
  

 

 

 

 

FACTORS INFLUENCING PHOSPHORUS LOSSES IN AGROECOSYSTEMS 

DOMINATED BY TILE DRAINAGE 

 

 

 

 

 

 

BY  

 

LUIS F. ANDINO GALEANO 

 

 

 

 

 

 

 

THESIS  

 

Submitted in partial fulfillment of the requirements  

for the degree of Master of Science in Natural Resources and Environmental Sciences  

in the Graduate College of the  

University of Illinois at Urbana-Champaign, 2019 

 

 

 

Urbana, Illinois  

 

 

 

Master’s Committee: 

 

Associate Professor Jennifer M. Fraterrigo, Adviser 

Associate Professor Yuji Arai 

Mr. Lowell Gentry 

 

 

  



ii 

 

ABSTRACT 

Phosphorus is an important macronutrient for crop production but phosphorus surpluses 

may be conveyed from diffuse sources to streams via surface runoff and artificial subsurface 

(perforated plastic pipes called tiles) drainage affecting the quality of receiving aquatic 

ecosystems. However, controls of phosphorus losses at the sub-field and watershed scales are not 

fully understood. The overall goal of this study is to determine the effect on phosphorus losses of 

topography, soil phosphorus, management practices, meteorological conditions, and hydrologic 

characteristics in agricultural fields and watersheds dominated by tile-drainage in central Illinois. 

First, tile dissolved reactive phosphorus yields and flow-weighted mean concentration were 

characterized from January 2015 through September 2017 to determine seasonal (growing vs 

non-growing) patterns from 36 individually monitored plots across a farm under a corn (Zea 

mays L.) and soybean (Glycine max L.) rotation. Tile dissolved reactive phosphorus yields 

increased with precipitation and were greatest during the non-growing season in 2016 and 2017. 

Annual tile dissolved reactive phosphorus yields were positively related to soil test phosphorus. 

During the non-growing season, there was a positive relationship between depression depth 

quantified at the plot-scale and tile dissolved reactive phosphorus yields and flow-weighted mean 

concentrations. Along depression gradients, piecewise regression displayed a threshold at a 

depression depth of 0.38 m at which soil test phosphorus increased, indicating soil phosphorus 

accumulation at the bottom of closed depressions. Then, I evaluated how hydrologic drivers 

(precipitation, water retention capacity, runoff, baseflow) affected phosphorus exports from three 

agricultural watersheds dominated by tile drainage using long-term datasets (range of 10 – 26 

years of records). Water retention capacity expressed as the runoff: precipitation ratio was a 

better predictor of runoff as well as dissolved reactive phosphorus and particulate phosphorus 
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losses than precipitation. Power law relationships between particulate phosphorus loads and 

runoff indicated that particulate phosphorus losses increment exponentially during wet years. 

Additionally, I assessed the performance of the base and modified (including an antecedent flow 

anomaly term) weighted regressions on time, discharge, and season method to estimate 

phosphorus exports relative to observed data. The inclusion of the flow anomaly term to the base 

model did not improve the performance due to the influence of management practices and other 

physical properties of the watershed. Similarly, the base model needs improvement to estimate 

phosphorus losses.  
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CHAPTER 1: INTRODUCTION 

Oxygen depletion zones in aquatic systems stem from anthropogenic interventions and 

have been spreading worldwide, especially in the Northern Hemisphere, since the mid‒ 1990s 

(Breitburg et al., 2018; Diaz and Rosenberg, 2008). Inputs of nutrients from point and diffuse 

sources not only increase nutrient availability but also alter the relative amounts of different 

types of nutrients in surface waters resulting in water quality impairment (Mekonnen and 

Hoekstra, 2018). In the United States, agriculture is the primary diffuse source of nutrient 

enrichment of surface water (Carpenter et al., 1998). Nutrient loadings from the Mississippi 

River Basin contribute to the emergence of algal blooms in the northern Gulf of Mexico, leading 

to the development of hypoxic areas (Turner and Rabalais, 2003). Attention to eutrophication in 

the Gulf of Mexico has recently increased, as the largest hypoxic zone ever recorded (22,730 

km2) occurred in 2017 since its measurement began in 1985 (NOAA, 2017). 

Nitrogen (N) has historically been identified as the limiting nutrient for eutrophication in 

coastal-marine ecosystems. However, evidence suggests that reducing phosphorus (P) inputs to 

the Gulf of Mexico may minimize the adverse effects of algal growth (Alexander et al., 2007; 

Dodds, 2006; Howarth and Marino, 2006). Eutrophication in freshwater ecosystems is 

considered to be fundamentally regulated by P (Schindler et al., 2008) and co-limited by other 

elements (e.g., N and iron (Fe) (Sterner, 2008). In Lake Erie for example, the intensity of algal 

blooms is linked to P loads influenced by meteorological conditions and long-term trends in 

agricultural practices (Michalak et al., 2013; Smith et al., 2015b). The degradation of coastal-

marine areas and freshwater resources has led to a focus on reducing P losses from agriculturally 

dominated landscapes (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2008; 
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Ohio Phosphorus Task Force 2010) and necessitates investigation of the mechanisms and 

processes involved. 

The factors involved in the loss of P are scale dependent, site specific, dynamic 

(Kleinman et al., 2011), and vary with the hydrology, geomorphology, meteorological 

conditions, and land use (Gelbrecht et al., 2005). The availability of P derived from these factors, 

along with the capacity to convey P from the soil to the outlet of the watershed is what 

determines P loadings (Fraterrigo and Downing, 2008). The two predominant transport pathways 

of P to streams in agricultural landscapes are surface runoff and subsurface flow (King et al., 

2015b). The movement of P has long been associated with surface runoff because of P 

adsorption by eroded soil. As a result, P loading tends to be higher where overland runoff is the 

primary contributor to discharges (Blann et al., 2009). However, a combination of soil properties, 

climatic conditions, and management practices coupled with overfertilization can lead to the 

accumulation of significant levels of P in the subsoil, creating areas where P losses via 

subsurface flow are enhanced by tile (perforated pipes) drainage (Sims et al., 1998).  

Artificial subsurface drainage is a widespread practice in agriculturally dominated 

landscapes of North America and Europe primarily. Although accurately assessing the extent of 

tile drainage is a difficult task as many tile lines were installed more than 50 years ago, it is 

estimated that 15.7 million ha are artificially drained in the midwestern US (Sugg, 2007). 

Subsurface drainage removes excess water from poorly drained soils providing aeration to root 

systems of crops and reducing ponding frequency, thereby increasing agricultural productivity. 

However, it may also increase P exports (Royer et al., 2006).  Elevated concentrations of 

dissolved reactive phosphorus (DRP) have been reported in tile drainage water in east-central 

Illinois (Algoazany et al., 2007; Gentry et al., 2007; Xue et al., 1998) and Indiana, where 49% of 
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the DRP loading and 48% of the total P (TP) loading occurred through tile drainage (Smith, King 

et al., 2015). Yet studies reporting tile P loadings are relatively scarce. Additionally, factors 

contributing to P loss are incompletely understood, particularly in regions with a temperate 

climate (King et al., 2015b). Therefore, there is a need to further field-scale research on the 

factors influencing the transport of P in subsurface drainage in its multiple forms: DRP, 

particulate P (PP), and TP (Christianson et al., 2016).  

Leaching of P in subsurface drainage systems can occur through the gradual interaction 

of water with the soil matrix and bypass flow via macropores that connect the soil surface to tile 

drains (Sims et al., 1998). Matrix flow can contribute the majority of water moving to tiles, but 

macropore flow has a significant potential to convey nutrients in fine-textured soils (Cullum, 

2009). It is recognized that fine-textured soils have a higher sorption capacity than coarse-

textured soils (Poirier et al., 2012); however, the tendency of fine-textured soils to create 

macropore flow conditions could be more influential to determine P losses than the sorption 

capacity. In Quebec, for example, the presence of subsurface drainage reduced losses of P from 

sandy loam soils, but increased losses from clay loam soils, which were considerably influenced 

by preferential flow (Eastman et al., 2010). Land management practices can progressively 

contribute to developing flow paths that rapidly convey water and constituents from the surface 

downward (e.g. preferential flow). Soil conservation tillage minimizes erosion and disturbance to 

preserve soil structure, yet enhancing subsurface P losses by developing macropores that 

increase vertical connectivity from the surface during wetting/drying cycles in fine-textured soils 

(Jarvis, 2007). In contrast, conventional tillage minimizes the risk of conveying chemical 

pollutants to subsurface drains by disrupting rapid preferential flow paths (Cullum, 2009). This 

explains why conventional tillage following fertilizer application resulted in lower P loads in 
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subsurface drainage water than conservation tillage during precipitation events in the non-

growing season (NGS) in Ohio (Williams et al., 2016). The effectiveness of tillage to minimize 

the risk of losses from the P-enriched surface to tile drains is more evident when P fertilizer is 

incorporated into the soil (Djodjic et al., 2002; Williams et al., 2018). Similarly, crop residue in 

corn/soybean rotations under conservation tillage can promote tile P losses during thaw events 

(Messiga et al., 2010) due to the potential of freezing/thawing cycles to recreate macropores 

(Djodjic et al., 2002) and the crop residue capacity to leach DRP (Cermak et al., 2004; Ulén et 

al., 2010). 

Landscape features (e.g., surface topography) produce variation in the hydrology and 

transport of nutrients and may also regulate P losses. Relatively flat landscapes derived from 

glacial till sustain highly productive row agriculture and are common throughout the Midwestern 

United States. Poorly drained soils and limited elevation differences have led to enhance soil 

trafficability during wet periods by installing artificial subsurface in this region, yet altering the 

hydrology and biogeochemical processes that result in nutrient enrichment of water bodies 

(Kalita et al., 2006; King et al., 2015a). Even flat agricultural landscapes contain closed 

depressions that have the capacity to store water for extended periods. At freezing temperatures, 

upper layers of the soil impermeabilize (Hayashi et al., 2003); therefore, the percolation capacity 

of the soil declines and its surface is prone to ponding conditions in closed topographic 

depressions. Under non-freezing conditions, prolonged ponding derived from reduced infiltration 

rates may occur when excessive rainfall raises the water level in the draining ditch and the outlet 

of the tile drains are submerged. These topographic features have the potential to alter hydrologic 

pathways and biogeochemical processes. 
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Improved understanding of DRP transport to tile drains is critical for determining the 

spatial distribution of critical source areas (CSA), that is, areas that disproportionately contribute 

to P loading at the watershed scale. Few studies have considered tile drainage effects on P 

loading when identifying CSAs, despite recognition that CSAs occur where pollutant sources 

coincide with active hydrologic transport mechanisms (Gburek et al., 2002; Sharpley et al., 2003; 

White et al., 2009). Mitigation actions are expected to be most effective in reducing watershed P 

loading when they target CSAs (Page et al., 2005). Improving the understanding of the 

mechanisms and processes involved in the DRP losses from surface soils of tile-drained fields 

and watersheds also contributes to identifying sustainable P management practices and targeting 

mitigation measures more effectively. 

The goal of this research is to determine relationships among P losses, land surface 

topography, soil characteristics, management practices, meteorological conditions, and 

hydrologic characteristics on P losses in agricultural fields and watersheds dominated by tile-

drainage in east-central Illinois. In Chapter 2, the specific objective is to evaluate how soil P and 

closed topographic depressions interact with precipitation and fertilizer application to affect tile 

DRP losses from a tile-drained field across seasons (i.e., growing and non-growing). In Chapter 

3, the objective is to determine how preceding moisture conditions influence P losses from three 

agricultural watersheds in east-central Illinois and how the inclusion of antecedent water 

discharges improves the estimation of DRP and PP yields. Results from this research will 

improve understanding of the mechanisms and processes governing soil P loss in tile-drained 

fields and contribute to the design of more effective P management practices. 
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CHAPTER 2: CLOSED DEPRESSIONS AND SOIL PHOSPHORUS INFLUENCE 

SUBSURFACE PHOSPHORUS LOSSES IN A TILE-DRAINED FIELD 

2.1 Introduction 

Phosphorus (P) is an essential macronutrient for crop production and is routinely applied 

to corn and soybean fields. Phosphorus fertilizer readily binds to soil particles and has 

historically been considered an immobile soil nutrient subject to offsite transport via surface 

runoff and soil erosion (Sharpley et al., 1994). In relatively flat landscapes, especially in the 

Midwestern United States (US) and eastern Canada, poorly drained soils benefit from subsurface 

drainage (perforated pipes called tiles) to sustain highly productive row-crop agriculture (Fausey 

et al., 1995). However, evidence suggests that subsurface tile drains can transport substantial 

amounts of dissolved reactive P (DRP) to surface waters (Algoazany et al., 2007; Gentry et al., 

2007; Smith et al., 2015a; Xue et al., 1998). Even relatively low loadings of bioavailable-

dissolved P from diffuse sources raise the risk of environmental degradation because P is the 

limiting nutrient for eutrophication in freshwater ecosystems (Sharpley et al., 1994) and an 

important contributor to algal growth in coastal-marine ecosystems (Bierman et al., 1994). 

Although tile drainage is a beneficial practice, modifying the hydrologic regime by short-

circuiting water transport has altered hydro-biogeochemical processes in ways that result in 

nutrient enrichment of water bodies (Kalita et al., 2006; King et al., 2015a).  

A combination of factors drives the variability of subsurface P losses, including soil 

characteristics, the depth and spacing of drain tiles, management practices, hydrology, and 

meteorological conditions (King et al., 2015b; Sims et al., 1998). Although precipitation is the 

primary driver of P transport to tile drains (Gentry et al., 2007; King et al., 2015b; Pease et al., 

2018; Van Esbroeck et al., 2017), the spatial heterogeneity of contributing sources challenges  
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the understanding of subsurface P losses. Soil test P (STP) has been shown to be positively 

related to tile DRP losses across fields (Duncan et al., 2017); however, this relationship and the 

spatial distribution of tile DRP losses at a sub-field scale is largely unknown. The spatial 

distribution of STP is influenced, in part, by contemporary and historical soil P surpluses (often 

termed ‘legacies’) that stem from past land use (e.g., livestock manure) and management 

practices that aim to build-up STP (Page et al., 2005). These legacies can mask the effect of other 

tile P loss drivers that are the subject of ongoing conservation efforts, thus delaying the intended 

improvement of water quality (Jarvie et al., 2013; Sharpley et al., 2013; Stackpoole et al., 2019).  

The spatial variability of P in soils has also been associated with landform attributes due 

to sediment relocation from eroding to depositional positions (Quinton et al., 2010) and 

pedogenic processes (Letkeman et al., 1996). In flat agricultural landscapes in the Midwestern 

US, there are numerous closed topographic depressions that affect hydrology (Roth and Capel, 

2012; Williams et al., 2019), biogeochemical processes (Smith et al., 2008; Suriyavirun et al., 

2019), and land management practices (Feyereisen et al., 2015; Smith and Livingston, 2013). 

Conceptually, closed depressions are low-lying areas that are hydrologically disconnected to the 

overland runoff network, where ponding occurs when the intensity of rainfall surpasses the 

infiltration capacity or the water storage capacity of the soil. In flooded and anaerobic soils, 

mobilization via desorption and dissolution of precipitated P into the soluble-inorganic phase is 

well documented (Gu et al., 2017; Sallade and Sims, 1997; Shober and Sims, 2009; Young and 

Ross, 2001). In agricultural regions with closed depressions, previous research has identified P 

losses from low-lying areas that contain tile surface inlets designed to convey surface water 

directly to the subsurface drainage networks; therefore, bypassing the tortuous soil matrix 

(Ginting et al., 2000; Thoma et al., 2005; Tomer et al., 2010). Although these studies have 
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underlined the contributions of closed depressions to tile P losses via tile surface inlets, the role 

of closed depressions on P percolation to tile drains remains unclear. Investigating the effect of 

closed depressions on tile P losses in flat agricultural regions is pertinent because tile drainage 

designs often target low-lying areas to alleviate flooding conditions. 

In this study, the overall goal was to improve understanding of factors that influence the 

seasonal and spatial variability of DRP losses from a tile-drained field. Specifically, the 

objectives were (i) to characterize the variability of tile DRP load and flow-weighted mean 

concentration (FWMC) across seasons (i.e., growing versus non-growing), and (ii) to investigate 

how STP (Bray P-1) and closed depressions interact with precipitation and fertilizer application 

to affect tile DRP loads and FWMC. Evaluating these drivers of P losses in flat tile-drained 

fields will improve the understanding of the sources of surface water quality impairment and can 

help inform decisions to optimize nutrient management efforts. 

2.2 Methods 

2.2.1 Site description 

This study was conducted on a tile-drained field in Douglas County located in east-

central Illinois (39º43′N, 88º14′W) (Fig. 2.1). The 30-year average precipitation at this site was 

1008 mm based on measurements from the National Centers for Environmental Information 

(NCEI) weather station at Tuscola, IL (USC00118684) (NOAA, 2017), located 9 km NW from 

the study site. The study field is representative of the local topography with less than 2% slope. 

This region is dominated by extensive row-crop agriculture (corn/soybean rotation) with 

hydrology that has been substantially modified with dredged ditches that connect to existing 

rivers to convey drainage water from the fields. The predominant soils at the site are fine-

textured, poorly drained, and classified as Milford silty clay loam (fine, mixed, superactive, 
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mesic Typic Endoaquolls)(USDA-NRCS, 2016). Approximately 40 years ago, a parallel 

drainage system was installed in the study field at depths ranging from 1.2 - 1.5 m below the soil 

surface and with a 30.5 m spacing. For this study, inline water level control structures (AgriDrain 

Corp., Adair, IA) were installed on 36 lateral tiles. On each instrumented tile, the respective 

monitoring structure was located approx. 4 m from the junction with the tile main that discharges 

to the ditch. The diameter of the tiles was 12.7 cm and the drainage area (plot size) ranged from 

1.4 - 1.9 ha of cropland dependent on tile length (Appendix Table A1). The area drained by each 

instrumented tile is equivalent to the product of the drainage spacing and the length of the 

respective tile. None of the instrumented tiles had surface inlets. 

2.2.2 Precipitation, tile discharge measurements, and water sampling and analysis 

Cumulative daily precipitation was obtained from the NCEI weather station at Tuscola, 

IL (USC00118684) from Oct.1, 2014 through Jan 15, 2015 and was recorded at the study site 

from Jan 16, 2015 to Sep 30, 2017 using a weather station equipped with a tipping bucket rain 

gauge (Davis Instruments Corporation, Hayward, CA). Tile discharge rates were determined 

using a discharge equation for inline water level control structures developed by Chun and 

Cooke (2008). Each monitoring structure was equipped with a stoplog containing a 45º V-notch 

weir and water depth was recorded using a Water Level Datalogger Model 3001 (Solinst, 

Ontario, Canada) at 15-minute intervals. 

From January 2015 to September 2017, water samples were collected from each of the 36 

inline water level control structures using ISCO automated samplers (Teledyne Isco Inc., 

Lincoln, NE). Water samples were collected for analysis at 8-hour intervals during increased 

flow and weekly during base flow. Upon return to the laboratory, water samples were vacuum 

filtered through a 0.45 μm pore diameter membrane within 24 hours of collection from the tile 



10 

 

and stored at 4 ºC prior to analysis. Therefore, DRP is operationally defined as the <0.45 μm P 

fraction. Concentrations of DRP were determined colorimetrically with the ascorbic acid reaction 

method using a Lachat QuickChem 8000 FIA Automated Ion Analyzer (Hach Company, 

Loveland, CO).  Dissolved reactive P concentrations between sampling times were estimated by 

linear interpolation. I computed DRP yields (kg ha-1) by summing the product of continuous 

water discharge data and their corresponding interpolated DRP concentrations and dividing that 

sum (DRP load) by the drainage area of each tile. Annual tile yields and flow-weighted mean 

concentrations (FWMC) of DRP were calculated for each tile for each hydrological year (HY), 

defined as October 1st - September 30th. In HY 2015, DRP yields and FWMC from the first 3 

months of the HY (Oct. to Dec. 2014) were not included in analysis because flow measurements 

began in January 2015. Here, the term ‘DRP losses’ is used to simultaneously refer to yields and 

FWMC of DRP. Water chemistry data for tile 33 were excluded from analysis in HY 2015 due to 

sediment contamination originating from the installation of the water level control structure; 

however, the contamination source was removed and data from tile 33 in HY 2016 and HY 2017 

were included in the analysis. 

2.2.3 Soil test phosphorus (STP) and topographic characteristics 

In this study, soil cores were collected to a depth of 17 cm to quantify STP measured by 

the Bray P-1 method. Five soil cores were composited from a 30-cm radius circle centered at 

each sampling location. Depending on the length of an individual tile, composite soil cores were 

collected from a range of four to six locations spaced 100 m apart (2.5 acre grid) along each plot 

in November of 2016 (Fig. 2.1), and a mean STP concentration was calculated for each plot. 

Large individual STP concentrations in plots 33, 34, 35, and 36 (Fig. 2.1) led us to conduct 
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additional sampling along those plots in the spring of 2017, consisting of five composite soil 

cores from 22 sampling locations per plot with a 9.1 m spacing.  

To characterize differences in STP with respect to the depth of depressions, additional 

sampling was conducted across two closed depressions in plots 1 (spring of 2017) and 16 (spring 

of 2018). These are the deepest closed depressions above monitored tiles in the study area. In 

each depression, five composite soil cores were collected to a depth of 17 cm from 45 locations 

distributed in three rows (15 locations per row) parallel to the tile. The rows were separated by 

15.2 m from each other, and the spacing between sampling locations in each row was 9.1 m. 

Surface terrain was characterized using 0.76-m square grid resolution (0.58-m2 pixel) 

digital terrain models (DTMs) derived from light detection and ranging (LiDAR)(ISGS and 

IDOT, 2012). Depression depth (DD; meters) for each pixel was calculated as the difference 

between a hydrologically filled DTM (simulation of the water surface elevation in a completely 

inundated terrain) and the raw DTM (elevation of the terrain)(Planchon and Darboux, 2002). 

This approach produces accurate estimation of depression storage capacity (Amoah et al., 2012). 

To determine the depression depth integrated over the area drained by a tile, we computed a 

depression index (DI; m/ha) for each plot as  

𝐷𝐼 =
∑ 𝐷𝐷𝑖

𝑛
𝑖=1

𝐴
                                                                 (1) 

where DD is the depression depth (m) for each pixel falling within the tile drainage area, and A 

is the corresponding tile drainage area (ha). All computations were done in ArcGIS v. 10.4.1 

(ESRI, Redlands, CA). 

2.2.4 Cropping system and management practices 

A corn (Zea mays L.) and soybean (Glycine max L.) rotation system was grown during 

the study period on the farm. The field was divided into two sections with an equal number of 
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plots allocated to both crop phases every year (Appendix Table A1). The first section was 

comprised of plots 1 - 18, and the second was comprised of plots 19 – 36 (Fig. 2.1). Both 

sections of the farm were cultivated with corn during 2014, and in 2015, the first section began 

the rotation with corn and the second section with soybean. From 2015 through 2017, cumulative 

grain yields in the study farm compared to the Douglas County average were 1% greater for 

soybean and 8% lower for corn. During this period, the farm was the subject of an N timing 

study with a randomized complete block design. In April 2016, the second section of the farm 

(tiles 19 – 36) received surface-broadcasted inorganic P fertilizer at a rate of 103 kg P ha-1. The 

commercial sources used were triple superphosphate (TSP) in plots 20, 23, 28, 32, and 36 and 

diammonium phosphate (DAP) in the remaining 13 fertilized tiles (Appendix Table A1). No P 

fertilizer was applied to tiles 1 – 18. During the study period, strip-till was performed during the 

fall (October – November) prior to the corn phase of the rotation, whereas soybeans were no-till 

planted. The growing season (GS) commenced with crop planting and ended the day of harvest. 

In all years, planting of both crops occurred in the last two weeks of May and corn harvesting 

from early to mid-October. Soybeans were harvested in late September, late October, and mid-

October during 2015, 2016, and 2017, respectively. For this study, the 2015 non-growing season 

(NGS) began with the initial measured flow and DRP monitoring in January. 

2.2.5 Data analysis 

Linear mixed models (LMM) followed by Tukey’s honestly significant difference (HSD) 

were used to quantify differences in average annual and seasonal (GS versus NGS) DRP yields 

and FWMC. The LMM captured temporal dependencies with year and season of sampling as 

fixed effects and tile ID as a random effect, fitted by the restricted maximum likelihood (REML) 

method in the nlme package (Pinhero et al., 2017). Linear regressions were performed to 
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examine the relationships among annual yields and FWMC of DRP, STP, and depression index. 

Dissolved reactive P data were log-transformed to meet assumptions of normality and equality of 

variance. Preliminary analysis of the relationship between STP and depression depth suggested a 

discontinuous function. Thus, I performed piecewise regression analysis using the Segmented 

Package (Muggeo, 2008) to identify the threshold at which the slope changed. The significance 

value in this study was set at 0.05. All the analyses were performed in the R statistical software 

v. 3.3.2 (R Core Development Team 2017).  

Linear mixed models and an information theoretic approach (Burnham and Anderson, 

1998) were used to assess the relative effects of soil test phosphorus, depression index, and their 

interaction with precipitation and phosphorus (P) fertilizer on tile dissolved reactive P losses at a 

monthly time step. Independent variables with a variance inflation factor (VIF) greater than three 

were sequentially excluded from the models until the VIFs remained below that threshold to 

reduce levels of multicollinearity. To allow direct comparison of the effect size of variables with 

different scales, all variables were standardized by subtracting the mean from each observation 

and dividing it by the standard deviation. Global models were fitted including all standardized 

predictors under investigation and the interactions among these terms specified as fixed effects, 

and tile ID as a random effect to account for temporal dependence. Models were compared to 

one another with the Akaike Information Criterion adjusted for small sample size (AICc) to 

assess goodness-of-fit. Model-averaged estimates (β) of the predictors were calculated from a 

subset of supported models with a cumulative AICc weight of 0.95 (Burnham and Anderson, 

1998). The maximum likelihood (ML) function was employed because it allows direct 

comparison of models with different fixed effects. Model selection and estimate averaging were 

performed in the MuMIN package (Barton, 2016). 
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2.3 Results 

Precipitation and its monthly distribution varied throughout the study period (Fig. 2.2). 

Total annual precipitation was greatest in HY 2016 (1069 mm), followed by HY 2015 (883 mm) 

and HY 2017 (870 mm). In 2015, precipitation was evenly distributed between the NGS (48%) 

and the GS (52%). A greater fraction of precipitation occurred during the NGS than during the 

GS in HY 2016 and HY 2017 (64% and 69%, respectively). The response of tile water discharge 

to precipitation differed seasonally (Fig. 2.2). During the GS, 16.1 ± 2.6% (mean ± SD), 8.6 ± 

2.7%, and 15.5 ± 5.7% of cumulative precipitation were expressed as tile discharge in HY 2015, 

HY 2016, and HY 2017, respectively. The lowest monthly average flow and the least number of 

tiles actively flowing occurred during the GS, from July – October in 2015 and 2016, and from 

August - September 2017. In the NGS, the portion of rainfall expressed as tile discharge was 

59.9 ± 11.0%, 37.8± 5.00%, and 46.8 ± 6.9% in HY 2015, HY 2016, and HY 2017, respectively. 

Tile DRP losses exhibited both inter- and intra-annual variability (Fig. 2.2 and Table 2.1). 

Across all tiles, mean annual FWMC of DRP did not differ from HY 2015 (0.024 mg L-1) to HY 

2016 (0.023 mg L-1; P=0.92) but increased to 0.033 mg L-1 in HY 2017 (P<0.01). Mean annual 

DRP yields significantly increased from 0.062 kg ha-1 in HY 2016 to 0.102 kg ha-1 in HY 2017 

(P<0.01). Precipitation was positively related to DRP yield in both the GS and NGS, and to 

FWMC of DRP in the NGS (Table 2.2). Greater mean DRP yields occurred during the NGS in 

HY 2016 (90% of annual yields; P<0.01) and HY 2017 (92%; P<0.01) relative to their respective 

GS. Averaged FWMC of DRP was greater in the GS in HY 2015 (NGS: 0.016 vs. GS: 0.036 mg 

L-1; P<0.01; Table 2.1), did not differ between periods in HY 2016 (NGS: 0.023 vs. GS: 0.020 

mg L-1; P=0.98), and was greater in the NGS in HY 2017 (NGS: 0.035 vs. GS: 0.018 mg L-1; 

P<0.01). 
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Soil test P concentrations from individual locations across the study field ranged from 8 

to 157 mg kg-1 (Fig. 2.1 and Appendix Fig. A1). Monthly FWMC of DRP and STP were 

positively associated in the NGS (Table 2.2), and at an annual scale, tile DRP yields increased 

with mean STP throughout the study with the strongest relationships in the last two years (Fig. 

2.3). The greatest individual STP concentrations (61 - 157 mg kg-1) occurred in the north section 

of the field, in areas overlying plots 33 – 36 (Appendix Fig. A1). Using a plat map and aerial 

imagery from the region, this area was later determined to be the location of a farmstead more 

than 70 years ago, which indicates the accumulated P in the soil derived from manure. 

Monthly tile DRP losses increased with depression index in the NGS (Table 2.2). At the 

annual scale, the strength of the positive association between tile DRP losses and depression 

index was greatest in HY 2015 and declined in subsequent years. Across all plots, both annual 

yield (HY 2015: R2=0.42; P<0.01; HY 2016: R2=0.16; P=0.01) and FWMC of DRP (HY 2015: 

R2=0.42; P<0.01 and HY 2016: R2=0.10; P=0.04) were related to depression index in the first 

two years of the study, whereas in HY 2017 they were not significantly related (DRP yield: 

P=0.32, and FMWC: P=0.47). In contrast, positive relationships were found across all years 

between annual tile DRP yields and depression index where mean STP concentrations < 27 mg P 

kg-1 (Fig. 2.4), which is the concentration of sufficiency for optimal corn and soybean production 

in central Illinois (Fernández and Hoeft, 2009). 

Relatively large STP concentrations coincided with the locations of closed depressions 

(Fig. 2.1). Consistently elevated yields and FWMC of DRP in tile 1, in contrast to adjacent tiles, 

led us to explore STP concentrations across the depression gradient (Fig. 2.5a). Piecewise linear 

regression demonstrated a critical threshold at a depression depth of 0.38 m at which STP 

concentrations increased (Fig. 2.5b). At depths greater than 0.38 m, a strong positive association 
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was observed between depression depth and STP (R2=0.91). Soil sampling for the closed 

depressions in tile 16 (Fig. 2.5c) similarly demonstrated a threshold at a depression depth of 0.37 

m, above which a positive relationship was observed (R2=0.49; Fig. 2.5d). 

In the NGS, DAP application interacted with depression index and precipitation to 

increase DRP yields and FWMC, respectively (Table 2.2). Similarly, increased DRP yields were 

related to TSP application in the NGS. Greater DRP concentrations were observed in tile water 

samples collected after P fertilization where DAP was applied than where TSP was applied or 

where no P fertilizer was used (Appendix Fig. A2). Although P was applied in the last month of 

the 2016 NGS, 51.4 ± 10.1% (mean ± SD) and 34.8 ± 2.7% of NGS DRP yields occurred after 

fertilization with DAP and TSP, respectively. In the same period, tiles with no P addition 

exported 22.8 ± 7.7% of that season’s DRP yield.  

2.4 Discussion 

As expected, our results show that precipitation strongly affected tile DRP yields (Table 

2.2). However, the magnitude of tile DRP yields in HY 2016 and HY 2017 was much greater in 

the NGS than the GS (Table 2.1), suggesting that crop water demand controls tile DRP losses by 

reducing discharge. Consistent with this interpretation, the greatest tile DRP yields were 

observed in the GS either early or late in the season, when plant water demand would have been 

relatively low (Fig. 2.2). Similar seasonal patterns in both tile water discharge and DRP yield 

have been documented previously in studies conducted in temperate regions with comparable 

precipitation regimes (Clement and Steinman, 2017; King et al., 2016; Van Esbroeck et al., 

2016). These data highlight the importance of crops for attenuating precipitation-driven tile DRP 

losses and underscore the key role of the NGS for determining annual DRP losses from 

subsurface drainage. 



17 

 

 The association between mean STP and annual tile DRP yields (Fig. 2.3) and the relative 

importance of STP for predicting monthly tile FWMC of DRP in the NGS (Table 2.2) indicate 

that P stored in the upper soil layer was delivered to subsurface waters. This relationship has 

been previously documented in hydrologically active arable soils (Duncan et al., 2017; 

McDowell and Sharpley, 2001). Moreover, tiles underlying areas with relatively large STP 

concentrations (tiles 33, 34, 35, and 36; Appendix Fig. A1) consistently ranked among the largest 

annual tile DRP yields since the beginning of the study (Appendix Table A2). Because these tiles 

drain an area where a farmstead was previously located (Appendix Fig. A1), this is interpreted as 

evidence that legacy P originating from manure drives elevated losses of DRP in subsurface 

drainage. Some individual STP concentrations in the area where the farmstead was previously 

located were up to fivefold greater than the amount needed for optimum corn and soybean 

production in central Illinois (27mg P kg-1) (Fernández and Hoeft, 2009). Strategically 

withholding P applications to achieve agronomic optimum STP concentrations (Rowe et al., 

2016) could potentially reduce the risk of legacy-derived DRP losses in subsurface drainage. 

Closed depressions influenced both tile DRP yields and FWMC exclusively in the NGS 

(Table 2.2). This seasonal difference of the effect of closed depressions on DRP loss may result 

from greater evapotranspiration rates during the GS that reduce frequency and duration of 

ponding. The observed relationship between STP and depression depth beyond the threshold at 

0.38 m suggests that the convergence of P-laden water and colloids from upslope positions 

carried with surface runoff lead to soil P accumulation in depressions (Fig. 2.5). Likewise, soil P 

accumulation in depressional areas was reported in a small agricultural watershed study in 

Manitoba, Canada (Wilson et al., 2016). Colloids deposited in depressions may become active 

sources of dissolved P given the increased potential of remobilizing particle-bound P in flooded 
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and saturated soils due to the microbially mediated reduction of Fe-oxyhydroxides (Gu et al., 

2018; Henderson et al., 2012). Phosphorus solubilizing biological interactions and chemical 

reactions can also be affected by microbial community composition and soil characteristics 

across topographic gradients (Suriyavirun et al., 2019). These results are consistent with the 

detection of unusually high concentrations of soluble P in subsurface water from a plot near 

ponding-prone areas that coincided with the greatest topsoil P concentrations observed (50 mg P 

kg-1) in a rotational cropping experiment in Iowa (Tomer and Liebman, 2014). Additionally, P 

may accumulate in closed depressions throughout the year with residual P losses expressed 

during the NGS. Anoxic conditions during critical stages of plant development may lead to 

reduced plant uptake of P, affecting corn (Jaynes et al., 2003) and soybean (Jaynes et al., 2005) 

yields compared to upslope areas, thereby attenuating depletion rates of the labile fraction of soil 

P in closed depressions. This is supported by previous research attributing the significant 

reduction of DRP concentrations in tile water in the NGS to increased crop uptake of P during 

the preceding GS in a continuous corn production system (Nash et al., 2014). Thus, while closed 

depressions disconnect the surface P transfer continuum at a watershed scale (Thomas et al., 

2016), in tile-drained agricultural landscapes they may serve as P sources and delivery points 

hydrologically connected to the overland drainage network. 

At the annual scale, positive effects of depression index on tile DRP yields were detectable 

only when mean STP concentrations were below the optimum for crop production in central 

Illinois (Fig. 2.4). The declining strength of this relationship across years may be explained by the 

dominant contributions of P derived from fertilization, especially in the NGS as evidenced by 

lower model-averaged parameter estimates for the depression index compared to DAP in the 

multivariate analysis (Table 2.2). The strong positive interaction between DAP and depression 
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index in the NGS (Table 2.2) and greater tile DRP concentrations from plots where DAP was 

applied (Appendix Fig. A2) further suggests that the direct exposure of highly soluble P fertilizer 

to ponding water immediately after application contributed to incidental tile DRP losses. In a study 

simulating rainfall on no-till plots, contact between broadcast soluble P fertilizer and ponding 

water resulted in highly concentrated DRP water, which was transported vertically through 

unsaturated and saturated preferential flow paths (Williams et al., 2018). Additional research 

involving isotope tracers may help determine the dominant transport mechanism of incidental 

losses in the study field.  

High concentrations of accumulated residual soil P in low-lying areas indicate that these 

locations do not currently require additional P fertilizer. However, based on a typical 1 ha (2.5 

acres) grid pattern used in soil mapping and fertilizer recommendations, sub-field scale hotspots 

may not be detected due to the variability in soil P concentrations across relatively small areas. I 

speculate that stratified sampling where a grid sampling scheme is supplemented with a targeted 

sampling of depressional areas may provide a more accurate characterization (i.e., soil mapping) 

of the field’s soil P content (Mulla et al., 2000). This also suggests variable rate P fertilization 

would be beneficial in fields containing closed depressions to reduce P losses in tile drainage. 

2.5 Conclusion 

Dissolved reactive P exports from tile-drained fields encompass critical temporal and 

spatial components. Substantially greater tile DRP losses during the NGS underline the need to 

focus P management and loss reduction strategies to efficiently minimize the contributions of 

agricultural practices on water quality impairment in this period.  Increased soil P concentrations 

associated with historical and recent management, and closed topographic depressions, can be 

important sources of tile DRP losses. This study’s findings suggest the need to draw down soil P 
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in these areas to STP concentrations that do not exceed crop requirements. Soil sampling 

techniques that detect soil P variability at sub-field scales should be employed to accurately 

identify these locations to prevent soil P buildup and diminish the risk of soluble P exports from 

tile-drained fields while maintaining crop productivity. 

2.6 Tables and Figures 

Table 2.1. Mean seasonal yield and flow-weighted concentration of DRP of 36 tiles from 

hydrological years 2015 through 2017. 

Hydrol.   

year 
Season 

DRP yield FWMC of DRP 

Mean 

(kg ha-1) 

Lower and upper 

bounds of 95% CI of 

the mean (kg ha-1) 

Mean 

(mg L-1) 

Lower and upper 

bounds of 95% CI of 

the mean (mg L-1) 

2015 
Non-growing 0.020 0.009 / 0.031 0.016 0.010 / 0.023 

Growing 0.025 0.015 / 0.036 0.036 0.029 / 0.042 

2016 
Non-growing 0.054 0.044 / 0.065 0.023 0.016 / 0.029 

Growing 0.006 -0.005 / 0.017 0.020 0.014 / 0.027 

2017 
Non-growing 0.094 0.084 / 0.105 0.035 0.029 / 0.042 

Growing 0.008 -0.002 / 0.019 0.018 0.011 / 0.024 

 

Table 2.2. Model-averaged coefficient estimates for significant predictors and interactions for 

monthly tile DRP yield and FWMC in the growing and non-growing season. Underscored 

estimates denote significant predictors (conf. interval does not contain ‘0’ for the respective 

season and response variable). 

Parameter 

Growing season Non-growing season 

β parameter 

estimate 

β parameter 

estimate 

β parameter 

estimate 

β parameter 

estimate 

(DRP FWMC) (DRP yield) (DRP FWMC) (DRP yield) 

Depression index 0.13 0.06 0.19 0.12 

Precipitation 0.03 0.54 0.09 0.41 

Soil test P 0.11 0.07 0.27 - 

DAP -0.13 0.02 1.46 0.59 

TSP 0.13 -0.10 - 0.49 

DAP * Depression index 0.07 -0.35 1.26 - 

DAP * Precipitation - 0.01 - 0.21 

The reference level for fertilizer type (DAP and TSP) is “not fertilized”. Coefficient estimates are 

based on scaled variables and thus reflect effect sizes. 
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Figure 2.1. Depression depth, soil test P (STP) concentrations for each sampling location and 

distribution of the contributing area of 36 instrumented tiles. 
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Figure 2.2. Monthly mean ± 1 SE of: A) flow-weighted mean concentration (FWMC) of 

tile DRP, B) tile DRP yield, and C) flow of 36 instrumented tiles. D) Cumulative monthly 

precipitation in the study site. Shaded periods depict non-growing seasons. 

P fertilizer 
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Figure 2.3. Relationship between log-annual DRP yield and mean soil test P (STP) 

concentration. ** P<0.01 

 

 

 
Figure 2.4. Relationship between log-annual DRP yield and depression index segregated by 

mean STP concentration at which yield does not depend on P additions to the soil. ** P<0.01 
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Figure 2.5. A) Soil test P (STP) concentration, depression depth, and B) their piecewise linear 

regression across closed depression in tile 1. C) Surface STP concentration, depression depth, 

and D) their piecewise linear regression across closed depression in tile 16. 
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CHAPTER 3: THE ROLE OF HYDROLOGIC DRIVERS ON PHOSPHORUS EXPORTS 

FROM AGRICULTURALLY DOMINATED WATERSHEDS 

3.1 Introduction 

Phosphorus (P) inputs from diffuse agricultural sources to downstream waters can 

degrade the quality of receiving aquatic ecosystems (Sharpley et al., 1994). In the Mississippi 

River Basin, agriculturally dominated watersheds have been identified as important contributors 

of P loads (Jacobson et al., 2011) that, coupled with nitrogen (N) loads, are the main sources of 

the hypoxic zone in the Gulf of Mexico (Turner and Rabalais, 2003). Phosphorus losses in 

agricultural watersheds derived from diffuse sources are not strictly related to inputs on a short 

time scale (e.g., fertilizer application) (Jacobson et al., 2011). Instead, a P ‘spiraling’ (continuous 

transfers among the soil, water, and biota phases) may delay exports of surplus P to downstream 

waters, increasing the complexity to maintain a balanced P cycling and to implement P loss 

reduction practices (Sharpley et al., 2013). Management of P exports from agricultural 

watersheds has been traditionally based on the Critical Source Area (CSA) framework (Pionke et 

al., 2000; White et al., 2009). These areas are defined as locations where P sources or ‘hotspots’ 

and enhanced hydrological connectivity to the stream network intersect, resulting in greater risk 

of P movement to streams. Although this approach is based on reliable evidence and has resulted 

in substantial advances to strategically target and prioritize mitigation measures, there are 

multiple components that interact with P sources and transport capacity to determine the risk of 

pollution of aquatic ecosystems. For instance, the buffering capacity of a watershed (ability to 

resist changes on P concentrations and loads in surface waters) encompass geochemical, 

hydrological, and biomass storage components that modulate the effects of known P loss drivers 

(e.g., P legacies and precipitation) (Doody et al., 2016).  
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Antecedent moisture conditions can be an indicator of the buffering capacity of a 

watershed by determining constituent and water exports based on historical records because 

moisture conditions influence source availability and the activation of transport mechanisms 

(McMillan et al., 2018). Although precipitation is the main control of flow generation in tile 

drains, antecedent moisture conditions mediate the runoff-to-precipitation response during bare 

soil periods and early stages of the growing season, when nutrient losses are more likely to occur 

(Vidon and Cuadra, 2010). Surface runoff generation and the potential to transport sediment-

bound P increases with greater soil moisture content (McDowell and Sharpley, 2002). However, 

the effect of antecedent moisture conditions on nutrient dynamics has been studied primarily for 

nitrogen losses (Davis et al., 2014; Vidon et al., 2009). Additionally, improving our 

understanding of the relationship between nutrient losses and antecedent moisture conditions 

requires long-term datasets of constituent concentrations which in many cases are not readily 

available. 

 Several models and statistical tools have been developed to simulate and estimate P loads 

and P conveyance to streams at a range of spatial scales. The applicability of statistical and 

process-based models is determined by the extent and resolution of available data, processes 

involved, and objectives of the researchers (Baffaut et al., 2015). The Weighted Regressions on 

Time, Discharge, and Season (WRTDS) is a statistical technique that uses as explanatory 

variables time of the year, daily discharge, and seasonal trends to estimate constituent loads at a 

daily time-step (Hirsch et al., 2010). To obtain an accurate estimation of constituent loads, Zhang 

and Ball (2017) included antecedent discharge anomalies as an explanatory variable. However, 

the authors recognize that further studies should be performed to identify the areas for 

improvement of this statistical method.  



27 

 

In this study, the overall objective is to improve our understanding on how antecedent 

hydrologic conditions affect dissolve reactive P (DRP) and particulate P (PP) exports from 

agricultural watersheds dominated by tile drainage. Specifically, I i) evaluated how hydrologic 

drivers (precipitation, water retention capacity, runoff, baseflow) affect P exports and, ii) 

assessed the performance of the WRTDS method to estimate P exports with and without the 

inclusion of an antecedent flow anomaly term. 

3.2 Methods 

3.2.1 Study region 

This study was conducted using data from three agriculturally dominated watersheds 

within the Mississippi River Basin located in east-central Illinois. The watershed outlets are 

defined by the location of gauging stations monitored by the United States Geological Survey 

(USGS) (Fig. 3.1). The topography is predominantly flat with slopes less than 2% derived from 

the Wisconsin glaciation. More than 90% of the land is used for row crop agriculture, mainly 

under a corn (Zea mays L.) and soybean (Glycine max L.) rotation and scarce animal production 

(David et al., 2016). The predominant soils are fine-textured and classified as Drummer silty clay 

loam (fine-silty, mixed, superactive, mesic Typic Endoaquolls) and Flanagan silt loam (fine, 

smectitic, mesic Aquic Argiudolls) (USDA-NRCS, 2016). Artificial subsurface (tile) drainage is 

prevalent in the region to accelerate excess water removal from poorly drained soils to benefit 

row crop production. However, tile drainage has altered the hydrologic and biogeochemical 

dynamics of the region by increasing hydrological connectivity and contributing to N and P 

exports to downstream water bodies (Royer et al., 2006).    

The upper Embarras River (EMC) watershed is delimited by USGS site 03343400 near 

Camargo, IL draining 481 km2 mostly distributed between Champaign County and Douglas 
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County. The EMC watershed receives an average discharge of 0.21 mega gallons per day (Mg d-

1) from the sewage treatment plant of Villa Grove, IL. The Lake Fork of the Kaskaskia River 

(LFK) watershed (386 km2) is delimited by the USGS site 05590800 near Atwood, Piatt County 

and is primarily located in Piatt and Champaign County. The Salt Fork (SF) watershed drains 

347 km2 in Champaign Co. and is monitored by the USGS site 03336900 near St. Joseph. The 

Rantoul sewage treatment plant delivers an average of 2.81 Mg d-1 of water to the SF river. 

These three watersheds are representative of topographic characteristics and agricultural 

practices of east-central Illinois. 

3.2.2 Precipitation, discharge measurements, and water sampling and analysis 

Cumulative daily precipitation records were obtained from the National Centers for 

Environmental Information weather station network (NOAA, 2017) at EMC (Villa Grove 0.6 

ESE, Broadlands 0.1 SSW, Willard Airport, Philo, and Rantoul), LFK (Monticello 3.5 NNE, 

Atwood 0.4 N, Atwood 5.4 NW, Hammond, Tuscola), and SF (St. Joseph 0.6 NE, St. Joseph 0.9 

SSW, Thomasboro 5.2 E, and Rantoul). For each watershed, cumulative daily precipitation was 

calculated as the average daily values across all the corresponding weather stations. Measured 

discharge records were obtained from the USGS gauge site at the watershed outlets.   

Water samples were collected at the outlet of the watersheds on a weekly basis since June 

1993 (EMC), October 1996 (LFK), and March 2010 (SF) through September 2018. After 

collection, water samples were processed and stored as described in Chapter 2. Dissolved 

reactive P was determined colorimetrically using a spectrophotometer until November 2002 and 

using the ascorbic reduction method with a Lachat QuickChem 8000 FIA Automated Ion 

Analyzer (Hach Company, Loveland, CO) from December 2002 through the end of the study as 

described in Chapter 2. Total P (TP) was determined from unfiltered water samples and digested 
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with ammonium persulfate and sulfuric acid. Operationally defined particulate P (PP) was 

calculated as the difference between TP and DRP. Annual yields and flow-weighted mean 

concentrations (FWMC) of DRP and PP were obtained by linear interpolation as described in 

Chapter 2. Annual runoff was determined by dividing annual discharge by the watershed area. In 

this chapter, all years are based on the hydrological cycle (October 1st - September 30th) instead 

of the calendar year. 

3.2.3 Data analysis and the weighted regressions on time, discharge, and season method 

Linear regressions were used to evaluate bivariate relationships using a significance level 

of 0.05 and were performed in the R statistical software v. 3.3.2 (R Core Development Team 

2017). In this study, river runoff was used as a proxy for moisture conditions (Murphy et al., 

2014; Zhang and Ball, 2017) and the runoff-to-precipitation ratio (R:P) as a proxy for water 

retention capacity in the watershed (Goyette et al., 2018a). Power law relationships were 

employed to characterize the response of DRP and PP concentrations to discharge and are 

defined as    

                                                                    𝑌 = 𝑎𝑄𝑏                                                                    (2) 

where Y is the daily nutrient yield (area-weighted load), a is the intercept, Q is the discharge, and 

b is the slope (elasticity coefficient). Increments in discharge can result in dilution or dominant 

baseflow (b<1), invariable concentrations (b=1), or increased concentrations (b>1). Particulate P 

yields from LFK for 2012 and from EMC for 2000 were excluded from the power law analysis 

due to an excessive number of zeroes in the dataset. Across three watersheds, about 75% of total 

water discharge occurred when daily discharge >1 mm day-1 during the study period; therefore, 

baseflow was defined as daily discharge <1 mm day-1 equivalent to 5.6 m3 s-1 at EMC, 4.46 m3 s-

1 at LFK, and 4.0 m3 s-1 at SF. 
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The evaluation of the base WRTDS and the modified version (with the inclusion of the 

antecedent flow anomaly term) is based on Zhang and Ball (2017). An antecedent flow anomaly 

(AFA) term was added to the base model proposed by Hirsch et al. (2010) in the EGRET 

package in R. The modified equation for WRDTS is 

              ln(𝐶) = 𝛽₀ + 𝛽₁𝑡 + 𝛽₂l n( 𝑄) + 𝛽₃si n( 2𝜋𝑡) + 𝛽₄co s( 2𝜋𝑡) + 𝛽₅AFA + ℇ               (3) 

where C is concentration, t is time in decimal years, Q is discharge, 𝛽 is the parameter 

coefficient, AFA is the antecedent flow anomaly and ℇ is the error term. The estimated 

concentrations and loads generated by the base and modified WRTDS models were evaluated 

against observed data using a modified Nash-Sutcliffe efficiency coefficient (E). The different 

AFA terms (equations 4 -  16) and the formula of E (equation 15) are described in Appendix B1. 

3.3 Results 

3.3.1 Hydrologic drivers of P losses 

Average annual precipitation was 973 mm at EMC (1994 – 2018), 1015 mm at LFK 

(1997 – 2018), and 1016 mm at SF (2008 – 2018) (Appendix Table B1). During the first period 

of the study (1994 – 2007 for EMC and 1998 – 2007 for LFK), average annual precipitation was 

4.9% and 6.4% lower than the average annual precipitation of the entire study period at EMC 

and LFK, respectively. Whereas, during the second period (2008 – 2018), average annual 

precipitation was 5.6% and 5.7% higher than the average at EMC and LFK, respectively. Across 

all three watersheds, 2008 was the wettest year followed by 2016 and 2010, and for EMC and 

LFK, 2002 was the fourth wettest year. The driest years were 2000 (676 mm), 2012 (734 mm), 

and 2013 (868 mm) for EMC, LFK, and SF, respectively. During the period of record for each 

watershed, the area-weighted water discharge (runoff) ranged from 676 – 1289 mm at EMC, 735 

– 1481 mm at LFK, and 868 – 1411 mm at SF. Runoff was related to summed annual 
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precipitation at EMC (R2= 0.38; P<0.01) and LFK (R2=0.56; P<0.01), but not at SF (P=0.21) 

(Appendix Fig. B1). As expected, the proportion of precipitation that became river runoff, 

expressed as the runoff to precipitation ratio (R:P), was strongly related to runoff (R2 greater than 

0.85 and P<0.01 for all three watersheds) (Appendix Fig. B1). Mean R:P ratio over the period of 

record was 0.33, 0.29, and 0.34 at EMC, LFK, and SF respectively.   

Both annual DRP and PP yields varied across watersheds and years; however, annual PP 

yields were more variable than DRP yields throughout the study period (Appendix Table B1). 

Average annual DRP yields were 0.47 ± 0.24 kg P ha-1 (mean ± SD), 0.34 ± 0.24 kg P ha-1, and 

0.50 ± 0.14 kg P ha-1 at EMC, LFK, and SF, respectively. Whereas, average annual PP yields 

were 0.42 ± 0.36 kg P ha-1, 0.36 ± 0.33 kg P ha-1, and 0.39 ± 0.19 kg P ha-1 at EMC, LFK, and 

SF, respectively. Both DRP and PP annual yields were positively related to precipitation at EMC 

and LFK (Appendix Fig. B2) and to R:P ratio (marginally significant for PP yields at SF; 

P=0.08). At SF, this association was marginally significant for DRP (P=0.06) and not significant 

for PP (P=0.27). Dissolved reactive P: Total P ratios varied temporally and across watersheds. 

During the study period, average daily DRP:TP concentration ratios were lower than 0.5 at LFK, 

with the exception of 1998 (Appendix Fig. B3). At SF, average daily DRP:TP concentration 

ratios were greater than 0.5 across all years; however, during the 2009 – 2014 period, this ratio 

ranged between 0.70 and 0.81, and during 2015 – 2018 ranged from 0.52 to 0.62. When 

excluding baseflow data (runoff <1 mm day-1), DRP:TP increased and showed greater inter-

annual variability at LFK (Fig. 3.2), remained above 0.5 at SF, and was negatively related to 

annual precipitation (R2=0.28; P=0.01) at EMC (Fig. 3.5). The non-baseflow runoff fraction ( > 1 

mm day-1) represents nearly 70% of total runoff in all three watersheds. On average, the non-



32 

 

baseflow fractions of total annual DRP and PP yields were 89 and 83% at EMC, 86 and 81% at 

LFK, and 74 and 83% at SF, respectively. 

The positive relationship between annual precipitation and elasticity coefficient (b) was 

significant for PP yields at EMC (R2=0.21; P=0.03) and marginally significant at SF (R2=0.32; 

P=0.09) (Fig. 3.4). Elasticity coefficient (b) increased after the area-weighted baseflow data (< 1 

mm of discharge per day) were excluded from analysis (Appendix Table B2). For DRP yields, 

average elasticity coefficient (b; unitless) increased after excluding baseflow data from 0.99 ± 

0.11 to 1.89 ± 0.26 at EMC, from 1.00 ± 0.17 to 2.00 ± 0.27 at LFK, and from 0.97 ± 0.42 to 

1.44 ± 0.20 at SF. At the latter watershed and before excluding the baseflow data, the average 

slope (b) of the 2009 – 2014 period was notably lower (0.64 ± 0.14) than that of the 2015 – 2018 

period (1.47 ± 0.06). Average elasticity coefficient for PP yield was also greater when the 

baseflow data were excluded, which changed from 1.07 ± 0.16 to 1.70 ± 0.32, from 0.88 ± 0.13 

to 1.77 ± 0.30, and from 1.19 ± 0.26 to 1.60 ± 0.28 at EMC, LFK, and SF, respectively. 

Elasticity coefficient for PP and DRP yields were not related to precipitation when the baseflow 

data were excluded. 

3.3.2 WRDTS and the inclusion of antecedent flow anomalies 

 The performance of the base WRTDS model in relation to observed data varied across 

watersheds and P fractions (DRP and PP) (Table 3.1). The coefficient of determination (R2) 

between observed annual DRP loads and those calculated by the base WRTDS were 0.85 at 

EMC, 0.75 at LFK, and 0.65 at SF. Likewise, for PP yields the R2 was 0.59, 0.84, and 0.62 at 

EMC, LFK, and SF, respectively. For both P fractions and all watersheds, load calculations 

performed better than concentrations. The inclusion of the antecedent flow anomaly term to the 

base WRTDS model maintained or, in few cases, modestly increased the E-values for both DRP 



33 

 

and PP relative to the base WRTDS model (Table 3.1). Although small, improvements based on 

the E-value were consistent with the addition of the average discounted flow (ADF) term for 

both P fractions and across all three watersheds. The R2 of DRP and PP yields across the 12 

modified and base WRTDS models indicated the years with greater inconsistency among the 

tested models. At EMC, the years 2000 for DRP yields and 1996 for PP yields showed the 

highest variability across models; whereas at LFK, 2012 for DRP yields and 2003 for PP yields 

exhibited the greatest variability. At SF, that year was 2012 for both DRP and PP yields.  

3.4 Discussion 

 Results from this study indicate that not all the hydrological responses to precipitation 

were uniform, even though all three monitored watersheds were largely dominated by row crop 

agriculture (85 – 90%). Similar to previous studies conducted in artificially drained watersheds 

(King et al., 2015a; Macrae et al., 2007), annual precipitation was related to runoff at EMC and 

LFK (Appendix Fig. B1). However, runoff was disproportionately reduced at SF during the 2012 

drought, affecting the runoff-to-precipitation (R:P) response. Although 2012 was not the year 

with the lowest cumulative precipitation during the period of record at SF, 35% of the total 

precipitation occurred in the last two months of that hydrological year when crop water demand 

and evapotranspiration rates were high. At all sites, the R:P ratio, interpreted as the percentage of 

precipitation that resulted in river discharge at the watershed outlet, was a stronger predictor of 

runoff than cumulative precipitation (Appendix Fig. B1). Mean R:P ratio at the study watersheds 

were lower than those recorded in 18 agricultural watersheds in Quebec, Canada (Goyette et al., 

2018b). Despite the prevalence of tile drainage in the study watersheds, low R:P ratios suggest 

higher water retention capacity probably due to topographic characteristics (e.g., lower slopes, 

closed topographic depressions) and predominant fine-textured soils.  



34 

 

 The positive relationship between both DRP and PP yields with R:P ratio likely 

originated from the response of runoff to R:P ratio, indicating that years with lower water 

retention capacity (high R:P ratio) exhibited greater P downstream transfer (Fig. 3.3). In this 

study, the water retention capacity of the monitored watersheds acted as a buffer of the effect of 

precipitation on DRP and PP exports. Previous work has examined the effect of R:P ratio on P 

loads in areas dominated by tile drainage. For example, R:P was related to greater N and P 

exports (quantified as the fraction of constituent losses relative to net anthropogenic inputs) in 

Québec, Canada (Goyette et al., 2018a). In Ohio, DRP and TP loads increased with R:P ratio in 

fields with lower soil test P concentrations, and at R:P<0.2, subsurface TP loading met the 

recommended target for the Lake Erie  (<1.24 kg ha-1) with soil test P (Mehlich III) of 125 mg 

kg-1 (King et al., 2018).  

Annual PP yields were more variable than DRP yields (Appendix Table B1) due to the 

episodic nature of erosional processes (Heathwaite et al., 2005). With a 23 year-record, the 

relationship between precipitation and daily average DRP:TP ratio when runoff > 1mm day-1 

(non-baseflow fraction) at EMC (Fig. 3.5) supports the interpretation made by Royer et al. 

(2006) and Gentry et al. (2007) that wet years result in greater proportion of PP losses relative to 

DRP (low DRP:TP). In Iowa, large variability of DRP:TP ratios observed in 12 agricultural 

watersheds (Range: 0.08 – 0.68) were associated with crop intensity and with important 

contributions of baseflow (Schilling et al., 2017). Additionally, the association between the 

elasticity coefficient “b” with precipitation at EMC and SF indicates that PP exponentially 

increases with precipitation. These findings suggest that during wet years, the probability of soil 

saturation, surface runoff generation, and sediment-bound P transport increases, thus, activating 

the hydrological connectivity of the watershed. 
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Dissolved reactive P to total P (DRP:TP) ratios at SF were highly influenced by 

discharges of the City of Rantoul sewage treatment plant that delivered to the SF River an 

average of 0.45 Mg P year-1 (Fig. 3.2). In 2014, the Rantoul sewage treatment plant began the 

removal of soluble P which explains the reduction of DRP:TP ration in the subsequent years 

(Fig. 3.2). The effect of sewage effluent was also observed on the elasticity coefficient at SF for 

DRP from 2009 to 2014 (Appendix Table B2) which abruptly increased in 2015 after P removal 

was implemented. The influence of the Villa Grove sewage treatment plant was not as evident 

for EMC as the Rantoul plant for SF, probably because the Villa Grove plant delivers an average 

of 0.21 Mg of water d-1 compared to 2.81 Mg d-1 delivered by the Rantoul plant. Both, the 

DRP:TP ratio and the elasticity coefficient were calculated based on daily values; therefore, 

baseflow conditions had the same weight as days with greater P loads (e.g., precipitation events, 

snowmelt). Despite the influence that baseflow can exert on the interpretation of these analyses, 

low flow only contributed from 11 to 26% of the annual P loads. Special attention should be 

given when investigating the behavior of water quality constituents, especially P, because 

baseflow conditions may control hydrologic and biogeochemical responses at a daily scale that 

do not necessarily reflect the potential effect on nutrient loadings. 

The performance of the base and modified WRTDS models, with respect to observed 

data, was watershed and P fraction dependent (Table 3.1). The base and modified WRTDS 

models at EMC produced greater E-values compared to LKS and SF which can be, in part, 

related to the flashy responses of discharge to precipitation at the latter watersheds (Hirsch et al., 

2010). Particularly at SF, water discharge can increase an order of magnitude within 24 hours 

from the onset of the event. Increasing the frequency of the time-step (e.g., 0.5 or 0.33 days) at 

these watersheds could potentially alleviate this problem. The inclusion of the antecedent 
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discharge anomaly term into WRTDS did not substantially increase the performance of the 

model. E-values were consistent with those of the base model, suggesting that improvements of 

the modified models were likely an effect of the base model.  

Findings from this study support the interpretation made by Zhang and Ball (2017) that 

the lack of substantial improvement of the modified WRTDS models to estimate DRP exports 

can be attributed to physico-chemical and biological processes occurring in the watersheds 

(Zhang and Ball, 2017). Linear regressions between observed and WRTDS-derived nutrient 

loads allowed to identify ‘outlier years’. At all three watersheds, WRTDS underestimated DRP 

concentrations and loads in February 2007 and February 2014, years that experience snowmelts 

with a substantial amount of fertilizer as suggested by the greater proportion of DRP losses in 

relation to TP (Appendix Fig B4). At EMC, those events accounted for 64% of the annual DRP 

load in 2017 and 54% in 2014. Interestingly, WRTDS estimated greater PP concentrations and 

loads than those observed in 1996 at EMC. After a detailed exploration of the dataset, it was 

noted that under the sampling frequency at that moment (biweekly) two precipitation events that 

substantially increased runoff were not sampled. In this case, the observed concentrations 

differed from the WRTDS estimations because the sampling frequency resulted in an 

underrepresentation of reality.  

3.5 Conclusion 

Results from this study suggest that the water retention capacity (R:P) of a watershed 

buffers the effect of precipitation on P exports. In agricultural watersheds, timing, frequency, and 

intensity of precipitation can affect hydrological responses that alter the transport capacity of 

nutrients and pollutants. Thus, hydrologic connectivity is not necessarily a constant over time 

and varies depending on watershed characteristics. The response of P exports to precipitation can 
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vary depending on crop water demand, evapotranspiration, soil saturation, precipitation intensity, 

infiltration capacity, topographic variations, and soil type. These variables may act differently on 

both fractions of P (DRP and PP); therefore, the DRP:TP ratio could be a good indicator to 

define water quality goals and prioritize mitigation measures. 

Due to a wide range of drivers, predicting the transport of P in tile-drained watersheds is 

complex. At this moment, even in relatively homogeneous watersheds (e.g., similar topography, 

agricultural practices, soil type) the performance of statistical tools and process-based models 

that estimate and predict P transport need improvement. Improving the prediction of P transport 

for different fractions and not only TP is also important because they result in different 

implications for water quality. However, this is a challenging task that will require better 

understanding of hydrologic drivers of P movement due to the contributions of DRP from tile 

drainage and the episodic nature of PP on intensively cultivated landscapes.
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3.6 Table and Figures 

Table 3.1. Performance of the base and proposed models relative to observed concentrations and loads. 

 

Method 

Embarras (EMC) 
Lake Fork - Kaskaskia 

(LFK) 
Salt Fork (SF) 

DRP PP DRP PP DRP PP 

Conc. Load Conc. Load Conc. Load Conc. Load Conc. Load Conc. Load 

---------------------------------E (Modified Nash-Sutcliffe Efficiency)-----------------------------

--- 

WRTDS 0.51 0.80 0.32 0.65 0.39 0.69 0.31 0.62 0.36 0.79 0.32 0.71 

WRTDS + LTFA 0.51 0.80 0.33 0.67 0.38 0.69 0.35 0.65 0.36 0.78 0.33 0.73 

WRTDS + MTFA 0.53 0.81 0.32 0.64 0.40 0.70 0.32 0.62 0.35 0.80 0.34 0.72 

WRTDS + STFA 0.54 0.81 0.33 0.65 0.39 0.70 0.33 0.64 0.38 0.80 0.34 0.72 

WRTDS + AnnualFA 0.51 0.80 0.33 0.66 0.38 0.69 0.35 0.65 0.38 0.78 0.33 0.73 

WRTDS + SeasonFA 0.52 0.80 0.32 0.64 0.40 0.70 0.33 0.63 0.35 0.79 0.33 0.71 

WRTDS + DailyFA 0.52 0.80 0.33 0.65 0.40 0.70 0.36 0.67 0.36 0.79 0.33 0.73 

WRTDS + FA100 0.52 0.80 0.33 0.65 0.40 0.71 0.36 0.67 0.35 0.79 0.33 0.73 

WRTDS + FA10 0.53 0.81 0.33 0.65 0.39 0.69 0.32 0.62 0.35 0.81 0.34 0.72 

WRTDS + FA1 0.54 0.81 0.35 0.65 0.39 0.70 0.34 0.66 0.39 0.80 0.35 0.72 

WRTDS + ADF 0.55 0.82 0.35 0.66 0.41 0.70 0.35 0.65 0.39 0.82 0.34 0.72 

WRTDS + dQ/dt 0.53 0.80 0.36 0.63 0.39 0.69 0.33 0.64 0.37 0.80 0.37 0.73 

WRTDS + BFI 0.55 0.81 0.34 0.64 0.37 0.70 0.33 0.65 0.37 0.79 0.34 0.72 
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Figure 3.1. Location of the three monitored agricultural watersheds in east-central Illinois. 

 



40 

 

Figure 3.2. Daily DRP:TP ratios at A) Embarras River (EMC), B) Lake Fork - Kaskaskia River 

(LFK), and C) Salt Fork River (SF). Data under baseflow conditions (<1 mm day-1) were 

excluded.  

  

A 

B 

C 
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Figure 3.3. Relationship between annual dissolved reactive P (DRP) and particulate P (PP) yields with 

annual discharge:precipitation ratio at A & B) Embarras River (EMC), C & D) Lake Fork – Kaskaskia 

River (LFK), and E & F) Salt Fork River (SF) watershed. 
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Figure 3.4. Relationship between elasticity coefficient “b” for PP yield and annual precipitation at 

Embarras River (EMC; P=0.03) and Salt Fork watershed (SF; P=0.09). 

 

 
Figure 3.5. Relationship between DRP:TP ratio at daily average runoff >1mm and annual 

precipitation at Embarras River watershed (EMC). 
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CHAPTER 4: CONCLUSIONS 

 The spatial and temporal complexity of processes driving phosphorus (P) dynamics in 

agricultural systems provides challenges to achieve water quality goals. Expected changes in 

climatic patterns and rainfall amount, distribution and intensity can exacerbate the detriment of 

aquatic ecosystems derived from non-point sources. Equally important, there is a need to 

efficiently produce agricultural goods using finite resources, such as P, that require more 

information to achieve sustainability. This thesis contributes to improve and communicate our 

understanding of P loss drivers in agricultural landscapes dominated by artificial subsurface 

drainage at field and watershed scales. Access to a combination of fine-scale information (sub-

meter digital elevation models, individual monitoring of adjacent tile laterals, detailed soil 

sampling) and long-term datasets allowed the production of robust results in both studies. 

 The importance of sub-field variability of tile dissolved reactive P (DRP) losses and soil 

P was highlighted in this study; even relatively small areas can experience substantial changes. 

These changes can also occur due to topographic characteristics. Closed topographic depressions 

play an important role in flat agricultural landscapes by being the intersection of water and P-

laden soil. Water stored in closed depressions can also solubilize P fertilizer that can be 

subsequently leached. Based on these findings, it is recommended to target low-lying positions 

of the field and implement variable rate application. Additionally, it was found that legacy P can 

contribute to increased tile DRP losses that persist over decades. It was also observed variability 

across watersheds in the response of P exports to hydrological stimulus. Part of this variability 

can be explained by differences in the water retention capacity, the influence of baseflow, or 

external inputs (e.g., sewage treatment plants). Even homogeneously manage fields and 

watersheds with apparent similarities can experience different responses to P loss drivers.   
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APPENDIX A: SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

Table A1. Contributing area, depression index, soil test P (STP) concentration and management 

practices of 36 instrumented tiles. 

Tile 
Area 

drained (ha) 

Depression 

index 

(m ha-1) 

Crop rotation1 

HY:2015/2016/2017 

Mean Bray P-1 

soil test (mg kg-1) 

and STD2 

P fertilizer 

source 

1 1.91 2425 C / S / C 26.14 (11.52) Unfertilized 

2 1.84 1161 C / S / C 21.63 (8.56) Unfertilized 

3 1.82 518 C / S / C 23.06 (4.04) Unfertilized 

4 1.80 167 C / S / C 25.12 (7.67) Unfertilized 

5 1.78 118 C / S / C 19.04 (5.10) Unfertilized 

6 1.72 193 C / S / C 22.97 (5.52) Unfertilized 

7 1.65 425 C / S / C 20.47 (7.73) Unfertilized 

8 1.59 321 C / S / C 20.74 (5.61) Unfertilized 

9 1.52 125 C / S / C 23.24 (4.30) Unfertilized 

10 1.45 61 C / S / C 22.01 (6.85) Unfertilized 

11 1.38 51 C / S / C 19.11 (7.08) Unfertilized 

12 1.30 40 C / S / C 17.43 (5.42) Unfertilized 

13 1.53 898 C / S / C 31.82 (18.47) Unfertilized 

14 1.60 1000 C / S / C 20.65 (9.77) Unfertilized 

15 1.66 679 C / S / C 25.56 (11.43) Unfertilized 

16 1.70 1606 C / S / C 39.42 (10.03) Unfertilized 

17 1.69 351 C / S / C 23.06 (8.29) Unfertilized 

18 1.59 258 C / S / C 28.07 (10.46) Unfertilized 

19 1.59 714 S / C / S 43.80 (4.14) DAP 

20 1.66 869 S / C / S 32.18 (14.48) TSP 

21 1.67 515 S / C / S 26.01 (8.47) DAP 

22 1.68 472 S / C / S 14.12 (2.31) DAP 

23 1.71 487 S / C / S 25.21 (7.76) TSP 

24 1.71 652 S / C / S 24.76 (9.12) DAP 

25 1.74 457 S / C / S 46.57 (15.60) DAP 

26 1.75 156 S / C / S 44.96 (14.65) DAP 

27 1.77 159 S / C / S 38.70 (13.00) DAP 

28 1.79 359 S / C / S 35.75 (17.06) TSP 

29 1.81 477 S / C / S 33.07 (9.87) DAP 

30 1.47 239 S / C / S 34.86 (7.13) DAP 

31 1.60 119 S / C / S 27.98 (11.02) DAP 

32 1.58 72 S / C / S 27.17 (12.30) TSP 

33 1.58 382 S / C / S 32.54 (11.12) DAP 

34 1.58 275 S / C / S 41.47 (23.38) DAP 

35 1.58 134 S / C / S 46.48 (26.04) DAP 

36 1.58 144 S / C / S 48.80 (45.86) TSP 
1 Crop rotation: C=corn; S=soybean. 
2STD: Standard deviation of the mean. 
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Table A2. Annual yield and flow-weighted mean concentration (FWMC) of DRP in 36 tiles from 

2015 to 2017. 

Tile 
FWMC of DRP (mg L-1) DRP yield (kg ha-1) 

2015 2016 2017 2015 2016 2017 

1 0.078 0.054 0.055 0.148 0.160 0.178 

2 0.018 0.008 0.015 0.037 0.026 0.049 

3 0.015 0.008 0.015 0.029 0.021 0.040 

4 0.010 0.010 0.017 0.021 0.028 0.056 

5 0.014 0.010 0.015 0.029 0.027 0.035 

6 0.008 0.008 0.012 0.018 0.026 0.041 

7 0.014 0.010 0.044 0.030 0.033 0.128 

8 0.011 0.011 0.026 0.025 0.033 0.077 

9 0.007 0.009 0.020 0.017 0.030 0.061 

10 0.008 0.008 0.014 0.019 0.027 0.047 

11 0.008 0.010 0.013 0.018 0.033 0.045 

12 0.007 0.010 0.012 0.014 0.026 0.036 

13 0.029 0.016 0.028 0.058 0.052 0.088 

14 0.018 0.015 0.022 0.038 0.048 0.070 

15 0.010 0.014 0.018 0.021 0.046 0.052 

16 0.049 0.027 0.049 0.106 0.079 0.154 

17 0.021 0.021 0.020 0.042 0.065 0.061 

18 0.018 0.015 0.025 0.039 0.043 0.070 

19 0.025 0.062 0.061 0.023 0.100 0.115 

20 0.029 0.029 0.030 0.054 0.058 0.082 

21 0.036 0.048 0.047 0.053 0.106 0.113 

22 0.010 0.015 0.019 0.018 0.035 0.051 

23 0.021 0.019 0.028 0.044 0.050 0.090 

24 0.040 0.039 0.042 0.079 0.101 0.123 

25 0.044 0.041 0.069 0.076 0.114 0.187 

26 0.035 0.029 0.038 0.061 0.077 0.104 

27 0.009 0.013 0.016 0.019 0.039 0.062 

28 0.028 0.024 0.022 0.059 0.077 0.083 

29 0.048 0.021 0.024 0.103 0.071 0.083 

30 0.030 0.027 0.076 0.062 0.081 0.263 

31 0.014 0.020 0.034 0.028 0.052 0.128 

32 0.010 0.011 0.029 0.018 0.021 0.087 

33 - 0.044 0.047 - 0.127 0.151 

34 0.031 0.036 0.049 0.060 0.098 0.159 

35 0.022 0.038 0.035 0.043 0.108 0.126 

36 0.044 0.051 0.109 0.084 0.123 0.384 

Average 0.024 0.023 0.033 0.046 0.062 0.102 

Std. deviation 0.016 0.015 0.021 0.031 0.037 0.070 
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Figure A1. Aerial image from 1940 and soil test P (STP) concentrations of the area with legacy P 

store from past land management in tiles 33 to 36. Aerial image source: Illinois State Geological 

Survey, Unpublished material. Image: AO-3A-14. Retrieved from URL: 

https://clearinghouse.isgs.illinois.edu/data/imagery/1937-1947-illinois-historical-aerial-

photography 

https://clearinghouse.isgs.illinois.edu/data/imagery/1937-1947-illinois-historical-aerial-photography
https://clearinghouse.isgs.illinois.edu/data/imagery/1937-1947-illinois-historical-aerial-photography
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Figure A2. Mean ± 1 SE of a) DRP concentration from discrete water samples, b) interpolated 

daily DRP yield, and c) daily precipitation in the study site. Triple superphosphate (TSP) was 

applied on April 20th 2016 and diammonium phosphate (DAP) on April 23rd 2016. 
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APPENDIX B: SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

Appendix B1. Flow anomalies included in the Weighted Regressions on Time, Discharge, and 

Season mopdel. 

Long-term FA (preceding 1-year vs. entire period): 

LTFA(t) = Xyear(t) – Xentire period                                                                                                  (4) 

 

Mid-term FA (preceding 1-month vs. preceding 1-year): 

MTFA(t) = Xmonth(t) – Xyear(t)                                                                                                       (5) 

 

Short-term FA (current day vs. preceding 1-month): 

STAF(t) = Xcurrent day(t) – Xmonth(t)                                                                                                 (6) 

 

Annual FA (preceding 1-year vs. preceding 5-year): 

AnnualFA(t) = Xyear(t) – X5year(t)                                                                                                  (7) 

 

Seasonal FA (preceding quarter-year vs. preceding 1-year): 

SeasonFA(t) = X0.25year(t) – Xyear(t)                                                                                               (8) 

 

Daily FA (current day vs. preceding quarter-year): 

DailyFA(t) = Xcurrent day(t) – X0.25(t)                                                                                               (9) 

 

100-day FA (preceding 100-day vs. entire period): 

FA100(t) = X100day(t) – Xentire period                                                                                                                  (10) 

 

10-day FA (preceding 10-day vs. preceding 100-day): 

FA10(t) = X10day(t) – X100 day(t)                                                                                                   (11) 

 

1-day FA (current day vs. preceding 10-day): 

FAA1(t) = Xcurrent day(t) – X10 day(t)                                                                                              (12) 

 

Where X is the average of log-transformed daily discharge. 

 

ADF(t) = 
∑ 𝑑

𝑡−𝑡𝑗𝑄𝑡𝑗
𝐽
𝑗=1

∑ 𝑑
𝑡−𝑡𝑗𝐽

𝑗=1

                                                                                                                   (13) 

Where J is the max. num. of discharge observations, t is the day, tj is a historical day relative to t 

 

dQ/dt(t) = Qt – Qt-1                                                                                                                                (14) 

Where Q is flow, t is the day; 

 

BFI(t) = BFt/Qt                                                                                                                             (15) 

Where BFt is the baseflow of the day and Q is flow. 

 

𝐸 = 1 −  
∑ │𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑒𝑠𝑡│²𝑛

𝑖=1

∑ │𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑚𝑒𝑎𝑛│𝑛
𝑖=1 ²

                                                                                                         (16) 

Where E is the modified Nash-Sutcliffe efficiency coefficient. 
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Table B1. Annual precipitation, discharge, DRP yields and PP yields at Embarras River (EMC), 

Lake Fork (LFK), and Salt Fork (SF) watersheds located in east-central Illinois. 

Hydrol.  

year 

Precipitation Discharge DRP yields PP yields 

EMC LFK SF EMC LFK SF EMC LFK SF EMC LFK SF 
 

mm mm kg P ha⁻¹ kg P ha⁻¹ 

1994 925 
  

487 
  

0.891 
     

1995 955 
  

260 
  

0.221 
     

1996 817 
  

387 
  

0.498 
  

0.134 
  

1997 971 
  

284 
  

0.442 
  

0.683 
  

1998 1092 1128 
 

474 463 
 

0.639 0.537 
 

0.265 0.197 
 

1999 881 901 
 

273 248 
 

0.433 0.215 
 

0.232 0.140 
 

2000 676 879 
 

107 120 
 

0.090 0.085 
 

0.066 0.077 
 

2001 774 889 
 

190 259 
 

0.247 0.256 
 

0.094 0.105 
 

2002 1104 1149 
 

601 485 
 

0.727 0.350 
 

1.405 0.659 
 

2003 924 771 
 

109 81 
 

0.101 0.046 
 

0.089 0.332 
 

2004 990 823 
 

352 338 
 

0.495 0.287 
 

0.557 0.869 
 

2005 1052 1007 
 

377 394 
 

0.629 0.587 
 

0.456 0.443 
 

2006 910 916 
 

225 207 
 

0.174 0.110 
 

0.175 0.152 
 

2007 913 1052 
 

253 240 
 

0.551 0.489 
 

0.218 0.202 
 

2008 1289 1481 
 

544 598 
 

0.953 0.951 
 

1.307 1.386 
 

2009 1030 1117 1002 481 531 449 0.446 0.316 0.566 0.800 0.812 0.307 

2010 1128 1322 1145 532 538 506 0.877 0.650 0.669 0.397 0.342 0.323 

2011 890 855 933 336 330 316 0.382 0.216 0.411 0.317 0.216 0.329 

2012 873 735 920 109 32 87 0.061 0.003 0.176 0.036 0.013 0.051 

2013 937 1004 868 354 342 409 0.545 0.392 0.581 0.582 0.415 0.557 

2014 1036 1096 1056 217 179 213 0.444 0.541 0.538 0.257 0.215 0.179 

2015 990 965 1098 266 258 430 0.231 0.077 0.612 0.131 0.066 0.485 

2016 1187 1333 1201 370 356 403 0.571 0.562 0.574 0.703 0.610 0.781 

2017 873 818 905 387 229 311 0.669 0.265 0.358 0.575 0.193 0.398 

2018 1099 1066 1033 242 165 366 0.339 0.135 0.500 0.210 0.092 0.480 

Average 973 1015 1016 329 304 349 0.466 0.337 0.498 0.421 0.359 0.389 

Std. Dev. 132 191 105 135 152 117 0.244 0.235 0.139 0.362 0.332 0.193 
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Table B2. Elasticity coefficient “b” for DRP and PP yields at three watersheds in east-central Illinois. Baseflow was defined as area-weighted flow 

< 1mm day-1. 

Hydrol. 

year 

Embarras (EMC) Lake Fork - Kaskaskia (LFK) Salf Fork (SF) 

DRP PP DRP PP DRP PP 

Entire 

dataset 

Non-

baseflow 

fraction 

Entire 

dataset 

Non-

baseflow 

fraction 

Entire 

dataset 

Non-

baseflow 

fraction 

Entire 

dataset 

Non-

baseflow 

fraction 

Entire 

dataset 

Non-

baseflow 

fraction 

Entire 

dataset 

Non-

baseflow 

fraction 

-----------------------------------------------------Elasticity coefficient (b)------------------------------------------------------- 

1994 1.02 1.57           

1995 0.98 1.34           

1996 1.06 1.53 0.96 0.90         

1997 1.02 1.85 1.31 1.68         

1998 1.02 1.83 1.31 1.39 1.15 1.73 0.93 1.39     

1999 1.09 1.90 1.41 1.42 1.03 1.71 1.00 1.24     

2000 1.07 2.08 0.91 NA 1.00 1.53 0.85 1.61     

2001 1.04 1.75 0.81 1.91 0.98 2.08 0.75 1.33     

2002 1.02 1.77 1.18 1.87 0.99 1.91 0.91 1.92     

2003 1.14 1.77 1.15 1.38 1.21 1.87 1.25 1.66     

2004 1.13 1.92 1.16 2.14 1.20 1.80 1.04 1.93     

2005 0.92 1.98 0.93 1.96 0.97 2.16 0.82 2.05     

2006 0.83 2.07 0.98 2.02 0.96 2.12 0.87 2.00     

2007 0.84 2.40 0.91 1.81 1.06 2.25 0.71 1.80     

2008 1.08 2.01 1.11 1.91 1.26 2.01 1.03 1.78     

2009 1.11 1.50 1.21 1.49 1.16 1.54 0.96 1.50 0.68 1.09 1.10 1.20 

2010 1.07 1.73 1.13 1.45 1.15 1.73 0.88 1.46 0.93 1.23 1.08 1.15 

2011 0.88 1.79 1.05 1.64 0.88 1.94 0.82 1.75 0.62 1.66 0.95 1.91 

2012 0.63 2.40 0.78 1.87 0.62 NA 0.71 NA 0.44 1.39 0.95 1.42 

2013 1.01 2.04 1.03 2.00 0.99 2.19 0.91 2.01 0.63 1.42 1.10 1.89 

2014 0.97 2.28 0.99 1.81 1.06 2.50 0.82 2.19 0.59 1.20 0.88 1.45 

2015 0.92 2.31 1.03 1.08 0.58 2.13 0.71 1.39 1.40 1.46 1.58 1.53 

2016 0.99 1.95 1.26 1.98 0.84 2.40 0.91 2.14 1.53 1.63 1.69 1.91 

2017 0.90 1.71 0.95 1.97 0.79 2.24 0.68 2.22 1.43 1.62 1.23 1.86 

2018 1.06 1.78 1.00 1.76 1.03 2.25 0.87 1.99 1.51 1.66 1.35 1.70 

Average 0.99 1.89 1.07 1.70 1.00 2.00 0.88 1.77 0.97 1.44 1.19 1.60 
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Table B3. Average daily DRP:TP ratios at the three watersheds. Baseflow was defined as area-weighted 

flow < 1mm day-1. 

Year 

Embarras (EMC) Lake Fork - 

Kaskaskia (LFK) 
Salt Fork (SF) 

Entire 

dataset 

Non-

baseflow 

fraction 

Entire 

dataset 

Non-

baseflow 

fraction 

Entire 

dataset 

Non-

baseflow 

fraction 

 --------------------------------  DRP:TP--------------------------- 

1996 0.53 0.61     

1997 0.53 0.63 0.07    

1998 0.67 0.68 0.58 0.69   

1999 0.70 0.64 0.49 0.58   

2000 0.46 0.68 0.31 0.63   

2001 0.59 0.76 0.46 0.68   

2002 0.52 0.49 0.32 0.39   

2003 0.46 0.52 0.18 0.21   

2004 0.56 0.59 0.32 0.38   

2005 0.57 0.59 0.42 0.56   

2006 0.52 0.50 0.34 0.43   

2007 0.54 0.58 0.32 0.56   

2008 0.47 0.46 0.33 0.40   

2009 0.47 0.44 0.33 0.36 0.72 0.64 

2010 0.61 0.63 0.49 0.59 0.70 0.66 

2011 0.62 0.56 0.43 0.52 0.70 0.61 

2012 0.57 0.67 0.27 0.19 0.82 0.67 

2013 0.53 0.58 0.32 0.56 0.74 0.65 

2014 0.57 0.55 0.47 0.62 0.81 0.74 

2015 0.52 0.56 0.40 0.50 0.62 0.60 

2016 0.51 0.51 0.39 0.38 0.54 0.50 

2017 0.66 0.68 0.45 0.64 0.52 0.57 

2018 0.58 0.66 0.41 0.58 0.52 0.61 

Average 0.55 0.59 0.37 0.50 0.67 0.63 

Std. Dev. 0.06 0.08 0.11 0.14 0.11 0.06 

 

 



60 

 

 
Figure B1. Relationship between annual runoff with annual precipitation and annual runoff:precipitation 

ratio at A & B) Embarras River (EMC), C & D) Lake Fork – Kaskaskia River (LFK), and E & F) Salt 

Fork River (SF) watershed. 
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Figure B2. Relationship between annual dissolved reactive P (DRP) and particulate P (PP) yields with 

annual precipitation at A & B) Embarras River (EMC), C & D) Lake Fork – Kaskaskia River (LFK), and 

E & F) Salt Fork River (SF) watershed. 
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Figure B3. Daily DRP:TP ratios at A) Embarras River (EMC), B) Lake Fork - Kaskaskia River 

(LFK), and C) Salt Fork River (SF). Includes the entire dataset. 
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Figure B4. Dissolved reactive P and total P losses from two snowmelt events in A) February 

2007 and B) February 2014 at Embarras River. 
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