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Abstract

Many well-studied problems in extremal combinatorics concern the number and the typical structure of

discrete objects with forbidden substructures. Over the past decades, such problems have been extensively

studied for various objects by many notable researchers. This thesis focuses on several problems of this type

using various techniques.

In Chapter 2, we investigate the family of linear hypergraphs with forbidden linear cycles. A substantial

part of the work indeed focuses on a closely related problem, the study of the family of graphs with limited

short even cycles, which may be of independent interest. To attack this problem, we introduce a new

variant of the graph container algorithm. Another application of it to additive combinatorics is presented

in Chapter 3 on generalized Sidon sets.

In Chapter 4, we investigate an enumeration problem on Gallai colorings, i.e. rainbow triangle-free

colorings. In particular, we describe the typical structure of Gallai r-colorings of complete graphs, and

complete the characterization of the extremal graphs for Gallai colorings. This work heavily relies on the

hypergraph container method, and some ad-hoc stability analysis.

Another closely related problem is the study of sparse analogue of classical extremal results in random

graphs, for example, the Erdős-Stone theorem, as it can also be interpreted as counting graphs in the

corresponding probability space. In Chapter 5, we show a random analogue of the famous Erdős-Gallai

theorem on extremal functions of paths.
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1.3 A random analogue of Erdős–Gallai theorem via the probabilistic method . . . . . . . . . . . 7
1.4 Basic definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 On the number of linear hypergraphs of large girth . . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Graphs with limited C4’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Certificate lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Graphs with limited short cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Expansion properties of graphs with limited short cycles . . . . . . . . . . . . . . . . . 23
2.3.2 Construction of the auxiliary graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Certificate lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.4 Proof of Theorem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Linear hypergraphs of large girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.2 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 3 On the number of generalized Sidon sets . . . . . . . . . . . . . . . . . . . . . . 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Supersaturation and probabilistic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Supersaturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Large deviations for sum of partly dependent random variables . . . . . . . . . . . . . 45
3.2.3 Some probabilistic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Certificate lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Counting generalized Sidon sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



Chapter 4 The typical structure of Gallai colorings and their extremal graphs . . . . . . 60
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Gallai colorings of complete graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 The extremal graphs of Gallai colorings . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.3 Organization of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 The hypergraph container theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Definitions and multi-color container theorem . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 A technical lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Counting Gallai colorings in r-templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Gallai r-colorings of complete graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Stability of the Gallai r-template of complete graphs . . . . . . . . . . . . . . . . . . . 72
4.4.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Gallai 3-colorings of non-complete graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.1 Triangles in r-templates of dense graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.2 Stability of Gallai 3-templates of dense non-complete graphs . . . . . . . . . . . . . . 76
4.5.3 Proof of Theorem 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Gallai r-colorings of non-complete graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.1 Proof of Theorem 4.34 for r ≥ 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.2 Proof of Theorem 4.34 for r = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.3 Proof of Theorem 4.35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6.4 Proof of Theorem 4.36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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Symbols and Notation

∅ the empty set

[n] for n ∈ N, [n] := {1, . . . , n}

N the set of natural numbers

Z the set of integers

log logarithm base 2

logr logarithm base r

ln logarithm base e

V (G) the vertex set of a (hyper)graph G

v(G) v(G) := |V (G)|

E(G) the edge set of a (hyper)graph G

e(G) e(G) := |E(G)|

NG(v), N(v) the neighborhood of a vertex

dG(v), d(v) the degree of a vertex

NG(v, S), N(v, S) the neighborhood of a vertex restricted to S

dG(v, S), d(v, S) the degree of a vertex restricted to S

δ(G) the minimum degree of a graph

∆(G) the maximum degree of a graph

G[A] the subgraph induced in a graph G by a set A

G[A,B] the bipartite subgraph induced in a graph G by two disjoint sets A and B

Kn the complete graph on n vertices

Ks,t the complete bipartite graph with parts of size s and t

Cn the cycle on n vertices

Pn the path on n vertices
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Chapter 1

Introduction

One of the central challenges in extremal combinatorics is to determine the extremal and typical properties

of the family of combinatorial objects with certain forbidden configurations. Over the past decades, this

problem has been extensively studied for various discrete objects, such as graphs, hypergraphs, sets, and

Boolean lattices, by many notable researchers. Many advances in this area not only discovered some crucial

extremal phenomena exhibited in combinatorial objects, but also promoted the development of classical

and new techniques, including but not limited to the entropy method, the probabilistic method, the graph

container algorithm, and the hypergraph container method. In this thesis, we study several problems on

graphs, hypergraphs, and additive sets, which fit in this area.

1.1 Enumerating (hyper)graphs with limited substructures via

graph containers

1.1.1 Graphs with limited even cycles

For a graph H, we say a graph G is H-free if it contains no subgraph isomorphic to H. The Turán number

of H, denoted by ex(n,H), is the maximum number of edges among n-vertex H-free graphs. In the 1970s,

Erdős, Kleitman and Rothschild [35] introduced the problem of determining the number of H-free graphs

on n vertices. For non-bipartite H, the answer has been well-understood since 1986, when Erdős, Frankl

and Rödl [39], extending a result of Erdős, Kleitman and Rothschild [35] on cliques, proved that there are

2(1+o(1))ex(n,H) such graphs. More than thirty years ago, Erdős made the following conjecture (see, e.g., [68]).

Conjecture 1.1 (Erdős). The number of H-free graphs on n vertices is at most 2O(ex(n,H)) for every graph

H.

It turns out that this problem is significantly harder for bipartite graphs, especially for even cycles.

Recall that ex(n,C2`) = O(n1+1/`) for every ` ≥ 2. Erdős and Simonovits conjectured that this bound is

sharp up to the implied constant factor, while matching lower bounds are known only for ` ∈ {2, 3, 5} (see,
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e.g., [48]). The first breakthrough was made by Kleitman and Winston [68] in 1982, who showed that there

are at most 22.17ex(n,C4) n-vertex C4-free graphs, using the so called graph container method. Kleitman and

Wilson [67], and independently Kreuter [77], and Kohayakawa, Kreuter, and Steger [69] later proved that

there are 2O(n1+1/`) graphs with no even cycles of length at most 2`. However, they were unable to resolve

the case of a single forbidden long even cycle. It was not until 2016 that Morris and Saxton [86] proved

Conjecture 1.1 for all even cycles, using the hypergraph container method.

Theorem 1.2 (Morris and Saxton [86]). For every ` ≥ 2, there are at most 2O(n1+1/`) C2`-free graphs on n

vertices.

Note that the supersaturation phenomenon indicates that if the number of edges in a graph G exceeds

the extremal number, then G would contain many even cycles. This leads to an interesting question.

Problem 1.3. What is the maximum number of C2`’s we could allow a graph to have so that the number

of such graphs is still 2O(n1+1/`)?

As outlined here and appearing in Chapter 2, in joint work with Balogh [10], we gave some partial answers

to this question.

Theorem 1.4. Let a = Θ(log5 n). The number of n-vertex graphs with at most n2/a C4’s is 2O(n3/2).

A standard probabilistic argument shows that a = Θ(log4 n) would be the best possible in Theorem 1.4,

and we believe that it should be the truth. For longer cycles, although the answer to Problem 1.3 is still

unknown, we believe that limiting just one even cycle has essentially the same effect as limiting all smaller

cycles as well. Therefore, a natural attempt is to determine how one can further restrict the number of other

short cycles, thus obtaining a proof for the desired upper bound.

Theorem 1.5. For an integer ` ≥ 3 and a constant L > 0, denote by Gn(`, L) the family of n-vertex graphs

G such that for every 3 ≤ k ≤ ` and e ∈ E(G), the number of k-cycles containing e is at most L. For n

sufficiently large, we have |Gn(2`, L)| ≤ 23(`+1)n1+1/`

.

Despite its own interest, Theorems 1.4 and 1.5 also have applications on hypergraph enumeration prob-

lems, which will be presented in the next section. This is also one of our initial motivations to study

Problem 1.3.

1.1.2 Linear hypergraphs with no linear cycles

For an r-graph H, the Turán number of H, denoted by exr(n,H), is the maximum number of edges among

all r-graphs on n vertices which contain no copy of H as a subgraph. Mirroring the situation described
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earlier for graphs, for each r ≥ 3, it is generally believed that the number of H-free r-graphs on n vertices is

at most 2O(exr(n,H)) for every r-graph H. Indeed, it follows from the work of Nagle, Rödl and Schacht [88]

on hypergraph regularity that for any fixed r-graph H, there are 2O(exr(n,H))+o(nr) such r-graphs, which

gives a reasonably satisfactory solution in the case where H is not r-partite.

Unsurprisingly, the enumeration problem for a fixed forbidden r-partite r-graph H is much harder and

less understood. In recent years, one such prototypical family of r-partite r-graphs, namely, the family

of r-uniform linear (or loose) cycles, has received much attention in the literature. For integers r ≥ 2

and ` ≥ 3, an r-uniform linear cycle of length `, denoted by Cr` , is an r-graph with edges e1, . . . , e` such

that for every i ∈ [` − 1], |ei ∩ ei+1| = 1, |e` ∩ e1| = 1 and ei ∩ ej = ∅ for all other pairs {i, j}, i 6= j.

Kostochka, Mubayi and Verstraëte [76], and independently, Füredi and Jiang [47] proved that for every

r, ` ≥ 3, exr(n,C
r
` ) = Θ(nr−1). Continuing the work of Mubayi and Wang [87], Han and Kohayakawa [54],

Balogh, Narayanan, and Skokan [13] proved the following result using the hypergraph container method.

Theorem 1.6 (Balogh, Narayanan, and Skokan [13]). For every pair of integers r, k ≥ 3, there exists

C = C(r, k) > 0 such that the number of Cr` -free r-graphs is at most 2Cn
r−1

for all n ∈ N.

An r-graph H is said to be linear if for every e, e′ ∈ E(H), |e ∩ e′| ≤ 1. Since the above forbidden

substructure is a linear hypergraph, it seems natural to switch the host hypergraphs to linear hypergraphs.

For a linear r-graph H, the linear Turán number of H, denoted by exL(n,H), is the maximum number of

edges among linear r-graphs on n vertices which contain no copy of H as a subgraph. In 1968, Erdős, Frankl

and Rödl [40] showed that for every r ≥ 3, exL(n,Cr3) = o(n2) and exL(n,Cr3) = Ω(nc) for every c < 2.

Collier-Cartaino, Graber and Jiang [27], resolving a conjecture of Kostochka, Mubayi, and Verstraëte [75],

proved that exL(n,Cr` ) = O
(
n1+ 1

b`/2c

)
for r ≥ 3 and ` ≥ 4. However, the matching lower bound is only

known for C3
4 and C3

5 .

Denote by Forbr(n,C
r
` ) the family of Cr` -free r-uniform linear hypergraphs. For ` = 3, the work of Erdős,

Frankl and Rödl [40] could be extended to show that |ForbL(n,Cr3)| = 2o(n
2) for every r ≥ 3. Similarly to

all existing results in the area, it is natural for us to conjecture that |Forbr(n,C
r
` )| = 2Θ(n1+1/b`/2c), for r ≥ 3

and ` ≥ 4. In [10] with Balogh, we confirmed this conjecture for any r ≥ 3 and ` = 4.

Theorem 1.7. For every r ≥ 3, we have |Forbr(n,C
r
4)| = 2O(n3/2).

For longer linear cycles, we provided an upper bound for the girth version.

Theorem 1.8. For every r ≥ 3 and ` ≥ 4, let ForbL(n, r, `) denote the set of all linear r-graphs on [n] with

girth at least `. Then we have |ForbL(n, r, `)| = 2O(n1+1/b`/2c).
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The upper bound for C3
4 is sharp in order of magnitude given by exL(n,C3

4 ) = Θ(n3/2). In general,

both upper bounds are possibly sharp, but we are not able to confirm it now, as the sharp bound for the

corresponding linear Turán number remains open.

Theorems 1.7 and 1.8 are indeed consequences of Theorems 1.4 and 1.5 by considering the shadow graphs

of hypergraphs, see Chapter 2 for details.

1.1.3 Generalized Sidon sets

A set A of nonnegative integers is a Sidon set if there is no Sidon 4-tuple, i.e. a 4-tuple (a, b, c, d) in A with

a+ b = c+ d and {a, b} ∩ {c, d} = ∅. Denote by Φ(n) the maximum size of Sidon subsets of [n]. Studies of

Erdős and Turán [37], Singer [96], Erdős [33], and Chowla [26], answering a famous problem of Sidon, have

showed that Φ(n) = (1 + o(1))
√
n. Cameron and Erdős [25] first proposed the problem of determining the

number of Sidon subsets in [n]. The extremal result indicates that there is a trivial lower bound 2Φ(n) and a

trivial upper bound 2O(
√
n logn). This problem has been studied by Kohayakawa, Lee, Rödl and Samotij [70]

with the graph container method, and by Saxton and Thomason [94] with the hypergraph container method,

showing that neither of the trivial bounds is tight.

Theorem 1.9 (Kohayakawa, Lee, Rödl and Samotij [70], Saxton and Thomason [94]). For sufficiently large

enough n, the number of Sidon subsets in [n] is between 2(1.16+o(1))
√
n and 2cΦ(n), where c = log(32e) ≈ 6.442.

An α-generalized Sidon set in [n] is a set with at most α Sidon 4-tuples. Motivated by Theorem 1.4 and

the closed connection between Sidon sets and C4-free graphs, in [9] we investigate the maximum value of α

for which the number of α-generalized Sidon subset of [n] is still 2O(
√
n).

Theorem 1.10. For α = O(n/ log5 n), the number of α-generalized Sidon sets in [n] is 2Θ(
√
n).

See Chapter 3 for the proof of Theorem 1.10. A simple probabilistic argument shows that for α �
√
n/ log4 n, there are 2Θ((αn)

1
4 logn) � 2Θ(

√
n) subsets with Θ(α) Sidon 4-tuples. Therefore, we made the

following conjecture.

Conjecture 1.11. For α = Θ(n/ log4 n), the number of α-generalized Sidon sets in [n] is 2Θ(
√
n).

1.1.4 The graph container algorithm

In 1982, Kleitman and Winston [68] proved that the number of C4-free graphs on n vertices is at most 2cn
3/2

for c ≈ 1.081919. This seminal paper not only resolved a longstanding open question posed by Erdős, but

also authored one of the first papers in the field whose main idea was to find small certificates of families of
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sets in order to prove that there are not many of them. These so-called graph containers have emerged as

powerful tools for attacking problems of counting discrete objects with certain forbidden sub-configurations,

for example, the number of C4-free graphs.

Roughly speaking, the graph container method constructs a relatively simple algorithm which can be

used to produce a ‘small’ number of subgraphs (referred to as containers), so that every C4-free graph is

contained in one of such containers, and each of these containers is an ‘almost C4-free graph’. For an intuitive

explanation and more applications of this method, we refer readers to an excellent survey of Samotij [93].

Like many of these advances, our proofs of Theorems 1.4, 1.5 and 1.10 are built on the graph container

algorithm. However, the previous applications address the problems for discrete objects with forbidden sub-

configurations, while we concern the ones with a small amount of sub-configurations. Therefore, the means

by which we apply this technique is quite non-standard, and requires some new ideas, see Sections 2.2.2,

2.3.3 and 3.3 for applications of this variant of the graph container algorithm to graph theory and additive

combinatorics.

1.2 Enumerating Gallai colorings via the hypergraph container

method

1.2.1 Background and main results

An interesting direction of combinatorics in recent years is the study of multicolored version of classical

extremal results, whose origin can be traced back to a question of Erdős and Rothschild [34].

Problem 1.12 (Erdős-Rothchild problem, 1974). Which n-vertex graph has the maximum number of two-

edge-colorings without monochromatic triangles?

Erdős and Rothschild believed that the restrictions from the triangles would more than counteract the

extra possibilities offered by the additional edges, and therefore conjectured that the maximal triangle-free

graph is the only extremal graph. About twenty years later, Yuster [100] confirmed this conjecture for

sufficiently large n.

There are many natural generalizations of the Erdős-Rothschild problem. The most obvious one may

be to ask it for graphs other than the triangles, and one may also increase the number of colors used. A

graph G on n vertices is called (r, F )-extremal if it admits the maximum number of r-edge-colorings without

any monochromatic copies of F among all n-vertex graphs. Alon, Balogh, Keevash and Sudakov [2] greatly

extended Yuster’s result.
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Theorem 1.13 (Alon, Balogh, Keevash and Sudakov [2]). For r = {2, 3} and k ≥ 3, the Turán graph Tk(n)

is the unique (r,Kk+1)-extremal graph.

Interestingly, they also showed that Turán graphs Tk(n) are no longer optimal for r ≥ 4. Indeed,

Pikhurko, and Yilma [91] later proved that T4(n) is the unique (4,K3)-extremal graph, while T9(n) is the

unique (4,K4)-extremal graph. Determining the extremal configurations in general for k ≥ 2 and r ≥ 4

turned out to be a difficult problem. For further results along this line of research (when F is a non-complete

graph or a hypergraph), we refer readers to [57, 58, 59, 82, 83, 84].

Another variant of this problem is to study edge-colorings of a graph avoiding a copy of F with a

prescribed color pattern. For a r-colored graph F̂ , a graph G on n vertices is called (r, F̂ )-extremal if it

admits the maximum number of r-colorings which contain no subgraph whose color pattern is isomorphic to

F̂ . This line of work was initiated by Balogh [5], who showed that the Turán graph Tk(n) once again yields

the maximum number of 2-colorings avoiding Hk+1, where Hk+1 is any 2-coloring of Kk+1 that uses both

colors. For r ≥ 3, the behavior of (r,Hk+1)-extremal graphs was studied by Benevides, Hoppen, Sampaio,

Lefmann, and Odermann, see [19, 60, 61, 62, 63]. In particular, the case when F̂ = K̂3 is a triangle with

rainbow pattern has recently received a lot of attention.

An edge coloring of a graph G is a Gallai coloring if it contains no rainbow triangle. Improving the results

of Falgas Ravry, O’Connell, and Uzzell [42], Benevides, Hoppen, and Sampaio [19], and Bastos, Benevides,

Mota, and Sau [29], we give a sharp upper bound on the number of Gallai colorings of nearly complete

graphs.

Theorem 1.14. For every integer r ≥ 3, there exists n0 such that for all n > n0, the number of Gallai

r-colorings of the complete graph Kn is at most

((
r

2

)
+ 2
− n

4 log2 n

)
2(n2).

Note that the number of Gallai r-colorings of the complete graph Kn with at most 2 colors is
(
r
2

)
2(n2) −

r(r − 2). As a direct consequence, this theorem describes the typical structure of Gallai r-colorings for

complete graphs.

Corollary 1.15. For every integer r ≥ 3, almost all Gallai r-colorings of the complete graph are 2-colorings.

Now we turn to the extremal configurations of Gallai colorings. A n-vertex graph G is Gallai r-extremal

if its number of Gallai r-colorings is the maximum over all n-vertex graphs. Hoppen, Lefmann and Oder-

mann [62] determined the Gallai r-extremal graphs for r ≥ 5.

6



Theorem 1.16 (Hoppen, Lefmann, and Odermann [62]). For all r ≥ 5, there exists n0 such that for all

n > n0, the only Gallai r-extremal graph of order n is the complete bipartite graph Kbn/2c,dn/2e.

We, confirming conjectures of Benevides, Hoppen, and Sampaio [19] and Hoppen, Lefmann, and Oder-

mann [62], determined the extremal graphs for r ∈ {3, 4}.

Theorem 1.17. For n sufficiently large, the graph Kn is the unique Gallai 3-extremal graph, while for

r ≥ 4, the graph Kbn/2c,dn/2e is the unique Gallai r-extremal graph.

1.2.2 The hypergraph container method

Many important theorems and conjectures in extremal combinatorics, such as the sparse random analogue of

Erdős-Stone theorem (see [28, 95]), the K LR conjecture (see [11]) and the number of C2`-free graphs (see [86]),

can be phrased as statements about families of independent sets in certain uniform hypergraphs. In 2015,

two independent groups, Balogh, Morris and Samotij [11] and Saxton and Thomason [94], introduced a new

approach to the problem of understanding the family of independent sets in a hypergraph. This approach

allows one to prove enumerative, structural, and extremal results in a wide variety of settings, and now is

well-known as the hypergraph container method.

Roughly speaking, the hypergraph container method describes a clustering phenomenon exhibited by

the independent sets of many hypergraphs whose edges are sufficiently evenly distributed. For a given

hypergraph graph H, it builds machinery to produce a ‘relatively small’ amount of subsets of V (H), referred

to as containers, such that every independent set is contained in one of the containers, and each of these

containers is ‘almost independent’. For more details on the method, we refer readers to the original papers

of Balogh, Morris and Samotij [11] and Saxton and Thomason [94], and also a recent survey written by

Balogh, Morris and Samotij [12].

A substantial part of the proofs of Theorems 1.14 and 1.17 relies on this hypergraph container method.

In Section 4.2, we present a version of the hypergraph container theorem from Balogh and Solymosi [14]),

and show how to apply it in the context of edge colorings.

1.3 A random analogue of Erdős–Gallai theorem via the

probabilistic method

A celebrated theorem of Erdős and Gallai [41] from 1959 determines the maximum number of edges in an

n-vertex graph with no k-vertex path Pk.
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Theorem 1.18 (Erdős and Gallai [41]). For n, k ≥ 2, if G is an n-vertex graph with no copy of Pk, then

the number of edges of G satisfies e(G) ≤ 1
2 (k−2)n. If n is divisible by k−1, then the maximum is achieved

by a union of disjoint copies of Kk−1.

An important direction of combinatorics in recent years is the study of sparse random analogues of

classical extremal results. For graphs G and F , we write ex(G,F ) for the maximum number of edges in

an F -free subgraph of G. We write G(n, p) for the standard binomial model of random graphs, where each

edge in an n-vertex graph is chosen independently with probability p. The breakthrough papers of Conlon

and Gowers [28] and Schacht [95], proved a sparse random version of the Erdős-Stone theorem, showing a

transference principle of Turán function ex(Kn, F ), i.e. the maximum number of edges in an F -free n-vertex

graph. Here we present the graph version of their result.

Theorem 1.19 (Conlon and Gowers [28], Schacht [95]). For every graph F with at least one vertex contained

in at least two edges and every ε ∈ (0, 1− π(F )), there exists constants C > c > 0 such that

lim
n→∞

P(ex(G(n, p), F ) ≤ (π(F ) + ε)e(G(n, p)) =

 0, if p ≤ cn−1/m2(F ),

1, if p ≥ Cn−1/m2(F ),

where

m2(F ) = max
F ′⊂F,vF ′≥3

eF ′ − 1

vF ′ − 2
, π(F ) = lim

n→∞
ex(KN , F )/

(
n

2

)
.

Note that this question can also be stated in the language of hypergraphs. Roughly speaking, these

transference theorems say that if the edges of a hypergraph H are sufficiently uniformly distributed, then

the independence number of H is well-behaved with respect to taking subhypergraphs induced by (sufficiently

dense) random subsets of the vertex set. Via the hypergraph container method ([11] and [94]), the same

results were proved, even when |F | is a reasonable large function of n.

However, when F is a k-vertex path Pk, this result only gives a weak random analogue of the famous

Erdős-Gallai theorem for paths with a fixed size, as the Turán density is zero. In joint work with Balogh

and Dudek [8], we determined the asymptotic behavior of random variable ex(G(N, p), Pn+1) as N and n go

to infinity.

Theorem 1.20. Let 3n ≤ N ≤ ne2n. The following hold a.a.s. as n approaches infinity. Let ω =(
log N

n

)
/(np).

(i) For p ≥
(
log N

n

)
/(6n), we have ex(G(N, p), Pn+1) = Θ(pnN).

(ii) For N−1 ≤ p ≤
(
log N

n

)
/(6n), we have ex(G(N, p), Pn+1) = Θ

(
ω

logωpnN
)
.
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Theorem 1.21. Let n ≥ 2 and N ≥ ne2n. The following hold a.a.s. as n approaches infinity or as N

approaches infinity if n is a constant. Let ω = (logN) /(np).

(i) For p ≥ N− 2
5n , we have ex(G(N, p), Pn+1) = Θ(nN).

(ii) For N−1 ≤ p ≤ N− 2
5n , we have ex(G(N, p), Pn+1) = Θ

(
ω

logωpnN
)
.

The proofs of the above theorems are based on the probabilistic method, and an application of the

depth first search algorithm (DFS) in finding long paths in random graphs. The details will be presented in

Chapter 5.

Our work was also motivated by the size-Ramsey problem. The size-Ramsey number R̂(F, r) is the

smallest integer m such that there exists a graph G on m edges with the property that any r-edge-coloring

of G yields a monochromatic F . Krivelevich [79] and Dudek-Pra lat [32] showed that Ω(r2n) ≤ R̂(Pn, r) ≤

O((log r)r2n). Determining whether R̂(Pn, r) = Θ(r2n) is perhaps the most interesting problem regarding

the size-Ramsey number of a path. Both upper bound proofs give a stronger density-type result, which shows

that for p = Ω((log r)/n), every H ⊆ G ∈ G(crn, p) with e(H) ≥ e(G)/r contains a Pn+1, for a constant c.

Our results implies that (log r)/n is the threshold function for this density-type statement.

1.4 Basic definitions and notation

A graph G is a pair (V (G), E(G)) consisting of a set V (G) of vertices along with a set E(G) of edges which

consists of 2-element subsets of V (G); the pair of vertices in each edge are unordered. The order of a graph

G is the cardinality of the vertex set |V (G)| denoted here as v(G). Similarly the size of a graph G is the

cardinality of the edge set |E(G)| denoted here as e(G). Two vertices u, v ∈ V (G) are said to be adjacent,

denoted by u ∼ v, uv, or vu, if {u, v} ∈ E(G). An edge and a vertex on that edge are said to be incident.

A graph with no loops (a loop is an edge u ∼ u) or multiple edges (several edges u ∼ v) is referred to in the

literature as a simple graph. A graph allowing loops or multiple edges is referred to as a multigraph.

The neighborhood of a vertex v in a graph G, denoted by NG(v), is the set of vertices adjacent to v in G.

The degree of a vertex v in a graph G, denoted by dG(v), is the number of edges incident to v in G. For a

simple graph G, we always have dG(v) = |NG(v)| for every vertex v. For a set S ⊆ V (G), the neighborhood

of v restricted to S, denoted by NG(v, S), is the number of vertices adjacent to v, which are contained in

S ; the degree of v restricted to S, denoted by dG(v, S), is the number of edges incident to v with another

endpoint in S. When the underlying graph is clear, we simply write N(v), d(v), N(v, S) and d(v, S) instead.

The minimum degree of a graph G, denote by δ(G), is the degree of the vertex with the least number of
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edges incident to it. The maximum degree of a graph G, denote by δ(G), is the degree of the vertex with

the most number of edges incident to it.

A graph H is a subgraph of a graph G, denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a

graph G and a set A ⊆ V (G), the induced subgraph G[A] is the subgraph of G whose vertex set is A and

whose edge set consists of all of the edges with both endpoints in A. For two disjoint subsets A,B ⊆ V (G),

the induced bipartite subgraph G[A,B] is the subgraph of G whose vertex set is A ∪ B and whose edge set

consists of all of the edges with one endpoint in A and the other endpoint in B.

An independent set I in a graph G is a subset of V (G) that forms no edges. A edge coloring of a graph

G is an assignment of labels, traditionally called colors, to the edges of G. A k-coloring of a graph G is a

coloring using k at most colors.

The complete graph on n vertices, denoted Kn, is the graph where every pair of distinct vertices is

connected by exactly one edge. A complete bipartite graph is a bipartite graph such that every pair of graph

vertices in the two parts of the partition are adjacent; this graph is denoted Ks,t where s and t are the

number of vertices in the two disjoint parts. A path on n vertices, denoted Pn, is a graph whose vertices can

be linearly ordered so that two vertices are adjacent if and only if they appear consecutively in the ordering.

A cycle on n vertices, denoted Cn, is a graph with n edges and there is a cyclic order of the vertices so that

two vertices are adjacent if and only if they appear consecutively in this ordering.

A r-uniform hypergraph, or r-graph, H is a pair (V (H), E(H)) consisting of a set V (H) of vertices along

with a set E(H) of hyperedges which consists of r-element subsets of V (H). Similarly as for the graphs, the

order of a hypergraph H is the cardinality of the vertex set |V (H)| denoted here as v(H), and the size of a

hypergraph H is the cardinality of the edge set |E(H)| denoted here as e(H). As before, an independent set

I in a hypergraph H is a subset of V (H) that forms no edges.

For a positive integer n, we write [n] = {1, 2, . . . , n}. Throughout the paper, we omit all floor and ceiling

signs whenever these are not crucial.

10



Chapter 2

On the number of linear hypergraphs
of large girth

2.1 Introduction

For a family of r-graphs H, the Turán number (function) of H, denoted by exr(n,H), is the maximum

number of edges among all r-graphs on n vertices which contain no r-graph from H as a subgraph. Write

Forbr(n,H) for the set of r-graphs with vertex set [n] which contain no r-graph from H as a subgraph. When

H consists of a single graph H, we simply write exr(n,H) and Forbr(n,H) instead. Since every subgraph

of an H-free graph is also H-free, we have a trivial bound

2ex(n,H) ≤ |Forb(n,H)| ≤
∑

i≤ex(n,H)

((n
2

)
i

)
≤ n2·ex(n,H). (2.1)

The study on determination of |Forbr(n,H)| has a very rich history. Recently, the case when H is a

linear cycle received more attention. For integers r ≥ 2 and ` ≥ 3, an r-uniform linear cycle of length `,

denoted by Cr` , is an r-graph with edges e1, . . . , e` such that for every i ∈ [`− 1], |ei ∩ ei+1| = 1, |e` ∩ e1| = 1

and ei ∩ ej = ∅ for all other pairs {i, j}, i 6= j. Kostochka, Mubayi and Verstraëte [76], and independently,

Füredi and Jiang [47] proved that for every r, ` ≥ 3, exr(n,C
r
` ) = Θ(nr−1). Then by (2.1), we trivially have

|Forbr(n,C
r
` )| = 2Ω(nr−1) and |Forbr(n,C

r
` )| = 2O(nr−1 logn) (2.2)

for every r, ` ≥ 3. Guided and motivated by this development on the extremal numbers of linear cycles,

Mubayi and Wang [87] showed that |Forb3(n,C3
` )| = 2O(n2) for all even ` and improved the trivial upper

bound in (2.2) for r > 3. Inspired by Mubayi and Wang [87]’s method, Han and Kohayakawa [54] subse-

quently improved the general upper bound to 2O(nr−1 log logn). Later, Balogh, Narayanan and Skokan [13]

studied the balanced supersaturation phenomena of linear cycles, and proved |Forbr(n,C
r
` )| = 2O(nr−1) for

every r, ` ≥ 3, using the hypergraph container method [11, 94].

In this chapter, we study the number of linear hypergraphs containing no linear cycle of fixed length.
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An r-graph H is said to be linear if for every e, e′ ∈ E(H), |e ∩ e′| ≤ 1. For a family of linear r-graphs

H, the linear Turán number of H, denoted by exL(n,H), is the maximum number of edges among linear

r-graphs on n vertices which contain no r-graph from H as a subgraph. Write ForbL(n,H) for the set of

linear r-graphs with vertex set [n] which contain no r-graph from H as a subgraph. Again, when H consists

of a single graph H, we simply write exL(n,H) and ForbL(n,H) instead. Similarly to (2.1), a trivial bound

on the size of ForbL(n,H) is given as follows.

2exL(n,H) ≤ |ForbL(n,H)| ≤
∑

i≤exL(n,H)

((n
r

)
i

)
≤ 2nr·exL(n,H). (2.3)

It is known from the famous (6, 3)-problem that n2−c
√

logn < exL(n,C3
3 ) = o(n2), where the lower bound is

given by Behrend [17] and the upper bound is given by Ruzsa and Szemerédi [92]. In 1968, Erdős, Frankl and

Rödl [40] showed that for every r ≥ 3, exL(n,Cr3) = o(n2) and exL(n,Cr3) = Ω(nc) for every c < 2. Using the

so-called 2-fold Sidon sets, Lazebnik and Verstraëte [81] constructed linear 3-graphs with girth 5 and Ω(n3/2)

edges. On the other hand, it is not hard to show that exL(n,C3
4 ) = O(n3/2). Hence, exL(n,C3

4 ) = Θ(n3/2).

Kostochka, Mubayi, and Verstraëte [75] proved exL(n,C3
5 ) = Θ(n3/2) and conjectured that

exL(n,Cr` ) = Θ
(
n1+ 1

b`/2c

)

for every r ≥ 3 and ` ≥ 4. Later, Collier-Cartaino, Graber and Jiang [27] proved that exL(n,Cr` ) =

O
(
n1+ 1

b`/2c

)
for r ≥ 3 and ` ≥ 4. Although the lower bound on the linear Turán number of linear cycles

is still far from what is conjectured, following the same logic with the usual Turán problem of cycles, it is

natural to conjecture that

|ForbL(n,Cr` )| = 2
Θ

(
n
1+ 1
b`/2c

)
(2.4)

for every r ≥ 3 and ` ≥ 4. We first confirm the above conjecture for ` = 4.

Theorem 2.1. For every r ≥ 3 there exists C = C(r) > 0 such that

|ForbL(n,Cr4)| ≤ 2Cn
3/2

.

The upper bound for C3
4 is sharp in order of magnitude given by exL(n,C3

4 ) = Θ(n3/2) and (2.3). In

general, since the sharp bound of related linear Turán number remains open, we are not able to confirm the

sharpness now.

For ` = 3, the work of Erdős, Frankl and Rödl [40] could be extended to show that |ForbL(n,Cr3)| = 2o(n
2)
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for every r ≥ 3. For ` > 4, although we are not ready to prove (2.4), we provide a result on the girth version.

Recall that the girth of a graph is the length of a shortest cycle contained in the graph. Kleitman and

Wilson [67], and independently Kreuter [77], and Kohayakawa, Kreuter, and Steger [69] proved that there

are 2O(n1+1/`) graphs with no even cycles of length 2`, which made a step towards proving a longstanding

conjecture of Erdős, who asked for determining the number of C2`-free graphs. Motivated by the above work,

we introduce an analogous girth problem on linear hypergraphs. For a linear r-graph H, the girth of H is

the smallest integer k such that H contains a Crk . We remark that for linear r-graphs, our girth definition is

equivalent to a more classical girth definition, Berge girth, i.e. the smallest number k such that the r-graph

contains a Berge-Crk , as a linear Berge-Crk must contain a linear cycle of length i for some 3 ≤ i ≤ k. For

every r ≥ 3 and ` ≥ 4, let ForbL(n, r, `) denote the set of all linear r-graphs on [n] with girth larger than `.

Our second main result of this chapter is as follows.

Theorem 2.2. For every r ≥ 3 and ` ≥ 4, there exists a constant C = C(r, `) > 0 such that

|ForbL(n, r, `)| ≤ 2Cn
1+1/b`/2c

.

Palmer, Tait, Timmons and Wagner [89] considered such extremal problems for Berge-hypergraphs and

proved a special case of Theorem 2.2 for ` = 4 . Note that for every ` ≥ 4, we have ForbL(n, r, ` + 1) ⊆

ForbL(n, r, `). Therefore, it is sufficient to prove Theorem 2.2 for all even ` and we provide the following

equivalent theorem instead.

Theorem 2.3. For every r ≥ 3 and ` ≥ 2, there exists a constant C = C(r, `) > 0 such that

|ForbL(n, r, 2`)| ≤ 2Cn
1+1/`

.

Once again, the above upper bounds are possibly sharp, but we are not able to confirm it now.

The proofs of Theorems 2.1 and 2.3 are based on two graph enumeration results related to even cycles.

A classical result of Bondy and Simonovits [23] yields ex2(n,C2`) = O(n1+1/`) for all ` ≥ 2. By a series

of papers of Kleitman and Winston [68], Kleitman and Wilson [67], Kreuter [77], Kohayakawa, Kreuter,

and Steger [69], and Morris and Saxton [86], we now know that the number of C2`-free graphs is at most

2O(n1+1/`). Inspired by these works, we prove that the number of graphs containing some but not many short

cycles is still at most 2O(n1+1/`), which may be of independent interest. We state our results as follows.

Theorem 2.4. Let n be a sufficiently large integer and a = 32 log6 n. The number of n-vertex graphs with

at most n2/a 4-cycles is at most 211n3/2

.
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Given a graph G on [n], for every integer k ≥ 3 and every edge uv ∈ E(G), denote by ck(u, v;G), the

number of k-cycles in G containing edge uv. When the underlying graph is clear, we simply write ck(u, v).

For an integer ` ≥ 3 and a constant L > 0, write Gn(`, L) for the family of graphs G on [n] such that for

every 3 ≤ k ≤ ` and uv ∈ E(G), ck(u, v;G) ≤ L.

Theorem 2.5. For an integer ` ≥ 3 and a constant L > 0, let n be a sufficiently large integer and then we

have

|Gn(2`, L)| ≤ 23(`+1)n1+1/`

.

Like many of these advances, our approach to proving Theorems 2.4 and 2.5 relies on the graph container

method developed in [68], in which one assigns a certificate for each target graph. The certificate should be

able to uniquely determine the target graph, and then we can estimate the number of certificates instead of

graphs. However, the previous applications of the graph container method address the problems for graphs

forbidding short cycles, while we concern with the graphs with sparse short cycles. Therefore, the means by

which we apply this technique is quite non-standard, and requires some new ideas.

Remark 2.6. It is not hard to extend Theorem 2.4 to a = Θ(log5 n) by proving a similar statement for

Gn(4,
√
n/ log4 n) as in Theorem 2.5. We choose to present the current proof of Theorem 2.4 since it contains

some ideas which may bring more insights of this method to readers. Let p = ω/(
√
n log n). Note that the

number of graphs on [n] with p
(
n
2

)
edges is about 2ωn

3/2

and they typically contain Θ(n4p4) = Θ(ω4n2/ log4 n)

4-cycles. Therefore, a = Θ(log4 n) would be the best possible in Theorem 2.4 and we believe that it should be

the truth. Given by the connection between Sidon sets and graphs without 4-cycles, this problem is closely

related with the number of generalized Sidon sets, which will be studied in Chapter 3.

2.2 Graphs with limited C4’s

2.2.1 Preliminary results

Definition 2.7 (Min-degree ordering, Min-degree sequence). For a graph G on [n], a min-degree ordering is

an ordering vn < vn−1 < . . . < v1, such that vi is a vertex of minimum degree in the graph Gi = G[vi, . . . , v1],

for every i ∈ [n] (if there are more than one vertices of the minimum degree, choose the one with the largest

label). Let di = dGi(vi), then dn, dn−1, . . . , d1 is called the min-degree sequence.

Lemma 2.8. Let G be an n-vertex graph with average degree d. If d ≥ 2
√
n, then G contains at least d4/36

copies of 4-cycles.
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Proof. Let v1, v2, . . . , vn be the vertices in G and bi = dG(vi) for every i ∈ [n]. Let S be the set of paths of

length 2 (or 3-paths) in G. We will count 3-paths in two ways.

First, for a vertex vi, the number of 3-paths containing vi as the middle point is exactly
(
bi
2

)
. Therefore,

we have

|S| =
n∑
i=1

(
bi
2

)
≥ n

(
(
∑n
i=1 bi)/n

2

)
= n

(
d

2

)
≥ 1

3
d2n.

On the other hand, for 1 ≤ i < j ≤ n, let cij be the number of common neighbors of vi and vj . Then

|S| =
∑

1≤i<j≤n cij . Therefore, the number of 4-cycles in G is equal to

1

2

∑
1≤i<j≤n

(
cij
2

)
≥ 1

2

(
n

2

)(
(
∑
i<j cij)/

(
n
2

)
2

)
=

1

2

(
n

2

)(
|S|/

(
n
2

)
2

)
≥ |S|

2

4n2
≥ d4

36
.

From Lemma 2.8, we immediately obtain the following corollary.

Corollary 2.9. Let G be a n-vertex graph which contains at most 4n2/9 4-cycles, and dn, . . . , d1 be the

min-degree sequence of G. Then for every i ∈ [n],

di ≤ 2
√
n.

Proof. Suppose that there exists k ∈ [n], such that dk > 2
√
n. Then by Lemma 2.8, the number of 4-cycles

in Gk is at least d4
k/36 > 4

9n
2, which contradicts our assumption.

We also provide an estimation for the following binomial coefficients, which will be used repeatly later.

Lemma 2.10. For integers n, k, ` and a constant c satisfying cn/k` ≥ k,

(
cn/k`

k

)
≤ 2

`+1

21/ ln 2 ln 2
(cen)

1
`+1

,

where 21/ ln 2 ln 2 ≈ 1.88.

Proof. Let f(x) = (log cen− (`+ 1) log x)x on (0,+∞). Since f(x) is a concave function, it is maximized

at the point x∗, where f ′(x∗) = log cen− `+1
ln 2 − (`+ 1) log x∗ = 0, i.e. log x∗ = log cen

`+1 −
1

ln 2 . Therefore, we

have

f(k) ≤ f(x∗) =

(
log cen− (`+ 1)

(
log cen

`+ 1
− 1

ln 2

))
2

log cen
`+1 −

1
ln 2 =

`+ 1

21/ ln 2 ln 2
(cen)

1
`+1 .
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Since
(
n
k

)
≤
(
ne
k

)k
for every 1 ≤ k ≤ n, we obtain that

(
cn/k`

k

)
≤
( cen
k`+1

)k
= 2f(k) ≤ 2

`+1

21/ ln 2 ln 2
(cen)

1
`+1

.

2.2.2 Certificate lemma

This section is devoted to prove our main lemma, which is a key step to build the certificates for graphs

with sparse 4-cycles. This lemma can be viewed as a generalization of the Kleitman-Winston algorithm [68],

which builds certificates for graphs without 4-cycles. Before we proceed, we first need a counting lemma,

which will be used later in the proof.

For a graph F , denote by F 2 the multigraph defined on V (F ) such that for every distinct u, v ∈ V (F 2),

the multiplicity of uv in F 2 is the number of (u, v)-paths of length 2 in F .

Lemma 2.11. For integers n > m ≥ d ≥ 8, let F be an m-vertex graph with δ(F ) ≥ d − 1 and H = F 2.

Then for every J ⊆ V (H) of size at least 4n/d, we have

e(H[J ]) ≥ d2|J |2

4n
.

Proof. Write V (F ) = {v1, . . . , vm}. For every j ∈ [m], let bj = dF (vj , J). Then we have
∑m
j=1 bj =∑

v∈J dF (v) ≥ |J |(d− 1) ≥ 4(d−1)
d n > 3n > 3m. Therefore, we obtain that

e(H[J ]) =

m∑
j=1

(
bj
2

)
≥ m

(∑ bj
m

2

)
≥ m

( |J|(d−1)
m

2

)
≥ |J |

2(d− 1)2

3m
≥ d2|J |2

4n
.

Lemma 2.12 (Certificate lemma). For a sufficiently large integer n, define b = 16 log4 n and g = 32 log5 n.

Let m and d be the integers satisfying m ≤ n− 1 and
√
n

logn ≤ d ≤ 2
√
n. Suppose that F is an m-vertex graph

with δ(F ) ≥ d− 1 and H = F 2. Additionally, assume that for every u, v ∈ V (F ), |NF (u)∩NF (v)| ≤
√
n/b.

Then for every set I ⊆ V (F ) of size d which satisfies e(H[I]) ≤ n/g, there exist a set T and a set C(T )

depending only on T , not on I, such that

(i) T ⊆ I ⊆ C(T ),

(ii) |T | ≤ 2
√
n/ log n,
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(iii) |C(T )| ≤ 5n/d.

Proof. Let I be a subset of V (F ) of size d which satisfies e(H[I]) ≤ n/g. Following the ideas of Kleitman

and Winston [68], we describe a deterministic algorithm that associates to the set I a pair of sets T and

C(T ), which shall be treated as the ‘fingerprint’ and the ‘container’ respectively.

Let Ih = {v ∈ I : dH(v, I) >
√
n/b} and Il = {v ∈ I : dH(v, I) ≤

√
n/b}. Since e(H[I]) ≤ n/g, the size

of Ih is at most

2e(H[I])√
n/b

≤ 2
√
n · b
g

=

√
n

log n
,

which is sufficiently small. Therefore, we only need to concern the vertices in Il.

The core algorithm. We start the algorithm with sets A0 = V (H)−Ih, T0 = ∅ and the function t0(v) = 0,

for every v ∈ V (H) − Ih. As the algorithm proceeds, one should view Ai as the set of ‘candidate’ vertices,

Ti as the set of ‘representive’ vertices, and ti(v) as a ‘state’ function which is used to control the process.

In the i-th iteration step, we pick a vertex ui ∈ Ai of maximum degree in H[Ai]. In case there are multiple

choices, we give preference to vertices that come earlier in some arbitrary predefined ordering of V (H) as

we always do, even if it is not pointed out at each time. If ui ∈ Il, we define

ti+1(v) =

 ti(v) + dH(v, ui) if v ∈ Ai,

ti(v) if v /∈ Ai,

and Q = {v | ti+1(v) >
√
n/b}, and let Ti+1 = Ti + ui, Ai+1 = Ai − ui − Q. Otherwise, let Ti+1 = Ti,

Ai+1 = Ai − ui and ti+1(v) = ti(v), for every v ∈ V (H) − Ih. The algorithm terminates at step K once

we get a set AK of size at most 4n/d. We also assume that uK−1 ∈ TK as otherwise we can continue the

algorithm until it is satisfied.

The algorithm outputs a vertex sequence {u1, u2, . . . , uK−1}, a set of ‘representive’ vertices TK and a

strictly decreasing set sequence {A0, A1, A2, A3, . . . , AK}. Let

T = TK ∪ Ih, and C(T ) = AK ∪ T.

From the algorithm, we have TK ⊆ Il and therefore T ⊆ I. Furthermore, if a vertex v satisfies ti(v) >
√
n/b

for some i, then we have dH(v, I) ≥ ti(v) >
√
n/b, which implies v /∈ Il. Therefore, we maintain Il ⊆ Ai ∪Ti

for every i ≤ K and in particular we have I ⊆ AK ∪ TK ∪ Ih = AK ∪ T = C(T ). Hence, Condition (i) is
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satisfied. Another crucial fact is that C(T ) depends only on T , not on I. The reason is that for a given

underlying graph, its max degree sequence is fixed once we break the tie by some predefined ordering on

vertices. Therefore, for two sets I1, I2 with the same ‘fingerprint’ T , the algorithm outputs the same vertex

sequence {u1, u2, . . . , uK−1}, which uniquely determines the set C(T ) by the mechanics of the algorithm.

To verify Conditions (ii) and (iii), it is sufficient to show that |TK | ≤
√
n/ log n. Once we prove it, we

immediately obtain

|T | = |TK |+ |Ih| ≤
√
n

log n
+

√
n

log n
=

2
√
n

log n
,

and

|C(T )| = |AK |+ |T | ≤
4n

d
+

2
√
n

log n
≤ 5n

d
,

completing the proof.

Denote q the integer such that n/2q ≤ |AK | < n/2q−1. By the choice of AK , we have q < log n. For

every integer 1 ≤ l ≤ q, define Al to be the first A-set satisfying

n

2l
≤ |Al| < n

2l−1
,

if it exists, and let T l be the corresponding T -set and tl(v) be the corresponding t-function of Al . Note that

Al may not exist for every l, but Aq always exists and it could be that Aq = AK . Suppose that

Al1 ⊃ Al2 ⊃ . . . ⊃ Alp

are all the well-defined Al, where p ≤ q. By the above definition, we have Al1 = A0, T l1 = T0 and lp = q.

Define Alp+1 = AK , T
lp+1 = TK . Now, we have

TK =

p+1⋃
j=2

(T lj − T lj−1). (2.5)

To achieve our goal, we are going to estimate the size of T lj − T lj−1 for every 2 ≤ j ≤ p+ 1.

From the algorithm, we have tlj (v) ≤
√
n/b, for every v ∈ Alj ∪T lj . Moreover, for v ∈ Alj−1 −Alj −T lj ,

suppose that v is removed in step i, then we have

tlj (v) ≤ ti−1(v) + dH(v, ui) ≤
√
n

b
+ |NF (ui) ∩NF (v)| ≤ 2

√
n

b
,
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where ui is the selected vertex in step i. Therefore, we obtain

∑
v∈Alj−1

tlj (v) ≤ 2
√
n

b
|Alj−1 | ≤ 2n3/2

2lj−1−1b
. (2.6)

Let 2 ≤ j ≤ p. For every ui ∈ T lj − T lj−1 , ui is chosen of maximum degree in H[Ai], where Ai is a set

between Alj−1 and Alj . By the choice of Alj , we have |Ai| ≥ n/2lj−1 . By Lemma 2.11, we have

dH(ui, Ai) ≥
d2|Ai|

4n
≥ d2

2lj−1+2
.

Note that dH(ui, Ai) only contributes to tlj (v) for v ∈ Ai ⊆ Alj−1 . Then we obtain

∣∣T lj − T lj−1
∣∣ d2

2lj−1+2
≤

∑
ui∈T lj−T lj−1

dH(ui, Ai) ≤
∑

v∈Alj−1

tlj (v). (2.7)

Combining (2.6) and (2.7), we have

∣∣T lj − T lj−1
∣∣ d2

2lj−1+2
≤ 2n3/2

2lj−1−1b
,

which implies ∣∣T lj − T lj−1
∣∣ ≤ 16n3/2

bd2
≤ 16

√
n log2 n

b
=

√
n

log2 n

for 2 ≤ j ≤ p. For j = p + 1, since we have n
2q ≤ |A

lp+1 | ≤ |Alp | ≤ n
2q−1 , by a similar argument, we obtain

that ∣∣T lp+1 − T lp
∣∣ d2|Alp+1 |

4n
≤

∑
ui∈T lp+1−T lp

d(ui, Ai) ≤
∑
v∈Alp

tlp+1(v) ≤ 2
√
n

b
|Alp |,

which gives ∣∣T lp+1 − T lp
∣∣ ≤ 16n3/2

bd2
≤ 16

√
n log2 n

b
=

√
n

log2 n
.

Finally, by (2.5), we get

|TK | =
p+1⋃
j=2

|T lj − T lj−1 | ≤ p ·
√
n

log2 n
≤ q ·

√
n

log2 n
≤
√
n

log n
.
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2.2.3 Proof of Theorem 2.4

In this section, we give an upper bound on the number of graphs containing only ‘few’ 4-cycles. Before we

proceed to prove Theorem 2.4, we need to do a cleaning process for the target graphs in order to apply

Lemma 2.12.

Let a = 32 log6 n, g = 32 log5 n and b = 16 log4 n. Given a graph G on [n], for every 1 ≤ i < j ≤ n, define

NG(i, j) to be the set of common neighbors of i and j in G. Let

mG(i, j) =

 |NG(i, j)| when |NG(i, j)| >
√
n
b ,

0 when |NG(i, j)| ≤
√
n
b .

We delete all edges from i to NG(i, j), for all 1 ≤ i < j ≤ n with mG(i, j) 6= 0. Then the resulting subgraph,

denoted by Ĝ, satisfies |NĜ(i, j)| ≤
√
n/b, for every 1 ≤ i < j ≤ n. Let Gn be the family of graphs on [n]

with at most n2/a 4-cycles and Ĝn = {Ĝ : G ∈ Gn}.

Lemma 2.13. Let n be a sufficiently large integer. Then for every G ∈ Gn, we have

|E(G)− E(Ĝ)| ≤ 4n3/2

log2 n
.

Proof. By counting 4-cycles in G, we obtain that

1

2

∑
i<j

(
mG(i, j)

2

)
≤ n2

a
,

which gives ∑
i<j

mG(i, j)2 ≤ 8
n2

a
. (2.8)

Let B = {(i, j) : 1 ≤ i < j ≤ n and mG(i, j) 6= 0}. By the definition of mG(i, j) and (2.8), we have

|B| ≤ 8n
2

a /(
√
n
b )2 = 8b2n/a. Therefore, by the convexity, we get

∑
(i,j)∈B

mG(i, j)2 ≥
(
∑

(i,j)∈BmG(i, j))2

|B|
=

(
∑
i<jmG(i, j))2

|B|
≥

(
∑
i<jmG(i, j))2

8b2n/a
. (2.9)

Combining (2.8) and (2.9), we obtain

∑
i<j

mG(i, j) ≤ 8n3/2b

a
=

4n3/2

log2 n
.
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Finally, by the definition of Ĝ, we have |E(G)− E(Ĝ)| =
∑
i<jmG(i, j) ≤ 4n3/2

log2 n
.

Lemma 2.14. Let n be a sufficiently large integer. Then |Gn| ≤ |Ĝn| · 2
4n3/2

logn .

Proof. For every F ∈ Ĝn, let SF = {G ∈ Gn | Ĝ = F}. By Lemma 2.13, for every G ∈ SF , we have

|E(G)− E(F )| ≤ 4n3/2

log2 n
. Therefore, the size of SF is bounded by

|SF | ≤
((n

2

)
0

)
+

((n
2

)
1

)
+ . . .+

( (
n
2

)
b 4n3/2

log2 n
c

)
≤ 2

( (
n
2

)
b 4n3/2

log2 n
c

)
≤ 2

4n3/2

logn .

Finally, we obtain that

|Gn| ≤
∑
F∈Ĝn

|SF | ≤ |Ĝn| · 2
4n3/2

logn .

Theorem 2.15. Let n be a sufficiently large integer. Then |Ĝn| ≤ 210n3/2

.

Proof. We construct the certificate of a graph G in the following way. Let YG := vn < vn−1 < . . . < v1

be the min-degree ordering of G and DG := {dn, dn−1, . . . , d1} be the min-degree sequence of G. Let Gi =

G[vi, . . . , v1], for every i ∈ [n]. Define the set sequence SG := {Sn, Sn−1, . . . , S2}, where Si = NG(vi, Gi−1).

Then Si ⊆ {vi−1, . . . , v1}, and |Si| = di. By the construction, [YG, DG, SG] uniquely determines the graph

G and so we build a certificate [YG, DG, SG] for G. Therefore, instead of counting graphs, it is equivalent to

estimate the number of their certificates.

For a graph G ∈ Ĝn, its certificate has some important properties which would help us to achieve the

desired bound. First, by Corollary 2.9, its min-degree ordering DG = {dn, dn−1, . . . , d1} satisfying di ≤ 2
√
n.

Let fi be the number of 4-cycles in Gi containing vertex vi. Since each 4-cycle contributes exactly to one of

fi’s, we have
∑n
i=1 fi ≤ n2/a. We call vi a heavy vertex if fi > n/g; otherwise, vi is a light vertex. Another

crucial fact about graphs in Ĝn is that the number of heavy vertices is at most

∑
vi∈Vh fi

n/g
≤ n2/a

n/g
=

n

log n
. (2.10)

Now we start to estimate the number of certificates which would generate graphs in Ĝn. By the above

discussion, we first observe that the number of ways to choose the min-degree orderings and the min-degree

sequences is at most

n!(2
√
n)n. (2.11)

Then we fix a min-degree ordering Y ∗ = vn < vn−1 < . . . < v1, and a min-degree sequenceD∗ = {dn, . . . , d1}.
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Next, we fix the positions of heavy vertices and by (2.10) the number of ways is at most

∑
i≤ n

logn

(
n

i

)
. (2.12)

A major part of the proof is to count set sequences S = {Sn, Sn−1, . . . , S2}, where Si ⊆ {vi−1, . . . , v1} and

|Si| = di, such that the graph reconstructed by [Y ∗, D∗, S], denoted by GS , are in Ĝ. For every 2 ≤ i ≤ n,

let Mi be the number of choices for Si with fixed sets Si−1, . . . , S2. Define

I1 = {i : vi is a heavy vertex}, I2 = {i : di <

√
n

log n
},

and

I3 = {i : vi is a light vertex and di ≥
√
n

log n
}.

For every i ∈ I1, since |Si| = di ≤ 2
√
n, we have a trivial upper bound

Mi ≤
(
i− 1

di

)
≤
(

n

2
√
n

)
≤ n2

√
n = 22

√
n logn. (2.13)

Similarly, for every i ∈ I2, we have

Mi ≤
(
i− 1

di

)
≤
(

n√
n/ log n

)
≤ n

√
n/ logn = 2

√
n. (2.14)

It remains to estimate Mi for i ∈ I3. With fixed sets Si−1, . . . , S2, the graph Gi−1 = GS [vi−1, . . . , v1]

is uniquely determined. Since Gi−1 ⊆ GS and GS ∈ Ĝ, for every u, v ∈ V (Gi−1), we have |NGi−1
(u) ∩

NGi−1(v)| ≤
√
n/b. Applying Lemma 2.12 on Gi−1, we obtain that every eligible Si contains a subset T

of size at most 2
√
n/ log n, which determines a set C(T ) ⊇ Si of size at most 5n/di. Since the number of

choices for T is at most

∑
0≤j≤2

√
n/ logn

(
i− 1

j

)
≤ 2

(
i− 1

2
√
n/ log n

)
≤ 2

(
n

2
√
n/ log n

)
≤ 22

√
n,

we then have

Mi ≤
∑
T

(
C(T )

di

)
≤
∑
T

(
5n/di
di

)
≤
∑
T

2
2

21/ ln 2 ln 2

√
5en ≤

∑
T

24
√
n ≤ 26

√
n (2.15)

for every i ∈ I3, where the third inequality is given by Lemma 2.10.
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Combining (2.13), (2.14) and (2.15), we obtain that the number of choices for S is

n∏
i=2

Mi ≤
∏
i∈I1

Mi

∏
i∈I2

Mi

∏
i∈I3

Mi ≤ (22
√
n logn)

n
logn (2

√
n)n(26

√
n)n ≤ 29n3/2

.

Finally, together with (2.11) and (2.12), the total number of certificates is at most

n!(2
√
n)n

∑
i≤ n

logn

(
n

i

) n∏
i=2

Mi ≤ n!(2
√
n)n2n29n3/2

≤ 210n3/2

,

which leads to |Ĝn| ≤ 210n3/2

.

Proof of Theorem 2.4. Lemma 2.14 and Theorem 2.15 imply Theorem 2.4.

2.3 Graphs with limited short cycles

In the previous section, we estimated the number of graphs containing a few 4-cycles. Unfortunately, we are

not ready to provide a similar result for longer cycles due to the failure of getting an appropriate counting

lemma, like Lemma 2.11. However, this method still works when the target graph has a sparse structure on

short cycles. More specially, for ` ≥ 4, we are going to consider the family of graphs such that each of its

edges is contained in only O(1) cycles of length at most 2`. Following the idea from [69], we construct a

proper auxiliary graph and provide a suitable counting lemma on it.

2.3.1 Expansion properties of graphs with limited short cycles

Given a graph G, a vertex v ∈ V (G) and an integer k ≥ 1, let Γk(v) be the set of vertices of G at distance

exactly k from v. Recall that for an edge uv ∈ E(G), ck(u, v;G) is the number of k-cycles in G containing

edge uv.

Lemma 2.16. For integers ` ≤ m and a constant L > 0, let F be an m-vertex graph such that for every

uv ∈ E(F ) and 3 ≤ i ≤ 2`, ci(u, v) ≤ L. Then for every 1 ≤ k ≤ `− 1 and v ∈ V (F ), we have

d(u,Γk(v)) ≤ Lk

for all u ∈ Γk(v).

Proof. Suppose there exists a vertex u ∈ Γk(v) such that d(u,Γk(v)) ≥ Lk+ 1. Since u ∈ Γk(v), there exists

a (u, v)-path Pu of length k. Let u′ be the neighbor of u in Pu. Similarly, for every vertex w ∈ N(u,Γk(v)),
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there is a (w, v)-path Pw of length k. Note that every Pu +Pw + {uw} forms a closed walk of length 2k+ 1,

which contains an odd cycle of length at most 2k+1 containing edges uu′ and uw. Since d(u,Γk(v)) ≥ Lk+1,

we have at least Lk+1 distinct odd cycles of length at most 2k+1 containing uu′. However, since ch(u, u′) ≤ L

for every odd h ≤ 2k + 1, there are at most Lk odd cycles of length at most 2k + 1 containing uu′, which is

a contradiction.

Lemma 2.17. For integers ` ≤ m and a constant L > 0, let F be an m-vertex graph such that for every

uv ∈ E(F ) and 3 ≤ i ≤ 2`, ci(u, v) ≤ L. Then for every 2 ≤ k ≤ ` and v ∈ V (F ), we have

d(u,Γk−1(v)) ≤ L(k − 1) + 1

for all u ∈ Γk(v).

Proof. Suppose there exists a vertex u ∈ Γk(v) such that d(u,Γk−1(v)) ≥ L(k− 1) + 2. Let u′ be a vertex in

N(u,Γk−1(v)). Since u′ ∈ Γk−1(v), there exists a (u′, v)-path Pu′ of length k− 1. Similarly, for every vertex

w ∈ N(u,Γk−1(v))\{u′}, there is a (w, v)-path Pw of length k−1. Note that every Pu′ +Pw +{uu′}+{uw}

forms a closed walk of length 2k, which contains an even cycle of length at most 2k containing edges uu′

and uw. Since |N(u,Γk−1(v)) \ {u′}| ≥ L(k − 1) + 1, we have at least L(k − 1) + 1 distinct even cycles of

length at most 2k containing uu′. However, since ch(u, u′) ≤ L for every even 4 ≤ h ≤ 2k, there are at most

L(k − 1) even cycles of length at most 2k containing uu′, which is a contradiction.

Now, we give a lemma on the expansion of graphs with sparse short cycles. This lemma can be viewed

as a generalization of Lemma 11 in [69].

Lemma 2.18. For integers `, d ≤ m and a constant L � d, let F be an m-vertex graph with minimum

degree at least d − 1, such that for every uv ∈ E(F ) and 3 ≤ i ≤ 2`, ci(u, v) ≤ L. Suppose v is a vertex in

F with degree d(v). Then for every 1 ≤ k ≤ `, we have

|Γk(v)| ≥ d(v)dk−1

gk(L)

for some constants gk(L) which only depend on k and L.

Proof. The case k = 1 is trivially true with g1(L) = 1. Suppose that the lemma is true for k < `, i.e.

|Γk(L)| ≥ d(v)dk−1/gk(L) for some constant gk(L).

For every vertex u ∈ Γk(v), neighbors of u only appear in Γk−1(v), Γk(v) and Γk+1(v). By Lemmas 2.16
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and 2.17, we have

d(u,Γk+1(v)) ≥ (d− 1)− d(u,Γk−1(v))− d(u,Γk(v)) ≥ d− 2(Lk + 1) + L ≥ d

2
(2.16)

for all u ∈ Γk(v) and this gives

e(Γk(v),Γk+1(v)) ≥ d|Γk(v)|
2

.

Again by Lemma 2.17, we know that for every u ∈ Γk+1(v), d(u,Γk(v)) ≤ Lk + 1. Therefore, we have

|Γk+1(v)| ≥ e(Γk(v),Γk+1(v))

Lk + 1
≥ d|Γk(v)|

2(Lk + 1)
≥ d(v)dk

2(Lk + 1)gk(L)
=

d(v)dk

gk+1(L)

for gk+1(L) = 2(Lk + 1)gk(L) and the lemma follows by induction.

Lemma 2.18 gives an upper bound on the maximum degree of the graph with sparse short cycles.

Corollary 2.19. For integers `, d ≤ m and a constant L � d, let F be an m-vertex graph with minimum

degree d− 1, such that for every uv ∈ E(F ) and 3 ≤ i ≤ 2`, ci(u, v) ≤ L. Then

∆(F ) ≤ m

d`−1
· g`(L),

where g`(L) is the constant defined in Lemma 2.18.

Proof. By Lemma 2.18, for every v ∈ V (F ), we have

|Γ`(v)| ≥ d(v)d`−1

g`(L)
,

which gives

d(v) ≤ |Γ`(v)|
d`−1

g`(L) ≤ m

d`−1
g`(L),

This implies the corollary.

2.3.2 Construction of the auxiliary graph

In this section, we aim to give a generalization of Lemma 2.11 for longer cycles. We use a definition of

composed walk from [69]. For every integer k ≥ 1, call a 2k-walk x0x1 . . . x2k a composed walk if x0 . . . xk

and xk . . . x2k are two shortest paths and they are different but not necessarily vertex-disjoint or edge-disjoint.

A composed walk is said to be closed if its endpoints are the same.
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Lemma 2.20. For integers `,∆ ≤ m and a constant L � ∆, let F be an m-vertex graph with maximum

degree ∆, such that for every uv ∈ E(F ) and 3 ≤ k ≤ 2`, ck(u, v) ≤ L. Then for every vertex u ∈ V (F ) and

every integer 2 ≤ s ≤ `− 1, the number of closed composed walks of length 2s with endpoints u is at most

∆s−1αs(L)

for some constants αs(L) which only depends on s and L.

Proof. For every vertex u ∈ V (F ) and every integer 2 ≤ s ≤ `− 1, let Ws(u) be the set of closed composed

walks of length 2s with endpoints u. For the case s = 2, the lemma is true with α2(L) = L. This is because

that a closed composed walk of length 4 with endpoint u is exactly a 4-cycle containing u and then we have

|W2(u)| ≤
∑
v∈N(u) c4(u, v) ≤ ∆L.

Suppose for s − 1 < ` − 1, the lemma is true for all integers k ≤ s − 1, i.e. for every v ∈ V (F ),

|Wk(v)| ≤ ∆k−1αk(L) with some constants αk(L). Fix an arbitrary vertex u ∈ V (F ), and let

Wi
s(u) = {ux1x2 . . . x2s−1u ∈ Ws(u) | i is the first integer such that xi = x2s−i}

for every 1 ≤ i ≤ s. Then we have Ws(u) =
⋃s
i=1Wi

s(u).

First, every composed walk W ∈ W1
s (u) consists of an edge ux1 and a closed composed walk of length

2s− 2 with endpoints x1. Therefore, we have

|W1
s (u)| ≤

∑
xi∈N(u)

|Ws−1(x1)| ≤ ∆s−1αs−1(L).

Let 2 ≤ i ≤ s− 1. For every composed walk

W = ux1x2 . . . x2s−1u ∈ Wi
s(u),

{ux1 . . . xi x2s−(i−1) . . . x2s−1u} forms a cycle C of length 2i containing u. Since for every x1 ∈ N(u),

c2i(u, x1) ≤ L, then the number of choices for C is at most ∆L. For a fixed C and xi ∈ C, W − C forms

a path of length (s− i) with endpoints xi or a closed composed walks of length 2(s− i) with endpoints xi.

In the first case there are at most ∆s−i choices, while in the later case there are at most |Ws−i(xi)| choices.
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Therefore, we have

|Wi
s(u)| ≤ ∆L · (∆s−i + |Ws−i(xi)|)

≤ ∆L · (∆s−i + ∆s−i−1αs−i(L))

≤ 2∆s−i+1L ≤ 2∆s−1L.

Finally, every composed walk W ∈ Ws
s (u) is a cycle of length 2s containing u, and then we have

|Ws
s (u)| ≤

∑
v∈N(u)

c2s(u, v) ≤ ∆L.

Hence, we have

|Ws(u)| =
s⋃
i=1

|Wi
s(u)| ≤ ∆s−1αs−1(L) + 2(s− 2)∆s−1L+ ∆L ≤ ∆s−1αs(L)

for αs(L) = αs−1(L) + 2(s− 2)L+ 1, and the lemma follows by induction.

For an integer ` ≥ 3 and a graph F , denote by F ` the multigraph defined on V (F ) such that for every

distinct u, v ∈ V (F `), the multiplicity of uv in F ` is the number of composed (u, v)-walks of length 2(`− 1)

in F .

Lemma 2.21. For an integer ` ≥ 3 and a constant L > 0, let n be a sufficiently large integer. Let m and d

be the integers satisfying m ≤ n and d ≥ n1/`

logn . Suppose F is an m-vertex graph with minimum degree d− 1,

such that for every uv ∈ E(F ) and 3 ≤ k ≤ 2`, ck(u, v) ≤ L. Then for every set J ⊆ V (F ) of size at least

2`n/d`−1, we have

e(F `[J ]) ≥ d2`−2|J |2

22`+1n
.

Proof. Let W be the set of composed walks of length 2(` − 1) with endpoints in J , and Wc be the set of

closed composed walks of length 2(`− 1) with endpoint in J . By the definition of F `, we have

e(F `[J ]) = |W| − |Wc|.

By Lemma 2.20, we know that

|Wc| ≤ ∆`−2α`−1(L) · |J |,

27



where ∆ is the maximum degree of F , which, by Corollary 2.19, satisfies

∆ ≤ m

d`−1
· g`(L) ≤ n

d`−1
· g`(L) ≤ d` log` n

d`−1
· g`(L) = d log` n · g`(L). (2.17)

Now, it remains to estimate the lower bound of W. For every v ∈ J , let av be the number of shortest

paths of length `− 1 such that v is one of the endpoints. For every u ∈ V (F ), let Pu be the set of shortest

paths of length `− 1 such that one endpoint is u and another endpoint is in J . Let bu = |Pu| and then we

have
∑
u∈V (F ) bu =

∑
v∈J av. By (2.16), we have

∑
u∈V (F )

bu =
∑
v∈J

av ≥
∑
v∈J

(d/2)`−1 =
d`−1|J |

2`−1
.

Note that for every vertex u ∈ V (F ) and P1, P2 ∈ Pu, P1 + P2 forms a composed walk in W and vice versa.

Therefore, we have

|W| =
∑

u∈V (F )

(
bu
2

)
≥ m

(∑
u bu
m

2

)
≥ m

(d`−1|J|
2`−1·m

2

)
≥ d2`−2|J |2

22`m
≥ d2`−2|J |2

22`n

for |J | ≥ 2`n/d`−1 ≥ 2`m/d`−1. Note that

|Wc|
|W|

≤ ∆`−2α`−1(L) · |J |
d2`−2|J|2

22`n

≤ d`−2 log`(`−2) n

d2`−2
· n
|J |
· g`−2
` (L)α`−1(L)22`

≤ d`−2 log`(`−2) n

d2`−2
· d

`−1

2`
· g`−2
` (L)α`−1(L)22`

≤ log`(`−2) n

d
· g`−2
` (L)α`−1(L)2` � 1,

when n is sufficiently large. Hence, we have

e(F `[J ]) = |W| − |Wc| ≥
1

2
|W| ≥ d2`−2|J |2

22`+1n
.

Now, we start to define the auxiliary graph, which will be used in Lemma 2.25 in the next section. For

every integer k ≥ 1, call a path x0x1 . . . x2k a composed path if x0 . . . xk and xk . . . x2k are both shortest

paths of length k. For an integer ` ≥ 3 and a graph F , denote by F `∗ the simple graph defined on V (F ) such

that for every distinct u, v ∈ V (F `∗), uv ∈ E(F `∗) if there is a composed (u, v)-path of length at most 2(`−1)

in F . To estimate the number of edges in F `∗ , we need the following lemma.
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Lemma 2.22. For integers `,∆ ≤ m and a constant L � ∆, let F be an m-vertex graph with maximum

degree ∆, such that for every uv ∈ E(F ) and 3 ≤ k ≤ 2`, ck(u, v) ≤ L. For every 1 ≤ s ≤ ` − 1 and every

distinct u, v ∈ V (F ), the number of composed paths of length 2s with endpoints u, v is at most

∆s−1 ((sL+ 1)s + 1) .

Proof. Let P be the set of composed paths of length 2s with endpoints u, v. For given vertices a1, . . . , as−1,

let

P(a1, . . . , as−1) = {ux1 . . . x2s−1v ∈ P | x1 = a1, . . . , xs−1 = as−1}.

Note that the number of non-empty P(a1, . . . , as−1) is at most ∆s−1, since ua1 . . . as−1 is a path.

Suppose that P0 = ua1 . . . a2s−1v is a composed path in P(a1, . . . , as−1). For every composed path

P = ua1 . . . as−1xs . . . x2s−1v ∈ P(a1, . . . , as−1) \ {P0}, as−1 . . . a2s−1v and as−1xs . . . x2s−1v form a closed

walk W of length 2(s+ 1). For every s ≤ i ≤ 2s− 1, if xi = ai, the number of choices for xi is 1. Otherwise,

W contains an even cycle of length at most 2(s + 1), which contains the edge ai−1ai and vertex xi. Since

c2k(ai−1, ai) ≤ L for every 2 ≤ k ≤ s + 1, the number of choices for xi 6= ai is at most sL. Therefore, we

have

|P(a1, . . . , as−1)| ≤ (sL+ 1)s + 1.

Finally, we obtain

|P| =
∑

a1,...,as−1

|P(a1, . . . , as−1)| ≤ ∆s−1 ((sL+ 1)s + 1) .

Now, we give an upper bound on the multiplicity of F `.

Lemma 2.23. For integers `,∆ ≤ m and a constant L � ∆, let F be an m-vertex graph with maximum

degree ∆, such that for every uv ∈ E(F ) and 3 ≤ k ≤ 2`, ck(u, v) ≤ L. For every distinct u, v ∈ V (F ), the

number of composed walks of length 2(`− 1) with endpoints u, v is at most

∆`−2β`(L),

for a constant β`(L) which only depends on ` and L.

Proof. Let W be the number of composed walks of length 2(` − 1) in F with endpoints u, v. For every
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1 ≤ i ≤ `− 1, let

Wi = {ux1 . . . x2(`−1)−1v ∈ W | i is the first integer such that xi = x2(`−1)−i},

and then we have W =
⋃`−1
i=1Wi.

Let 1 ≤ i ≤ `− 2. For every composed walk

W = ux1 . . . x`−1 . . . x2(`−1)−1v ∈ Wi,

the vertices {ux1 . . . xix2(`−1)−(i−1) . . . x2(`−1)−1v} forms a composed path P of length 2i. By Lemma 2.22,

there are at most ∆i−1[(iL+ 1)i + 1] choices for P . For a fixed P , W − P forms a path of length `− i− 1

with endpoint xi or a close composed walk of length 2(`− i−1) with endpoint xi. In the first case, there are

at most ∆`−i−1 choices, while in the later case, by Lemma 2.20, there are at most ∆`−i−2α`−i−1(L) choices.

Therefore, we have

|Wi| ≤ ∆i−1
(
(iL+ 1)i + 1

)
· (∆`−i−1 + ∆`−i−2α`−i−1(L)) ≤ 2∆`−2

(
(iL+ 1)i + 1

)
.

Moreover, every walk W ∈ W`−1 is a composed path of length 2(` − 1) with endpoints u and v. By

Lemma 2.22, we have

|W`−1| ≤ ∆`−2
(
(`L− L+ 1)`−1 + 1

)
.

Hence, we have

|W| =
`−1∑
i=1

|Wi| ≤
`−2∑
i=1

2∆`−2
(
(iL+ 1)i + 1

)
+ ∆`−2

(
(`L− L+ 1)`−1 + 1

)
= ∆`−2β`(L)

for β`(L) =
∑`−2
i=1 2

(
(iL+ 1)i + 1

)
+
(
(`L− L+ 1)`−1 + 1

)
.

We have all the ingredients to give a lower bound on the number of edges in auxiliary graph F l∗. This

lemma will play the same role as Lemma 2.11 in the case of 4-cycles.

Lemma 2.24. For an integer ` ≥ 3 and a constant L > 0, let n be a sufficiently large integer. Let m and d

be the integers satisfying m ≤ n and d ≥ n1/`

logn . Suppose F is an m-vertex graph with minimum degree d− 1,

such that for every uv ∈ E(F ) and 3 ≤ k ≤ 2`, ck(u, v) ≤ L. Then for every set J ⊆ V (F ) of size at least

2`n/d`−1, we have

e(F `∗ [J ]) ≥ d`|J |2

n log`(`−2) n
f`(L)
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for a constant f`(L) which only depends on ` and L.

Proof. Note that every composed walk of length 2(`− 1) with endpoints in J contains a composed path of

length at most 2(`− 1) with endpoints in J . Therefore, by Lemma 2.23, we have

e(F `∗ [J ]) ≥ e(F `[J ])

∆`−2β`(L)
,

where ∆ is the maximum degree of F , which by (2.17), satisfies

∆ ≤ d log` n · g`(L).

Hence, we have

e(F `∗ [J ]) ≥ e(F `[J ])

d`−2 log`(`−2) n · g`−2
` (L)β`(L)

≥ d`|J |2

n log`(`−2) n
f`(L),

where f`(L) = 1

22`+1g`−2
` (L)

β`(L).

2.3.3 Certificate lemma

In this section, we give our second main lemma, which will be used to build certificates for graphs with

sparse short cycles. This lemma is a generalization of Lemma 2.12 for longer cycle, although the condition

is slightly different. The idea of proof is also similar to Lemma 2.12, which originally comes from Kleitman

and Winston [68] and Kohayakawa, Kreuter and Steger [69].

Lemma 2.25. For an integer ` ≥ 3 and constants L,α > 0, let n be a sufficiently large integer. Let m and

d be the integers satisfying m ≤ n and n1/`

logn ≤ d ≤ αn1/`. Suppose F is an m-vertex graph with minimum

degree d− 1, such that for every uv ∈ E(F ) and 3 ≤ k ≤ 2`, ck(u, v) ≤ L. Let H = F `∗ . Then for every set

I ⊆ V (F ) of size d, such that dH(v, I) ≤ (`− 1)L for all v ∈ I, there exist a set T and a set C(T ) depending

only on T , not on I, such that

(i) T ⊆ I ⊆ C(T ),

(ii) |T | ≤ n1/`/ log n,

(iii) |C(T )| ≤ (2` + 1)n/d`−1.

Proof. This proof is similar to the proof of Lemma 2.12. We will describe a deterministic algorithm that

associates to the set I a pair of sets T and C(T ).
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We start the algorithm with sets A0 = V (H), T0 = ∅ and a function t0(v) = 0, for every v ∈ V (H). In

the i-th iteration step, we pick a vertex ui ∈ Ai of maximum degree in H[Ai]. If ui ∈ I, we define

ti+1(v) =

 ti(v) + dH(v, ui) if v ∈ Ai,

ti(v) if v /∈ Ai,

and Q = {v | ti+1(v) > (` − 1)L}, and let Ti+1 = Ti + ui, Ai+1 = Ai − ui − Q. Otherwise, let Ti+1 = Ti,

Ai+1 = Ai − ui and ti+1(v) = ti(v), for every v ∈ V (H). The algorithm terminates at step K when we

get a set AK of size at most 2`n/d`−1. We also assume that uK−1 ∈ TK as otherwise we can continue the

algorithm until it is satisfied.

The algorithm outputs a vertex sequence {u1, u2, . . . , uK−1}, a set of ‘representative’ vertices TK and

a strictly decreasing set sequence {A0, A1, A2, A3, . . . AK}. Let T = TK and C(T ) = AK ∪ T. From the

algorithm, we have T ⊆ I. Furthermore, if a vertex v satisfies ti(v) > (` − 1)L for some i, then we have

dH(v, I) ≥ ti(v) > (` − 1)L, which implies v /∈ I. Therefore, we maintain I ⊆ Ai ∪ Ti for every i ≤ K and

especially get I ⊆ AK ∪ TK = C(T ). Hence, Condition (i) is satisfied. Similarly as in Lemma 2.12, the set

C(T ) only depends on T , not on I.

To finish the proof, it is sufficient to show that |TK | ≤ n1/`/ log n. Once we prove it, we immediately

obtain

|T | = |TK | ≤
n1/`

log n
,

and

|C(T )| = |AK |+ |T | ≤
2`n

d`−1
+
n1/`

log n
≤ (2` + 1)n

d`−1
,

which completes the proof.

In the rest of proof, we apply the same technique used in the proof of Lemma 2.12. We repeat the process

as follows. Denote q the integer such that n/2q ≤ |AK | < n/2q−1. By the choice of AK , we have q ≤ log n.

For every integer 1 ≤ l ≤ q, define Al to be the first A-set satisfying

n

2l
≤ |Al| < n

2l−1
,

if it exists, and let T l be the corresponding T -set and tl(v) be the corresponding t-function of Al. Note that
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Al may not exist for every l, but Aq always exists and it could be that Aq = AK . Suppose

Al1 ⊃ Al2 ⊃ . . . ⊃ Alp

are all the defined Al, where p ≤ q. By the above definition, we have Al1 = A0, T l1 = T0 and lp = q. Define

Alp+1 = AK , T
lp+1 = TK . Now, we have

TK =

p+1⋃
j=2

(T lj − T lj−1). (2.18)

To achieve our goal, we are going to estimate the size of T lj − T lj−1 , for every 2 ≤ j ≤ p+ 1.

From the algorithm, we have tlj (v) ≤ (`−1)L, for every v ∈ Alj ∪T lj . Moreover, for v ∈ Alj−1−Alj−T lj ,

suppose v is removed in step i, then we have

tlj (v) = ti−1(v) + dH(v, ui−1) ≤ (`− 1)L+ 1,

where ui is the selected vertex in step i. Therefore, we obtain

∑
v∈Alj−1

tlj (v) ≤ ((`− 1)L+ 1) |Alj−1 | ≤ ((`− 1)L+ 1)
n

2lj−1−1
. (2.19)

Let 2 ≤ j ≤ p. For every ui ∈ T lj − T lj−1 , ui is chosen of maximum degree in H[Ai], where Ai is a set

between Alj−1 and Alj . By the choice of Alj , we have |Ai| ≥ n/2lj−1 . From Lemma 2.24, we obtain that

dH(ui, Ai) ≥
d`|Ai|

n log`(`−2) n
f`(L) ≥ d`

2lj−1 log`(`−2) n
f`(L).

Note that dH(ui, Ai) only contributes to tlj (v), for v ∈ Ai ⊆ Alj−1 . Then we obtain

∣∣T lj − T lj−1
∣∣ d`

2lj−1 log`(`−2) n
f`(L) ≤

∑
ui∈T lj−T lj−1

dH(ui, Ai) ≤
∑

v∈Alj−1

tlj (v). (2.20)

Combining (2.19) and (2.20), we have

∣∣T lj − T lj−1
∣∣ d`

2lj−1 log`(`−2) n
f`(L) ≤ ((`− 1)L+ 1)

n

2lj−1−1
,
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which implies

∣∣T lj − T lj−1
∣∣ ≤ 2 (`− 1)L+ 1)

f`(L)
· n log`(`−2) n

d`
≤ 2 ((`− 1)L+ 1)

f`(L)
log`(`−1) n ≤ n1/`

log2 n
,

for 2 ≤ j ≤ p. For j = p + 1, since we have n
2q ≤ |A

lp+1 | ≤ |Alp | ≤ n
2q−1 , by a similar argument, we obtain

that

∣∣T lp+1 − T lp
∣∣ d`|Alp+1

|
n log`(`−2) n

f`(L) ≤
∑

ui∈T lp+1−T lp

d(ui, Ai)

≤
∑
v∈Alp

tlp+1(v) ≤ ((`− 1)L+ 1) |Alp |,

which gives ∣∣T lp+1 − T lp
∣∣ ≤ 2 ((`− 1)L+ 1)

f`(L)
· n log`(`−2) n

d`
≤ n1/`

log2 n
.

Finally, by (2.18), we have

|TK | =
p+1⋃
j=2

|T lj − T lj−1 | ≤ p · n
1/`

log2 n
≤ q · n

1/`

log2 n
≤ n1/`

log n
.

2.3.4 Proof of Theorem 2.5

This section is entirely devoted to the proof of Theorem 2.5. The idea is the same as the proof of Theo-

rem 2.15: we will build a certificate for each graph in Gn(2`, L) and estimate the number of such certificates.

Before we proceed, we first need the supersaturation result for C2` to give a bound on the min-degree se-

quence of graphs in Gn(2`, L). It was mentioned in [36] that Simonovits first proved the supersaturation for

the even cycles, but the proof has not been published yet and it might appear in Faudree and Simonovits [43].

Morris and Saxton [86] recently provided a stronger version of supersaturation for even cycles. Very recently,

Jiang and Yepremyan [65] give a supersaturation result of even linear cycles in linear hypergraphs, which

includes the graph case. We use the graph version of their result and rephrase it in terms of the average

degree.

Theorem 2.26. [65] For an integer ` ≥ 2, there exist constants C, c such that if G is an n-vertex graph

with the average degree d ≥ 2Cn1/`, then G contains at least c(d2 )2` copies of C2`.

Corollary 2.27. Let G be a n-vertex graph in Gn(2`, L), and dn, . . . , d1 be the min-degree sequence of G.
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Then for every i ∈ [n], we have

di ≤ αn1/`

for some constant α = max{2C, 2( L2c )
1/2`}, where C, c are constants given in Theorem 2.26.

Proof. Suppose that there exists k ∈ [n], such that dk > αn1/`. Then by Theorem 2.26, the number of C2`’s

in Gk is at least

c

(
dk
2

)2`

> c

(
αn1/`

2

)2`

≥ c L
2c
n2 ≥ L

(
k

2

)
,

which contradicts the fact that G ∈ Gn(2`, L).

Proof of Theorem 2.5. The way to construct the certificate is exactly same with in the proof of Theorem 2.15.

Here we restate the process. For a graph G ∈ Gn(2`, L), let YG := vn < vn−1 < . . . < v1 be the min-degree

ordering of G and DG := {dn, dn−1, . . . , d1} be the min-degree sequence of G. Note that by Corollary 2.27,

there exists a constant α such that di ≤ αn1/`, for every i ∈ [n]. For every i ∈ [n], let Gi = G[vi, . . . , v1]. De-

fine the set sequence SG := {Sn, Sn−1, . . . , S2}, where Si = NG(vi, Gi−1). Note that Si ⊆ {vi−1, . . . , v1} and

|Si| = di. By the construction, [YG, DG, SG] uniquely determines the graph G and so we build a certificate

[YG, DG, SG] for G. To complete the proof, it is sufficient to estimate the number of such certificates.

We first choose a min-degree ordering Y ∗ = vn < vn−1 < . . . < v1, and a min-degree sequence D∗ =

{dn, . . . , d1}; the number of options is at most

n!(αn1/`)n. (2.21)

Next, we count set sequences S = {Sn, Sn−1, . . . , S2}, where Si ⊆ {vi−1, . . . , v1} and |Si| = di, such that

the graph reconstructed by [Y ∗, D∗, S], denoted by GS , are in Gn(2`, L). For every 2 ≤ i ≤ n, let Mi be the

number of choices for Si with fixed sets Si−1, . . . , S2. Define

I1 = {i : di < n1/`/ log n}, I2 = {i : di ≥ n1/`/ log n}.

For every i ∈ I1, since |Si| = di < n1/`/ log n, we have a trivial bound

Mi ≤
(
i− 1

di

)
≤
(

n

n1/`/ log n

)
≤ nn

1/`/ logn = 2n
1/`

. (2.22)

It remains to consider the upper bound on Mi for i ∈ I2. With fixed sets Si−1, . . . , S2, the graph

Gi−1 = GS [vi−1, . . . , v1] is uniquely determined. Since Gi−1 ⊆ GS and GS ∈ Gn(2`, L), for every uv ∈

E(Gi−1) and every 3 ≤ k ≤ 2`, we know that ck(u, v;Gi−1) ≤ L. Note that every eligible Si should satisfy
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dH(u, Si) ≤ (l − 1)L for all u ∈ Si, where H = (Gi−1)l∗. Otherwise, there exists a vertex u ∈ Si, such that∑`
k=2 c2k(vi, u;Gi) ≥ dH(u, Si) > (l − 1)L, which is a contradiction. Applying Lemma 2.25 on Gi−1, we

obtain that every eligible Si contains a subset T of size at most n1/`/ log n, which uniquely determines a set

C(T ) ⊇ Si of size at most (2` + 1)n/d`−1
i . Since the number of choices for T is at most

∑
0≤j≤n1/`/ logn

(
i− 1

j

)
≤ 2

(
i− 1

n1/`/ log n

)
≤ 2

(
n

n1/`/ log n

)
≤ 2n

1/`

,

we then have

Mi ≤
∑
T

(
C(T )

di

)
≤
∑
T

( (2`+1)n

d`−1
i

di

)
≤
∑
T

2
`

1.88 ((2`+1)en)
1/`

≤
∑
T

23`n1/`

≤ 2(3`+1)n1/`

(2.23)

for every i ∈ I2, where the third inequality is given by Lemma 2.10.

Combining (2.22) and (2.23), we obtain that the number of choices for S is

n∏
i=2

Mi ≤
∏
i∈I1

Mi

∏
i∈I2

Mi ≤ 2n
1+1/`

2(3`+1)n1+1/`

≤ 2(3`+2)n1+1/`

.

Hence, together with (2.21), the total number of certificates is at most

n!(αn1/`)n
n∏
i=2

Mi ≤ 2n
1+1/`

2(3`+2)n1+1/`

≤ 23(`+1)n1+1/`

for n sufficiently large, which leads to |Gn(2`, L)| ≤ 23(`+1)n1+1/`

.

2.4 Linear hypergraphs of large girth

In this section, we study the enumeration problems of r-graphs with given girth and r-graphs without Cr4 ’s.

To prove it, we need a result on the linear Turán number of linear cycles given by Collier-Cartaino, Graber

and Jiang [27].

Theorem 2.28. [27] For every r, ` ≥ 3, there exists a constant αr,` > 0, depending on r and `, such that

exL(n,Cr` ) ≤ αr,`n1+ 1
b`/2c .
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2.4.1 Proof of Theorem 2.3

Once we have Theorems 2.4 and 2.5, it is natural to think about reducing the hypergraph problems to

problems on graphs and then apply our graph counting theorems.

Definition 2.29 (Shadow graph). Given a hypergraph H, the shadow graph of H, denoted by ∂2(H), is

defined as

∂2(H) = {D : |D| = 2,∃e ∈ H,D ⊆ e}.

Proposition 2.30. Let r ≥ 3, ` ≥ 2 and H ∈ ForbL(n, r, 2`). For every r-element subset S ∈ V (H), S

forms an r-clique in ∂2(H) if and only if S is a hyperedge in H.

Proof. Assume that there exists a r-clique with vertex set S in ∂2(H) and two edges e1, e2 such that e1, e2

lie on two different hyperedges f1, f2. Without loss of generality, we can assume that e1 and e2 share a

common vertex, as otherwise, we let e1 = ab and e2 = cd and one of the edge pairs {ab, ac} or {ac, cd} is

contained in different hyperedges.

Let e1 = ab ⊂ f1 and e2 = ac ⊂ f2. Note that c /∈ f1 and b /∈ f2, as otherwise we have f1 = f2 by the

linearity of H. Let f3 be the hyperedge which includes bc. Then f1, f2, f3 are distinct, and form a Cr3 by

the linearity of H. This contradicts the fact that H ∈ ForbL(n, r, 2`).

We also need the following short lemma on 4-cycles of the shadow graphs of hypergraphs in ForbL(n, r, 4).

Lemma 2.31. For every r ≥ 3, there exists a constant β = β(r) such that for every H ∈ ForbL(n, r, 4), the

shadow graph ∂2(H) contains at most βn3/2 4-cycles.

Proof. Let G = ∂2(H). Since the girth of H is larger than 4, every 4-cycle in G must be contained in a

hyperedge of H. By Theorem 2.28, we have e(H) ≤ αr,4n3/2. Hence, the number of 4-cycles in G is at most

(
r

4

)
e(H) ≤

(
r

4

)
αr,4n

3/2 = βn3/2

for β =
(
r
4

)
αr,4.

Proof of Theorem 2.3 for ` = 2. Define a map ϕ : ForbL(n, r, 4) → G = {∂2(H) : H ∈ ForbL(n, r, 4)} given

by ϕ(H) = ∂2(H). By Proposition 2.30, ϕ is a bijection. Note that by Lemma 2.31, every graph in G has

at most βn3/2 4-cycles, where β is a constant depending on r. Applying Theorem 2.4, when n is sufficiently

large, we have

|G| ≤ 211n3/2

.
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Hence, we obtain that |ForbL(n, r, 4)| = |G| ≤ 211n3/2

for n sufficiently large, which completes the proof.

Proof of Theorem 2.3 for ` ≥ 3. Define a map ϕ : ForbL(n, r, 2`) → G = {∂2(H) : H ∈ ForbL(n, r, 2`)}

given by ϕ(H) = ∂2(H). By Proposition 2.30, ϕ is a bijection. For a graph G = ∂2(H) ∈ G and an edge

uv ∈ E(G), since the girth of H is larger than 2`, each k-cycle in G, which contains edge uv, must be

contained in a hyperedge of H, for all 3 ≤ k ≤ 2`. Indeed, this hyperedge is unique by the linearity of H.

Therefore, we have

ck(u, v;G) ≤
(
r − 2

k − 2

)
for all 3 ≤ k ≤ 2`. Applying Theorem 2.5, when n is sufficiently large, we have

|G| ≤ 23(`+1)n1+1/`

.

Hence, we obtain that |ForbL(n, r, 2`)| = |G| ≤ 23(`+1)n1+1/`

for n sufficiently large, which completes the

proof.

2.4.2 Proof of Theorem 2.1

We now estimate the number of r-graphs without Cr4 . The main idea is the same as in the previous section: we

convert the hypergraph enumeration problem to a graph enumeration problem and then apply Theorem 2.4.

However, because of the possible existence of Cr3 ’s, some facts we used before is no longer trivial and even

not true. The first difficulty is to give an upper bound on the number of 4-cycles in shadow graphs, and we

need the following lemma on the number of Cr3 ’s.

Lemma 2.32. Let r ≥ 3. For every H ∈ ForbL(n,Cr4) and every edge e ∈ E(H), the number of Cr3 ’s in H

containing e as an edge is at most (
r

2

)
(4r2 − 10r + 7).

Proof. For every distinct u, v ∈ e, let

Cu,v = {{e, fi, gi} ⊆ H : e ∩ fi = {u}, e ∩ gi = {v}, |fi ∩ gi| = 1}.

Suppose Cu,v is nonempty, and fix a C0 = {e, f0, g0} ∈ Cu,v. For every C = {e, fi, gi} ∈ Cu,v \ {C0}, we know

that

(f0 ∪ g0) ∩ (fi ∪ gi)− {u, v} 6= ∅,
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otherwise, {f0, g0, fi, gi} would form a Cr4 . Let w be a vertex in (f0 ∪ g0) ∩ (fi ∪ gi) − {u, v}. Since

w ∈ f0 ∪ g0 −{u, v}, there are at most 2r− 3 choices for w. By linearity of H, the number of linear 3-cycles

in Cu,v containing w is at most 2(r − 1). Therefore, we get

|Cu,v| ≤ 1 + 2(r − 1)(2r − 3) = 4r2 − 10r + 7. (2.24)

Hence, the number of Cr3 ’s in H containing e as an edge is equal to

∑
u,v∈e

|Cu,v| ≤
(
r

2

)
(4r2 − 10r + 7).

Proposition 2.33. For H ∈ ForbL(n,Cr4), every 4-cycle in ∂2(H) must be contained in a hyperedge or a

Cr3 of H.

Proof. Assume that a 4-cycle abcd is not contained in any hyperedge of H. Then there exist two edges e1

and e2 which lie on two different hyperedges f1 and f2. Without loss of generality, we can assume that

e1 = ab ⊂ f1, and e2 = ad ⊂ f2. Note that d /∈ f1 and b /∈ f2, as otherwise we have f1 = f2 by the linearity

of H. Let f3 be the hyperedge which includes bd. Then f1, f2, f3 are distinct, and form a Cr3 by the linearity

of H. This contradicts the fact that H ∈ ForbL(n,Cr4).

Lemma 2.34. For every r ≥ 3, there exists a constant β = β(r) such that for every H ∈ ForbL(n,Cr4), the

shadow graph ∂2(H) contains at most βn3/2 4-cycles.

Proof. Let G = ∂2(H). We first claim that every 4-cycle in G is contained in a hyperedge or a Cr3 of H. By

Lemma 2.32, there are at most

1

3

(
r

2

)(
4r2 − 10r + 7

)
e(H)

Cr3 ’s in H. Since H is linear and contains no Cr4 , every 4-cycle in G must be contained in a hyperedge or a

Cr3 of H. Moreover, by Theorem 2.28, we have

e(H) ≤ αr,4n3/2.

Hence, the number of 4-cycles in G is at most

3

(
r

4

)
e(H) + 3

(
3r − 3

4

)
· 1

3

(
r

2

)
(4r2 − 10r + 7)e(H) ≤ βn3/2

39



for

β =

[
3

(
r

4

)
+

(
3r − 3

4

)(
r

2

)
(4r2 − 10r + 7)

]
αr,4,

where αr,4 is a constant defined in Theorem 2.28.

Another difficulty is that the map we defined in the proof of Theorem 2.3 might be no longer injective.

To overcome it, we have the following lemma to measure how far the map is from the injection.

Lemma 2.35. For every r ≥ 3, there exists a constant α = α(r) such that for every H ∈ ForbL(n,Cr4),

there are at most αn3/2 r-cliques in ∂2(H).

Proof. Let G = ∂2(H) and F be the set of r-cliques in G. For every e ∈ E(H), let

Fe = {F ∈ F : |F ∩ e| = max
f∈E(H)

|F ∩ f |}.

Then we have F =
⋃
e∈H Fe. Fix an arbitrary hyperedge e ∈ H. For every 2 ≤ q ≤ r, let

Rq = {F ∈ Fe : |F ∩ e| = q},

then we have Fe =
⋃r
q=2Rq.

First, it is trivial to get |Rr| = 1. Let 2 ≤ q ≤ r − 1 and F be an r-clique in Rq. Since |F ∩ e| = q, the

number of choices for F ∩ e is at most
(
r
q

)
. Given F ∩ e, let u, v be two distinct vertices in F ∩ e. For every

w ∈ F − e, by the definition of the shadow graph and the linearity of H, there exist hyperedges f, g such

that {e, f, g} forms a Cr3 with e ∩ f = u, e ∩ g = v and f ∩ g = w. By (2.24), the number of such Cr3 ’s is at

most 4r2 − 10r + 7. Therefore, the choices of w is at most 4r2 − 10r + 7. Hence, we have

Rq ≤
(
r

q

)
(4r2 − 10r + 7)r−q.

Then, we obtain

|Fe| =
r∑
q=2

|Rq| ≤
r−1∑
r=2

(
r

q

)
(4r2 − 10r + 7)r−q + 1 ≤ 2r(4r2)r.

Finally, we get

|F| =
∑

e∈E(H)

|Fe| ≤ 2r(4r2)re(H) ≤ αn3/2

for α = 2r(4r2)rαr,4, where αr,4 is the constant defined in Theorem 2.28.

Proof of Theorem 2.1. Define a map ϕ : ForbL(n,Cr4) → G = {∂2(H) : H ∈ ForbL(n,Cr4)} given by
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ϕ(H) = ∂2(H). By Lemma 2.34, every graph G ∈ G has at most βn3/2 4-cycles, where β is a constant

depending on r. By Theorem 2.4, when n is sufficiently large, we have

|G| ≤ 211n3/2

.

By Lemma 2.35, for every G ∈ G, the number of r-cliques in G is at most αn3/2, where α is a constant

depending on r. Since every hyperedge corresponds to an r-clique in its shadow graph, we have

|ϕ−1(G)| ≤ 2αn
3/2

.

Finally, we obtain

|ForbL(n,Cr4)| ≤
∑
G∈G

∣∣ϕ−1(G)
∣∣ ≤ |G|2αn3/2

≤ 2(11+α)n3/2

for n sufficiently large, which completes the proof.
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Chapter 3

On the number of generalized Sidon
sets

3.1 Introduction

A set A of nonnegative integers is called a Sidon set if there is no 4-tuple (a, b, c, d) in A with a+ b = c+ d

and {a, b}∩ {c, d} = ∅. Such a tuple (a, b, c, d) is referred to as a Sidon 4-tuple. A famous problem raised by

Sidon asks the maximum size Φ(n) of Sidon subsets of [n]. Previous studies of Erdős and Turán [37], Singer

[96], Erdős [33], and Chowla [26], have showed that Φ(n) = (1 + o(1))
√
n. We denote by Zn the family of

Sidon subsets in [n]. Cameron and Erdős [25] first proposed the problem of determining |Zn|. The extremal

result indicates a trivial bound

2Φ(n) ≤ |Zn| ≤
∑

1≤i≤Φ(n)

(
n

i

)
≤ n(1/2+o(1))

√
n. (3.1)

Cameron and Erdős [25] improved the lower bound by showing lim supn |Zn|2−Φ(n) = ∞ and asked if

the upper bound could also be improved. Based on the method introduced by Kleitman and Winston

[68], Kohayakawa, Lee, Rödl and Samotij [70] strengthened the upper bound to 2cΦ(n), where c is a con-

stant arbitrarily close to log(32e) ≈ 6.442 for sufficiently large enough n. Using the hypergraph container

method [11, 94], Saxton and Thomason [94] showed that there are between 2(1.16+o(1))
√
n and 2(55+o(1))

√
n

Sidon subsets of [n], which indicates that neither of the bounds in (3.1) is tight.

We consider counting sets in which a positive upper bound is imposed on the number of Sidon 4-tuples.

An α-generalized Sidon set in [n] is a set with at most α Sidon 4-tuples. One way to extend the Cameron

and Erdős problem is to estimate the number of α-generalized Sidon sets. Clearly, a trivial lower bound of

2Ω(
√
n) can be given by the number of Sidon sets. In this chapter, we focus on the case when α is small. In

particular, we are interested in determining how large can α be such that the number of α-generalized Sidon

subsets in [n] is still 2Θ(
√
n).

For a set I ⊆ [n] and a vertex v ∈ [n], let SI(v) be the set of Sidon 4-tuples in I containing v and

write sI(v) = |SI(v)|. Denote by In(α) the family of α-generalized Sidon sets I in [n] with |I| ≤
√
n/ log n
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or |I| ≥
√
n/
√

log n, and Jn(α) the family of α-generalized Sidon sets I in [n] with |{v ∈ I : sI(v) ≥
√
n/ log4 n}| ≤

√
n/ log n. Our main results are the following.

Theorem 3.1. Let α = n/ log4 n. For n sufficiently large, we have |In(α)| ≤ 2180
√
n.

Theorem 3.2. Let α = n/ log4 n. For n sufficiently large, we have |Jn(α)| ≤ 2180
√
n.

One can indeed run the same proofs and show that for any given number c > 0, both theorems hold for

α = cn/ log4 n with the upper bound 2C
√
n for some constant C, depending on c.

Theorem 3.2 immediately implies the following.

Corollary 3.3. For α = O(n/ log5 n), the number of α-generalized Sidon sets in [n] is 2Θ(
√
n).

A simple probabilistic argument can be used to give a lower bound on the number of α-generalized

Sidon sets in [n]: let m = (αn)
1
4 ; a typical m-element subset on [n] contains about Θ(m4/n) = Θ(α) Sidon

4-tuples, and there are 2Θ(m logn) = 2Θ((αn)
1
4 logn) of them. In particular, for α �

√
n/ log4 n, there are

2Θ((αn)
1
4 logn) = 2ω(

√
n) subsets with Θ(α) Sidon 4-tuples. Therefore, if the number of α-generalized Sidon

subsets in [n] has magnitude 2Θ(
√
n), then the order of α cannot be greater than n/ log4 n. We believe that

4 in the exponent is the best possible.

Conjecture 3.4. For α = Θ(n/ log4 n), the number of α-generalized Sidon sets in [n] is 2Θ(
√
n).

The main idea of our proofs is based on the graph container method, in which we assign a cerfiticate to

each set I in In(α) (or Jn(α)) such that I is contained in a unique ‘container’ determined by its certificate.

The certificate should be sufficiently small so that the total number of certificates is properly bounded.

Moreover, for each certificate, the number of sets I assigned to it should not be large. Then we can estimate

the size of In(α) (or Jn(α)) by counting their certificates. Again, the classical graph container method only

applies for the independent sets while we study on the sets with sparse structure. Therefore, similarly as in

Chapter 2, we need to make some modifications of the argument.

Although we did not manage to achieve our goal, i.e., to prove Conjecture 3.4, our proof still contains a

few new ideas which might be useful to attack some other problems. This chapter is organized as follows. In

Section 3.2, we present a supersaturation lemma and some probabilistic results to be used in Section 3.3. In

Section 3.3, we introduce our certificate lemmas, Lemmas 3.12 and 3.14, which are used to prove Theorem 3.1

and 3.2 respectively. The proofs of Theorems 3.1 and 3.2 are given in Section 3.4. Finally, we have some

concluding remarks in Section 3.5.
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3.2 Supersaturation and probabilistic tools

3.2.1 Supersaturation

For two sets A,U ⊆ [n], define a multigraph HU (A) on vertex set A such that for every a1, a2 ∈ A with

a1 < a2, the multiplicity of the edge a1a2 in HU (A) is the number of ordered pairs (u1, u2) in U such that

(a1, u1, u2, a2) is a Sidon 4-tuple. We shall use the following simple supersaturation result.

Lemma 3.5. Let A,U ⊆ [n]. If |A| · |U | ≥ 6n, then e(HU (A)) > |A|2|U |2
12n .

Proof. Let F be a simple bipartite graph defined on the set A ∪ [2n] satisfying that for every a ∈ A and

m ∈ [2n], a is adjacent to m if and only if there is an element u ∈ U such that a+ u = m. Clearly, for every

vertex a ∈ A, we have dF (a) = |U |.

Let P be the set of paths of length 2 (or 3-paths) in F with endpoints in A. Then we have

|P| =
∑

m∈[2n]

(
dF (m)

2

)
≥ 2n

(∑
m∈[2n] dF (m)

2n

2

)
= 2n

( |A|·|U |
2n

2

)
>
|A|2|U |2

6n
.

A path P = {xyz} ∈ P is called trivial if x + z = y; otherwise, P is nontrivial. Note that P is trivial if

and only if both x and y belong to A ∩ U . Thus, the number of trivial paths in P is exactly
(|A∩U |

2

)
. Let

P ′ be the set of nontrivial paths in P . Every 3-path in P ′ corresponds to an edge in HU (A) and vice versa.

Therefore, we obtain

e(HU (A)) = |P ′| = |P | −
(
|A ∩ U |

2

)
>
|A|2|U |2

6n
− |A| · |U |

2
≥ |A|

2|U |2

12n
,

where the first inequality is given by |A∩U | ≤ min{|A|, |U |} ≤
√
|A| · |U | and the second inequality follows

from the assumption |A| · |U | ≥ 6n.

Corollary 3.6. Let A ⊆ [n] be a set with at most 3n Sidon 4-tuples. Then |A| <
√

6n.

Proof. Apply Lemma 3.5 with U = A. Then we obtain that the number of Sidon 4-tuples in A is more

than |A|4/12n. On the other hand, the assumption states that there are at most 3n Sidon 4-tuples, which

indicates that |A|4/12n < 3n, i.e., |A| <
√

6n.

Lemma 3.7. Suppose I, A ⊆ [n] and g ≤ n. For every set U ⊆ {v ∈ I | sI(v) < g} and edge ab ∈ HU (A),

the multiplicity of ab in HU (A) is at most g.

Proof. Let m be the multiplicity of the edge ab in HU (A). By the definition of HU (A), there exist

u1, u2, . . . , um, v1, v2, . . . , vm ∈ U such that a+ ui = vi + b, for every i ∈ [m]. Then for every i ∈ [m] \ {1},
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we have ui − vi = b− a = u1 − v1, i.e., u1 + vi = ui + v1. Since u1 ∈ U ⊆ {v ∈ I | sI(v) < g}, we must have

m− 1 ≤ sU (u1) ≤ sI(u1) < g, that is, m ≤ g.

3.2.2 Large deviations for sum of partly dependent random variables

The classical Chernoff bound is a powerful tool, but it only applies to sums of random variables that are

independent. Janson [64] extended a method of Hoeffding and obtained strong large deviation bounds for

sums of dependent random variables with suitable dependency structure. For a family of random variables

{Yα}α∈A, a dependency graph is a graph Γ with vertex set A such that if B ⊂ A and α ∈ A is not connected

by an edge to any vertex in B, then Yα is independent of {Yβ}β∈B. Recall that ∆(Γ) denotes the maximum

degree of Γ and let (for convenience) ∆1(Γ) := ∆(Γ) + 1.

Theorem 3.8 ([64], Corollary 2.2). Suppose that X is a random variable which can be written as a sum

X =
∑
α∈A

Yα,

where each Yα is an indicator variable taking the values 0 and 1 only. Let Γ be the dependency graph for

{Yα}α∈A. Then for t ≥ 0,

P(X ≥ E[X] + t) ≤ exp

(
−2

t2

∆1(Γ)|A|

)
.

3.2.3 Some probabilistic results

For this section, fix α =
√
n

log4 n
. Let I be an α-generalized Sidon set in [n] such that for every v ∈ I,

sI(v) <
√
n

log3 n
. Define Ih = {v ∈ I : sI(v) ≥

√
n

log4 n
}. We further assume that

|I| ≥
√
n√

log n
and |Ih| >

√
n

log n
. (3.2)

From the Chernoff bound and (3.2), we instantly get the following.

Lemma 3.9. Let W be a random subset of I obtained by choosing each u ∈ I independently with probability

p = 2√
logn

. Then P
(
|W | <

√
n

logn

)
= o(1).

For two different numbers u, v and a set A, let S(u,A, v) = {(u, a, b, v) | a, b ∈ A and u+ a = b+ v} and

write s(u,A, v) = |S(u,A, v)|.

Lemma 3.10. Let W be a random subset of I obtained by choosing each u ∈ I independently with probability

p = 2√
logn

. Then almost always s(u,W, v) ≤ 8
√
n

log4 n
, for all u, v ∈ I simultaneously.
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Proof. It is sufficient to prove the inequality for all u, v ∈ I with s(u, I, v) > 8
√
n

log4 n
. For a 4-tuple r =

(u, a, b, v) ∈ S(u, I, v), let Xr be the indicator random variable for the event r ∈ S(u,W, v). Since a, b are

always different, we have P(Xr = 1) = p2 = 4
logn . Then

µuv = E[s(u,W, v)] = E

 ∑
r∈S(u,I,v)

Xr

 = p2s(u, I, v) >
32
√
n

log5 n
.

For a given pair of numbers u, v ∈ I, let Γ be the dependency graph for {Xr : r ∈ S(u, I, v)}. Then we have

∆1(Γ) = ∆(Γ) + 1 ≤ 3. Using Theorem 3.8, we show that

P(s(u,W, v) > 2µuv) < exp

(
−2

µ2
uv

3s(u, I, v)

)
= exp

(
−2

µuv
3p2

)
< exp

(
− 16

√
n

3 log4 n

)
. (3.3)

On the other hand, by Lemma 3.7, we obtain

µuv = p2s(u, I, v) ≤ p2

√
n

log3 n
=

4
√
n

log4 n
. (3.4)

Combining (3.3) and (3.4), we obtain

P
(
s(u,W, v) > 8

√
n

log4 n

)
< exp

(
− 16

√
n

3 log4 n

)
.

Finally, using the union bound, we have

P
(
∃u, v ∈ I s.t. s(u,W, v) > 8

√
n

log4 n

)
< n2 exp

(
− 16

√
n

3 log4 n

)
= o(1).

For two sets B ⊆ A ⊆ [n] and a vertex v ∈ A, let SA,B(v) = {(a, b, c, d) ∈ SA(v) | v ∈ {a, d} and b, c ∈ B}

and write sA,B(v) = |SA,B(v)|. Note that for a Sidon 4-tuple (a, b, c, d), we can switch the a, b and c, d and

the resulting tuple is still a Sidon 4-tuple. Therefore, we have sA,A(v) = 1
2sA(v).

Lemma 3.11. Let W be a random subset of I obtained by choosing each u ∈ I independently with probability

p = 2√
logn

. Let S(W ) = {v ∈ I | sI,W (v) >
√
n

log4 n
}. Then |S(W )| ≤ 16

√
n

logn almost always.

Proof. Let R =
⋃
v∈I SI,I(v). Then we have

n

log4 n
≥ |R| = 1

2

∑
v∈I

sI,I(v) =
1

4

∑
v∈I

sI(v) ≥ 1

4

∑
v∈Ih

√
n

log4 n
≥ n

4 log5 n
, (3.5)

where the last inequality holds by (3.2). Let RW =
⋃
v∈I SI,W (v). For every r ∈ R, let Xr be the
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indicator random variable for the event r ∈ RW . Note that P(Xr = 1) = p2. Then we obtain E[|RW |] =

E
[∑

r∈RXr

]
= p2|R|. Define a simple graph Γ = (R,E) such that

E = {r1r2 ∈
(
R

2

)
| r1 = (a1, b1, c1, d1), r2 = (a2, b2, c2, d2) and {b1, c1} ∩ {b2, c2} 6= ∅}.

For every r = (a, b, c, d) ∈ R, the number of its neighbors in Γ is at most sI(b)+sI(c) <
2
√
n

log3 n
, which implies

∆1(Γ) = ∆(Γ) + 1 ≤ 2
√
n

log3 n
. (3.6)

The graph Γ can be viewed as the dependency graph of {Xr}r∈R, since Xr1 , Xr2 are dependent if and only

if r1r2 ∈ E. By Theorem 3.8, we have

P (RW ≥ 2E[RW ]) ≤ exp

(
−2

(E[RW ])2

∆1(Γ)|R|

)
= exp

(
−2

p4|R|
∆1(Γ)

)

≤ exp

−2

24

log2 n
· n

4 log5 n

2
√
n

log3 n

 = exp

(
− 4
√
n

log4 n

)
,

i.e.,

|RW | < 2E[RW ] = 2p2|R| ≤ 8n

log5 n

almost always. Finally, we obtain

|S(W )| ≤ 2|RW |
√
n

log4 n

≤ 16
√
n

log n

almost always.

3.3 Certificate lemmas

In this section, we aim to prove two lemmas which are used to define proper certificates for the desired sets.

For the proof of Theorem 3.1, we introduce Lemma 3.12 as the certificate lemma. A minor modification of its

proof gives Lemma 3.14, which is used to prove Theorem 3.2. The original proof idea comes from Kleitman

and Winston [68], who estimated the number of C4-free graphs. Kohayakawa, Lee, Rödl and Samotij [70]

later applied this method to the Sidon problem and gave an upper bound on the number of Sidon sets in

[n].

Lemma 3.12. For a sufficiently large integer n, let α = n/ log4 n and I be an α-generalized Sidon set in [n]

such that for every v ∈ I, sI(v) <
√
n/ log3 n. Further assume that the size of I is at least

√
n/
√

log n. Then
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there exist set sequences R0, R1, . . . , RL and U0, U1, . . . , UL−1, where 0 ≤ L < log log n+ 1, which determine

a unique set sequence C0 ⊃ C1 ⊃ C2 ⊃ . . . ⊃ CL. Furthermore, the following are all satisfied:

(i)
⋃L
i=0Ri ⊆ I ⊆ CL ∪

⋃L
i=0Ri;

(ii) |C0| ≤ n and 12
√
n < |Ci| ≤ 6

√
n logn
2i−1 , for i = 1, 2, . . . , L− 1;

(iii) R0 ⊆ [n] and |R0| ≤ 16
√
n

logn ;

(iv) Ri ⊆ Ci−1, |R1| ≤ 108
√
n

logn and |Ri| ≤ 1
22i−4

12
√
n

logn , for i = 2, . . . , L;

(v) U0 ⊆ [n] and |U0| =
√
n

logn ;

(vi) Ui ⊆ Ci and |Ui| = 12 n
|Ci| , for i = 1, . . . , L− 1;

(vii) L = 0 and |C0 ∩ I| <
√
n

logn or |CL ∩ I| < 12 n
|CL| or |CL| ≤ 12

√
n.

We say the set sequences R0, R1, . . . , RL and U0, U1, . . . , UL−1 founded in Lemma 3.12 give a certificate

for I. Conditions (ii)–(v) guarantee that the number of such certificates is properly bounded. Condition

(vii) guarantees that a fixed certificate is associated to small number of sets I. This follows from the fact

that the most part of I is contained in CL.

Proof of Lemma 3.12. Fix a sufficiently large integer n. Following the ideas of [68] and [70], we gave a

deterministic algorithm that associates every set I to the desired set sequences.

The core algorithm. We start with sets A ⊆ [n], T = ∅ and a function t(v) = 0, for every v ∈ A. Here, one

can view A as the set of ‘available’ vertices, T as the set of ‘selected’ vertices, and t(v) as a ‘state’ function

which is used to control the process. As the algorithm proceeds, we add ‘selected’ vertices from A to T and

remove ‘ineligible’ vertices from A, whose ‘state’ value exceed some predetermined threshold tthreshold. More

formally, take the auxiliary graph H (H = HU (A) for some set U and we will discuss the choice of U later)

and choose a vertex u ∈ A of maximum degree in H[A]; we break ties arbitrarily by giving preference to

vertices that come early in some arbitrarily predefined ordering. If u /∈ I, then let T = T , A = A − u and

t(v) = t(v), for every v ∈ A. Otherwise, let

t(v) =

 t(v) + dH(v, u) for v ∈ A,

t(v) for v /∈ A,
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and define Q = {v ∈ A | t(v) > tthreshold}; let T = T ∪{u} and A = A−u−Q. We stop the algorithm when

A is sufficiently small.

The goal of the algorithm is to obtain a small representative set T for a given set I such that the choice

of T determines a set A ⊇ I − T . If A is sufficiently small, then it reduces the number of choices for I − T ,

and hence for I. Note that in each round T increases by at most 1. Therefore, a good algorithm should

reduce the size of A rapidly so that we can keep T small in the end. Recall that in every step, we take a

vertex u of maximum degree in the auxiliary graph HU (A) and add it to T when u ∈ I. After that, we delete

‘ineligible’ vertices, whose ‘state’ exceed the given threshold. The idea behind this is that if the degree of a

vertex is larger than the threshold, then it does not belong to I, since for every v ∈ I, sI(v) is bounded. To

speed up the process, we should take a large set U so that we could quickly accumulate the ‘state’ value and

produce more ‘ineligible’ vertices in each step. However, the cost of using a larger set U is that the number

of choices for U becomes larger and so for the certificates. Therefore, we need to find a balance between

the demand for large U and the small number of choices for U . Moreover, ideally if we can find one proper

set U through the whole algorithm, then the certificates would be much more concise than in our current

lemma. Unfortunately, it turns out that U must vary as the set A shrinks in order to reach the condition of

the supersaturation result.

For i ≥ 0, let Ai, Ti and ti(v) be the state after running the algorithm i rounds. In the rest of the proof,

we divide the iterations of the core algorithm into several phases and then choose a proper auxiliary set U

for each phase. In Phase 1, we execute the algorithm from A0 = [n] to A`1 , which is the first set Ai of size

smaller than 6
√
n log n. For j ≥ 2, Phase j consists of the executions of the algorithm between A`j−1 , the

set produced at the end of Phase j − 1, and A`j , which is the first set Ai of size smaller than |A`j−1
|/2.

Set-ups for initial certificate {R0,C0}. Let Il = {v ∈ I : sI(v) <
√
n

log4 n
} and Ih = {v ∈ I : sI(v) ≥

√
n

log4 n
}. Based on the size of Ih, we have two different set-ups for R0 and C0.

Case 1. If |Ih| ≤
√
n

logn , then we define:

R0 = Ih, C0 = [n]−R0.

Case 2. If |Ih| >
√
n

logn , Lemmas 3.9, 3.10 and 3.11 indicate that there exists a set W ⊆ I of size
√
n

logn such

49



that

|S(W )| ≤ 16
√
n

log n
(3.7)

and

s(u,W, v) ≤ 8

√
n

log4 n
, for all u, v ∈ I. (3.8)

Then we define:

R0 = S(W ), C0 = [n]−R0.

Phase 1. If |C0 ∩ I| <
√
n

logn , then we stop the algorithm with L = 0. Otherwise, take a set U0 ⊆ [n] of

size
√
n

logn : for Case 1, let U0 be an arbitrary subset of C0 ∩ I of size
√
n

logn ; for Case 2, let U0 = W . Denote

H0 = HU0(A). We now use H0 as an auxiliary graph and run the core algorithm with tthreshold =
√
n

log4 n
and

initial state

A0 = C0, T0 = ∅ and t0(v) = 0, for every v ∈ A0,

until we obtain the set A`1 , the first set of size smaller than 6
√
nlog n.

Let K be the integer such that n
2K
≤ |A`1 | < n

2K−1 . By the choice of A`1 , we have K ≤ 1
2 log n. For every

integer 1 ≤ k ≤ K, let Ak be the first set satisfying n
2k
≤ |Ak| < n

2k−1 if it exists, T k be the corresponding

T -set of Ak and tk(v) be the corresponding t-function. Note that Ak may not exist for every k. Moreover,

AK always exists and it could be A`1 . Suppose

Ak1 ⊃ Ak2 ⊃ . . . ⊃ Akp , p ≤ K ≤ 1

2
log n

are all the well-defined Ak. From the definition, we obtain that Ak1 = A0, T k1 = T0 = ∅ and kp = K. We

additionally define Akp+1 = A`1 and T kp+1 = T`1 . Then we have

T`1 = T kp+1 =

p+1⋃
j=2

(T kj − T kj−1).

Now we shall give an estimation on the size of each T kj − T kj−1 .

During the process, the algorithm ensures that tkj (v) ≤
√
n

log4 n
, for every v ∈ Akj ∪ T kj . For every

v ∈ Akj−1 − (Akj ∪T kj ), suppose v was removed from Akj−1 in the i-th round and let ui denote the selected
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vertex in the round. Then we obtain that

tkj (v) ≤ ti−1(v) + dH0(v, ui) ≤
√
n

log4 n
+ dH0(v, ui) ≤

√
n

log4 n
+

8
√
n

log4 n
=

9
√
n

log4 n
,

where the last inequality is given by Lemma 3.7 and (3.8). Therefore, we have

∑
v∈Akj−1

tkj (v) ≤ 9
√
n

log4 n
|Akj−1 | < 9

√
n

log4 n

n

2kj−1−1
. (3.9)

On the other hand, we can also estimate
∑
v∈Akj−1 t

kj (v) from the view of ‘selected’ vertices. Let

2 ≤ j ≤ p. Take a vertex ui ∈ T kj−T kj−1 and suppose that ui is selected in the i-th round, i.e., from Ai. Since

Akj is the first set of size smaller than n

2kj−1
, we have |Ai| ≥ n

2kj−1
and then |Ai||U0| ≥ 6

√
n log n ·

√
n

logn = 6n.

By Lemma 3.5, we obtain that

dH0[Ai](ui) ≥
|Ai||U0|2

12n
≥ n

12 · 2kj−1 log2 n
.

Since dH0[Ai](ui) does not contribute to tkj (v) for v /∈ Akj−1 , we have

∑
v∈Akj−1

tkj (v) ≥
∑

ui∈Tkj−Tkj−1

dH0[Ai](ui) ≥
∣∣T kj − T kj−1

∣∣ n

12 · 2kj−1 log2 n
. (3.10)

Combining (3.9) and (3.10), we obtain

∣∣T kj − T kj−1
∣∣ ≤ 216

√
n

log2 n
for 2 ≤ j ≤ p.

Let j = p+ 1, since n
2K
≤ |Akp+1 | ≤ |Akp | ≤ n

2K−1 , by a similar argument, we obtain that

∣∣T kp+1 − T kp
∣∣ |Akp+1 ||U0|2

12n
≤

∑
ui∈Tkp+1−Tkp

dH0[Ai](ui) ≤
∑
v∈Akp

tkp+1(v) ≤ 9

√
n

log4 n
|Akp |,

which gives ∣∣T kp+1 − T kp
∣∣ ≤ 216n3/2

log4 n|U0|2
=

216
√
n

log2 n
.

We eventually have

|T`1 | =
p+1⋃
j=2

|T kj − T kj−1 | ≤ 1

2
log n · 216

√
n

log2 n
=

108
√
n

log n
.
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For Phase 1, we define:

R1 = T`1 , C1 = A`1 .

Phase 2. If |C1 ∩ I| < 12 n
|C1| or |C1| ≤ 12

√
n, we stop the algorithm with L = 1. Otherwise, take an

arbitrary set U1 ⊆ C1 ∩ I of size 12 n
|C1| and denote H1 = HU1(C1). We will use H1 as an auxiliary graph

and run the core algorithm with tthreshold =
√
n

log3 n
and initial state

A0 = C1, T0 = ∅ and t0(v) = 0, for every v ∈ A0,

until we obtain the set A`2 , the first set of size smaller than |C1|/2.

We use a similar argument as in Phase 1. For every v ∈ A`2 ∪ T`2 , the algorithm ensures that t`2(v) ≤
√
n

log3 n
. For every v ∈ A0 − (A`2 ∪ T`2), suppose v was removed from A0 in the i-th round and let ui denote

the selected vertex in the round. Then using Lemma 3.7, we obtain that

t`2(v) ≤ ti−1(v) + dH1
(v, ui) ≤ 2

√
n

log3 n
.

Therefore, we have ∑
v∈A0

t`2(v) ≤ 2

√
n

log3 n
|A0| = 2

√
n

log3 n
|C1|. (3.11)

On the other hand, take a vertex ui ∈ T`2 and suppose that ui is selected in the i-th round, i.e., from Ai.

Since A`2 is the first set of size smaller than |C1|/2, we have |Ai| ≥ |C1|/2 and then |Ai||U1| ≥ |C1|
2 ·12 n

|C1| =

6n. From Lemma 3.5, we obtain that

dH1[Ai](ui) ≥
|Ai||U1|2

12n
≥ |C1||U1|2

24n
.

Consequently, we have ∑
v∈A0

t`2(v) =
∑

ui∈T`2

dH1[Ai](ui) ≥ |T`2 |
|C1||U1|2

24n
. (3.12)

Combining (3.11) and (3.12), we obtain

|T`2 | ≤
48n3/2

log3 n|U1|2
=

48n3/2|C1|2

log3 n · 122n2
≤ 48n3/2(6

√
n log n)2

log3 n · 122n2
=

12
√
n log2 n

log3 n
≤ 12

√
n

log n
.
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For Phase 2, we define:

R2 = T`2 , C2 = A`2 .

Phase j for j ≥ 3. In general, when the algorithm goes to Phase j, we first check if |Cj−1 ∩ I| < 12 n
|Cj−1|

or |Cj−1| ≤ 12
√
n. If one of these conditions holds, we stop the algorithm with L = j − 1. Otherwise, take

an arbitrary set Uj−1 ⊆ Cj−1 ∩ I of size 12 n
|Cj−1| and denote Hj−1 = HUj−1(Cj−1). We will use Hj−1 as an

auxiliary graph and run the core algorithm with tthreshold =
√
n

log3 n
and initial state

A0 = Cj−1, T0 = ∅ and t0(v) = 0, for every v ∈ Cj−1,

until we obtain the set A`j , the first set of size smaller than |Cj−1|/2. Using the exactly same argument as

in Phase 2, in the end, we obtain

∣∣T`j ∣∣ ≤ 48n3/2

log3 n|Uj−1|2
≤ 48n3/2|Cj−1|2

log3 n · 122n2
≤ 1

22j−4
· 48n3/2|C1|2

log3 n · 122n2
≤ 1

22j−4
· 12
√
n

log n
.

For Phase j, we define:

Rj = T`j , Cj = A`j .

The algorithm terminates if any of the stopping rules is satisfied. In the process, we obtain set sequences

{R0, R1, R2, · · · , RL}, {U0, U1, U2, . . . , UL−1} and {C0, C1, C2, . . . , CL}, which satisfy Conditions (ii)–(vii).

From the stopping rules, we know that 12
√
n < |CL−1| ≤ 6

√
n logn

2L−2 , which implies L < log log n+ 1.

It remains to check Condition (i). For every j ≥ 0, if a vertex v was removed in Phase j, then there exists

i such that ti(v) > tthreshold. This implies that there are more than tthreshold Sidon 4-tuples containing v in I.

By the choices of tthreshold and R0, we know that v does not belong to I, and Condition (i) follows from it.

Remark 3.13. In Case 2, we aim to find a set satisfying inequalities (3.7) and (3.8). For this reason, when

we apply the probabilistic method, we need consider the random subset W ⊆ I with the probability 2/
√

log n.

On the other hand, the proof requires the size of W to be large enough, i.e.,
√
n/ log n. Therefore, it is

necessary to assume that |I| ≥
√
n/
√

log n.

Now, let us assume that the set I satisfies |{v ∈ I : sI(v) ≥
√
n/ log4 n}| ≤

√
n/ log n. In regard to

this assumption, Case 1 always works for the initial certificate {R0, C0}. This means that when we go
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through the previous proof under the new assumption, we can actually skip Case 2, where the assumption

‘|I| ≥
√
n/
√

log n’ is needed, and let everything else follow in the same way. As a result, we obtain a lemma

similar to Lemma 3.12.

Lemma 3.14. For a sufficiently large integer n, let α = n/ log4 n and I be an α-generalized Sidon subset

of [n] such that for every v ∈ I, sI(v) <
√
n/ log3 n. Further assume that |{v ∈ I : sI(v) ≥

√
n/ log4 n}| ≤

√
n/ log n. Then there exist set sequences R0, R1, . . . , RL and U0, U1, . . . , UL−1, where 0 ≤ L < log log n+ 1,

which determine a unique set sequence C0 ⊃ C1 ⊃ C2 ⊃ . . . ⊃ CL. Furthermore, Conditions (i)–(vii) from

Lemma 3.12 are all satisfied.

3.4 Counting generalized Sidon sets

Proof of Theorem 3.1. Since the number of sets in [n] of size at most
√
n

logn is bounded by 2
√
n, it is sufficient

to count the sets of size at least
√
n√

logn
. For every I ∈ In(α), we iteratively remove a number v from I,

which has sI(v) ≥
√
n

log3 n
. Denote by I ′ the set of remaining numbers. Since I contains at most n

log4 n
Sidon

4-tuples, the process stops after at most
√
n

logn steps, i.e.,

|I − I ′| ≤
√
n

log n
. (3.13)

This cleaning process ensures that sI′(v) <
√
n

log3 n
, for every v ∈ I ′. By Lemma 3.12, I ′ can be associated

to a certificate {R,U}, where R = {R0, R1, . . . , RL} and U = {U0, U1, . . . , UL−1} are two set sequences

satisfying Conditions (i)–(vii) in Lemma 3.12. Thus, each I ∈ In(α) can be assigned to a certificate

CI = [I − I ′, L,R,U ].

Note that different sets could have the same certificate. Therefore, to estimate |In(α)|, we need to give

upper bounds on the number of certificates and on the number of subsets assigned to one certificate.

Let C = {CI = [I − I ′, L,R,U ] | I ∈ In(α)}. For every integer ` ≥ 0, denote by C` the set of certificates

in C with L = `. By Lemma 3.12, we have

C =

log logn+1⋃
`=0

C`. (3.14)

For ` = 0 and a certificate [I − I ′, 0,R,U ] ∈ C0, U is empty sequence and R only contains one set, i.e.

R = {R0}. By Lemma 3.12 and (3.13), R0 and I − I ′ are subsets of [n] satisfying |R0| ≤ 16
√
n

logn and

54



|I − I ′| ≤
√
n

logn respectively. Therefore, the number of certificates in C0 is

|C0| ≤

√
n

logn∑
i=0

(
n

i

)
+

16
√
n

logn∑
i=0

(
n

i

)
≤ 216

√
n+1. (3.15)

For 1 ≤ ` ≤ log log n+1 and a certificate [I−I ′, `,R,U ] ∈ C`,R,U can be written asR = {R0, R1, . . . , R`}

and U = {U0, U1, . . . , U`−1}. Similarly, since I − I ′ ⊆ [n] and |I − I ′| ≤
√
n

logn , the number of ways to choose

I − I ′ is at most √
n

logn∑
i=0

(
n

i

)
≤ 2

(
n√
n

logn

)
≤ n

√
n

logn = 2
√
n.

Now, we discuss the number of choices for sequences U = {U0, U1, . . . , U`−1} and R = {R0, R1, . . . , R`}

iteratively. First, by Condition (iii) in Lemma 3.12, we have R0 ⊆ [n] and |R0| ≤ 16
√
n

logn . Thus, the number

of ways to choose R0 is at most
16
√
n

logn∑
i=0

(
n

i

)
≤ 2

(
n

16
√
n

logn

)
≤ 216

√
n.

From the proof of Lemma 3.12, I − I ′ and R0 determines a unique set C0 of size at most n. By Conditions

(iv) and (v) in Lemma 3.12, we obtain that U0 ⊆ [n], R1 ⊆ C0, |U0| =
√
n

logn and |R1| ≤ 108
√
n

logn . Thus, the

number of ways to choose U0 and R1 are at most

(
n√
n

logn

)
≤ 2
√
n

and
108
√
n

logn∑
i=0

(
n

i

)
≤ 2

(
n

108
√
n

logn

)
≤ 2108

√
n

respectively. For every 1 ≤ i ≤ `−1, suppose that sets I−I ′, R0, . . . , Ri, and U0, . . . , Ui−1 are already fixed.

The proof of Lemma 3.12 shows that there is a unique set Ci such that Ui, Ri+1 ⊆ Ci ⊆ [n]. Moreover, there

exists an integer zi such that

6
√
n log n

2zi
< |Ci| ≤

6
√
n log n

2zi−1
,

where 1 ≤ z1 < . . . < zi−1 < zi < log log n. By Conditions (iv) and (vi) in Lemma 3.12, we obtain that

|Ui| = 12 n
|Ci| and |Ri+1| ≤ 1

22i−2
12
√
n

logn . Thus, the number of ways to choose Ui and Ri+1 are at most

(
|Ci|

12n/|Ci|

)
≤
( 6
√
n logn

2zi−1

12n·2zi
6
√
n logn

)
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and
1

22i−2
12
√
n

logn∑
i=0

(
n

i

)
≤ 2

(
n

1
22i−2

12
√
n

logn

)
≤ 2

12

22i−2

√
n

respectively. We summarize the above discussion and obtain that

|Cl| ≤ 2
√
n+16

√
n+
√
n+108

√
n ·
∞∏
i=1

2
12

22i−2

√
n

∑
z1,...,z`−1

( 6
√
n logn

2z1−1

12n·2z1
6
√
n logn

)( 6
√
n logn

2z2−1

12n·2z2
6
√
n logn

)
. . .

( 6
√
n logn

2z`−1−1

12n·2z`−1

6
√
n logn

)

≤ 2142
√
n ·

∑
z1,...,z`−1

( 6
√
n logn

2z1−1

12n·2z1
6
√
n logn

)( 6
√
n logn

2z2−1

12n·2z2
6
√
n logn

)
. . .

( 6
√
n logn

2z`−1−1

12n·2z`−1

6
√
n logn

)
,

(3.16)

where z1 < z2 < . . . < z`−1 take over integers in [1, log log n). To estimate the summation term in inequality

(3.16), we provide the following claim.

Claim 3.15. For sufficiently large n, we have

(
6
√
n log n
24n

6
√
n logn

)( 6
√
n logn
2

24n·2
6
√
n logn

)
. . .

( 6
√
n logn

2log logn−1

24n·2log logn−1

6
√
n logn

)
≤ 225

√
n.

Proof. Let x = 6
√
n logn

2log logn−1 = 12
√
n. Then the left side is equal to

log logn−1∏
i=0

(
2ix
24n
2ix

)
≤

log logn−1∏
i=0

(
e · x222i

24n

) 24n

2ix

≤
log logn−1∏

i=0

(6e22i)
2

2i

√
n

≤
log logn−1∏

i=0

2[(log 6e+2i) 2

2i
]
√
n ≤ 2[

∑∞
i=0(log 6e+2i) 2

2i
]
√
n

= 2(4 log 6e+8)
√
n ≤ 225

√
n,

where the first inequality follows from the Stirling’s formula.

Using Claim 3.15, we can show that for every 1 ≤ ` ≤ log log n+ 1,

|C`| ≤ 2142
√
n ·
(

log log n

`− 1

)
225
√
n ≤ 2167

√
n log n. (3.17)

Combining (3.15) and (3.17), we obtain

|C| =
log logn+1∑

`=0

|C`| ≤ 216
√
n+1 + 2167

√
n(log log n+ 1) log n ≤ 2168

√
n. (3.18)

It remains to give an upper bound on the number of subsets assigned to one certificate. For a certificate
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C = [I − I ′, L,R,U ] ∈ C, let IC = {I ∈ In(α) | CI = C}. For every I ∈ IC , by Lemma 3.12, we have

I ⊆ (I − I ′) ∪
L⋃
i=0

Ri ∪ CL,

where CL is uniquely determined. Note that the set (I−I ′)∪
⋃L
i=0Ri is given by the certificate C. Therefore,

IC is decided by the ways to choose CL ∩ I = CL ∩ I ′. There are three cases:

Case 1: |CL| ≤ 12
√
n.

In the case, we have |IC | ≤ 2|CL| ≤ 212
√
n.

Case 2: L = 0 and |CL| > 12
√
n.

By Condition (vii) in Lemma 3.12, for every I ∈ IC , I satisfies |C0 ∩ I ′| <
√
n

logn . In this case, we have

|IC | ≤

√
n

logn∑
i=0

(
|C0|
i

)
≤

√
n

logn∑
i=0

(
n

i

)
≤ 2

(
n√
n

logn

)
≤ 2
√
n.

Case 3: L ≥ 1 and |CL| > 12
√
n.

By Condition (vii) in Lemma 3.12, for every I ∈ IC , I satisfies |CL ∩ I ′| < 12 n
|CL| . In this case, we have

|IC | ≤
12 n
|CL|∑
i=0

(
|CL|
i

)
≤ 2

(
|CL|

12 n
|CL|

)
.

Let x = 12 n
|CL| . By convexity, we obtain that

|IC | ≤ 2

(
12n/x

x

)
≤ 2

(
12en

x2

)x
≤ 2[log(12en)−2 log x]x+1 ≤ 2

√
12en+1 ≤ 26

√
n.

From the above discussion, for every C ∈ C, we have

|IC | ≤ 212
√
n. (3.19)

Eventually, combining (3.18) and (3.19), we obtain that

|In(α)| ≤ |C| · 212
√
n ≤ 2180

√
n.
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Proof of Theorem 3.2: For every set J ∈ Jn(α), we apply the same cleaning process as in the proof of

Theorem 3.1 and obtain a set J ′ satisfying |J − J ′| ≤
√
n

logn and sJ′(v) <
√
n

log3 n
for every v ∈ J ′. Due to

the definition of Jn(α) and J ′ ⊆ J , we also have |{v ∈ J ′ : sJ′(v) ≥
√
n

log4 n
}| ≤

√
n

logn . By Lemma 3.14, J ′

can be associated to a certificate {R,U}, where R = {R0, R1, . . . , RL} and U = {U0, U1, . . . , UL−1} are two

set sequences satisfying Conditions (i)–(vii) in Lemma 3.12. The rest of the proof is the same as that of

Theorem 3.1.

3.5 Concluding remarks

In [94], Saxton and Thomason established the hypergraph container theorem not only covering indepen-

dent sets but also for sufficiently sparse structures. One can use their result to estimate the number of

α-generalized sets for some functions α; however, the estimates obtained from it are weaker than the ones

from the graph container method. To be more specific, using the hypergraph container method, we would

consider the 4-uniform hypergraph whose vertex set is [n] and whose edges are all the Sidon 4-tuples; to

generate small containers, we need to iterate Theorem 6.2 ([94]) repeatedly Θ(log n) times. This produces

2O(nτ log(1/τ) logn) containers of size at most O(nτ), for the sets with at most O(τ4n3) Sidon 4-tuples. Since

we are interested in obtaining a family of containers with 2Θ(
√
n) elements, the order of τ should not be

higher than 1/(
√
n log2 n). (One can easily check that τ = Θ(1/

√
n log2 n) satisfies the conditions of The-

orem 6.2.) Therefore, the hypergraph container theorem in [94] provides that the number of α-generalized

Sidon is 2O(
√
n) for α = O(τ4n3) = O(n/ log8 n), while the best result we have is for α = O(n/ log5 n).

We also studied the family of α-generalized Sidon sets for some other functions α. Denote by Gn(α) the

family of α-generalized Sidon sets in [n]. The results we have is summarized in the following table.

α Upper bound for |Gn(α)| Lower bound for |Gn(α)|
n/ log5 n 2O(

√
n) 2Ω(

√
n)

n/ log4 n 2O(
√
n log1/4 n)) 2Ω(

√
n)

n/ log3 n 2O(
√
n
√

logn) 2Ω(
√
n log1/4 n)

n/ log2 n 2O(
√
n log3/4 n) 2Ω(

√
n
√

logn)

n/ log n 2O(
√
n logn) 2Ω(

√
n log3/4 n)

n 2O(
√
n logn) 2Ω(

√
n logn)

Table 3.1: The number of α-generalized Sidon sets.

In Table 3.1, all the lower bounds come from the probabilistic argument discussed in Section 3.1, except

for the case α ≤ n/ log4 n, where we use the number of Sidon sets as the lower bound; all the upper bounds

follow from our graph container method, except for the case α = n, where we use Corollary 3.6. For
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α ∈ {n/ log5 n, n}, the current bounds are tight. For other α, the distance between the lower bound and the

upper bound is a log1/4 n factor on the exponent. We believe that the lower bounds are the truth.
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Chapter 4

The typical structure of Gallai
colorings and their extremal graphs

4.1 Introduction

An edge coloring of a graph G is a Gallai coloring if it contains no rainbow triangle, that is, no triangle is

colored with three distinct colors. The term Gallai coloring was first introduced by Gyárfás and Simonyi [53],

but this concept had already occurred in an important result of Gallai [49] on comparability graphs, which

can be reformulated in terms of Gallai colorings. It also turns out that Gallai colorings are relevant to

generalizations of the perfect graph theorem [24], and some applications in information theory [74]. There

are a variety of papers which consider structural and Ramsey-type problems on Gallai colorings, see, e.g.,

[44, 51, 52, 53, 99].

Two important themes in extremal combinatorics are to enumerate discrete structures that have certain

properties and describe their typical properties. In this chapter, we shall be concerned with Gallai colorings

from such an extremal perspective.

4.1.1 Gallai colorings of complete graphs

For an integer r ≥ 3, an r-coloring is an edge coloring that uses at most r colors. By choosing two of the r

colors and coloring the edges of Kn arbitrarily with these two colors, one can easily obtain that the number

of Gallai r-colorings of Kn is at least

(
r

2

)(
2(n2) − 2

)
+ r =

(
r

2

)
2(n2) − r(r − 2). (4.1)

If we further consider all Gallai r-colorings of Kn using exactly 3 colors, red, green, and blue, in which the

red color is used only once, the number of them is exactly

(
n

2

)(
2(n2)−(n−1) − 2

)
.
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Combining with (4.1), for n sufficiently large, a trivial lower bound for the number of Gallai r-colorings of

Kn is ((
r

2

)
+ 2−n

)
2(n2). (4.2)

Motivated by a question of Erdős and Rothschild [34] and the resolution by Alon, Balogh, Keevash and

Sudakov [2], Benevides, Hoppen and Sampaio [19] studied the general problem of counting the number of

edge colorings of a graph that avoid a subgraph colored with a given pattern. In particular, they proved

that the number of Gallai 3-colorings of Kn is at most 3
2 (n − 1)! · 2(n−1

2 ). At the same time, Falgas-Ravry,

O’Connell, and Uzzell [42] provided a weaker upper bound of the form 2(1+o(1))(n2), which is a consequence

of the multi-color container theory. Bastos, Benevides, Mota and Sau [29] later improved the upper bound

to 7(n + 1)2(n2). Note that the gap between the best upper bound and the trivial lower bound is a linear

factor. We show that the lower bound is indeed closer to the truth, and this actually applies for any integer

r. Our first main result is as follows.

Theorem 4.1. For every integer r ≥ 3, there exists n0 such that for all n > n0, the number of Gallai

r-colorings of the complete graph Kn is at most

((
r

2

)
+ 2
− n

4 log2 n

)
2(n2).

Given a class of graphs A, we denote An the set of graphs in A of order n. We say that almost all graphs

in A has property B if

lim
n→∞

|{G ∈ An : G has property B}|
|An|

= 1.

Recall that the number of Gallai r-colorings with at most 2 colors is
(
r
2

)
2(n2)− r(r−2). Then the description

of the typical structure of Gallai r-colorings immediately follows from Theorem 4.1.

Corollary 4.2. For every integer r ≥ 3, almost all Gallai r-colorings of the complete graph are 2-colorings.

4.1.2 The extremal graphs of Gallai colorings

There have been considerable advances in edge coloring problems whose origin can be traced back to a

question of Erdős and Rothschild [34], who asked which n-vertex graph admits the largest number of r-

colorings avoiding a copy of F with a prescribed colored pattern, where r is a positive integer and F is

a fixed graph. In particular, the study for the extremal graph of Gallai colorings, that is the case when

F is a triangle with rainbow pattern, has received attention recently. A graph G on n vertices is Gallai

r-extremal if the number of Gallai r-colorings of G is largest over all graphs on n vertices. For r ≥ 5, the
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Gallai r-extremal graph has been determined by Hoppen, Lefmann and Odermann [61, 62, 63].

Theorem 4.3. [62] For all r ≥ 10 and n ≥ 5, the only Gallai r-extremal graph of order n is the complete

bipartite graph Kbn/2c,dn/2e.

Theorem 4.4. [62] For all r ≥ 5, there exists n0 such that for all n > n0, the only Gallai r-extremal graph

of order n is the complete bipartite graph Kbn/2c,dn/2e.

For the cases r ∈ {3, 4}, several approximate results were given.

Theorem 4.5. [19] There exists n0 such that the following hold for all n > n0.

(i) For all δ > 0, if G is a graph of order n, then the number of Gallai 3-colorings of G is at most

2(1+δ)n2/2.

(ii) For all ξ > 0, if G is a graph of order n, and e(G) ≤ (1− ξ)
(
n
2

)
, then the number of Gallai 3-colorings

of G is at most 2(n2).

We remark that the part (i) of Theorem 4.5 was also proved in [62], and the authors further provided an

upper bound for r = 4.

Theorem 4.6. [62] There exists n0 such that the following hold for all n > n0. For all δ > 0, if G is a

graph of order n, then the number of Gallai 4-colorings of G is at most 4(1+δ)n2/4.

The above theorems show that for r ∈ {3, 4}, the complete graph Kn is not far from being Gallai r-

extremal, while for r = 4, the complete bipartite graph Kbn/2c,dn/2e is also close to be Gallai r-extremal.

Benevides, Hoppen and Sampaio [19] made the following conjecture.

Conjecture 4.7. [19] The only Gallai 3-extremal graph of order n is the complete graph Kn.

For the case r = 4, Hoppen, Lefmann and Odermann [62] believed that Kbn/2c,dn/2e should be the

extremal graph.

Conjecture 4.8. [62] The only Gallai 4-extremal graph of order n is the complete bipartite graph Kbn/2c,dn/2e.

Using a similar technique as in Theorem 4.1, we prove an analogous result for dense non-complete graphs

when r = 3.

Theorem 4.9. For 0 < ξ ≤ 1
64 , there exists n0 such that for all n > n0 the following holds. If G is a graph

of order n, and e(G) ≥ (1− ξ)
(
n
2

)
, then the number of Gallai 3-colorings of G is at most

3 · 2e(G) + 2
− n

4 log2 n 2(n2).
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Together with Theorem 4.5 and the lower bound (4.2), Theorem 4.9 solves Conjecture 4.7 for sufficiently

large n.

Theorem 4.10. There exists n0 such that for all n > n0, among all graphs of order n, the complete graph

Kn is the unique Gallai 3-extremal graph.

Our third contribution is the following theorem.

Theorem 4.11. For n, r ∈ N with r ≥ 4, there exists n0 such that for all n > n0 the following holds. If G

is a graph of order n, and e(G) > bn2/4c, then the number of Gallai r-colorings of G is less than rbn
2/4c.

We remark that for a graph G with e(G) = bn2/4c, which is not Kbn/2c,dn/2e, G contains at least one

triangle. Therefore, the number of Gallai r-colorings of G is at most r(r + 2(r − 1))re(G)−3 < rbn
2/4c. As a

direct consequence of Theorem 4.11 and the above remark, we reprove Theorem 4.4, and in particular, we

show that Conjecture 4.8 is true for sufficiently large n.

Theorem 4.12. There exists n0 such that for all n > n0, among all graphs of order n, the complete bipartite

graph Kbn/2c,dn/2e is the unique Gallai 4-extremal graph.

4.1.3 Organization of the chapter

Combining Szemerédi’s Regularity Lemma and the stability method was used at many earlier works on

extremal problems, including Erdős-Rothchild type problems, see, e.g., [2, 6, 19, 62]. However, our main

approach relies on the method of hypergragh containers, developed independently by Balogh, Morris and

Samotij [11] as well as by Saxton and Thomason [94], and some stability results for containers, which may

be of independent interest to readers.

This chapter is organized as follows. First, in Section 4.2, we introduce some important definitions and

then state a container theorem which is applicable to colorings. In Section 4.3, we present a key enumeration

result on the number of colorings with special restrictions, which will be used repeatedly in the rest of the

chapter. Then in Section 4.4, we study the stability behavior of the containers for the complete graph,

and apply the multicolor container theorem to give an asymptotic upper bound for the number of Gallai

r-colorings of the complete graph. In Section 4.5, we deal with the Gallai 3-colorings of dense non-complete

graphs; the idea is the same as in Section 4.4 except that we need to provide a new stability result which is

applicable to non-complete graphs.

In the second half of this chapter, that is, in Section 4.6, we study the Gallai r-colorings of non-complete

graphs for r ≥ 4. When the underlying graph is very dense, that is, close to the complete graph, we apply
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the same strategy as in Section 4.4 for the case r = 4, where we prove a proper stability result for containers.

The case r ≥ 5 is even simpler, in which we actually prove that the number of Gallai colorings in each

container is small enough. When the underlying graph has edge density close to the 1
4 , i.e. the edge density

of the extremal graph, some new ideas are needed, and we also adopt a result of Bollobás and Nikiforov [22]

on book graphs. For the rest of the graphs whose edge densities are between 1
4 + o(1) and 1

2 − o(1), we

use a supersaturation result of triangle-free graphs given by Balogh, Bushaw, Collares, Liu, Morris, and

Sharifzadeh [7], and the above results on Gallai r-colorings for both high density graphs and low density

graphs.

4.2 Preliminaries

4.2.1 The hypergraph container theorem

We use the following version of the hypergraph container theorem (Theorem 3.1 in [14]). Let H be a k-

uniform hypergraph with average degree d. The co-degree of a set of vertices S ⊆ V (H) is the number of

edges containing S; that is,

d(S) = {e ∈ E(H) | S ⊆ e}.

For every integer 2 ≤ j ≤ k, the j-th maximum co-degree of H is

∆j(H) = max{d(S) | S ⊆ V (H), |S| = j}.

When the underlying hypergraph is clear, we simply write it as ∆j . For 0 < τ < 1, the co-degree function

∆(H, τ) is defined as

∆(H, τ) = 2(k2)−1
k∑
j=2

2−(j−1
2 ) ∆j

dτ j−1
.

In particular, when k = 3,

∆(H, τ) =
4∆2

dτ
+

2∆3

dτ2
.

Theorem 4.13. [14] Let H be a k-uniform hypergraph on vertex set [N ]. Let 0 < ε, τ < 1/2. Suppose that

τ < 1/(200k!2k) and ∆(H, τ) ≤ ε/(12k!). Then there exists c = c(k) ≤ 1000k!3k and a collection of vertex

subsets C such that

(i) every independent set in H is a subset of some A ∈ C;
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(ii) for every A ∈ C, e(H[A]) ≤ ε · e(H);

(iii) log |C| ≤ cNτ log(1/ε) log(1/τ).

4.2.2 Definitions and multi-color container theorem

A key tool in applying container theory to multi-colored structures will be the notion of a template. This

notion of ‘template’, which was first introduced in [42], goes back to [94] under the name of ‘2-colored

multigraphs’ and later to [15], where it is simply called ‘containers’. For more studies about the multi-color

container theory, we refer the interested reader to [11, 12, 15, 42, 94].

Definition 4.14 (Template and palette). An r-template of order n is a function P : E(Kn) → 2[r],

associating to each edge e of Kn a list of colors P (e) ⊆ [r]; we refer to this set P (e) as the palette available

at e.

Definition 4.15 (Subtemplate). Let P1, P2 be two r-templates of order n. We say that P1 is a subtemplate

of P2 (written as P1 ⊆ P2) if P1(e) ⊆ P2(e) for every edge e ∈ E(Kn).

We observe that for G ⊆ Kn, an r-coloring of G can be considered as an r-template of order n, with only

one color allowed at each edge of G and no color allowed at each non-edge. For an r-template P , write RT(P )

for the number of subtemplates of P that are rainbow triangles. We say that P is rainbow triangle-free if

RT(P ) = 0. Using the container method, Theorem 4.13, we obtain the following.

Theorem 4.16. For every r ≥ 3, there exists a constant c = c(r) and a collection C of r-templates of order

n such that

(i) every rainbow triangle-free r-template of order n is a subtemplate of some P ∈ C;

(ii) for every P ∈ C, RT(P ) ≤ n−1/3
(
n
3

)
;

(iii) |C| ≤ 2cn
−1/3 log2 n(n2).

Proof. Let H be a 3-uniform hypergraph with vertex set E(Kn) × {1, 2, . . . , r}, whose edges are all triples

{(e1, d1), (e2, d2), (e3, d3)} such that e1, e2, e3 form a triangle in Kn and d1, d2, d3 are all different. In other

words, every hyperedge in H corresponds to a rainbow triangle of Kn. Note that there are exactly r(r −

1)(r − 2) ways to rainbow color a triangle with r colors. Hence, the average degree d of H is equal to

d =
3e(H)

v(H)
=

3r(r − 1)(r − 2)
(
n
3

)
r
(
n
2

) = (r − 1)(r − 2)(n− 2).
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For the application of Theorem 4.13, let ε = n−1/3/r(r − 1)(r − 2) and τ =
√

72 · 3! · rn−1/3. Observe that

∆2(H) = r − 2, and ∆3(H) = 1. For n sufficiently large, we have τ ≤ 1/(200 · 3!2 · 3) and

∆(H, τ) =
4(r − 2)

dτ
+

2

dτ2
≤ 3

dτ2
≤ ε

12 · 3!
.

Hence, there is a collection C of vertex subsets satisfying properties (i)-(iii) of Theorem 4.13. Observe that

every vertex subset of H corresponds to an r-template of order n; every rainbow triangle-free r-template of

order n corresponds to an independent set in H. Therefore, C is a desired collection of r-templates.

Definition 4.17 (Gallai r-template). For a graph G of order n, an r-template P of order n is a Gallai

r-template of G if it satisfies the following properties:

(i) for every e ∈ E(G), |P (e)| ≥ 1;

(ii) RT(P ) ≤ n−1/3
(
n
3

)
.

For a graph G of order n and a collection P of r-templates of order n, denote by Ga(P, G) the set of

Gallai r-colorings of G which is a subtemplate of some P ∈ P. If P consists of a single template P , then we

simply write it as Ga(P,G).

4.2.3 A technical lemma

In this section, we provide a lemma that will be useful to us in what follows. We use a special case of the

weak Kruskal-Katona theorem due to Lovàsz’s [85].

Theorem 4.18 (Lovàsz [85]). Suppose G is a graph with
(
x
2

)
edges, for some real number x ≥ 2. Then the

number of triangles of G is at most
(
x
3

)
, with equality if and only if x is an integer and G = Kx.

Lemma 4.19. Let n, r ∈ N with r ≥ 3 and 4
n −

4
n2 ≤ ε < 1

2 . If G is an r-colored graph of order n, which

contains at least (1 − ε)
(
n
3

)
monochromatic triangles, then there exists a color c such that the number of

edges colored by c is at least e(G)− 4r2ε
(
n
2

)
.

Proof. We shall prove this lemma by contradiction. Let δ = 4r2ε. Assume that none of the colors is used

on at least e(G)− δ
(
n
2

)
edges.

First, we conclude that e(G) ≥ (1− ε)
(
n
2

)
. If not, then by Theorem 4.18, the number of triangles of G is

less than √
2

3
(1− ε)3/2

(
n

2

)3/2

≤ (1− ε)
(
n

3

)
,

which contradicts the assumption.
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By the pigeonhole principle, we can assume without loss of generality that the set of red edges in G,

denoted by R(G), satisfies |R(G)| ≥ (1 − ε)
(
n
2

)
/r. By the contradiction assumption, we have |R(G)| <

e(G)− δ
(
n
2

)
. Therefore, the number of non-red edges is greater than δ

(
n
2

)
. Again, without loss of generality,

we can assume that the set of blue edges in G, denoted by B(G), satisfies |B(G)| ≥ δ
(
n
2

)
/r.

For an edge in R(G) and an edge in B(G), these two edges either share one endpoint or are vertex disjoint,

see Figure 4.1. In the first case, see Figure 4.1a, the triple abc could not form a monochromatic triangle of

G. In the latter case, see Figure 4.1b, at least one of abc and bcd is not a monochromatic triangle of G.

a

b c

red blue

(a)

a

b

c

d

red blue

(b)

Figure 4.1: Two cases of a red-blue pair of edges.

Let NT(G) be the family of triples {a, b, c} which does not form a monochromatic triangle of G. The

above discussion shows that each pair of red and blue edges generates at least one triple in NT(G). Observe

that each triple in NT(G) can be counted in at most 2 + 3(n − 3) pairs of red and blue edges. Hence, we

obtain that

|NT(G)| ≥
(1− ε)

(
n
2

)
/r · δ

(
n
2

)
/r

2 + 3(n− 3)
>

δ

4r2

(
n

3

)
= ε

(
n

3

)
,

which contradicts the assumption of the lemma.

4.3 Counting Gallai colorings in r-templates

In this section, we aim to prove the following technical theorem, which will be used repeatedly in the rest of

the chapter.

Theorem 4.20. Let n, r ∈ N with r ≥ 3, and G be a graph of order n. Suppose that δ = log−11 n and k is

a positive constant, which does not depend on n. For two colors i, j ∈ [r], denote by F = F(i, j) the set of

r-templates of order n, which contain at least (1− kδ)
(
n
2

)
edges with palette {i, j}. Then, for n sufficiently

large,

|Ga(F , G)| ≤ 2e(G) + 2
− n

3 log2 n 2(n2).
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Fix two colors 1 ≤ i < j ≤ r, and let S = [r] − {i, j}. For an r-coloring F of G, let S(F ) be the set of

edges in G, which are colored by colors in S. From the definition of F , we immediately obtain the following

proposition.

Proposition 4.21. For every F ∈ Ga(F , G), the number of edges in S(F ) is at most kδ
(
n
2

)
.

Lemma 4.22. Let F1 be the set of F ∈ Ga(F , G) such that S(F ) contains a matching of size δn log2 n.

Then, for n sufficiently large,

|F1| ≤ 2
− n2

5 log9 n 2(n2).

Proof. Let us consider the ways to color G so that the resulting colorings are in F1. We first choose the set

of edges ES which will be colored by the colors in S. Note that ES must contain a matching of size δn log2 n

by the definition of F1. By Proposition 4.21, there are at most
∑
i≤kδ(n2)

((n2)
i

)
choices for such ES , and the

number of ways to color them is at most rkδ(
n
2). In the next step, take a matching M of size δn log2 n in ES ;

the number of ways to choose such matching is at most
( (n2)
δn log2 n

)
.

Let A = V (M) and B = [n] \A. Denote by T the set of triangles of Kn with a vertex in B and an edge

from M , which contain no edge in ES ∩ G[A,B]. We claim that |T | ≥ 1
4δn

2 log2 n as otherwise we would

obtain that

|ES | ≥ |B| · δn log2 n− |T |+ |M | ≥ 1

2
δn2 log2 n− 1

4
δn2 log2 n =

1

4
δn2 log2 n > kδ

(
n

2

)
,

which, by Proposition 4.21, contradicts the fact that F ∈ Ga(F , G). Note that if a triangle T in T contains

more than one uncolored edge, then they must have the same color in order to avoid the rainbow triangle.

Hence, the number of ways to color the uncolored edges in T is at most 2|T |.

There remain at most
(
n
2

)
− 2|T | uncolored edges and they can only be colored by i or j, as edges in ES

are already colored. Hence, the number of ways to color the rest of edges is at most 2(n2)−2|T |. In conclusion,

we obtain that

|F1| ≤
∑
i≤kδ(n2)

((n2)
i

)
rkδ(

n
2)
( (n2)
δn log2 n

)
· 2|T | · 2(n2)−2|T |

≤ 2O(δn2 logn) · 2O(δn log3 n) · 2(n2)−
1
4 δn

2 log2 n ≤ 2(n2)−
n2

5 log9 n .

Lemma 4.23. For every integer 1 ≤ t < δn log2 n, let F(t) be the set of F ∈ Ga(F , G), in which the

maximum matching of S(F ) is of size t. Then, for n sufficiently large,

|F(t)| ≤ 2
− n

2 log2 n 2(n2).
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Proof. For a fixed t, let us count the ways to color G so that the resulting colorings are in F(t). By the

definition of F(t), among all edges which will be colored by the colors in S, there exists a maximum matching

M of size t. We first choose such matching; the number of ways is at most
((n2)
t

)
. Once we fix the matching

M , let A = V (M) and B = [n] \A. By the maximality of M , we immediately obtain the following claim.

Claim 4.24. None of the edges in G[B] can be colored by the colors in S.

Denote by Cr(S) the set of edges in G[A,B] which will be colored by the colors in S. For a vertex

u ∈ A, denote by Cr(S, u) the set of edges in Cr(S) with one endpoint u. Similarly, define Cr({i, j}, u) to be

the set of edges in G[u,B] which will be colored by the colors i or j. We shall divide the proof into three cases.

Case 1: |Cr(S)| ≤ nt
log2 n

.

We first color the edges in G[A] and the number of options is at most r(
2t
2 ). In the next step, we select and

color the edges in Cr(S); by the above inequality, the number of ways is at most
∑
i≤ nt

log2 n

(
2nt
i

)
r

nt
log2 n . By

Claim 4.24, the remaining edges can only use the colors i or j. Let T be the set of triangles of Kn formed by

a vertex in B and an edge from M , which contain no edge in Cr(S). We claim that |T | ≥ 1
4nt as otherwise

we would obtain

|Cr(S)| ≥ |B|t− |T | ≥ 1

2
nt− 1

4
nt >

nt

log2 n
,

which contradicts the assumption. If a triangle T in T contains more than one uncolored edge, then they

must have the same color in order to avoid the rainbow triangle. Hence, the number of ways to color the

uncolored edges in T is at most 2|T |.

There remain at most
(
n
2

)
− 2|T | −

(
2t
2

)
uncolored edges, and they can be colored by i or j. Therefore

the number of ways to color the rest of the edges is at most 2(n2)−2|T |−(2t
2 ). In conclusion, we obtain that the

number of r-coloring F ∈ F(t) with |Cr(S)| ≤ nt
log2 n

is at most

((n
2

)
t

)
· r(

2t
2 ) ·

∑
i≤ nt

log2 n

(
2nt
i

)
r

nt
log2 n · 2|T | · 2(n2)−2|T |−(2t

2 )

≤2O(t logn) · 2O(t2) · 2O( nt
logn ) · 2(n2)−

1
4nt ≤ 2(n2)−

1
5nt ≤ 2(n2)−

1
5n,

where the third inequality is given by t2 ≤ t · δn log2 n = nt/ log9 n.

Case 2: There exists a vertex u ∈ A such that

|Cr(S, u)| ≥ n

log4 n
and |Cr({i, j}, u)| ≥ n

log4 n
. (4.3)
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We first choose the vertex u, and the number of options is at most 2t. Moreover, the number of ways to

select and color edges in Cr(S, u) is at most rn2n. In the next step, we color all the uncolored edges in

G[A,B] and G[A], and the number of ways is at most r2nt+(2t
2 ). Let T be the set of triangles T = {uvw} of

Kn, in which v, w ∈ B, uv ∈ Cr(S, u), and uw ∈ Cr({i, j}, u). By the relation (4.3), we have |T | ≥ n2

log8 n
.

For every triangle T = {uvw} ∈ T , if vw is an edge of G, then by Claim 4.24 it can only be colored by i or

j, and must have the same color with uw in order to avoid the rainbow triangle. Therefore, the number of

ways to color the uncolored edges in T is 1.

There remain at most
(
n
2

)
−|T | uncolored edges in B, as other edges are already colored. By Claim 4.24,

none of the remaining edges in B could use the colors from S. Therefore, the number of ways to color the

rest of edges is at most 2(n2)−|T |. In conclusion, we obtain that the number of F ∈ F(t) which is included in

Case 2 is at most

((n
2

)
t

)
· 2t · rn2n · r2nt+(2t

2 ) · 2(n2)−|T | ≤ 2O(t logn) · 2O(n) · 2O(nt) · 2(n2)−
n2

log8 n ≤ 2(n2)−
n2

2 log8 n ,

where the last inequality is given by the condition that nt ≤ n · δn log2 n = n2/ log9 n.

Case 3: |Cr(S)| > nt
log2 n

, and for every vertex u ∈ A,

|Cr(S, u)| < n

log4 n
or |Cr({i, j}, u)| < n

log4 n
. (4.4)

We first color the edges in G[A] and the number of ways is at most r(
2t
2 ). By (4.4), for every vertex u ∈ A,

the number of ways to select Cr(S, u) is at most 2
∑
i≤n/ log4 n

(
n
i

)
≤ 2n/ log3 n. Therefore, the number of

ways to select Cr(S) is at most 22nt/ log3 n.

Subcase 3.1: e(G) ≤
(
n
2

)
− n2

4 log6 n
.

The number of ways to color Cr(S) is at most r2nt. By Claim 4.24, the rest of the edges can only be colored

by i or j, and the number of them is at most e(G) − |Cr(S)|. Hence, the number of F ∈ F(t) covered in

Case 3.1 is at most

((n
2

)
t

)
· r(

2t
2 ) · 2

2nt
log3 n · r2nt · 2e(G)−|Cr(S)| ≤ 2O(t logn) · 2O(nt) · 2(n2)−

n2

4 log6 n
− nt

log2 n ≤ 2(n2)−
n2

5 log6 n ,

where the last inequality holds by the condition that nt ≤ n · δn log2 n = n2/ log9 n.
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Subcase 3.2: e(G) >
(
n
2

)
− n2

4 log6 n
.

For u ∈ A, define NS(u) = {v ∈ B | uv ∈ Cr(S, u)}. Let Gu be the induced subgraph of G on NS(u), and

denote by c(Gu) the number of components of Gu.

Claim 4.25. For every u ∈ A, we have c(Gu) ≤ n
log3 n

.

Proof. Suppose that there exists a vertex u in A with c(Gu) > n
log3 n

. Then the number of non-edges in Gu

is at least
( n

log3 n

2

)
≥ n2

4 log6 n
, which contradicts with the assumption of Case 3.2.

Claim 4.26. For every u ∈ A, the number of ways to color Cr(S, u) is at most rc(Gu).

Proof. Let C be an arbitrary component of Gu. It is sufficient to prove that for every v, w ∈ V (C), uv and

uw must have the same color. Assume that there exist v, w ∈ V (C) such that uv and uw receive different

colors. Since C is a connected component of Gu, there is a path P = {v = v0, v1, v2, . . . , vk = w} in Gu, in

which uvi is painted by a color in S for every 0 ≤ i ≤ k. Moreover, since uv and uw receive different colors,

there exists an integer 0 ≤ j ≤ k − 1 such that uvj and uvj+1 receive different colors. On the other hand,

by Claim 4.24, vjvj+1 can only be colored by i or j. Therefore, u, vj , vj+1 form a rainbow triangle, which is

not allowed in a Gallai r-coloring.

By Claims 4.25 and 4.26, the number of ways to color Cr(S, u) is at most r
n

log3 n , and therefore the total

number of ways to color Cr(S) is at most r
2nt

log3 n . By Claim 4.24, the rest of the edges can only be colored

by i or j, and the number of them is at most e(G) − |Cr(S)|. Hence, the number of F ∈ F(t) included in

Case 3.2 is at most

((n
2

)
t

)
· r(

2t
2 ) · 2

2nt
log3 n · r

2nt
log3 n · 2e(G)−|Cr(S)| ≤ 2O(t logn) · 2O

(
nt

log3 n

)
· 2(n2)−

nt
log2 n ≤ 2(n2)−

n
2 log2 n

−1
.

Eventually, we conclude that

|F(t)| ≤ 2(n2)−
1
5n + 2(n2)−

n2

2 log8 n + 2(n2)−
n

2 log2 n
−1 ≤ 2

− n
2 log2 n 2(n2)

for every 1 ≤ t < δn log2 n.

Observe that every r-coloring of G using at most 2 colors is a Gallai r-coloring. Then we immediately

obtain the following lemma.

Lemma 4.27. Let F0 be the set of F ∈ Ga(F , G) such that S(F ) = ∅. Then |F0| = 2e(G).

Now, we have all the ingredients to prove Theorem 4.20.
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Proof of Theorem 4.20. Applying Lemmas 4.22, 4.23 and 4.27, we obtain that

|Ga(F , G)| = |F1|+
δn/ log2 n∑

t=1

|F(t)|+ |F0| ≤ 2e(G) + 2
− n

3 log2 n 2(n2),

for n sufficiently large.

4.4 Gallai r-colorings of complete graphs

4.4.1 Stability of the Gallai r-template of complete graphs

Proposition 4.28. Let n, r ∈ N with r ≥ 3. Suppose P is a Gallai r-template of Kn. Then the number of

edges with at least 3 colors in its palette is at most n−1/6n2.

Proof. Let E = {e ∈ E(Kn) : |P (e)| ≥ 3} and assume that |E| > n−1/6n2. Let F be a spanning subgraph

of Kn with edge set E. For every i ∈ [n], denote by di the degree of vertex i of F . Then the number of

3-paths in F is equal to

∑
i∈[n]

(
di
2

)
≥ n

(∑
i∈[n] di

n

2

)
≥ n

(
2|E|/n

2

)
≥ |E|

2

n
> 3n−1/3

(
n

3

)
.

Observe that if i, j, k is a 3-path in F , then there is at least one rainbow triangle in P with vertex set

{i, j, k} since edges ij, jk have at least 3 colors in its palette and edge ik has at least one color in its palette.

Therefore, there would be more than n−1/3
(
n
3

)
rainbow triangles in P , which contradicts the fact that P is

a Gallai r-template.

Lemma 4.29. Let n, r ∈ N with r ≥ 3 and n−1/6 � δ � 1. Assume that P is a Gallai r-template of Kn

with |Ga(P,Kn)| > 2(1−δ)(n2). Then the number of triangles T of Kn with
∑
e∈T |P (e)| = 6 and P (e) = P (e′)

for every e, e′ ∈ T is at least (1− 4δ)
(
n
3

)
.

Proof. Let T be the collection of triangles of Kn. We define

T1 =
{
T ∈ T |

∑
e∈T |P (e)| = 6 and P (e) = P (e′) for every e, e′ ∈ T

}
,

T2 = {T ∈ T | ∃ e ∈ T, |P (e)| ≥ 3} ,

T3 =
{
T ∈ T \ (T1 ∪ T2) |

∑
e∈T |P (e)| = 6

}
,

T4 =
{
T ∈ T \ T2 |

∑
e∈T |P (e)| ≤ 5

}
.
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Let |T1| = α
(
n
3

)
, |T2| = β

(
n
3

)
, |T3| = γ

(
n
3

)
. Then |T4| ≤ (1 − α)

(
n
3

)
. By Proposition 4.28, we have

|T2| ≤ n−1/6n3 and therefore β ≤ 12n−1/6. Observe that for every T ∈ T3, the template P contains a rainbow

triangle with edge set T ; therefore, we obtain that |T3| ≤ RT(P ) ≤ n−1/3
(
n
3

)
, which gives γ ≤ n−1/3 ≤ n−1/6.

Assume that α < 1 − 4δ. Then the number of Gallai r-colorings of Kn, which are subtemplates of P ,

satisfies

log |Ga(P,Kn)| ≤ log
(∏

e∈E(Kn) |P (e)|
)

= log
(∏

T∈T
∏
e∈T |P (e)|

) 1
n−2

≤ log
(∏

T∈T1 23
∏
T∈T2 r

3
∏
T∈T3 23

∏
T∈T4 22

)
· 1
n−2

≤ (3α+ 3β log r + 3γ + 2(1− α)) 1
3

(
n
2

)
≤
(
2 + α+ (36 log r + 3)n−1/6

)
1
3

(
n
2

)
< (2 + (1− 4δ) + δ) 1

3

(
n
2

)
= (1− δ)

(
n
2

)
.

This contradicts the assumption that |Ga(P,Kn)| > 2(1−δ)(n2).

We now prove a stability result for Gallai r-templates of Kn.

Theorem 4.30. Let n, r ∈ N with r ≥ 3 and n−1/6 � δ � 1. Assume that P is a Gallai r-template of

Kn with |Ga(P,Kn)| > 2(1−δ)(n2). Then there exist two colors i, j ∈ [r] such that the number of edges of Kn

with palette {i, j} is at least (1− 4r4δ)
(
n
2

)
.

Proof. Let G be an
(
r
2

)
-colored graph with edge set E(G) = {e ∈ E(Kn) | |P (e)| = 2} and color set

{(i, j) | 1 ≤ i < j ≤ r}, where each edge e is colored by color P (e). By Lemma 4.29, the number of

monochromatic triangles in G is at least (1 − 4δ)
(
n
3

)
. Applying Lemma 4.19 on G, we obtain that there

exist two colors i, j such that the number of edges with palette {i, j} is at least e(G) − 4
(
r
2

)2 · 4δ(n2) ≥
(1− 4δ)

(
n
2

)
− 4
(
r
2

)2 · 4δ(n2) ≥ (1− 4r4δ)
(
n
2

)
.

4.4.2 Proof of Theorem 4.1

Proof of Theorem 4.1. Let C be the collection of containers given by Theorem 4.16. We observe that a Gallai

r-coloring of Kn can be regarded as a rainbow triangle-free r-coloring template of order n, with only one

color allowed at each edge. Therefore, by Property (i) of Theorem 4.16, every Gallai r-coloring of Kn is a

subtemplate of some P ∈ C.

Let δ = log−11 n. We define

C1 =
{
P ∈ C : |Ga(P,Kn)| ≤ 2(1−δ)(n2)

}
, C2 =

{
P ∈ C : |Ga(P,Kn)| > 2(1−δ)(n2)

}
.
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By Property (iii) of Theorem 4.16, we have

|Ga(C1,Kn)| ≤ |C1| · 2(1−δ)(n2) ≤ 2cn
−1/3 log2 n(n2) · 2(n2)−log−11 n(n2) ≤ 2

− n2

4 log11 n 2(n2).

We claim that every template P in C2 is a Gallai r-template ofKn. First, by Property (ii) of Theorem 4.16,

we have RT(P ) ≤ n−1/3
(
n
3

)
. Suppose that there exists an edge e ∈ E(Kn) with |P (e)| = 0. Then we would

obtain Ga(P,Kn) = ∅ as a Gallai r-coloring of Kn requires at least one color on each edge, which contradicts

the definition of C2. Now by Theorem 4.30, we can divide C2 into classes {Fi,j , 1 ≤ i < j ≤ r}, where Fi,j

consists of all the r-templates in C2 which contain at least (1− 4r4δ)
(
n
2

)
edges with palette {i, j}. Applying

Theorem 4.20 on Fi,j , we obtain that |Ga(Fi,j ,Kn)| ≤
(

1 + 2
− n

3 log2 n

)
2(n2), and therefore

|Ga(C2,Kn)| ≤
∑

1≤i<j≤r

|Ga(Fi,j ,Kn)| ≤
(
r

2

)(
1 + 2

− n
3 log2 n

)
2(n2).

Finally, we conclude that

|Ga(C,Kn)| = |Ga(C1,Kn)|+ |Ga(C2,Kn)| ≤
((

r

2

)
+ 2
− n

4 log2 n

)
2(n2),

which gives the desired upper bound for the number of Gallai r-colorings of Kn.

4.5 Gallai 3-colorings of non-complete graphs

In this section, we count Gallai 3-colorings of dense non-complete graphs. We shall explore the stability

property first, and then follow a somewhat similar strategy as in the proof of Theorem 4.1. The main

obstacle is that in a Gallai r-template of a non-complete graph, a palette of an edge could be an empty set,

which leads to a more sophisticated discussion of templates.
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4.5.1 Triangles in r-templates of dense graphs

Let T be the collection of triangles of Kn. For a given r-template P of order n, we partition the triangles

into 5 classes. We set an extra class, as a T ∈ T may not be a triangle in G.

T1(P ) =
{
T ∈ T |

∑
e∈T |P (e)| = 6 and P (e) = P (e′) for every e, e′ ∈ T

}
,

T2(P ) = {T ∈ T | T = {e1, e2, e3}, |P (e1)| ≥ 3, |P (e2)| ≥ 3, and |P (e3)| = 0} ,

T3(P ) = {T ∈ T | T = {e1, e2, e3}, |P (e1)| ≥ 3, |P (e2)|+ |P (e3)| ≤ 2} ,

T4(P ) =
{
T ∈ T \ (T1 ∪ T2 ∪ T3) |

∑
e∈T |P (e)| ≥ 6

}
,

T5(P ) =
{
T ∈ T \ T3 |

∑
e∈T |P (e)| ≤ 5

}
.

(4.5)

Lemma 4.31. Let n, r ∈ N with r ≥ 4 and 0 < k ≤ 1. For 0 < ξ ≤
(

k
2+6k

)2

, let G be a graph of order n,

and e(G) ≥ (1− ξ)
(
n
2

)
. Assume that P is a Gallai r-template of G. Then, for sufficiently large n,

|T2(P )| ≤ max

{
k|T3(P )|, 3 + 9k

k
n−

1
3

(
n

3

)}
.

Proof. Let E = {e ∈ E(Kn) : |P (e)| ≥ 3} and F be a spanning subgraph of Kn with edge set E. For every

i ∈ [n], denote by di the degree of vertex i of F . Since
∑n
i=1 di = 2|E|, the number of vertices with di >

√
ξn

is less than 2|E|√
ξn

. Therefore, we obtain

|T2(P )| ≤
n∑
i=1

min

{(
di
2

)
, ξ

(
n

2

)}
<

2|E|√
ξn
· ξn

2

2
+

∑
di≤
√
ξn

d2
i

2

≤ 2|E|√
ξn
· ξn

2

2
+

2|E|√
ξn
· ξn

2

2
= 2|E|

√
ξn ≤ k

1 + 3k
n|E|,

(4.6)

where the third inequality follows from the concavity of the function x2. The rest of the proof is divided

into two cases.

Case 1: |E| ≥ 2+6k
k n−

1
3

(
n
2

)
.

Consider all triangles of Kn with at least one edge in E. Note that if a triangle has at least one edge in E

and belongs to neither T3(P ) nor T2(P ), then it induces a rainbow triangle in P . Together with (4.6), we

have

k|T3(P )| ≥ k
(
|E|(n− 2)− 2|T2(P )| − 3n−

1
3

(
n
3

))
≥ k

(
1+k
1+3kn|E| − 2|E| − 3n−

1
3

(
n
3

))
= k

1+3kn|E|+ k
(

k
1+3kn|E| − 2|E| − 3n−

1
3

(
n
3

))
≥ k

1+3kn|E| ≥ |T2(P )|,
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where the fourth inequality is given by |E| ≥ 2+6k
k n−

1
3

(
n
2

)
for sufficiently large n.

Case 2: |E| < 2+6k
k n−

1
3

(
n
2

)
.

In this case, we have

|T2(P )| < 1

2
|E|(n− 2) <

3 + 9k

k
n−1/3

(
n

3

)
.

4.5.2 Stability of Gallai 3-templates of dense non-complete graphs

Lemma 4.32. Let 0 < ξ ≤ 1
64 and n−1/3 � δ � 1. Let G be a graph of order n, and e(G) ≥ (1 − ξ)

(
n
2

)
.

Assume that P is a Gallai 3-template of G with |Ga(P,G)| > 2(1−δ)(n2). Then |T1(P )| ≥ (1− 40δ)
(
n
3

)
.

Proof. Let |T1(P )| = α
(
n
3

)
, |T2(P )| = β

(
n
3

)
, |T3(P )| = η

(
n
3

)
and |T4(P )| = γ

(
n
3

)
. Then |T5(P )| ≤ (1 − α −

β − η)
(
n
3

)
. Observe that for every T ∈ T4(P ), the template P contains a rainbow triangle with edge set T ;

therefore, we obtain that |T4(P )| ≤ RT (P ) ≤ n−1/3
(
n
3

)
, which gives γ ≤ n−1/3.

Define for e ∈ E(Kn) the weight function

w(e) =


1 if P (e) = ∅,

|P (e)| otherwise.

Similarly to the proof of Lemma 4.29, the number of Gallai 3-colorings of G which are subtemplates of P

satisfies

log |Ga(P,G)| ≤ log
(∏

e∈Kn |w(e)|
)

= log
(∏

T∈T
∏
e∈T |w(e)|

) 1
n−2

≤ log
(∏

T∈T1 23
∏
T∈T2 32

∏
T∈T3 6

∏
T∈T4 33

∏
T∈T5 22

)
1

n−2

≤ (3α+ 2β log 3 + η log 6 + 3γ log 3 + 2(1− α− β − η)) 1
3

(
n
2

)
=
(
2 + α+ (2 log 3− 2)β + (log 6− 2)η + 3n−1/3 log 3

)
1
3

(
n
2

)
.

(4.7)

Let k = 1. By Lemma 4.31, we have β ≤ max{η, 12n−1/3}. Assume that α < 1 − 40δ. The rest of the

proof shall be divided into two cases.

Case 1: β ≤ η.
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If η < 20δ, continuing (4.7) we have

log |Ga(P,G)| ≤
(
2 + α+ (2 log 3 + log 6− 4) η + 3n−1/3 log 3

)
1
3

(
n
2

)
≤ (2 + (1− 40δ) + 1.8 · 20δ + δ) 1

3

(
n
2

)
= (1− δ)

(
n
2

)
.

Otherwise, together with α ≤ 1− β − η, continuing (4.7) we obtain that

log |Ga(P,G)| ≤
(
3 + (2 log 3− 3)β + (log 6− 3)η + 3n−1/3 log 3

)
1
3

(
n
2

)
≤
(
3 + (2 log 3 + log 6− 6) η + 3n−1/3 log 3

)
1
3

(
n
2

)
≤ (3− 0.2 · 20δ + δ) 1

3

(
n
2

)
= (1− δ)

(
n
2

)
.

Case 2: β ≤ 12n−1/3.

Together with η ≤ 1− α and α < 1− 40δ, continuing (4.7) we have

log |Ga(P,G)| ≤
(
2 + α+ 2 log 3 · 12n−1/3 + (log 6− 2)(1− α) + 3n−1/3 log 3

)
1
3

(
n
2

)
≤
(
log 6 + (3− log 6)α+ 27n−1/3 log 3

)
1
3

(
n
2

)
≤ (log 6 + (3− log 6)(1− 40δ) + δ) 1

3

(
n
2

)
< (1− δ)

(
n
2

)
.

Both cases contradict our assumption that |Ga(P,G)| > 2(1−δ)(n2).

Similarly as in the proof of Theorem 4.30, using Lemmas 4.19 and 4.32, we obtain the following theorem.

Theorem 4.33. Let 0 < ξ ≤ 1
64 and n−1/3 � δ � 1. Let G be a graph of order n and e(G) ≥ (1 − ξ)

(
n
2

)
.

Assume that P is a Gallai 3-template of G with |Ga(P,G)| > 2(1−δ)(n2). Then there exist two colors i, j ∈ [3]

such that the number of edges of Kn with palette {i, j} is at least (1− 37 · 40δ)
(
n
2

)
.

4.5.3 Proof of Theorem 4.9

Proof of Theorem 4.9. Let C be the collection of containers given by Theorem 4.16 for r = 3. Note that

every Gallai 3-coloring of G is a subtemplate of some P ∈ C. Let δ = log−11 n. We define

C1 =
{
P ∈ C : |Ga(P,Kn)| ≤ 2(1−δ)(n2)

}
, C2 =

{
P ∈ C : |Ga(P,Kn)| > 2(1−δ)(n2)

}
.
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Similarly to the proof of Theorem 4.1, applying Theorems 4.16, 4.20, and 4.33, we obtain that

|Ga(C, G)| = |Ga(C1, G)|+ |Ga(C2, G)| ≤ 2
− n2

4 log11 n 2(n2) + 3 ·
(

2e(G) + 2
− n

3 log2 n 2(n2)
)

≤ 3 · 2e(G) + 2
− n

4 log2 n 2(n2).

4.6 Gallai r-colorings of non-complete graphs

Theorem 4.11 is a direct consequence of the following three theorems.

Theorem 4.34. For n, r ∈ N with r ≥ 4, there exists n0 such that for all n > n0 the following holds. For a

graph G of order n with e(G) ≥ (1− log−11 n)
(
n
2

)
, the number of Gallai r-colorings of G is strictly less than

rbn
2/4c.

Theorem 4.35. Let n, r ∈ N with r ≥ 4, and 0 < ξ � 1. For a graph G of order n with bn2/4c < e(G) ≤

bn2/4c+ ξn2, the number of Gallai r-colorings of G is strictly less than rbn
2/4c.

Theorem 4.36. For n, r ∈ N with r ≥ 4, there exists n0 such that for all n > n0 the following holds. Let

n−1/36 � ξ ≤ 1
2 log−11 n� 1. For a graph G of order n with ( 1

4 + 3ξ)n2 ≤ e(G) ≤ ( 1
2 − 3ξ)n2, the number

of Gallai r-colorings of G is strictly less than rbn
2/4c.

4.6.1 Proof of Theorem 4.34 for r ≥ 5

Lemma 4.37. Let n, r ∈ N with r ≥ 5 and 0 < ξ ≤ 1
900 . Assume that G is a graph of order n with

e(G) ≥ (1− ξ)
(
n
2

)
, and P is a Gallai r-template of G. Then, for sufficiently large n,

|Ga(P,G)| ≤ r
1
2 (n2) · 2−0.007(n2).

Proof. Let T be the collection of triangles of Kn. For a given r-template P of order n, we again use

the partition (4.5). Let |T1(P )| = α
(
n
3

)
, |T2(P )| = β

(
n
3

)
, |T3(P )| = η

(
n
3

)
and |T4(P )| = γ

(
n
3

)
. Then

|T5(P )| ≤ (1 − α − β − η)
(
n
3

)
. Note that for every T ∈ T4(P ), the template P contains a rainbow triangle

with edge set T ; therefore, we obtain that |T4(P )| ≤ RT(P ) ≤ n−1/3
(
n
3

)
, which gives γ ≤ n−1/3.
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Define for e ∈ E(Kn) the weight function

w(e) =


1 if P (e) = ∅

|P (e)| otherwise.

Similarly, as in Lemma 4.32, the number of Gallai r-colorings of G, which is a subtemplate of P , satisfies

log |Ga(P,G)| ≤ log
(∏

T∈T1 23
∏
T∈T2 r

2
∏
T∈T3 2r

∏
T∈T4 r

3
∏
T∈T5 22

)
· 1
n−2

≤ (3α+ 2β log r + η log 2r + 3γ log r + 2(1− α− β − η)) 1
3

(
n
2

)
≤
(
2 + α+ (2 log r − 2)β + (log r − 1)η + 3n−1/3 log r

)
1
3

(
n
2

)
.

(4.8)

Let k = 1/12. By Lemma 4.31, we have β ≤ max{kη, 3+9k
k n−1/3}. The rest of the proof shall be divided

into two cases.

Case 1: β ≤ kη.

Together with α ≤ (1− β − η), continuing (4.8) we have

log |Ga(P,G)| ≤
(
3 + (2 log r − 3)β + (log r − 2)η + 3n−1/3 log r

)
1
3

(
n
2

)
≤
(
3 + ((2k + 1) log r − (3k + 2)) η + 3n−1/3 log r

)
1
3

(
n
2

)
.

Note that (2k+ 1) log r− (3k+ 2) is positive as r ≥ 4. Therefore, together with η ≤ 1 and k = 1
12 , we obtain

that

log |Ga(P,G)| ≤
(

7
6 log r + 3

4 + 3n−1/3 log r
)

1
3

(
n
2

)
≤
(

3
2 log r − 0.023 + 3n−1/3 log r

)
1
3

(
n
2

)
≤ 1

2

(
n
2

)
log r − 0.007

(
n
2

)
,

where the second inequality follows from ( 1
3 log r − 3

4 ) ≥ 0.023 as r ≥ 5.

Case 2: β ≤ 3+9k
k n−1/3.
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Together with α ≤ (1− η), continuing (4.8) we have

log |Ga(P,G)| ≤
(
3 + (log r − 2)η + 2 log r · 3+9k

k n−1/3 + 3n−1/3 log r
)

1
3

(
n
2

)
≤
(

3
2 log r −

(
1
2 log r − 1

)
+
(

2+6k
k + 1

)
3n−1/3 log r

)
1
3

(
n
2

)
≤
(

3
2 log r − 0.16 + 0.01

)
1
3

(
n
2

)
= 1

2

(
n
2

)
log r − 0.05

(
n
2

)
,

where the third inequality holds for r ≥ 5 and sufficiently large n.

Using Lemma 4.37, we prove a stronger theorem for the case r ≥ 5.

Theorem 4.38. For n, r ∈ N with r ≥ 5 and 0 < ξ ≤ 1
900 , there exists n0 such that for all n > n0 the

following holds. If G is a graph of order n, and e(G) ≥ (1− ξ)
(
n
2

)
, then the number of Gallai r-colorings of

G is less than r
1
2 (n2).

Proof. Let C be the collection of containers given by Theorem 4.16. Theorem 4.16 indicates that every Gallai

r-coloring of G is a subtemplate of some P ∈ C and |C| ≤ 2cn
−1/3 log2 n(n2) for some constant c, which only

depends on r. We may assume that all templates P in C are Gallai r-templates of G. By Property (ii)

of Theorem 4.16, we always have RT(P ) ≤ n−1/3
(
n
3

)
. Suppose that for a template P there exists an edge

e ∈ E(G) with |P (e)| = 0. Then we would obtain |Ga(P,G)| = 0 as a Gallai r-coloring of G requires at least

one color on each edge. Now applying Lemma 4.37 on every container P ∈ C, we obtain that the number of

Gallai r-colorings of G is at most

∑
P∈C
|Ga(P,G)| ≤ |C| · r

1
2 (n2) · 2−0.007(n2) < r

1
2 (n2)

for n sufficiently large.

4.6.2 Proof of Theorem 4.34 for r = 4

Given two colors R and B, consider a 4-template P of order n in which every edge of Kn has palette {R,B}.

For a constant 0 < ε � 1 and a graph G with e(G) >
(
n
2

)
− 2εn, we can easily check that P is a Gallai

4-template of G and |Ga(P,G)| = 2e(G) > 4
1
2 (n2)−εn. This indicates that Lemma 4.37 fails to hold when

r = 4. Instead, we shall apply the same technique as for 3-colorings: prove a stability result to determine

the approximate structure of r-templates, which would contain too many Gallai r-colorings, and then apply

this together with Theorem 4.20 to obtain the desired bound.
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Lemma 4.39. Let n−1/3 � δ � 1. Let G be a graph of order n with e(G) ≥ (1 − δ)
(
n
2

)
. Assume that

P is a Gallai 4-template of G with |Ga(P,G)| > 2(1−δ)(n2). Then the number of triangles T of Kn with∑
e∈T |P (e)| = 6 and P (e) = P (e′) for every e, e′ ∈ T is at least (1− 16δ)

(
n
3

)
.

Proof. Let T be the collection of triangles of Kn. We define

T1 =
{
T ∈ T |

∑
e∈T |P (e)| = 6 and P (e) = P (e′) for every e, e′ ∈ T

}
,

T2 = {T ∈ T | ∃ e ∈ T, |P (e)| = 0} ,

T3 = {T ∈ T | T = {e1, e2, e3}, |P (e1)| = 4, |P (e2)| = |P (e3)| = 1} ,

T4 =
{
T ∈ T \ (T1 ∪ T2 ∪ T3) |

∑
e∈T |P (e)| ≥ 6

}
,

T5 =
{
T ∈ T \ T2 |

∑
e∈T |P (e)| ≤ 5

}
.

Let |T1| = α
(
n
3

)
, |T2| = β

(
n
3

)
, |T3| = η

(
n
3

)
and |T4| = γ

(
n
3

)
. Then |T5| = (1− α− β − η − γ)

(
n
3

)
. Since G

satisfies e(G) ≥ (1− δ)
(
n
2

)
and P is a Gallai template, we have |T2| ≤ δ

(
n
2

)
·n ≤ 6δ

(
n
3

)
, and therefore β ≤ 6δ.

Observe that for every T ∈ T4, the template P contains a rainbow triangle with edge set T ; therefore, we

obtain that |T4| ≤ RT (P ) ≤ n−1/3
(
n
3

)
, which gives γ ≤ n−1/3.

Define for e ∈ E(Kn) the weight function

w(e) =


1 if P (e) = ∅

|P (e)| otherwise.

Assume that α < 1 − 16δ. Similarly, as in Lemma 4.32, the number of Gallai 4-colorings of G which is a

subtemplate of P satisfies

log |Ga(P,G)| ≤ log
(∏

T∈T1 23
∏
T∈T2 42

∏
T∈T3 4

∏
T∈T4 43

∏
T∈T4 4

)
· 1
n−2

≤ (3α+ 4β + 2η + 6γ + 2(1− α− β − η − γ)) 1
3

(
n
2

)
= (2 + α+ 2β + 4γ) 1

3

(
n
2

)
< (2 + (1− 16δ) + 13δ) 1

3

(
n
2

)
= (1− δ)

(
n
2

)
.

This contradicts the assumption that |Ga(P,G)| > 2(1−δ)(n2).

Similarly, as in Theorem 4.30, applying Lemmas 4.19 and 4.39, we obtain the following.

Theorem 4.40. Let n−1/3 � δ � 1. Let G be a graph of order n with e(G) ≥ (1− δ)
(
n
2

)
. Assume that P

is a Gallai 4-template of G with |Ga(P,G)| > 2(1−δ)(n2). Then there exist two colors i, j ∈ [4] such that the
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number of edges of Kn with palette {i, j} is at least (1− 145 · 16δ)
(
n
2

)
.

Proof of Theorem 4.34 for r = 4. Let C be the collection of containers given by Theorem 4.16 for r = 4.

Note that every Gallai 4-coloring of G is a subtemplate of some P ∈ C. Let δ = log−11 n. We define

C1 =
{
P ∈ C : |Ga(P,G)| ≤ 2(1−δ)(n2)

}
, C2 =

{
P ∈ C : |Ga(P,G)| > 2(1−δ)(n2)

}
.

Similarly, as in the proof of Theorem 4.1, applying Theorems 4.16, 4.20, and 4.40, we obtain that

|Ga(C, G)| = |Ga(C1, G)|+ |Ga(C2, G)| ≤ 2
− n2

4 log11 n 2(n2) + 6
(

2e(G) + 2
− n

3 log2 n 2(n2)
)

≤ 6 · 2e(G) + 2
− n

4 log2 n 2(n2) < 4bn
2/4c.

4.6.3 Proof of Theorem 4.35

A book of size q consists of q triangles sharing a common edge, which is known as the base of the book. We

write bk(G) for the size of the largest book in a graph G and call it the booksize of G.

Lemma 4.41. Let n, r ∈ Z+ with r ≥ 4, 0 < α, β � 1, and G be a graph of order n. Assume that there

exists a partition V (G) = A ∪B satisfying the following conditions:

(i) δ(G[A,B]) ≥ ( 1
2 − α)n;

(ii) ∆(G[A]), ∆(G[B]) ≤ βn.

Then the number of Gallai r-colorings of G is at most rbn
2/4c. Furthermore, if e(G) 6= bn2/4c, then the

number of Gallai r-colorings of G is strictly less than rbn
2/4c.

Proof. By Condition (i), we have ( 1
2 − α)n ≤ |A|, |B| ≤ ( 1

2 + α)n. Let e(G) = bn2/4c+m. Without loss of

generality, we can assume that m > 0 and e(G[A]) ≥ m
2 . Then there exists a matching M in G[A] of size at

least e(G[A])
2∆(G[A])−1 ≥

m
4βn .

For two vertices u, v ∈ A, the number of their common neighbors in B is at least

|B| − 2 (|B| − δ(G[A,B])) = 2δ(G[A,B])− |B| ≥ 2

(
1

2
− α

)
n−

(
1

2
+ α

)
n ≥ n

3
.

Then, for every e ∈ G[A], there exists a book graph Be of size n/3 with the base e. Let B = {Be | e ∈M}.

Note that M is a matching, and therefore book graphs in B are edge-disjoint. Another crucial fact is that

for every B ∈ B, the number of r-colorings of B without rainbow triangles is at most r (r + 2(r − 1))
n/3

<

r(3r)n/3, since once we color the base edge, each triangle must be colored in the way that two of its edges
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share the same color. Hence, the number of Gallai r-colorings of G is at most

(
r(3r)

n
3

)|M |
re(G)−|M |(1+2·n3 ) = re(G)−(1−logr 3)|M |·n3 ≤ rbn

2/4c+m−(1−logr 3) m
4βn ·

n
3 < rbn

2/4c,

where the last inequality is given by β � 1.

Lemma 4.42. Let n, r ∈ Z+ with r ≥ 4, 0 < α′, β � 1, 0 < α, γ, ξ � ε � 1, and G be a graph of order n

with e(G) ≤ bn2/4c+ ξn2. Assume that there exists a partition V (G) = A ∪ B ∪ C satisfying the following

conditions:

(i) dG[A,B](v) ≥
(

1
2 − α

)
n for all but at most γn vertices in A ∪B;

(ii) δ(G[A,B]) ≥
(

1
2 − α

′)n;

(iii) ∆(G[A]), ∆(G[B]) ≤ βn;

(iv) 0 < |C| ≤ γn;

(v) for every v ∈ C, both d(v,A), d(v,B) ≥ rεn.

Then the number of Gallai r-colorings of G is strictly less than rbn
2/4c.

Proof. By Condition (i), we have

(
1

2
− α

)
n ≤ |A|, |B| ≤

(
1

2
+ α

)
n. (4.9)

For a vertex v, a set S, a set of colors R and a coloring of G, let N(v, S;R) be the set of vertices u ∈ N(v, S),

such that uv is colored by some color in R. Let d(v, S;R) = |N(v, S;R)|. Denote by C1 the set of Gallai

r-colorings of G, in which there exist a vertex v ∈ C, and two disjoint sets of colors R1 and R2, such that

both d(v,A;R1), d(v,B;R2) ≥ εn. Let C2 be the set of Gallai r-colorings of G, which are not in C1.

We first show that C1 = o(rbn
2/4c). We shall count the ways to color G so that the resulting colorings

are in C1. First, we color the edges in G[C,A∪B]; the number of ways is at most re(G[C,A∪B]). Once we fix

the colors of edges in G[C,A∪B], by the definition of C1, there exist a vertex v ∈ C, and two disjoint sets of

colors R1 and R2, such that d(v,A;R1), d(v,B;R2) ≥ εn. We observe that for every edge e = uw between

N1 = N(v,A;R1) and N2 = N(v,B;R2), e either shares the same color with uv, or with vw, as otherwise

we would obtain a rainbow triangle uvw. Then the number of ways to color edges in G[N1, N2] is at most

2e(G[N1,N2]) ≤ r 1
2 e(G[N1,N2]). Note that by Condition (i), inequality (4.9) and α, γ � ε, we have

e(G[N1, N2]) ≥ (|N1| − γn)(|N2| − 2αn) ≥ 1

2
ε2n2.
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Hence, we obtain

logr |C1| ≤ e(G[C,A ∪B]) +
1

2
e(G[N1, N2]) + (e(G)− e(G[C,A ∪B])− e(G[N1, N2]))

= e(G)− 1

2
e(G[N1, N2]) ≤ bn2/4c+ ξn2 − 1

4
ε2n2,

which indicates |C1| = o(rbn
2/4c) as ξ � ε.

It remains to estimate the size of C2. Recall that for a coloring in C2, for every vertex v ∈ C, there are

no two disjoint sets of colors R1 and R2 such that d(v,A;R1), d(v,B;R2) ≥ εn.

Claim 4.43. Let S be a set of r colors. For every coloring in C2, and every vertex v ∈ C, there exists a

color R ∈ S, such that both d(v,A;S \ {R}) < εn and d(v,B;S \ {R}) < εn.

Proof. We arbitrarily fix a coloring in C2 and a vertex v ∈ C. By Condition (v), there exists a color

R such that d(v,A;R) ≥ εn. By the definition of C2, we obtain that d(v,B;S \ {R}) < εn. Then we

also have d(v,B;R) ≥ d(v,B) − d(v,B;S \ {R}) ≥ rεn − εn > εn. For the same reason, we obtain that

d(v,A;S \ {R}) < εn.

By Claim 4.43, the number of ways to color edges in G[C,A ∪B] is at most

r ∑
i≤εn

(
n

i

) ∑
i≤εn

(
n

i

)
r2εn

|C| ≤ (4r
(ne
εn

)2εn

r2εn

)|C|
≤ r((logr e−logr ε+1)2εn+2)|C| < r

|C|n
3 ,

where the last inequality is given by (logr e− logr ε+ 1) 2ε� 1
3 as ε� 1. Note that by Conditions (ii)–(iv),

we have

• δ(G[A,B]) ≥
(

1
2 − α

′)n ≥ ( 1
2 − α

′) (|A|+ |B|);

• ∆(G[A]),∆(G[B]) ≤ βn ≤ β
1−γ (|A|+ |B|).

Applying Lemma 4.41 on G[A ∪ B], we obtain that the number of ways to color edges in G[A ∪ B] is at

most r
(n−|C|)2

4 . A trivial upper bound for the ways to color the rest of the edges, that is, the edges in G[C]

is r(
|C|
2 ). Hence, we have

logr |C2| ≤
|C|n

3
+

(n− |C|)2

4
+

(
|C|
2

)
=
n2

4
−
(
n

6
− 3

4
|C|+ 1

2

)
|C| ≤ bn2/4c − 1

4
,

where the last inequality is given by 0 < |C| ≤ γn and γ � 1. Finally, we obtain that the number of Gallai

r-colorings of G is

|C1|+ |C2| ≤ o(rbn
2/4c) + rbn

2/4c− 1
4 < rbn

2/4c.
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Lemma 4.44. Let n, r ∈ Z+ with r ≥ 4, α, β, γ, ξ � 1, and G be a graph of order n with bn2/4c < e(G) ≤

bn2/4c+ ξn2. Assume, that there exists a partition V (G) = A ∪B ∪ C satisfying the following conditions:

(i) δ(G[A,B]) ≥ ( 1
2 − α)n;

(ii) ∆(G[A]), ∆(G[B]) ≤ βn;

(iii) 0 < |C| ≤ γn;

(iv) for every v ∈ C, d(v) ≥ n/2.

Then the number of Gallai r-colorings of G is strictly less than rbn
2/4c.

Proof. Let α, γ, ξ � ε � 1. Let C1 = {v ∈ C | d(v,A) < rεn}, and C2 = {v ∈ C | d(v,B) < rεn}. By

Conditions (iii) and (iv), for every v ∈ C1, we have d(v,B) ≥
(

1
2 − γ − rε

)
n. Similarly, for every v ∈ C2, we

have d(v,A) ≥
(

1
2 − γ − rε

)
n. Define

A′ = A ∪ C1, B′ = B ∪ C2, C ′ = C \ (C1 ∪ C2).

If C ′ = ∅, then we obtain a new partition V (G) = A′ ∪B′ satisfying the following properties:

• δ(G[A′, B′]) ≥ min{
(

1
2 − α

)
n,
(

1
2 − γ − rε

)
n} =

(
1
2 − γ − rε

)
n;

• ∆(G[A′]), ∆(G[B′]) ≤ min{(β + γ)n, (rε+ γ)n}.

Together with e(G) > bn2/4c, by Lemma 4.41, we obtain that the number of Gallai r-colorings of G is

strictly less than rbn
2/4c. Otherwise, we obtain a new partition V (G) = A′ ∪B′ ∪C ′ satisfying the following

properties:

• dG[A′,B′](v) ≥
(

1
2 − α

)
n for all but at most γn vertices in A′ ∪B′;

• δ(G[A′, B′]) ≥
(

1
2 − γ − rε

)
n;

• ∆(G[A′]), ∆(G[B′]) ≤ min{(β + γ)n, (rε+ γ)n};

• 0 < |C ′| ≤ |C| ≤ γn;

• for every v ∈ C ′, both d(v,A′), d(v,B′) ≥ rεn.

Together with e(G) ≤ bn2/4c + ξn2, by Lemma 4.42, the number of Gallai r-colorings of G is strictly less

than rbn
2/4c.

Now, we prove a lemma which is crucial to the proof of Theorem 4.35.
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Lemma 4.45. Let n, r ∈ Z+ with r ≥ 4, α, β, γ, ξ � 1, and G be a graph of order n with bn2/4c < e(G) ≤

bn2/4c+ ξn2. Assume that there exists a partition V (G) = A ∪B ∪ C satisfying the following conditions:

(i) δ(G[A,B]) ≥ ( 1
2 − α)n;

(ii) ∆(G[A]), ∆(G[B]) ≤ βn;

(iii) |C| ≤ γn.

Then the number of Gallai r-colorings of G is strictly less than rbn
2/4c.

Proof. By Lemma 4.41, we can assume that |C| > 0 without loss of generality. We begin with the graph G,

greedily remove a vertex in C with degree strictly less than |G|/2 in G to obtain a smaller subgraph. Let G′

be the resulting graph when the algorithm terminates, and n′ = |V (G′)|. We remark that G′ is not unique

and it depends on the order of removing vertices. Without loss of generality, we can assume that n′ < n, as

otherwise we are done by applying Lemma 4.44 on G.

Let A′ = A, B′ = B, and C ′ = V (G′) ∩ C. Clearly, we have G′ = G[A′ ∪B′ ∪ C ′]. Furthermore, by the

mechanics of the algorithm, we have

e(G) ≤ e(G′) +
1

2

((
n

2

)
−
(
n′

2

))
. (4.10)

We first claim that e(G′) > b(n′)2/4c, as otherwise we would have

e(G) ≤ b(n′)2/4c+
1

2

((
n

2

)
−
(
n′

2

))
≤ bn2/4c,

which contradicts the assumption of the lemma. On the other hand, since n′ ≥ (1− γ)n, we obtain that

e(G) ≤ bn2/4c+ ξn2 ≤ b(n′)2/4c+
γ + 2ξ

2(1− γ)2
(n′)2.

Let ξ′ = γ+2ξ
2(1−γ)2 . Then we have

b(n′)2/4c < e(G′) ≤ b(n′)2/4c+ ξ′(n′)2. (4.11)

If C ′ = ∅, we obtain a vertex partition V (G′) = A′ ∪B′ satisfying:

• δ(G′[A′, B′]) ≥ ( 1
2 − α)n ≥ ( 1

2 − α)n′;

• ∆(G′[A]), ∆(G′[B]) ≤ βn ≤ β
1−γn

′.
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Together with (4.11), by Lemma 4.41, we obtain that the number of Gallai r-colorings of G′, denoted by

|C(G′)|, is strictly less than rbn
2/4c. Otherwise, we find the partition V (G′) = A′ ∪B′ ∪ C ′ satisfying:

• δ(G′[A′, B′]) ≥ ( 1
2 − α)n ≥ ( 1

2 − α)n′;

• ∆(G′[A]), ∆(G′[B]) ≤ β
1−γn

′;

• 0 < |C ′| ≤ γn ≤ γ
1−γn

′;

• for every v ∈ C ′, d(v) ≥ n′

2 .

Together with (4.11), by Lemma 4.44, we obtain that |C(G′)| < rb(n
′)2/4c. Combining with (4.10), we

conclude that the number of Gallai r-colorings of G, denoted by |C(G)|, satisfies

logr |C(G)| ≤ logr |C(G′)|+ (e(G)− e(G′)) < b(n′)2/4c+
1

2

((
n

2

)
−
(
n′

2

))
≤ bn2/4c,

which completes the proof.

Another important tool we need is the stability property of book graphs proved by Bollobás and Niki-

forov [22].

Theorem 4.46. [22] For every 0 < α < 10−5 and every graph G of order n with e(G) ≥ ( 1
4 − α)n2, either

bk(G) >

(
1

6
− 2α1/3

)
n

or G contains an induced bipartite graph G1 of order at least (1− α1/3)n and with minimum degree

δ(G1) ≥
(

1

2
− 4α1/3

)
n.

Proof of Theorem 4.35: Let e(G) = bn2/4c + m, where 0 < m ≤ ξn2. We construct a family B of book

graphs by the following algorithm. We start the algorithm with B = ∅ and G0 = G. In the i-th iteration

step, if there exists a book graph B of size n
7 in Gi, we let B = B ∪ {B}, and Gi = Gi−1 − e, where e is the

base edge of B. The algorithm terminates when there is no book graph of size n/7. Let E0 be the set of

base edges of B, and τ = 7/(1− logr 3).

Suppose that |B| ≥ 2τm. Since |E0| = |B| ≥ 2τm, the edge set E0 contains a matching M of size

|E0|
2(n−1)−1 > τm/n. Let B′ be the set of book graphs in B whose base edges are in M . Since M is a matching,

book graphs in B′ are edge-disjoint. Note that for every B ∈ B, the number of r-colorings of B without

rainbow triangles is at most r(r + 2(r − 1))n/7 < r(3r)n/7. Then the number of Gallai colorings of G is at
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most (
r(3r)

n
7

)|M |
re(G)−|M |(1+2·n7 ) = rbn

2/4c+m−(1−logr 3)|M |n7 < rbn
2/4c+m−m = rbn

2/4c.

It remains to consider the case for |B| < 2τm. Without loss of generality, we can assume that there is

no matching of size greater than τm/n in E0. Let G′ = G− E0. Then we have

e(G′) > bn2/4c − (2τ − 1)m.

Furthermore, by the construction of G′, we obtain that bk(G′) < n/7. Let α = (2τ − 1) ξ. By applying

Theorem 4.46 on G′, we obtain that there is a vertex partition V (G′) = A′∪B′∪C ′ with |C ′| ≤ α1/3n, such

that A′, B′ are independent sets, and

δ(G′[A′, B′]) ≥
(

1

2
− 4α1/3

)
n.

Let G0 be the spanning subgraph of G with edge set E0. For a small constant β with ξ � β � 1, let V0 be the

set of vertices in G0 with degree more than βn. Since |E0| < 2τm ≤ 2τξn2, we have |V0| ≤ (4τξ/β)n ≤ βn.

Let A = A′ \ V0, B = B′ \ V0, and C = C ′ ∪ V0. Then we obtain a vertex partition V (G) = A ∪ B ∪ C

satisfying the following conditions:

• δ(G[A,B]) ≥ ( 1
2 − 4α1/3 − β)n;

• ∆(G[A]), ∆(G[B]) ≤ βn;

• |C| ≤ (α1/3 + β)n.

By Lemma 4.45, we obtain that the number of Gallai r-colorings of G is strictly less than rbn
2/4c.

4.6.4 Proof of Theorem 4.36

We say that a graph G is t-far from being k-partite if χ(G′) > k for every subgraph G′ ⊂ G with e(G′) >

e(G)− t. We will use the following theorem of Balogh, Bushaw, Collares, Liu, Morris, and Sharifzadeh [7].

Theorem 4.47. [7] For every n, k, t ∈ N, the following holds. Every graph G of order n which is t-far from

being k-partite contains at least

nk−1

e2k · k!

(
e(G) + t−

(
1− 1

k

)
n2

2

)
copies of Kk+1.
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Proposition 4.48. Let n ∈ N and 0 < ε ≤ 1. Every graph F on at least εn vertices, which contains at most

n−1/3
(
n
3

)
triangles, satisfies

e(F ) ≤ |F |
2

4
+

e4

6n1/3ε3
|F |2.

Proof. Let t = e4

6n1/3ε3
|F |2. Assume that e(F ) > |F |2

4 + t. Then F is t-far from being bipartite. By

Theorem 4.47, the number of triangles in F is at least

|F |
2e4

(
e(F ) + t− |F |

2

4

)
>
|F |
2e4
· 2t =

1

6n1/3ε3
|F |3 > n−1/3

(
n

3

)
,

which gives a contradiction.

For an r-template P of order n, we say that an edge e of Kn is an r-edge of P if |P (e)| ≥ 3. An r-edge

e is typical if the number of rainbow triangles containing e is at most n11/12. We then immediately obtain

the following proposition.

Proposition 4.49. For an r-template of order n containing at most n−1/3
(
n
3

)
rainbow triangles, the number

of r-edges of P , which is not typical, is at most n11/6.

We now prove the following lemma.

Lemma 4.50. Let n, r ∈ N with r ≥ 4, and n−1/33 � ξ ≤ 1
2 log−11 n � 1. Assume that G is a graph of

order n with ( 1
4 + 3ξ)n2 ≤ e(G) ≤ ( 1

2 −3ξ)n2, and P is a Gallai r-template of G. Then, for sufficiently large

n,

logr |Ga(P,G)| ≤ n2

4
− ξ3n

2

2
+ 4n23/12.

Proof. We first construct a subset I of [n] and a sequence of graphs {G0, G1, . . . , G`} by the following

algorithm. We start the algorithm with I = ∅ and G0 = G. In the i-th iteration step, we either add a vertex

v to I, whose degree is at most ( 1
2 − ξ

2)(|Gi|−1) in the graph Gi, or add a pair of vertices {u, v} to I, where

uv is a typical r-edge satisfying |NGi(u) ∩NGi(v)| ≥ 2ξ2(|Gi| − 2). In both cases, we define Gi+1 = G− I.

The algorithm terminates when neither of the above types of vertices exists.

Assume that the algorithm terminates after ` steps. Let G′ = G` and k = |G′|. We now make the

following claim.

Claim 4.51.

logr |Ga(P,G)| ≤
(

1

2
− ξ2

)(
n2

2
− k2

2

)
+ 3n23/12 + logr |Ga(P,G′)|.

Proof. In the i-th iteration step of the above algorithm, if we add to I a single vertex v, then the number of
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ways to color the incident edges of v in Gi satisfies

logr
∏
e is incident to

v in Gi
|P (e)| ≤ dGi(v) ≤ ( 1

2 − ξ
2)(|Gi| − 1).

Now we assume that what we add is a pair of vertices {u, v}. For every w ∈ NGi(u) ∩NGi(v), vertices uvw

either span a rainbow triangle in P , or satisfy |P (uw)| = |P (vw)| = 1. Together with the fact that uv is a

typical r-edge, we obtain that the number of ways to color the edges, which are incident to v or u in Gi,

satisfies

logr
∏
e is incident to
u or v in Gi

|P (e)| ≤ |Gi| − 2− |NGi(u) ∩NGi(v)|+ 2n11/12 + 1

≤ (1− 2ξ2)(|Gi| − 2) + 2n11/12 + 1.

From the above discussion, we conclude that the number of ways to color edges in E(G)− E(G′) satisfies

logr
∏
e∈E(G)−E(G′) |P (e)| ≤

(
1
2 − ξ

2
) (

n2

2 −
k2

2

)
+ n(1 + 2n11/12),

which implies the claim.

We now split the proof into several cases.

Case 1: k ≤ ξ2n.

Then |Ga(P,G′)| ≤ rk2/2 ≤ rξ4n2/2, and therefore by Claim 4.51 and ξ � 1, we obtain that

logr |Ga(P,G)| ≤
(

1

2
− ξ2

)
n2

2
+ 3n23/12 + ξ4n2/2 ≤ n2

4
− ξ2n

2

4
+ 3n23/12.

Case 2: e(G′) >
(

1
2 − 2ξ

)
k2 and k > ξ2n.

Since 2ξ ≤ log−11 n ≤ log−11 k, for sufficiently large n, Theorem 4.34 indicates that |Ga(P,G′)| ≤ rk2/4. We

claim that k ≤ (1− ξ)n, as otherwise we would have

e(G) ≥ e(G′) >
(

1

2
− 2ξ

)
k2 >

(
1

2
− 2ξ

)
(1− ξ)2n2 ≥

(
1

2
− 3ξ

)
n2,
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which is contradiction with the assumption of the lemma. Therefore, by Claim 4.51, we obtain that

logr |Ga(P,G)| ≤
(

1
2 − ξ

2
) (

n2

2 −
k2

2

)
+ 3n23/12 + k2

4 ≤
n2

4 − ξ
2 n2

2 + ξ2 k2

2 + 3n23/12

≤ n2

4 − ξ
2 n2

2 + ξ2(1− ξ)2 n2

2 + 3n23/12 ≤ n2

4 − ξ
3 n2

2 + 3n23/12.

Case 3: e(G′) <
(

1
4 + 2ξ

)
k2 and k > ξ2n.

Since 2ξ � 1, Theorem 4.35 indicates that |Ga(P,G′)| ≤ rk
2/4. We claim that k ≤ (1 − ξ)n, as otherwise

we would have

e(G) <
(
n2

2 −
k2

2

)
+
(

1
4 + 2ξ

)
k2 < n2

2 −
(

1
4 − 2ξ

)
k2

< n2

2 −
(

1
4 − 2ξ

)
(1− ξ)2n2 ≤ n2

2 −
(

1
4 − 3ξ

)
n2 =

(
1
4 + 3ξ

)
n2,

which is contradiction with the assumption of the lemma. Similarly, as in Case 2, we obtain that

logr |Ga(P,G)| ≤
(

1

2
− ξ2

)(
n2

2
− k2

2

)
+ 3n23/12 +

k2

4
≤ n2

4
− ξ3n

2

2
+ 3n23/12.

Case 4: ( 1
4 + 2ξ)k2 ≤ e(G′) ≤ ( 1

2 − 2ξ)k2 and k > ξ2n.

Denote by er(G
′) the number of r-edges of P in G′. Let A = {v ∈ V (G′) | dG′(v) ≤

(
1
2 + ξ

)
k}.

Claim 4.52. All the typical r-edges of G′ have both endpoints in A.

Proof. First, by the construction of G′, we have the following two properties: for every v ∈ V (G′),

dG′(v) >

(
1

2
− ξ2

)
(k − 1), (4.12)

and for every typical r-edge uv in G′,

dG′(u) + dG′(v) ≤ 2 + (k − 2) + |NGi(u) ∩NGi(v)| < (1 + 2ξ2)k. (4.13)

Suppose that there exists a typical r-edge uv such that u is not in A, i.e. dG′(u) >
(

1
2 + ξ

)
k. Then by (4.12)

and ξ � 1, we have

dG′(u) + dG′(v) >

(
1

2
+ ξ

)
k +

(
1

2
− ξ2

)
(k − 1) > (1 + 2ξ2)k,

which contradicts (4.13).
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Subcase 4.1: |A| ≤ ξk.

By Proposition 4.49 and Claim 4.52, we have

er(G
′) ≤

(
|A|
2

)
+ n11/6 ≤ ξ2 k

2

2
+ n11/6.

Therefore, together with the assumption of Case 4, we obtain that

logr |Ga(P,G′)| ≤ logr

(
rer(G′)2e(G

′)−er(G′)
)
≤ 1

2 (e(G′) + er(G
′))

≤ 1
2

((
1
2 − 2ξ

)
k2 + ξ2 k2

2 + n11/6
)

= k2

4 −
(
ξ − 1

4ξ
2
)
k2 + 1

2n
11/6.

Then by Claim 4.51,

logr |Ga(P,G)| ≤
(

1
2 − ξ

2
) (

n2

2 −
k2

2

)
+ 3n23/12 + k2

4 −
(
ξ − 1

4ξ
2
)
k2 + 1

2n
11/6

≤ n2

4 − ξ
2 n2

2 −
(
ξ − 3

4ξ
2
)
k2 + 4n23/12 ≤ n2

4 − ξ
2 n2

2 + 4n23/12,

where the last inequality is given by ξ � 1.

Subcase 4.2: |A| > ξk.

By the definition of A, the number of non-edges of G′ is at least

1

2

(
k − 1−

(
1

2
+ ξ

)
k

)
|A| = 1

2

((
1

2
− ξ
)
k − 1

)
|A|. (4.14)

We first claim that

|A| ≤ 1− 8ξ

1− 2ξ
k, (4.15)

as otherwise we would obtain that the number of non-edges of G′ is more than

1

2

(
1

2
− ξ
)
k · 1− 8ξ

1− 2ξ
k − |A|

2
≥
(

1

4
− 2ξ

)
k2 − k

2

which contradicts the assumption of Case 4. Inequality (4.15) implies that

(1− 2ξ)k − |A| ≥ 4ξk. (4.16)

By Propositions 4.48 and 4.49, since |A| > ξk > ξ3n, we have

er(G
′) ≤ e(G′[A]) + n11/6 ≤ |A|

2

4
+

e4

6n1/3ξ9
|A|2 + n11/6,
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as otherwise we would find more than n−1/3
(
n
3

)
rainbow triangles, which contradicts the assumption that P

is a Gallai r-template of G. Since ξ � n−1/33, we have

er(G
′) ≤ |A|

2

4
+
ξ2

2
|A|2 + n11/6. (4.17)

Combining (4.14), (4.16) and (4.17), we have

logr |Ga(P,G′)| ≤ 1
2 (e(G′) + er(G

′))

≤ 1
2

((
k
2

)
− 1

2

((
1
2 − ξ

)
k − 1

)
|A|+ |A|2

4 + ξ2

2 |A|
2 + n11/6

)
≤ k2

4 −
|A|
8 ((1− 2ξ)k − |A|) + ξ2

4 |A|
2 + 1

2n
11/6

≤ k2

4 −
ξ
2 |A|k + ξ2

4 |A|
2 + 1

2n
11/6.

Then by Claim 4.51 and the assumption of Subcase 4.2, we obtain that

logr |Ga(P,G)| ≤
(

1
2 − ξ

2
) (

n2

2 −
k2

2

)
+ 3n23/12 + k2

4 −
ξ
2 |A|k + ξ2

4 |A|
2 + 1

2n
11/6

<
(

1
2 − ξ

2
) (

n2

2 −
k2

2

)
+ 3n23/12 + k2

4 −
ξ2

2 k
2 + ξ2

4 n
2 + 1

2n
11/6

≤ n2

4 − ξ
2 n2

4 + 4n23/12.

Proof of Theorem 4.36. Let C be the collection of containers given by Theorem 4.16. Theorem 4.16 indicates

that every Gallai r-coloring of G is a subtemplate of some P ∈ C and |C| ≤ 2cn
−1/3 log2 n(n2) for some constant

c, which only depends on r. We may assume that all templates P in C are Gallai r-templates of G. By

Property (ii) of Theorem 4.16, we always have RT(P ) ≤ n−1/3
(
n
3

)
. Suppose that for a template P there

exists an edge e ∈ E(G) with |P (e)| = 0. Then we would obtain |Ga(P,G)| = 0 as a Gallai r-coloring of G

requires at least one color on each edge. Now applying Lemma 4.50 on every container P ∈ C, we obtain

that the number of Gallai r-colorings of G is at most

∑
P∈C
|Ga(P,G)| ≤ |C| · r n

2

4 −ξ
3 n2

2 +4n23/12

< rbn
2/4c,

where the last inequality follows from ξ � n−1/36 for n sufficiently large.
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Chapter 5

An analogue of the Erdős–Gallai
theorem for random graphs

5.1 Introduction

A celebrated theorem of Erdős and Gallai [41] from 1959 determines the maximum number of edges in an

n-vertex graph with no k-vertex path Pk.

Theorem 5.1 (Erdős and Gallai [41]). For n, k ≥ 2, if G is an n-vertex graph with no copy of Pk, then the

number of edges of G satisfies e(G) ≤ 1
2 (k− 2)n. If n is divisible by k− 1, then the maximum is achieved by

a union of disjoint copies of Kk−1.

An important direction of combinatorics in recent years is the study of sparse random analogues of

classical extremal results; that is, the extent to which of these results remain true in a random setting. For

graphs G and F , we write ex(G,F ) for the maximum number of edges in an F -free subgraph of G. For

example, the Erdős–Gallai theorem asserts that ex(Kn, Pk) = 1
2 (k − 2)n if n is divisible by k − 1.

The study of the random variable ex(G,F ), where G is the Erdős-Rényi random graph G(n, p), was

initiated by Babai, Simonovits and Spencer [3], and by Frankl and Rödl [45]. After efforts by several

researchers [55, 56, 69, 71, 72, 98], Conlon and Gowers [28] and Schacht [95] finally proved a sparse random

version of the Erdős-Stone theorem, showing a transference principle of Turán-type results, that is, when a

random graph inherits its (relative) extremal properties from the classical deterministic case. Note that via

the hypergraph container method the same results were proved ([11] and [94]), even when |F | is a reasonable

large function of n. A special case of this result, when F is the k-vertex path Pk, can be viewed as a weak

analogue (as the Turán density is 0) of the Erdős-Gallai theorem on the random graph for paths with a fixed

size. In this chapter, we investigate the random analogue of the Erdős-Gallai theorem for general paths,

whose length might increase with the order of the random graph.

We say that eventsAn in a probability space hold asymptotically almost surely (or a.a.s.), if the probability

that An holds tends to 1 as n goes to infinity. The typical appearance of long paths and cycles is one of the

most thoroughly studied direction in random graph theory. Over the past decades, there were many diverse

and beautiful results in this subject. In a seminal paper, Ajtai, Komlós and Szemerédi [1], confirming a
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conjecture of Erdős, proved that for p = c
n with c > 1, G(n, p) contains a path of length α(c)n a.a.s. where

limc→∞ α(c) = 1. Frieze [46] later determined the asymptotics of the number of vertices not covered by

a longest path in G(n, p). For Hamiltonicity, Bollobás [21] and Komlós and Szemerédi [73] independently

proved that for p ≥ lnn+ln lnn+ω(1)
n , the random graph G(n, p) is a.a.s. Hamiltonian. Turán-type results for

long cycles in G(n, p) was also studied under the name of global resilience, that is, the minimum number r

such that one can destroy the graph property by deleting r edges. Dellamonica Jr, Kohayakawa, Marciniszyn

and Steger [30] determined the global resilience of G(n, p) with respect to the property of containing a cycle

of length proportional to the number of vertices. Very recently, Krivelevich, Kronenberg and Mond [80]

studied the transference principle in the context of long cycles and in particular showing the following.

Theorem 5.2 (Corollary 1.10 in [80]). For every 0 < β < 1
5 , there exists C > 0 such that if G = G(N, p)

where p ≥ C
N , then for any C1

ln(1/β) · lnN ≤ n ≤ (1− C2β)N , with probability 1− eΩ(N),

ex(G(N, p), Cn) ≤

(
ex(KN , Cn)(

N
2

) + β

)
e(G(N, p)), (5.1)

where C1, C2 > 0 are absolute constants.

We aim to explore the global resilience of general long paths. More formally, given integers N > n, we

are interested in determining the asymptotic behavior of random variable ex(G(N, p), Pn+1) as N and n go

to infinity at the same time.

We start with an observation, which is proved in Section 5.3.

Proposition 5.3. For every 1
N2 � p ≤ 1

N and n ≥ 2, a.a.s. we have ex(G(N, p), Pn+1) = Θ(pN2). In

particular, a.a.s. ex(G(N, 1/N), Pn+1) ≥ N/15.

Therefore, throughout this chapter, we naturally restrict ourselves to the regime p ≥ 1/N and have the

following trivial lower bound

a.a.s. ex(G(N, p), Pn+1) ≥ ex (G (N, 1/N) , Pn+1) ≥ N/15. (5.2)

We prove the following results.

Theorem 5.4. Let 3n ≤ N ≤ ne2n. The following hold a.a.s. as n approaches infinity.

(i) For p ≥
(
ln N

n

)
/(6n), we have 1

4pnN ≤ ex(G(N, p), Pn+1) ≤ 18pnN.
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(ii) Let ω =
(
ln N

n

)
/(np). For N−1 ≤ p ≤

(
ln N

n

)
/(6n), we have

1

75

ω

lnω
pnN ≤ ex(G(N, p), Pn+1) ≤ 8

ω

lnω
pnN.

Theorem 5.5. Let N ≥ ne2n. The following hold a.a.s. as n approaches infinity.

(i) For p ≥ N− 2
5n , we have 1

16nN ≤ ex(G(N, p), Pn+1) ≤ 1
2nN.

(ii) Let ω = (lnN) /(np). For N−1 ≤ p ≤ N− 2
5n , we have

1

75

ω

lnω
pnN ≤ ex(G(N, p), Pn+1) ≤ 8

ω

lnω
pnN.

Remark 5.6. Assume that n is even. Then (5.1) together with ex(KN , Cn) ≤ nN1+2/n (e.g., see [90])

imply that

ex(G(N, p), Pn) ≤ ex(G(N, p), Cn) ≤

(
ex(KN , Cn)(

N
2

) + β

)
e(G(N, p))

≤

(
nN1+2/n(

N
2

) + β

)
pN2

2
∼ pnN1+2/n + β

pN2

2
,

which is weaker than our bounds. (Recall that p ≥ C
n , where C = C(β).) Of course, there are some better

upper bounds for ex(KN , Cn), which could be used to make an improvement. However, since, in general,

ex(KN , Cn) behaves differently with ex(KN , Pn) and is indeed much greater, Krivelevich, Kronenberg, and

Mond’s result [80] and ours do not imply one another.

Remark 5.7. One can run the same proof and show that Theorem 5.5 holds when n is a constant greater than

1 and N approaches infinity. Note also that a result of Johansson, Kahn and Vu [66] on the threshold function

of the property that G(N, p) contains a Kn-factor (n is a constant) implies ex(G(N, p), Pn+1) = 1
2 (n− 1)N

for p = Ω
(
N−2/n(lnn)1/(n2)

)
, whenever N is divisible by n. Indeed, they determined the threshold function

for containing a H-factor (H is a fixed graph), which might be useful for further improving the above result.

5.2 Tools

In this section, we list several results that we will use. The first lemma is a direct application of the depth

first search algorithm (DFS), which has appeared in [32]. Using the DFS algorithm in finding long paths was

first introduced by Ben-Eliezer, Krivelevich, and Sudakov [18], and then it became a particularly suitable

tool in this topic.
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Lemma 5.8 ([32]). For every Pn+1-free graph H on N vertices, we can find a decomposition of edges into⋃N/n
i=1 Fi, where Fi = E(Si) ∪ E(Si, Ti) for two disjoint sets Si, Ti ⊆ [N ] with |Si| = |Ti| = n.

We also need the following form of Chernoff’s bound.

Lemma 5.9 (Chernoff’s Bound). Let X =
∑n
i=1Xi, where Xi = 1 with probability pi and Xi = 0 with

probability 1− pi, and all Xi’s are independent. Let µ = E(X) =
∑n
i=1 pi. Then, for all 0 < δ < 1,

P(X ≤ (1− δ)µ) ≤ e−µδ
2/2.

The third lemma is a key ingredient of our proof, which is used to find dense subsets in random graphs.

This may be of independent interest.

Lemma 5.10. For N > 2n, 0 < p < 1 and a constant 0 < α ≤ 1/2, let r = N/n and choose an arbitrary β

satisfying

max

{
2 ln(2e),

2

αnp
ln

(
1

αnp

)}
≤ 2β lnβ ≤ min

{
2

(
1

p

)
ln

(
1

p

)
,

1

np

(
ln r − lnα2

1
α

)}
. (5.3)

Then there exists a positive constant c = c(α) such that with probability at least 1− exp(−crαn) there exists

an n-set in G(N, p) with at least
(

1−α
2

)
βpn2 edges.

Remark 5.11. Lemma 5.10 essentially states that given N,n, for some range of p, we can find an n-

vertex subgraph, which is denser than the random graph by some factor β. For instance, as it will be

explained in the proof of Theorem 5.4 (ii), when 135n ≤ N ≤ ne2n, we can choose ln r
nr1/5

≤ p ≤ ln r
6n , so that

2β lnβ = 1
np ln

(
3
8r
)

satisfying (5.3). Note that if p � ln r
n , we have β = ω(1), and therefore the graph we

produce here is much denser than the random graph.

Proof. One can check that the function f(x) = x lnx is non-negative and increasing for x ≥ 1. Thus,

ln(2e) ≤ f(β) ≤ f(1/p) implies that

max

{
2,

1

αnp

}
< β ≤ 1/p. (5.4)

Let B0 = [N ]. We will construct the desired set iteratively. In each step, take an arbitrary subset

Ai ⊆ Bi−1 of size αn, and let

Bi = {v ∈ Bi−1 \Ai : deg(v,Ai) ≥ βαnp}.

We will show that a.a.s. we can continue this process d 1
αe steps. For convenience, in the rest of the proof,

we ignore all floor and ceiling signs.
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Claim 5.12. |Bi| ≥ rn
2i exp (−2iβ lnβ · αnp), for all 0 ≤ i ≤ 1

α−1 with probability at least 1−exp(−Ω(rαn)).

We prove it by induction on i ≥ 0. For i = 0, it is trivial. Suppose the statement holds for i− 1. That

means

|Bi−1| ≥
rn

2i−1
exp (−2(i− 1)β lnβ · αnp) (5.5)

with probability at least 1−exp(−Ω(rαn)). Furthermore, 0 ≤ i ≤ 1
α−1 yields that (i−1)α < iα ≤ 1−α < 1

and hence,

|Bi−1| ≥
rn

2
1
α−2

exp (−2β lnβ · np) ≥ rn

2
1
α−2

exp
(
−
(

ln r − lnα2
1
α

))
= 4αn,

consequently

|Bi−1| − αn ≥
3

4
|Bi−1| >

|Bi−1|√
2
.

Then, the expected size of Bi is

E(|Bi|) = (|Bi−1| − αn)P(deg(v,Ai) ≥ βαnp) ≥
1√
2
|Bi−1|

(
αn

βαnp

)
pβαnp(1− p)αn.

Due to (5.4), we get that p ≤ 1/β ≤ 1/2 and βαnp ≥ 1. Now we use
(
αn
βαnp

)
≥
(

αn
βαnp

)βαnp
=
(

1
βp

)βαnp
and

the inequality 1− p ≥ (2e)−p, which is valid for 0 ≤ p ≤ 1/2. Thus,

E(|Bi|) = (|Bi−1| − αn)P(deg(v,Ai) ≥ βαnp) ≥
1√
2
|Bi−1| exp(−(β lnβ + ln 2e)αnp)

≥ 1√
2
|Bi−1| exp(−2β lnβ · αnp).

Observe that conditioning on (5.5) gives

E(|Bi|) ≥
1√
2
|Bi−1| exp(−2β lnβ · αnp)

≥ 1√
2
· rn

2i−1
exp (−2(i− 1)β lnβ · αnp) · exp(−2β lnβ · αnp)

=
1√
2
· rn

2i−1
exp (−2iβ lnβ · αnp) ≥ 1√

2
· rn

2i−1
exp

(
−αi

(
ln r − lnα2

1
α

))
≥ 1√

2
· rn

2
1
α−1

exp
(
−(1− α)

(
ln r − lnα2

1
α

))
= Ω(rαn),

which goes to infinity together with n. Therefore, Chernoff’s bound (applied with δ = 1− 1/
√

2) yields that

with probability at least 1− exp(−Ω(rαn)) we have

|Bi| ≥
1√
2
E(|Bi|) ≥

1

2
|Bi−1| exp(−2β lnβ · αnp) ≥ rn

2i
exp (−2iβ lnβ · αnp) ,
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where the last inequality follows from (5.5).

Now we finish the proof of Lemma 5.10. Claim 5.12 gives that with probability at least 1−exp(−Ω(rαn))

the set B 1
α−1 exists and satisfies

∣∣∣B 1
α−1

∣∣∣ ≥ rn

2
1
α−1

exp
(
−
(

ln r − lnα2
1
α

))
= 2αn > αn.

Therefore, we can find disjoint sets A1, . . . , A1/α of size αn with e(Ai, Aj) ≥ αn·βαnp for all 1 ≤ i < j ≤ 1/α.

Let A =
⋃1/α
i=1 Ai. Then we have |A| = n and

e(A) ≥
(

1/α

2

)
αn · βαnp =

(
1− α

2

)
βpn2.

We also present the following two probabilistic results which will be used later.

Lemma 5.13. Assume that np ≥
(
ln N

n

)
/6 and N ≥ 3n. Then a.a.s. for every two disjoint sets S, T ⊆ [N ],

|S| = |T | = n, the number of edges in G ∈ G(N, p) induced by S ∪ T with at least one endpoint in S is at

most 18n2p.

Proof. Let XS,T be the number of edges in G(N, p) with one endpoint in S and one endpoint in T . Observe

that E(XS,T ) =
(

3
2 −

1
2n

)
n2p. Note that if 3n2/2 ≤ 18n2p, then the statement is trivial. Otherwise, the

union bound implies that

P(∃S, T,XS,T ≥ 18n2p) ≤
(
N

n

)2(
3n2/2

18n2p

)
p18n2p ≤

(
Ne

n

)2n ( e
12

)18n2p

= exp

(
−n
(

18np ln

(
12

e

)
− 2 ln

(
Ne

n

)))
.

Since np ≥
(
ln N

n

)
/6 and N ≥ 3n, we obtain that

18np ln

(
12

e

)
− 2 ln

(
Ne

n

)
≥ 3 ln

(
12

e

)
ln

(
N

n

)
− 2 ln

(
Ne

n

)
≥

4 ln

(
N

n

)
− 2 ln

(
N

n

)
− 2 = 2 ln

(
N

n

)
− 2 ≥ 2 ln 3− 2 ≥ 0.19.

Finally, we conclude that P(∃S, T,XS,T ≥ 18n2p) ≤ exp(−0.19n) = o(1), which completes the proof.

Lemma 5.14. Let β =
1
np ln N

n

ln( 1
np ln N

n )
> 1 and m = 8βn2p. Then a.a.s. for every two disjoint sets S, T ⊆ [N ],

|S| = |T | = n, the number of edges induced by S ∪ T with at least one endpoint in S is at most m.
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Proof. We assume m < 3n2/2 since otherwise Lemma 5.14 holds trivially. By a simple union bound, we

obtain

P(∃S, T,XS,T ≥ m) ≤
(
N

n

)2(
3n2/2

m

)
pm ≤ exp

(
2n ln

(
Ne

n

))
exp(− lnβ ·m)

= exp

(
2n ln

(
Ne

n

)
− 8β lnβ · n2p

)
.

Now we bound from below β lnβ by

β lnβ =

1
np ln N

n

ln
(

1
np ln N

n

) ln

 1
np ln N

n

ln
(

1
np ln N

n

)
 ≥ 1

np ln N
n

ln
(

1
np ln N

n

) ln

√
1

np
ln
N

n
=

1

2np
ln

(
N

n

)
.

Thus,

P(∃S, T,XS,T ≥ m) ≤ exp

(
2n ln

(
Ne

n

)
− 8β lnβ · n2p

)
≤ exp

(
2n ln

(
Ne

n

)
− 4

np
ln

(
N

n

)
· n2p

)
≤ exp

(
−n
(

4 ln

(
N

n

)
− 2 ln

(
Ne

n

)))
= o(1),

where the last inequality follows from N ≥ 3n as 4 ln
(
N
n

)
−2 ln

(
Ne
n

)
= 2 ln

(
N
n

)
−2 ≥ 2 ln(3)−2 ≥ 0.19.

5.3 Proofs of the main results

5.3.1 Proof of Proposition 5.3

Let G = (V,E) = G(N, p). We will count the number of isolated edges. For a given pair of vertices e ∈
(
V
2

)
,

let Xe be an indicator random variable that takes value 1 if e is an isolated edge in G. Set X =
∑
eXe.

Observe that Pr(Xe = 1) = p(1− p)2(N−2) and so

E(X) =

(
N

2

)
p(1− p)2(N−2) ∼

(
N

2

)
pe−2pN ≥

(
N

2

)
pe−2 →∞,

by assumption. Furthermore, since for vertex disjoint e, f ∈
(
V
2

)
, Pr(Xe = Xf = 1) = p2(1− p)4(n−4)+4, we

obtain that

E(X2) = E(X) +
∑
e∩f=∅

Pr(Xe = Xf = 1) = E(X) + 6

(
N

4

)
p2(1− p)4(N−4)+4.
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Thus,

E(X2)

E(X)2
=

1

E(X)
+

(N − 2)(N − 3)

N(N − 1)(1− p)4
≤ 1

E(X)
+

1

(1− p)4
≤ 1

E(X)
+

1

1− 4p

and

Var(X)

E(X2)
≤ 1

E(X)
+

1

1− 4p
− 1 =

1

E(X)
+

4p

1− 4p
= o(1),

since E(X)→∞ and also by assumption p→ 0. Now Chebyshev’s inequality yields that X is concentrated

around its mean and consequently a.a.s. we have

ex(G(N, p), Pn+1) ≥ (1 + o(1))E(X) = Ω(pN2).

The upper bound easily follows from the fact that ex(G(N, p), Pn+1) ≤ e(G(N, p)).

Finally observe that a.a.s.

ex(G(N, 1/N), Pn+1) ≥ (1 + o(1))E(X) ≥ (1 + o(1))

(
N

2

)
1

N
e−2 ≥ N/15.

5.3.2 Proof of Theorem 5.4

Proof of Theorem 5.4 (i). This proof is by now quite standard which applies the DFS algorithm and the

first moment method. Recall that np ≥
(
ln N

n

)
/6 and N ≥ 3n.

Observe that Lemma 5.13 together with Lemma 5.8 imply that for every Pn+1-free subgraph H of

G ∈ G(N, p) a.a.s.

e(H) ≤ N

n
· 18n2p = 18pnN,

which establishes the upper bound.

For the lower bound, take an arbitrary vertex partition [N ] =
⋃N/n
i=1 Si, where |Si| = n for all i. Let

H be the subgraph of G ∈ G(N, p) whose edge set is
⋃
E(G[Si]). Clearly, H is Pn+1-free. Note that

E(e(H)) = N
n

(
1
2 −

1
2n

)
n2p =

(
1
2 −

1
2n

)
pnN . By Chernoff’s bound,

P
(
e(H) ≤ 1

4
pnN

)
≤ exp (−Ω(pnN)) = o(1),

since pnN →∞. Therefore, a.a.s. we have ex(G(N, p), Pn+1) ≥ e(H) ≥ 1
4pnN .
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Proof of Theorem 5.4 (ii). We first show the upper bound. Let β1 =
1
np ln N

n

ln( 1
np ln N

n )
and m = 8β1n

2p. Since

np ≤
(
ln N

n

)
/6, we know that β1 > 1.

For every Pn+1-free subgraph H of G ∈ G(N, p), Lemma 5.8 and Lemma 5.14 imply that a.a.s

e(H) ≤ N

n
·m = 8β1pnN = 8

1
np ln N

n

ln
(

1
np ln N

n

)pnN,
which establishes the upper bound.

For the lower bound, we shall divide the discussion into three cases. First, let us assume N ≤ 135n.

Together with 1
np ln

(
N
n

)
≥ 6 ≥ e, we have

ω

lnω
pnN =

ln
(
N
n

)
ln
(

1
np ln

(
N
n

))N ≤ ln

(
N

n

)
N < 5N.

Therefore, by (5.2), we trivially have

ex(G(N, p), Pn+1) ≥ N/15 ≥ 1

75

ω

lnω
pnN.

Next, let us assume p ≤ ln
(
N
n

)
/
(
n
(
N
n

)1/5)
. Similarly, we complete the proof by observing that

ω

lnω
pnN =

ln
(
N
n

)
ln
(

1
np ln

(
N
n

))N ≤ ln
(
N
n

)
1
5 ln

(
N
n

)N = 5N.

It remains to prove the lower bound for the case when N ≥ 135n and

ln
(
N
n

)
n
(
N
n

)1/5 ≤ p ≤ ln(Nn )

6n
. (5.6)

Indeed, such range of p only exists for N ≥ 65n. In this case, we will apply Lemma 5.10 repeatedly to find

a dense subgraph with no Pn+1. Let

2β2 lnβ2 = min

{
2

(
1

p

)
ln

(
1

p

)
,

1

np
ln

(
3N

8n

)}
.

Since N ≤ ne2n and p ≤ ln
(
N
n

)
/(6n) ≤ 1

3 , we have

2

(
1

p

)
ln

(
1

p

)
≥ 2

(
1

p

)
ln 3 >

2

p
≥ 1

np
ln

(
3N

8n

)
.
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Furthermore, since N ≥ 65n, we obtain

ln

(
3N

8n

)
≥ ln

(
3

8

)
+

1

5
ln 65 +

4

5
ln

(
N

n

)
>

4

5
ln

(
N

n

)
,

and

2β2 lnβ2 =
1

np
ln

(
3N

8n

)
≥ 4

5np
ln

(
N

n

)
> 2 ln(2e).

Finally, observe that for α = 1/2,

1

np
ln

(
3N

8n

)
≥ 1

np
· 4 ln

(
2
(
N
n

)1/5
ln
(
N
n

) ) ≥ 2

αnp
ln

(
1

αnp

)
,

where the first inequality is given by N ≥ 135n and the last inequality follows from (5.6). Thus, we can

iteratively apply Lemma 5.10 N/4n times with α = 1
2 and r = 3N

4n and find N/4n disjoint n-sets Ai, where

a.a.s. for all i

e(Ai) ≥
(

1− α
2

)
β2pn

2 ≥ 1− α
4

1
np ln

(
3N
8n

)
ln
(

1
np ln

(
3N
8n

))pn2 ≥ 1

10

1
np ln

(
N
n

)
ln
(

1
np ln

(
N
n

))pn2.

Let H be the subgraph of G with vertex set
⋃N/4n
i=1 Ai, and edge set

⋃N/4n
i=1 E(Ai). Note that H is

Pn+1-free and therefore, a.a.s. we have

ex(G(N, p), Pn+1) ≥ e(H) ≥ 1

10

1
np ln

(
N
n

)
ln
(

1
np ln

(
N
n

))pn2 · N
4n

=
1

40

1
np ln

(
N
n

)
ln
(

1
np ln

(
N
n

))pnN.

5.3.3 Proof of Theorem 5.5

Proof of Theorem 5.5 (i). By the the Erdős-Gallai Theorem (Theorem 5.1), it is sufficient to prove the lower

bound. Let

2β lnβ = min

{
2

(
1

p

)
ln

(
1

p

)
,

4

5np
lnN

}
.

Since p ≥ N− 2
5n , we have β = 1/p. If p > 1/3, then the proof simply follows from the proof of Theorem 5.4 (i).

Otherwise, we have 2β lnβ ≥ 6 ln 3 > 2 ln(2e). Similarly as in the proof of Theorem 5.4 (ii), we can iteratively

apply Lemma 5.10 N/4n times with α = 1
2 and r = 3N

4n , and a.a.s. find a Pn+1-free subgraph H of G(N, p)
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with

e(H) ≥
(

1− α
2

)
βpn2 · N

4n
=

1

16
nN.

Proof of Theorem 5.5 (ii). The proof of the upper bound is the same as in Theorem 5.4 (ii) and we

skip here the full details. For the lower bound, we first assume that p < N−1/5. Observe that

ω

lnω
pnN =

lnN

ln
(

1
np lnN

)N ≤ lnN

lnN1/5
N = 5N,

where the inequality holds for N ≥ ne2n. Therefore, by (5.2), we trivially have

ex(G(N, p), Pn+1) ≥ N/15 ≥ 1

75

ω

lnω
pnN.

It remains to show the lower bound for p ≥ N−1/5. Let

2β lnβ = min

{
2

(
1

p

)
ln

(
1

p

)
,

4

5np
lnN

}
.

Since p ≤ N− 2
5n , we have 2β lnβ = 4

5np lnN . Since N ≥ ne2n, we have

1

np
ln

(
3N

8n

)
≥ 2β lnβ ≥ 4

5np
ln
(
ne2n

)
≥ 8

5p
≥ 8

5
N

2
5n ≥ 8e

4
5

5
> 2 ln(2e).

Moreover, observe that for α = 1
2 and p ≥ N−1/5, we have 2β lnβ ≥ 2

αnp ln
(

1
αnp

)
. Similarly as in the proof

of Theorem 5.4 (ii), the proof is completed by iteratively applying Lemma 5.10 N/4n times with α = 1
2 and

r = 3N
4n .

5.4 Long paths and multicolor size-Ramsey number

The size-Ramsey number R̂(F, r) of a graph F is the smallest integer m such that there exists a graph G

on m edges with the property that any r-coloring of the edges of G yields a monochromatic copy of F .

The study of size-Ramsey number was initiated by Erdős, Faudree, Rousseau and Schelp [38]. For paths,

Beck [16], resolving a $100 question of Erdős, proved that R̂(Pn, 2) < 900n for sufficiently large n. The

strongest upper bound, R̂(Pn, 2) ≤ 74n, was given by Dudek and Pra lat [31], and they also provide the

lower bound, R̂(Pn, 2) ≥ 5n/2−O(1). Very recently, Bal and DeBiasio [4] further improved the lower bound
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to (3.75− o(1))n.

For more colors, it was proved in [31] that (r+3)r
4 n−O(r2) ≤ R̂(Pn, r) ≤ 33r4rn. Subsequently, Krivele-

vich [79] (see also [78]) showed that R̂(Pn, r) = O((ln r)r2n). An alternative proof of the above result was

later given by Dudek and Pra lat [32]. Both proofs indeed give a stronger density-type result, which shows

that any dense subset of a large enough structure contain the desired substructure. In particular, the proof

in [32] implies the following result.

Theorem 5.15 ([32]). For r ≥ 2 and c ≥ 7, there exists a constant α = α(c) such that the following

statement holds a.a.s. for p ≥ α(ln r)/n. Every subgraph H of G ∈ G(crn, p) with e(H) ≥ e(G)/r contains

a Pn+1.

Note that any improvement of the order of magnitude of p in the above theorem would improve the upper

bound for R̂(Pn, r). However, Theorem 5.4 (ii) implies that when p � (ln cr) /(6n), i.e. (ln cr)/np � 6,

a.a.s. there exists a Pn+1-free subgraph of G ∈ G(crn, p) which contains more than

1

40

(ln cr)/np

ln ((ln cr)/np)
pn · crn ≥ cpn · crn > e(G)/r

edges. Therefore, (ln r)/n is the threshold function for the density statement in Theorem 5.15. It would be

interesting to know if (ln r)/n is still the threshold function for the corresponding Ramsey-type statement.

5.5 Concluding remarks

Our investigation raises some open problems. The most interesting question is to investigate the correspond-

ing Ramsey properties on random graphs. The Ramsey-type questions on sparse random graphs has been

studied by several researchers, for example, see [20, 97].

Problem 5.16. Determine the threshold function p(n) for the following statement. For some constant c

and r ≥ 2 (c is independent of r), every r-coloring of G(crn, p) contains a monochromatic Pn+1.

Theorem 5.15 implies that p(n) = O((ln r)/n), while the lower bound of R̂(Pn, r) shows that p(n) =

Ω(1/n), where n goes to infinity. The exact behavior of p(n) remains open and its determination would be

very useful for studying the size-Ramsey number of paths.

Another direction is to consider the following graph parameter. Denote by c(G,F ) the minimum number

of colors k such that there exists a k-coloring of G without monochromatic F . Clearly, we have

c(G(N, p), Pn+1) ≥
(
N
2

)
p

ex(G(N, p), Pn+1)
≥ pN2

3ex(G(N, p), Pn+1)
. (5.7)
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Let r = N/n. We first present two general upper bounds on c(G(N, p), Pn+1).

Theorem 5.17. Suppose r is a prime power, then c(G(N, p), Pn+1) ≤ r + 1.

Proof. We use a construction from [50] (also appeared in [79]). Let Ar be an affine plane of order r, i.e. r2

points with r2 + r lines, where every pair of points is contained in a unique line, and the lines can be split

into r + 1 disjoint families F1, . . . , Fr+1 so that the lines inside the families are parallel.

We arbitrarily partition [N ] into r2 parts V1, V2, . . . , Vr2 , where each part has size N/r2 = n/r. We define

an r+ 1-coloring as follows. If e is an edge crossing between Vx and Vy, where the unique line containing xy

is in the family Fi, then we color e by i. Observe that every connected subgraph in color i has its vertex set

V inside ∪x∈LVx for some line L ∈ Ar. Therefore, we have |V | ≤ r ·n/r = n, and there is no monochromatic

Pn+1.

Theorem 5.18. A.a.s. c(G(N, p), Pn+1) ≤ 2pN .

Proof. Let k = 2pN , and we can assume k ≤ r + 1. Consider a random k-coloring of G(N, p). Then the

subgraph Gi, whose edges are all edges in color i, is in G(N, p′), where p′ = p/k = 1/2N . A fundamental

result of Erdős and Rényi shows that a.a.s the largest component of Gi has size O(lnN) ≤ n. Therefore,

a.a.s. there is no monochromatic Pn+1.

Corollary 5.19. If p = 1
ω·n , where ω = ω(r) ≥ 2, then a.a.s. c(G(N, p), Pn+1) ≤ 2r/ω.

For the lower bound, the proof of Theorem 1.2. in [32] implies the following.

Theorem 5.20. For p ≥ 22(ln(r/7))/n, a.a.s. c(G(N, p), Pn+1) > r/7.

This together with Theorem 5.17 shows that a.a.s. c(G(N, p), Pn+1) = Θ(r) for p = Ω((ln r)/n). On the

other hand, Theorem 5.4 and (5.7) give a lower bound for small p.

Theorem 5.21. For p ≤ (ln r)/34n, a.a.s. c(G(N, p), Pn+1) ≥ lnω
24ω r, where ω = (ln r)/np.

This naturally raises the following question.

Problem 5.22. What is the exact behavior of c(G(N, p), Pn+1) for p = o((ln r)/n), where n goes to infinity?
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[44] J. Fox, A. Grinshpun, and J. Pach. The Erdős–Hajnal conjecture for rainbow triangles. Journal of
Combinatorial Theory, Series B, 111:75–125, 2015.
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[47] Z. Füredi and T. Jiang. Hypergraph Turán numbers of linear cycles. Journal of Combinatorial Theory,
Series A, 123(1):252–270, 2014.
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