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ABSTRACT

In this thesis, we will discuss the techniques for determining distances, veloci-

ties, and angular position of targets using a frequency-modulated continuous-

wave (FMCW) radar. FMCW radars have applications such as collision de-

tection and assisted cruise control in modern vehicles, due to their ability

to be manufactured as low-power, single-chip systems. We will discuss the

use of a two-dimensional fast Fourier transform to efficiently compute the

Doppler-range bins for a linear FMCW. A rudimentary geometric approach

to angle estimation will then be discussed, followed by a look at the multi-

ple signal classification (MUSIC) approach for angle estimation. Finally, we

present the results of a simulated FMCW radar system with ideal targets for

a variety of configurable system parameters.
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CHAPTER 1

INTRODUCTION

Traditionally, radar systems consisted of discrete components with high sys-

tem cost and power consumption, but the recent development of integrated

single-chip frequency-modulated continuous-wave (FMCW) radars has sig-

nificantly reduced the cost, size, and power consumption of these systems.

These integrated CMOS FMCW radar systems operate at 76-81 GHz, with

radial range resolutions as high as 3.75 cm due to sweep bandwidths up to

4 GHz and velocity resolutions as high as 0.05 m/s. Due to regulations and

available bandwidths, previous radar systems operating at lower frequencies

(< 24 GHz) have smaller sweep bandwidths, leading to reduced range resolu-

tions and reduced velocity resolutions, due to the larger carrier wavelengths.

Given these recent developments in high-frequency, wide-band radar, we pre-

dict that these radar devices will revolutionize wireless sensing and imaging

capabilities.

Modern vehicles are equipped with a wide variety of available data, in-

cluding vehicle odometry, and in recent years cars have been equipped with

cameras and radar for features like collision detection and traffic-aware cruise

control.

In recent years, the computer vision community has made dramatic progress

on classification, detection, tracking, and other problems with the develop-

ment of deep neural networks, using large labeled training datasets. How-

ever, vision alone cannot solve certain problems such as position and veloc-

ity measurements with satisfactory results, but radar systems excel at these.

Additionally, environmental conditions such as rain, fog, smoke, and dust

significantly hinder visible system performance, but radar performance is

relatively unaffected in these situations [1].

In this thesis, we will cover the mathematics for determining range and

velocity, and for estimating angle of arrival, for targets in front of an FMCW

radar.
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CHAPTER 2

ESTIMATING RANGE

As the name frequency-modulated continuous-wave (FMCW) implies, an

FMCW radar is a continuous time system which transmits and receives a

periodic signal whose frequency has been modulated. As a periodic signal,

the transmitted signal has the complex form (with unit-normalized ampli-

tude)

p(t) = ej2πf(t)t. (2.1)

The typical frequency modulation used in FMCW radar systems is the saw-

tooth modulation, given by [2, 3]

f(t) = fc + α(t− kTc), for kTc ≤ t < (k + 1)Tc, k ∈ Z, (2.2)

where α > 0 is the chirp-rate df
dt

, fc is the base carrier frequency (e.g. 77

GHz), and Tc is the period of the chirp, as shown in Figure 2.1.

To simplify the calculations, we will deal with a single chirp for range

calculations, thus the frequency for a single chirp is

f(t) = fc + αt for 0 ≤ t < Tc. (2.3)

The maximum frequency of each chirp is

fmax , fc + αTc, (2.4)

and the bandwidth B of the signal is

B = fmax − fc = αTc. (2.5)

Combining the sawtooth frequency modulation (2.2) with the complex

2



sinusoid (2.1), we get the transmitted (TX) signal as

p(t) = ej(2πfct+παt
2). (2.6)

Tc 2Tc
0

fc

fmax

α

t

f
(t

)

(a) Example of sawtooth frequency modulation

Tc 2Tc
−A

0

A

t

p(
t)

(b) Example of TX signal p(t)

Figure 2.1: Sawtooth frequency modulation and corresponding transmitted
signal

Consider a target at a distance d from the radar, such that the transmitted

(RX) signal reflects off the target and returns to the radar. This received

signal will be a time-delayed version of the TX signal, where the time delay
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τ is given by

τ =
2d

c
, (2.7)

where c is the speed of light. The RX signal thus has the form

p(t− τ) = ej(2πfc(t−τ)+πα(t−τ)
2). (2.8)

Figure 2.2 depicts the effect of τ on the sawtooth frequency modulation.

τ Tc 2Tc
0

fc

fb

fmax

t

f
(t

)

Figure 2.2: Frequency of RX signal (delayed by time τ)

To recover τ , and subsequently d, we define a new dechirped signal r(t)

as the product of the transmitted signal with the complex conjugate of the

received signal

r(t) , p(t)p∗(t− τ) (2.9)

= ej(2πfct+παt
2)e−j[2πfc(t−τ)+πα(t−τ)

2] (2.10)

= ej(2πfcτ−πατ
2)ej2πατt. (2.11)

Note that the first exponential in (2.11) only depends on τ , so it is a con-

stant phase term. However, the second term varies according to a constant

frequency (named the beat frequency) fb

fb , ατ. (2.12)
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Recovering fb allows us to recover the distance d as

d =
cfb
2α

. (2.13)

The maximum beat frequency occurs when τ = Tc, as any τ ∈ (Tc, 2Tc] will

appear as τ ∗

τ ∗ = τ − Tc, τ ∈ (Tc, 2Tc], (2.14)

and thus the recovered distance d∗ will be less than the true range of the

target from the radar. From this, we can get our maximum recoverable

distance for a given chirp period

dmax =
cTc
2
. (2.15)

To recover the beat frequency fb from the dechirped signal, r(t), we can

simply use the Fourier transform to get

Rr(f) =

∫ ∞
−∞

r(t)e−j2πftdt (2.16)

=

∫ ∞
−∞

ej(2πfcτ−πατ
2)ej2πατte−j2πftdt (2.17)

= ej(2πfcτ−πατ
2)

∫ ∞
−∞

e−j2π(f−ατ)tdt (2.18)

= ej(2πfcτ−πατ
2)δ(f − ατ), (2.19)

where δ(f) is the Dirac delta function.

Now consider the case of multiple (N) objects at different distances di from

the radar

di 6= dj for i 6= j, i, j ∈ [1, N ]. (2.20)

Each of these objects will reflect the transmitted chirp with a unique delay

τi, as seen in Figure 2.3, and therefore will have a unique beat frequency

corresponding to these delays. Using the continuous-time Fourier transform,

we can always resolve the unique beat frequencies corresponding to the time

delays.

However, in practice we must sample the received signal r(t) with an

analog-to-digital converter (ADC), with sampling frequency fs = 1/Ts. To

retrieve the beat frequencies, we take the M -point discrete Fourier transform
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τ Tc 2Tc
0
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fb

fmax

t

f
(t

)

Figure 2.3: Frequencies of reflected signals from multiple objects

(DFT) [4] of r(t) for each chirp period

Rr[f ] =
M−1∑
m=0

r[mTs]e
−j 2π

M
fm (2.21)

=
M−1∑
m=0

ej(2πfcτ−πατ
2)ej2πατmTse−j

2π
M
fm. (2.22)

From this, we can see that Rr[f ] has a peak when f = MTsατ , and since

M , Ts, and α are configured parameters, we can recover τ and subsequently

the distance d. This processing can be done efficiently on hardware with the

fast Fourier transform (FFT), so this step is often called the range-FFT.

Since we are using the DFT, we can only resolve frequency components

separated by 1/Twindow, where Twindow is the observation window,

∆f >
1

Twindow
. (2.23)

Now let the observation window be the chirp period, Tc, such that, from

(2.13), we get the range-cell resolution

∆d =
c∆f

2α
(2.24)

=⇒ ∆d >
c

2αTc
=

c

2B
. (2.25)
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With an M -point DFT, the maximum recoverable frequency is

fb,max =
M − 1

TsM
, (2.26)

so the maximum recoverable distance is

dmax =
(M − 1)c

2αTsM
. (2.27)

7



CHAPTER 3

ESTIMATING VELOCITIES

To determine the velocity of an object, we can compare the phases of two

chirps reflected from the moving object. Recall from (2.11) that the first

exponential term in r(t) has no dependence on t, so it fully describes the

phase. We can approximate this phase as a linear function of the time delay

τ ,

φ(r(t)) = 2πfcτ − πατ 2 + 2πατt (3.1)

=⇒ ∠r(t) ≈ 2πfcτ. (3.2)

For an object moving with velocity v and initial range d0, the time delay

τ is given by

τ =
2(d0 + vt)

c
, (3.3)

so the linear phase approximation becomes

φ(r(t)) ≈ 4π(d0 + vt)

λ
, (3.4)

where λ = c
fc

the wavelength of the carrier signal. Now, the phase difference

∆φ between two dechirped signals separated by Tc is

∆φ =
4π∆d

λ
, (3.5)

where ∆d is the distance the object travels over Tc between the two chirps.

For an object traveling at a velocity v, this distance is

∆d = vTc, (3.6)
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so the phase difference becomes

∆φ =
4πvTc
λ

. (3.7)

However, phase difference is inherently ambiguous unless |∆φ| < π, so we

find that the maximum velocity measurable by two chirps spaced Tc apart is

given by

vmax =
λ

4Tc
. (3.8)

This two-chirp approach fails if we have multiple objects moving with

different velocities, but the same range, at the time of measurement. The

reflected chirps will produce identical beat frequencies in this scenario, so the

range processing Fourier transform will result in a single peak representing

the combined signals from the equidistant objects. In this case, we can use K

equally spaced chirps transmitted by the radar over a chirp frame Tf = KTc,

as shown in Figure 3.1.

Tc 2Tc Tf = KTc
0

fc

fmax

t

f
(t

)

Figure 3.1: Chirp frame Tf consisting of K chirps

Now we will need to use the full sawtooth frequency modulation as de-

scribed in (2.2), so p(t) is

p(t) = ej(2πfct+παt
2−2παkTct). (3.9)
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Then, the dechirped signal r(t) will be

r(t) = ej(2πfcτ−πατ
2+2πατ(t−kTc)). (3.10)

Again, we approximate by eliminating the quadratic components to get

φ(r(t)) ≈ 2π(fc + αtk)τ, (3.11)

where

tk , t− kTc for k ∈ Z. (3.12)

Substituting (3.3) into (3.11) gives

φ(r(t)) ≈ 4π

c
(fcd0 + fcvt+ αd0tk) (3.13)

= 2π(fcτ0 + fdt+ tkfτ ) (3.14)

= 2π(fcτ0 + fdkTc + (fτ + fd)tk), (3.15)

where τ0 is the initial time delay, fd is the Doppler frequency, and fτ is the

range-beat-frequency, as defined below.

τ0 ,
2d0
c

(3.16)

fd ,
2v

c
fc (3.17)

fτ , ατ0. (3.18)

For each k-th chirp, we compute Rr(f, k) as in (2.16), which contains the

range information for the objects,

Rr(f, k) =

∫ Tc

τ

r(tk)e
−j2πftkdtk (3.19)

=

∫ Tc

τ

ejφ(r(tk))e−j2πftkdtk (3.20)

=

∫ Tc

τ

ej2π(fcτ0+fdkTc+(fτ+fd)tk)e−j2πftkdtk. (3.21)

The absolute value |Rr(f, k)| is obtained for f = fd + fτ , and, in general,

fτ >> fd, so we can resolve the ranges as before. Now, since the term

fdkTc depends on k, we see that Rr(f, k) is a function of k, with sampling
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period Tc, observed K consecutive times over the course of the chirp frame

Tf . Each of these k spectra will have a different phase which combines

the phase contributions from each object at the corresponding range with

different velocities. This spectrum is described by the following DFT:

R(f, n) =
K−1∑
k=0

Rr(f, k)e−j
2π
K
kn, (3.22)

which achieves maximum absolute value (i.e. a peak) when

n = fdTc. (3.23)

In the case of multiple objects at the same range, but with different ve-

locities, we will have peaks corresponding to the Doppler frequencies of each

object, enabling us to resolve the different velocities. Since we are using the

DFT, we can derive the velocity resolution as we did the range resolution in

(2.25), where the observation window here is the frame time Tf ,

∆v =
c

2KTcfc
=

c

2fcTf
. (3.24)

This spectrum is computed using the FFT method, so we call this step the

Doppler-FFT. By reordering the samples of r(t) into a 2D matrix R where

each row is the samples from one chirp period Tc with K rows (i.e. K chirps),

we can compute the range-FFT and Doppler-FFT as a 2D FFT over the data

matrix R.
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CHAPTER 4

COMPUTING ANGLE OF ARRIVAL

If the radar has at least two transmit-receive antenna pairs, we can calculate

the angle of arrival (AoA) for the received signal from the phase differences

in the spectra, which arise from the slight differences in range of the object

from each receiving antenna.

RX RX

x

TX

d

d+ ∆d

θ

Figure 4.1: Angle of arrival problem

4.1 Geometric Estimation

From Figure 4.1, we can derive the phase difference between the received

signals r1(t) and r2(t) at two different antennas separated by a distance

x. Let d be the distance the received signal r1(t) travels to reach the first

antenna and d+ ∆d be the distance the reflected signal r2(t) travels to reach

the second antenna [5]. Assuming the radar signal is a planar wavefront, the

geometry shown in Figure 4.2 gives

∆d = x sin θ. (4.1)
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x

∆
d

θ

θ

Figure 4.2: Geometric approach for estimating angle of arrival

Now, the phase difference ∆φ is given by

∆φ =
2π∆d

λ
. (4.2)

Now, we can compute the angle of arrival θ as

θ = sin−1(
λ∆φ

2πx
). (4.3)

However, since ∆φ depends on sin θ, our accuracy degrades for large θ, as

sin θ ≈ θ only for small θ.

As before, for the phase difference to be unambiguous, |∆φ| < π, so we

find
2πx

λ
sin θ < π, (4.4)

and the maximum field of view for two TX-RX antenna pairs spaced x apart

is

θmax = sin−1(
λ

2x
). (4.5)

Clearly, the largest angular field of view for two antenna pairs with this

approach occurs when the antenna spacing is

x =
λ

2
, (4.6)

giving θmax = ±π
2
.
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4.2 Multiple Signal Classification (MUSIC)

For multiple-input multiple-output (MIMO) FMCW radar systems, we can

use more sophisticated angle-of-arrival techniques based on subspaces. Let

us assume we have an arbitrary array of L virtual transmit-receive antenna

pairs, with an array response vector a(θ). This response vector maps the

direction of arrival θ to the signal phase shift at each of the L virtual antenna

pairs. For a set of N objects, we will have N return signals r(t) returning to

the antenna array. Let x(t) be the superposition of the signals so that [6]

x(t) =
N∑
n=1

sn(t)a(θn) (4.7)

= A(θ)s(t), (4.8)

where

A(θ) = [a(θ1),a(θ2), . . . ,a(θN)] (4.9)

θ = [θ1, θ2, . . . , θN ]T (4.10)

s(t) = [s1(t), s2(t), . . . , sN(t)]T . (4.11)

If we sample x(t) at M timesteps, we get the following matrix equation:

X = A(θ)S, (4.12)

where X is an L×M matrix of samples, A(θ) is an L×N matrix function,

and S is a N ×M matrix

X = [x(t1),x(t2), . . . ,x(tM)] (4.13)

S = [s(t1), s(t2), . . . , s(tM)]. (4.14)

Since X is the product of an L×N matrix and an N ×M matrix, we have

that rank(X) = N , assuming A(θ) has full column rank and S has full row

rank. This corresponds to the number of objects whose angular position we

are trying to compute. Now, since the range space of X, R(X), is the same

subspace as the range space of A(θ)

R(X) = R(A(θ)), (4.15)
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we can use the singular value decomposition (SVD) of X to recover θi. The

SVD of X is given by

X = UΣV H (4.16)

= [Us|Un]

[
Σs 0

0 0

]
V H , (4.17)

where the left singular vectors have been separated into those corresponding

to the nonzero singular values (Us) and those corresponding to the zero

singular values (Un). From linear algebra, we know the columns of Us span

the signal subspace R(X) and the columns of Un span the left nullspace

NXH) of X, which is the orthogonal complement of the signal subspace [7].

In this context, we will call this subspace the noise subspace

span(Un) = N (XH) (4.18)

= R(X)⊥ (4.19)

= R(A(θ))⊥. (4.20)

Now, if we sweep θ ∈ [0, 2π), a(θ) will lie in the left nullspace of X when

θ = θi, where θi are the desired angles of arrival we are estimating,

θ = θi ⇐⇒ UH
n a(θ) = 0. (4.21)

The multiple signal classification (MUSIC) algorithm leverages this fact by

finding the peaks in [8]

g(θ) =
1

‖UH
n a(θ)‖2

. (4.22)
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CHAPTER 5

EXPERIMENTS

Recall that an FMCW radar system has several configurable parameters,

including the chirp rate α, the chirp period Tc, and the number of chirps K

in a chirp frame. To verify the FMCW radar mathematics and investigate

the effects of these parameters, we ran several simulations in Python.

For these simulations we modeled the radar system after Texas Instru-

ments’s IWR 1443 FMCW chip, which has a carrier frequency fc of 77 GHz

and a sampling frequency of 3 Msps [9]. We will use a 256-point FFT for the

range-FFT and a 32-point FFT for the Doppler-FFT. For these simulations,

we are just investigating the range-FFT and Doppler-FFT behavior, so we

simplify the model to have a single transmit-receive antenna pair. Addition-

ally, we will assume we have ideal point targets with no attenuation to better

isolate the effects of the system parameters within the simulations. We will

simulate three targets with different ranges and velocities, as shown in Table

5.1. For this model, we also include additive white Gaussian noise on the

received signal.

Table 5.1: Simulated target initial positions and velocities

Target Range Velocity
Target 1 5.0 m 0 m/s
Target 2 10.0 m 5.0 m/s
Target 3 20.0 m -7.5 m/s

We will consider a baseline case with a chirp period of 60 µs, a bandwidth

of 500 MHz, 30 chirps per chirp frame, a 256-point range-FFT, and a 32-point

Doppler-FFT. As the bandwidth, chirp period, and chirp rate are intrinsically

linked, we only need to define two parameters to determine all three. These

parameters give a range resolution of 21.1 cm, a maximum distance of 53.79

m, a velocity resolution of 1.01 m/s, and a velocity range of ±15.2 m/s.

Figure 5.1 shows the range-FFT for a single chirp and the range-Doppler
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plot for this parameter selection. We can clearly see three peaks in both

plots, corresponding to the three targets. The recovered distances were 5.06

m, 10.13 m, and 19.83 m. Likewise, the recovered velocities were 0.0 m/s,

5.07 m/s, and -7.10 m/s.

(a) Range-FFT for a single chirp with
the baseline parameters

(b) Doppler-FFT for the baseline
parameters

Figure 5.1: Baseline simulation results

Now consider the case where the bandwidth is doubled to 1 GHz while

maintaining the same chirp period. This clearly doubles the chirp rate, giving

us a range resolution of 10.5 cm, but a maximum distance of only 26.9 m,

keeping the other parameters the same from the baseline simulation. We

can see from the results shown in Figure 5.2 that we still have three clear

peaks corresponding to the targets, with recovered distances 4.96 m, 10.02

m, and 19.93 m and corresponding recovered velocities of 0.0 m/s, 5.07 m/s,

and -7.10 m/s. Though both plots show the improved range resolution, the

range-Doppler plot more clearly shows the range resolution change as the

pixel widths corresponding to the range bins are more clearly demarcated.

To see the effect of the chirp period, let us examine the baseline system

with the chirp period doubled to 120 µs. With a bandwidth of 500 MHz,

this halves the chirp rate of the baseline system. By halving the chirp rate,

our range resolution decreases to 42.2 cm and the maximum range increases

to 107.6 m. We also see the velocity resolution improve to 0.51 m/s but

the velocity range is halved to ±7.61 m/s. Figure 5.3 shows the simulation

results, with recovered distances 5.06 m, 10.13 m, and 19.83 m. We see that

17



(a) Range-FFT for a single chirp with 1
GHz bandwidth

(b) Doppler-FFT for the 1 GHz
bandwidth version of the baseline
system

Figure 5.2: Increased bandwidth simulation results

the Doppler-FFT recovers two clean peaks for the first two targets, with

recovered velocities 0.0 m/s and 5.07 m/s respectively. However, due to the

FFT smearing, the second target’s velocity of -7.5 m/s is split between two

peaks recovered at -7.61 m/s and -7.1 m/s.

Now, if we replicate the baseline system, except with a chirp frame of

only 15 chirps, we expect to only see a difference in the Doppler results.

In fact, we can clearly see the sinc function in the Doppler-FFT in Figure

5.4, as we are padding the input signal of length 15 (number of chirps) to

be length 32 for the FFT. This increase in zero-padding from the baseline

case more clearly shows the Doppler-FFT sampling on the non-zero points

of the rectangle window spectrum, causing this spectrum leakage. Choosing

a different windowing function, such as the Hamming window, could help

alleviate this spectral leakage, though more investigation into the proper

window choice is still required.

Table 5.2 provides a summary of the different scenarios simulated here.
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(a) Range-FFT for a single chirp with
period 120 µs

(b) Doppler-FFT for 120 µs chirp period
system

Figure 5.3: Increased chirp period simulation results

Table 5.2: List of simulation parameters

Simulation Bandwidth Chirp Period Chirp Rate Number of Chirps
Baseline 500 MHz 60 µs 8.33 MHz/µs 30
Bandwidth 1 GHz 60 µs 16.67 MHz/µs 30
Chirp Period 500 MHz 120 µs 4.167 MHz/µs 30
Chirp Number 500 MHz 60 µs 8.33 MHz/µs 15

(a) Range-FFT for a single chirp

(b) Doppler-FFT for 15 chirps/frame
system

Figure 5.4: Decreased number of chirps per frame results
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CHAPTER 6

CONCLUSION

In this work, the processing chain for linear frequency-modulated continuous-

wave radars was explored. We demonstrated how the sawtooth frequency

modulation gives rise to the beat-frequency phenomenon from the combined

transmit-receive signals and contains the range information via the time de-

lay. Furthermore, we investigated the influence of an object’s velocity on the

phases for return signals corresponding to different chirps and how to lever-

age this information with a second Fourier transform to recover the Doppler

frequencies. Next, we discussed angular position estimation for multiple-

input multiple-output radar systems, first by a simple geometric estimation

and second by the subspace-based multiple signal classification (MUSIC) al-

gorithm. Finally, we presented simulated results of a 77 GHz FMCW radar

system based on Texas Instruments’s IWR 1443 chip and investigated the

effects of several configurable system parameters on range and velocity de-

tection performance.
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