddability result.

In our second result, Theorem 2.10, we restrict our attention from a general metric containing a thick

family of geodesics to a nonRNP Banach space B. This is indeed a “restriction” since every such B contains

a thick family of geodesics by Theorem 1.8. In this setting, we prove that the subset X∞ and measure µ∞

can be constructed to satisfy the true RNP differentiation nonembeddability criterion (not just the weakened

form described in Theorem 1.14). That it satisfies the true RNP differentiation criterion is a consequence

of the fact that it is an inverse limit of an admissible system of graphs, defined in [CK15]. In that article,

Cheeger and Kleiner proved that such spaces are PI spaces. They also gave a necessary and sufficient

condition for these spaces to satisfy the differentiation nonembeddability criterion into RNP spaces, stated

in [CK15, Theorem 10.2]. We verify this condition for our subset X∞ ⊆ B, and thus our result can be viewed

as a converse to [CK15, Theorem 10.2].

Theorem 2.10. Every nonRNP Banach space contains a biLipschitz copy of a metric measure space satisfy-

ing the differentiation nonembeddability criterion. The metric measure space is an inverse limit of admissible

graphs, as in [CK15], with nonEuclidean tangent cones at almost every point.
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1.2.2 Essentially Uniformly Discrete Spaces

See Chapter 3 for further discussion and proofs of the statements in this subsection.

Our main result is a generalization of Theorem 1.10 and a step closer to a positive answer to Question

1.5.

Theorem 1.15. If X is essentially uniformly discrete, then LF (X) has the RNP.

Let us also mention other metric spaces whose Lipschitz free space is known to have the RNP: (1) Proper,

countable spaces ([Dal15, Theorem 2.1]). (2) Proper biLipschitz-Hölder spaces ([Jen68, Theorem 4.1]). Recall

that a metric space (X, ρ) is proper if its closed and bounded subsets are compact and biLipschitz-Hölder if

it is biLipschitz equivalent to a Hölder space. Actually, in both of [Dal15, Theorem 2.1] and [Jen68, Theorem

4.1], the Lipschitz free spaces are shown to be isomorphic to separable dual spaces, which is strictly stronger

than RNP ([MO80], [Pis16, Corollary 2.15]). In light of this and Theorems 1.10 and 1.15, one may ask if

uniformly discrete and essentially uniformly discrete countable spaces biLipschitz embed into separable dual

spaces. For uniformly discrete spaces, this is an open question (equivalent to [dLPP19, Problem 1.3]), and

indeed we do not have an essentially uniformly discrete counterexample either.

We will give the proof of Theorem 1.15 at the conclusion of this subsubsection, after stating the relevant

definitions and collecting the main ingredients that are proven in Chapter 3.

Definition 1.12. Let (X, d) be a topologically discrete metric space, i.e., every set is open in the metric

topology. For each p ∈ X and r ≥ 0, we let Br(p) := {q ∈ X : ρ(p, q) ≤ r}. For each p ∈ X, let

rad(p) := sup{r ≤ diam(X) : Br(p) = {p}}, essrad(p) := sup{r ≤ diam(X) : |Br(p)| < ∞}. We say that

X is θ-uniformly discrete if 0 < θ = infp∈X rad(p) and θ-essentially uniformly discrete if 0 < θ = infp∈X

essrad (p). We say that X is uniformly discrete if there exists a θ > 0 such that X is θ-uniformly discrete,

and similarly for essentially uniform discreteness.

Note the following implications:

uniformly discrete ⇒ essentially uniformly discrete ⇒ complete

The first implication is obvious, and we explain how to prove the second. We’ll show that every Cauchy

sequence is eventually constant, which is equivalent to discrete and completeness. Suppose we have a Cauchy

sequence taking values in an essentially uniformly discrete metric space. Since it is Cauchy, it eventually

belongs to a ball of arbitrarily small radius B. By definition of essentially uniformly discreteness, the radius

of B can be chosen small enough so that |B| <∞. Thus, our Cauchy sequence eventually belongs to a finite

set. This implies it must be eventually constant.
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Since X is discrete, finitely supported functions on X are Lipschitz. Let Lipfin (X) denote the subspace

of Lip0 (X) consisting of the finitely supported functions. The inclusion Lipfin (X) ↪→ Lip0 (X) dualizes to

a quotient Lip0 (X)
∗ � Lipfin (X)

∗
. Let res denote the restriction of this map to LF (X), res : LF (X) →

Lipfin (X)
∗
.

Theorem 3.2. If X is bounded and countable, then Lipfin (X)
∗

is separable.

Theorem 3.1. If X is bounded and countable, then res : LF (X)→ Lipfin (X)
∗

is an isomorphic embedding

if and only if X is essentially uniformly discrete.

Proof of Theorem 1.15. We’ll cite [Pis16, Chapter 2] for standard results we need on RNP (our definition

of RNP is different but equivalent to that in [Pis16], see [Pis16, Remark 2.17]). Assume X is essentially

uniformly discrete. The RNP is separably determined; that is, if every separable closed subspace of a Banach

space has the RNP, then so does the entire space ([Pis16, Corollary 2.12]). Clearly, any separable subspace

of LF (X) is contained in LF (Y ) for some countable Y , so it suffices to prove LF (Y ) has the RNP for

any countable Y ⊆ X. Let Y ⊆ X be countable. By [Kal04, Proposition 4.3], LF (Y ) isomorphically

embeds into the `1-direct sum ⊕∞i=1LF (Bi(0)), where Bi(0) denotes the ball of radius i in Y centered

at the basepoint 0 ∈ Y . Since an `1 sum of RNP spaces has the RNP, it suffices to assume that Y is

bounded. But now Theorem 3.1 kicks in (essentially uniform discreteness passes to subsets), and we get that

LF (Y ) isomorphically embeds into Lipfin (Y )
∗
. Separable dual spaces have the RNP, so Theorem 3.2 implies

Lipfin (Y )
∗

has the RNP. Since LF (Y ) isomorphically embeds into the RNP space Lipfin (Y )
∗
, LF (Y ) has

the RNP.

1.2.3 Markov Convexity of Carnot Groups

See Chapter 4 for further discussion and proofs of the statements in this subsection.

We present in this subsection our results on the calculation of the Markov convexities of Carnot groups

(Question 1.2). We now state our main theorems, which sharpen Theorems 1.4 and 1.13.

Theorem 4.1. Every graded nilpotent Lie group of step r, equipped with a left invariant metric homogeneous

with respect to the dilations induced by the grading, is 4-point p-convex - and consequently Markov p-convex

- for every p ∈ [2r,∞).

Theorem 4.2. For every p > 0, r ≥ 1, coarsely dense set N ⊆ Jr−1(R), and R ≥ 3, let BN (R) := {x ∈ N :

dCC(0, x) ≤ R}. Then

Πp(BN (R)) &
ln(R)

1
p−

1
2r

ln(ln(R))
1
p+ 1

2r

where the implicit constant can depend on r, p but not on N,R.
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Recall that a subset N of a metric space (X, dX) is coarsely dense if there exists C < ∞ such that

X = ∪x′∈N{x ∈ X : dX(x, x′) ≤ C}. See Section 1.3.3 for the definition of Jr−1(R). Theorem 4.1 is restated

and proved at the end of Section 4.3.2, and similarly for Theorem 4.2 at the end of Section 4.4.2.

We can extend this result to other groups using the notion of subquotients. X is a Lipschitz subquotient of

Y with constant C if there is a metric space Z such that Z embeds isometrically into Y and X is a Lipschitz

quotient of Z with constant C, or, equivalently, there is a a metric space Z such that Z is a Lipschitz quotient

of Y with constant C and X isometrically embeds into Z. It follows from [MN13, Proposition 4.1] that if X

is a Lipschitz subquotient of Y with constant C then Πp(X) ≤ CΠp(Y ).

Every free Carnot group of step r ≥ 2 has Jr−1(R) (in fact every graded nilpotent Lie group of step r

with 2-dimensional horizontal layer) as a graded quotient group, and the projection map Rk � R dualizes to

a graded embedding Jr−1(R) ↪→ Jr−1(Rk). See [BLU07, Chapter 14 ] for background on free Carnot groups

and [War05] for background on the jet spaces groups Jr−1(Rk).

Corollary 1.2. Let G be a Carnot group of step r that has Jr−1(R) as a graded subquotient group, for

example G may be a free Carnot group, Jr−1(Rk), or any Carnot group if r ≤ 3. The set of p > 0 for which

G is Markov p-convex is exactly [2r,∞).

Proof. This follows from Theorems 4.1 and 4.2 and the preceding discussion.

Recall that a subgroup Γ ≤ G of a Lie group G is a lattice if the subspace topology on Γ is discrete and

G/Γ carries a G-invariant, Borel probability measure.

Corollary 1.3. Let G be a Carnot group of step r that has Jr−1(R) as a graded subquotient group, for

example G may be a free Carnot group, Jr−1(Rk), or any Carnot group if r ≤ 3 (by Lemma 1.3). Let Γ ≤ G

be a lattice equipped with the word metric with respect to a finite generating set (which exists by [Rag72,

Theorem 2.21]), and let BΓ(R) denote the ball of radius R in Γ centered at the identity. Then for any p > 0,

Πp(BΓ(R)) &
ln(R)

1
p−

1
2r

ln(ln(R))
1
p+ 1

2r

Proof. Let G,Γ, p be as above. The inclusion Γ ↪→ G is a biLipschitz embedding onto a coarsely dense

subset when Γ is equipped with the word metric with respect to a finite generating set (this can be proven

using Mostow’s theorem that lattices in nilpotent Lie groups are cocompact ([Mos62]) and applying the

fundamental theorem of geometric group theory). Thus it suffices to prove the conclusion for any coarsely

dense N ′′ ⊆ G. Let N ′′ be such a subset. By assumption, there is a Carnot group G′ and a graded quotient

homomorphism q : G → G′ such that Jr−1(R) is a graded subgroup of G′. Then q is a Lipschitz quotient
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map, so there is a constant C <∞ such that for any R ≥ 3,

Πp(BN ′′(R)) & Πp(Bq(N ′′)(R/C))

Thus it suffices to prove the conclusion for any coarsely dense subset N ′ ⊆ G′. Let N ′ be such a subset.

Fix B >> 1 and let N ⊆ Jr−1(R) be a coarsely dense, B-separated subset (each pair of distinct points in

N is separated by a distance at least B - such sets always exist by Zorn’s Lemma). Then since Jr−1(R) is

a graded subgroup of G′, there is a biLipschitz embedding N → G′. If B is chosen large enough, we map

postcompose with a nearest neighbor map G′ → N ′ to obtain another biLipschitz embedding N → N ′. Then

the conclusion follows from Theorem 4.2.

The following quantitative nonembeddability estimate follows from the previous corollary and Theorem

4.1.

Corollary 1.4. Let G be a Carnot group of step r that has Jr−1(R) as a graded subquotient group, for

example G may be a free Carnot group, Jr−1(Rk), or any Carnot group if r ≤ 3. Let Γ ≤ G be a lattice

equipped with the word metric with respect to a finite generating set, and let BΓ(R) denote the ball of radius

R in Γ centered at the identity. Let G′ be any graded nilpotent Lie group of step r′ < r. Then we have the

following estimate for cG′(BΓ(R)), the biLipschitz distortion of BΓ(R) in G′:

cG′(BΓ(R)) &
ln(R)

1
2r′−

1
2r

ln(ln(R))
1

2r′+
1
2r

where the implicit constant depends on G and G′ but not on R.

Such quantitative nonembeddability estimates have been the subject of much attention for embeddings of

Heisenberg groups into certain Banach spaces, see [ANT13] and [LN14] for uniformly convex Banach space

targets and [NY18] for L1 targets. In particular, it can be deduced from [ANT13] and [Ass83] that the

biLipschitz distortion of the ball of radius R in a lattice in the Heisenberg group into Hilbert space equals,

up to universal factors,
√

ln(R). Thus, our estimates in the previous corollary cannot be sharp when r = 2

and r′ = 1. However, these estimates seem to be the first of their type when the target is allowed to be

a nilpotent group of step larger than 1. Other quantitative nonembeddability estimates of between Carnot

groups were obtained in [Li14], but they are of a different flavor. Since our estimates are not sharp for

r = 2, r′ = 1, we speculate that they are not sharp for larger values of r, r′ either. Next, we obtain new

results on the nonexistence Lipschitz subquotient maps.

Corollary 1.5. Let G be a Carnot group of step r that has Jr−1(R) as a graded subquotient group, for
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example G may be a free Carnot group, Jr−1(Rk), or any Carnot group if r ≤ 3. Let G′ be any graded

nilpotent Lie group of step r′.

1. G is not a Lipschitz subquotient of Lp (or any p-convex space) for any p ∈ (1, 2r).

2. If r > r′, G is not a Lipschitz subquotient of G′.

Proof. These follow from the previous corollary, the fact that Markov p-convexity is preserved under Lipschitz

subquotients, Theorem 1.11, and the classical fact that Lp is max(2, p)-convex for p > 1.

Essentially all of the previously know results of this flavor are proved as a corollary of Pansu differentiation

(Theorem 1.19), which applies when the domain is a (finite dimensional) Carnot group and the target is an

RNP Banach space or (finite dimensional) Carnot group. There is also a more recent differentiation theorem

of Le Donne-Li-Moisala ([LDLM18]) which applies when the domain is a “scalable” group filtrated by (finite

dimensional) Carnot groups and the target is an RNP space. However, there does not seem to be a clear

way to deduce Corollary 1.5 in full generality from any of these methods.

We may use Markov convexity again to prove nonexistence of subquotient maps onto some “infinite step”

graded Lie groups. See Section 1.3.3 for the definitions of inverse limits, J∞(Rk), and the free Carnot group

on k generators, F∞k .

Corollary 1.6. Let G0 ← G1 ← . . . be an inverse system of graded nilpotent Lie groups such that for every

r, there is an i with Jr−1(R) a graded subquotient of Gi, and let G∞ be the inverse limit group. For example,

G∞ may be J∞(Rk) or F∞k . Then G∞ is not a Lipschitz subquotient of any superreflexive space.

Proof. Pisier’s renorming theorem (Theorem 1.17), states that any superreflexive Banach space is p-convex

for some p ∈ [2,∞). Thus it suffices to show that G∞ is not Markov p-convex for any p ∈ (0,∞). For every

r ≥ 1, Jr−1(R) is a Lipschitz subquotient of G∞, so since Markov p-convexity is preserved under Lipschitz

quotients, the conclusion follows from Corollary 1.2.

Finally, we provide a positive result on the existence of embeddings using one of the main results of

[LNP09]. A metric tree is the vertex set of a weighted graph-theoretical tree equipped with the shortest

path metric.

Theorem 1.16 (Theorem 4.1, [LNP09]). If T is a metric tree and T is Markov p-convex, then T biLipschitz

embeds into Lp.

Corollary 1.7. If a metric tree T is a Lipschitz subquotient of a graded nilpotent Lie group G of step r,

then T biLipschitz embeds into Lp for every p ≥ 2r.
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Proof. This follows from Theorem 4.1, the fact that Markov convexity is inherited by Lipschitz subquotients,

and Theorem 1.16.

We conclude this introduction with a conjecture and a question.

Conjecture 1.1. For each graded nilpotent Lie group G, the set of p for which G is Markov p-convex is the

same as that of the largest Carnot subgroup of G.

Question 1.7. Let Γ be a lattice in a Carnot group that does not biLipschitz embed into some other Carnot

group G. What is the infimal α so that lim supR→∞
cG(BΓ(R))

ln(R)α
<∞?

1.3 Preliminaries

1.3.1 Banach Spaces

Definition 1.13. A normed space is a pair (V, ‖ · ‖) where V is a vector space over R and ‖ · ‖ : V → [0,∞)

is a norm, satisfying for all x, y ∈ V and c ∈ R,

� ‖x‖ = 0⇒ x = 0 (Positive definiteness)

� ‖cx‖ = |c|‖x‖ (Absolute homogeneity)

� ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality)

We will often suppress notation and just write V instead of (V, ‖·‖). These axioms imply that (x, y) 7→ ‖x−y‖

is a metric on V , and we will always treat normed spaces as metric spaces equipped with this norm. A normed

space for which the associated metric is complete is called a Banach space.

A linear map between normed spaces is bounded if it is Lipschitz, an isomorphic embedding if it is a

biLipschitz embedding, and an isomorphism if it a biLipschitz equivalence. Two norms on a vector space

are equivalent if the identity map is an isomorphism.

We let BV denote the closed unit ball of V centered at the origin.

Every finite dimensional normed space is a Banach space, and any two norms on a finite dimensional

space are equivalent.

Example 1.1. Given any Banach space (V, ‖ · ‖), there is a new Banach space (V ∗, ‖ · ‖V ∗) called the dual

space of V , consisting of the linear functionals λ : V → R for which supv∈B1(0) |λ(v)| < ∞, equipped with

the norm ‖λ‖V ∗ := supv∈BV |λ(v)|.

17



Example 1.2. See [Pis16, Chapter 1] for the following discussion. Given a Banach space (V, ‖·‖), a measure

space (Ω,A, µ), and p ∈ [1,∞], we get a new Banach space Lp(µ;V ) of (equivalence classes of) Bochner

measurable functions equipped with the norm

‖f‖Lp(µ;V ) :=

(ˆ
‖f‖pdµ

) 1
p

A function Ω→ V is called Bochner measurable if it is a pointwise µ-almost everywhere limit of a sequence

of simple functions.

When V = R, we get the classical Lebesgue space Lp(µ).

Bochner measurable functions are Borel measurable, but generally not conversely.

Definition 1.14. A Banach space V is p-convex for some p ∈ [2,∞) if there exists an equivalent norm ‖ · ‖

and K <∞ such that for every ε ∈ [0, 2],

sup{‖(x+ y)/2‖ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε} ≤ 1− εp/K

Example 1.3. For any q ∈ (1,∞) and measure µ such that Lq(µ) is infinite dimensional, Lq(µ) is p-convex

if and only if p ≥ max(2, q). Every finite dimensional normed space is p-convex for all p ≥ 2.

Definition 1.15. Given a Banach space V , there is a canonical linear isometric embedding J : V → V ∗∗

defined by J(v)(λ) = λ(v). V is reflexive if J is surjective.

Definition 1.16. A Banach space V is superreflexive if every Banach space that is finitely representable in

V is reflexive.

An deep and important fact is Pisier’s renorming theorem.

Theorem 1.17 ([Pis16], Theorem 11.37). A Banach space is superreflexive if and only if it is p-convex for

some p ∈ [2,∞).

We recall again the definition of RNP spaces.

Definition 1.4. A Banach space V has the RNP, or is an RNP space if every Lipschitz map R → V is

differentiable Lebesgue-almost everywhere.

Example 1.4. Separable dual spaces and reflexive spaces have the RNP. In particular, `1 = c∗0 has the

RNP. L1([0, 1]) and c0 do not have the RNP. For L1([0, 1]), an example of a nowhere differentiable Lipschitz

map is furnished by t 7→ 1[0,t], and for c0, t 7→ (sin(nt)/n)∞n=1.
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It will be helpful to keep in mind the following chain of implications regarding Banach spaces.

p-convex ⇒ superreflexive ⇒ reflexive ⇒ RNP

See [Pis16, Chapter 2] for further background on the RNP and its many characterizations. We will state

a few important definitions and theorems as they concern this thesis, and the proofs can be found in [Pis16,

Chapter 2].

Theorem 1.18. A Banach space V has the RNP if and only if for every probability space (Ω,A,P), filtration

(An)∞n=0, and (An)∞n=0-adapted martingale (Mn)∞n=0 taking values in a bounded subset of L∞(P;V ), there

exists an M ∈ L∞(P;V ) such that EAn(M) = Mn for all n ∈ N. Moreover, EAn(M) = Mn for all n ∈ N if

and only if Mn
n→∞→ M P-almost surely.

1.3.2 Lipschitz Free Spaces

Definition 1.17. Let (X, ρ) be a metric space with distinguished basepoint 0 ∈ X. Let Lip0 (X) denote the

Banach space of Lipschitz functions f : X → R satisfying f(0) = 0 equipped with the norm ‖f‖Lip0(X) :=

supp 6=q
|f(p)−f(q)|
ρ(p,q) . Then X isometrically embeds into Lip0 (X)

∗
via δ = p 7→ δp, where δp(f) = f(p). The

linear span of {δp}p∈X in Lip0 (X)
∗

is denoted by LFfin (X), and its closure by LF (X). LF (X) is a Banach

space called the Lipschitz free space over X.

Lipschitz free spaces are a very well-studied class of Banach spaces. See [Ost13, Chapter 10] and [Wea99]

(note that Lipschitz free space are called Arens-Eells spaces in that text) for textbook introductions to

Lipschitz free spaces and [God15] for a survey on more recent research.

We’ll recall four fundamental facts about Lipschitz free space. The first is that LF (X)
∗

= Lip0 (X)

([Wea99, Theorem 2.2.2]). Let ∆ ⊆ X × X denote the diagonal and set X̃ := X × X \ ∆. Then ρ is

nonvanishing on X̃. Let `1(X̃)/ρ denote the Banach space of countably supported measures µ on X̃ equipped

with the norm ‖µ‖ =
´
ρd|µ|. The second fact is that there is a linear quotient map π : `1(X̃)/ρ→ LF (X)

defined on the canonical basis by π(δ(p,q)) = δp − δq. The third fundamental fact is that if 0 ∈ Y ⊆ X,

the natural inclusion LF (Y ) ↪→ LF (X) is an isometric embedding. This is due to the McShane extension

theorem: every Lipschitz function from Y to R can be extended to a Lipschitz function on all of X without

increasing the Lipschitz norm ([Wea99, Theorem 1.5.6(a)]). The fourth and final fact is the universal linear

extension property : Given any Lipschitz map f : X → V into a Banach space V with f(0) = 0, there exists

a unique bounded linear map Tf : LF (X)→ V with f = Tf ◦ δ. Moreover, ‖Tf‖ = ‖f‖Lip0(X).
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1.3.3 Carnot Groups

The next several subsubsections don’t follow any particular reference, but ones we recommend are [BLU07]

for Carnot groups and [LD17] for graded nilpotent groups. We mostly follow [War05] for the subsection on

jet spaces.

Graded Nilpotent and Stratified Lie Algebras and their Lie Groups

Definition 1.18. A graded nilpotent Lie algebra (g, [·, ·]) of step r is a Lie algebra equipped with a grading

g = ⊕ri=1gi, meaning gr 6= 0, [gi, gj ] ⊆ gi+j if i+ j ≤ r, and [gi, gj ] = 0 if i+ j > r. A stratified Lie algebra

(g, [·, ·]) of step r is a graded nilpotent Lie algebra of step r such that the Lie subalgebra generated by g1 is

all of g. The grading is called a stratification, g1 is often called the horizontal layer (or stratum), and g is

said to be horizontally generated. Whenever a Lie algebra g (not presumed to be equipped with a grading)

admits a stratification, it is unique (Lemma 2.16, [LD17]). A graded nilpotent Lie group of step r is a simply

connected Lie group whose Lie algebra is graded nilpotent of step r. A graded nilpotent Lie group whose

Lie algebra is stratified is a Carnot group. A graded homomorphism or map is a Lie group homomorphism

between graded nilpotent Lie groups whose derivative is a graded Lie algebra homomorphism. One graded

nilpotent Lie group G′ is a graded subgroup of another graded nilpotent Lie group G if there is an injective

graded homomorphism from G′ into G. One graded nilpotent Lie group G′ is a graded quotient group of

another graded nilpotent Lie group G if there is a surjective graded homomorphism from G onto G′. One

graded nilpotent Lie group G′ is a graded subquotient group of another graded nilpotent Lie group G if

there is another graded nilpotent Lie group G′′ such that G′′ is a graded subgroup of G and G′ is a graded

quotient group of G′′, or, equivalently, there is another graded nilpotent Lie group G′′ such that G′′ is a

graded quotient group of G and G′ is a graded subgroup of G′′.

Given a graded nilpotent Lie group G and its Lie algebra g, since g is nilpotent and G is simply connected,

the exponential map is a diffeomorphism, and thus we can use it to equip g with a graded nilpotent Lie group

structure such that it becomes graded isomorphic to G. The Baker-Campbell-Hausdorff formula provides a

formula for the group product on g in terms of the Lie algebra structure (Section 2, [War05]):

xy =
∑
n>0

(−1)n+1

n

∑
0<pi+qi
i≤i≤n

C−1
p,q (adx)p1(ady)q1 . . . (adx)pn(ady)qn−1y (1.1)

where (adx)y = [x, y] and Cp,q = p1!q1! . . . pn!qn! (
∑n
i=1 pi + qi). In this formula and what follows,

whenever g is a graded nilpotent Lie algebra, we equip it with the product defined by (1.1) and simultaneously

think of g as a graded nilpotent Lie group and Lie algebra. We will always use juxtaposition to denote the
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group product.

Definition 1.19. Every graded nilpotent Lie group G has a canonical family of dilations δt : G → G

parametrized by t ∈ (0,∞) whose derivative δ′t : g→ g is defined by

δ′t(x) := tx1 + t2x2 + . . . trxr

where g is the Lie algebra, and xi ∈ gi is the gi-component of x ∈ g.

t 7→ δt is an automorphic R>0-action on G. It can be deduced that a Lie group homomorphism θ

between graded nilpotent Lie groups is a graded homomorphism if and only if it is δt-equivariant, that is,

θ(δt(x)) = δt(θ(x)), where we’ve abused (and will continue to do so) notation and written δt for the dilation

on both the domain and codomain.

Norms and Metrics

Definition 1.20. Let G be a graded nilpotent Lie group. A homogeneous quasi-norm on G is a continuous

function N : G→ R such that for all x ∈ G and t ∈ R>0,

� N(x) ≥ 0 (Positive semi-definite)

� N(x−1) = N(x) (Symmetry)

� N(δt(x)) = tN(x) (Homogeneity)

If additionally N(x) = 0 implies x = 0, then N is a positive definite homogeneous quasi-norm, and if

N(xy) ≤ N(x) +N(y) for all x, y ∈ G (triangle inequality), N is a homogeneous norm.

For any two positive definite homogeneous quasi-norms N,N ′ on G, the continuity, homogeneity, and

positive definiteness of N,N ′, together with the compactness of the unit sphere in ⊕ri=1Rdim(gi), imply that

N and N ′ are biLipschitz equivalent, that is, there is a constant 0 < C <∞ such that

C−1N(x) ≤ N ′(x) ≤ CN(x)

for all x ∈ G.

Positive definite homogeneous norms always exist, most famously those considered in [HS90]. Thus any

positive definite homogeneous quasi-norm N satisfies the quasi-triangle inequality : there is a 0 < C < ∞

such that for all x, y ∈ G,

N(xy) ≤ C(N(x) +N(y))
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Typically one requires that every homogeneous quasi-norm N satisfies the quasi-triangle inequality. Al-

though it turns out that the quasi-norms we consider in this article do satisfy the quasi-triangle inequality,

we only need to know this for positive-definite quasi-norms and thus do not explicitly make this requirement.

There is a bijective correspondence between homogeneous, positive definite quasi-norms N on G and

left-invariant, homogeneous quasi-metrics dN on G via N 7→ dN defined by

dN (x, y) := N(y−1x)

Positive definiteness of N implies positive definiteness of dN , symmetry of N implies symmetry of dN ,

homogeneity of N implies the homogeneity of dN (meaning dN (δt(x), δt(y)) = tdN (x, y)), and the quasi-

triangle inequality of N implies the quasi-triangle inequality of dN . The left-invariance of dN is automatic

from the definition. N satisfies the triangle inequality if and only if dN does. The inverse of N 7→ dN is

d 7→ Nd, where Nd(x) := d(0, x). In addition to those determined by the homogeneous, positive definite

norms from [HS90], there are canonical left-invariant, homogeneous metrics on Carnots groups called Carnot-

Caratheodory metrics, denoted dCC . These metrics are also geodesic. See [BLU07] or [LD17] for further

information.

Whenever dealing with a graded nilpotent Lie group, we will automatically assume it is equipped with

a left-invariant, homogeneous quasi-metric. By the preceding discussion, this quasi-metric is well-defined

up to biLipschitz equivalence, so any biLipschitz-invariant property of metric spaces we may well attribute

to a graded nilpotent Lie group G knowing only the algebraic structure of its graded Lie algebra. The

δt-equivariance of graded group maps implies that any graded map between graded nilpotent Lie groups is

Lipschitz, and thus graded group embeddings are biLipschitz embeddings, graded quotient maps are Lipschitz

quotient maps, and graded group isomorphisms are biLipschitz equivalences.

Pansu’s Differentiation Theorem

A Carnot group is in particular, a locally compact group, and thus supports a Haar measure. It turns

our that nilpotent Lie groups are unimodular, so we make no distinction between the left and right Haar

measures. It also turns out that Haar measure is homogenous with respect to the dilations, that is, there

is some s > 0 such that λ(δt(E)) = tsλ(E), where E ⊆ G is Borel and λ is Haar measure. Given a Carnot

groups G, we will always consider it equipped with a left-invariant homogeneous metric d and Haar measure

λ so that (G, d, λ) is a metric measure space.

As far as the biLipschitz theory is concerned, the following theorem is the most fundamental.

Definition 1.21. Let (G, dG) be a Carnot group and (X, dX) a Carnot group or a Banach space, f : G→ X
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a map, and p ∈ G. We say that f is Pansu differentiable at p if there exists a Carnot group homomorphism

θ : G→ X such that, for each K ⊆ G compact,

sup
q∈K

dX

(
δ 1
t
(f(p)−1 ∗ f(p ∗ δt(q))), θ(q)

)
t↘0→ 0

Theorem 1.19 ([Pan89]). Every Lipschitz map from a Carnot group to another Carnot group or RNP

Banach space is Pansu differentiable almost everywhere. Consequently, if G biLipschitz embeds into H, then

G is a Carnot subgroup of H.

In the preceding definition and theorem, we need to interpret the notion of “Carnot group homomor-

phism” when the target is a Banach space V to mean a map that factors G
πab

→ Gab ∼= g1
T→ V where T is a

linear map.

Pansu’s theorem has another important consequence, the unique lifting theorem.

Theorem 1.20. For any Carnot group G and Lipschitz maps f, g : R→ G, if f(p) = g(p) for some p ∈ G

and πab ◦ f = πab ◦ g (πab : G→ Gab denotes the abelianization), then f = g.

Model Filiform Groups and Jet Spaces over R

We follow [War05] (especially Example 4.3) throughout this subsection. The model filiform group of step

r ≥ 1 is the Carnot group with stratified Lie algebra g = (RX ⊕ RY1) ⊕ri=2 RYi, where X,Y1 is a basis for

g1 and Yi is a basis for gi for 2 ≤ i ≤ r, and the nontrivial bracket relations are given by [X,Yi] = Yi+1 for

1 ≤ i ≤ r − 1. Clearly, for s ≥ r, there is a canonical Carnot group quotient map from the model filiform

group of step s to that of step r. The model filiform group of step 2 is frequently called the Heisenberg group,

and the one of step 3 the Engel group. The corresponding Lie algebras are the Heisenberg algebra and Engel

algebra.

The jet space over R of step r ≥ 0, denoted Jr−1(R), is a certain Carnot group of step r graded isomorphic

to the model filiform group of step r. There are also jet space groups Jr−1(Rk) over higher dimensional

Euclidean space, but we will focus on k = 1 in this discussion. As a set, Jr−1(R) consists of equivalence

classes of pairs (x, f) where x ∈ R and f ∈ Cr−1(R). Two pairs (x, f), (y, g) are equivalent if x = y

and f (k)(x) = g(k)(y) for all 0 ≤ k ≤ r − 1. We define maps πx, πi : Jr−1(R) → R, 0 ≤ i ≤ r − 1, by

πx([(y, g)]) = y and πi([(y, g)]) = g(i)(y). These maps are obviously well-defined and the direct sum map

πx ⊕r−1
i=0 πr−1−i : Jr−1(R)→ R×Rr is a bijection. For v ∈ Jr−1(R), the quantity πx(v) is referred to as the

x-coordinate and πi(v) as the ui-coordinate. We equip Jr−1(R) with a topological vector space structure so

that this map is a linear homeomorphism, and from this point on will represent elements of Jr−1(R) using
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these coordinates. We will especially represent elements as pairs (y, v) ∈ Jr−1(R) = R × Rr so that y ∈ R,

v ∈ Rr, and πx((y, v)) = y. Although we won’t explicitly use it, the group operation on Jr−1(R) is given by

πx((x, ur−1, . . . u0) ∗ (y, vr−1, . . . v0)) = x+ y

πi((x, ur−1, . . . u0) ∗ (y, vr−1, . . . v0)) = ui + vi +

r−1∑
j=i+1

uj
yj−i

(j − i)!

Given y ∈ R and g ∈ Cr−1(R), we get an element [jr−1(y)](g) ∈ Jr−1(R) defined by

πx([jr−1(y)](g)) = y

πi([j
r−1(y)](g)) = g(i)(y)

called the jet of g at y. The following two Lemmas are essentially all we need to know about jet spaces. The

first is a special case of [RW10]. Although their lemma is stated for Cr functions, the proof works the same

in the case of Cr−1,1 functions.

Lemma 1.1 (pages 4-5, [RW10]). For any [a, b] ⊆ R and φ ∈ Cr−1,1([a, b]),

dCC([jr−1(b)](φ), [jr−1(a)](φ)) ≤
(

1 +
∥∥∥φ(r)

∥∥∥
L∞([a,b])

)
|b− a|

Lemma 1.2. There is a constant c > 0 such that for all (x, u), (x, v) ∈ Jr−1(R),

dCC((x, u), (x, v)) ≥ c|π0(u− v)| 1r

Proof. By left invariance of dCC and the ball-box theorem (see Corollary 2.2 of [Jun19], there is a constant

c > 0 such that for all (x, u), (x, v) ∈ Jr−1(R),

dCC((x, u), (x, v)) ≥ c|π0((x, v)−1(x, u))| 1r

and by Lemma 3.1 from [Jun17],

π0((x, v)−1(x, u)) = π0(u− v)

The following lemma will be used to obtain lower bounds on the Markov convexity of Carnot groups of

step 2 or 3.
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Lemma 1.3. Every Carnot group of step 2 or 3 contains the model filiform group of the corresponding step

(the Heisenberg or Engel group) as a graded subquotient group.

Proof. Let G be a Carnot group of step 2 with stratified Lie algebra g = g1 ⊕ g2. Since g has step 2, there

is a nonzero V2 ∈ g2. Since g is horizontally generated, there exist U, V1 ∈ g1 such that [U, V1] = V2. Recall

that the Heisenberg algebra has first layer generated by linearly independent vectors X,Y1, second layer

generated by Y2 6= 0, and nontrivial bracket relation [X,Y1] = Y2. Then it easily follows that X 7→ U ,

Y1 7→ V1, Y2 7→ V2 is a graded algebra embedding into g. This proves that the Heisenberg group is a graded

subgroup of G.

Now assume G is of step 3 with stratified Lie algebra g = g1 ⊕ g2 ⊕ g3. By the grading property, any

subspace of g3 is an ideal, and thus there is a graded algebra quotient map onto another step 3 stratified Lie

algebra whose third layer is one dimensional. Thus we may assume g3 = RW , W 6= 0, and prove that the

Engel algebra embeds into g. Since g is horizontally generated, W = [U1, [U2, U3]] for some U1, U2, U3 ∈ g1.

First we claim that there is a 2-dimensional subspace of the span of U1, U2, U3 that generates a Lie subalgebra

of step 3. After proving the claim, we’ll show that this subalgebra must be graded algebra-isomorphic to the

Engel algebra. To prove the claim, we’ll show that at least one of the following is nonzero:

1. [U1, [U1, U2]]

2. [U1, [U1, U3]]

3. [U2, [U2, U3]]

4. [U3, [U3, U2]]

5. [U1 + U2, [U1 + U2, U3]]

6. [U1 + U3, [U1 + U3, U2]]

Assume that all terms are 0. First let’s see that [U2, [U3, U1]] = W .

0
(5)
= [U1 + U2, [U1 + U2, U3]] = [U1, [U1, U3]] + [U1, [U2, U3]] + [U2, [U1, U3]] + [U2, [U2, U3]]

(2),(3)
= W + [U2, [U1, U3]] = W − [U2, [U3, U1]]

Using (6), (1), (4) in place of (5), (2), (3) shows [U3, [U1, U2]] = W . Putting these together yields:

[U1, [U2, U3]] + [U2, [U3, U1]] + [U3, [U1, U2]] = 3W 6= 0
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in violation of the Jacobi identity. This proves the claim.

So now the situation is that there are Z1, Z2 ∈ g1 with [Z1, [Z1, Z2]] = zW for some z 6= 0. Recall that

the Engel algebra has first layer spanned by X,Y1, second layer by Y2, and third layer by Y3 with nontrivial

bracket relations [X,Y1] = Y2 and [X,Y2] = Y3. Let z′ ∈ R such that [Z2, [Z1, Z2]] = z′W . Then since

[Z1, [Z1, Z2]] = zW 6= 0, the map from the Engel algebra into g defined by

X 7→ Z1, Y1 7→ Z2 −
z′

z
Z1, Y2 7→ [Z1, Z2], Y3 7→ zW

is a graded algebra embedding.

Remark 1.2. The analogue of Lemma 1.3 is false for groups of step larger than 3. Let g be the stratified

Lie algebra g = ⊕4
i=1gi with g1 = RX11 ⊕ RX12, g2 = RX2, g3 = RX31 ⊕ RX32, g4 = RX4 and nontrivial

brackets [X11, X12] = X2, [X11, X2] = X31, [X12, X2] = X32, [X11, X31] = X4, [X12, X32] = X4. The only

graded quotient maps from g onto another step 4 stratified Lie algebra or graded embeddings into g from

another step 4 stratified Lie algebra are isomorphisms.

Infinite Step Carnot groups

Given an inverse system of graded nilpotent Lie groups G1
ρ1← G2

ρ2← . . . , where each ρi is a graded quotient

map, we define the inverse limit metric group, G∞, to be the subgroup of (⊕∞i=1Gi)∞ consisting of those

sequences (xi)
∞
i=1 for which ρ(xi+1) = xi for all i ≥ 1, where (⊕∞i=1Gi)∞ is the `∞-sum of the pointed metric

spaces (Gi, dCC , 0). G∞ inherits a left-invariant homogeneous metric from (⊕∞i=1Gi)∞ (where the dilations

δt are defined on G∞ in the obvious way), and each Gi is a Lipschitz quotient of G∞.

Definition 1.22. J∞(Rk) is the inverse limit metric group, equipped with the induced δt-action, associated

to the natural inverse system formed by the jet space groups, J0(Rk)
ρ1← J1(Rk)

ρ2← . . . . See [War05]

for background on jet space groups. Similarly, F∞k is the inverse limit metric group, equipped with the

induced δt-action, associated to the natural inverse system formed by the free Carnot groups on k generators,

F 1
k

ρ1← F 2
k

ρ2← . . . . See Chapter 14 of [BLU07] for background on free Carnot groups.

1.3.4 Lipschitz Differentiability Spaces

For additional information on Lipschitz differentiability spaces, see [KM16], and note that we only consider

single chart spaces in this thesis.

Definition 1.23. Let (X, d) be a metric space, ψ : X → Rk a Lipschitz map, and p ∈ X. Let (V, ‖ · ‖) be a

Banach space and f : X → V a map. We say that f is differentiable with respect to ψ at p if there exists a
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unique linear map Dψfp : Rk → V such that

lim
x→p

‖f(x)− f(p)−Dfp(ψ(x)− ψ(p))‖
d(x, p)

= 0

In this case, Dψfp is called the derivative of f with respect to ψ at p.

Definition 1.24. Let (X, d, µ) be a metric measure space, meaning (X, d) is a metric space and µ is a

complete Borel measure on X. (X, d, µ) is an (single chart) RNP Lipschitz differentiability space (henceforth

RNP LDS ) if there exists a Lipschitz map ψ : X → Rk such that, for every RNP space V , every Lipschitz

map X → V is differentiable with respect to ψ µ-almost everywhere.

Example 1.5. Rademacher’s theorem states that Rn is an RNP LDS when equipped with the Euclidean

metric and Lebesgue measure. The chart ψ is the identity map.

Example 1.6. Pansu’s differentiation theorem implies (with slight modification) that every Carnot group

G is an RNP LDS. The chart ψ is the abelianization map G→ Gab ∼= g1.

Example 1.7 ([CK15], Theorem 9.1). Laakso space is an RNP LDS when equipped with a certain probability

measure. The chart ψ is the projection π0 : G∞ → G0
∼= [0, 1].

The concept of a LDS was first conceived by Cheeger in [Che99] in the context of doubling metric measure

spaces admitting a Poincaré inequality, PI spaces. A metric measure space (X, d, µ) is doubling if there exists

C < ∞ such that for all p ∈ X and r > 0, µ(B2r(x)) ≤ Cµ(Br(x)). Since we never work directly with

Poincaré inequalities in this thesis, we omit their definitions. The systematic study of PI spaces was initiated

by Heinonen-Koskela in [HK98]. [CK09, Theorem 1.5] states that PI spaces can de decomposed (up to a

null set) into a countable union of RNP LDS’s.

Definition 1.25. Let (X, d) be a metric space. Given a point p ∈ X, a sequence (ri)
∞
i=0 decreasing to 0 and

a nonprincipal ultrafilter U on N, we define the tangent cone of X at p, T ri,Up X, to be the U-ultralimit of

the sequence of pointed spaces (X, p, 1
ri
d). Given a Lipschitz map X → V into a Banach space, the blowup

of f at p, fp : T ri,Up X → V , is the U-ultralimit of the sequence of maps 1
ri

(f − f(p)) : (X, p, 1
ri
d) → V , if

it exists (this is slightly abusive since the notation fp does not reflect the dependence on ri and U). The

U-ultralimit exists if the limit exists in the usual sense or if V is finite dimensional. Also observe that if fp

exists and f is a biLipschitz embedding, then so is fp (with distortion bounded by that of f).

Proposition 1.1. Let (X, d) be a metric space, ψ : X → Rk a Lipschitz map, and p ∈ X. Let (V, ‖ · ‖) be

a Banach space and f : X → V a Lipschitz map. If f is differentiable with respect to ψ at p with derivative
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Dψfp, then for every sequence (ri)
∞
i=0 decreasing to 0 and nonprincipal ultrafilter U on N, fp : T ri,Up X → V

exists and fp = Dψfp ◦ ψp.

Proof. Assume f is differentiable with respect to ψ at p with derivative Dψfp. Let (ri)
∞
i=0 and U be as above.

Let x ∈ T ri,Up X. This means x is the equivalence class of a sequence (xi)
∞
i=0 ∈ XN with supi

d(p,xi)
ri

< ∞,

[(xi)
∞
i=0]. First assume fp exists. Then

‖fp(x)−Dψfp ◦ ψp(x)‖ =

∥∥∥∥U- lim
i→∞

f(xi)− f(p)

ri
−Dψfp

(
U- lim

i→∞

ψ(xi)− ψ(p)

ri

)∥∥∥∥
= U- lim

i→∞

‖f(xi)− f(p)−Dψfp (ψ(xi)− ψ(p))‖
ri

≤
(

sup
i

d(p, xi)

ri

)
U- lim

i→∞

‖f(xi)− f(p)−Dψfp (ψ(xi)− ψ(p))‖
d(p, xi)

= 0

where the last equality holds since the usual topological limit exists by definition of derivative, and usual

topological convergence implies U-ultraconvergence. Since x ∈ T ri,Up X was arbitrary, we get fp = Dψfp ◦ψp.

This argument can also be turned around to prove that fp exists.

As far as the biLipschitz theory is concerned, the following theorem is the most fundamental.

Theorem 1.21 ([CK09], Theorem 1.6). Suppose (X, d, µ) is an RNP LDS with chart ψ : X → Rk. If there

exists a Borel set E ⊆ X such that µ(E) > 0 and, for every p ∈ E, there exist a sequence (ri)
∞
i=0 decreasing

to 0 and a nonprincipal ultrafilter U on N such that ψp : T ri,Up X → Rk is not injective, then X does not

biLipschitz embed into any RNP space.

Proof. We proceed by contradiction. Assume there exists a Borel set E ⊆ X such that µ(E) > 0 and,

for every p ∈ E, there exist a sequence (ri)
∞
i=0 decreasing to 0 and a nonprincipal ultrafilter U on N such

that ψp : T ri,Up X → Rk is not injective and that there is an RNP space V and a biLipschitz embedding

f : X → V . Then by definition of RNP LDS with chart ψ, f is differentiable with respect to ψ µ-almost

everywhere. Then since µ(E) > 0, there exists a point p ∈ E such that f is differentiable at p. By the

preceding proposition, fp exists and fp = Dψfp◦ψp. Since f is a biLipschitz embedding, so is fp = Dψfp◦ψp.

In particular, Dψfp ◦ ψp is injective, contradicting ψp is not injective.

Definition 1.26. A metric space (X, d) satisfies the differentiability nonembeddability criterion into RNP

spaces if there exists a Borel measure µ so that (X, d, µ) satisfies the hypotheses of Theorem 1.21.

Example 1.8. The Heisenberg group (or any nonabelian Carnot group) satisfies the differentiability nonem-

beddability criterion. The existence of the dilations δt and that fact that closed balls in H are compact implies

every tangent cone T ri,Up H = H canonically and πab
p : T ri,Up H→ R2 = πab

p : H→ R2 canonically.
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Example 1.9. Laakso space satisfies the differentiability nonembeddability criterion; we can take E = G∞.
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Chapter 2

Thick Families of Geodesics and
Differentiation

2.1 Introduction

This chapter is devoted to proving the results stated in Section 1.2.1.

2.1.1 Outline

We discuss our methods of proof in Section 2.1.2. Section 2.1.3 sets notation and terminology not already

covered in Chapter 1.

Sections 2.2-2.6 are concerned with the proof of Theorem 1.14, Section 2.7 contains the proof of Corollary

2.1, and Section 2.8 contains the construction of the inverse limit of graphs in nonRNP Banach spaces from

Theorem 2.10.

For an efficient reading of Sections 2.2-2.6, we advise the reader to start with Section 2.2, skip ahead

to Section 2.6, and then refer back to the between sections as they are needed to understand the proof of

Theorem 2.9.

In Section 2.2, we give the axioms for thick inverse systems of graphs whose inverse limit we are able to

prove the weak form of differentiation of. Also included in this section are frequently used consequences of

the axioms and a proof of one of the main theorems of the article, Theorem 2.1. This theorem asserts the

existence of the thick inverse system of graphs in any metric space containing a thick family of geodesics.

In Section 2.3, we define the set S∞ and prove µ∞(S∞) > 0. We also include results on asymptotic local

geometry of the graphs. Section 2.4 covers the use of conditional expectation in approximating functions

on X∞ via functions on Xi. Also in this section is the definition of the derivative of RNP space-valued

Lipschitz functions on X∞. A relevant maximal operator and corresponding maximal inequality are defined

and proved in Section 2.5. Section 2.6 contains the proof of the main theorem, Theorem 2.9, the weak form

of differentiability.
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2.1.2 Discussion of Proof Methods

The subset X∞ of a metric space M containing a thick family of geodesics from Theorem 1.14 is constructed

as an inverse limit of graphs. Cheeger and Kleiner proved in [CK15] that inverse limits of certain “admissible”

inverse systems of graphs, such as Laakso spaces, are PI spaces and hence RNP Lipschitz differentiability

spaces. It is this result which lead us to believe that X∞ could be constructed to satisfy some kind of

RNP Lipschitz differentiability. However, our space X∞ cannot be constructed to be a PI space in any

obvious way, and thus the theory of [CK09] does not apply; we are required to construct derivatives of

RNP-valued Lipschitz functions and prove their defining approximation property by hand. To do so, we use

only the almost sure differentiability of Lipschitz maps R→ B and the almost sure convergence of B-valued

martingales for RNP spaces, which are quite classical compared to the asymptotic norming property of RNP

spaces used in [CK09]. We also make heavy use of the uniform topology on Banach spaces of Lipschitz

functions, in contrast to the Sobolev space techniques employed in [CK09] and [CK15].

Apart from these differences in proof techniques, the inverse systems of graphs we consider are funda-

mentally different from the admissible systems in [CK15] for two reasons. Firstly, in [CK15], the graphs

are equipped with geodesic metrics, and the metrics on our graphs are only geodesic along directed edge

paths. In fact, the inverse limit space need not even be quasiconvex, while PI spaces are always quasiconvex.

Secondly, in [CK15], the lengths of edges in the sequence of graphs decrease by a constant factor m ≥ 2 in

each stage of the sequence, independent of the stage or edge. In our graphs, the edge lengths decrease by

factors going to ∞. We make frequent use of this rapid decay in a number of independent results, such as

(2.10), (2.11), and Lemma 2.3. Loosely, the rapid decay in edge length allows us to well-control the local

geometry near a point along scales proportional to the lengths of edges containing the projections of the

point, at the cost of control over the geometry along other scales, which would be necessary to prove true

RNP differentiability.

The uniform topology on Lipschitz algebras has been studied before within the context of Lipschitz

differentiability spaces. For, example, in [Sch14], Schioppa showed how to associate a Weaver derivation

(which involves continuity with respect to uniform topology) to an Alberti representation, and Alberti

representations were demonstrated by Bate in [Bat15] to be intimately connected to Lipschitz differentiability.

Schioppa constructs the partial derivative of a function by taking its derivative along curve fragments and

averaging them together with respect to the Alberti representation. Our procedure for constructing the

derivative of a function (see Theorem 2.6), is very similar in nature; indeed, Lemma 2.6 gives Alberti

representations of µi, which (after taking a suitable limit) give rise to an Alberti representation of µ∞.

We also note that in [Bat15], Bate gives necessary and sufficient conditions for a collection of Alberti
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representations to induce a Lipschitz differentiable structure on a metric measure space using what he called

universality (see Definition 7.1 from [Bat15]). Our representation from Lemma 2.6 will generally fail this

property (or at least doesn’t obviously satisfy it - we don’t actually provide an example), which is consistent

with our discussion that the space (X∞, d, µ∞) is not a true Lipschitz differentiability space (again, we

don’t actually provide an example of this). We believe it is possible to find a weakened form of universality

corresponding to the weakened form of differentiation from Theorem 2.9.

The construction of the inverse limit of admissible graphs, X∞, of Theorem 2.10 is achieved by fine

tuning two of the aspects of Ostrovskii’s construction of a thick family of geodesics in nonRNP spaces. His

construction is also essentially an inverse limit of a system of graphs, but the system is not “admissible” in

the sense of [CK15] for two reasons. Firstly, the metrics on his system are not uniformly quasiconvex, which

is a necessary condition for the inverse limit metric space to be a PI space. Secondly, the lengths of edges

in a graph in an admissible system must be constant, but in the system of [Ost14b], the ratio of lengths of

two edges in a graph may become unbounded.

The second obstacle is easily overcome in the following way: the length of an edge in a graph in the

system from [Ost14b] corresponds to the coefficient αi of some convex combination z = α1z1 + . . . αnzn with

‖z − zi‖ > δ and ‖z‖, ‖zi‖ < 1. By density of the dyadic rationals in (0, 1), we may make small adjustments

zi → z′i to obtain z = q1z
′
1 + . . . qnz

′
n with each qi a dyadic rational, all while maintaining ‖z − z′i‖ > δ

and ‖z‖, ‖z′i‖ < 1. We then ‘split up’ the convex combination into terms whose coefficients have numerator

equal to 1. For example, 1
2z
′
1 + 1

4z
′
2 + 1

4z
′
3 → 1

4z
′
1 + 1

4z
′
1 + 1

4z
′
2 + 1

4z
′
3. The edges corresponding to this convex

combination now all have length 1
4 . The first obstacle can be overcome by constructed Xi with rapidly

decreasing edge length, similar to construction in the proof of Theorem 2.1. Using the rapid decrease in edge

length to control the quasiconvexity of the graphs is similar to the proof of Lemma 2.2.

2.1.3 Notation and Terminology

Given two metric spaces (X, dX) and (Y, dY ) and a Lipschitz map f : X → Y , we define Lip (f) :=

supx 6=y
dY (f(x),f(y))

dX(x,y) . For a metric space (X, d) with basepoint x0, define Lip0(X;B) to be the Banach space

of Lipschitz functions f : X → B satisfying f(x0) = 0, equipped with the norm ‖f‖Lip0(X;B) := Lip(f).

When B = R, we simply recover the Lipschitz free space from Definition 1.17. Note that, when diam(X) ≤ 1,

‖f‖Lip0(X;B) ≤ ‖f‖L∞(X) (we shall generally find ourselves in this situation).

A finite, metric graph (or just graph) is a metric space X equipped with a finite set of vertices, V (X),

and a finite set of edges, E(X), satisfying some properties.

� V (X) ⊆ X, and E(X) ⊆ P(X), the power set of X.
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� Each e ∈ E(X) is isometric to a compact interval [a, b], and under any isometry [a, b]→ e, a and b get

mapped to vertices, called the vertices of e, and no other point c ∈ (a, b) gets mapped to a vertex.

� If e1, e2 ∈ E(X) with e1 6= e2, then e1 ∩ e2 is empty, or e1 ∩ e2 consists of one or two vertices.

The graph is directed if each edge is equipped with a direction, which is simply an ordering of its two

vertices. The first vertex is called the source, and the second is called the sink. We say that the edge is

directed from the source to the sink.

If A is a Borel subset of a finite graph, |A| denotes its length measure. If x, y are points in a finite

graph, |x− y| denotes the distance between x and y with respect to the length metric, the metric given by

the infimal length of paths between x and y. A length minimizing path from x to y will be denoted [x, y]

(so that |x − y| = |[x, y]|), and is frequently referred to as a shortest path. Since shortest paths need not

be unique, the notation “[x, y]” does not unambiguously define one set, but it should be clear from context

what is being referred to. In any case, as far as this article is concerned, the nonuniqueness of shortest paths

don’t pose any problems.

2.2 Inverse Systems of Nested Graphs

We begin this section by listing some axioms for a “thick inverse system” of nested metric graphs, see Defi-

nition 2.1. We introduce thick inverse systems for two reasons: one - we are able to prove our differentiation

theorem, Theorem 1.14, for the inverse limit of these systems, and two - we are able to prove that a thick

inverse system can be found in any metric space containing a thick family of geodesics, see Theorem 2.1.

2.2.1 Axioms and Terminology

Definition 2.1. An inverse system of nested metric measure directed graphs satisfying the following Axioms

(A1) - (A6) and equipped with the measure from Definition 2.2 will be called a thick inverse system.

We use the notation (X0, d, µ0)
←
⊆ (X1, d, µ1)

←
⊆ . . . for a system of nested metric directed graphs. The

maps Xi+1 → Xi are denoted πi+1
i . Let i ≥ 0 and j ≥ i, and define πj

i := πi+1
i ◦ πi+2

i+1 ◦ . . . π
j
j−1 : Xj → Xi.

Graph and Length Axioms:

(A1) X0 has two vertices, denoted 0 and 1, and one edge directed from 0 to 1, with length 1. We identify

X0 with I := [0, 1].
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v0(e) v1(e)e
>

Figure 2.1: A directed edge e of Xi, shown in black.

v0(e) v1(e)e'0 e'1e'
> > > > > > > >

Figure 2.2: The directed subdivision of e in X ′i. Terminal subedges e′0 and e′1 are shown in blue, and
nonterminal subedges are shown in black.

v0(e) v1(e)e'0 e'1e'

e'op

x

xop

> >

>

>

>

> >

>

> >

>

>

Figure 2.3: The set (πi+1
i )−1(e) in Xi+1. Terminal intervals are shown in blue, nonterminal intervals are

shown in black, and circles are shown in orange. Examples of subedges e′ and opposite subedge e′op are
labeled, as are example point and opposite point x and xop, shown in red.

(A2) There is a directed subdivision of Xi, denoted X ′i, satisfying the properties below. It will be helpful to

refer to Figures 2.1, 2.2, and 2.3 while reading (A2).

(i) For each edge e′ ∈ E(X ′i), (πi+1
i )−1(e′) = e′ ∪ e′op, where either e′op = e′, or e′op is an edge having

the same source and sink vertices as e′, but whose interior is disjoint from the rest of Xi+1. The

edge e′op is called the opposite edge of e′ in Xi+1 (we may write eop or eop depending on the

presence of other super or subscripts). We also define (e′op)op := e′.

For future use, we note that, with respect to the length metric, the diameter of (πi+1
i )−1(e′) equals

|e′|. Thus, with respect to d,

diam((πi+1
i )−1(e′)) ≤ |e′| (2.1)

Given a point x ∈ e′, we similarly define xop to be the unique point of e′op for which πi+1
i (xop) = x,

and call xop the opposite point of x (in Xi+1). (If e′op = e′, then xop = x. We may also write

xop depending on the presence of other super or subscripts.) Again, we also define (xop)op := x.

If e′op = e′, we call (πi+1
i )−1(e′) an interval (it is an interval topologically). If e′op 6= e′, we call

(πi+1
i )−1(e′) a circle (it is a circle topologically).

(ii) If e′0 and e′1 are terminal edges in the subdivision of some edge e ∈ E(Xi) (meaning they share a

vertex with e), then (πi+1
i )−1(e′0) and (πi+1

i )−1(e′1) are intervals (so not circles). We refer to these
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edges of X ′i and Xi+1 as terminal intervals (sometimes terminal edges) of Xi+1 and also as

terminal subintervals (sometimes terminal subedges) of e. We note that a subedge e′ ∈ E(X ′i)

of e is not a terminal subinterval if and only if it is contained in the interior of e.

Metric Axioms:

(A3) For any i ≥ 0, d is geodesic when restricted to any directed edge path of Xi, meaning there is an

isometry from a compact interval to this edge path.

(A4) πi+1
i : Xi+1 → X ′i acts identically on any e′ ∈ E(X ′i) ⊆ E(Xi+1), and it collapses any e′op ∈ E(Xi+1) \

E(X ′i) isometrically onto e′.

Thickness Axiom:

Suppose e′ ∈ E(X ′i) is an edge such that (πi+1
i )−1(e′) is a circle. For any t ∈ e′, let top ∈ e′op denote the

opposite point. Define the height of e′ by ht(e′) := maxp∈e′ d(p, pop) (the height is between 0 and |e′| and

is a measure of how close the circle is to being to a standard circle; it equals |e′| if and only if the circle is

isometric to a standard circle of diameter |e′|).

(A5) There is a constant α > 0 (independent of i) such that ht (e′) ≥ α|e′| for every e′ ∈ E(X ′i).

(A6) Let P be a directed edge path from 0 to 1 in X ′i, and let Ecirc(P ) denote the set of edges e′ ⊆ P along

the path for which (πi+1
i )−1(e′) is a circle. Then there is a constant β > 0 (independent of i and P )

such that | ∪ Ecirc(P )| ≥ β.

Measure Definition:

Definition 2.2. Define (µi)
∞
i=0 to be the unique sequence of probability measures satisfying the following

recursion: µ0 is length (Lebesgue) measure on X0 = [0, 1]. Restricted to any edge of Xi+1, µi+1 is a constant

multiple of length measure and for any e′ ∈ E(X ′i), µi+1(e′) = µi(e
′) if e′op = e′, and µi+1(e′) = µi+1(e′op) =

1
2µi(e

′) if e′op 6= e′.

2.2.2 Elementary Consequences of Axioms

Throughout this subsection, fix a thick inverse system, using the same notation as in the previous subsection.

We begin with a proposition that lists, without proof, some elementary consequences of the axioms. We use

these facts often and without mention. Then we prove some less immediate facts about the metric structure

that will be needed for subsequent results.

Proposition 2.1. The following are true:
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� The map πi+1
i : Xi+1 → Xi is a projection onto Xi ⊆ Xi+1; πi+1

i

∣∣
Xi

= idXi .

� πi+1
i is direction preserving, and by induction the same is true for πji , j ≥ i. Thus, πji restricted to

any directed edge path is an isometry.

� The restriction of µi to any interval or circle of Xi is a constant multiple (with constant ≤ 1) of length

measure.

� (πi+1
i )#(µi+1) = µi.

Definition 2.3. For any i ≥ 0, define ∆E
i := mine∈E(Xi) |e| and

δEi := maxe′∈E(X′i)
|e′|
∆E
i

. The maximum is well-defined because each graph has finitely many edges.

Definition 2.4. For any j ≥ i ≥ 0 and x ∈ Xj , define ei(x) and e′i(x) to be edges of Xi and X ′i, respectively,

containing πji (x). These edges are unique except when x is a vertex, and the set of vertices form a measure

0 set.

Lemma 2.1. If (δ′i)
∞
i=0 is a positive decreasing sequence with δ′0 ≤ 1

2 , and if δEi ≤ δ′i, then for any j ≥ i ≥ 0

and xi ∈ Xi, diam((πji )
−1(xi)) ≤ 2δ′i|ei(xi)|.

Proof. Assume δ′i, δ
E
i , and xi are as above. Let xj ∈ (πji )

−1(xi), and for k = i . . . j, set xk := πjk(xj). By

(2.1), d(xk, xk+1) ≤ |e′k(xk)|. By a repeated application of the definition of δEi , we have |e′k(xk)| ≤ δEi · δEi+1 ·

. . . δEk |ei(xi)| ≤ (δ′i)
k+1−i|ei(xi)|, where the least inequality holds since δEk ≤ δ′k and δ′k is decreasing. Then

we have d(xi, xj) ≤
∑j−1
k=i d(xk, xk+1) ≤

(∑j−1
k=i(δ

′
i)
k+1−i

)
|ei(xi)| ≤ 2δ′i|ei(xi)|, where the last inequality

holds since δ′i ≤ δ′0 ≤ 1
2 .

Definition 2.5. For any i ≥ 0, e ∈ E(Xi) and e′ ∈ E(X ′i) with e′ a nonterminal subedge of e, define

∆d
i (e, e

′) := d(e′, Xi \ e). This is positive by compactness and since e′ belongs to the interior of e (since it is

nonterminal). Define ∆d
i (e) to be the minimum of ∆d

i (e, e
′) over all nonterminal e′ ⊆ e, and define ∆d

i to be

the minimum of ∆d
i (e) over all e ∈ E(Xi). Define δdi := maxe′

|e′|
∆d
i

, where the max is over all nonterminal

edges e′ ∈ E(X ′i).

Lemma 2.2. If δdi <
1
2 and Π∞i=0

1
1−2δdi

≤ L, then Lip
(
πji

)
≤ Πj−1

k=iLip
(
πk+1
k

)
≤ Π∞i=0

1
1−2δdi

≤ L for any

j ≥ i ≥ 0.

Proof. It suffices to prove Lip
(
πk+1
k

)
≤ 1

1−2δdk
. Let xk+1, yk+1 ∈ Xk+1, and set xk := πk+1

k (xk+1), yk :=

πk+1
k (yk+1). We need to show that d(xk+1, yk+1) ≥ (1− 2δdk)d(xk, yk). We consider two cases; either xk and

yk belong to the same edge of Xk, or they belong to different edges. Assume they belong to the same edge.

Then there are again two cases; either xk+1 and yk+1 belong to opposite edges of a circle, or they belong
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to a directed edge path. The conclusion holds in this second case since the map πk+1
k is an isometry on

directed edges paths (so we get an ever better bound of 1). Now suppose they belong to opposite edges of a

circle. Without loss of generality, assume yk+1 ∈ e′ and xk+1 ∈ e′op for some e′ ∈ E(X ′k). Then yk+1 = yk,

and a shortest path between them, [xk+1, yk+1], passes through one of the vertices of the circle, say v. Then

since xk and v belong to an edge, d(xk, v) = |v− xk| (recall that |p− q| denotes the distance with respect to

the length metric), and since v and yk belong to an edge, so d(v, yk) = |yk − v|. Without loss of generality,

assume |v − xk| ≤ |yk − v|. This implies xk ∈ [v, yk], in turn implying |xk − v|+ |yk − xk| = |yk − v|. Then

we have

d(xk+1, yk+1) ≥ d(v, yk+1)− d(xk+1, v) = d(v, yk)− d(v, xk)

= |yk − v| − |xk − v| = |yk − xk| = d(yk, xk)

Our conclusion holds in this case (again with an ever better bound of 1).

Finally, assume that xk and yk do not belong to the same edge of Xk. We consider three cases now:

both points belong to a terminal interval of Xk, neither point does, or one does and the other does not.

Our conclusion holds in the first case, since πk+1
k acts identically on Xk (so yk+1 = yk and xk+1 = xk), and

terminal intervals belong to Xk by definition. Assume the second case holds. The edges e′k(xk) and e′k(yk)

are nonterminal by assumption. Then by definition of δdk, since yk and xk do not belong to the same edge of

Xk, |e′k(yk)|, |e′k(xk)| ≤ δdkd(xk, yk). Then we have

d(xk+1, yk+1) ≥ d(xk, yk)− d(xk+1, xk)− d(yk+1, yk) ≥ d(xk, yk)− |e′k(xk)| − |e′k(yk)|

≥ d(xk, yk)− 2δdkd(xk, yk) = (1− 2δdk)d(xk, yk)

And our desired conclusion holds in this case. For the third and final case, assume without loss of generality

that yk belongs to a terminal interval and xk does not. Then we get yk+1 = yk and |e′k(xk)| ≤ δdkd(xk, yk).

Making the obvious adjustments to the argument above yields

d(xk+1, yk+1) = d(xk+1, yk) ≥ d(xk, yk)− d(xk+1, xk) ≥ d(xk, yk)− |e′k(xk)|

≥ d(xk, yk)− δdkd(xk, yk) = (1− δdk)d(xk, yk)

Lemma 2.3. If xk+1, yk+1 ∈ Xk+1 do not belong to opposite open edges of a circle, then

d(πk+1
k (xk+1)), πk+1

k (yk+1)) ≥ 1
1+2δdk

d(xk+1, yk+1) (loosely, πk+1
k collapses circles, but is close to an isometry
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away from them).

Proof. Let xk+1, yk+1 ∈ Xk+1, and set xk := πk+1
k (xk+1), yk := πk+1

k (yk+1). As before, there are two cases;

either xk and yk belong to the same edge of Xk, or they belong to different edges. Assume they belong to

the same edge. Again, as before, there are two cases; either xk+1 and yk+1 belong to opposite edges of a

circle, or they belong to a directed edge path. The first case doesn’t hold by assumption, and the conclusion

holds in this second case since the map πk+1
k is an isometry on directed edges paths (so we get an ever better

bound of 1).

Finally, assume that xk and yk do not belong to the same edge of Xk. As before, three cases: both points

belong to a terminal interval of Xk, neither point does, or one does and the other does not. Our conclusion

holds the first case, since πk+1
k acts identically on Xk (so yk+1 = yk and xk+1 = xk, and intervals belong to Xk

by definition. Assume the second case holds. The edges e′k(xk) and e′k(yk) are nonterminal by assumption.

Then by definition of δdk, since yk and xk do not belong to the same edge ofXk, |e′k(yk)|, |e′k(xk)| ≤ δdkd(xk, yk).

Then we have

d(xk+1, yk+1) ≤ d(xk, xk+1) + d(xk, yk) + d(yk, yk+1) ≤ |e′k(xk)|+ d(xk, yk) + |e′k(yk)| ≤ (1 + 2δdk)d(xk, yk)

And our desired conclusion holds in this case. For the third and final case, assume without loss of generality

that yk belongs to a terminal interval and xk does not. Then we get yk+1 = yk and |e′k(xk)| ≤ δdkd(xk, yk).

Making the obvious adjustments to the argument above yields

d(xk+1, yk+1) = d(xk+1, yk) ≤ d(xk, xk+1) + d(xk, yk) ≤ |e′k(xk)|+ d(xk, yk) ≤ (1 + δdk)d(xk, yk)

Remark 2.1. Note that since 1
1−2δ > 1 + δ, if the hypotheses of Lemma 2.3 are satisfied, then

Π∞k=0(1 + δdk) ≤ L (2.2)

2.2.3 Existence of Inverse System

Let M be a metric space.

Theorem 2.1. If M contains a thick family of geodesics, then for any positive sequence (δ′i)
∞
i=0, M contains

a thick inverse system with δEi , δ
d
i ≤ δ′i for every i (see Definitions 2.1, 2.3, and 2.5).

Proof. Assume M contains an α′-thick family of geodesics Γ for some α′ > 0. Let (δ′i)
∞
i=0 be a positive
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sequence. We’ll construct the inverse sequence X0

←
⊆ X1

←
⊆ . . . inductively. Let γ be any element of Γ, and

set X0 equal to the image of γ in M . Equip X0 with the necessary graph structure. Assume Xi, Xi−1,

and πii−1 have been constructed for some i ≥ 0, satisfy the Graph, Metric, and Thickness Axioms, and also

satisfy the additional hypothesis that the geodesic parametrization of each directed 0-1 edge path belongs

to Γ. For each edge e ∈ E(Xi), let v0(e) and v1(e) denote the source and sink vertices of e, respectively.

The edge e is mapped isometrically onto Ie := [d(0, v0(e)), d(v1(e), 1)] via πi0. Denote the inverse of this map

γe : Ie → e ⊆ Xi. Note that, for any geodesic parametrization γ of a 0-1 edge path whose image contains e,

we must have γ
∣∣
Ie

= γe, so γe extends to a geodesic parametrization of a directed 0-1 edge path.

Now we provide a more quantitative reformulation of Definition 1.6. By a partition T of an interval [a, b],

we mean a finite subset of [a, b] equipped with the order induced from [a, b], such that the least element is a

and the greatest element is b. For any t ∈ T other than b, we define t+ to be the immediate successor of t,

and we simply define b+ := b, and for any t ∈ T other than a, we define t− to be the immediate predecessor

of t, and we simply define a− := a. For each partition T e of Ie, and γ̃e ∈ Γ with γ̃e
∣∣
T e
≡ γe

∣∣
T e

define the

deviations of (T e, γ̃e) and T e, respectively:

dev (T e, γ̃e) :=
∑
t∈T e

max
s∈[t,t+]

d(γe(s), γ̃
e(s))

dev (T e) := sup
γ̃e∈Γ

γ̃e
∣∣
Te
≡γe
∣∣
Te

dev (T e, γ̃e)

Note that dev (T e) ≤ |e|.

For any fixed partition T e of Ie, let T esup/2 and γ̃esup/2 denote a partition of Ie and a geodesic in Γ,

respectively, with

T esup/2 ⊇ T
e (2.3)

γ̃esup/2
∣∣
T e
sup/2

≡ γe
∣∣
T e
sup/2

(2.4)

dev
(
T esup/2, γ̃

e
sup/2

)
≥ 1

2
sup
T ′⊇T e

dev (T ′) (2.5)

Now, we can always choose T esup/2 and γ̃esup/2 such that the above properties remain true, and also such

that for every t ∈ T esup/2,

γe
∣∣
[t,t+]

≡ γ̃esup/2
∣∣
[t,t+]

or γe((t, t
+)) ∩ γ̃esup/2((t, t+)) = ∅ (2.6)

To see this, take any T esup/2 and γ̃esup/2 as above, and let t ∈ T esup/2. If
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maxs∈[t,t+] d(γe(s), γ̃
e(s)) = 0, then γe and γ̃esup/2 agree on all of [t, t+] and we are done. Otherwise, let

smax = argmaxs∈[t,t+]d(γe(s), γ̃
e(s)). Then by continuity, there exists a largest, nonempty open subinterval

(a, b) of [t, t+] containing smax such that γe((a, b))∩γ̃esup/2((a, b)) = ∅. Since it is the largest, γe(a) = γ̃esup/2(a)

and γe(b) = γ̃esup/2(b). We add these new points a and b to the partition T esup/2, and modify γ̃esup/2 so that it

agrees with γe on [t, a] ∪ [b, t+], and remains unchanged on [a, b]. This new curve still belongs to Γ because

Γ is concatenation closed. It is clear that (2.3), (2.4), and (2.5) remain valid, and that we gain (2.6).

We use the partition T esup/2 of Ie to subdivide e into smaller edges by taking the image of T esup/2 under

γe to be new vertices. Each new subedge equals γe([t, t
+]) for a unique t ∈ T esup/2. Denote this edge et, and

recall the height of et, defined in the Thickness Axioms,

ht
(
et
)

= max
s∈[t,t+]

d(γe(s), γ̃
e
sup/2(s))

Set α := α′

4 , and split the new subedges of e up into two groups, Ee<α and Ee≥α, where et ⊆ e belongs to

Ee<α if ht (et) < α|et| and et belongs to Ee≥α if ht (et) ≥ α|et|. Name the collection of corresponding time

intervals (T esup/2)<α and (T esup/2)≥α.

It follows from Definition 1.6 and the observation that γe extends to a geodesic in Γ, that for any 0-1

directed edge path P , and any choice of partition T e for each e ⊆ P ,

∑
e⊆P

dev
(
T esup/2, γ̃

e
sup/2

)
≥ α′

2

It follows from this that

α′

2
≤
∑
e⊆P

 ∑
et∈Ee<α

ht
(
et
)

+
∑

et∈Ee≥α

ht
(
et
) ≤∑

e⊆P

 ∑
et∈Ee<α

α|et|+
∑

et∈Ee≥α

|et|



≤
∑
e⊆P

α|e|+ ∑
et∈Ee≥α

|et|

 = α+
∑
e⊆P

∑
et∈Ee≥α

|et|

implying

| ∪ EP≥α| ≥ 2β (2.7)

where β := α′

8 and EP≥α = ∪e⊆PEe≥α. Now that the preliminaries have been established, we are ready to

choose a specific partition of e and apply the above results.

Set ∆E
i := mine∈E(Xi) |e|, and for each e ∈ E(Xi), subdivide e into three edges e′0 < emid < e′1 such

that |e′0| = min(β2 |e|, δ
′
i∆

E
i ) = |e′1|. Set ∆d

i (e) := d(emid, Xi \ e). Since emid belongs to the interior of e,
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compactness gives us ∆d
i (e) > 0. Then set ∆d

i := mine∈E(Xi) ∆d
i (e) and εi := min(δ′i∆

E
i , δ

′
i∆

d
i ). Now, for

each e ∈ E(Xi), choose a partition T e of Ie = [a, b] = [d(0, v0(e)), d(v1(e), 1)] such that

a+ − a = min

(
β

2
|e|, δ′i∆E

i

)
= b− b− (2.8)

(this implies γe([a, a
+]) = e′0, γe([b

−, b]) = e′1, and γe([t, t
+]) ⊆ emid for t ∈ T e \ {a, b−, b}) and for any

t ∈ T e \ {a, b−, b}

t+ − t ≤ εi (2.9)

For each e ∈ E(Xi), fix T esup/2 ⊇ T
e and γ̃esup/2 as before. As explained in the previous paragraph, T esup/2

induces a subdivision of e. Doing this for each e gives us the total subdivided graph X ′i. By (2.8) and (2.9),

any subedge et ⊆ e satisfies |et| ≤ δ′i∆
E
i , so δEi ≤ δ′i, as required. Furthermore, any nonterminal subedge et

of e is contained in emid, by definition, and so by (2.9) we get |et| ≤ εi ≤ δ′i∆d
i , implying δdi ≤ δ′i, as required.

It remains to construct Xi+1 and πi+1
i . We explain how to use segments of the curve γ̃esup/2 as new

edges to add to our graph X ′i to obtain Xi+1. Let e ∈ E(Xi). There are three options for a subedge

e′ ∈ E(X ′i) of e: e′ is a terminal subedge, (meaning e′ = e′0 = et or e′t1 for t ∈ {d(0, v0(e)), d(v1(e), 1)−}),

e′ = et for some t ∈ (T esup/2)≥α \ {d(0, v0(e)), d(v1(e), 1)−} (meaning ht (et) ≥ α|et|), or e′ = et for some

t ∈ (T esup/2)<α \{d(0, v0(e)), d(v1(e), 1)−} (meaning ht (et) < α|et|). In the first two cases, we set e′op = e′, so

that (πi+1
i )−1(e′) is a circle, and in the third case, set e′op = etop := γ̃esup/2([t, t+]), so that the intersection of

the interiors of et and etop is empty, (πi+1
i )−1(e′) is a circle, and ht (et) ≥ α|et|. We define πi+1

i in the unique

way so that (A4) holds. It is clear that the Graph Axioms, Metric Axioms, and (A5) hold. Our additional

hypothesis that the geodesic parametrization of every 0-1 directed edge path belongs to Γ also holds (again

using concatenation closed). It remains to verify Axiom (A6).

To verify (A6), we fix a path P and compute | ∪Ecirc(P )|. For each e ⊆ P , set Ecirc(e) = {e′ ∈ Ecirc(P ) :

e′ ⊆ e}. Then by (2.7) and (2.8),

| ∪ Ecirc(P )| =
∑
e⊆P

| ∪ Ecirc(e)| =
∑
e⊆P

(
| ∪ Ee≥α| − |(∪Ee≥α) ∩ (e′0 ∪ e′1)|

)
≥
∑
e⊆P

(
| ∪ Ee≥α| − |e′0 ∪ e′1|

)
(2.8)

≥
∑
e⊆P

(
| ∪ Ee≥α| −

(
β

2
|e|+ β

2
|e|
))

= | ∪ EP≥α| − β
(2.7)

≥ 2β − β = β

From here till the end of Section 2.6, fix a complete metric space (M,d) containing a thick family of

geodesics, a positive sequence (δ′i)
∞
i=0 decreasing to 0 quickly enough so that δ′0 <

1
2 and Π∞i=0

1
1−2δ′i

≤ L for
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some L <∞ (this also implies
∑
i δ
′
i <∞), and a thick inverse system afforded to us by the theorem.

Definition 2.6. Denote the closure of X<∞ := ∪∞i=0Xi inside M as X∞. We fix 0 ∈ I = X0 ⊆ X∞ to

be the basepoint. By Lemma 2.2, the maps πji are uniformly L-Lipschitz, so we get L-Lipschitz extensions

π∞i : X∞ → Xi. Summarizing:

∀j ∈ {i, i+ 1, . . .∞}, Lip
(
πji

)
≤ L (2.10)

We also extend the definitions of ei(x) and e′i(x) (see Definition 2.4) in the obvious way when x ∈ X∞.

Remark 2.2. By Lemma 2.1, we get

∀j ∈ {i, i+ 1, . . .∞}, xi ∈ Xi, diam((πji )
−1(xi)) ≤ 2δ′i|ei(xi)| (2.11)

Since each (Xi, d) is a finite graph, each (Xi, d) is compact and thus totally bounded. Then (2.11),

together with our choice that δ′i → 0, imply X<∞ is totally bounded. Then since M is complete, X∞ is

compact.

The maps π∞i : X∞ → Xi are each L-Lipschitz and act identically on Xi ⊆ X∞. These two facts imply,

for any p, q ∈ X∞,

d(p, q) = lim
i→∞

d(π∞i (p), π∞i (q)) (2.12)

This implies that the maps π∞i generate the topology on X∞, i.e., the topology on X∞ is the weakest

one such that each map π∞i is continuous. Equivalently, the subalgebra of C(X∞) consisting of those

continuous functions that factor through some π∞i is dense. We denote this subalgebra by Cunif(X<∞). The

compatibility condition of the probability measures ((πi+1
i )#(µi+1) = µi) gives us a well-defined, bounded,

positive linear functional λ<∞ on Cunif(X<∞). By density this extends to a unique positive linear functional

λ∞ on all of C(X∞).

Definition 2.7. Define µ∞ to be the Radon measure representing the linear functional λ∞ on C(X∞). The

measure µ∞ is a probability measure uniquely characterized by:

∀i ≥ 0, (π∞i )#(µ∞) = µi (2.13)

Remark 2.3. Although we won’t make explicit use it, we believe it is worth mentioning the following fact:

the metric space X∞ and maps (π∞i )∞i=0 satisfy the universal property of an inverse limit space. This means

that for any metric space Y and uniformly Lipschitz sequence of maps (fi)
∞
i=0, fi : Y → Xi, there exists a
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unique Lipschitz map f∞ : Y → X∞ such that π∞i ◦ f∞ = fi for any i.

2.3 Asymptotic Local Properties of (Xi)
∞
i=0 and Special Subsets

of X∞

2.3.1 Deep Points and their Natural Scales

Recall the definition of terminal intervals of Xi+1 from Axiom (A2)(ii).

Definition 2.8. We define the set of deep points, D, to be all those x ∈ X∞ such that π∞i+1(x) eventually

(in i) does not belong to a terminal interval of Xi+1. The set D is a Gδσ (and hence Borel) set.

Theorem 2.2. µ∞(D) = 1.

Proof. Let e be an edge of Xi and e′0 and e′1 its terminal subintervals. By Definition 2.2 and Definition 2.3,

µi+1(e′0 ∪ e′1) = µi+1(e′0) +µi+1(e′1) ≤ 2δEi µi(e). Summing over all e ∈ E(Xi), we get that the total measure

of the union of terminal intervals in E(Xi+1) is bounded by 2δEi . Since
∑
i δ
E
i ≤

∑
i δ
′
i <∞, Borel-Cantelli

implies that the set of x ∈ X∞ such that π∞i+1(x) eventually (in i) does not belong to a terminal interval in

Xi+1 has measure 1.

Structure of (πii−1)−1(e)

We now discuss some geometric properties of

(πii−1)−1(e). While reading this section, it will be helpful to refer to Figure 2.3 for a picture of what

(πii−1)−1(e) typically looks like.

Definition 2.9. Given a deep point or, more generally, a nonvertex x and i ≥ 0, define ri(x) := |ei(x)|.

We call ri(x) the sequence of natural scales of X∞ at x.

Lemma 2.4. For any deep point x and R ≥ 1, BiRri(x)(π
∞
i (x)) is eventually (in i, depending on x and R)

contained in (πii−1)−1(ei−1(x)), where Bi indicates a ball in the space (Xi, d).

Proof. Let x ∈ D and R ≥ 1. Set xi := π∞i (x) and assume i is large enough so that e′i−1(x) is not a terminal

interval. Then by Definition 2.5, d(xi−1, Xi−1 \ ei−1(x)) ≥ |e′i−1(x)|
δdi−1

= ri(x)

δdi−1

≥ ri(x)
δ′i−1

. Combining this with

(2.10) yields

d(xi, Xi \ (πii−1)−1(ei−1(x))) ≥ 1

L
d(xi−1, Xi−1 \ ei−1(x)) ≥ ri(x)

Lδ′i−1

Thus, as soon as i is large enough so that δ′i−1 <
1
LR , we get

BiRri(xi) ⊆ (πii−1)−1(ei−1(x)).
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Lemma 2.5. 1. There exists C ≥ 1 such that for any i ≥ 0 and e ∈ E(Xi−1), µi restricted to (πii−1)−1(e)

is C-doubling with respect to the length metric.

2. For any shortest path [x, y] ⊆ (πii−1)−1(e), µi(Br(x)) ≤ 4µi([x, y]), where r = |x− y|.

Proof. Let i ≥ 0 and e ∈ E(Xi−1). Recall the definition of circles and intervals from Axiom (A2)(i).

By the discussion there, (πii−1)−1(e) = ∪e′⊆e(πii−1)−1(e′) consists of a sequence of intervals and circles,

glued together in a directed way along alternating sink and source vertices. This sequence begins and ends

with terminal intervals, defined in Axiom (A2)(ii). With respect to the length metric and length measure,

(πii−1)−1(e) is doubling. This follows by analyzing the worst case scenario for a ball. This scenario occurs

near points where two circles are glued together. It is possible to have a geodesic ball of radius r such

that the geodesic ball of radius 2r has 4 times the length. This implies length measure is doubling with

doubling constant 4. Let c ∈ (0, 1] such that µi−1 restricted to e equals c times length measure, and for any

e ⊇ e′ ∈ E(X ′i−1), µi restricted to (πii−1)−1(e′) ⊆ (πii−1)−1(e) equals c or c
2 times length measure (c if it’s

an interval, c
2 if it’s a circle). It follows that µi restricted to (πii−1)−1(e) is bounded above by c times length

measure and below by c
2 times length measure. Since length measure it doubling with doubling constant 4,

this implies µi is doubling with doubling constant bounded by 8 (this isn’t sharp).

The second statement can also be observed by examining the worst case scenario where x is a vertex

shared by two adjacent circles and y belongs to one of these circles. Then Br(x) will consist of four copies

of an interval of length r = |x− y|, and the µi measure of any of these new intervals is the same as that of

[x, y]. This implies the second statement.

Remark 2.4. It’s also clear from the description of (πii−1)−1(ei−1(x)) given in the preceding section that if

x, y ∈ (πi+1
i )−1(e) and x and y do not belong to opposite edges of a circle, then x and y belong to a directed

(and thus geodesic) edge path, and so d(x, y) = |y − x|. On the other hand, if y ∈ BiRri(x)(xi) and xi and

y belong to opposite edges of a circle, then |y − xi| ≤ |ei(x)|. In either case, we have, for R ≥ 1 and i

sufficiently large,

∀y ∈ BiRri(x)(xi), |y − xi| ≤ Rri(x) (2.14)

2.3.2 Points having a NonEuclidean Tangent

Theorem 2.3. There exists a Borel S∞ ⊆ X∞ such that µ∞(S∞) > 0, and for all x ∈ S∞, there exists a

nonprincipal ultrafilter U(x) (depending on x) on N such that the tangent cone T
ri(x),U(x)
x X∞ does not embed

(even topologically) into R.
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Before beginning the proof of the theorem, we require a lemma:

Lemma 2.6. For each i ≥ 0, there is a finite set of directed 0-1 edge paths of Xi, Pi, and a probability

measure Pi on Pi such that for every edge e ∈ E(Xi),

µi(e)

|e|
=
∑
P∈Pi
e⊆P

Pi(P )

and it follows that, for any A ⊆ e ∈ E(Xi) Borel,

µi(A) =
∑
P∈Pi

Pi(P )|A ∩ P | (2.15)

Proof. The proof is by induction on i. The base case i = 0 holds trivially with P0 = {X0}, P0 = δX0 .

Assume the statement holds for some i ≥ 0. Let P ∈ Pi. Let Pop be the unique 0-1 directed edge path in

Xi+1 such that e′ ⊆ P if and only if e′op ⊆ Pop for every e′ ∈ E(X ′i). Let Pi+1 = {P, Pop}P∈Pi . For each

P ∈ Pi, define Pi+1(Pop) := Pi+1(P ) := 1
2Pi(P ) if Pop 6= P , and Pi+1(Pop) = Pi+1(P ) := Pi(P ) if Pop = P .

By Definition 2.2, (Pi+1,Pi+1) satisfies the desired property.

Remark 2.5. This lemma gives an Alberti representation of the measure µi. In [Bat15], Bate used a prop-

erty he called universality of Alberti representations to characterize Lipschitz differentiability spaces. Our

representation of the measure µ∞ (which can be constructed by taking limits of the representations of µi)

will generally fail this universality condition, which is consistent with our discussion in Section 2.1.2 that

(X∞, d, µ∞) is not a true Lipschitz differentiability space.

Proof of Theorem 2.3. Let i ≥ 0 and Ecirc(X ′i) the set of edges e′ ∈ E(X ′i) such that (πi+1
i )−1(e′) is a circle.

Set Si := (π∞i )−1(Ecirc(X ′i)), so Si is closed. By (2.13), (2.15), and Axiom (A6),

µ∞(Si)
(2.13)

= µi(Ecirc(X ′i))
(2.15)

=
∑
P∈Pi

Pi(P )|Ecirc(X ′i) ∩ P |
(A6)

≥
∑
P∈Pi

Pi(P )β = β

Because of this, we set S∞ := lim supi→∞ Si (an Fσδ, and hence Borel, set) and get

µ∞(S∞) ≥ β > 0

By definition, S∞ has the following property: for any x ∈ S∞, there is a subsequence ij(x) of i for which

π∞ij(x)(x) ∈ Ecirc(X ′ij(x)). Thus, each pointed metric space (X∞,
1

rij (x)d, x) contains a circle whose height

(see Axiom (A5) for definition of height) is bounded below by α, and the point x belongs to this circle. Let
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U(x) be any nonprincipal ultrafilter on N containing {ij(x)}∞j=0, which exists by Zorn’s lemma. Then the

U(x)-ultralimit of this sequence of pointed metric spaces must also contain such a circle (and the point x

will again belong to this circle), which obviously doesn’t topologically embed into R.

Remark 2.6. As described in the proof, each of the pointed spaces (X∞,
1

rij (x)d, x) contain a circle of height

α which contains x. Let e and eop be the opposite edges of this circle. We can extend e in both directions

to a 0-1 edge path. Since eop has the same vertices as e, this also extends eop to a 0-1 edge path. Unioning

the circle e ∪ eop with the extension to a 0-1 edge path results in a space consisting of two 0-1 geodesics

whose union contains a circle of height α, and that coincide with each other outside that circle. Passing to

the ultralimit, we see that the tangent cone T
ri(x),U(x)
x X∞ contains two bi-infinite geodesics whose union

contains a circle of height α, and that coincide with each other outside that circle. Both geodesics get

mapped down isometrically onto R under the blowup (π∞0 )x : T
ri(x),U(x)
x X∞ → R.

2.4 Approximation of Functions on X∞ via Xi

We begin this section by introducing our fundamental tool for approximating functions on X∞ by functions

on Xi, the conditional expectation. The main results are Theorems 2.4 and 2.5. We then use this tool to

define the derivative of Lipschitz functions on X∞. The main result on the derivative is Theorem 2.6.

2.4.1 Conditional Expectation

Let i ≥ 0 and j ∈ {i, i+ 1, . . .∞}.

Definition 2.10. The conditional expectation is a bounded linear map Eji : L1(µj ;B) → L1(µi;B)

uniquely characterized by the identity

ˆ
Xi

φ · Eji (h)dµi =

ˆ
Xj

(φ ◦ πji ) · hdµj (2.16)

for all h ∈ L1(µj ;B) and φ ∈ L∞(µi). It is a standard tool in probability theory whose existence can be

proven by elementary theorems of measure theory. See Chapter 1 of [Pis16] for background.

It follows from Lp-Lq duality that the conditional expectation is also contractive from Lp(µj ;B) →

Lp(µi;B) for any p ∈ [1,∞]. The majority of this section is dedicated to proving the following theorem:

Theorem 2.4. For every i ≥ 0, E∞i maps Lip0 (X∞;B) into Lip0 (Xi;B) with operator norm bounded by

L2.
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Such a result does not hold for general metric measure spaces (easy examples on [0, 1] show that condi-

tional expectation need not preserve Lipschitz or even continuous functions), but will in our specific instance.

The proof will come at the end of this subsection and is preceded by several lemmas. We give an outline

of the proof structure here:

� Show that for every j < ∞, Eji : Lip0 (Xj ;B) → Lip0 (Xi;B) has operator norm uniformly bounded

by L.

� Noting that Eji := Ei+1
i ◦ Ei+2

i+1 ◦ . . .E
j
j−1, to prove the previous item, it suffices to consider the case

j = i+ 1 and prove that ‖Ei+1
i ‖Lip0(Xi+1;B)→Lip0(Xi;B) ≤ 1 + δ′i, because by (2.2) we obtain

‖Eji‖Lip0(Xj)→Lip0(Xi) ≤ Πj−1
k=i(1 + δ′k) ≤ L (2.17)

for every ∞ > j ≥ i ≥ 0. This is accomplished with Lemma 2.7.

� Extend the domain to X∞ by approximating with maps factoring through some Xi, Lemma 2.8 (we

gain another factor of L here).

Explicit Formula for and Boundedness of Ei+1
i

Lemma 2.7. For each i ≥ 0 and h ∈ Lip0 (Xi+1;B),

[Ei+1
i (h)](p) =

h(p) + h(pop)

2
(2.18)

(recall the definition of pop from Axiom (A2)(i)). Furthermore,

‖Ei+1
i ‖Lip0(Xi+1)→Lip0(Xi) ≤ 1 + δ′i

Proof. Let i ≥ 0 and h ∈ Lip0 (Xi+1). It is a relatively simple exercise to check that (2.18) satisfies (2.16)

using Definition 2.2. We now bound the operator norm. Let x, y ∈ Xi. No two points of Xi ⊆ Xi+1 can

belongs to opposite edges of a circle in Xi+1, so also xop and yop do not belong to opposite edges of a circle.

Thus the hypotheses for Lemma 2.3 are met. Then

‖Ei+1
i (h)(x)− Ei+1

i (h)(y)‖ =
‖h(x) + h(xop)− h(y)− h(yop)‖

2

≤ ‖h(x)− h(y)‖
2

+
‖h(xop)− h(yop)‖

2
≤
‖h‖Lip0(Xi+1)

2
(d(x, y) + d(xop, yop))
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Lemma 2.3
≤

‖h‖Lip0(Xi+1)

2
(d(x, y) + (1 + 2δ′i)d(x, y)) = (1 + δ′i)‖h‖Lip0(Xi+1)d(x, y)

Extending Domain to Lip0 (X∞;B)

For Y a metric space and K ≥ 1, we say a subspace V ⊆ Lip0 (Y ;B) is K-uniformly dense in Lip0 (Y ;B)

if the closure with respect to the topology of uniform convergence of compacta (equivalently, pointwise

convergence on any dense subset) of the ball of radius K in V contains the unit ball of Lip0 (Y ;B).

Each Banach space Lip0 (Xi;B) can be identified as a closed subspace of Lip0 (X∞;B) by pulling back

under the map π∞i . Denote the image of this identification by Lip0 (Xi;B)π. We then obtain the (nonclosed)

subspace ∪i<∞Lip0 (Xi;B)π ⊆ Lip0 (X∞;B). We note that, for any f ∈ Lip0 (Xi;B),

‖f‖Lip0(Xi;B) ≤ ‖f ◦ π∞i ‖Lip0(X∞;B) ≤ ‖f‖Lip0(Xi;B)‖π∞i ‖Lip ≤ L‖f‖Lip0(Xi;B)

so that the embeddings Lip0 (Xi;B)π ↪→ Lip0 (X∞;B) are uniformly bounded but not isometric.

Lemma 2.8. For any Banach space B, ∪i<∞Lip0 (Xi;B)π ⊆ Lip0 (X∞;B) is L-uniformly dense.

Proof. Let f be in the unit ball of Lip0 (X∞;B). Let gi be the restriction to Xi of f . Then gi belongs to

the unit ball of Lip0 (Xi;B). Then gi ◦ π∞i belongs to the ball of radius L of ∪i<∞Lip0 (Xi;B)π. Clearly

gi ◦ π∞i converges pointwise to f on the dense subset X<∞.

Proof of Theorem 2.4. Let i ≥ 0. Let f be in the unit ball of Lip0 (X∞;B). Let fj be a sequence in the

ball of radius L of ∪i<∞Lip0 (Xi;B)π converging uniformly to f , which exists by Lemma 2.8. Then since

E∞i is bounded on L∞, E∞i (fj) converges uniformly to E∞i (f). Furthermore, for every j, by Lemma 2.7 and

(2.17), ‖E∞i (fj)‖Lip0(Xi;B) ≤ L‖fj‖Lip0(X∞;B) ≤ L2. This implies ‖E∞i (f)‖Lip0(Xi;B) ≤ L2.

Measure Representation of Conditional Expectation

We conclude our discussion of conditional expectation with a small theorem we will use once in the proof of

Theorem 2.9. We begin with a standard but useful martingale convergence lemma.

Lemma 2.9. For any Lipschitz map h : X∞ → R (not necessarily vanishing at 0) and i ≥ 0, E∞i (h) is

Lipschitz and E∞i (h)
i→∞→ h uniformly.

Proof. Let h : X∞ → R be Lipschitz so that h − h(0) ∈ Lip0 (X∞). Then Theorem 2.4 implies h =

E∞i (h− h(0)) + h(0) is Lipschitz.
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The Stone-Weierstrass theorem for algebras of continuous functions implies ∪j<∞C(Xj)π is uniformly

dense in C(X∞), where C(Xj)π is defined to be the continuous real-valued functions on X∞ factoring

through Xj . Then since E∞i (h)
i→∞→ h (since it is eventually constant) for all h ∈ ∪j<∞C(Xj), since

supi ‖E∞i ‖L∞(µ∞)→L∞(µ∞) = 1 < ∞, and since µ∞ and µi are fully supported on X∞ and Xi, the claim

follows.

Theorem 2.5. For each i ≥ 0, and p ∈ Xi, there exists a unique Borel probability measure µp∞ supported

on (π∞i )−1(p) such that for any h ∈ C(X∞;B),

[E∞i (h)](p) =

ˆ
(π∞i )−1(p)

hdµp∞ (2.19)

Proof. Let p ∈ Xi. First we assume B = R. Since, by Lemma 2.9 and the usual Stone-Weierstrass theorem,

E∞i preserves continuous functions and has uniform-uniform operator norm 1 (since µ∞ and µi are fully

supported), the map h 7→ [E∞i (h)](p) is a norm 1 linear functional on C(X∞). Further, if h ≥ 0, [E∞i (h)](p) ≥

0. Thus, our linear functional is represented by a probability measure µp∞ on X∞. It remains to show µp∞ is

supported on (π∞i )−1(p). Consider the Lipschitz function hp : X∞ → R defined by hp(x) = d(x, (π∞i )−1(p)).

This function vanishes on (π∞i )−1(p) and is strictly positive on X∞ \ (π∞i )−1(p). Thus, it suffices to show

[E∞i (hp)](p) = 0. Let ε > 0. By Lemma 2.9, E∞i (hp)
i→∞→ hp uniformly, so there exists j ≥ i such that

|[E∞j (hp)](x)| < ε for all x ∈ (πji )
−1(p) (since hp vanishes on (π∞i )−1(p))). Since E∞j (hp) is a Lipschitz

function on Xj , we may apply (2.18) (this was originally stated for functions vanishing at 0 but easily

extends to the general case) and induction to conclude |[Eji (E∞j (hp))](p)]| < ε. Since E∞j ◦E
j
i = E∞i , we take

ε→ 0 and obtain the desired conclusion for B = R.

Now we extend to general B. Define a map E : C(X∞;B)→ C(Xi;Bweak) by

[E(h)](p) :=

ˆ
(π∞i )−1(p)

hdµp∞

where Bweak indicated the space B equipped with the weak topology. We need to show E = E∞i , which we

already know holds for B = R. First, let us quickly verify that E indeed maps into the desired space. Let

h ∈ C(X∞;B) and b∗ ∈ B∗. By an elementary property of the Bochner integral (see Chapter 1 of [Pis16],

especially (1.7)) and the fact that E = E∞i on real-valued continuous functions, b∗ ◦ E(h) = E(b∗ ◦ h) =

E∞i (b∗ ◦h). We already know E∞i maps real-valued continuous functions to real-valued continuous functions,

so this shows b∗ ◦ E(h) is continuous, completing our verification. By another elementary fact on B-valued

conditional expectation (again see see Chapter 1 of [Pis16], (1.7)), E∞i (b∗ ◦ h) = b∗ ◦ E∞i (h) µi-almost

everywhere, for every b∗ ∈ B∗. Thus, µi-almost everywhere, b∗ ◦ E(h) = b∗ ◦ E∞i (h) for every b∗ ∈ B,
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implying E(h) = E∞i (h) µi-almost everywhere. But since both E(h) and E∞i (h) are continuous functions

from Xi into the Hausdorff space Bweak, and since µi is fully-supported, E(h) = E∞i (h) everywhere.

2.4.2 The Derivative and Fundamental Theorem of Calculus

We define the derivative of Lipschitz functions on X∞ in this section. To do so, we must (and do) assume

that B has the RNP. We also prove an inequality in Theorem 2.7 that should be thought of as an adapted

version of the fundamental theorem of calculus.

Definition 2.11. For any hi ∈ ∪j<∞Lip0 (Xj ;B), since Xi is a finite graph equipped with a measure

mutually absolutely continuous with length measure and with a distance geodesic on edges, the fact that

B has the RNP allows us to take the derivative of hi µi-almost everywhere defined by the usual formula

h′i(x) = limt→0
hi(x+t)−hi(x)

t . We make sense of x+ t for t small by identifying the directed edge contained

x with an interval, and the limit is an almost everywhere, norm limit. Equivalently, h′i is characterized by

lim
r→0

sup
y∈Bir(x)

‖hi(y)− hi(x)− h′i(x)(π(y)− π(x))‖
r

= 0 (2.20)

for µi-almost every x ∈ Xi, where π := π∞0 . The map hi 7→ h′i is a linear contraction Lip0 (X∞;B) →

L∞(µ∞;B)

Theorem 2.6. There exists a unique bounded linear map h 7→ h′ : Lip0 (X∞;B) → L∞(µ∞;B), called the

derivative, that

1. satisfies E∞i (h)′
i→∞→ h′ µ∞-almost everywhere

2. restricts to the usual derivative on ∪j<∞Lip0 (Xj ;B)

3. has operator norm bounded by L2.

Proof. Note that uniqueness and the second statement already follow from the first statement. Let h ∈

Lip0(X∞;B) with ‖h‖Lip0(X∞;B) ≤ 1, and for any i ≥ 0, let hi := E∞i (h), so that ‖hi‖Lip0(Xi;B) ≤ L2 (by

Theorem 2.4). Then the intermediate averages x 7→ hi(x+t)−hi(x)
t are uniformly (in t) L∞(µi;B)-bounded by

L2. The DCT then implies that hi(·+t)−hi(·)
t

t→0→ h′i(·) in L1(µi;B). Then since the conditional expectation

Ei+1
i : L1(µi+1;B)→ L1(µi;B) is continuous,

Ei+1
i (h′i+1) = Ei+1

i

(
lim
t→0

hi+1(·+ t)− hi+1

t

)
= lim
t→0

Ei+1
i

(
hi+1(·+ t)− hi+1

t

)

= lim
t→0

[
Ei+ii (hi+1)

]
(·+ t)−

[
Ei+ii (hi+1)

]
t

= lim
t→0

hi(·+ t)− hi
t

= h′i
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The second to last equality says that conditional expectation commutes with precomposition with a trans-

lation, which can be directly verified by (2.18). Thus, the sequence (h′i)
∞
i=0 forms a martingale uniformly

bounded in L∞(µ∞;B) by L2. Since B has the RNP property, the martingale converges µ∞-almost every-

where to some function in L∞(µ∞;B) with norm bounded by L2. We define h′ to be this limit.

Theorem 2.7 (Fundamental Theorem of Calculus). For all g ∈ Lip0 (X∞;B), i ≥ 1, e ∈ E(Xi−1), and

x, y ∈ (πii−1)−1(e),

‖[E∞i (g)](y)− [E∞i (g)](x)‖ ≤ 2|y − x|
 

[x,y]

E∞i (‖g′‖)dµi

Proof. Let g, i, e and x, y be as above. Set gi := E∞i (g). First assume that x and y belong to a directed edge

path. Then the usual Lebesgue fundamental theorem of calculus implies
´ y
x
g′ids = gi(y)− gi(x), where, for

any positive Radon ν on Xi and f ∈ L1(Xi, ν;B),
´ y
x
fdν is interpreted as

´
[x,y]

fdν if x ≤ y along the path,

and −
´

[y,x]
fdν if y ≤ x. If x and y don’t belong to a directed edge path, there exists an intermediate point

z on the shortest path from x to y such that the path is directed from x to z, and then anti-directed from z

to y, or vice versa. We then still have
´ y
x
g′ids = gi(y)− gi(x) if we interpret

´ y
x
fdν as

´
[x,z]

fdν −
´

[y,z]
fdν

if x ≤ z and y ≤ z or −
´

[z,x]
fdν +

´
[z,y]

fdν if z ≤ x and z ≤ y. For future use, we also note that∥∥´ y
x
fdν

∥∥ ≤ ´
[x,y]
‖f‖dν.

As explained in the proof of Lemma 2.5, µi restricted to [x, y] ⊆ (πii−1)−1(e) is bounded below by c
2 times

length measure and above by c times length measure. This implies that for any f ∈ L1(µi) with f ≥ 0, we

have

1

2

 
[x,y]

fds ≤ |y − x|
 

[x,y]

fdµi ≤ 2

 
[x,y]

fds

Combining the last two paragraphs yields:

‖gi(y)− gi(x)‖ =

∥∥∥∥ˆ y

x

g′ids

∥∥∥∥ ≤ ˆ
[x,y]

‖g′i‖ds ≤ 2|y − x|
 

[x,y]

‖g′i‖dµi

= 2|y − x|
 

[x,y]

‖E∞i (g)′‖dµi = 2|y − x|
 

[x,y]

‖E∞i (g′)‖dµi

2.5 Maximal Operator and L1 → L1,w Inequality

Definition 2.12. Let i ≥ 0 and hi ∈ L1(µi). For any nonvertex xi ∈ Xi and i ≥ 0, define

[Mi(hi)](xi) :=

(
sup

yi∈(πii−1)−1(ei−1(xi))

 
[xi,yi]

|hi|dµi

)
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Now let h ∈ L1(µ∞), and set hi := E∞i (h). For any nonvertex x ∈ X∞, set xi := π∞i (x) and define the

maximal function

[M(h)](x) := sup
i≥0

[Mi(hi)](xi) (2.21)

Theorem 2.8 (Maximal Inequality). There exists a constant C ≥ 1 such that for any h ∈ L1(µ∞;B) and

p ∈ (1,∞],

‖M(‖h‖)‖L1,w(µ∞) ≤
Cp

p− 1
‖h‖Lp(µ∞;B) (2.22)

Proof. As is typical, the proof is an application of a relevant covering lemma, Lemma 2.10, which we state

and prove following this proof. This lemma is a combination of the Vitali covering lemma for doubling metric

measure spaces and the covering lemma for atoms in a filtration of finite σ-algebras. Let h ∈ L1(µ∞;B),

hi := E∞i (h), and p ∈ (1,∞]. After making the usual “covering lemma-to-maximal inequality” argument,

we will have a C ≥ 1 (independent of h or p, given to us by Lemma 2.10) such that

‖M(‖h‖)‖L1,w(µ∞) ≤ C‖h∗‖L1(µ∞)

where h∗ is Doob’s maximal function; h∗(x) := supi≥0 ‖hi‖(x). By Doob’s maximal inequality ([Pis16,

Theorem 1.25]),

‖h∗‖Lp(µ∞) ≤
p

p− 1
‖h‖Lp(µ∞;B)

Combining these two inequalities with the simple inequality ‖h∗‖L1(µ∞) ≤ ‖h∗‖Lp(µ∞) yields the desired

conclusion.

Lemma 2.10 (Covering Lemma). Let Γ be a collection of closed subsets of X∞, such that for each γ ∈ Γ,

there is an i ≥ 1, a (not necessarily directed) shortest path [pγ , qγ ] ⊆ Xi, and an edge eγ ∈ Xi−1 such that:

� γ = (π∞i )−1([pγ , qγ ])

� [pγ , qγ ] is completely contained in (πii−1)−1(eγ).

Then there exists a subfamily Γ′ ⊆ Γ, such that

� The sets in Γ′ are essentially pairwise disjoint

� For each γ′ ∈ Γ′, there exists a closed set containing γ′, denoted γ′C , such that
⋃
γ′∈Γ′ γ

′
C ⊇

⋃
Γ and

µ∞(γ′C) ≤ Cµ∞(γ′).
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Proof. First, consider the collection of sets EΓ := {(π∞i−1)−1(eγ)}γ∈Γ. This set covers
⋃

Γ by assumption. It

is a collection of atoms in the filtration (Ai)∞i=0, where Ai is the σ algebra on X∞ generated by preimages of

edges in E(Xi) under the map π∞i . Thus we may find an essentially disjoint subcollection that still covers

∪Γ. We consider a single one these sets, (π∞i−1)−1(e). Let Γe be the collection of those γ ∈ Γ with [pγ , qγ ] ⊆

(πii−1)−1(e). Since preimages under π∞i preserve unions and essential disjointness, it suffices to work directly

with the paths [pγ , qγ ]. The path [pγ , qγ ] is contained in a geodesic ballBr(pγ), where r = |pγ−qγ |. By Lemma

2.5, µi(Br(pγ)) ≤ 4µi([pγ , qγ ]). By the 5r covering lemma, we can then find a pairwise disjoint subcollection

of {Br(pγ)}γ∈Γe , say {Br(pγ′)}γ′∈Γ′e
, such that {B5r(p

′
γ)}γ′∈Γ′e

covers
⋃
{Br(pγ)}γ∈Γe (and thus covers

⋃
Γe).

We set Γ′ :=
⋃
e∈EΓ

{(π∞i )−1([p′, q′])}[p′,q′]∈Γe . By Lemma 2.5, µi(B5r(p)) ≤ µi(B8r(p)) ≤ 43µi(Br(p)). We

set Γ′ =
⋃
e∈E Γ′e, C = 4 · 43, and γ′C = B5r(pγ′).

2.6 Proof of Weak Form of RNP Differentiability, Theorem 2.9

For each deep point x ∈ D ⊆ X∞ (a full measure set), recall the natural scale ri(x) = |ei(x)|, where ei(x) is

the unique edge of Xi containing π∞i (x). Let π := π∞0 .

Theorem 2.9. For every RNP space B and Lipschitz map f : X∞ → B, for µ∞-almost every x ∈ X∞, f

is differentiable at x with respect to π along the sequence of scales (ri(x))∞i=0. More specifically, for almost

every x ∈ D and any R ≥ 1,

lim sup
i→∞

sup
y∈BRri(x)(x)

‖f(y)− f(x)− f ′(x)(π(y)− π(x))‖
ri(x)

= 0

where f ′ is the derivative of f from Theorem 2.6.

Proof. Let B be an RNP space, f : X∞ → B Lipschitz, and R ≥ 1. The conclusion of the theorem is clearly

invariant under postcomposition of f with a translation, so we may assume f ∈ Lip0 (X∞;B). For each

n ≥ 0, let fn := E∞n (f) ◦ π∞n ∈ Lip0 (X∞;B) (see Section 2.4.1 for relevant definitions). Let

(∗) := lim sup
i→∞

sup
y∈BRri(x)(x)

‖f(y)− f(x)− f ′(x)(π(y)− π(x))‖
ri(x)

(so (∗) is a function of x). For every x, the triangle inequality implies

(∗) ≤ lim sup
n→∞

lim sup
i→∞

sup
y∈BRri(x)(x)

‖f(y)− f(x)− fn(y) + fn(x)‖
ri(x)

+
‖fn(y)− fn(x)− f ′n(x)(π(y)− π(x))‖

ri(x)
+
‖(f ′n(x)− f ′(x))(π(y)− π(x))‖

ri(x)

53



For almost every x and every fixed n, the second term equals 0 by (2.20), and so

(∗) ≤ lim sup
n→∞

lim sup
i→∞

sup
y∈BRri(x)(x)

‖f(y)− f(x)− fn(y) + fn(x)‖
ri(x)

+
‖(f ′n(x)− f ′(x))(π(y)− π(x))‖

ri(x)

≤ lim sup
n→∞

lim sup
i→∞

sup
y∈BRri(x)(x)

‖f(y)− f(x)− fn(y) + fn(x)‖
ri(x)

+ LR‖f ′n(x)− f ′(x)‖

By Theorem 2.6, the second term here also equals 0 for almost every x, and so

(∗) ≤ lim sup
n→∞

lim sup
i→∞

sup
y∈BRri(x)(x)

‖f(y)− f(x)− fn(y) + fn(x)‖
ri(x)

Let kn := f−fn, so that supn ‖k′n‖L∞(µ∞;B) ≤ supn ‖kn‖Lip0(X∞;B) ≤ 2L2‖f‖Lip0(X∞;B) and ‖k′n‖
n→∞→ 0

µ∞-almost everywhere (again by Theorem 2.6. This means k′n boundedly converges to 0, and we will apply

the DCT theorem later). It suffices to prove

lim sup
n→∞

lim sup
i→∞

sup
y∈BRri(x)(x)

‖kn(y)− kn(x)‖
ri(x)

= 0

Define yi := π∞i (y) and xi := π∞i (x). then by Theorem 2.5,

[E∞i (kn)](yi)− [E∞i (kn)](xi) =

ˆ
(π∞i )−1(yi)

kndµ
yi
∞ −

ˆ
(π∞i )−1(xi)

kndµ
xi
∞

Furthermore, for any y ∈ (π∞i )−1(yi) and x ∈ (π∞i )−1(xi), we have d(y,yi)
ri(x) ,

d(y,yi)
ri(x) ≤ 2δ′i by (2.11), which,

together with the previous equation (and triangle inequality) gives us

‖kn(y)− kn(x)‖
ri(x)

≤ 1

ri(x)

ˆ
(π∞i )−1(yi)

‖kn − kn(y)‖dµyi∞

+
1

ri(x)

∥∥∥∥∥
ˆ

(π∞i )−1(yi)

kndµ
yi
∞ −

ˆ
(π∞i )−1(xi)

kndµ
xi
∞

∥∥∥∥∥+
1

ri(x)

ˆ
(π∞i )−1(xi)

‖kn − kn(x)‖dµxi∞

≤ ‖[E
∞
i (kn)](yi)− [E∞i (kn)](xi)‖

ri(x)
+ 4‖kn‖Lip0(X∞;B)δ

′
i

≤ ‖[E
∞
i (kn)](yi)− [E∞i (kn)](xi)‖

ri(x)
+ 4(2L2)‖f‖Lip0(X∞;B)δ

′
i

so it suffices to prove that

lim sup
n→∞

lim sup
i→∞

sup
yi∈Bi2Rri(x)

(xi)

‖[E∞i (kn)](yi)− [E∞i (kn)](xi)‖
ri(x)

= 0
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for almost every x, where Bi indicates a ball in the space (Xi, d) (since 2Rri(x) ≥ Rri(x) + δ′iri(x)).

By Lemma 2.4, for almost every x, if i is sufficiently large (depending on R and x), then Bi2Rri(x)(xi) is

completely contained in (πii−1)−1(ei−1(x)). Thus, by Theorem 2.7, for such i and any yi ∈ Bi2Rri(x)(xi),

‖[E∞i (kn)](yi)− [E∞i (kn)](xi)‖
ri(x)

≤ 2
|yi − xi|
ri(x)

 
[xi,yi]

E∞i (‖k′n‖)dµi =: (∗∗)

By (2.14), since yi ∈ Bi2Rri(x)(xi) ⊆ (πii−1)−1(ei−1(x)), |yi − xi| ≤ 2Rri(x), and so

(∗∗) ≤ 4R

 
[xi,yi]

E∞i (‖k′n‖)dµi =: (∗ ∗ ∗)

by the definition of M , the maximal operator defined by (2.21), we get

(∗ ∗ ∗) ≤ 4R[M(‖k′n‖)](x)

Then it suffices to show that

lim sup
n→∞

[M(‖k′n‖)](x) = 0

for almost every x ∈ X∞.

For this, it suffices to show that

∥∥∥∥lim sup
n→∞

M(‖k′n‖)
∥∥∥∥
L1,w(µ∞)

= 0

We have, by the DCT and Theorem 2.8,

∥∥∥∥lim sup
n→∞

M(‖k′n‖)
∥∥∥∥
L1,w(µ∞)

DCT
= lim sup

n→∞
‖M(‖k′n‖)‖L1,w(µ∞)

Theorem 2.8
≤ lim sup

n→∞
2C ‖k′n‖L2(µ∞;B)

DCT
= 0

2.7 Application to Non-BiLipschitz Embeddability

In this section we apply Theorem 1.14 to prove a new negative biLipschitz embeddability result.

Corollary 2.1. A complete metric space M containing a thick family of geodesics does not biLipschitz embed

into the product metric space G×B, where G is a Carnot group and B is an RNP space.

Proof. We’ll proceed by contradiction. Let G be a Carnot group, B an RNP space, M a metric space

containing a thick family of geodesics, and f = (f1, f2) : M → G×B a biLipschitz map. We may assume M
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is complete. Then we let X∞ ⊆ M , S∞ ⊆ X∞, and µ∞ be as in Theorem 1.14, and from here on consider

f to be restricted to X∞.

Let ψ : G : Rk be the abelianization map. The map ψ satisfies a well known unique lifting property:

given any Lipschitz map γ : R → Rk, there exists a unique Lipschitz lift γ̃ : R → G, meaning ψ ◦ γ̃ = γ.

Precomposing with f gives a Lipschitz map (ψ, idB) ◦ (f1, f2) = (ψ ◦ f1, f2) : X∞ → Rk ⊕ B into an RNP

space.

By Theorem 1.14, (ψ ◦ f1, f2) satisfies the weak form of differentiability µ∞-almost everywhere. Pick

a point x ∈ S∞ of differentiability (which exists since µ∞(S∞) > 0) and an ultrafilter U(x) given to us

by Theorem 1.14. This means the blowup (ψ ◦ f1, f2)x : T
ri(x),U(x)
x X∞ → Rk × B exists and factors as

(ψ ◦ f1, f2)x = ((ψ ◦ f1)′(x), f ′2(x)) ◦ πx, where πx : T
ri(x),U(x)
x X∞ → R is the blowup of π and (ψ ◦ f1)′(x) :

R→ Rk and f ′2(x) : R→ B are linear. Breaking these into components gives us the two factorizations

(ψ ◦ f1)x = (ψ ◦ f1)′(x) ◦ πx

(f2)x = f ′2(x) ◦ πx (2.23)

Let us consider the blowup map (ψ ◦ f1)x. It turns out that both blowups (f1)x : T
ri(x),U(x)
x X∞ →

T
ri(x),U(x)
f1(x) G = G and ψ = ψf1(x) : G = T

ri(x),U(x)
f1(x) G → Rk exist and thus (ψ ◦ f1)x = ψ ◦ (f1)x. The

blowup (f1)x exists because the target space G is proper, and T
ri(x),U(x)
f1(x) G = G because G is proper and

self-similar. Similar reasoning implies ψf1(x) : G → Rk exists and ψf1(x) = ψ. Thus our first factorization

can be re-expressed as

ψ ◦ (f1)x = (ψ ◦ f1)′(x) ◦ πx (2.24)

By Remark 2.6, there are two geodesics γ, γ′ : R → T
ri(x),U(x)
x X∞ whose combined image forms a circle of

height α, that coincide with each other outside that circle, and satisfy πx ◦ γ = πx ◦ γ′ = idR. Using these

equations, (2.24), and (2.23) yields

ψ ◦ (f1)x ◦ γ = (ψ ◦ f1)′(x) = ψ ◦ (f1)x ◦ γ′

(f2)x ◦ γ = f ′2(x) = (f2)x ◦ γ′

Since f1, γ, γ
′ are Lipschitz, the unique lifting property of ψ implies

(f1)x ◦ γ = (f1)x ◦ γ′
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Combining these yields

(f1, f2)x ◦ γ = (f1, f2)x ◦ γ′

Since (f1, f2) is biLipschitz, so is (f1, f2)x. Thus, γ = γ′. This is a contradiction since the combined

image of two equal geodesics would be a line and could not contain (even topologically) a circle.

2.8 Inverse Limit of Graphs in nonRNP Spaces

In this section we modify the thick family of geodesics construction in [Ost14b] to obtain an embedding of

an inverse limit of an admissible system of graphs into any nonRNP Banach space. To do so, we use the

following characterization of nonRNP spaces (see Theorem 2.7 of [Pis16]): for any nonRNP space B, there

exist a δ > 0 and an open, convex subset C of the unit ball of B such that for every c ∈ C, c ∈ co(C \B4δ(c)).

2.8.1 Generalized Diamond Systems

Definition 2.13. A generalized diamond system is an inverse system of connected metric graphs,

. . .
π3

2→ X2
π2

1→ X1
π1

0→ X0 satisfying:

(D1) X0 has two vertices and one edge of length 1. We identify X0 with I := [0, 1].

(D2) For any vertex v ∈ V (Xi), (πi+1
i )−1({v}) consists of a single vertex of Xi+1. We identify this vertex

with v and consider V (Xi) as a subset of V (Xi+1).

(D3) There exist an mi and a subdivision X ′i of Xi so that:

(i) For vertex v ∈ V (X ′i), (πi+1
i )−1({v}) consists of one or two vertices of Xi+1. If u, v are adjacent

vertices in X ′i, then at most one of (πi+1
i )−1({u}), (πi+1

i )−1({v}) consists of two vertices.

(ii) Each edge e ∈ E(Xi) is subdivided into 2mi edges of X ′i of equal length.

(iii) πi+1
i : Xi+1 → X ′i is open, simplicial, and an isometry on every edge.

(iv) For any edge e′ ∈ E(X ′i), (πi+1
i )−1(e′) consists of one or two edges, and if e′ is a terminal subedge

of e (meaning it shares a vertex with e), then (πi+1
i )−1(e′) consists of only one edge.

A generalized diamond system admits a canonical sequence of Borel probability measures (µi)
∞
i=0 satis-

fying

(D4) µ0 is Lebesgue measure on I.

(D5) Restricted to each edge of Xi, µi is a constant multiple of length measure.
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(D6) For each e′ ∈ E(X ′i), if (πi+1
i )−1(e′) consists of two edges, then the µi+1 measure of each of these

edges equals 1
2µi(e

′), and if (πi+1
i )−1(e′) consists of one edge, then the µi+1 measure of this edge equals

µi(e
′).

Remark 2.7. With a small adjustment, these axioms imply the axioms of an “admissible” inverse system

from [CK15]. The only problem is that in [CK15], each edge of Xi is subdivided into m edges of X ′i, where

m is independent of i, and our subdivisions are into 2mi subedges, where mi can depend on i. To conform

to the [CK15] axiom, we can augment our inverse system by inserting extra graphs Xj
i between Xi and

Xi+1 that are simply subdivisions of Xi into 2j subedges, for 1 ≤ j ≤ mi. The maps between them are

identity maps. This new system will now be an admissible inverse system with subdivision parameter 2, and

the inverse limit of the original system and augmented system will be the same. Thus, by Theorem 1.1 of

[CK15], the inverse limit (X∞, d∞, µ∞) of a generalized diamond system is a PI space.

There is one last axiom for a generalized diamond system which implies (10.3) from [CK15] holds µ∞-

almost everywhere.

(D7) For any edge e ∈ E(Xi), every point in (πi+1
i )−1(e1/2) is at most 2 edge lengths (of Xi+1) away from

a vertex of degree 4, where e1/2 denotes the middle half of e.

Theorem 2.10. Every nonRNP Banach space contains a biLipschitz copy of a metric measure space satisfy-

ing the differentiation nonembeddability criterion. The metric measure space is an inverse limit of admissible

graphs, as in [CK15], with nonEuclidean tangent cones at almost every point.

Proof. We begin by making some reductions. First, notice that it suffices to embed into B ⊕∞ R for any

nonRNP space B. This is because we may pick any closed, codimension-1 subspace B′ ⊆ B, which is also

necessarily a nonRNP space, and get B ∼= B′ ⊕∞ R.

Let B be a nonRNP space (in a slight abuse of notation, we’ll use ‖ · ‖ to stand for both the norm

on B and the norm on B ⊕∞ R, but this shouldn’t cause any confusion). We’ll construct a sequence of

subsets (Xi)
∞
i=0 of B ⊕∞ R and maps πi+1

i : Xi+1 → Xi such that (Xi, di) is a connected metric graph

and . . .
π3

2→ X2
π2

1→ X1
π1

0→ X0 is a generalized diamond system, where di denotes the intrinsic metric on

Xi (shortest path metric, where path length is measured with respect to ambient Banach space). The

construction will be such that there exist a δ > 0 and δi > δ such that Xi is δ−1
i -quasiconvex in B ⊕ R,

meaning δidi(x, y) ≤ ‖x − y‖ ≤ di(x, y) for all x, y ∈ Xi. Furthermore, the construction will be such that

for any v ∈ V (Xi) ⊆ V (Xi+1), πi+1
i (v) = v (see Axiom (D2) for the identification of V (Xi) as a subset of

V (Xi+1)). By density of the the vertices in the inverse limit space, this implies that the closure of ∪iV (Xi)

in B ⊕ R is δ−1-biLipschitz equivalent to the inverse limit of . . .
π3

2→ X2
π2

1→ X1
π1

0→ X0.
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Previously, we introduced geodesics as isometric maps on intervals, but in this proof it will be more

convenient to consider the image of these maps instead of the map itself. For this reason, we use the term

geodesic path to mean the image of a geodesic map. Additionally, if p and q are points in a graph, we

previously used the notation |p−q| to denote the distance between p and q with respect to the length metric,

but such notation will cause problems in this proof since we are working in a normed space. Instead, we will

use the term intrinsic metric which has the same meaning as length metric, and notation for this distance

will be set subsequently.

Model Graph

Let δ > 0 and let C be an open, convex subset of the unit ball of B such that 0 ∈ C and c ∈ co(C \B4δ(c))

for every c ∈ C, where Br(x) is the closed unit ball of radius r centered at x. We describe how to construct

a graph, for each c ∈ C, that will serve as a building block for the graphs Xi.

Let c ∈ C. We’ll form two piecewise affine, geodesic paths from (0, 0) to (c, 1), denoted γ0(c) and γ1(c).

The reader should refer to Figure 2.5 for a helpful visual of the construction. Since c ∈ C, c = α1c1 + . . . αkck

for some αj ∈ (0, 1) and c1, . . . ck ∈ C with α1 + . . . αk = 1 and ‖c − cj‖ ≥ 4δc > 4δ (note that since c, cj

belong to the unit ball of B, δc ≤ 1
2 ). Since C is open, we may assume each αj is a dyadic rational with

common denominator 2n, by density of dyadic rationals in [0, 1]. Additionally, by “splitting” up terms of the

form m
2n cj into the m-fold sum 1

2n cj+ 1
2n cj+. . . 1

2n cj , we may assume αj = 2−nc and k = 2nc for some nc ≥ 1,

independent of j (of course we do not have that {cj} are distinct, but that is no issue). The path γ0(c) consists

of a piecewise affine interpolation between 2 ·2nc+1 vertices, v0, v
′
1, v1, v

′
2, v2, . . . v

′
2nc , v2nc . These vertices are

such that v0 = (0, 0), and for each j, v′j − vj−1 = 2−(nc+1)(c, 1) and vj − v′j = 2−(nc+1)(cj , 1). Likewise, γ1(c)

consists of a piecewise affine interpolation between 2·2nc+1 vertices, w0, w
′
1, w1, w

′
2, w2, . . . w

′
2nc , w2nc . These

vertices are such that w0 = (0, 0), and for each j, w′j − wj−1 = 2−(nc+1)(cj , 1) and wj − w′j = 2−(nc+1)(c, 1)

(notice the flipping of primed and unprimed terms). It follows that vj = wj for each j, and that v2nc =

(c, 1) = w2nc . These are indeed geodesic paths because the vectors c, cj all have norm 1 in B, and we take an

∞-norm direct sum. An isometry from these geodesics paths onto the interval [0, 1] is provided by projection

onto the second coordinate.

γ0(c) is equipped with a graph structure. The vertex set is the ordered set (v0, v
′
1, v1, v

′
2, v2, . . . v

′
2nc , v2nc )

and there is one edge between consecutive vertices consisting of the line segment between them. The path

γ1(c) is similarly equipped with a graph structure. We let Γ(c) = γ0(c) ∪ γ1(c). Since γ0(c) and γ1(c)

intersect only on their vertices, Γ(c) inherits an induced graph structure. The vertex set is {v0 = w0 =

(0, 0), v′1, w
′
1, v1 = w1, . . . v

′
2nc , w

′
2nc , v2nc = w2nc = (c, 1)}. See Figure 2.5 for an example of Γ(c) for 2nc = 4.

Loosely, Γ(c) is made up of a sequence of parallelograms increasing in the “R direction” of B ⊕R such that
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e1 e2

4δc

e3 e4

(0,0)

(c,1) (cj,1)

(c+cj,2)

Figure 2.4: The parallelogram with vertices (0, 0), (c, 1), (cj , 1), and (c+ cj , 2). The horizontal axis is in the
“B direction” of B ⊕ R, and the vertical axis is in the “R direction”. The extrinsic and intrinsic distance
between any two points on e1 ∪ e3 or any two points on e2 ∪ c4 agree. The extrinsic distance between the
two vertices (c, 1), (cj , 1) is 4δc. All edge lengths are 1.

adjacent parallelograms share a common vertex. Because of this, for any two points of x, y ∈ Γ(c) belonging

to distinct parallelograms, the extrinsic distance ‖x − y‖ and intrinsic distance din(x, y) agree. We claim

that each of these parallelograms is δ−1
c -quasiconvex. Then this claim together with the preceding sentence

imply that Γ(c) is δ−1
c -quasiconvex.

Proof of Claim. Consider one of the parallelograms of Γ(c). It has vertices vj−1 = wj−1, v
′
j , w

′
j , vj =

wj for some j. First notice that translations and dilations don’t change the quasiconvexity constant of

parallelograms, so we may perform such modifications to ours to obtain one that is easier to calculate with.

Translate the parallelogram by −vj−1 (= −wj−1) so that one of the vertices is (0, 0), and the other vertices

are 2−(nc+1)(c, 1), 2−(nc+1)(cj , 1), and 2−(nc+1)(c+ cj , 2). Then scale by 2nc+1 so that the vertices are (0, 0),

(c, 1), (cj , 1), and (c + cj , 2). Now we label the edges: let e1 be the edge between (0, 0) and (c, 1), e2 the

edge between (0, 0) and (cj , 1), e3 the edge between (c, 1) and (c+ cj , 2), and e4 be the edge between (cj , 1)

and (c+ cj , 2). Figure 2.4 shows an example of this parallelogram, and it will be helpful to keep this picture

in mind while reading the remaining proof of the claim.

Note that e1 ∪ e3 is a subpath of the geodesic path corresponding to γ0(c), and e2 ∪ e4 is a subpath of

the geodesic path corresponding to γ1(c), so the intrinsic and extrinsic distance agree on these subsets. Let

x and y be elements of the parallelogram. As just mentioned, if x and y belong to e1 ∪ e3, or both belong to

e2 ∪ e3, then the intrinsic and extrinsic distance between x and y agree. Suppose then that x belongs to e1

and y belongs to e2. Then x = α(c, 1) for some α ∈ [0, 1], y = β(cj , 1) for some β ∈ [0, 1], and the intrinsic

distance between x and y is α+ β. Without loss of generality, assume β ≥ α, so that the intrinsic distance
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between x and y, din(x, y) is bounded by 2β. Then the extrinsic distance between x and y is

‖x− y‖ = ‖α(c, 1)− β(cj , 1)‖ = ‖(β(c− cj) + (α− β)c, α− β)‖

= max(‖β(c− cj) + (α− β)c‖, |α− β|)

≥ max(‖β(c− cj)‖ − ‖(α− β)c‖, |α− β|)

≥ max(‖β(c− cj)‖ − |α− β|, |α− β|)

≥ max(β4δc − |α− β|, |α− β|)

≥ (2β)δc ≥ δcdin(x, y)

showing that the quasiconvexity constant is bounded above by δ−1
c in this case. By symmetry, we get the

same upper bound if x belongs to e3 and y belongs to e4. There is one remaining case (since the rest of

the cases follow from this one by symmetry), in which x belongs to e1 and y belongs to e4. In this case,

x = α(c, 1) for some α ∈ [0, 1], y = (cj , 1) + β(c, 1) for some β ∈ [0, 1], and we use the trivial bound

din(x, y) ≤ 2 for the intrinsic distance. Then for the extrinsic distance, we have

‖x− y‖ = ‖α(c, 1)− ((cj , 1) + β(c, 1))‖

= ‖((α− β − 1) c+ (c− cj), α− β − 1)‖

= max (‖(α− β − 1) c+ (c− cj)‖ , |α− β − 1|)

≥ max (‖c− cj‖ − |α− β − 1| , |α− β − 1|)

≥ max (4δc − |α− β − 1| , |α− β − 1|)

≥ 2δc ≥ δcdin(x, y)

This completes the proof of the δ−1
c -quasiconvexity of the parallelogram.

End Proof of Claim.

Since γ0(c), γ1(c), and [(0, 0), (c, 1)] are all geodesics with endpoints (0, 0) and (c, 1), there are unique

isometries γ0(c) → [(0, 0), (c, 1)] and γ1(c) → [(0, 0), (c, 1)] fixing the endpoints. If we let [(0, 0), (c, 1)]′

denote the subdivision of [(0, 0), (c, 1)] into subedges of length 2−(nc+1), the maps are graph isomorphisms.

Combining these gives us a map πc : Γ(c) → [(0, 0), (c, 1)]′ which is open, simplicial, and an isometry on
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v0=w0=(0,0)

v1' w1'

v1=w1

v2'w2'

v2=w2

v3'w3'

v3=w3

v4' w4'

v4=w4=(c,1)

Figure 2.5: The model graph Γ(c) The geodesic path γ0(c) is shown in orange, and the geodesic path γ1(c)
is shown in blue. The horizontal axis is in the “B direction” of B ⊕ R, and the vertical axis is in the “R
direction”.
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every edge. Furthermore, the preimage of any edge in [(0, 0), (c, 1)]′ consists of two edges of Γ(c). Let

((0, 0) = t0, t
′
1, t1, t

′
2, t2, . . . t

′
2nc , t2nc = (c, 1)) be the ordered vertex set of [(0, 0), (c, 1)]′. Then (π−1

c )({tj}) =

{vj} = {wj}, a single vertex, and (π−1
c )({t′j}) = {vj , w′j}, a set of two vertices. Finally, if j 6= 0, 2nc , the

vertex vj = wj has degree four, so every point in Γ(c) is at most two edge lengths away from a vertex of

degree four. Thus, πc : Γ(c) → [(0, 0), (c, 1)]′ satisfies the conditions listed for πi+1
i in Axioms (D2), (D3),

and (D7).

For any α0 ∈ R \ {0}, b0 ∈ B, and A ⊆ B, we let α0A + b0 be the image of A under the invertible

similarity b 7→ α0b+b0. The sets α0Γ(c)+b0 and (α0[(0, 0), (c, 1)]+b0)′ inherit graph structures from Γ(c) and

[(0, 0), (c, 1)]′, respectively, and there is also an induced map α0πc+b0 : α0Γ(c)+b0 → (α0[(0, 0), (c, 1)]+b0)′

that, like πc, satisfies Axioms (D2), (D3), and (D7).

Inductive Construction of Xi

For the base case, let X0 = {0} × I ⊆ B ⊕ R. For the inductive hypothesis, assume that the inverse system

Xi

πii−1→ Xi−1 . . .
π1

0→ X0 and X ′i−1 have been constructed and satisfy Axioms (D1)-(D7) from Definition 2.13.

For e ∈ E(Xi), let v0(e) and v1(e) denote the terminal vertices of e. Assume that the inverse system satisfies

the additional properties:

(P1) For all e ∈ E(Xi), e equals the line segment joining v0(e) to v1(e). That is, e = [v0(e), v1(e)] :=

{(1− t)v0(e) + tv1(e) : t ∈ [0, 1]}.

(P2) For all e ∈ E(Xi), e is parallel to an associated vector (c, 1) ∈ C ×{1}. That is, v1(e)− v0(e) = α(c, 1)

for some α ∈ R and c ∈ C. Furthermore, α = 2−ni for some ni ≥ 1. The number ni depends on i but

not on e. It follows that every edge of Xi has length 2−ni .

Now we need to construct Xi+1, X ′i, and πi+1
i : Xi+1 → X ′i. Let e ∈ E(Xi), and c ∈ C and ni ≥ 1 such

that v1(e)− v0(e) = 2−ni(c, 1). Subdivide e into into 3 subedges, the middle one having length 1
2 |e|, and the

terminal ones having length 1
4 |e|. Let e0 and e1 denote the terminal subedges, and e1/2 the middle subedge.

Note that, for any x ∈ e1/2 and y ∈ Xi \ e,

di(x, y) ≥ |e|
4

= 2−(ni+2) (2.25)

Let δ′ = δ+δi
2 , so that δ < δ′ < δi. Choose N to be large enough so that

2−N ≤ (δi − δ′)2−2 (2.26)
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Subdivide e1/2 into 2N edges of equal length. So now e is divided into a total of 2N + 2 subedges, and two

of them, e0 and e1, are marked as terminal subedges. Doing this for every e ∈ E(Xi) gives us a subdivision

X̃i of Xi. Let f be a subedge of e1/2. Then v1(f)− v0(f) = 2−(ni+1+N)(c, 1). We create Xi+1 by replacing

f with the graph 2−(ni+1+N)Γ(c) + v0(f), which has the same vertices as f . Thus, Xi+1 consists of the

union of e0, e1, 2
−(ni+1+N)Γ(c) + v0(f) over all f ⊆ e1/2 and e ∈ E(Xi), with each e0 and e1 subdivided

into subedges so that every edge of Xi+1 has equal length. The graph Xi+1 satisfies (P1) and (P2). Since

there are only finitely many e ∈ E(Xi), and thus finitely many c ∈ C associated to e, we may choose the

subdivision parameter nc of Section 2.8.1 independent of c.

X ′i is simply the subdivision of X̃i into subedges all having length the same as any edge of Xi+1. For

any e0, e1, and f ⊆ e1/2, let e′0, e′1, and f ′ denote the subdivisions in X ′i. Let 2−(ni+1+N)πc + v0(f) :

2−(ni+1+N)Γ(c)+v0(f)→ f ′ be the map defined in Section 2.8.1. We paste all these maps along with all the

identity maps e0 → e′0, e1 → e′1 together to obtain the quotient map πi+1
i : Xi+1 → X ′i. Then πi+1

i satisfies

Axioms (D2), (D3), and (D7) because each map 2−(ni+1+N)πc + v0(f) does.

The map πi+1
i is a 1-Lipschitz quotient with respect to the metrics di+1 and di. Furthermore, it has the

property that, if x, y ∈ Xi+1 and πi+1
i (x) and πi+1

i (y) do not belong to the same edge of X̃i, then

di+1(x, y) = di(π
i+1
i (x), πi+1

i (y)) (2.27)

Set δi+1 := minc(δc, δ
′) > δ, where the minimum is over each (c, 1) associated to an edge e of Xi. Since

there are only finitely many edges of Xi, the minimum is well-defined and δi+1 > δ. We now check that

Xi+1 is δ−1
i+1-quasiconvex.

Let x, y ∈ Xi+1. First consider the case πi+1
i (x) and πi+1

i (y) belong to the same edge f of X̃i, with

v1(f)− v0(f) = 2−ni(c, 1) for some c ∈ C. Then x and y both belong to 2−(ni+1+N)Γ(c) + v0(f), on which

the intrinsic distance is δ−1
c -quasiconvex, so the desired conclusion holds in this case.

Now assume πi+1
i (x) and πi+1

i (y) do not belong to the same edge of X̃i but do belong to the same edge

of Xi. Then the intrinsic and extrinsic distance between x and y, and the intrinsic and extrinsic distance

between πi+1
i (x) and πi+1

i (y) are all equal.

Finally, assume πi+1
i (x) and πi+1

i (y) do not belong to the same edge of Xi. We consider two subcases:

both x and y belong to terminal subedges of e, f ∈ E(Xi), or one does not belong to a terminal subedge. In

the first case, if both x and y belong to terminal subedges of Xi, then πi+1
i acts identically, on x and y, and

so

di+1(x, y) = di(π
i+1
i (x), πi+1

i (y)) ≤ δ−1
i ‖π

i+1
i (x)− πi+1

i (y)‖ = ‖x− y‖
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by the inductive hypothesis and so the conclusion holds. Now assume, without loss of generality, that

πi+1
i (x) ∈ e1/2 for some e ∈ E(Xi) and y ∈ Xi+1 \ (πi+1

i )−1(e). Then we get

di(π
i+1
i (x), πi+1

i (y)) ≥ ‖πi+1
i (x)− πi+1

i (y)‖ ≥ δidi(x, y)
(2.25)

≥ δi
|e|
4

= δi2
−(ni+2) (2.28)

Since πi+1
i acts identically on the vertices of X̃i, the di+1 diameter of any fiber of πi+1

i is at most the length

of an edge of X̃i, which is 2−(ni+1+N). This implies

‖πi+1
i (x)− x‖, ‖πi+1

i (y)− y‖ ≤ 2−(ni+1+N) (2.29)

Thus,

‖x− y‖ ≥ ‖πi+1
i (x)− πi+1

i (y)‖ − ‖πi+1
i (x)− x‖ − ‖y − πi+1

i (y)‖

(2.29)

≥ δidi(π
i+1
i (x), πi+1

i (y))− 2−(ni+N)

(2.26)

≥ δidi(π
i+1
i (x), πi+1

i (y))− (δi − δ′)2−(ni+2)

(2.28)

≥ δidi(π
i+1
i (x), πi+1

i (y))− (δi − δ′)di(πi+1
i (x), πi+1

i (y))

= δ′di(π
i+1
i (x), πi+1

i (y))
(2.27)

= δ′di+1(x, y) ≥ δi+1di+1(x, y)
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Chapter 3

Essentially Uniformly Discrete Metric
Spaces

3.1 Introduction

This chapter is devoted to proving the results stated in Section 1.2.2.

3.1.1 Outline

Section 3.2 contains the proof of Theorem 3.1 and the following section contains the proof of Theorem 3.2.

The final section contains examples of essentially uniformly discrete metric spaces which do not obviously

biLipschitz embed into RNP spaces without the aid of Theorem 1.15.

3.1.2 Notation

If λ ∈ Lipfin (X)
∗
, we assign to it the real numbers (cp)p∈X\{0} ∈ RX\{0} and write λ =

∑
p∈X cpep (even

though this infinite sum doesn’t necessarily have a usual meaning as a limit of finite sums) if λ
(
1{p}

)
= cp

for all p ∈ X \ {0} (and interpret c0 = 0). The assignment λ 7→ (cp)p∈X\{0} is injective.

Note that res(δp) = ep (Recall the definition of res from Section 1.2.2). If v ∈ LF (X), we assign to it

the real numbers (cp)p∈X\{0} ∈ RX\{0} and write v =
∑
p∈X cpδp (even though this infinite sum doesn’t

necessarily have a usual meaning as a limit of finite sums) if res(v) =
∑
p∈X cpep (and interpret c0 = 0). The

assignment v 7→ (cp)p∈X\{0} is injective if and only if res is injective.

3.2 Embedding Properties of res

Throughout the rest of this chapter, we assume that X is countable and bounded. Scaling the metric

ρ by a nonzero factor scales the norm ‖ · ‖LF(X) by the same factor, hence resulting in an equivalent norm.

Thus, we shall additionally assume that diam(X) = 1. Of course, all our results hold under the weaker

assumption that X is bounded, but with perhaps different constants, which is inconsequential as far as

Theorems 1.15 and 3.2 are concerned. Finally, by adding a new point to the space and declaring it the
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basepoint 0, we may assume that ρ(0, p) = 1 for every p ∈ X \ {0}, and hence that ‖δp‖ = 1. Under these

standing assumptions on X, we characterize the metric properties of X under which res is an isomorphic

embedding.

First we need a proposition that should clarify the role of essrad in our study of res.

Proposition 3.1. For each p ∈ X, ‖ep‖Lipfin(X)∗ = essrad (p).

Proof. Let p ∈ X. Let f ∈ BLipfin(X) and ε > 0 be arbitrary. By definition of essrad (p), |Bessrad(p)+ε(p)| =∞.

Thus, f must vanish at some point in Bessrad(p)+ε(p). This implies |f(p)| ≤ essrad (p)+ε. Since f ∈ BLipfin(X),

ε > 0 were arbitrary, this in turn implies ‖ep‖Lipfin(X)∗ ≤ essrad (p).

Now consider the function f : X → R defined by

f(x) =

1− ρ(x, p) x ∈ Bessrad(p)−ε(p)

0 x /∈ Bessrad(p)−ε(p)

Then f ∈ Lipfin (X) by definition of essrad (p), ‖f‖Lipfin(X) ≤ (essrad (p) − ε)−1, and ep(f) = 1. It follows

that ‖ep‖Lipfin(X)∗ ≥ essrad (p)− ε. Since ε > 0 was arbitrary, ‖ep‖Lipfin(X)∗ ≥ essrad (p).

Theorem 3.1. res is a θ−1-isomorphic embedding if and only if X is θ′-essentially uniformly discrete for

some θ′ ≥ θ.

Proof. Assume X is not θ′-essentially uniformly discrete for all θ′ ≥ θ. This implies that there is some p ∈ X

with essrad (p) < θ. Then

‖δp‖LF(X) = 1 > θ−1essrad (p)
Prop 3.1

= θ−1‖ep‖Lipfin(X)∗ = θ−1‖res(δp)‖Lipfin(X)∗

Now assume X is θ′-essentially uniformly discrete for some θ′ ≥ θ. It suffices to assume θ′ = θ. Let ε > 0

be arbitrary. Let F ⊆ X be finite and
∑
p∈F cpδp ∈ LFfin (X). Let f ∈ BLip0(F ) such that

∣∣∣∣∣∣f
∑
p∈F

cpδp

∣∣∣∣∣∣ =

∥∥∥∥∥∥
∑
p∈F

cpδp

∥∥∥∥∥∥
LF(F )

We may assume that 0 ∈ F so that f vanishes at some point in F . Thus ‖f‖L∞(F ) ≤ diam(X)‖f‖Lip0(F ) ≤ 1.

We’ll now extend f to a function f̃ ∈ Lipfin (X) with ‖f̃‖Lipfin(X) ≤ (θ − ε)−1. For x ∈ F , set f̃(x) := f(x),

and for x ∈ X \(∪p∈FBθ−ε(p)), set f̃(x) := 0. Since ‖f‖Lip0(F ), ‖f‖L∞(F ) ≤ 1, the Lipschitz constant of f̃ on

its domain of definition is ≤ θ−1, and f̃ is supported on the finite set F . The set of points where f̃ remains

undefined is ∪p∈F (Bθ−ε(p) \ {p}), which is finite by definition of θ-essentially uniformly discreteness. We
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apply the McShane extension theorem to extend f̃ to all of X without increasing the Lipschitz constant.

Then the following estimate concludes the proof of the desired implication.

∥∥∥∥∥∥
∑
p∈F

cpδp

∥∥∥∥∥∥
LF(X)

=

∣∣∣∣∣∣f
∑
p∈F

cpδp

∣∣∣∣∣∣ =

∣∣∣∣∣∣f̃
res

∑
p∈F

cpδp

∣∣∣∣∣∣
≤
∥∥∥f̃∥∥∥

Lipfin(X)

∥∥∥∥∥∥res

∑
p∈F

cpδp

∥∥∥∥∥∥
Lipfin(X)∗

≤ (θ − ε)−1

∥∥∥∥∥∥res

∑
p∈F

cpδp

∥∥∥∥∥∥
Lipfin(X)∗

3.3 Separability of Lipfin (X)∗

We recall the (slightly modified) definition of De Leeuw’s map, Φ, from [Wea99, Definition 2.1.1]. Let

∆ ⊆ X × X denote the diagonal and set X̃ := X × X \ ∆. Then ρ : X̃ → R is non-vanishing. Let

`∞(X̃)ρ denote the vector space of all real-valued functions on X̃ of the form fρ, where f ∈ `∞(X̃). Equip

`∞(X̃)ρ with the unique norm so that f 7→ fρ is a linear isometry from `∞(X̃) onto `∞(X̃)ρ. Define

Φ : Lipfin (X) → `∞(X̃)ρ by Φ(f)((x, y)) := f(y) − f(x). Then Φ is a linear isometric embedding. The

Riesz-Markov representation theorem implies (`∞(X̃)ρ)∗ can be identified with the Banach space of measures

µ on βX̃ equipped with the norm ‖µ‖ =
´
ρd|µ|, denoted M

(
βX̃
)
/ρ. Here, βX̃ denotes the Stone-Čech

compactification of the discrete topological space X̃, and we’ve implicitly extended ρ (in the unique way) to

a continuous function on βX̃ and will continue to do so for all functions in `∞(X̃)ρ. Under this identification,

Φ∗ maps M
(
βX̃
)
/ρ onto Lipfin (X)

∗
, with the action given by Φ∗(µ)(f) =

´
(f(y) − f(x))dµ(x, y). As is

well-known, ∂X̃ := βX̃\X̃ can be identified with the set of nonprincipal ultrafilters on X̃. We wish to identify

special subsets of ∂X̃. For each p ∈ X, let Up denote the set of all nonprincipal ultrafilters U on X̃ such that

{p}× (X \ {p}) ∈ U or (X \ {p})×{p} ∈ U . Note that Up is closed, and that ρ(Up) ⊆ [essrad (p) ,diam(X)],

by definition of essrad (p). Also by definition of essrad (p), there is a U∗p ∈ Up such that ρ(U∗p ) = essrad (p)

(there could be many; U∗p is chosen arbitrarily using AoC). Furthermore, we can, and do, chose U∗p so that

{p} × (X \ {p}) ∈ U∗p (and so (X \ {p}) × {p} /∈ U∗p ). M
(
βX̃
)
/ρ splits into the (internal) `1-direct sum

`1(X̃)/ρ⊕1M (∪p∈XUp) /ρ⊕1M
(
∂X̃ \ ∪p∈XUp

)
/ρ.

Proposition 3.2. The following are true.

1. Φ∗ restricted to `1(X̃)/ρ equals res ◦ π (recall the definition of π : `1(X̃)/ρ → LF (X) from Section

3.1.2).
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2. For any p ∈ X and µ ∈M (Up) /ρ, Φ∗(µ) ∈ span(ep). Additionally, Φ∗(δU∗p ) = ep.

3. Φ∗ vanishes on M
(
∂X̃ \ ∪p∈XUp

)
/ρ.

Proof. (1) follows immediately from the definitions of Φ and π.

To prove (2), since the span of the point mass measures in M (Up) /ρ is weak*-dense in M (Up) /ρ and

Φ∗ is weak*-weak* continuous, it suffices to show Φ∗(δU ) = ±ep for each U ∈ Up. Let U ∈ Up. We’ll assume

{p}× (X \ {p}) ∈ U and show Φ∗(δU ) = ep (a similar argument shows Φ∗(δU ) = −ep if (X \ {p})×{p} ∈ U).

Let f ∈ Lipfin (X). Then CF := {(x, y) ∈ {p} × (X \ {p}) : f(x) − f(y) = f(p)} is a cofinite subset of

{p} × (X \ {p}). Then by definition of nonprincipal ultrafilter, CF ∈ U . Hence,

Φ∗(δU )(f) = f(U) = U- lim
(x,y)

(f(x)− f(y)) = f(p) = ep(f)

This shows (2).

Finally we prove (3). By the same density and continuity reasoning as before, it suffices to show Φ∗(δU ) =

0 for each U ∈ ∂X̃ \ ∪p∈XUp. Let U ∈ ∂X̃ \ ∪p∈XUp. Let p ∈ X, and let 1p denote the indicator function of

{p}. Then Φ∗(δU )(1p) = U-lim(x,y)(1p(x)− 1p(y)). For any (x, y) ∈ X̃, 1p(x)− 1p(y) ∈ {−1, 0, 1}, and thus

U-lim(x,y)(1p(x)− 1p(y)) ∈ {−1, 0, 1}. Now, 1p(x)− 1p(y) = −1 if and only if (x, y) ∈ (X \ {p})× {p} and

1p(x)− 1p(y) = 1 if and only if (x, y) ∈ {p}× (X \ {p}). From this it’s clear that U-lim(x,y)(1p(x)− 1p(y)) /∈

{−1, 1} since U /∈ ∪p∈XUp, and thus the only remaining option is U-lim(x,y)(1p(x)− 1p(y)) = 0. Since p ∈ X

was arbitrary, linearity implies Φ∗(δU )(f) = 0 for all f ∈ Lipfin (X).

Theorem 3.2. For every λ ∈ Lipfin (X)
∗
, there exist w ∈ LF (X) and

∑
p∈X cpep ∈ Lipfin (X)

∗
such that

λ = res(w) +
∑
p∈X cpep and ‖λ‖ ≤ ‖w‖+

∑
p∈X |cp|essrad (p). Consequently, Lipfin (X)

∗
is separable.

Proof. Let λ ∈ Lipfin (X)
∗
. By Hahn-Banach, there exists µ1 + µ2 + µ3 ∈ `1(X̃)/ρ ⊕1 M (∪p∈XUp) /ρ ⊕1

M
(
∂X̃ \ ∪p∈XUp

)
/ρ such that ‖µ1‖ + ‖µ2‖ + ‖µ3‖ = ‖λ‖ and Φ∗(µ1 + µ2 + µ3) = λ. Note that this is

equivalent to saying µ1 + µ2 + µ3 has minimal norm among all elements in (Φ∗)−1(λ). This minimal norm

property and Proposition 3.2(3) imply µ3 = 0. Set cp := µ2(Up) and µ′2 :=
∑
p∈X cpδu∗p . Then Proposition

3.2(2) implies Φ∗(µ2) =
∑
p∈X cpep and ‖µ2‖ =

´
ρd|µ2| ≥

∑
p∈X |cp|essrad (p). Set w := π(µ1), and observe

that Proposition 3.2(1) implies λ = res(w) +
∑
p∈X cpep.

3.4 Examples

In this section, we construct a family of countable, essentially uniformly discrete metric spaces that do not

obviously biLipschitz embed into RNP spaces without the aid of Theorem 1.15.
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First we discuss how to construct, in any Banach space V , an essentially uniformly discrete subset that

is not uniformly discrete. Let V be a Banach space and X ′ ⊆ V an infinite subset such that every bounded

subset of X ′ is finite. Let f : [0,∞)→ [1,∞) be any function such that

1. lim supt→∞ f(t) =∞.

2. limt→∞
f(t)
t = 0.

Define the radial stretch map r : V → V by r(x) := x
f(‖x‖) . set X := r(X ′). (1) and the infinitude of X ′

imply X is not a uniformly discrete subset of V , and (2) and the finiteness of X ′ on bounded subsets imply

X is ∞-essentially uniformly discrete. In general, different choices of f will result in metric spaces X that

are not canonically biLipschitz equivalent.

Now let (X, ρ) be an essentially uniformly discrete, non-uniformly discrete metric space that isometrically

embeds into a Banach space V , such as the one constructed above. Let h : [0,∞) → [0,∞) be a function

such that

� h is concave and increasing.

� h(t) > 0 for t > 0.

� limt→0 h(t) = h(0) = 0.

Then h ◦ ρ is another metric on X that is not biLipschitz equivalent to ρ (via the identity map) unless

t/C ≤ h(t) ≤ Ct for some C < ∞. Transforming the metric by h is not compatible in any obvious way

with RNP biLipschitz embeddability. In other words, even if V is an RNP space, it is not clear that the

metric space (V, h ◦ ‖ · ‖) should biLipschitz embed into any RNP space. However, this metric transform

ρ 7→ h ◦ ρ does preserve essentially uniform discreteness, so (X,h ◦ ρ) isometrically embeds into an RNP

space by Theorem 1.15.
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Chapter 4

Markov Convexity of Carnot Groups

4.1 Introduction

This chapter is devoted to proving the results stated in Section 1.2.3.

4.1.1 Outline

We begin with an informal discussion of the main theorems in Section 4.1.2. Section 4.2 contains some

preliminary inequalities, and Sections 4.3 and 4.4 contain the proofs of Theorems 4.1 and 4.2, respectively.

4.1.2 Discussion of Proof Methods

We engage here in informal discussion of the proofs of Theorem 4.1 and 4.2. This discussion is intended

to give a brief overview of the proofs for readers with a sufficient background in the relevant topics. For

Theorem 4.1, the relevant topics are graded nilpotent Lie algebras, the group structure they inherit via the

Baker-Campbell Hausdorff formula, and their graded-homogeneous group quasi-norms. For Theorem 4.2,

the relevant topics are Markov convexity of diamond-type graphs, jet space Carnot groups, and Khintchine’s

inequality. Readers unfamiliar with these topic may find this section unuseful.

Discussion of Proof of Theorem 4.1

The method employed by Mendel-Naor to prove that p-convexity of Banach spaces implies Markov p-

convexity is to:

1. Invoke the well-known result that p-convex Banach spaces have equivalent norms ‖ · ‖ satisfying the

parallelogram inequality (‖x‖p + ‖x− y‖p)/2− ‖y/2‖p & ‖x− y/2‖p.

2. Prove 4-point p-convexity: (2d(y, x)p + d(z, y)p + d(y, w)p)/2− (d(x,w)/2)p − (d(x, z)/2)p & d(z, w)p,

where d(x, y) = ‖x− y‖.

3. Prove the Markov p-convexity inequality, Definition 1.10.
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We prove the analogous inequalities for graded nilpotent Lie groups:

1. Lemma 4.13. Construct a group quasi-norm N satisfying (N(x)p + N(y−1x)p)/2 − (N(y)/2)p &

N(δ1/2(y)−1x)p.

2. Lemma 4.14. Prove 4-point p-convexity: (2d(y, x)p+d(z, y)p+d(y, w)p)/2−(d(x,w)/2)p−(d(x, z)/2)p &

d(z, w)p, where d(x, y) = N(y−1x).

3. Prove Theorem 4.1. The Markov p-convexity inequality.

The passage from (1) to (2) and from (2) to (3) is exactly the same as in Banach space case. To prove (1),

we recursively construct a sequence of homogeneous quasi-norms on the group, and prove that they satisfy

(1) inductively. Actually, the following stronger version of (1) (with p = 2s, the case p ≥ 2s is taken care of

later) is needed for the induction to close, this is Lemma 4.12.

(Ns(x)2s +Ns(y
−1x)2s)/2− (Ns(y)/2)2s & SNs(x, y)2s +Ds(x, y) +Ns(δ1/2(y)−1x)2s

There are two extra terms that appear in this inequality, SNs(x, y) and Ds(x, y), defined in Definitions 4.3

and 4.4. Ds(x, y) is designed to bound (up to constants) the square of any BCH polynomial of degree s (see

Definition 4.1), so one may guess how it would be useful to prove (1).

SNs(x, y) is nearly a positive definite quasi-norm of (x1, . . . xs, y1, . . . ys) (the name SN is meant to

suggest that it is a seminorm instead of a norm, since it is not positive definite), but not quite as it vanishes

when x1 = y1/2 and xi = yi = 0 for i ≥ 2. However, this is not an issue as we will have an extra ‖y1‖ term

in the induction, so that ‖y1‖ + SNs(x, y) is genuinely a quasi-norm of (x1, . . . xs, y1, . . . ys). Here are Ds

and SNs for some small s:

D3(x, y) = ‖(x3, y3)‖2 + ‖(x1, y1)‖2‖(x2, y2)‖2 + ‖(x1, y1)‖2τ 2(x, y)

D4(x, y) = ‖(x4, y4)‖2 + ‖(x1, y1)‖2‖(x3, y3)‖2 + ‖(x2, y2)‖4

+‖(x1, y1)‖4‖(x2, y2)‖2 + ‖(x2, y2)‖2τ 2(x, y) + ‖(x1, y1)‖4τ 2(x, y)

SN3(x, y) = max(‖x1 − y1/2‖, ‖(x2, y2)‖1/2, ‖(x3, y3)‖1/3)

The polynomial τ 2(x, y) is designed to bound the squares of terms coming from the bracket between two

vectors from the horizontal layer. For example, in the second Heisenberg group,

τ 2(x, y) = (x11y12 − x12y11)2 + (x13y14 − x14y13)2
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We recursively construct the quasi-norms Ns+1 given all the previous quasi-norms by defining Ns+1(x) to

be an `2(s+1) sum of λs+1‖xs+1‖1/(s+1) and the top half of the previously defined quasi-norms, where λs+1

is a positive constant chosen small enough (depending on the product structure of the group in question) to

make the inequality of Lemma 4.12(1) hold. Specifically, from (4.1),

N2(x) = 4
√
‖x1‖4 + λ2‖x2‖2

Ns+1(x) = 2(s+1)

√√√√λs+1‖xs+1‖2 +

s∑
s′=d(s+1)/2e

N
2(s+1)
s′ (x)

The reason why we add the top half of the previously defined norms, and the reason for the inclusion SNs(x, y)

term in the inequality, is to help pass from Ds(x, y) to Ds+1(x, y) during the proof of the inductive step.

When proving the inductive step, we have terms like

(SNs′(x, y)2s′ + Ds′(x, y))(s+1)/s′ , s′ ≤ s, appearing to which we apply Lemma 4.1 and obtain a term like

SNs′(x, y)2(s+1−s′)Ds′(x, y). This term bounds ‖(xs+1−s′ , ys+1−s′)‖2Ds′(x, y) exactly when d(s + 1)/2e ≤

s′ ≤ s. Then summing ‖(xs+1−s′ , ys+1−s′)‖2Ds′(x, y) over this range of s′ accounts for all the terms in

Ds+1(x, y), except for the top-layer term ‖(xs+1, ys+1)‖2 (since any other term in Ds+1(x, y) contains as a

factor a variable from one of the lower half layers, see Lemma 4.7 for details), which is accounted for later.

Discussion of Proof of Theorem 4.2

We recursively construct a sequence of directed graphs Γm and maps from them into the jet space of step

r (Jr−1(R)) to show that it is not Markov p-convex for any p < 2r. The Markov processes we use are

standard directed random walks on the graphs. This is very similar to the method used in [Li16], where

something akin to the Laakso-Lang-Plaut diamond graphs were used. The main feature of those graphs Gm

is that Gm+1 is obtained from Gi by replaced each edge of G1 with a copy of Gm. Roughly speaking, Li

recursively maps Gm+1 into R2 by replacing each edge of a distorted image of G1 by a rotated, distorted

copy of the image of Gi. The distortion is done in such a way that the coLipschitz constant (the Lipschitz

constant of the inverse map) is on the order of 4
√
m
√

ln(m+ 1), and the fact that rotations are isometries

of the Heisenberg group affords one uniform control on the Lipschitz constants. One can conclude from this

that the Heisenberg group is not Markov p-convex for p < 4 (the 4 coming from the fourth root of m).

Our graphs differ from those in [Li16] in that, to obtain Γm+1 from Γm, we first glue together many

copies of Γm together with a small number of copies of a single edge I in series to get a new graph Γ′m+1,

and then replace each edge of Γ1 with a copy of Γ′m+1 (this isn’t exactly how our construction is defined, but

is close enough to get the main idea). See Definition 4.5 for the full details. We will explain the reasoning
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for this after describing our maps of Γm into Jr−1(R).

Our maps differ from those in [Li16] in that we do not rotate the image of Γm before using it to replace

the edges of the image of Γ1, as rotations are not Lipschitz maps in higher step groups like they are in the

Heisenberg group. Refer to Figure 4.2 throughout this discussion to get an idea of the construction of these

maps. Instead of rotating, we simply add (many copies of) the image of Γm to a distorted copy of the image

of Γ1 to obtain the mapping of Γm+1 into R2. More specifically, we map each directed path γ in Γm+1 to

the jet of a function φγ - a horizontal curve in Jr−1(R). The Lipschitz constant of this map is controlled by∥∥ dr

drxφγ
∥∥
∞. We still distort the graphs Γm with the same asymptotics as in [Li16], so that the coLipschitz

constant is on the order of 2r
√
m r
√

ln(m+ 1) (at least on the pairs of random walks (Xm
t , X̃

m
t (t− 2k)). That

we get the 2rth root of m instead of the fourth root of m comes from the fact that Jr−1(R) is of step r

and the Heisenberg group is of step 2. One potential problem is that the absence of isometric rotations and

the fact that (
√
m ln(m))−1 isn’t summable means

∥∥ dr

drxφγ
∥∥
∞ blows up along some paths, and thus we do

not have uniform control on the Lipschitz constant of the map, unlike [Li16]. However, (
√
m ln(m))−1 is

square-summable, and together with the nature of the image of the random walk Xm
t in Jr−1(R), this allows

us to control E[dCC(Xm
t+1, X

m
t )p] uniformly in m, t. Loosely, along the random walk in the horizontal layer

(which has x- and ur−1-coordinates), every time one is confronted with a choice of direction to walk in, the

choice is to walk 1 unit in the x-direction and +(
√
i ln(i+ 1))−1 units in the ur−1-direction with probability

1/2, or 1 unit in the x-direction and −(
√
i ln(i+ 1))−1 units in the ur−1-direction with probability 1/2 (for

some i depending on how far one has walked). Thus, one might expect dCC(Xm
t+1, X

m
t ) to be bounded by

a random variable distributed like 1 + |
∑t
i=1 εi(

√
i ln(i+ 1))−1|, where {εi}i are iid Rademachers, and then

Khintchine’s inequality implies we should have a uniform bound on E[dCC(Xm
t+1, X

m
t )p] (which is the real

quantity of interest, recall Definition 1.10). Of course, the random walk is not distributed like this, but it

turns out that this intuition is correct nonetheless, see Lemmas 4.4 and 4.18(4) for the specifics.

Finally, the reason we use many copies of Γm in creating Γm+1 is so that, compared to the diameter of

Γm+1, the diameter of the copies of Γm is very small, and thus those that replaced opposite edges of Γ1 don’t

get too close together, which would ruin the coLipschitz constant. Morally, this “decouples” any interaction

between different scales in Γm+1.
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4.2 Probabilistic and Convexity Inequalities

In this article, we will often justify an inequality with the phrase “by convexity” or “by the parallelogram

law”. The convexity inequalities we refer to are almost always of the form

ap + bp

2
≥
(
a+ b

2

)p

or

ap + bp ≤ (a+ b)
p

for p ≥ 1 and a, b ≥ 0. The form of the parallelogram law we most often use is

‖u‖2 + ‖u− v‖2

2
= ‖v/2‖2 + ‖u− v/2‖2

for u, v in a Hilbert space, which implies the inequality

‖u‖2 + ‖u− v‖2 ≥ ‖v‖
2

2

We may also use either of these inequalities without explicitly mentioning convexity or the parallelogram

law.

We collect here some basic inequalities related to convexity and an additional one on Lp-norms of random

variables.

Lemma 4.1. For all a, b ≥ 0 and q ≥ 1,

(a+ b)q ≥ aq + qaq−1b

Proof. Let a, b, q be as above. The inequality is obviously true if a = 0. Then if a > 0, after dividing each

side by aq and replacing b/a with t, it suffices to prove (1 + t)q ≥ 1 + qt. This inequality is true since the

right hand is the linearization of the left hand side at t = 0, and the left hand side is a convex function of

t.

Lemma 4.2. For each p > 0 and k ≥ 1,

k∑
t=1

(2t)p > kp+1/2
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Proof. Let p > 0 and k ≥ 1. Since the function t 7→ (2t)p is increasing,

k∑
t=1

(2t)p >

ˆ k

0

(2t)pdt =
2p

p+ 1
kp+1 ≥ kp+1/2

The following two lemmas are frequently used in tandem to prove Khintchine’s inequality (for example,

Proposition 4.5 of [Wol03]). We will need them for a similar inequality used in Section 4.4.2.

Lemma 4.3. For all y ∈ R, cosh(y) ≤ exp(y2/2).

Proof. Let y ∈ R.

cosh(y) =
ey + e−y

2
=

1

2

∞∑
k=0

yk + (−y)k

k!
=

∞∑
k=0

y2k

(2k)!
≤
∞∑
k=0

(y2/2)k

k!
= exp

(
y2

2

)

Lemma 4.4. For each p ≥ 1 and 0 < A,B < ∞, there is a constant C = C(p,A,B) < ∞ such that any

real-valued random variable Y satisfying the moment generating function subgaussian bound

E[exp(yY )] ≤ AeBy
2

also satisfies the Lp-norm bound

E[|Y |p] ≤ C

Proof. This is a standard result from the theory of subgaussian random variables whose proof appears in

any text on measure concentration. For the sake of completeness we’ll include the proof, roughly following

the proof of Proposition 4.5 from [Wol03]. Let p, A, B, Y be as above. For any t > 0, Markov’s inequality

and our assumption imply

P(Y ≥ t) = P
(

exp

(
t

2B
Y

)
≥ exp

(
t2

2B

))
≤ exp

(
− t2

2B

)
E
[
exp

(
t

2B
Y

)]

≤ A exp

(
− t2

2B
+

t2

4B

)
= A exp

(
− t2

4B

)
Likewise,

P(Y ≤ −t) ≤ A exp

(
− t2

4B

)
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giving us

P(|Y | ≥ t) ≤ 2A exp

(
− t2

4B

)
We then use the layer cake principle to calculate E[|Y |p]:

E[|Y |p] = p

ˆ ∞
0

tp−1P(|Y | ≥ t)dt ≤ p
ˆ ∞

0

tp−12A exp

(
− t2

4B

)
dt = C(p,A,B) <∞

4.3 Upper Bound on Markov Convexity of Graded Nilpotent Lie

Groups

Throughout this section, fix a graded nilpotent Lie algebra (g, [·, ·]) of step r ≥ 2 with grading ⊕ri=1gi and

dim(gi) = ki. Choose an ordered basis Ui,1, . . . Ui,ki for each gi and equip g with a Hilbert norm ‖ · ‖ such

that these vectors form an orthonormal basis. We also use ‖ · ‖ to denote the Euclidean norm on any Rn.

Given x ∈ g, let xi ∈ gi denote its gi-component. Given xi ∈ gi, let xi,j ∈ R denote its Ui,j-component.

Thus,

‖x‖2 =

r∑
i=1

‖xi‖2 and ‖xi‖2 =

ki∑
j=1

|xi,j |2

Consider g as a graded nilpotent Lie group as in Section 1.3.3. It’s easy to see that 0 is the group identity

element and x−1 = −x. Whenever u, v ∈ g or u, v ∈ Rn, we use the notation ‖(u, v)‖2 to mean ‖u‖2 + ‖v‖2.

4.3.1 BCH Polynomials

Definition 4.1. For s ≥ 0, a function P : g × g → R that is a monomial(polynomial) in the variables

xn,m, yn,m is a graded-homogeneous monomial(polynomial) of degree s if P (δt(x), δt(y)) = tsP (x, y) for all

x, y ∈ g and t ∈ R>0. Clearly, any graded-homogeneous polynomial of degree s must be a sum of graded-

homogeneous monomials of degree s.

In this section, a multiset is a finite sequence of positive integers modulo permutations. Disjoint unions

I1 t I2 of multisets are defined in the obvious way. Given a multiset I, ‖I‖1 denotes the sum of the elements

and ‖I‖∞ the maximum of the elements. Given a nonzero graded-homogeneous monomial M of degree

s, we associate to it a multiset I(M) defined recursively on the number of variables in the monomial by

I(M) = {i} t I(M ′) if M(x, y) = xi,nM
′(x, y) or M(x, y) = yi,nM

′(x, y) for some n ≤ ki and graded-

homogeneous polynomial M ′ of degree s − i (the base case is I(1) = ∅). By the homogeneity property, it
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must hold that if M is nonzero and graded-homogeneous of degree s, ‖I(M)‖1 = s.

For s ≥ 1, let 1s denote the unique multiset with ‖1s‖1 = s and ‖1s‖∞ = 1 (and 10 = ∅). For each

n,m ≤ k1, let τn,m(x, y) := x1,ny1,m − x1,my1,n. A graded-homogeneous polynomial P of degree s ≥ 2 is

of τ -type if P (x, y) = τn,m(x, y)M ′(x, y) for some n,m ≤ k1 and graded-homogeneous monomial M ′ with

I(M ′) = 1s−2.

A graded homogeneous polynomial of degree s ≥ 2 of the form
∑
j Qj (the sum is finite), where each

Qj is of τ -type or a graded-homogeneous monomial of degree s with 1 < ‖I(Qj)‖∞ < s is called a BCH

polynomial of degree s.

Remark 4.1. Obviously a sum of BCH polynomials of degree s is another such polynomial. If P is a BCH

polynomial of degree s, 1 ≤ i ≤ r, and 1 ≤ j ≤ ki, xi,jP (x, y) and yi,jP (x, y) are BCH polynomials of degree

s+ i. If P (x, y) is a BCH polynomial of degree s, then so is P (x, δt(y)) for any t ∈ R>0.

Example 4.1. Let M(x, y) = 6x1,6x
2
1,1y4,3, P (x, y) = −y1,2(x1,1y1,2 − x1,2y1,1), Q(x, y) = x1,1y1,1, and

R(x, y) = y3,2. M is a graded-homogeneous monomial of degree 7 with I(M) = {1, 1, 1, 4}, P is a graded

homogeneous polynomial of degree 3 of τ -type, Q is a graded-homogeneous monomial of degree 2 with

I(Q) = {1, 1}, and R is a graded homogeneous monomial of degree 3 with I(r) = {3}. M and P are BCH

polynomials, but Q and R are not because they are monomials with ‖I(Q)‖∞ = 1 and ‖I(R)‖∞ = ‖I(R)‖1.

We now arrive at a key structural lemma for the group product on graded nilpotent Lie algebras. The

rest of this subsection is dedicated to its proof.

Lemma 4.5. For all x, y ∈ g and 2 ≤ s ≤ r,

(1) (y−1x)1 = x1 − y1

(2) (y−1x)s = xs − ys +
∑ks
j=1 Ps,j(x, y)Us,j

where each Ps,j is a BCH polynomial of degree s.

A trusting reader familiar with the group structure of graded nilpotent Lie algebras induced by the

Baker-Campbell-Hausdorff formula may safely skip the rest of this subsection. Before proving the lemma,

we need to set some useful notation that allows us to work with nested Lie brackets, and then prove a lemma

about these brackets.

Definition 4.2. Given x, y ∈ g, i ≥ 1, and ε ∈ {1, 2}i, we recursively define (x, y)ε as follows: for i = 1,

(x, y)ε := x if ε = 1 and (x, y)ε := y if ε = 2. Assume (x, y)ε has been defined for all ε ∈ {1, 2}i for some

i ≥ 1. Let ε ∈ {1, 2}i+1. Then ε equals (1, ε′) or (2, ε′) for some ε′ ∈ {1, 2}i. We define (x, y)ε := [x, (x, y)ε
′
]

if ε = (1, ε′) and (x, y)ε := [y, (x, y)ε
′
] if ε = (2, ε′).
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Example 4.2. (x, y)(1,2,2,1) = [x, [y, [y, x]]]. The 1 or 2 in the superscript should be thought of as indicating

the first or second component of (x, y) in the nested Lie bracket.

Lemma 4.6. For all x, y ∈ g, 2 ≤ i1, i2 ≤ r, and ε ∈ {1, 2}i1 ,

((x, y)ε)i2 =

ki2∑
j=1

Qi2,j(x, y)Ui2,j

where each Qi2,j is a BCH polynomial of degree i2 if i1 ≤ i2 0 if i1 > i2.

Proof. Let x, y ∈ g. By the grading property, ((x, y)ε)i2 = 0 if ε ∈ {1, 2}i1 and i1 > i2. We’ll prove the

remaining case by induction on i1.

Proof of base case. The base case is i1 = 2. Let ε ∈ {1, 2}2. Then ε equals (1, 1), (1, 2), (2, 1), or (2, 2).

Since (x, y)(1,1) = (x, y)(2,2) = 0 and (x, y)(2,1) = −(x, y)(1,2), it suffices to only consider ε = (1, 2), in which

case (x, y)ε = [x, y]. Let i2 ≥ 2. We treat the two cases i2 = 2 and i2 > 2. First assume i2 = 2. Then we

have

[x, y]2 = [x1, y1] =

 k1∑
j=1

x1,jU1,j ,

k1∑
j′=1

y1,j′U1,j′

 =

k1∑
j=1

k1∑
j′=1

x1,jy1,j′ [U1,j , U1,j′ ]

=
1

2

(
k1∑

n,m=1

x1,ny1,m [U1,n, U1,m] +

k1∑
n,m=1

x1,my1,n [U1,m, U1,n]

)

=
1

2

k1∑
n,m=1

(x1,ny1,m − x1,my1,n) [U1,n, U1,m] =
1

2

k1∑
n,m=1

τn,m(x, y) [U1,n, U1,m]

=
1

2

k1∑
n,m=1

τn,m(x, y)

k2∑
j=1

cj,n,mU2,j =

k2∑
j=1

(
k1∑

n,m=1

cj,n,m
2

τn,m(x, y)

)
U2,j

for some cj,n,m ∈ R. The inner sum is a sum of polynomials of degree 2 of τ -type, and thus a BCH polynomial

of degree i2.

Now we consider the case i2 > 2.

[x, y]i2 =

i2−1∑
n=1

[xn, yi2−n] =

i2−1∑
n=1

 kn∑
j=1

xn,jUn,j ,

ki2−n∑
j′=1

yi2−n,j′Ui2−n,j′



=

i2−1∑
n=1

kn∑
j=1

ki2−n∑
j′=1

xn,jyi2−n,j′ [Un,j , Ui2−n,j′ ] =

i2−1∑
n=1

kn∑
j=1

ki2−n∑
j′=1

xn,jyi2−n,j′

ki2∑
m=1

cm,n,j,j′Ui2,m

=

ki2∑
m=1

i2−1∑
n=1

kn∑
j=1

ki2−n∑
j′=1

cm,n,j,j′xn,jyi2−n,j′

Ui2,m
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for some cm,n,j,j′ ∈ R. Notice that, for each n, j, j′, I(xn,jyi2−n,j′) = {n, i2 − n}, and so since i2 > 2 and

1 ≤ n ≤ i2 − 1, 1 < ‖I(xn,jyi2−n,j′)‖∞ < i2, and thus xn,j , yi2−n,j′ is a BCH polynomial of degree i2. This

completes the proof of the base case.

Proof of inductive step. Now assume the lemma holds for some 2 ≤ i1 < r. Let ε ∈ {1, 2}i1+1. Then ε

equals (1, ε′) or (2, ε′) for some ε′ ∈ {1, 2}i1 . Without loss of generality, assume ε = (1, ε′). Let i2 ≥ i1 + 1.

Then

((x, y)ε)i2 = [x, (x, y)ε
′
]i2 =

i2−1∑
n=1

[xn, ((x, y)ε
′
)i2−n]

ind hyp
=

i2−1∑
n=1

 kn∑
j=1

xn,jUn,j ,

ki2−n∑
j′=1

Pi2−n,j′(x, y)Ui2−n,j′



=

i2−1∑
n=1

kn∑
j=1

ki2−n∑
j′=1

xn,jPi2−n,j′(x, y) [Un,j , Ui2−n,j′ ]

=

i2−1∑
n=1

kn∑
j=1

ki2−n∑
j′=1

xn,jPi2−n,j′(x, y)

ki2∑
m=1

cm,n,j,j′Ui2,m

=

ki2∑
m=1

 i2∑
n=1

kn∑
j=1

ki2−n∑
j′=1

cm,n,j,j′xn,jPi2−n,j′(x, y)

Ui2,m

for some cm,n,j,j′ ∈ R and BCH polynomials Pi2−n,j′,` of degree i2 − n. This implies xn,jPi2−n,j′(x, y) is a

BCH polynomial of degree i2, as desired.

Proof of Lemma 4.5. The Baker-Campbell-Hausdorff formula, (1.1), implies that there are constants (many

can be taken to be 0) {αε}ε∈∪ri=2{1,2}i ⊆ R such that

y−1x = x− y +

r∑
i=2

∑
ε∈{1,2}i

αε(x, y)ε

Since

(y−1x)i = xi − yi +

r∑
i=2

∑
ε∈{1,2}i

αε((x, y)ε)i

the desired conclusion follows by appealing to Lemma 4.6.

4.3.2 Convex Metrics

The goal of this subsection is to prove Theorem 4.1. To do so, we construct a left invariant homogeneous

quasi-metric on g that satisfies a certain 4-point inequality. This is the content of Lemma 4.14. All the

lemmas and definitions preceding Lemma 4.14 exist to prove it.
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We next define a graded-homogeneous polynomial of degree 2s that dominates the square of any BCH

polynomial of degree s, Lemma 4.7. As a consequence of this we get two domination inequalities involving

norms of group products, Lemmas 4.9 and 4.10. These types of domination are what will ultimately allow

us to prove Lemma 4.12, the key lemma used in the proof of Lemma 4.14.

Definition 4.3. Let

τ (x, y) :=

√ ∑
n,m≤k1

τ2
n,m(x, y)

so that τ (x, y)2 ≥ τn,m(x, y)2 for every n and m. For each 2 ≤ s ≤ r, define Ds : g× g→ R≥0 recursively by

D2(x, y) := τ 2(x, y) + ‖(x2, y2)‖2

Ds+1 := ‖(xs+1, ys+1)‖2 +

b(s+1)/2c∑
s′=1

‖(xs′ , ys′)‖2Ds+1−s′(x, y)

Lemma 4.7. For any 2 ≤ s ≤ r and BCH polynomial P of degree s, there exists 0 < c ≤ 1 such that for all

x, y ∈ g,

Ds(x, y)− ‖(xs, ys)‖2 ≥ cP 2(x, y)

Proof. The proof is by induction on s. The base case s = 2 is clear from the definition of D2 and BCH

polynomial of degree 2. Assume the inequality holds for all s0 ≤ s for some s < r. Let P be a BCH polynomial

of degree s+1. By definition of BCH polynomial, it suffices to prove the inequality assuming P is a monomial

with 1 < ‖I(P )‖∞ < s+1 or P is of τ -type. First assume P is a monomial with 1 < ‖I(P )‖∞ < s+1. There

are two subcases to consider: 1 ∈ I(P ) and 1 /∈ I(P ). Assume the first subcase holds. Then P = x1,nM(x, y)

or P = y1,nM(x, y) for some n ≤ k1 and monomial M of degree s with 1 < ‖I(M)‖∞ < s+ 1. Then

Ds+1(x, y)− ‖(xs+1, ys+1)‖2 =

b(s+1)/2c∑
s′=1

‖(xs′ , ys′)‖2Ds+1−s′(x, y)

≥ ‖(x1, y1)‖2Ds(x, y)
ind hyp

≥ c‖(x1, y1)‖2M2(x, y) ≥ cP 2(x, y)

Now assume the second subcase holds. Then P (x, y) = xi,jM(x, y) or P (x, y) = yi,jM(x, y) for some

1 < i ≤ b(s+ 1)/2c, j ≤ ki, and monomial M of degree s+ 1− i with 1 < ‖I(M)‖∞ < s+ 1. Then

Ds+1(x, y)− ‖(xs+1, ys+1)‖2 =

b(s+1)/2c∑
s′=1

‖(xs′ , ys′)‖2Ds+1−s′(x, y)

≥ ‖(xi, yi)‖2Ds+1−i(x, y)
ind hyp

≥ c‖(xi, yi)‖2M2(x, y) ≥ cP 2(x, y)
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Now assume P is of τ -type. By definition, since P has degree s+1, this means P (x, y) = τn,m(x, y)M ′(x, y)

for some n,m ≤ k1 and graded-homogeneous monomial M ′ with I(M ′) = 1s−1. This implies P (x, y) =

x1,`P
′(x, y) or P (x, y) = y1,`P

′(x, y) for some ` ≤ k1, and degree s polynomial P ′ of τ -type. Then

Ds+1(x, y)− ‖(xs+1, ys+1)‖2 =

b(s+1)/2c∑
s′=1

‖(xs′ , ys′)‖2Ds+1−s′(x, y)

≥ ‖(x1, y1)‖2Ds(x, y)
ind hyp

≥ c‖(x1, y1)‖2(P ′)2(x, y) ≥ cP 2(x, y)

Lemma 4.8. Let 2 ≤ s ≤ r. For any t > 0, there is a constant c > 0 such that for all x, y ∈ g,

Ds(x, y)− ‖(xs, ys)‖2 ≥ c‖(δt(y)−1x)s − (xs − tsys)‖2

Proof. Let t > 0. By Lemma 4.5,

‖(δt(y)−1x)s − (xs − tsys)‖2
Lem 4.5

=
∑
j

|Ps,j(x, δt(y))|2 =
∑
j

|P ′s,j,t(x, y)|2

where each Ps,j is a BCH polynomial of degree s, and by Remark 4.1, each P ′s,j,t is a BCH polynomial of

degree s. Then the desired inequality follows from Lemma 4.7.

Lemma 4.9. Let 2 ≤ s ≤ r and c > 0. For all sufficiently small λ > 0 (depending on c), for all x, y ∈ g,

c(Ds(x, y)− ‖(xs, ys)‖2) + λ‖(y−1x)s‖2 ≥
λ

2
‖xs − ys‖2

Proof. Let λ > 0. By Lemma 4.8, there is a constant c′ > 0 (independent of x, y) such that

c(Ds(x, y)− ‖(xs, ys)‖2) + λ‖(y−1x)s‖2 ≥ c′‖(y−1x)s − (xs − ys)‖2 + λ‖(y−1x)s‖2 =: (∗)

Thus, if λ ≤ c′,

(∗) ≥ λ‖(y−1x)s − (xs − ys)‖2 + λ‖(y−1x)s‖2 ≥
λ

2
‖xs − ys‖2

where the last inequality follows from the parallelogram law.

Lemma 4.10. Let 2 ≤ s ≤ r. There is a constant c > 0 such that for all x, y ∈ g,

Ds(x, y) ≥ c‖(δ1/2(y)−1x)s‖2
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Proof. By Lemma 4.8, it suffices to show

‖(δ1/2(y)−1x)s − (xs − 2−sys)‖2 + ‖(xs, ys)‖2 ≥
1

8
‖(δ1/2(y)−1x)s‖2

Since

‖xs − 2−sys‖2 ≤ 4‖(xs, ys)‖2

it suffices to show

‖(δ1/2(y)−1x)s − (xs − 2−sys)‖2 +
1

4
‖xs − 2−sys‖2 ≥

1

8
‖(δ1/2(y)−1x)s‖2

This inequality is true by the parallelogram law.

Lemma 4.11. There is a constant c > 0 such that for all x, y ∈ g,

‖y1‖‖x1 − y1/2‖ ≥ cτ (x, y)

Proof. It suffices to show, for each fixed n,m ≤ k1, ‖y1‖‖x1 − y1/2‖ ≥ |τn,m(x, y)|. By Cauchy-Schwarz,

‖y1‖‖x1 − y1/2‖ ≥ ‖(y1,m,−y1,n)‖‖(x1,n, x1,m)− (y1,n, y1,m)/2‖

C-S
≥ |y1,m(x1,n − y1,n/2)− y1,n(x1,m − y1,m/2)| = |x1,ny1,m − x1,my1,n| = |τn,m(x, y)|

Definition 4.4. For 2 ≤ s ≤ r, define SNs : g× g→ R by

SNs(x, y) := max{‖x1 − y1/2‖, ‖(x2, y2)‖1/2, ‖(x3, y3)‖1/3, . . . ‖(xs, ys)‖1/s}

Remark 4.2. Using the maximum of the terms is not important here; it could be replaced by any `p-sum

or other such norm. If a different choice of norm was used, the rest of the section would proceed the exact

same way except with possibly different values of constants (but still independent of x, y).

Lemma 4.12. For each 2 ≤ s ≤ r, there exists a homogeneous quasi-norm Ns and a constant c > 0 such

that for all x, y ∈ g,

1.

(Ns(x)2s +Ns(y
−1x)2s)/2− (Ns(y)/2)2s ≥ cSN2s

s (x, y) + cDs(x, y) + cNs(δ1/2(y)−1x)2s
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2. Ns(y) ≥ ‖y1‖ for all s ≥ 2. Consequently, Ns(y) + SNs(x, y) ≥ b‖(xs′ , ys′)‖1/s
′

for some b > 0 and all

1 ≤ s′ ≤ s.

3. If Ns(y) = 0, yi = 0 for all 1 ≤ i ≤ s. In particular, Nr is a positive definite homogeneous quasi-norm.

Proof. The proof is by induction on s. The functions Ns we construct will clearly be homogeneous quasi-

norms and satisfy (2) and (3), so we will only concern ourselves with proving (1).

Proof of base case: The base case is s = 2. Throughout the proof of the base case, c′, c′′, c′′′ denote

(small) positive constants that depend on g but not on x, y. Each of the constants may depend on the ones

previously appearing, but of course this is compatible with the fact that they are all independent of x, y.

Define

N2(x) := 4
√
‖x1‖4 + λ‖x2‖2

where λ > 0 is to be chosen later. Recalling that SN2(x, y)4 = max(‖x1 − y2/2‖4, ‖(x2, y2)‖2) ≤ ‖x1 −

y2/2‖4 + ‖(x2, y2)‖2 and D2(x, y) = τ 2(x, y) + ‖(x2, y2)‖2, we need to show

(N2(x)4 +N2(y−1x)4)/2

≥ (N2(y)/2)4 + c‖x1 − y1/2‖4 + cτ 2(x, y) + c‖(x2, y2)‖2 + cN2(δ1/2(y)−1x)4

for some λ, c > 0. First let’s write out the definitions of some of the terms in the inequality.

N2(x)4 = ‖x1‖4 + λ‖x2‖2

N2(y−1x)4 = ‖x1 − y1‖4 + λ‖(y−1x)2‖2

N2(y)4 = ‖y1‖4 + λ‖y2‖2

By convexity, parallelogram law, and Lemma 4.11,

(‖x1‖4 + ‖x1 − y1‖4)/2 ≥ ((‖x1‖2 + ‖x1 − y1‖2)/2)2

= (‖y1/2‖2 + ‖x1 − y1/2‖2)2 = (‖y1‖/2)4 + 2‖y1/2‖2‖x1 − y1/2‖2 + ‖x1 − y1/2‖4

Lem 4.11
≥ (‖y1‖/2)4 + c′τ 2(x, y) + ‖x1 − y1/2‖4

For some c′ > 0. Thus, it suffices to show that for sufficiently small λ, c > 0,

c′

2
τ 2(x, y) + λ‖x2‖2 + λ‖(y−1x)2‖2 +

1

2
‖x1 − y1/2‖4

84



≥ 2−4λ‖y2‖2 + cτ 2(x, y) + c‖(x2, y2)‖2 + cN2(δ1/2(y)−1x)4

By Lemma 4.9, the following inequality is true for sufficiently small λ > 0:

c′

4
τ 2(x, y) + λ‖(y−1x)2‖2 =

c′

4
(D2(x, y)− ‖(x2, y2)‖|2) + λ‖(y−1x)2‖2

Lem 4.9
≥ λ

2
‖x2 − y2‖2

Thus it suffices for the following inequality to hold for λ, c > 0 sufficiently small:

c′

4
τ 2(x, y) + λ‖x2‖2 +

λ

2
‖x2 − y2‖2 +

1

2
‖x1 − y1/2‖4

≥ 2−4λ‖y2‖2 + c‖(x2, y2)‖2 + cN2(δ1/2(y)−1x)4

We have

λ‖x2‖2 +
λ

2
‖x2 − y2‖2 ≥

λ

2
(‖x2‖2 + ‖x2 − y2‖2)

=
λ

4
(‖x2‖2 + ‖x2 − y2‖2) +

λ

4
(‖x2‖2 + ‖x2 − y2‖2) ≥ 2−4λ‖y2‖2 + c′′‖(x2, y2)‖2

Thus it remains to show

c′

4
τ 2(x, y) +

c′′

2
‖(x2, y2)‖2 +

1

2
‖x1 − y1/2‖4 ≥ cN2(δ1/2(y)−1x)4

for c > 0 sufficiently small. By Lemma 4.10 we have

c′

4
τ 2(x, y) +

c′′

2
‖(x2, y2)‖2 ≥ c′′′(τ 2(x, y) + ‖(x2, y2)‖2) = c′′′Ds(x, y)

Lem 4.10
≥ cλ‖(δ1/2(y)−1x)2‖2

c > 0 sufficiently small, and thus it remains to show

cλ‖(δ1/2(y)−1x)2‖2 +
1

2
‖x1 − y1/2‖4 ≥ cN2(δ1/2(y)−1x)4

This is true by definition of N2. This completes the proof of the base case.

Proof of inductive step: Now assume the statement holds for all 2 ≤ s′ ≤ s some 2 ≤ s ≤ r − 1. Define

Ns+1 by

Ns+1(x) := 2(s+1)

√√√√λ‖xs+1‖2 +

s∑
s′=d(s+1)/2e

N
2(s+1)
s′ (x) (4.1)

where λ is a (small) positive constant (different λ than in the base case) to be chosen later (independent of

x, y). Throughout the remainder of the proof, c1 − c7 denote (small) positive constants that depend on g
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but not on x, y. Each of the constants may depend on the ones previously appearing, but of course this is

compatible with the fact that they are all independent of x, y. The constant λ will end up depending on c2

(which in turn depends on c1), and the subsequent constants will depend on λ.

We now prove the inductive step. In what follows, we adopt some conventions to help make the proof

more readable. There are two types of equalities/inequalities we use relating each of the expressions below.

The first type is simply using a lemma, definition, inductive hypothesis, or convexity or trivial numerical

inequality. Whenever an equality/inequality of this type is used, the particular terms in the expression that

change from one to the next are bolded. No other terms change, except for the bolded ones to which the

particular lemma, definition, inductive hypothesis, or convexity or trivial numerical inequality apply. Apart

from the trivial numerical inequalities, the name of the lemma or definition, “ind hyp”, or “convexity” deco-

rates the equality/inequality symbol. The second type of equality/inequality used is always an equality and

the equality symbol is decorated with the word “rearrange”. This means we use trivialities like commutivity

of addition or multiplication, reindexing of a sum, or no symbolic changes at all. Importantly, we also use

equalities decorated with “rearrange” to change which terms are bolded in the expression, in preparation for

the use of another equality/inequality of the first type.

(Ns+1(x)2(s+1) +Ns+1(y−1x)2(s+1))/2

(4.1)
=

(
λ‖xs+1‖2 +

∑s
s′=d(s+1)/2eN

2(s+1)
s′ (x) + ‖(y−1x)s+1‖2

+
∑s

s′=d(s+1)/2eN
2(s+1)
s′ (y−1x)

)
/2

rearrange
=

λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2) +

(∑s
s′=d(s+1)/2eN

2(s+1)
s′ (x) +N

2(s+1)
s′ (y−1x)

)
/2

convexity

≥ λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2) +

∑s
s′=d(s+1)/2e

(
N2s′

s′ (x) +N2s′

s′ (y−1x)

2

) s+1

s′

ind hyp (1)

≥ λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+
∑s
s′=d(s+1)/2e ((Ns′(y)/2)2s

′
+ c1SN

2s′

s′ (x, y)

+c1Ds′(x, y) + c1Ns′(δ1/2(y)−1x)2s
′
)

s+1

s′

Lem 4.1
≥ λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+
∑s
s′=d(s+1)/2e ((Ns′(y)/2)2s

′
+ c1SN

2s′

s′ (x, y) + c1Ns′(δ1/2(y)−1x)2s
′
)

s+1

s′

+((Ns′(y)/2)2s
′
+ c1SN

2s′

s′ (x, y))
s+1−s′

s′ c1Ds′(x, y)
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rearrange
=

λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+
∑s
s′=d(s+1)/2e ((Ns′(y)/2)2s

′
+ c1SN

2s′

s′ (x, y) + c1Ns′(δ1/2(y)−1x)2s
′
)

s+1

s′

+((Ns′(y)/2)2s′ + c1SN
2s′

s′ (x, y))
s+1−s′
s′ c1Ds′(x, y)

convexity

≥ λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+
∑s
s′=d(s+1)/2e (Ns′(y)/2)2(s+1) + c1SN

2(s+1)
s′ (x, y) + c1Ns′(δ1/2(y)−1x)2(s+1)

+((Ns′(y)/2)2s′ + c1SN
2s′

s′ (x, y))
s+1−s′
s′ c1Ds′(x, y)

rearrange
=

λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+
∑s
s′=d(s+1)/2e(Ns′(y)/2)2(s+1) + c1SN

2(s+1)
s′ (x, y) + c1Ns′(δ1/2(y)−1x)2(s+1)

+((Ns′(y)/2)2s
′
+ c1SN

2s′

s′ (x, y))
s+1−s′

s′ c1Ds′(x, y)

ind hyp (2)

≥ λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+
∑s
s′=d(s+1)/2e(Ns′(y)/2)2(s+1) + c1SN

2(s+1)
s′ (x, y) + c1Ns′(δ1/2(y)−1x)2(s+1)

+c2‖(xs+1−s′ , ys+1−s′)‖2Ds′(x, y)

rearrange
=

λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+
∑s

s′=d(s+1)/2e(Ns′(y)/2)2(s+1) + c1SN
2(s+1)
s′ (x, y) + c1Ns′(δ1/2(y)−1x)2(s+1)

+
∑b(s+1)/2c
s′=1 c2‖(xs′ , ys′)‖2Ds+1−s′(x, y)

≥ λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+c1SN
2(s+1)
s (x, y) +

∑s
s′=d(s+1)/2e(Ns′(y)/2)2(s+1) + c1Ns′(δ1/2(y)−1x)2(s+1)

+
∑b(s+1)/2c
s′=1 c2‖(xs′ , ys′)‖2Ds+1−s′(x, y)

rearrange
=

λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+c1SN
2(s+1)
s (x, y) +

∑s
s′=d(s+1)/2e(Ns′(y)/2)2(s+1) + c1Ns′(δ1/2(y)−1x)2(s+1)

+
∑b(s+1)/2c

s′=1 c2‖(xs′ , ys′)‖2Ds+1−s′(x, y)
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Def 4.3
=

λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

+c1SN
2(s+1)
s (x, y) +

∑s
s′=d(s+1)/2e(Ns′(y)/2)2(s+1) + c1Ns′(δ1/2(y)−1x)2(s+1)

+c2(Ds+1(x, y)− ‖(xs+1, ys+1)‖2)

rearrange
= c1SN

2(s+1)
s (x, y) +

∑s
s′=d(s+1)/2e(Ns′(y)/2)2(s+1) + c1Ns′(δ1/2(y)−1x)2(s+1)

+
c2
2

(Ds+1(x, y)− ‖(xs+1, ys+1)‖2)

c2

2
(Ds+1(x, y)− ‖(xs+1, ys+1)‖2) +

λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2) =: (∗)

By Lemma 4.9, we can choose λ > 0 sufficiently small so that

c2
2

(Ds+1(x, y)− ‖(xs+1, ys+1)‖2) +
λ

2
(‖xs+1‖2 + ‖(y−1x)s+1‖2)

Lem 4.9
≥ λ

4
(‖xs+1‖2 + ‖xs+1 − ys+1‖2)

=
λ

8
(‖xs+1‖2 + ‖xs+1 − ys+1‖2) +

λ

8
(‖xs+1‖2 + ‖xs+1 − ys+1‖2)

≥ λ

16
‖ys+1‖2 + c3‖(xs+1, ys+1)‖2 ≥ 2−(s+1)λ‖ys+1‖2 + c3‖(xs+1, ys+1)‖2

And thus we get

(∗) ≥ c1SN
2(s+1)
s (x, y) +

∑s
s′=d(s+1)/2e(Ns′(y)/2)2(s+1) + c1Ns′(δ1/2(y)−1x)2(s+1)

+
c2
2

(Ds+1(x, y)− ‖(xs+1, ys+1)‖2)

2−(s+1)λ‖ys+1‖2 + c3‖(xs+1, ys+1)‖2

rearrange
= c1SN

2(s+1)
s (x, y) + 2−(s+1)λ‖ys+1‖2 +

∑s
s′=d(s+1)/2e(Ns′(y)/2)2(s+1)

+
∑s
s′=d(s+1)/2e c1Ns′(δ1/2(y)−1x)2(s+1) +

c2
2

(Ds+1(x, y)− ‖(xs+1, ys+1)‖2)

+c3‖(xs+1, ys+1)‖2

(4.1)
= c1SN

2(s+1)
s (x, y) + (Ns+1(y)/2)2(s+1)

+
∑s
s′=d(s+1)/2e c1Ns′(δ1/2(y)−1x)2(s+1) +

c2
2

(Ds+1(x, y)− ‖(xs+1, ys+1)‖2)

+c3‖(xs+1, ys+1)‖2

rearrange
= c1SN

2(s+1)
s (x, y) +

c3

2
‖(xs+1, ys+1)‖2 + (Ns+1(y)/2)2(s+1)

+
∑s
s′=d(s+1)/2e c1Ns′(δ1/2(y)−1x)2(s+1)

+
c2
2

(Ds+1(x, y)− ‖(xs+1, ys+1)‖2) +
c3
2
‖(xs+1, ys+1)‖2
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Def 4.4
≥ c4SN

2(s+1)
s+1 (x, y) + (Ns+1(y)/2)2(s+1)

+
∑s
s′=d(s+1)/2e c1Ns′(δ1/2(y)−1x)2(s+1)

+
c2
2

(Ds+1(x, y)− ‖(xs+1, ys+1)‖2) +
c3
2
‖(xs+1, ys+1)‖2

rearrange
= (Ns+1(y)/2)2(s+1) + c4SN

2(s+1)
s+1 (x, y) +

∑s
s′=d(s+1)/2e c1Ns′(δ1/2(y)−1x)2(s+1)

+
c2

2
(Ds+1(x, y)− ‖(xs+1, ys+1)‖2) +

c3

2
‖(xs+1, ys+1)‖2

≥ (Ns+1(y)/2)2(s+1) + c4SN
2(s+1)
s+1 (x, y) +

∑s
s′=d(s+1)/2e c1Ns′(δ1/2(y)−1x)2(s+1)

+c5Ds+1(x, y)

rearrange
= (Ns+1(y)/2)2(s+1) + c4SN

2(s+1)
s+1 (x, y) +

c5
2
Ds+1(x, y)

+
∑s
s′=d(s+1)/2e c1Ns′(δ1/2(y)−1x)2(s+1) +

c5

2
Ds+1(x, y)

Lem 4.10
≥ (Ns+1(y)/2)2(s+1) + c4SN

2(s+1)
s+1 (x, y) +

c5
2
Ds+1(x, y)

+
∑s
s′=d(s+1)/2e c1Ns′(δ1/2(y)−1x)2(s+1) + c6‖(δ1/2(y)−1x)s+1‖2

rearrange
= (Ns+1(y)/2)2(s+1) + c4SN

2(s+1)
s+1 (x, y) +

c5
2
Ds+1(x, y)

+
∑s

s′=d(s+1)/2e c1Ns′(δ1/2(y)−1x)2(s+1) + c6‖(δ1/2(y)−1x)s+1‖2

(4.1)

≥ (Ns+1(y)/2)2(s+1) + c4SN
2(s+1)
s+1 (x, y) +

c5
2
Ds+1(x, y)

+c7Ns+1(δ1/2(y)−1x)2(s+1)

Lemma 4.13. There exists a positive definite homogeneous quasi-norm Nr on g and a constant c > 0

(depending on g but not on x, y) such that for all p ≥ r and all x, y ∈ g,

(Nr(x)2p +Nr(y
−1x)2p)/2− (Nr(y)/2)2p ≥ cp/rNr(δ1/2(y)−1x)2p

Proof. Let Nr, c be as in the conclusion of Lemma 4.12. Let p ≥ r. Then by convexity and that lemma,

(Nr(x)2p +Nr(y
−1x)2p)/2 ≥ ((Nr(x)2r +Nr(y

−1x)2r)/2)p/r

Lem 4.12
≥ ((Nr(y)/2)2r + cNr(δ1/2(y)−1x)2r)p/r ≥ (Nr(y)/2)2p + cp/rNr(δ1/2(y)−1x)2p
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Lemma 4.14. There exists a left invariant, homogeneous, positive definite quasi-metric dNr on g and a

constant c > 0 (depending on g but not on w, x, y, z) such that for all p ≥ r and w, x, y, z ∈ g,

(2dNr (y, x)2p + dNr (y, w)2p + dNr (y, z)
2p)/2− (dNr (x,w)/2)2p − (dNr (x, z)/2)2p ≥ c′dNr (w, z)2p

Proof. Let Nr, c be as in the previous lemma. Let dNr be the metric derived from Nr; dNr (x, y) := Nr(y
−1x).

By left invariance of the metric, we may assume x = 0. Then by applying the previous lemma to each of the

pairs (y, w) and (y, z), we obtain

(dNr (y, 0)2p + dNr (y, w)2p)/2− (dNr (0, w)/2)2p ≥ cp/rdNr (δ1/2(w), 0)2p

(dNr (y, 0)2p + dNr (y, z)
2p)/2− (dNr (0, z)/2)2p ≥ cp/rdNr (δ1/2(z), 0)2p

Adding these and then using using Hölder, the quasi-triangle inequality, and homogeneity gives

(2dNr (y, 0)2p + dNr (y, w)2p + dNr (y, z)
2p)/2− (dNr (0, w)/2)2p − (dNr (0, z)/2)2p

≥ cp/r(dNr (δ1/2(w), 0)2p + dNr (δ1/2(z), 0)2p) ≥ 2−2p+1cp/r(dNr (δ1/2(w), 0) + dNr (δ1/2(z), 0))2p

≥ c′dNr (δ1/2(w), δ1/2(z))2p = 2−2pc′dNr (w, z)
2p

for some c′ > 0.

Theorem 4.1. Every graded nilpotent Lie group G of step r, equipped with a left invariant metric homo-

geneous with respect to the dilations induced by the grading, is 4-point p-convex - and consequently Markov

p-convex - for every p ∈ [2r,∞).

Proof. Let G be as above. Lemma 4.14 exactly states that G is 4-point p-convex for every p ∈ [2r,∞). Then

Theorem 1.11 implies G is Markov p-convex for every p ∈ [2r,∞).

4.4 Lower Bound on Markov Convexity of Jr−1(R)

The goal of this section is to prove Theorem 4.2, which occurs at the conclusion. The strategy is to construct a

sequence of directed graphs (see Definition 4.5) with bad Markov convexity properties. These bad properties

are manifested by the dispersive nature of random walks on the graphs. This is the content of Lemma 4.16.
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We then map these graphs into Jr−1(R) with sufficient control over the distortion (Lemma 4.18) to prove

Theorem 4.2.

4.4.1 Directed Graphs and Random Walks

Let (Nm)∞m=0 be any sequence of integers with N0 = 0 and Nm+1 ≥ max(1, Nm + d2 log2(m + 1)e). We’ll

define a sequence of directed graphs (Γm)∞m=0. The graphs will be directed from unique source vertex to

unique and sink vertex, which we will denote by 0m and 1m, respectively. Let diam(Γm) be the number of

edges in a directed edge path from 0 to 1, which is also equal to the diameter of Γm with respect to the

shortest path metric. The construction will be such that diam(Γm) = 2Nm .

Definition 4.5. We’ll perform the construction and also prove that diam(Γm) = 2Nm by induction. Let

Γ0 be the interval I, that is, a graph with two vertices 0, 1 and a single edge connecting them, directed

from 0 to 1. Suppose Γm has been constructed for some m ≥ 0. We define an intermediate graph Γ′m+1 by

gluing together a := 2Nm+1−d2 log2(m+1)e−1 copies of I, then A := 2Nm+1−Nm − 2Nm+1−Nm−d2 log2(m+1)e =

2−Nm(2Nm+1 − 2a) = 2Nm+1−Nm(1− 2−d2 log2(m+1)e) copies of Γm, then a more copies of I again together in

series. The source vertex of this graph is the source vertex of the first copy of I, and the sink vertex is the

sink vertex of the last copy of I. The diameter of this graph is

a · diam(I) +A · diam(Γm) + a · diam(I)
ind hyp

= 2a+ 2NmA = 2Nm+1

We then define Γm+1 to be two copies of Γ′m+1, denoted +Γ′m+1 and −Γ′m+1, glued together in parallel.

Denote the common source vertex 0m and sink vertex 1m. The diameter of Γm+1 is the same as the

diameter of Γ′m+1. We note that each copy of Γm in Γm+1 is isometrically embedded; any shortest path

between two points in a copy of Γm ⊆ Γm+1 completely belongs to Γm.

By swapping +Γ′m+1 and −Γ′m+1 in Γm+1, we obtain a directed graph involution ι : Γm+1 → Γm+1.

For q1, q2 ∈ Γm, (q1, q2) is called a vertical pair if dm(q1, 0m) = dm(q2, 0m).

For each m ≥ 0, let (Xm
t )2Nm

t=0 be the standard directed random walk on Γm. Let dm denote the shortest

path metric on Γm. With full probability, d(Xm
t , 0m) = t for 0 ≤ t ≤ 2Nm .

See the two right-hand graphs of Figure 4.2 for what Γ1 and Γ2 look like when N0 = 0, N1 = 2, and

N2 = 4. The graphs are drawn in such a way that the direction is from left to right, +Γ′m lies above the

x-axis, and −Γ′m lies below the x-axis. The source vertices 0m are both drawn at (0, 0), and the sink vertices

12 are both drawn at (1, 0).
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Lemma 4.15. For all p > 0 and m ≥ 0,

Nm∑
k=0

2Nm∑
t=1

E[dm(Xm
t , X̃

m
t (t− 2k))p]

2kp
≥ m

8
2NmΠm−1

i=1 (1− (i+ 1)−2)

Proof. Let p ≥ 1. The proof is by induction on m. The base case m = 0 is trivially true. Assume the

inequality holds for some m ≥ 0. Now we consider the standard random walk Xm+1
t on Γm+1. Consider

k and t in the range a + 1 ≤ t ≤ 2Nm+1 − a, 0 ≤ k ≤ Nm, where a = 2Nm+1−d2 log2(m+1)e−1. Then

t−2k ≥ 2Nm+1−d2 log2(m+1)e−1+1−2Nm ≥ 1, so Xm+1
1 and X̃m+1

1 (t−2k) agree. Then for all subsequent times,

with full probability, Xm+1
t and X̃m+1

t (t−2k) belong to the same copy of Γ′m+1 in Γm+1. Then, after recalling

the construction of Γ′m+1 as a number of copies of Γm and I glued together, it can be seen that for the range of

t in interest, Xm+1
t and X̃m+1

t (t−2k) are standard random walks across A = 2Nm+1−Nm(1−2−d2 log2(m+1)e)

consecutive copies of Γm, which we denote as A ·Xm+1
t and A · X̃m+1

t (t− 2k). Thus, under our assumptions

on k and t, dm+1(Xm+1
t , X̃m+1

t (t− 2k)) has the same distribution as dm(A ·Xm
t , A · X̃m

t (t− 2k)). Hence we

obtain by the inductive hypothesis

Nm∑
k=0

2Nm+1−a∑
t=a+1

E[dm+1(Xm+1
t , X̃m+1

t (t− 2k))p]

2kp
=

Nm∑
k=0

2Nm+1−a∑
t=a+1

E[dm(A ·Xm
t , A · X̃m

t (t− 2k))p]

2kp

=

Nm∑
k=0

A∑
T=1

 a+T2Nm∑
t=a+(T−1)2Nm+1

E[dm(A ·Xm
t , A · X̃m

t (t− 2k))p]

2kp



=

Nm∑
k=0

A∑
T=1

2Nm∑
t=1

E[dm(Xm
t , X̃

m
t (t− 2k))p]

2kp

ind hyp

≥
A∑
T=1

m

8
2NmΠm−1

i=1 (1− (i+ 1)−2)

= 2NmA
m

8
Πm−1
i=1 (1− (i+ 1)−2) = 2Nm+1(1− 2−d2 log2(m+1)e)

m

8
Πm−1
i=1 (1− (i+ 1)−2)

≥ 2Nm+1(1− (m+ 1)−2)
m

8
Πm−1
i=1 (1− (i+ 1)−2) =

m

8
2Nm+1Πm

i=1(1− (i+ 1)−2)

In summary,

Nm∑
k=0

2Nm+1−a∑
t=a+1

E[dm+1(Xm+1
t , X̃m+1

t (t− 2k))p]

2kp
≥ m

8
2Nm+1Πm

i=1(1− (i+ 1)−2) (4.2)

Now consider k and t in the range 0 ≤ k ≤ Nm+1 − 1, 1 ≤ t ≤ 2k, so that t − 2k ≤ 0. Note

that this means this range is disjoint from the one previously considered. Since t − 2k ≤ 0, the random

walks Xm+1 and X̃m+1(t − 2k) evolved independently immediately. Thus, with probability 1/2, Xm+1

and X̃m+1(t − 2k) belong to different copies of Γ′m+1 in Γm+1. This implies that, with probability 1/2,
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dm+1(Xm+1
t , X̃m+1

t (t− 2k)) = 2t. Thus,

Nm+1−1∑
k=0

2k∑
t=1

E[dm+1(Xm+1
t , X̃m+1

t (t− 2k))p]

2kp
≥
Nm+1−1∑
k=0

2k∑
t=1

(2t)p

2kp+1

Lem 4.2
>

Nm+1−1∑
k=0

2k(p+1)

2kp+2
=

Nm+1−1∑
k=0

2k−2 = 2Nm+1−2 − 1

4
≥ 1

8
2Nm+1

In summary,
Nm+1−1∑
k=0

2k∑
t=1

E[dm+1(Xm+1
t , X̃m+1

t (t− 2k))p]

2kp
>

1

8
2Nm+1 (4.3)

Again, notice that in (4.2) and (4.3), the range of t, k we consider are disjoint from each other and are

subsets of the range 0 ≤ k ≤ Nm+1, 1 ≤ t ≤ 2Nm+1 . Thus, by adding (4.2) and (4.3), we obtain

Nm+1∑
k=0

2Nm+1∑
t=1

E[dm(Xm
t , X̃

m
t (t− 2k))p]

2kp
>
m

8
2Nm+1Πm

i=1(1− (i+ 1)−2) +
1

8
2Nm+1

>

(
m+ 1

8

)
2Nm+1Πm

i=1(1− (i+ 1)−2)

completing the inductive step.

Lemma 4.16.
∞∑
k=0

2Nm∑
t=1

E[dm(Xm
t , X̃

m
t (t− 2k))p]

2kp
& m2Nm

for all p > 0.

Proof. This follows from Lemma 4.15 and the fact that Πm−1
i=1 (1− (i+ 1)−2) > Π∞i=1(1− (i+ 1)−2) > 0 for

all m ≥ 0.

4.4.2 Mapping the Graphs into Jr−1(R)

Lemma 4.17. There exists φ ∈ Cr−1,1([0, 1]) such that

1. φ is symmetric across the line x = 1
2 , that is, φ(x) = φ(1− x) for all x ∈ [0, 1

2 ].

2. φ(x) ≥ (2x)r for all x ∈ [0, 1
2 ].

3. [jr−1(0)](φ) = (0, 0), and thus by (1), [jr−1(1)](φ) = (1, 0).

4. For every integer 0 ≤ i < 2r and every x ∈ [i2−r, (i+ 1)2−r), φ(r)(x) = φ(r)(i2−r) (so φ(r) is constant

on intervals of this form).
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Since φ ∈ Cr−1,1([0, 1]), φ(r) ∈ L∞([0, 1]). We also remark here that whenever dealing with L∞ functions,

we choose representatives that are everywhere (not just almost everywhere) bounded by their norm.

Proof. The proof is by induction on r. For the base case r = 1, define

φ(x) :=

 2x x ∈ [0, 1
2 ]

2− 2x x ∈ [ 1
2 , 1]

φ satisfies (1) - (4).

Now suppose such a function φ exists for some r ≥ 1. We’ll construct a function ψ that satisfies (1) - (4)

for r + 1. Define φ ∈ Cr−1,1([0, 1]) by

φ(x) :=

 φ(2x) x ∈ [0, 1
2 ]

−φ(2− 2x) x ∈ [ 1
2 , 1]

Then define Φ ∈ Cr,1([0, 1]) by

Φ(x) :=

ˆ x

0

φ(ξ)dξ

Φ satisfies (1), (3), and (4) by the inductive hypothesis. Note that the inductive hypothesis applied to (2)

implies φ(x) ≥ 2r(2x)r for every x ∈ [0, 1
4 ], and hence

Φ(x) ≥ 2r−1

r + 1
(2x)r+1 ≥ 1

2
(2x)r+1

Also, since φ ≥ 0, (which follows from the inductive hypothesis applied to (1) and (2)),

Φ(x) ≥ Φ

(
1

4

)
≥
(

1

2

)r+2

for all x ∈ [ 1
4 ,

1
2 ]. Together, these two inequalities imply

ψ(x) := 2r+2Φ(x) ≥ (2x)r+1

for all x ∈ [0, 1
2 ]. Thus, ψ satisfies (1)-(4), completing the inductive step.

See Figure 4.1 for graphs of φ and its first two derivatives when r = 3. Note that these graphs are not

on the same scale.

Lemma 4.18. Let φ be the function from Lemma 4.17. Set N0 = 0, and for m ≥ 1, set Nm := dCm log2(m+
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x

ϕ

x

ϕ′

x

ϕ′′

Figure 4.1: Graphs of the function φ from Lemma 4.17 and its first two derivatives when r = 3. Note that
these are not shown to the same scale.

1)e, where C is a sufficiently large constant to be chosen later, so that Nm ≥ r and Nm+1 ≥ max(1, Nm +

d2 log2(m+ 1)e). Then there exists a sequence of maps Fm : Γm → Jr−1(R) such that, for all m ≥ 0 and all

directed paths γ from 0m to 1m in Γm, there is a function φγ ∈ Cr−1,1([0, 2Nm ]) such that

1. [jr−1(0)](φγ) = (0, 0) and [jr−1(2Nm)](φγ) = (2Nm , 0).

2. After isometrically identifying γ with [0, 2Nm ] via q 7→ dm(q, 0m), Fm restricted to γ equals the jet of

φγ ; Fm(t) = [jr−1(t)](φγ).

3. For all vertical pairs (q1, q2) ∈ Γm × Γm,

√
m ln(m+ 1)|π0(Fm(q1))− Fm(q2))| ≥ dm(q1, q2)r

4. Let γ(Xm) denote the directed path followed by the random walk Xm (so γ(Xm) is itself a path-valued

random variable). For all y ∈ R, and 0 ≤ t < 2Nm ,

E

[
exp

(
y

(
sup

[t,t+1]

φ
(r)
γ(Xm)

))]
≤ exp

(
y2

2

∥∥∥φ(r)
∥∥∥2

∞

m∑
n=1

1

n ln(n+ 1)2

)

and

E
[
exp

(
y

(
inf

[t,t+1]
φ

(r)
γ(Xm)

))]
≤ exp

(
y2

2

∥∥∥φ(r)
∥∥∥2

∞

m∑
n=1

1

n ln(n+ 1)2

)

and thus there exists a constant B <∞ (not depending on y, t, or m) such that

E
[
exp

(
y
∥∥∥φ(r)

γ(Xm)

∥∥∥
L∞[t,t+1]

)]
≤ 2eBy

2

5. ‖φ(r)
γ ‖∞ ≤ 2

√
m‖φ(r)‖∞.

6. ‖π0 ◦ Fm‖∞ ≤ 2r(m+ 1)Crm+1‖φ‖∞.
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Proof. The proof is by induction on m. The base case m = 0 is easy, we simply define F0 to be the jet of

the 0 function on Γ0 = I. Then (1) - (6) hold. Assume such a sequence of maps F0, . . . Fm exist for some

m ≥ 0. Set

K := ‖π0 ◦ Fm‖∞ (4.4)

Since Nm+1 ≥ C(m+ 1) log2(m+ 2), we may (and do) choose C sufficiently large so that

K
ind hyp (6)

≤ ‖φ‖∞2r(m+ 1)Crm+1 ≤ 2r(Nm+1−d2 log2(m+1)e−1)−1

√
m+ 1 ln(m+ 2)

(4.5)

Define φ̃ ∈ Cr−1,1([0, 2Nm+1 ]) by

φ̃(x) :=
2rNm+1

√
m+ 1 ln(m+ 2)

φ(2−Nm+1x)

Note that since Nm+1 ≥ r, Lemma 4.17(4) tells us:

φ̃(r)(x) = φ̃(r)(i) (4.6)

for every integer 0 ≤ i < 2Nm and every x ∈ [i, i+ 1). We also have by the chain rule

∥∥∥φ̃(r)
∥∥∥
∞

=

∥∥φ(r)
∥∥
∞√

m+ 1 ln(m+ 2)
(4.7)

and additionally

∥∥∥φ̃∥∥∥
∞
≤ 2rNm+1‖φ‖∞ ≤ 2r(C(m+1) log2(m+2)+1)‖φ‖∞ = 2r(m+ 2)Cr(m+1)‖φ‖∞ (4.8)

We will now define the function Fm+1 on Γm+1 = +Γ′m+1 ∪ −Γ′m+1. Let us first work with +Γ′m+1.

Let γ be a directed path from 0m to 1m in +Γ′m+1. Then by definition of +Γ′m+1, γ consists of a =

2Nm+1−d2 log2(m+1)e−1 copies of I, then A = 2−Nm(2Nm+1−2a) copies of different directed paths γi, 1 ≤ i ≤ A,

each belonging to Γm and connecting 0m to 1m, then a more copies of I glued together in series. Identify γ

isometrically with [0, 2Nm+1 ] via q 7→ dm+1(q, 0m+1). Under this identification, the first set of copies of I gets

identified with the subinterval [0, a], each γi gets identified with the subinterval [a+ (i− 1)2Nm , a+ i2Nm ],

and the last set of copies of I gets identified with the subinterval [2Nm+1 − a, 2Nm+1 ]. We then define

φγ := φ̃+ fγ (4.9)
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where fγ is defined as follows: fγ is identically 0 on [0, a] ∪ [2Nm+1 − a, 2Nm+1 ], and fγ(x) = φγi(x − a −

(i− 1)2Nm) on [a+ (i− 1)2Nm , a+ i2Nm ] (φγi is given to us by the inductive hypothesis). By the inductive

hypothesis applied to (1) and Lemma 4.17(3), φγ ∈ Cr−1,1([0, 2Nm+1 ]) and satisfies (1). It is also clear from

this definition, (4.7), and the inductive hypothesis applied to (5) that

∥∥∥φ(r)
γ

∥∥∥
∞

(4.9)

≤
∥∥∥φ̃(r)

∥∥∥
∞

+ max
1≤i≤A

∥∥∥φ(r)
γi

∥∥∥
∞

(4.7)

≤
∥∥φ(r)

∥∥
∞√

m+ 1 ln(m+ 2)
+ max

1≤i≤A

∥∥∥φ(r)
γi

∥∥∥
∞

ind hyp (5)

≤
∥∥φ(r)

∥∥
∞√

m+ 1 ln(m+ 2)
+ 2
√
m
∥∥∥φ(r)

∥∥∥
∞
≤ 2
√
m+ 1

∥∥∥φ(r)
∥∥∥
∞

verifying (5). We can finally define Fm+1 on +Γ′m+1 by declaring it to be the jet of φγ on γ. We need to

check that Fm+1 is well-defined. Since every point of +Γm+1 is contained in some directed path from 0m to

1m, we only need to check what happens when one point belongs to two different paths. Let q ∈ +Γ′m+1 and

suppose q ∈ γ ∩ γ′ for some directed paths γ, γ′ from 0m+1 to 1m+1 in +Γ′m+1. Set t := d(q, 0m+1). There

are two cases: t ∈ [0, a] ∪ [2Nm+1 − a, 2Nm+1 ] or t ∈ [a + (i − 1)2Nm , a + i2Nm ] for some i. Assume the first

case holds. Then our definition of Fm+1(q) based on either q ∈ γ or q ∈ γ′ is

Fm+1(q) = [jr−1(t)](φ̃)

so well-definedness holds in this case. In the other case, our definition of Fm+1(q) based on q ∈ γ is, by the

inductive hypothesis applied to (2),

Fm+1(q) = [jr−1(t)](φ̃) + ([jr−1(t− a− (i− 1)2Nm)](φγi) + (a+ (i− 1)2Nm − t, 0)

ind hyp
= [jr−1(t)](φ̃) + Fm(q) + (a+ (i− 1)2Nm − t, 0)

and likewise based on q ∈ γ′,

Fm+1(q) = [jr−1(t)](φ̃) + ([jr−1(t− a− (i− 1)2Nm)](φγ′i) + (a+ (i− 1)2Nm − t, 0)

ind hyp
= [jr−1(t)](φ̃) + Fm(q) + (a+ (i− 1)2Nm − t, 0)

(note that the term (a+(i−1)2Nm−t, 0) is present so that the x-coordinate of the entire expression will be t,

and that we identify q as belonging to a copy of Γm so that Fm(q) makes sense) so well-definedness holds in this

case as well. Thus Fm+1 is well-defined on +Γ′m+1. We define Fm+1 on −Γm+1 by Fm+1(q) = −Fm+1(ι(q)),

where ι : +Γ′m+1 → −Γ′m+1 is the involution. It follows from this that if γ is a directed 0m+1-1m+1 path
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in −Γ′m+1, then φγ = −φι(γ). Thus, (1) and (2) are satisfied. It remains to show (3), (4), and (6). Before

doing so, let us summarize the discussion on Fm+1 of this paragraph: for q ∈ Γm+1 and t = dm+1(q, 0m+1),

Fm+1(q) =



[jr−1(t)](φ̃) t ∈ [0, a] ∪ [2Nm+1 − a, 2Nm+1 ]

q ∈ +Γ′m+1

[jr−1(t)](φ̃)

+Fm(q) + (a+ (i− 1)2Nm − t, 0) t ∈ [a+ (i− 1)2Nm , a+ i2Nm ]

q ∈ +Γ′m+1

[jr−1(t)](−φ̃) t ∈ [0, a] ∪ [2Nm+1 − a, 2Nm+1 ]

q ∈ −Γ′m+1

[jr−1(t)](−φ̃)

−Fm(q)− (a+ (i− 1)2Nm − t, 0) t ∈ [a+ (i− 1)2Nm , a+ i2Nm ]

q ∈ −Γ′m+1

(4.10)

See Figure 4.2 for the images of Γ1 and Γ2, based on N0 = 0, N1 = 2, N2 = 4, in J1(R). Using (4.10),

we can quickly verify (6):

‖π0 ◦ Fm+1‖∞
(4.10)

≤
∥∥∥φ̃∥∥∥

∞
+ ‖π0 ◦ Fm‖∞

ind hyp (6)

≤
∥∥∥φ̃∥∥∥

∞
+ 2r(m+ 1)Crm+1‖φ‖∞

(4.8)

≤ 2r(m+ 2)Cr(m+1)‖φ‖∞ + 2r(m+ 1)Crm+1‖φ‖∞ ≤ 2r(m+ 2)Cr(m+1)+1‖φ‖∞

(3) and (4) require more involved arguments.

Proof of (3). Let (q1, q2) ∈ Γm+1×Γm+1 be a vertical pair. By definition of vertical pair, dm+1(q1, 0m+1) =

dm+1(q2, 0m+1). Let t denote this common value. There are two cases, q1, q2 belong to the same copy of Γ′m+1,

or they belong to different copies. First assume they belong to the same copy. Without loss of generality say

+Γ′m+1. Then there are two subcases for t: t ∈ [0, a]∪ [2Nm+1 −a, 2Nm+1 ] or t ∈ [a+ (i−1)2Nm , a+ i2Nm ] for

some 1 ≤ i ≤ A. Assume the first subcase holds. Then by construction of +Γ′m+1, q1, q2 belong to a copy

of I, and thus the equality dm+1(q1, 0m+1) = dm+1(q2, 0m+1) implies q1 = q2, so (3) trivially holds. Assume

the second subcase for t. Then

|π0(Fm+1(q1)− Fm+1(q2))| (4.10)
= |π0(Fm(q1)− Fm(q2))|
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u0

x

u1

x

u0

Figure 4.2: Above, the image of Γ1, and below, the image of Γ2, based on N0 = 0, N1 = 2, N2 = 4, in J1(R)
under the map F2. J1(R) is identified with R3 via the coordinates x, u1, u0. These are not drawn to the
same scale. The two images on the right are respectively graph isomorphic to Γ1 and Γ2.
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and so (3) holds by the inductive hypothesis.

Now assume we are in the second case where q1, q2 belong to different copies of Γ′m+1. Without loss of

generality, assume q1 ∈ +Γ′m+1 and q2 ∈ −Γ′m+1. Observe that under this assumption, dm+1(q1, q2) = 2t if

t ≤ 2Nm+1−1 and dm+1(q1, q2) = 2(2Nm+1 − t) if t ≥ 2Nm+1−1. Because of the symmetry of φ̃ about the line

x = 2Nm+1−1, it suffices to only check the case t ≤ 2Nm+1−1. Let us first record the following inequality:

π0([jr−1(t)](φ̃)) ≥ (2t)r√
m+ 1 ln(m+ 2)

(4.11)

which can be proven by

π0([jr−1(t)](φ̃)) = φ̃(t) =
2rNm+1

√
m+ 1 ln(m+ 2)

φ(2−Nm+1t)
Lem 4.17(2)

≥ (2t)r√
m+ 1 ln(m+ 2)

Again split into two subcases: t ∈ [0, a] or t ∈ [a, 2Nm+1−1]. In the first subcase we have

π0(Fm+1(q1))
(4.10)

= π0([jr−1(t)](φ̃))
(4.11)

≥ (2t)r√
m+ 1 ln(m+ 2)

and

π0(Fm+1(q2))
(4.10)

= π0([jr−1(t)](−φ̃))
(4.11)

≤ − (2t)r√
m+ 1 ln(m+ 2)

and thus

|π0(Fm+1(q1)− Fm+1(q2))| ≥ 2(2t)r√
m+ 1 ln(m+ 2)

=
2dm+1(q1, q2)r√
m+ 1 ln(m+ 2)

proving (3) in this subcase.

Now assume the second subcase, t ∈ [a, 2Nm+1−1]. Then

π0(Fm+1(q1))
(4.10)

= π0([jr−1(t)](φ̃) + Fm(q1) + (a+ (i− 1)2Nm − t, 0)) = π0([jr−1(t)](φ̃)) + π0(Fm(q1))

(4.4)

≥ π0([jr−1(t)](φ̃))−K
(4.5)

≥ π0([jr−1(t)](φ̃))− 2r(Nm+1−d2 log2(m+1)e)−1

√
m+ 1 ln(m+ 2)

(4.11)

≥ (2t)r − 2r(Nm+1−d2 log2(m+1)e)−1

√
m+ 1 ln(m+ 2)

=
(2t)r − (2a)r/2√
m+ 1 ln(m+ 2)

≥ (2t)r − (2t)r/2√
m+ 1 ln(m+ 2)

=
(2t)r

2
√
m+ 1 ln(m+ 2)

Similarly,

π0(Fm+1(q2)) ≤ − (2t)r

2
√
m+ 1 ln(m+ 2)

and thus

|π0(Fm+1(q1)− Fm+1(q2))| ≥ (2t)r√
m+ 1 ln(m+ 2)

=
dm+1(q1, q2)r√
m+ 1 ln(m+ 2)
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proving (3) in this final subcase.

Proof of (4). Let 0 ≤ t < 2Nm+1 be an arbitrary integer. Again we consider two cases for t: t ∈

[0, a) ∪ [2Nm+1 − a, 2Nm+1) or t ∈ [a, 2Nm+1 − a). Assume the first case holds. There are two subcases to

consider for γ(Xm+1): γ(Xm+1) belongs to +Γ′m+1 or γ(Xm+1) belongs to−Γ′m+1. These are complementary

events each occuring with probability 1/2. Restricted to the first event, for every x ∈ [t, t+ 1],

φ
(r)
γ(Xm+1)(x)

(4.9)
= φ̃(r)(x) + fγ(Xm+1)(x) = φ̃(r)(x)

(4.6)
= φ̃(r)(t)

where the second equality holds by the definition of f succeeding (4.9). Thus,

sup
[t,t+1]

φ
(r)
γ(Xm+1) = inf

[t,t+1]
φ

(r)
γ(Xm+1) = φ̃(r)(t)

Likewise, for the second subcase where we restrict to the event that γ(Xm+1) belongs to −Γ′m+1,

sup
[t,t+1]

φ
(r)
γ(Xm+1) = inf

[t,t+1]
φ

(r)
γ(Xm+1) = −φ̃(r)(t)

Combining these yields

E

[
exp

(
y

(
sup

[t,t+1]

φ
(r)
γ(Xm+1)

))]
=

1

2

(
exp

(
yφ̃(r)(t)

)
+ exp

(
−yφ̃(r)(t)

))

= cosh
(
yφ̃(r)(t)

)
≤ cosh

(
y
∥∥∥φ̃(r)

∥∥∥
∞

)
(4.7)
= cosh

(
y
∥∥∥φ(r)

∥∥∥
∞

1√
m+ 1 ln(m+ 2)

)
Lem 4.3
≤ exp

(
y2

2

∥∥∥φ(r)
∥∥∥2

∞

1

(m+ 1) ln(m+ 2)2

)
and the same estimate holds for the essential infimum, verifying (4) in this case.

Now consider the second case, t ∈ [a + (i − 1)2Nm , a + i2Nm ] for some 1 ≤ i ≤ A. Again, there are two

subcases to consider for γ(Xm+1): γ(Xm+1) belongs to +Γ′m+1 or γ(Xm+1) belongs to −Γ′m+1. Restricted

to the first event, and for the range of t under consideration, Xm+1 is equal in distribution to a copy of Xm

(after an appropriate shift in the time parameter), by definition of +Γ′m+1. Thus, for every x ∈ [t, t+ 1],

φ
(r)
γ(Xm+1)(x)

(4.9)
= φ̃(r)(x) + fγ(Xm+1)(x) = φ̃(r)(x) + φγ(Xm)(x

′)
(4.6)
= φ̃(r)(t) + φγ(Xm)(x

′)

101



where x′ = x− a− (i− 1)2Nm , and the second equality holds by the definition of f succeeding (4.9). Thus,

sup
[t,t+1]

φ
(r)
γ(Xm+1) = φ̃(r)(t) + sup

[t′,t′+1]

φγ(Xm)

inf
[t,t+1]

φ
(r)
γ(Xm+1) = φ̃(r)(t) + inf

[t′,t′+1]
φγ(Xm)

where t′ = t− a− (i− 1)2Nm . Likewise, for the second subcase where we restrict to the event that γ(Xm+1)

belongs to −Γ′m+1,

sup
[t,t+1]

φ
(r)
γ(Xm+1) = −φ̃(r)(t)− inf

[t′,t′+1]
φγ(Xm)

inf
[t,t+1]

φ
(r)
γ(Xm+1) = −φ̃(r)(t)− sup

[t′,t′+1]

φγ(Xm)

Combining these and using the inductive hypothesis applied to (4) and some basic monotonicity and

symmetry properties of cosh yields
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[
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(
y

(
sup

[t,t+1]

φ
(r)
γ(Xm+1)

))]

=
1

2
exp

(
yφ̃(r)(t)

)
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[
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(
y

(
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[t′,t′+1]

φ
(r)
γ(Xm+1)
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+
1

2
exp

(
−yφ̃(r)(t)

)
E
[
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(
−y
(

inf
[t′,t′+1]

φ
(r)
γ(Xm+1)

))]
ind hyp

≤ 1

2
exp

(
yφ̃(r)(t)

)
exp

(
y2

2

∥∥∥φ(r)
∥∥∥2

∞

m∑
n=1

1

n ln(n+ 1)2

)

+
1

2
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(
−yφ̃(r)(t)

)
exp

(
(−y)2

2

∥∥∥φ(r)
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∞

m∑
n=1

1

n ln(n+ 1)2

)

= cosh
(
yφ̃(r)(t)

)
exp

(
y2

2

∥∥∥φ(r)
∥∥∥2

∞
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1

n ln(n+ 1)2

)

≤ cosh
(
y
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)
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(
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∞
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1

n ln(n+ 1)2
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(4.7)
= cosh

(
y
∥∥∥φ(r)
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∞

1√
m+ 1 ln(m+ 2)

)
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(
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∥∥∥φ(r)
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)

Lem 4.3
≤ exp

(
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2
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∞

1

(m+ 1) ln(m+ 2)2

)
exp

(
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= exp

(
y2

2

∥∥∥φ(r)
∥∥∥2

∞

m+1∑
n=1

1

n ln(n+ 1)2

)

and the same estimate holds for the infimum, verifying (4) in this case. This completes the inductive step

and the proof of the lemma.

Theorem 4.2. For every p > 0, r ≥ 1, coarsely dense set N ⊆ Jr−1(R), and R ≥ 3, let BN (R) := {x ∈ N :

dCC(0, x) ≤ R}. Then

Πp(BN (R)) &
ln(R)

1
p−

1
2r

ln(ln(R))
1
p+ 1

2r

where the implicit constant can depend on r, p but not on N,R.

Proof. Let p, r,N be as above. Since the Markov convexity constant Πp is scale-invariant, then by applying

a dilation we may assume without loss of generality that every point of Jr−1(R) is at a distance of at most

1 away from a point of N . Let Fm : Γm → Jr−1(R) be the sequence of maps from Lemma 4.18. Extend

the domain of t for the random walks on Γm by Xm
t := Xm

0 if t ≤ 0, and Xm
t := Xm

2Nm if t ≥ 2Nm . Each

{Xm
t }t∈Z is a Markov process on the state space Γm.

With full probability, dCC(Xm
t , 0m) = min(max(0, t), 2Nm). Since X̃m

t (t− 2k) equals Xm
t in distribution,

(Xm
t , X̃

m
t (t − 2k)) is a vertical pair with full probability. Then Lemma 4.18(3) applies, and we get the

following lower bound for the left hand side of the Markov convexity inequality in Definition 1.10:

∞∑
k=0

∑
t∈Z

E[dCC(Fm(Xm
t ), Fm(X̃m

t (t− 2k)))p]

2kp
Lem 1.2
≥

∞∑
k=0

∑
t∈Z

E[|π0(fm(Xm
t )− fm(X̃m

t (t− 2k)))|p/r]
2kp

Lem 4.18(3)

≥ m−
p
2r

ln(m+ 1)
p
s

∞∑
k=0

∑
t∈Z

E[dm(Xm
t , X̃

m
t (t− 2k))p]

2kp

Lem 4.16

& m−
p
2r ln(m+ 1)−

p
rm2Nm =

m1− p
2r 2Nm

ln(m+ 1)
p
r

In summary,
∞∑
k=0

∑
t∈Z

E[dCC(Fm(Xm
t ), Fm(X̃m

t (t− 2k)))p]

2kp
&
m1− p

2r 2Nm

ln(m+ 1)
p
r

(4.12)

Now we upper bound the right hand side of the Markov convexity inequality. Since

dCC(Fm(Xm
t+1), Fm(Xm

t )) = 0 whenever t ≤ 0 or t ≥ 2Nm ,

∑
t∈Z

E[dCC(Fm(Xm
t+1), Fm(Xm

t ))p] =

2Nm−1∑
t=0

E[dCC(Fm(Xm
t+1), Fm(Xm

t ))p] =: (∗) (4.13)

Then

(∗) Lem 4.18(2)
=

2Nm−1∑
t=0

E
[
dCC([jr−1(t+ 1)](φγ(Xm))([j

r−1(t)](φγ(Xm)))
p
]
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Lem 1.1
≤

2Nm−1∑
t=0

E
[(

1 +
∥∥∥φ(r)

γ(Xm)

∥∥∥
L∞[t,t+1]

)p]

.
2Nm−1∑
t=0

1 + E
[∥∥∥φ(r)

γ(Xm)

∥∥∥p
L∞[t,t+1]

]
Lems 4.4,4.18(4)

.
2Nm−1∑
t=0

1 = 2Nm

In summary, ∑
t∈Z

E[dCC(Fm(Xm
t+1), Fm(Xm

t ))p] . 2Nm (4.14)

Let πN : Jr−1(R)→ N be any map so that

dCC(x, πN (x)) ≤ 1 (4.15)

which exists by our initial assumption. We’ll use πN to transfer inequalities (4.12) and (4.14) to corresponding

inequalities on N . Consider the maps F̄m : Γm → N defined by F̄m := πN ◦ δ2m ◦ Fm. By Lemma 4.18(3),

dCC(δ2m(Fm(q1)), δ2m(Fm(q2))) ≥ 2dm(q1, q2) ≥ 4

for any vertical pair (q1, q2) ∈ Γm × Γm. Combining this with (4.15) yields

dCC(F̄m(q1), F̄m(q2))
(4.15)

≥ dCC(δ2m(Fm(q1)), δ2m(Fm(q2)))− 2

≥ 1

2
dCC(δ2m(Fm(q1)), δ2m(Fm(q2))) = mdCC(Fm(q1), Fm(q2))

for any vertical pair (q1, q2). Combining this with (4.12) yields

∞∑
k=0

∑
t∈Z

E[dCC(F̄m(Xm
t ), F̄m(X̃m

t (t− 2k)))p]

2kp
&
mp+1− p

2r 2Nm

ln(m+ 1)
p
r

(4.16)

Next,

dCC(F̄m(Xm
t+1), F̄m(Xm

t ))
(4.15)

≤ dCC(δ2m(Fm(Xm
t+1)), δ2m(Fm(Xm

t ))) + 2

= 2mdCC(Fm(Xm
t+1), Fm(Xm

t )) + 2

Combining this with (4.14) and (4.13) yields

∑
t∈Z

E[dCC(F̄m(Xm
t+1), F̄m(Xm

t ))p] . mp2Nm (4.17)

For each R ≥ 1, let m(R) denote the largest m so that F̄m(R)(Γm(R)) ⊆ BN (R). Then (4.16) and (4.17)
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imply

Πp(BN (R)) &
m(R)

1
p−

1
2r

ln(m(R) + 1)
1
r

(4.18)

Now we wish to estimate the quantity m(R). Let m ≥ 0 be arbitrary. Since any two points of Γm

are connected by a geodesic that is a piecewise directed path, the Lipschitz constant of any map on Γm

is the maximum of the Lipschitz constants of the map restricted to directed paths. Thus, by Lemmas

4.18(2), 4.18(5), and 1.1, Lip(Fm) .
√
m. Since diam(Γm) = 2Nm ≤ 2Cm log2(m+1)+1 and Fm(0m) = 0,

this implies Fm(Γm) ⊆ BJr−1(R)(R
′) with R′ . (m + 1)Cm+ 1

2 . Then δ2m(Fm(Γm)) ⊆ BJr−1(R)(R
′′) with

R′′ . (m+ 1)Cm+ 3
2 . Then F̄m(Γm) = πN (δ2m(Fm(Γm))) ⊆ BJr−1(R)(R

′′ + 1). This implies, for any R ≥ 1,

R . (m(R) + 1)Cm(R)+ 3
2 , where the implied constant is independent of R. This implies m(R) & ln(R)

ln(ln(R)) for

R ≥ 3. Plugging this into (4.18) yields

Πp(BN (R)) &
ln(R)

1
p−

1
2r

ln(ln(R))
1
p+ 1

2r
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