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ABSTRACT

This thesis elaborates the steps taken in the development of a model for

flows that are in translational non-equilibrium. The backbone of the model

relies on Boltzmann equation for gases as a starting point. Three mathe-

matical tools - domain decomposition, moment methods similar to method

of weighted residuals and maximum entropy principle are used for defining

the model and developing the underlying governing equations. The under-

lying modeling goal was to serve as a bridge in terms of computational cost

and accuracy, between high fidelity Boltzmann equations and empirically

driven Navier Stokes equations. The model effectiveness is studied by solv-

ing numerically discretized model equations for one dimensional setting . The

problem studied is that of a normal shock occurring in a monoatomic gas.

The various assumptions, validation tools used and problems associated with

model development are elaborated.
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Mind, a beautiful servant, but a dangerous master.
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CHAPTER 1

INTRODUCTION

The flow around the body of a re-entry vehicle widely differs in the different

flight regimes of the vehicle. Specifically, (re)entry of a vehicle into the

atmosphere of a heavenly body occurs at vehicle speeds above 5 times the

value of the local speed of sound. At these speeds, a strong bow shock is

created in front of the vehicle and the pressure, temperature and composition

of gases on either side of the shock is widely different. In addition, the

atmosphere around the vehicle is typically rarefied. As a result, there is a

interplay o between aerodynamics, thermodynamics and material physical

processes due to the high speeds involved [1]. Some of physical phenomena

that occur during re-entry are shown in Figure 1.1

Particularly of interest is the way thermodynamics of the gases surrounding

the vehicle affect the vehicle surface and flight characteristics. The way

energy is stored in gases is through their motion (translation) and internal

states (rotation and vibration modes in cases of molecules, electronic modes

for all gases). In this work, we wish to isolate the study of motion of gas

molecules and the methods through which they affect bulk properties like

pressure, temperature and flow velocity.

In general, the Navier Stokes equations are used for modelling the flow

around bodies. The underlying assumptions of Navier stokes models (velocity

distribution of gases is a perturbed equilibrium distribution) are not valid in

rarefied hypersonic flows. The translational and internal energy modes of

the gas are not in equilibrium. This is because the relaxation time of gas

molecules (a measure of time taken to reach equilibrium) is of the same order

as the flow characteristic time. Equivalently, from a statistical perspective,

the energy distribution of gas molecules is largely different from that of the

expected equilibrium distribution. In these regimes, one of the best ways to

describe flow processes is through the use of a statistical description based

on kinetic theory of gases.
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Figure 1.1: Hypersonic Re-entry Flowfield - Source: NASA

Statistical models, while robust at describing physical phenomena, are

computationally expensive to solve. For example, the Boltzmann equation,

which is the governing equation describing the evolution of the distribution

of molecular velocities[2, 3], is a 7 dimensional equation (6D in phase space

and 1D in time). The curse of dimensionality makes numerical models slow

and resource hungry.

The goal of the current work is to develop a model that acts like a bridge

between low fidelity-fast Navier Stokes equations and high fidelity-slow Boltz-

mann equations. We draw inspiration from these extreme models and de-

velop a model framework that is able to provide robust solutions that do not

have simplifying assumptions like Navier Stokes and give solutions within a

tractable time.

1.1 Relevant Literature

Multiple numerical techniques exist to numerically solve the Boltzmann equa-

tion. From a deterministic perspective, finite difference [4], finite volume [5]

or Galerkin techniques [6] have been developed which are similar to tech-

niques used for numerically solving Navier Stokes equations. The direct

simulation Monte Carlo method provides a probabilistic alternative [7].
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Another way to tackle the problem is using the method of weighted resid-

uals and derive macroscopic moment equations. The idea of using moment

methods for obtaining solutions to the Boltzmann equation was introduced

by Grad [8]. Levermore[9] introduced a maximum entropy based closure for

such methods. Analysis has shown that these methods are prone to yield

non physical solutions in certain cases.[10, 11]. Additionally, for obtaining

numerical solutions, boundary conditions need to be specified for higher order

moments like heat flux. This may not be available for all physical problems.

In all of these methods, the entire velocity space is considered for obtaining

the macroscopic model.

The approach proposed here is to solve for the moments of the Boltzmann

equation. The key difference between the previous moments based methods

and the current method is that the solution is sought, in a piecewise manner,

over a limited range of the velocity space. The velocity domain is decomposed

into small groups, and the velocity distribution function in each of these

groups is reconstructed using group macroscopic quantities as constraints and

functions generated using the maximum entropy principle. The macroscopic

governing equations are obtained by using the method of weighted residuals

and the Boltzamann’s equation. A similar model has been derived earlier for

modeling thermo-chemical non-equilibrium [12, 10].

Some existing approaches that are similar to the model proposed here are

: a hybrid-kinetic approach that assumes a Maxwellian distribution in a

certain region of velocity space and solves the kinetic equation in the rest of

the velocity space[13] and a model for the specific case of two groups using

methods similar to the one suggested in current work[14]. To the best of

our knowledge, this is the first attempt to implement such a model for an

arbitrary number of groups.

1.2 Thesis Outline

The thesis is divided into four chapters. The first chapter gives an overview

of the Boltzmann equation and Navier Stokes equations and provides details

on some of the numerical methods used to solve the Boltzmann Equation. In

the next chapter, the model governing equations are derived. Following this,

the numerical framework for solving the model is provided and some results
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are presented. In the last chapter, the key challenges, pitfalls, concluding

thought and future directions are suggested. Some of the work elaborated

here was presented by the author earlier[15].
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CHAPTER 2

BOLTZMANN EQUATION

The most common model used for simulating flows are the Navier Stokes

equations. The equations can be written as :

∂ρ

∂t
+∇.(ρ~V ) = 0 (2.1)

∂ρVi
∂t

+∇.(ρ~V Vi) = −∂P
∂xi

+
∂τij
∂xi

+ ρFi (2.2)

∂ρe+ 1
2
ρV 2

∂t
+∇.(ρ~V (h+

1

2
V 2)) = ∇.(τ.~V − ~q) + ρ~F .~V (2.3)

ρ is the density of the gas, V is the velocity, τ is the viscous stress, ~F is the

external force, P is pressure, e is specific internal energy, h is the enthalpy

and ~q is the heat flux.

Even for simple problems, the above set of equations cannot be solved. One

of the major reasons is the presence of τ and ~q terms. In general, constitutive

relations are empirically developed for viscous stress and heat flux which

depend on the velocity gradient and temperature gradient respectively. There

are significant assumptions made while developing these relations and these

assumptions are typically invalid when considering the flows that occur in

re-entry. A statistical description is will be able to circumvent some of the

assumptions and additionally, the need for empirical measurements to model

viscous stress and heat flux terms.

2.1 Boltzmann Equation

The Boltzmann equation models the rate of change of the velocity distribu-

tion function of the molecules in phase space with respect to position and
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time. It provides statistical description of the dynamics of the particles that

constitute a gas. The equations expressed here closely follow the derivation

given in ”Introduction to Physical Gas Dynamics” [2]

The Boltzmann equation can be written as:(
∂f

∂t
+ ~c.

∂f

∂~x
+
∂ ~Ff

∂~c

)
= (2.4)

∞∫
−∞

∫
dPc

[f(~c′, ~x, t)f(~v′, ~x, t)− f(~c, ~x, t)f(~v, ~x, t)]gdPcdVv

f = f(~(c), ~x, t) is the un-normalized velocity distribution function, ~F is

the external force acting on objects, ~x is the position, ~c,~c′, ~v, ~v′ are variables

representing the molecular velocities, g is the relative speed and dPc is the

differential cross section.

The first term represent the change in distribution function with time

keeping other parameters constant, the second and third terms represent

the flux of distribution function in the physical and velocity space. In the

integral on the right side of 2.5, there are two terms. The first term represents

the replenishing collisions between molecules and the second term represents

depleting collisions.

Some of the key assumptions used in the derivation of Boltzmann equa-

tions are[2]: there are enough molecules in the gas to warrant a statistical

description, the range of intermolecular forces is very small in comparison to

the average distance travelled by molecules, binary collisions, no correlations

between the velocities of colliding molecules and the distribution function

remains roughly constant over the duration of the collision.

By taking velocity moments of equation -2.5 and integrating over the en-

tire velocity space , the Navier Stokes equations 2.1, 2.2, 2.3 can be obtained.

Specifically the zeroth velocity moment corresponds to conservation of mass,

the first velocity moment corresponds to conservation of momentum and sec-

ond velocity moment corresponds to conservation of energy. Furthermore,

mass, momentum and total energy are collision in-variants, these moments

of the right side of the Boltzmann equation integrate out to zero. In addi-

tion, if an appropriate collision cross section is chosen, the expressions for

viscosity and thermal conductivity can be directly obtained without empiri-
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cal measurements.

2.2 Equilibrium Distribution

A necessary and sufficient condition for equilibrium is given by [2]:

f(~c′, ~x, t)f(~v′, ~x, t) = f(~c, ~x, t)f(~v, ~x, t) (2.5)

Using the above condition and definition of temperature, the Maxwell dis-

tribution function - which corresponds to the equilibrium velocity distribu-

tion is given by:

Fm(~c) = n
( m

2πkT

) 3
2

exp
(
− m

2kT
|~c− ~V |2

)
(2.6)

Here, n is the number density of molecules, m is the mass of the molecule,

T is the temperature and k is the Boltzmann constant.

If equilibrium assumption is used, and the flow governing equations are

obtained using the the integrated velocity moments of Boltzmann equation,

we obtain the unsteady Euler equations. These do not have viscous stresses

and heat flux terms.

From the above analysis, one of the key observations is the fact that,

viscous stresses and heat flux are artifacts of non-equilibrium processes. In

case strong non-equilibrium occurs, empirical constitutive models will fail to

capture the underlying physics. This is because Navier Stokes equations are

obtained when the moments of the Boltzmann equation are obtain with the

assumption that the underlying distribution is a perturbed Maxwellian. It

would be better to solve the Boltzmann equations, instead of Navier Stokes

equations to capture the underlying physics.

2.2.1 BGK model

Non-linear collision terms in the right side of Eq.2.5 are pose a signifi-

cant challenge for most numerical models. The Bhatnagar-Gross-Krook[16]

(BGK) is an alternative simplified approximation to the collision integral.
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The collision terms, based on the BGK model, can be expressed as[17] :(
∂f

∂t

)
collision

= ν(Fm − f) (2.7)

The variable ν is a collision frequency depends on the state of the gas and

the number density but not on the molecular velocity[2]. Fm is the local

Maxwellian distribution. The local density, velocity and temperature are

obtained by taking the velocity moments of the distribution function:

ρ =

∫
~c

mfd~c (2.8)

ρ~V =

∫
~c

~cfd~c (2.9)

2RT =
1

β
=

2

3n

∫
m(~c− ~u)2fd~c (2.10)

R is the gas constant.

The collision that deplete the distribution are represented by the−νf term,

and the effect of replenishing collisions are expressed using νFM . BGK model

effectively states that the molecules are undergoing a relaxation process to a

Maxwellian distribution at the local mean velocity, density and temperature.

It is shown that the BGK model assumption hold true for the case of Maxwell

molecules and rigid spheres [2, 17]

The Krook equation is the Boltzmann equation obtained by replacing the

collision term in equation Eq.(2.5) with the BGK collision model terms. In

this work, we consider a Krook model as the baseline statistical model. Fur-

ther, we assume there are no external forces acting on the gases. Using the

above simplifications, the Krook model can be expressed as :(
∂f

∂t
+ ~c.

∂f

∂~x

)
= ν(Fm − f) (2.11)

The Krook Equation, looks like a linear partial differential equation, but it

is not. Effects of the collision frequency term and the Maxwellian distribution

make the Krook equation non-linear in nature. However, solution to Krook

equation is far simpler than the full Boltzmann equation

8



CHAPTER 3

MATHEMATICAL FORMULATION

In this chapter, the steps taken in developing the model are elaborated. The

underlying principles that the model tries to exploit are:

• Dividing the velocity space into multiple bins/groups

• Assume a functional form for the distribution function within each of

these groups

• Use the Boltzmann equation and the functional form defined earlier to

generate governing equations for macroscopic quantities like density,

velocity and temperature

The key innovations of the current model, over other methods that model

the Boltzmann equations are:

• Use of maximum entropy principle to generate the functional form of

distribution within each group

• Modeling the moments of the Boltzmann equation

In the following sections, model development, mathematical formulations

and the advantages of the model are elaborated.

3.1 Group Distribution Function

Maximum entropy principle is used in information theory [18, 19], as interpolants[20],

and as a method for providing solutions to under-determined inverse prob-

lems [21].

In thermodynamics, the entropy of a system is maximized when it reaches

an equilibrium state. This property is exploited in statistical mechanics and

kinetic theory to obtain the energy and velocity distribution of particles at

9



a particular temperature. The collision integral for a bimolecular collision in

Boltzmann equation is given as [2] :

[
∂

∂t
(f)

]
coll

=

∞∫
−∞

∫
dPc

[f(~c′, ~x, t)f(~v′, ~x, t)− f(~c, ~x, t)f(~v, ~x, t)]gdPcdVv (3.1)

A necessary and sufficient condition for equilibrium is given by [2]:

f(~c′)f(~v′) = f(~c)f(~v) (3.2)

ln(f(~c′)) + ln(f(~c′)) = ln(f(~c′)) + ln(f(~c′)) (3.3)

From Eq.(3.3), it is observed that ln(f) is a collisional invariant. For an

elastic collision, the total mass, the total linear momentum and the total

mechanical energy are conserved in a collision. Using this fact, ln(f) is

expressed as linear combination of the collisional invariants from classical

mechanics.

ln(f(~c)) = α + ~γ.~c+ δ~c.~c (3.4)

On invoking the maximum entropy principle over the entire velocity space,

the expression 2.6 is obtained. In the current model, the maximum entropy

principle is invoked within each velocity group to obtain an expression for

the distribution valid only within that group.

The mathematical formulation for obtaining the group distribution func-

tion can be stated as[15]: Obtain a function fk such that entropy of this

function is maximized and the first 3 velocity moments of fk are equal to a

given value of the moments (µn,k) where n = 0, 1, 2 corresponds to the order

of the moment. k represent the index used to number each group in the

velocity space. The maximum entropy functional can be defined as:

J [fk] =

~ck+1∫
~ck

(
−fk ln fk + fk + αkfk + ~γk.~cfk + δkc

2fk
)
d~c−αkµ0,k−~γk.~µ1,k−δµ2,k

(3.5)

where αk, ~γk and δk are the Lagrange multipliers. ~c is the velocity vector

corresponding to the three dimensions in velocity space. The moments are

10



defined as:

µ0,k =

~ck+1∫
~ck

fkd~c (3.6)

~µ1,k =

~ck+1∫
~ck

~cfkd~c (3.7)

µ2,k =

~ck+1∫
~ck

c2fkd~c (3.8)

The functional variation of equation (3.5) results in:

ln(fk) = αk + ~γk.~c+ δk~c.~c (3.9)

The expression for the distribution function is given by:

f(~x, t;~c) =

k=Ng∑
k=1

fk(~x, t;~c) (3.10)

fk(~x, t;~c) =

Ak exp(−βk(~c− ~wk)
2), if ~ck ≤ ~c ≤ ~ck+1

0, otherwise
(3.11)

where k is the group index, Ng is the number of velocity groups, ck and ck+1

are the kth group’s lower and upper velocity bounds and Ak, βk and wk are

the function parameters. The variation of group macroscopic quantities in

space and time are encoded within the group function parameters. Equations

(3.9) and (3.11) are equivalent mathematical expressions.

Eq.(3.11) is used as an approximation of the velocity distribution func-

tion within each velocity group. This formulation effectively states the gas

particles in a particular group are in local equilibrium. They can be in non-

equilibrium with gas molecules in another group. The schematic for model

formulation, illustrating the velocity groups and the distribution function

within each group, is shown in Figure 3.1.

This concludes the first major component of the model - the function for-

mulation. The two concepts of dividing a velocity space into groups and as-

suming a function expression within each group is not unique. When a finite

difference approximation is used to solve the Boltzmann equation directly,

11



Figure 3.1: Piecewise representation of velocity distribution function using
3 groups.

the function formulation for the velocity distribution within the discretized

velocity domain is assumed to be a polynomial. Similarly, in finite element

methods for solving Boltzmann equation, discretization of velocity space is

performed and linear combinations of basis functions are used within each

discrete space to model the function.

The motivation for choosing a maximum entropy formulation for the func-

tion approximation is two fold, entropy maximization has a physical impli-

cation in thermodynamics, secondly, at equilibrium, the entire distribution

can be represented by just three parameters.

3.2 Model Governing Equations

The second aspect of the model involves using the function formulation and

Boltzmann equations to derive the model governing equations. Specifically,

the velocity moments of the Krook equation 2.11 is used for obtaining the

model equations. The focus of the current work is to study the behaviour of

the model in zero dimensional and one dimensional space and three or one

dimensions in velocity space. No external forces are assumed to act on the

system.

In the current work, macroscopic fluid flow is assumed to be only along the

x direction. the profile is considered to be a Maxwellian at the instantaneous

local temperature with zero mean flow along the y and z direction. The

12



group distribution function that is taken for all cases is given by:

fk(x, t;~c) = Ak exp(−βk((cx − wk)2 + c2y + c2z)), ∀ cy, cz, cx,k ≤ cx ≤ cx,k+1

(3.12)

The macroscopic governing equations are obtained by taking velocity mo-

ments:

cx,k+1∫
cx=cx,k

∞∫
cy=−∞

∞∫
cz=−∞

m

(
∂fk
∂t

+ cx
∂fk
∂x

= ν(Fm − fk)
)
dcxdcydcz

cx,k+1∫
cx=cx,k

∞∫
cy=−∞

∞∫
cz=−∞

mcx

(
∂fk
∂t

+ cx
∂fk
∂x

= ν(Fm − fk)
)
dcxdcydcz

cx,k+1∫
cx=cx,k

∞∫
cy=−∞

∞∫
cz=−∞

m(c2x + c2y + c2z)

(
∂fk
∂t

+ cx
∂fk
∂x

= ν(Fm − fk)
)
dcxdcydcz

These can then be written as:

∂~Uk
∂t

+
∂ ~Fk
∂x

= ν(~UM
k − ~Uk) (3.13)

where ~Uk is expressed as :

~Uk =

 ρk

ρkuk

ρkek

 =

cx,k∫
cx=cx,k

∞∫
cy=−∞

∞∫
cz=−∞

 m

mcx

m(c2x + c2y + c2z)

 fkdcxdcydcz

and ~Fk can be obtained by:

~Fk =

ck+1,x∫
cx=ck,x

∞∫
cy=−∞

∞∫
cz=−∞

 mcx

mc2x

m(c2x + c2y + c2z)cx

 fkdcxdcydcz

ρk, ρkuk,x and ρkek are the density, momentum and energy contribution from

group k respectively. ~Fk is the flux vector. ~UM
k corresponds to the the value

of ~Uk if βk, wk and Ak are replaced by the corresponding local Maxwellian

distribution’s values. ~UM
k is the fraction of the equilibrium density, momen-

tum, and energy that is present is the kth velocity group. The factor m -

mass of molecule, is present when taking moments to ensure the macroscopic
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moments obtained is equivalent to density, momentum and energy equations

of the Euler equations.

3.3 Macroscopic Quantities

The mathematical expressions for the group density, velocity, energy, and

their corresponding fluxes in terms of the group distribution function param-

eters are derived in this section.

3.3.1 Function Form

A generic functional form of any group distribution function for the 1Dx-3Dv

case (one dimension in physical space and three dimensions in velocity space)

is given by :

f(x,~c, t) = A exp(−β((cx − w)2 + c2y + c2z)) (3.14)

In the above equation, the spatial and temporal variations determined by the

parameters β, w and A.

3.3.2 Function Definition - Inx

The following notation will be used for expressing functions:

Inx =

cx=cf∫
cx=ci

(cx − w)n exp(−β(cx − w)2)dcx (3.15)

The expressions that occur in the flux and conserved variables vector are

expanded and written as follows:

I0x =

√
π

4β

(
erf(
√
β(cf − w))− erf(

√
β(ci − w))

)

I1x =

(
exp(−β(ci − w)2)− exp(−β(cf − w)2)

2β

)
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I2x = −
√
π

2
√
β

(
exp(−β(cf − w)2)(cf − w)√

πβ
− exp(−β(ci − w)2)(ci − w)√

πβ

)
+(

√
π

4
√
β3

)(erf[
√
β(cf − w)]− erf[

√
βk(ci − w)])

I3x = −exp(−β(cf − w)2)(cf − w)2 − exp(−β(ci − w)2)(ci − w)2

2β
−

exp(−β(cf − w)2)− exp(−β(ci − w)2)

2β2
)

3.3.3 ~U and ~F expressions

The expression for ~U is given by:

~U =


nAπ

β
I0x

nAπ
β

(I1x + wI0x)

nAπ
β

(
I2x + w2I0x + 2wI1x + I0x

β

)


~F =

 nAπ
β

(I1x + wI0x)

nAπ
β

(I2x + w2I0x + 2wI1x)

nAπ
β

(I3x + I0xw
3 + 3I1xw

2 + 3I2xw) + nAπ(I1x+wI0x)
β2



3.4 Numerical Modeling

Given the governing equations, a set of initial conditions and boundary con-

ditions, the sequence of steps used for numerical solution of the equations

are

1. Divide velocity space into Ng groups and discretize space in Nx grid

points

2. Note that Ng << Nx

3. Using the initial conditions, set the initial value of macroscopic quan-

tities (ρk, ρkuk, ρkek) in each group at every location

4. Perform non-linear inversion using ~Uk to obtain function parameters

for each group
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5. Using function parameters, obtain the values of ~F for each group

6. Using a flux scheme, obtain the partial derivative of the flux vector

7. Sum up the corresponding group macroscopic values to obtain the den-

sity, temperature and velocity at each spatial location

8. Obtain the source term contribution at each location

9. Use a time stepping scheme of your choice to update solution

10. Repeat from 4 till desired time or convergence

3.5 Conclusions

The mathematical form and the numerical solution steps given summarize

the key aspects required for model implementation. By solving for the mo-

ments of the Boltzmann equation, considerable computational time is saved.

The underlying distribution function can be reasonably resolved using few

groups in velocity space. This is because of the functional form chosen for

representing the distributions. At a first glance, the derived equations are

similar to the Euler equations. They behave in a similar way to Euler equa-

tions when the gas is in translational equilibrium. When the gas is not in

equilibrium, the effect of the source term kicks in. Another key difference is

that , the flux cannot be expressed as a function of the group macroscopic

variables. This latter fact necessitates the use of a non-linear inversion rou-

tine to obtain function parameters from group macroscopic variables, which

are then used to extract the flux values.
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CHAPTER 4

RESULTS

Results are presented for three test cases: A zero dimensional relaxation,

one dimensional shock tube problem and a one dimensional standing shock

structure problem.

The zero dimensional case is chosen to study the effectiveness of the max-

imum entropy function formulation in resolving the distribution function in

an accurate manner.

The one dimensional shock tube case is chosen as a first step to see if the

model solution matches with the Boltzmann solution in a one dimensional

setting.

The final simulation involving matching the structure of a one dimensional

shock tries to merge the ideas in the previous runs. The shock structure

requires at least a one dimensional setting and needs reasonable resolution

of the distribution function for it to match the Boltzmann Solution

4.1 Zero Dimensional (Space) Relaxation

To test the accuracy of the grouping model and study the effectiveness of

the inversion process a simple test case of a structure-less gas relaxing to an

equilibrium distribution is studied. For this case of spatially homogeneous

gas, the Krook equation Eq.(2.11) simplifies to :

∂f

∂t
= ν(Fm − f) (4.1)

Eq.(4.1) can be solved analytically if the collision frequency (ν) is constant

and no external energy is added into the system. The macroscopic governing
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equations become:

∂ρk
∂t

= ν(ρMk − ρk) (4.2)

∂ρkuk
∂t

= ν(ρMk u
M
k − ρkuk) (4.3)

∂ρkek
∂t

= ν(ρMk e
M
k − ρkek) (4.4)

In addition to the primary goals, this model problem can be used to

check the accuracy of the reconstruction of the velocity distribution using

the macroscopic model parameters and macroscopic solution errors when

compared against the analytical solution at intermediate time steps.

4.1.1 Initial Condition

The initial condition chosen for case 1 is a bimodal distribution in x-velocity

space centered about cx = 0. Such a bimodal distribution can be expressed

as:

fi(~c) =
n

2

(
b

π

)1.5

(exp(−b(cx− v)2) + exp(−b(cx + v)2)) exp(−bc2y) exp(−bc2z)

(4.5)

For a closed system, in the absence of energy addition, Eq.(4.5) relaxes to a

Maxwellian distribution of the form:

Fm = n

(
bm
π

)1.5

exp(−bm(c2x + c2y + c2z)) (4.6)

where
3

2bm
=

3

2b
+ v2 (4.7)

For the test problem, velocity variables are non-dimensionalized by the mean

speed of the Maxwellian and time is non-dimensionalized by the reciprocal

of collision frequency ν.

The initial non-dimensionalized non-equilibrium distribution is chosen to
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be a bi-modal distribution of the form:

fi(~c) =

√
3

4π

(
exp(−3(cx −

1√
3

)2) + exp(−3(cx +
1√
3

)2)

)
× 3

π
exp(−3(c2y+c

2
z))

(4.8)

The corresponding Maxwellian distribution that the above non-equilibrium

relaxes to is given by:

fM(~c) =
1

π
3
2

exp(−(c2x + c2y + c2z)) (4.9)

The initial distribution along the x-direction and the final Maxwellian dis-

tribution that the initial distribution relaxes to are plotted in Figure 4.1.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Initial and Maxwellian Distribution

v

f

 

 

Initial
MB

Figure 4.1: Initial distribution and corresponding Maxwell Boltzmann
(MB) Distribution.

4.1.2 Results

In order to reconstruct the distribution in each group, the group density,

momentum and energy equations in 4.1 are solved. The initial distribution

of the gas is symmetric about the origin and continues to remain so till it

reaches equilibrium. The function parameters obtained from group conserved

variables are used to plot the distribution in the positive half of the velocity

space.

The collision frequency ν and the number of groups Ng used in the model
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Figure 4.2: 0D Relaxation Solution at different times. Kinetic (4.2a) and
Model(4.2b) solution

are:

Ng = 13 (4.10)

ν = 1 (4.11)

The relaxation process is run from non-dimensional time t = 0 to t = 50.

The velocity space between 0 ≤ v ≤ 3 is divided into 12 equally spaced

groups and the velocity space from 3 < v <∞ is modeled as a single group.

Near the tail of the distribution, the value of the distribution function and

its corresponding moments are of the order of machine precision. If more

than one group is used in the tail, numerical errors occur. The macroscopic

model solution in each group is independent of the solution in other groups

for a BGK collision model as we assume a constant collision frequency.

The numerical solution of the multi-group maximum entropy model and

the Boltzmann equation with the BGK collision operator are plotted at dif-

ferent times in Figs. 4.2b and 4.2a respectively. The model solution is plotted

overlapping with the corresponding Boltzmann equation solution in Figure.

4.3 for 10 different times to compare the accuracy of the model solution at

each intermediate time.

The model solution closely follows the exact solution. In addition, solution

corresponding to a particular group is plotted over the entire velocity space.

The group velocity parameter value need not lie within the group velocity

bounds i.e if the group bound is 2.5 < cx,k < 3, the corresponding wk value

can be outside this bound. As time progresses, the group velocity goes from
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Figure 4.3: Comparison Plot - Kinetic Solution, Model Solution and Group
Solution
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a positive value to 0 and the group temperature increases in order to match

the equilibrium solution. The final group solution and the Maxwellian at

time t = 10 is identical.

One key point to note is that the model distribution function is not con-

tinuous. This does not affect the solution because the moments of the dis-

tribution are solved for instead of the distribution itself. The moments are

taken only within a group and within each group the distribution is contin-

uous. Secondly, the curvature of the group distribution function is concave.

This is a consequence of the assumption that the β parameter within each

group is positive. This is enforced during the non-linear solution. Since, β

is equivalent to inverse temperature, its value cannot be negative and as a

result, the group curvature is always concave.

Model solution obtained using 13 groups requires us to solve 39 ordinary

differential equations (ODE), while the exact Krook model solution requires

solving 10,000 ODE’s ( at each point in the discretized velocity space). This

results in a reduction in the computational cost required for model solution.

Through this simple test case, it is observed that - given enough number of

groups the underlying velocity distribution can be captured with reasonable

accuracy. In addition, it serves as a nice test bed for the non-linear inversion

routines that model algorithm uses.

4.2 One Dimensional Flow - Shock Tube

In this section, the model equations (Eq. 3.13) are used to solve the Sod

Shock tube problem. The physical domain is 0 ≤ x ≤ 1. The initial condi-

tions chosen are [22]:

ρL = 1 ρR = 0.125 (4.12)

uL = 0 uR = 0 (4.13)

PL = 1 PR = 0.1 (4.14)

0 ≤ x ≤ 0.5 0.5 < x ≤ 1 (4.15)

where ρ is the density, P is the pressure, u is the mean flow velocity, and L,R

denote the left and right half of the domain respectively. The gas parameters

are non-dimensionalized by the upstream gas properties and the velocity
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is non-dimensionalized by the speed of sound. Time is non- dimensionalized

using characteristic time given by the fraction of the length of the domain and

the speed of sound. For the initial conditions, the group function parameters

are set to be equivalent to the local Maxwellian parameters The Maxwellian

at each physical location can be represented by Eq. (2.6). The corresponding

distribution function parameters expressed in terms of the initial conditions

are:

nL = ρL nR = ρR (4.16)

βL =
ρL

2PL
βR =

ρR
2PR

(4.17)

uL = 0 uR = 0 (4.18)

The governing equations are integrated in time using Runge Kutta fourth

order time stepping method. The spatial derivatives are obtained using a 2nd

order central difference scheme or characteristics based upwinding scheme.

The latter scheme exploits the hyperbolic nature of the system of equations

but is computationally more expensive than the central difference implemen-

tation. At the left and right boundaries, one sided stencils are used for

obtaining derivatives. The test gas is assumed to have γ = 5
3
.

The model solution is compared with the corresponding kinetic solution.

The kinetic solution is obtained by solving the Boltzmann equation. The

specific solver used for the kinetic solution uses discontinuous Galerkin based

discretizations in physical and velocity space [23, 24].

4.2.1 High Collision Frequency - Euler - Results

The velocity space is divided into three groups ([∞,−1], [−1, 1] and [1,∞]).

The velocity bounds shown here are the non-dimensionalized values. The x

direction is discretized into 400 grid points. The time step for RK4 is taken

to be 10−5. The model simulation is run up-to a non dimensional time of

t = 0.2. Within this duration, all the flow feature lie within the domain and

are not affected by the boundary conditions.

The model solution was compared with the kinetic solution for two different

tests - a high collision frequency (ν = 10000)/low Knudsen number (ν ∝
1/Kn) test case (Euler) , a low collision frequency (ν = 100) case (near
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Figure 4.5: Distribution Function in the Shock Region, ν = 10000

end of continuum / or beginning of transition regime). Figure 4.4 shows

the model results for the high collision frequency (ν = 10000) case. A high

collision frequency case is equivalent to the case of Euler equations. Due

the high frequency of collisions occurring the molecules can quickly relax

to the equilibrium distribution. The model solution is plotted alongside
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the numerical solution to the Euler equations for the same set of initial

conditions in Figure 4.4. The model results overlap the Euler solutions to

graphic accuracy.

The distribution function within the shock is plotted for ν = 10000 (Figure

4.5b). As predicted earlier, in the high collision frequency case, the distri-

bution within the shock is Maxwellian. For this case, across the shock, the

distribution smoothly goes from one Maxwellian to another.

4.2.2 Low Collision Frequency Results
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Figure 4.6: Sod Shock Tube Problem Solution, Collision Frequency
v = 100, 3 groups (4.7a) - Density vs X - Time Snapshots

Next, the model solution for the case of ν = 100 is compared with the

corresponding Krook model simulation solution in Figure 4.7a. A low colli-

sion frequency value or a high Knudsen number corresponds to a transition
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Figure 4.7: Sod Shock Tube Problem Solution, Collision Frequency
v = 100, 3 groups (4.7a), v = 10, 4 groups (4.7b)
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Figure 4.8: Distribution Function in the Shock Region, ν = 100

regime. As a result, the shock and the expansion fan appear to be spread out

over multiple spatial grid points in comparison to the Euler case. On further

reducing the collision frequency to ν = 10 , we enter the rarefied gas regime.

It is observed that the structures observed for the shock and expansion fan

observed previously completely vanish. This is shown in (Figure. 4.7b). For

collision frequency of ν = 10 and lower, the velocity space needs to be di-

vided into a larger number of groups to accurately capture the macroscopic

moments. Here, we use 4 groups for ν = 10.

The distribution function within the shock is plotted ν = 100. (Figure
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4.8b). In order non-equilibrium is captured by the model, the distribution

function within the shock must be non-Maxwellian. This can be seen in

(Figure 4.8b). The model does not enforce continuity of the distribution

function at the group boundaries and hence jumps in the distribution function

are observed. The macroscopic moments of the non-equilibrium are captured

with very good accuracy using just 3 or 4 groups in velocity space. The

microscopic distribution can be captured accurately if a large number of

groups are used for the model. In terms of computational time, the Krook

model solution takes a day to return solution while the maximum-entropy

based model returns a solution in a couple of hours.

4.3 1D Standing Shock Structure

The simulation setup for this problem is similar to the shock tube case. The

goal for this problem is to accurately predict the shock thickness. For this

study, the thickness of a normal shock in Argon gas is studied. In order

to perform comparison with corresponding shock thickness, the collision fre-

quency is modelled using a viscosity model. Due to many issues (elaborated

in the next chapter), the 1D shock structure is not exactly captured by the

model. However, there a good estimate of the shock structure is obtained

just using 2 groups which are presented here.

Gas = Argon

γ = 5
3

Machu = 4.0

Tu = 300K

ρu = 6.6e-6 kg/m3

Ng = 2

µ = µ0

(
T
T0

)0.81
ν = P

µ

Nx = 161

The results corresponding to the best performing case is shown in figures

4.9, 4.10, 4.11. In the results, on the right, the standing shock structure ob-

tained from the model is compared against the Krook model solution (BGK).
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At the x-location marked by the blue point on the right, the distribution func-

tion using the model function parameters and the Krook solution along the

X velocity direction is plotted on the left.

The thickness of the shock is expected to increase due to the presence

of non-equilibrium effects. From the plots, it is graphically observed that

the shock thickness predicted by the model is lesser than the shock thick-

ness predicted by the KrooK BGK solution. One of the reasons for this

behaviour is that the underlying variation in distribution within the shock

is not captured accurately. This is clearly seen through the plots on the

left. The shock thickness can be captured more accurately by using greater

number of groups. However, this comes at a greater computational cost and

raises problems with the inversion routine used for obtaining the function

parameters.
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Figure 4.9: Standing Shock , 2 groups, Mach 4, Distribution Function as
different shock location - I
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Figure 4.10: Standing Shock , 2 groups, Mach 4, Distribution Function as
different shock location - II
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Figure 4.11: Standing Shock , 2 groups, Mach 4, Distribution Function as
different shock location - III
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CHAPTER 5

PROBLEMS AND INSIGHTS

The objective of the current work was to develop a translational non-equilibrium

model that is more accurate than Navier stokes equations and not as com-

putationally expensive as numerical models for solving the Boltzmann equa-

tions. While the model developed here satisfies the objective in principle,

there are various shortcomings over the model that exist, which make it im-

possible to directly use the model for performing 3D spatial hypersonic flow

simulations right away. In addition, over the course of working on the model,

various ideas were pursued to better understand the model and capture its

shortcomings. In the following sections, some problems with the current

model and some open questions are elaborated. This section provides list of

ideas that were attempted or considered and provide a baseline for further

research in model development.

5.1 Challenges

In this section, some of the open problems that need to be addressed in order

to improve the model are listed

5.1.1 Collision Integral

The general collision integral can be expressed as :

[
∂

∂t
(f)

]
coll

=

∞∫
−∞

∫
dPc

[f(~c′, ~x, t)f(~v′, ~x, t)− f(~c, ~x, t)f(~v, ~x, t)]gdPcdVv (5.1)

For the current model, moments of the collision integral is required within

each group. While moments corresponding to the depleting collisions can be
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handled easily, the replenishing collisions are difficult. The difficulty arises

because there is no apparent relation between the groups of the colliding

partners(~c and ~v) and the inverse collision partners (~c′ and ~v′). In the absence

of such a relation, it would be difficult to get the correct contribution of the

moments of the replenishing collisions within each group. This constraint,

unless solved, limits the generalizabililty of the model.

In this regard, one of the first validation cases considered was replicating

the results in paper by Krook and Wu [25]. However, the inability to obtain

moments of the replenishing collision integral used in that paper stalled these

efforts.

5.1.2 Discontinuous distributions

Existing methods for solving the Boltzmann equation numerically provide

continuous distributions. While the current model, focuses on the moments

and the macroscopic quantities, improvements in accuracy can be obtained

by enforcing continuity. This can be done by adding additional constraints

in equation 3.5

5.2 Roadblocks

In this section, a set of roadblocks that were faced during model development

are elaborated. These roadblocks were not overcome during the course of

work through the model development.

5.2.1 Couette Flow Problem

Couette flow problem is an alternative one-dimensional problem choice for

studying translation non-equilibrium. The key aspect of Couette problem

involves obtaining the variation of shear stress in a gas in a flow normal

direction. There is a gradient along the y direction of c̄x - the macroscopic

velocity of the gas along the x direction.

However, looking at the model formulation in 3.13, there are gradients

only along the x direction accounted for. If moment equations are generated

along the y direction, then it would not be easy to resolve the velocity along x
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direction. One possible way to circumvent the problem, would be to generate

the 3Dx-3Dv equations and apply simplifications to arrive at the 1Dx-3Dv

governing equations. There are some problems with this approach which are

elaborated next

5.2.2 Extensions to 3D spatial equations

The expression for the group distribution function for the 1Dx-3Dv case is

given by:

f(x,~c, t) = A exp(−β((cx − w)2 + c2y + c2z)) (5.2)

A simple way to extend the function formulation for 3Dx-3Dv case would be

:

f(x,~c, t) = A exp(−β((cx − wx)2 + (cy − wy)2 + (cz − wz)2)) (5.3)

There are five unknown function parameters A, β, wx, wy, wz. The five group

macroscopic variables corresponding to density, momentum along 3 directions

and energy can be used as physical constraints for extracting group function

parameters.

At a first glance, above formulation works well. However, there is an inher-

ent assumption in the above formulation which may lead to poor modeling

of non-equilibrium effects. The β parameter is equivalent to inverse temper-

ature. By constraining the group distribution function to have a single β, we

are enforcing the ”temperature” within a group to be equal along the three

directions. This need not be true in non-equilibrium cases and can result in

model performing poorly.

Alternatively, a modified function formulation is considered:

f(x,~c, t) = A exp(−βx(cx − wx)2 − betay(cy − wy)2 − βz(cz − wz)2) (5.4)

While the above formulation solves the single temperature assumption, it is

an open questions with regards to the macroscopic quantities and correspond-

ing governing equations to be used for obtaining the parameters. There are 7

function parameters and conservation equations only provide 3 constraints.

Non-physical governing equations involving cross terms can be used. How-

ever, boundary conditions cannot be specified easily for such equations and

the resulting results may be non physical. In addition, the computational
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cost for inverting 7 non-linear equations at every grid point is also extremely

high

5.3 Standing Shock Structure - Problems

Based on the observations in the previous section, the standing shock problem

still seems to be amenable to the way the model is currently constructed.

The goal of the shock structure problem can be elaborated by 5.1. The pink

Figure 5.1: Inverse shock thickness vs Mach Number

curve represents the experimentally measured shock thickness. The model

(red curve) must ideally be as close as possible to the pink curve.

The model used for generating results in Figure. 5.1 used two groups. The

structure within the shock as seen in Figure 5.2 is qualitatively matching

with the Krook solution. Despite this, the shock thickness is not accurately

captured. In order to eliminate resolution as the reason for error in shock

thickness, three groups in velocity space was used. The result for 3 group

case for two different Mach numbers are shown in Figure 5.3

In Figure 5.3, there are non physical wiggles in the shock structure. It is

clearly evident at higher Mach numbers, but wiggles are present in low Mach

numbers as well.

While attempting to fix the wiggles and obtain better shock thickness

prediction, a series of problems are identified which are listed below.
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5.3.1 Model inadequacy

The 1Dx-3Dv formulation, similar to the 3Dx-3Dv formulation in 5.2.2, as-

sumes the a single ”temperature” in the three velocity directions within each

group. However, as clearly shown in Bird’s work [26],the variation on lon-

gitudinal temperature(along x) is different from that of the variation in the

lateral direction (along y and z). This could be a major contributing factor

behind the shock thickness prediction errors.
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5.3.2 Model Variants

Three alternatives were tried to test model efficiency

• Create a 1Dx-3Dv model with two β parameters, one along longitudinal

direction and one along lateral direction similar to equation 5.4

• Try to see if model work for a simple (unrealistic) case of 1Dx-1Dv

model

• Trying to test different group velocity bounds to check if it has an

impact in the solution.

If a 1Dx-1Dv assumption is used, the group distribution function becomes ,

f(x,~c, t) = A exp(−β((cx − w)2)) (5.5)

While the structure of the governing equations remain the same as 3.13, the

underlying expressions for ~Uk and ~Fk are no longer the same as 3.3.3 and 3.3.3.

Firstly, addition βk parameters that occur in ~Uk and ~Fk due to integration

along cy, cz directions will vanish. In addition, the energy equation will no

longer have terms that appear due to taking the c2y + c2z moments. If such an

assumption is used to model a monoatomic gas like argon, the effective ratio

of specific heats goes from γ = 5/3 to γ = 3

If a 1Dx-3Dv model with two β parameters is used, an additional moment

equation is required for determining the additional β parameter.

All the variants tried failed to improve the solution. The shock thickness

was not being accurately captured and the wiggles continued to persist in

each variant. Furthermore, the solution was very sensitive to the group

velocity bounds chosen when modeled using each variant. For most group

velocity bounds chosen, the model did not converge. The model returned

a solution (with wiggles) only when both the post and pre-shock velocity

distributions had non-zero density contributions in each group. This way of

group distributions is feasible for small Mach numbers. However, at higher

Mach numbers there is minimal overlap of the post and pre-shock velocity

distribution.

On further investigation, the reason for the all the variants of the model

solutions having wiggles, sensitivity to velocity groups and inability to con-
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verge for some choice of groups is - the inability of the non-linear inversion to

obtain accurate function parameters from the macroscopic group moments.

5.4 Note on Inversion

One of the key steps in the numerical implementation of the model involves

getting the group function parameters (A, β, w) from the group macroscopic

quantities. These parameters can then be used for reconstructing the distri-

bution in one-dimensional case and obtaining the value of the flux variables

in the one-dimensional case. The expressions of group macroscopic variables

(ρk, ρkuk, ρkek) in terms of the function parameters β, w are non-linear. One

of the strategies considered is to normalize the group momentum and energy

by the group density to eliminate A parameter and use a non-linear solver

only for the other two parameters.

The Newton-Raphson algorithm or the Levenberg-Marquardt algorithm

was used for finding the roots of the nonlinear equations. The former solves

for the roots of the non-linear equations while the latter casts the root finding

as a minimization problem.

The primary culprit for most of the model failures during simulation are

the error functions present the group density expressions. Error function

reach their asymptotic value of ±1. This phenomena explains the high sen-

sitivity of model solution to group velocity bounds. If the group velocity

bounds are such that one of the post/pre shock distributions have low den-

sity components in the group, the error functions representing the group

density variable quickly saturates, causing problems with inversion. This is

because low density values result in round-off errors that corrupt the normal-

ization Another technique attempted involved generating a lookup table to

obtain β and w given the normalized group energy and group velocity. The

surface plot showing β and wk is shown in Figure 5.4. From the plots,we

see that points cluster at specific edges of the surface (shown by the closely

spaced lines at the left and right edges of Figure 5.4a and the left edge of

Figure 5.4b). At these edge locations, the group density is extremely low.

the surfaces in Figure 5.4 are interpolated and the interpolated values are

used for distribution function reconstruction or flux evaluation.

A summary of some of the techniques are attempted for improving the
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reliability of inversion are:

• Storing a history of parameter values to serve as good initial guess for

non-linear solver

• Non-dimensionalizing the macroscopic variables and function parame-

ters to

• Supplying the Navier Stokes solution as an initial condition for group

macroscopic parameters

• Attempted 3 parameter inversion (A, β, w) and two parameter inversion

(β, w) to see if any improvements can be obtained

• Fixing the solution of erroneous parameters with last known correct

parameter value

• Using minimization routines like trust-region-dogleg or Levenberg-Marquardt

algorithm to see if they can perform the non-linear inversion better

Among these methods, the best performing case was using a Levenberg-

Marquardt method with two parameter inversion was the only method that

did not cause the solution to diverge. Even this method, resulted in wiggles

being observed in the shock structure. On further investigation, the wiggles
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are present because of the inability of the non-linear inversion to improve the

solution beyond a certain point. Over the course of the simulation (before

the shock structure reaches a steady state), if the intermediate value of the

macroscopic moments are such that the group density is very low or if an

intermediate step in the non-linear inversion iterations, the error function

inputs become large enough to saturate the output, the non-linear inversion

fails.

5.5 Conclusion

A multi-group maximum entropy model for modeling flows with translational

non-equilibrium is developed. The performance of the model on a zero-

dimensional relaxation, one dimensional moving shock and one-dimensional

standing shock is observed. Some of the key advantages of the model are

its ability to capture non-equilibrium effects at significantly lower computa-

tional cost and the physical motivation underlying the model development.

Key disadvantages of the model pertain constraints that need to be overcome

to generalize the model to three dimensional settings and crippling depen-

dence of the model to non linear inversion. A wide variety of open questions,

problems faced during the model development and persisting errors are elab-

orated. All of the points mentioned can serve as fertile ground for future

research.
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