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Abstract

This dissertation develops a theory of networks of hybrid open systems and morphisms. It builds
upon a framework of networks of continuous-time open systems as product and interconnection.
We work out categorical notions for hybrid systems, deterministic hybrid systems, hybrid open

systems, networks of hybrid open systems, and morphisms of networks of hybrid open systems.

We also develop categorical notions for abstract systems, abstract open systems, networks
of abstract open systems, and morphisms of networks of abstract open systems. We show that a
collection of relations holding among pairs of systems induces a relation between interconnected
systems. We use this result for abstract systems to prove a corresponding result for networks of

hybrid systems.

This result translates as saying that our procedure for building networks preserves mor-
phisms of open systems: a collection of morphisms of (sub)systems is sent to a morphism of net-
worked systems. We thus both justify our formalism and concretize the intuition that a network

is a collection of systems pieced together in a certain way.
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Chapter 1

Introduction

1.1 Motivation

Networks of systems are ubiquitous in engineering. In fact, elementary examples of higher order
ordinary differential equations (ODEs)—e.g. coupled oscillators ([5, §7.1], [13} §6.1]) and systems
of ODEs generally ([1, §8])—arise naturally as networks. Informally, a network interconnects a
collection of open systems, systems with external inputs, to make up a higher dimensional closed
system. Networks are not, however, merely high dimensional dynamical systems ([11]): the pro-
cess of combining subsystems together reveals structure and regularity (symmetry or synchronous

behavior, for example) which may be isolated, formalized, and separately understood.

Many perspectives have been developed in the literature for building a theory of networks
of dynamical systems. A common one, including work of Golubitsky and Steward, uses graph
theoretic formalism ([11], [12]): nodes depict a space where dynamics live, and edges depict in-
teraction among or information flow between spaces. This framework allows for insight into the
structure of network dynamics to be seen through discrete patterns in graphs, for example to high-
light synchrony in coupled oscillators ([6]). Work by Lerman and DeVille ([7], [8]) capitalizes on
and extends this approach by considering a special class of maps or morphisms of networks—
as maps of graphs carrying information from the underlying dynamical systems—which induce

related interconnected dynamical systems.

Though graphs seem like a natural structure with which to represent networks—especially
in engineering since combinatorial properties are both interpretable and computable—other per-

spectives in the literature view networks instead from a category theoretic angle. One reason



is that category theory is particularly apt for isolating features of mathematical phenomena at a
certain, and usually correct, level of generality: the universal property of product, e.g., “really”
defines products. Following the trope that “networks of systems are not just bigger systems,” a
categorical approach may aim to define what precisely the nuance is, whereas a combinatorial
approach may, on the other hand, look for ways to compute particular network-specific behavior.
After all, both products and monoidal products arise often in many systematic investigations of
networks, concepts which are at home in the study of category theory. For example, work in [28]
uses wiring diagrams to model input-output relations among a collection of systems and to for-
mally interconnect those systems. Wiring diagrams—which define a monoidal category ([28])—
represent ways of “interaction,” or input/output relations, and an algebra on these diagrams in-
troduces a notion of state or space with which dynamics may be included. This is one approach
for isolating network defining features and—more to the point—provides an instance of the idea
that networks may be well modeled as objects or morphisms in a monoidal category. Additional
work treating wiring diagrams includes [24], [25], and [23] and uses them to depict both visually
and categorically the notion of building a larger object from a collection of smaller ones. Other
examples of the monoidal viewpoint may also be found among [4], [9], and [3]. We develop yet

another one here.

Our starting point for a theory of networks is developed in [17], which treats in particular
networks of open dynamical systems. This theory differs from the theory of wiring diagrams
in two notable respects. First, we focus on a fixed space with a collection of dynamics (vector
tields or control) over the space, instead of scrutinizing input-output relations for varying spaces.
Secondly, and related, a notion of morphism or map of networks of systems is introduced: fixing
the space and looking at the collection of possible dynamics over the space makes way for the
notion of related dynamics between maps of spaces, and related dynamics on networks. One
reason for studying this notion of morphism of networks arises from the central role which (the
analogous notion of) morphism of dynamical systems plays in the theory of dynamical systems.
Not only do maps of dynamical systems preserve structural information (in a way analogous to
homomorphisms of algebraic objects), but also intrinsic properties of dynamical systems may in

fact be encoded as maps of dynamical systems. Equilibria, periodic orbits, and—more generally—



invariant subspaces are instances of (arise as) maps of systems. Integral curves are also a special
kind of map of dynamical systems, and are moreover preserved by maps: maps of dynamical
systems send integral curves to integral curves. Synchronous behavior of subsystems is an analog

of invariance for networks, and may—in our framework—be realized as a map of networks.

Another motivation for the “morphism-centric” perspective is the categorical worldview
which says that objects are known by the class of morphisms into or out of them: the Yoneda
embedding is fully faithful ([21]). These motivations are related. For example, it turns out the
functor from the category of complete dynamical systems to the category of sets which drops both
dynamics and smooth structure is representable (definition proposition 2.16). At its core, this
is the fundamental existence and uniqueness theorem from the theory of dynamical systems for
complete dynamical systems (theorem [2.2) masquerading as a categorical statement: an initial el-
ement in the category of elements of the forgetful functor (proposition 2.6, proposition[2.16) is the
pair ((IR, %), 0) , a morphism from which is a solution (integral curve) to some dynamical system

together with a choice of initial condition.

While it is encouraging that category theoretic formulations exist for otherwise concrete the-
orems in dynamical systems, we emphasize again that category theory provides a useful concep-
tual apparatus for suitably isolating the relevant aspects of a mathematical topic, and how similar
kinds of ideas and arguments may extend to other settings. In our case, we develop a theory
for network of deterministic hybrid system, piggybacking on [17] for networks of (continuous-time)
open systems. We work out hybrid analogs for continuous-time systems concepts; a hybrid phase
space is the hybrid version of a manifold, a hybrid system is the hybrid version of a continuous-
time dynamical system, etc. Each of these comprises the object part of some category, and we
define the corresponding morphisms and categories. We show that there are “structure preserv-
ing” functors from the relevant hybrid category to the non-hybrid category, and use said functors

to deduce results for the hybrid setting from those in the non-hybrid setting.

This project leads to a categorical abstraction of the notion of network, which is applicable
to other kinds of dynamical systems. In fact, we also abstract the very notion of system. These

tasks are interrelated: the abstraction is justified in part by its effectiveness in applying to both



continuous-time systems and hybrid systems, while derived out of what we perceived to be ex-
clusively hybrid versus what turns out to be general, again illustrative of the power of a categorical

viewpoint.

We spell out our main result and highlight where the abstraction occurs. Our conception of
network takes a collection of disparate spaces and combines them together into one, which we
realize by taking a product in a monoidal category, and interconnecting (definition defini-
tion [2.49). (We thus see a monoidal viewpoint centrally present in our work as well.) Interpreted
in the category of continuous-time open systems, the main result ([17, Theorem 9.3], restated in
theorem says that if two distinct collections of open systems are “pairwise related,” then in-
terconnection on the product systems of each collection results in a pair of open systems which
are related. This generalizes the main result in [7] described in terms of graph fibrations for the
existence of maps between closed systems, and allows for more complex (e.g. non-diagonal) exam-
ples of subsystem invariance. We will make precise both “relatedness” and “pairwise,” but a quick
takeaway from this appetizer on networks is that information of the pieces (open subsystems) can
be systematically pieced together to provide information about the whole (the networked system),
and moreover, that the category “holds together” under the process of taking networks, i.e. mor-
phisms still make sense and behave as we would like. Our main theorems for a class of hybrid
open systems (theorem and for abstract systems (theorem[4.1)), generally, say the same thing,

modulo the category in which each respective statement is made.

Here is how we piggyback on [17]: since we claim that the notion of network is essentially
categorical, and as we construct a category of hybrid systems, we should be able to obtain mu-
tatis mutandis a similar result with similar arguments for hybrid systems, and indeed we can.
Though functors automatically and always preserve some structure, namely identity and compo-
sition (and therefore, e.g., also isomorphism (fact[2.1)), we show that a functor from some hybrid
category to its non-hybrid analog preserves products (lemma as well. This is the structure
preservation we need in order to translate results about networks of continuous-time systems to
similar ones for hybrid systems. A forthcoming version of our work ([18]]) produces this transla-

tion directly.



In this work, we instead opt to rework the underlying framework. We develop a theory of
system as object and section of a split epimorphism, which epimorphism comes from a natural
transformation between two functors, the source of which we may think of as a “tangent” functor
and the target as an underlying phase space. The target of the functors represents a category
whose “dynamics” we treat as proxy for dynamics in the source. Thus one approach to presenting
a theory for networks of hybrid systems is to lay the groundwork for mapping hybrid to non-
hybrid and then to cite the original theorem from the continuous-time case ([18]). By contrast,
the presentation we develop here builds from scratch—using the continuous-time case as strong
guidance—a general theorem and cites it to produce as individual instances results for discrete-

time, continuous-time, hybrid, and deterministic hybrid networks.

1.2 Summary of Results

We present two detailed contributions. We conclude the thesis with a third, which uses the
morphism-centric viewpoint of continuous-time dynamical systems from a different angle in ap-

plication.

First, we develop a categorical notion of deterministic hybrid systems and networks of de-
terministic hybrid systems. One aspect of working categorically is that we define morphisms for
each concept we introduce. We state a result for maps of networks of deterministic hybrid open
systems (theorem which illustrates a concrete extension of [17, theorem 9.3]: two distinct col-
lections of deterministic hybrid open systems which are “pairwise related” induce a pair of related
deterministic hybrid open systems after interconnection. While we state theorem [3.1)in chapter

we give its proof as an instance of a more general result in chapter

Secondly, we develop an abstract notion of system and network of systems which makes
sense apart from ordinary continuous-time dynamical systems and even hybrid systems. We state
and prove the main result (theorem which says that two distinct collections of abstract open
systems which are “pairwise related” induce a pair of related abstract open systems after inter-

connection. This is the general result we use to prove theorem [3.1|as a corollary. Put differently,



theorem is a theorem of which theorem is an example We also deduce [17, theorem 9.3]
and [18, theorem 6.19]—an analogous non-deterministic hybrid networks result—as corollaries of
theorem 4.1} We end with a version of the main theorem for networks of discrete-time systems. We
abstracted enough to prove four distinct, yet similar, network statements, while leaving enough

room for further application for different “kinds of systems.”

We thus both formulate an abstract framework and work out details for a particular class to

which the abstraction applies. We discuss these in turn.

1.2.1 Networks of Systems and Interconnection

We start with a concrete example from continuous-time dynamical systems to introduce our over-
all approach to networks. For us, a continuous-time dynamical system (M, X) is a pair where M
is a manifold and X € X(M) is a vector field over the manifold. Consider a two-dimensional
dynamical system (RZ%, X) with vector field X € ¥(R?), a smooth map X : R?Z — TR? sending
(x,y) — X(x,y) € T(x,y)]Rz = T\R x TyR. Thus X(x,y) = (X1(x,y),Xz2(x,y)) with X;(x,y) €
TR and X3(x,y) € TyR. The maps X; and X, are not vector fields over R: the tangent vec-
tor X;(x,y) € TkR, e.g., depends on a variable other than x. Instead they make up two open
systems over surjective submersion R? ¥4 R, namely maps X; : R? — TR compatible with
pi: TR © Xi = pi, where Tg : TR — R is the canonical projection of the tangent bundle and
pi the projection onto the ith component. These open systems induce a product open system
X1 x X, over surjective submersion (R? - R) x (R? = R) = (R* — R?) which is defined by

(XzU,X/,y/) — (X1 (le)/XZ(X/ry/)) S TXR X Ty’IR"

We recover the original vector field X as a (closed) system over R? by “interconnection.”
We define an embedding t : R? — R* sending (x,y) — ux,y) = (x,y,%,y). Precomposing
the open system X; x X; with interconnection returns X = X; x X; o . We call v interconnection
because through it we may “interconnect” two separate open systems (R? 25 R, X;) into a single

(closed) dynamical system (IRZ, Xy x Xz)) = (R?% X). This example provides a quick taste of

I Treating theorems as examples of other theorems (as opposed to illustrating said theorems with examples) is remi-
niscent of a quip attributed to David Spivak.



how systems are constructed out of a collection of systems, and this process of interconnecting
leads to our concept of networks. We will formalize this model and show that it applies to other

kinds (e.g. hybrid) of systems.

1.2.2 Hybrid Phase Spaces

A hybrid system consists of both continuous and discrete behavior. We will successively construct
various notions of hybrid systems, the principal building block of which is a hybrid phase space.
Just as a continuous-time system consists of manifold and vector field (“space” and “dynamics”),
similarly many of our hybrid systems notions are defined as a hybrid space with other data spec-

ifying hybrid dynamics.

A hybrid phase space ( Gy % Gy , H:G— ReIMan> may be described by a directed re-
flexive (multi) graph G (with nodes Gy, edges G, source and target maps s,t: G; —< Gy and
unit map u : Go — Gj), and assignments of manifolds J{(g) to each node g € Gy. For us, all
manifolds are manifolds-with-corners (even if there are no corners) and edges encode relations:
H(y) € H(g) x H(g’) for each edge g X g’ of Gy. We require unit relation H(u(g)) = A(H(g)) :=
{(x,x' ) € H(g) x H(g) : x =x' } for technical reasons which we will elaborate and make use of
later: first this condition allows us to define a global jump map, and secondly it allows us to take
products of hybrid systems (a key ingredient to building networked systems from a collection)
while circumventing a highly restrictive, and otherwise unrealistic, constraint of simultaneous
state transitions. Each manifold J((g) represents (part of) a phase space where a state may flow
continuously, whereas the relations J((y) represent possible jumps. We are rather flexible about

the topological nature of the relations.

We present an example which serves as a phase space for the dynamic behavior of a standard
hybrid system, a thermostat, which controls the temperature of a room. A heater turns on to drive
temperature up to some specified level at which point the heater turns off and the temperature

decreases until it falls below some threshold. For now, we only discuss the space. Consider di-
€1,0
rected graph 0 C 1 (note that we do not explicitly display unit edges u(i)) and manifold

€0,1



assignment H (i) := R x {i}. To edges, we assign relations H(e1 o) := {((x,0),(x,1)) : t < -1} and
similarly H(eg 1) := {((x, 1), (x,O)) t> ]}. The physical interpretation is the following: variable
x € R represents the temperature of some room, while the second variable i = 0,1 will indicate
whether the heater is on or off. So far we have not specified how this discrete change is realized in
practice, nor have we explicitly defined (continuous) dynamics. We will formalize this example in
example [3.9| after defining hybrid systems. Before continuing with the conversational version of

this example, we discuss dynamics and determinism in hybrid systems.

1.2.3 Deterministic Hybrid Systems

From the data of a hybrid phase space, we may recover an underlying manifold by taking the
disjoint union |_| H(g) over nodes g € Gy of each manifold H(g). It turns out that this oper-
ation, the coprgfil?;ct, is functorial (to the category of manifolds). This coproduct functor serves
two purposes for us: first we may define many hybrid notions as a hybrid phase space plus some
data in the category of manifolds, which data is related in some way to the hybrid phase space by
said functor. Secondly, the functor gives us a way to apply results from a more general theory of
networks, without requiring ad hoc modifications rehashing the original theory to make it fit. In
light of the first point, we define a hybrid system as a hybrid phase space with a vector field on the
underlying manifold. Having a notion of hybrid dynamical system, there is an analogous notion
of integral curve, or execution, which is something like a “piecewise continuous” curve satisfying
the governing dynamics (differential equation or vector field equation) and at end points is com-
patible with relations (the pair of left and right limit points is an element of one of the relations).
In fact, executions are a special class of map of hybrid dynamical systems—a map of hybrid phase
spaces relating dynamics—and they provide concrete validation that the formalism is capturing

familiar notions.

One departure of (this definition of) executions from a classical theory of dynamical systems
is that executions are not unique. We introduce a mechanism which, under mild conditions, en-
forces uniqueness of executions. Recall that a vector field X € X(M) of a smooth manifold M is a

smooth section of the tangent bundle, an element of I'(TM ™, M). We construct a corresponding



notion of section on a “continuous-discrete bundle” TH of a hybrid phase space H: TXH is the

product of the (ordinary) tangent bundle T | | 3(g) of the underlying (disjoint union) manifold
and the underlying manifold itself | | J—C(gi,ejg a set. There is a natural projection to the underly-
ing manifold, obtained by first projgeec(t;iong to the tangent bundle, then taking the canonical projec-
tion of tangent bundle to the underlying manifold. A section, therefore, assigns a tangent vector
and element of the underlying space to each point in the underlying space. This pair captures
both continuous and discrete behavior at once: the tangent vectors should be smoothly varying
and indicates a direction to flow, while the point assignment is required only to be compatible with
relations, and represents discrete jumps. In principle, each point is assigned a jump; however, our

previous stipulation that each node has a unit arrow permits (and we make use of) trivial jumps

x — Xx. We return to the thermostat to understand deterministic hybrid systems in an example.

1.2.4 Digital Control and Interconnection

We model the dynamics of a thermostat as an interconnection of a continuous hybrid open system

and a discrete one.

Let the temperature be represented by x € R and whether the heater is on or off by i &
{0,1}. Together we have states (x,i) € R x {0, 1} and we define two open systems X;(x,1) :=
(=)t € LR and X3(x,1) := 0 € T{0,1}. Each vector represents the continuous dynamics: X
is positive when heat is on and negative otherwise, and the discrete space {0, 1} has no (or better:
zero) continuous dynamics. On the other hand, we define open jump maps to capture switching

behavior. Temperature never jumps, indicated by p1(x, 1) := x and digital control is defined by

, i if (—1)"'x <1
p2(x,1) == ,
T—i if (=) >1.
Here x = 1 represents the upper threshold for the heater to turn off, and x = —1 the lower thresh-

old for the heater to turn (back) on.

We represent these hybrid open systems by (R x {0,1} R, X, p1) and (R x {0,1} L=



{0, 1}, X2, p2), where p; denotes the projection onto the ith factor. These induce a product open
system (R x {0,1} x R x {0,1} 222, R x (0,1}, X; x Xz, p1 X p2) where (p1 x p2)(x,1,x/,i/) =
(x,1"). In a manner analogous to the two-dimensional system X € X (R?) outlined in sectionm
we define interconnection t : R x {0,1} — R x{0,1} x R x {0, 1} sending (x,1) — (x,1,%,1) and
obtain the thermostat as a result of precomposing interconnection « with the deterministic closed

system: t*(X; x Xz)(x,1) = ((—1 )1-1,0) (governing the vector field on temperature) and

) (x,1) if (—1)""x<1
Ve x p2)(x,1) = 4
(x,1—1) if (=1)""x>1,

governing digital control.

In presenting this example, we specified numerous data: a phase space where the state lives,
a (smooth) map (control) which determines continuous flow, and a jump map representing dis-
crete behavior. We can now comment on how the relations of a hybrid phase space constrain the
jump map: according to the relation J(e; o) we defined above (in section[I.2.2), a non-trivial jump
for (x,1) may only occur if both x < —1 and i = 0. We see that the jump map does nothing to
the continuous variable x: p1(x,1) = p; o 1*(p1 X p2)(x,1) = x. In this way, interconnection repre-
sents digital control, as the discrete change merely switches between continuous dynamics, and

otherwise does nothing to the state.

1.2.5 Abstract Systems

We believe that a categorical theory of networks extends beyond the notion of “network of dy-
namical systems.” In fact, even the notion of system may be appropriately generalized. Recall
that a continuous-time system for us is a manifold M and a (smooth) section X € I'(TM) of the
tangent bundle. We only need a category and some sort of fibered space on which to take sections;
relatedness of sections straightforwardly generalizes relatedness of vector fields (some diagram

commutes). Our abstraction is roughly as follows: we consider two functors 7,4 : C — D be-
T

tween concrete and locally small categories, and natural transformation C Jt D whichwe

~_ "
u

10



called “fibered” if each morphism 7. : 7c — Uc is a split epimorphism. We denote sections by

Ce(c) = {X:Uc— Tec: tcoX =1idyc}.

Since I;(c) is nonempty for each object c € C, we define an abstract system (c, X) as a pair
where X € T¢(c). Supposing that integral curves realize the dynamics portion of a (continuous-
time) dynamical system, we take our cue from the Yoneda version of existence and uniqueness to
justify this abstraction (proposition : a “solution” of system is a quasi-initial element in the

category of elements J v of a faithful functor v : C — Set (definition .

C

The functors 7,4 : C — D allow us to use dynamics in one category (in D) as proxy for
structure in the other (in C). In the case of non-deterministic hybrid systems, C is the category of
hybrid phase spaces, while D is that of manifolds, in which we already have a theory for dynamical
systems (as object and section of the tangent bundle pair). The functor i is the forgetful functor
alluded to in section[I.2.3} and 7 the composition of the tangent endofunctor T : Man — Man with

forgetful functor i/.

The setup for deterministic hybrid systems is slightly different. We keep the category C the
same (hybrid phase spaces), but this time map to D = Set. Now 7 is T, the c.d. endofunctor
we introduced in section and U maps a hybrid phase space to the underlying set of the
underlying manifold. The reason for working in Set has to do with taking sections of the bundle

T:7T = U: namely, the jump map p is not required to be smooth or even continuous.

We want a notion of open system, which we obtain by considering a subcategory A C
Arrow(C). In the continuous-time case, A is the category of surjective submersions. Addition-
ally, we define interconnection abstractly as a subcategory Aint C A, whose objects are the objects
of A but whose morphisms are isomorphism on codomain. This data assembles to form a double
category A” whose 0-morphisms are interconnection and whose 1-morphisms are objects of A.
We extend sections to a (double) functor I'; : AP — Set™, which loosely parses as: interconnection
preserves related open systems. This makes up half of the proof of our main theorem. Next, we

need to interpret interconnection in the context of networks.

11



1.2.6 Abstract Networks

Construction of networks occurs by putting and connecting multiple open systems together. We
take this to mean applying a monoidal product over a finite indexed list of objects in a monoidal
category and taking interconnection, respectively. In our example of interconnection in section[1.2.1}
we considered two open systems and obtained another one by taking the cartesian product of
both, e.g. (R? LA R, X;) x (R? LEN R, X;) = (R* P1xpz, RZ, X; x Xa). To apply this procedure
in general, we require 7,U : C — D to be (strong) monoidal functors, and we require the target
space D to be cartesian. Again, D is the space in which we indirectly (functorially) make sense
of dynamics in C. We show that a collection of open systems induces a single open system on
the product. This is the step for making one system from many. We prove, additionally, that this
mechanism preserves related systems. In slightly more detail, if two collections are “pairwise”
related, then taking the product on each collection results in a pair of related systems. This makes

up the second half of the proof for our main theorem.

Piecing together product (2nd half) and interconnection (1st half), we present the main ab-
stract result: a pair of collections of open systems related in some way induces related open sys-
tems after interconnection. This result is similar to but generalizes the main theorem of [17]—
which could be stated as an instance of ours with C = D = Man, Y = idman, and 7 = T—and
captures the intuition we hinted at earlier. Namely: a network pieces subsystems together, but
more importantly, the fact that relations are preserved in the networked systems suggests that our

formalism is on the right track.

1.2.7 Application: Maps of Systems and Stability

We end this dissertation with a more grounded investigation into maps of dynamical systems as a
means of verifying concrete systems properties. This result is not about networks, but we present
it as a springboard for future development in the context of networks. We use maps of dynamical
systems to answer questions about stability of dynamical systems. Stability, for us, means that

integral curves stay close to each other if they have initial conditions close to each other. Tradi-

12



tionally, techniques for studying stability include Lyapunov’s first and second methods, namely
linearization of nonlinear dynamics at a point, or construction of a decreasing-along-solutions Ly-
panov or energy function. We introduce a result which says that a class of maps of dynamical
systems preserves stability; in other words, a stable point in the domain is sent to a stable point
in the image. The advantage of this method, akin to Lyapunov’s second method, is that stability
questions which can be answered for some system may under suitable mapping be translated to

another hitherto inscrutable dynamical system.

1.3 Outline of Dissertation

In chapter 2l we review mathematical notions and theorems requisite for understanding the ma-
chinery built up in this thesis. This includes category theory, at the level of basic definitions, uni-
versal properties of product and coproduct, the arrow category, Yoneda lemma, double categories,
and monoidal categories. We also review manifolds, manifolds with corners, and dynamical sys-
tems, and provide proofs of basic facts from geometry using category theory as reference for some
of the techniques employed later on. This review is rather extensive, for the purposes of making

this thesis as self-contained as possible.

In chapter[3|we develop a concrete categorical theory of hybrid and deterministic hybrid sys-
tem. This includes constructing a category of hybrid phase spaces, hybrid surjective submersions,
a control/sections functor, a monoidal product, and a strong monoidal functor U : HyPh — Man

from the category of hybrid phase spaces to the category of manifolds.

In chapter | we work out abstract categorical notions of system (as pair of object and section
of a bundle) and networks of abstract systems (as interconnection to a monoidal product). We
then state and prove the main abstract result that a morphism of networks of systems induces a
1-morphism of related sections. We conclude with various concrete examples of morphisms of
networks of open continuous-time systems, of hybrid open systems, and of deterministic hybrid

open systems as instances of the abstract result.

We end in chapter 5 with a light appetizer on a more applied direction of the morphism-

13



centric viewpoint in the study of dynamical systems. We review the notion of Lyapunov stability
definable as “continuity of a [certain kind of] map,” and prove a preliminary result that a certain
class of maps of dynamical systems preserves stability. Our goal is to use this perspective as
guidance for continued study of stability for hybrid systems, networks of continuous-time systems
(especially string stability, an oft used notion for autonomous traffic flow algorithms, e.g. [26]), and

networks of hybrid systems.

14



Chapter 2

Background

2.1 Introduction

Almost all of chapter 2| is background material used in the development of theory in chapter
and chapter ] We review ordinary categories, arrow categories, double categories, and monoidal
categories, in addition to some light differential geometry, and dynamical systems theory. Because
the bulk of our work is categorical, we emphasize details on the category theory, while keeping

details on geometry to a minimum.

2.2 Category Theory

2.21 Ordinary Categories

Concepts in section are standard and may be found in [22], [2], [20], or [16]. Pacing is brisk,
and we refer the reader to these texts for more complete treatment of categories. Our goal here is

to set notation and highlight the relevant concepts we will be using.

dom

Definition 2.1. A category C = < G % Co ) consists of a collection of objects Cy and collection
of morphisms C;, assignments dom, cod : C; — Co (domain and codomain) and map id( : Co —
Cy (the identity or unit). We may write morphism f as dom(f) L cod(f) to specify domain and
codomain. For each object ¢ € Cy, ¢ = dom(id.) = cod(idc), and for morphisms f,g € C; with

cod(f) = dom(g), there is morphism dom(f) 97, cod(g)

1Implici’c here is that dom(g o f) = dom(f) and cod(g o f) = cod(g).
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Finally, categories satisfy the following two axioms.
1. For each morphism f € C;, f = idcoq(r) © f = f 0 idgom(f)-
2. Composition of morphisms is associative: for every triple f,g,h € C; of composable mor-
phismsEI (hog)of=ho(gof).
When we write a morphism f as ¢ AR c’, it is clear that ¢ = dom(f) and ¢’ = cod(f). For objects
c,c’ € C,we will let C(c, c’) denote the collection of morphisms from c to c’.

Example 2.1. Examples of categories include Set (objects are sets, morphisms are functions), Man
(objects are smooth manifolds with corners (definition 2.35), morphisms are smooth maps), Top
(objects are topological spaces, morphisms are continuous maps), and Cat (objects are small cat-
egories (definition 2.5), and morphisms are functors (definition [2.6)). Oftentimes, objects in a cat-
egory are sets with additional structure and morphisms are structure preserving maps, but they
need not always be (e.g. a group may succinctly be defined as a category with one object all of

whose morphisms are invertible).

The next example, the category of relations, will show up again in our development of dy-
namical systems. Here we define relations as an ordinary category. Later we will redefine a double

category of relations (section definition [2.25).

Example 2.2. We define the (ordinary) category Rel of relations as follows:
1. Objects X are sets {x € X}.
2. Morphisms X Ry Y are relations R C X X Y, subsets of the product.

Composition is defined as follows: for relations R C X x Yand S C Y x Z, we define
SoR:={(x,z) e Xx Z: dy € Ywith (y,z) € Sand (x,y) € R} (2.1)

For set X, the identity relation is idx := A(X) = {(x/,x) € X? : x’ = x}. It is a formal verification
that this category satisfies the defining axioms of a category (definition 2.1).

Remark 2.1. Defining a category requires specifying objects and morphisms, as well as verify-

ing conditions 1 and 2 in definition Often, the checks of conditions are routine and we skip

2In other words, cod(f) = dom(g) and cod(g) = dom(h).
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them. Our one exception is the definition of (the category of) hybrid phase spaces (definition 3.1}

lemma[3.1).

Emphasis on morphisms is central in the philosophy of category theory. For example, the
identity morphism is defined according to how it behaves when composed with other morphisms,
as opposed to where it sends elements. Similarly, a surjection in set theory is a map for which each

preimage is nonempty. The analogous notion in category theory is epimorphism.

Definition 2.2. A morphism ¢ % ¢’ in category C is called an epimorphism if for any pair of mor-

g
phisms ¢ ——<¢ ¢”, gop =hopimplies that g = h.
h

Definition 2.3. A morphism ¢’ ¥ ¢ in category C is called a split epimorphism if there is a right
inverse of p, i.e. a morphism s : ¢ — ¢’ such that p o s = id.. The morphism s is called a section of

p, and we will generally denote the collection of such maps by

I'p) = {s :cod(p) — dom(p): pos= idc}.

Precomposing a section s € I'(p) to both sides of hop = g o p shows that a split epimorphism

p is an epimorphism.

There is also a categorical version of injection or embedding:

i g
Definition 2.4. A morphism ¢’ = cis called a monomorphism if for any pair of morphisms c¢” — ¢/,
h

iog = ioh implies that ¢ = h. When there is monomorphism ¢’  c, we also say that ¢’ is a

subobject of c.

Definition 2.5. A category C is said to be locally small if C(c,c’) is a set for every pair of objects

c,c’ € C. A category is small if C; is a set.

We do not preoccupy ourselves with size issues, and will generally assume enough smallness

whenever necessary (e.g. anything involving Yoneda, theorem [2.1).

Definition 2.6. A (covariant) functor F : C — D between two categories assigns an object F(c) € Dy

F(f)

to every object ¢ € Cp and a morphism F(c) — F(c’) € D; to every morphism c L eq,.

These assignments satisfy the following two conditions:
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1. F(id.) = id g(c) for every object c € Cp and
2. F(gof)=F(g)o F(f) for every composition of morphisms go f € C;.

Definition 2.7. A contravariant functor F : C°P? — D from C to D assigns an object F(c) € Dy to each

F(f)

object ¢ € Cy and morphism F(c) —— F(c’) to each morphism c & ¢’ € C,. These assignments

satisfy the following two conditions:

1. F(ide) = idg(c) for every object c € Cp and

2. F(gof) = F(f) o F(g) for every composition of morphisms go f € Cj.
Remark 2.2. C°P is the opposite category of C, with the same objects but with the direction of all
morphisms flipped: c 5 e’ e Gifand only if ¢/ Lece CiP.

Remark 2.3. We encode conditions 1 and 2 in definition 2.6/and definition[2.7]by the following two
phrases: functoriality on identity refers to satisfaction of condition 1, and functoriality on composition

refers to satisfaction of condition 2.

Consider the well-known fact that functors preserve isomorphism. Many proofs in math-
ematics that an isomorphism in one category induces an isomorphism in another amount to
demonstrating a functorial relationship between both categories. First we recall the definition

of isomorphism in a category.

Definition 2.8. Let C be a category and c Lc'a morphism in C. We say that f is an isomorphism if
f has a (necessarily unique) left and right inverse: a morphism ¢’ % ¢ such that id. = g o f and

idey =fog.

Remark 2.4. Uniqueness of the inverse follows directly from the axioms of a category (defini-

tion2.1): suppose that g’, g : ¢’ — c are both inverses of f. Then
g'=9g'cide =g'o(fog)=(g'of)log=1idcog=g.

Fact2.1. Let 7 : C — D be a functor (definition andc 5 ¢’ an isomorphism in C (definition.

Then Fc 25 Fc’ is an isomorphism in D.
We prove this rudimentary fact only to demonstrate use of terminology in remark 2.3|
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Proof. Let g:c’ — cbe the inverse of f, so that id. = g o f. Then

FgoFf=F(gof)=F(id.) =idr.

The first equality follows by functoriality on composition, and the last one by functoriality on identity.
A formally identical computation shows that idz., = Ff o Fg, and hence that Ff : Fc — ¢’ is an

isomorphism in D. O

Another useful consequence of functoriality is that commutative diagrams are preserved by

functors.

Lemma 2.1. Functors preserve commutative diagrams.

Proof. See [22, Lemma 1.6.5]]. O

We catalog a few additional properties of functors.

Definition 2.9. Let F : C — D be a functor between locally small categories C and D (definition[2.5).
We say that functor F is faithful if for each pair of objects c,c’ € Cp, the map F : C(c,c’) —
D(Fc, F,c') is injective. We say that F is full if for each pair of objects c,c’ € Co, the map F :
C(c,c¢’) — D(Fc, F,c') is surjective. Finally, we say that F is fully faithful if F is both full and
faithful.

Remark 2.5. In example[2.1} we noted that oftentimes categories have sets with additional structure
as their objects. Such categories are said to be concrete. The formal definition of a concrete category
is a category which admits a faithful (definition 2.9) functor (definition U : C — Set to the
category of sets. Every category we will encounter is concrete. In practice, we will treat objects

in a concrete category C as sets-with-structure, whose faithful functor U : C — Set forgets the

structure.
]:
TN
Definition 2.10. Let 7,G : C — D be two functors. A natural transformation C Jo D (also
\Ej

denoted by o : F = G) is an assignment o : Co — D; which sends ¢ — (Fc =, Ge) satisfying the

following naturality condition:
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Fe —= 3 Gc
For each morphism c 5 ¢/in C, the diagram l Ff gfl commutes in D.

Fo' 2 ge!
We say that « : F = G is a natural isomorphism if each component y. : Fc — Gc is an
isomorphism in D.
Example 2.3. Let C and D be two locally small categories. We define the functor category D¢ as

follows:

1. Objects F € (D), are functors F : C — D (definition .

2. Morphisms (oc  F = Q) € (D%); are natural transformations (definition ) between

functors F and G.

That D€ is a category follows from the axioms defining categories (definition : each functor
F : C — D has an identity transformation id r : 7 = F because each object d € Dy has an identity
morphism idy. Therefore, we define natural transformation id  on components by (idr)c = id z..
The same idea implies that (y o 3) o @ = y o ( o «) for natural transformations o« : F = G,

B:G=H,andy:H =1.

We define a more general version of the functor category DC.

Definition 2.11. Let E be a category. We define the category (Cat/E)~ as follows:

1. Objects are functors v : C — E from a locally small category C to E.

2. For objectsv: C — E, (: D — E, amorphism v ﬂ) (is a pair, where « : C — D is a functor

and a: v = (o «is a natural transformation.

The category (Cat/E)< has the same objects. Now a morphism v (B0, ( still is a pair with functor

3 : C — D, but the natural transformation b : (o 3 = v goes the other direction.

Remark 2.6. We will often use some subcategory of (Cat/E)®. The category of hybrid phase spaces
(lemma and the category of lists (definition may be interpreted as some variant of this
category.

Fact 2.2 (Ex. 1.4.i [22]). Lety : F = G be a natural isomorphism. Then the inverse y~' : G = F

1

defined on components as (v e == (yo)7! is a natural transformation (and therefore, natural

isomorphism).
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Finally, we single out a special class of functors. Suppose that C is locally small and let ¢ € Cy
be an object. Then there is functor C(c,-) : C — Set sending an object ¢’ — C(c,c’) the set of

morphisms from from c to ¢’. Functors naturally isomorphic to C(c, -) have a special name:

Definition 2.12. A covariant functor F : C — Set from is representable if there is a natural isomor-

phism v : C(c, -) = F for some object c € Cy.

Limits, Colimits, and Universal Properties

We recall universal properties of products and coproducts in a category C.

Definition 2.13. An object ¢, € C is said to be terminal if for each object ¢ € C, there is exactly one
morphism ¢ — ¢; in C. Similarly, an object ¢; € Cis initial if for each object c € C, there is exactly
one morphism ¢; — c.

Definition 2.14. Let ¢, ¢’ € C be objects in a category. A product ¢ x ¢’ is an object in C equipped
with two maps ¢ x ¢/ 5 cand ¢ x ¢/ 2% ¢/ satisfying the following universal property: for any

for . : :
object z € C and pair of maps z I ¢,z -5 ¢/, thereisa unique map f : z --» ¢ x ¢’ through which

fc and f factor. In other words, pc o f = fc and pos o f = fo in the following diagram:

A product is not only an object, but an object with some morphisms satisfying some universal

property. This is a standard trope in category theory.

Definition 2.15. We say that a category C has finite products if for any two objects ¢, ¢’ € C, the

productc x ¢’ € C.

We will use the universal property frequently, so it may be helpful to recall how it works in

a routine application.
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Proposition 2.1. Let ¢ x ¢’ be a product of c and ¢’ in category C. If another object (label it) cc’ with

P . . .
two maps cc’ —% c and cc’ — ¢’ satisfy the universal property of products (definition 2.14

cc’ = ¢ x ¢/ and the isomorphism is unique.

, then

Proof. The universal property of ¢ x ¢’ implies that there is a unique map f : cc’ --» ¢ x ¢/ with

pcof =P

pc/Of :Pc’-

Consider, then, the following diagram

(2.2)

The unique map g : ¢ x ¢/ --» cc’ similarly arises from the universal property for cc’ and satisfies

Pcof = Pc
Pc’of = Pc’-

Composing, we have amap fog:c x ¢’ — ¢ x ¢/ with

pcofog =pc
poofog =pc.

The map f o g is unique, also by the universal property. But id.x. : ¢ X ¢/ — ¢ x ¢’ also satisfies

Pcoidexer =P
Pc’ © idcxc/ = Pcs
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so fo g = idcxc. An identical argument, swapping cc’ and ¢ x ¢’ in diagram (2.2)), shows that
gof = idc, and hence that cc’ = ¢ x ¢’ (definition 2.8). Moreover, since the morphisms f and
g making diagram (2.2) commute are unique, cc’ and ¢ x ¢’ are isomorphic up to unique isomor-

phism. O

Notation 2.1. For product ¢ x ¢’ € C, we will generally reserve p. as the notation for the canonical

projections p. : ¢ x ¢/ — c to the cth component.

Another easy fact:

Proposition 2.2. Suppose ¢ L ’andd % d’ are isomorphisms in category C. Then the product
morphism c x d 9, ¢/ x d’ is an isomorphism. Moreover, the inverse is given by (f x g)~ =

1 x g,
Proof. The statement follows immediately from the universal property of product (definition|2.14).

The following diagram commutes.

cxd — P .4

<
N
<
<
~
<
~
Pc <
N
N

(2.3)

Thus the composition of maps (f~! x g7') o (f X g) = idcxd. Swapping ¢ x d and ¢/ x d’ in diagram
shows that (f x g) x (f7! x g71) = id/«g'. Together, these equalities prove thatc x d = ¢’ x d’
and that ' x g7 = (f x g)7. O

That (f x g)~' = f~! x g7' is a consequence of a more general fact.

Lemma 2.2. Let C be a category with products (definition 2.15). Then the product x : Cx C — C

sending (c,c’) — ¢ x ¢’ is functor.
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Proof Sketch. We display the relevant commuting diagrams depicting the universal property. For

identity, the commuting diagram

a axb——D
Pb
idq la
a

shows that idq X idy = idgxp-
Similarly, the commuting diagram

axb —P* . p

~. g
a S~
>
Py’

a a’xb’ ———> b’

f lp“, e g
A

Po
a/ Cl// X b//

’
f'of f l all
a//

b//

shows that (f' x g') o (f x g) = (f'of) x (g’ 0 g).

O]

Remark 2.7. We observe from a different angle thatc x d = ¢’ x d’ when ¢ = ¢’ and d = d’, this time

by factP.T|and lemma2.2] The fact that the proofs of proposition 2.2]and lemma[2.2]are formally

identical is no accident.

Reversing all the arrows in definition gives us the coproduct:

Definition 2.16. Let ¢, ¢’ € C be objects in a category. A coproduct c LI ¢ is an object in C equipped

with two maps c LI ¢’ & candclc £ ¢ satisfying the following universal property: for any

f
object z € C and pair of maps z de ¢,z ¢% ¢/, thereisa unique map z «-- cLlc’ : f through which
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fc and f./ factor:

Now we make a more technical observation, namely that coproducts and products “interact.”
Interaction in one direction always exists and is canonical (e.g. proposition 2.3). Interaction in the

other direction, if it exists, generally uses category-specific information (e.g. proposition [2.4).

Proposition 2.3. Let C be a category with finite products and coproducts, ], {K;}jey be finite sets, and

{c{;}k o rep A0 indexed collection of objects in C. Then there is a canonical map
€Kj)€

Q: |_| |_|ck;: -—> |_| |_| c{;. (2.4)

(5)€lTiey K5 j€T jeJ kek;

Compare with a more general statement for limits and colimits in [22, Lemma 3.8.3].

Because notation is unwieldy, we first provide the argument in a concrete case. The general
version is very similar. Let | = {a, b}, Ko ={1,2,3}, Ky ={1,2}, and {c{, c3,c§, c%’, clz’} be a collection

of objects in C. Then proposition [2.3|says that there is canonical map
Qe xc)U(ed x B U (e x U (ed x )l x P u(e§ xcb) — (cfuctucs) x (hucy).

We see how this map is constructed. Because the right-hand side is a product, the map Q) is defined
uniquely by a pair of maps Q¢ and QP from the left-hand side to each component (c{ LI c§ LI c§)
and (c%’ L cg), respectively. Start with Q% And because the left-hand side is a coproduct, Q¢ is
defined uniquely by collection of maps

{Qf ):cﬁuxcﬁb%(c?ucgl_mg)}(

aKp ka/kp)€{1,2,3}x{1,2}

a b : a 3 a a..a b a
from each component ¢ x ¢y . We thus define Qf , | = ik, o p?, where p® : ¢ X ¢ — ¢

is the canonical projection of product, and ix, : ¢g < cf Ucj U cg is the canonical injection of
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coproduct. This collection of maps {Q?karkb) } induces unique map Q¢, and QV is defined similarly.

Before reproducing this argument for arbitrary finite sets J, {K;};cj, consider that we could

have first defined collection of maps

b a a a b b
w il Xep — (cfuUctUCY) X (cfUc }
{ o) F S X 06 = (FUFUS) > ATER)

(using the universal property of coproduct) and then maps wf ., w}’ka k) to each factor (cf U

c$ U c§) and c? LI cY, respectively. As we define these maps identically—i.e. Wi, k) = Wk 0P =
Q. , it turns out that the induced map from the coproduct of products to product of coprod-

ucts is identical as well. We now give the general construction in both ways and show that they

are equal.

Proof of proposition[2.3] We start with notation. Let (kj)jej € |_|K]- denote a J-tuple of indices,
j€]
where k; € K;. We will write (k;) for the tuple and k; for an element (index) of K;.

A map

Q: |_| |_|c%<l—>|—||_|c{< (2.5)

(k)€K je] jeJ kek;

is uniquely defined (c.f. definition [2.14) by collection of maps

o | [d,— Uy (2.6)

(kj)EﬂKj ]G] keK]-/ ]./EJ

since the the right-hand side of is a product. Similarly, for each j’ € J, the map Q' is uniquely
defined (definition [2.16)) by collection of maps

v . y 5
Ol Hc]; — | < (2.7)
j€J keK;/ 0)erK,
We set
it i’
Q(k,) = lkj,/ O Py (2.8)

3The prime in k].’ modifies k, not j.
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3! s/
where p |_| d [ c) , is the canonical projection of product, and 1}, : c{{, < || ¢ is the
j€]

) keK;,
)
canonical inclusion of coproductﬁ Having thus defined collection

|_|ck, — |_| ck , (2.9)

c keK;, .
i€l i€l (K)eMK;

we conclude there is a unique (canonical) map Q in @@5). This map Q satisfies p/' 0 Q = QF,

where p/’ : |—| L] c{'< - | c{'< is the canonical projection, and Q' satisfies Qik,) = 0o i(kj/),

j

jeJ keK; keK /
where iy |_| Cr |_| |_| C, is the canonical inclusion of coproduct.
)
€] kj)ElTK; jeJ

Now, we begin with the universal property of coproduct, and then use the universal property

of product. A map

w: |_| |_|ch Hl_l |_| CL (2.10)

(k) €lK; jeT jeJ kekK;

is uniquely defined (definition [2.16) by collection of maps

|_|c’, — [ 1L <& . (2.11)

j€] j€J kEK (k)‘/)el_lKj

Similarly, for each (ki) € |_| Kj, the map w . is uniquely defined (definition [2.14)) by collection of
i€]

maps
wj'(k,) : |_|cj_, — |_| CL , (2.12)
LTS I keK,
) j'€]
which we also (c.f. (2.8)) define by
A i’
w(kj/) = 1 W, op Q(kj/)‘ (2.13)
Again, the collection
|_|c], — ] 4 (2.14)
ji€] kEK ' ey, (kj')EI_IKj

“Notice that the superscript of p and the subscript of i indicate the canonical map; the subscript of p and superscript
of i only play the role of distinguishing the domains and codomains.
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uniquely defines the map w in (2.10), and we have equalities w o i(k]!) = W and p/ o W) =

(2.15)

(1L <

j€] kEKJ‘

Since cod(w) = cod(Q) are both products, it suffices to show that pow=p'0Q for everyj € J,

where p/’ : |_| L] c{; - || CLI is the canonical projection of product. And since dom(p/’ o w) =
je] keK; keK;/

dom(pj' o Q) are both coproducts, it suffices to show that (pj' ow)oiyy = (pj, oQ)o i(k}!) where

j
i(k)_/) : |_| c P L] |_| c{;j is the canonical inclusion of the coproduct. But by construction of w
€] (k)M 1K; je]

and Q (c.f. and (2.13)),

p] ow o 1(k]{) = (U)(k),) = Q](kJ,J = p] oQo 1(k]’)/
forallj’ € J and (kj/)iGI € |—| K;, proving that w = Q. O
j€]

Proposition 2.4. If C is Set, then the map Q in (2.4) is a bijection.

First a lemma, which says essentially that each element in a coproduct of indexed sets in fact

belongs to a particular set in the collection.

Lemma 2.3. Let {cy}xek be an indexed collection of sets. Then there is a well defined map

s: |_|ckﬁK
keK

satisf ingsoiy = k./, Where Y @ Cpr = Ck is the Canonical inclusion Of CO roduct.
Y k k k
keK
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Proof. An explicit construction of coproduct in Set gives a unique isomorphism

|_|Ck£ UCkX{k}.

keK keK

Call this map n : |_| ck — U ck X {k}. There is a map P> : U c X {k} — U{k} = K sending
keK keK keK keK

(x,k) — k, formally defined by composition p; o, where p; : (U ck> X (U{k}) — Kis
kek keK

the canonical projection onto the second factor and t : U ¢ X {k} — <U ck> X U{k}> is
kek kek kek

inclusion. There are canonical inclusions iy : ¢/ < |_| ck and Ty @ ¢ — U cx X {k} such that
kek kek
noiw =1 foreach k’ € K.

We define s := P, om and immediately conclude that so iy = (pyomn) oty =Protly =k/. O
We draw a few observations from lemma The map

f)] : U Ckx X {k} — U Ck (216)
Kek kek
defined by sending ((x, k) € ¢ x {k}) — (x € ) is a left inverse of iy, i.e. p1 o Ty = id,,. Thus,

fort € |_| ¢k, we have that
keK

Promn(t) € gy, (217)
which implies further that
iy () € ey (2.18)

Proof of proposition 2.4, We define a map X : |_| | ] c{.< - | |—|c{;j as follows. Let (xj)je) €

je€J kEK; (k5)€[1K; j€]
|—| | | ¢} beanarbitrary element. Thenxj: = p' ((x))jej) € | | ) wherep’': |_| || — [] <
jeJ keK; kekK;, jeJ keK; keK;/

is the canonical projection.

Set sj/ == s(xj/) (lemma . Then xj; = 1;]] (%) € cjs;, (c.f. (2.18)), where is]_, : cjs;, — |_| c{z

kEK]-/
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j€]
where i) : |_| clj — |_| |_| c{q is the canonical inclusion.
j€] ()€l TK; j€]

is the canonical injection Thus we have (xj)jej € |—| cjsj, and we set X((xj)jej) = i) ((x3)5¢7),

Having defined the map X, the verification that N and Q are mutually inverse follows for-

mally by construction (and we omit the details). We conclude that Q is a bijection. O

Remark 2.8. We observe that constructing the map in the other direction was not canonical, and
did not use universal properties, but did use “structural” properties of the ambient category, Set.
Specifically, we needed to take elements to define the map N (compare with remark at the end
of [22} §3.8]). A more categorical proof of the same result uses the Yoneda embedding (proposi-

tion[2.7) and the structural fact that Set is cartesian closed (c.f. [2, Proposition 8.6]).

Example 2.4. Let {Vj}jcj be a finite collection of finite dimension vector spaces. The category Vect

of vector spaces has both coproducts EB V; and products HV) As sets, there is bijection Q :

j€J j€]
@ V; 5 H V; (proposition . In fact, Q) is linear since both projection H V; R Vj: (mapping
j€] i€] . €]
(%j)jej + x5v) and inclusion Vj kiR @ Vj (mapping xj: — jcy xj:;j+) are linear, where
€]
1 ifj=k
6j,k = € V]
0 else

Arrow Category

We have seen that categories have objects and morphisms. Morphisms may themselves be con-

sidered objects, in another category.
Definition 2.17. Let C be a category. The arrow category Arrow(C) has

1. objects c LN , which are morphisms in C, and

2. morphisms (c LR c/) ICLON (d 2 d’) are pairs of morphisms ¢ = d, ¢’ %, 4" in C such that

o' of =goa.

5We implicitly identify element x € Cs(x) With its image iy (x) € |_| Ck.-
keK
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In other words, morphisms in Arrow(C) are commuting squares

_*

C d
lf lg (2.19)

o
C, /

in C.

Remark 2.9. We give an alternative equivalent definition of the arrow category which is useful in

other contexts (e.g. the notion of a hybrid phase space in definition [3.1).

First we define a category 2 with objects 2 := {0, 1} and a unique morphism 0 219 1 between
0 and 1 ([22] §5.1]) . We then define
Arrow(C) := C**" (2.20)

as the functor category from 2°P to C (example . An object a € C%°" in this category is a
functor a : 2°? — C—realized as morphism a(0) M a(1) in C—and a morphism is a natural
transformation, encoded in the commutative diagram (2.19). These definitions are readily checked
to be equivalentﬁ When we wish to emphasize that Arrow(C) is the arrow category of C, we may

denote objects as ¢ L, ¢’. Other times, our focus on A := Arrow(C) is as a category in its own right,

and objects of A may be denoted simply as a := (dom(a) % cod(a)).

We note a few simple facts about the arrow category.

i,
Lemma 2.4. A terminal object ¢; € C (definition [2.13) defines a terminal object c; i ¢t In

Arrow(C).

Proof. Let c L c'bea morphism in C. Terminality of ¢; implies that there are morphisms c o e,
f

¢’ -5 ¢y, and that they are unique. But f. o f is also a morphism from c to c;, and therefore is equal

to fc = idc, o fc. Thus these morphisms assemble to define a unique morphism (fc, f/) : f — ide,

in Arrow(C). O

Proposition 2.5. Let A := Arrow(C) be the arrow category of C, a category with products. Then A

®Defining this functor category in terms of the opposite category 2°P is intended to signal that Arrow(C) is a presheaf.
As we make no further use of this observation, we would have been just as well to define Arrow(C) as the functor
category C2.
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has products as well.

Proof. Letc L c’andd 2 d' be morphisms in C. The product f x g € A is defined by functoriality
of x (lemma[2.2). We recall from the commuting diagram

cxd —P 4

S~ Txg g
c \\\
e

C o/ xd 5 g (2.21)
\ l‘pc/
c’.

The object f x g is terminal in A with respect to maps to f and g. Indeed, a map « : h — f consists
of a pair of maps dom(h) =% ¢ and cod(h) =% ¢’ in C, and similarly a map B : h — g is pair
dom(h) Po, d, and cod(h) P15 4’ The universal property of product in C implies there are unique
maps dom(h) — ¢ x d and cod(h) — ¢’ x d’, and they factor through projection. It follows easily

thath — f x gisamapinA. ]

Remark 2.10. We interpret the notion of isomorphism in a category (definition for the arrow
category. Two objects f,f’ € Arrow(C), are isomorphic if there are isomorphisms o : dom(f) —

dom(f’) and & : cod(f) — cod(f’) for which the diagram

dom(f) —=— dom(f’)

L lf'

cod(f) —2— cod(f')

commutes. This is an isomorphism in Arrow(C) because the inverse diagram

—1
dom(f') —2— dom(f)

S

cod(f’) SN cod(f)

also commutes. Indeed, f’ o 6y = o o f implies that f' o & o ocg1 =xjofo ocg1 which implies that

—1

r_ 1 1
o of = o

oxjofoun .
Definition 2.18. We say that a functor F : C — D is product preserving if for each pair of objects
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¢, ¢’ € C, there is isomorphism Fc x Fc’ = F(c x ¢’), natural in each factor ¢, c’.

Lemma 2.5. A product preserving functor F : C — D extends to a product preserving functor

Fi o Arrow(C) — Arrow(D).

Proof. First, set notation Ac := Arrow(C) and Ap := Arrow(D). On objects of Ac, Fi : Ac — Ap is
defined by

Ff /

]:*(cim’) = Fc— Fc. (2.22)

That F is a functor guarantees this assignment is well-defined. For given a morphism (&, «’) :
(c LR ¢/) = (d % d’) in Ac, we have that go & = «’ o f, and therefore F(«') o F(f) = F(a 0
f) = F(goa) = F(g) o F(«), again since F is a functor. In other words, (Fa, Fo') : Fif —
F.g is a morphism in Ap. Alternatively, since Ac is itself a functor category C2*" (c.f. (2:20)), we
automatically obtain a functor category D2"" by post composition with F: for objecta : 2 — Cin

Ac, we obtain F.a: 2°? — D by F.a := F oa. Morphisms in C2°" are natural transformations, and

they are sent to natural transformations in D2°” because functors preserve diagrams (lemma 2.1).

We now show that F.(a x b) = F,a x F,b for a,b € (Ac)o. By assumption (definition [2.18),
there are isomorphisms (y,p)o : F(dom(a) x dom(b)) — F(dom(a)) x F(dom(b)) and (yap)1 :
F(cod(a) x cod(b)) = F(cod(a)) x F(cod(b)). Naturality of y means that

F(dom(a) x dom(b)) M Fdom(a) x Fdom(b)
lf(axb) ]—'a><]-'bl
Flcod(a) x cod(b)) — /'y Feod(a) x Feod(b)

commutes. Thus v, p : Fi(a X b) — Fia x F,b defines isomorphism Fi(a x b) = F,a x Fybin Ap

(remark [2.10).

Now we argue for naturality of the isomorphism. Let

(ho, 1) : (dom(a) = cod(a)) — (dom(c) = cod(c))
(ko, k1) : (dom(b) 2 cod(b)) — (dom(d) < cod(d))
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be morphisms in Ac. Then

hoXko,h] Xk]
—_—

(dom(a) x dom(b) axb, cod(a) x cod(b)) (dom(c) x dom(d) cxd, cod(c) x cod(d))

is a morphism in Ac (proposition[2.5), and the diagram

F(dom(a) x dom(b)) (aplo Fdom(a) x Fdom(b)
F(axb) FaxFb
]:h0><]:ko
F(hoxkop) F(cod(a) x cod(b)) oo Fcod(a) x Fcod(b)
a,b
F(hyxky) ‘
F(dom(c) x dom(d)) ——Yeile Fdom(c) x Fdom(d) FhyxFiq
(’Yc,d)]

F(cod(c) x cod(d)) Fcod(c) x Fcod(d)

is easily seen to commute. For example, F(c x d) o F(ho X ko) = F(h; X k1) o F(a x b) and
(Fex Fd) o (Fhy x Fko) = (Fhy x Fky) o (Fa x Fb) since F is a functor (lemma . The

other four faces commute by naturality of y. In short, the diagram

Filaxb) — L rax b

(F(hoxko), Flh xki ))l k(ﬂhw X F(ko), F(h1)x F(ki))

Folexd) —, Fex Fud

commutes, proving naturality in Ap. O

Yoneda Lemma and the Category of Elements

Theorem 2.1 (Yoneda lemma). Let C be locally small (definition and F : C — Set a covariant
functor (definition. For object ¢ € Cy, there is bijection { o : C(c,-) = F } = Fcbetween the set
of natural transformations from represented functor (definition [2.12) C(c, -) to F and the set Fc.

This bijection is natural in both c and F.
The isomorphism sends a natural transformation (oc :Cle,-) = F c) to ac(ide) € Fe.
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Proof. See [22, Theorem 2.2.4]. O

We recall the category of elements ([22] §2.4]):
Definition 2.19. The category JC F of elements has
1. objects: pairs (c,x) with ¢ € Cy an objectin Cand x € Fg,
2. morphisms: (c,x) 15 (d,y) with c Hde Cy a morphism in C such that Ff(x) = vy.

Remark 2.11. There is forgetful functor IT : J F — Cwhich sends
C

((e,x) 1 (d,y)) ~ (c I d).

The category of elements has a close connection to representability (definition [2.12):

Proposition 2.6. Let F : C — Set be a set valued covariant functor. Then F is representable if and

only if the category of elements J F has an initial element.
c

Proof. See [22] §2.4]. O

A useful lifting property (c.f. [22, 2.4.viii]):

Fact 2.3. Let F : C — Set be covariant functor from locally small category C. Then for any mor-

phism ¢ L dinCand object (c,x) € J F in the category of elements, there is unique morphism
C

(c,x) 1 (d,y) such that

M((c,x) 5 (d,y)) = (c 5 d).

Proof. Morphisms (c, x) AR (d,y) in J F are defined as morphisms c T, d in C with the additional
C

condition that Ff(x) =y, so a morphism in C determines a morphism in J F.Since F : C — Setis
C
a functor, 7f : Fc — Fdisamap of sets, and Ff(x) € Fd. Therefore, fory := Ff(x), (c,x) AR (d,y)
is a morphism in J F. O
C

In proposition we will see a concrete application of the category of elements applied to

dynamical systems.
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We state one last relevant Yoneda concept, the Yoneda embedding:

Proposition 2.7. Let C be a locally small category and define functor, the Yoneda embedding,
L: CP < Set©

by
(c5c’) ~ (Cle, ) & ().

The functor s fully faithful (definition 2.9).

Proof. See [22] Corollary 2.2.8]. Define F : C — Set by F := C(c,-), so F(c’) = C(c,c’). By Yoneda
lemma (theorem [2.1), there is bijection

C(c,¢’) = {natural transformations «: C(c/,-) = F(-)},

which says exactly that C(c,c’) is in bijective correspondence with the set {C(c’ ,) = Clc, -)} of

morphisms in the functor category Set® (example . O

2.2.2 Double Categories
Internal Category

We start by defining pullback.

Definition 2.20. Let c La, 'y abe two morphisms in category C. The pullback is defined to be an

object ¢ x, ¢’ of C terminal with respect to pairs of maps z % ¢, z 25 ¢ such that f' 0 g = fo g. In

other words, for any object z € C, the commuting of solid line diagram

implies that there is a unique map z --» ¢ X, ¢ through which g and g’ factor.
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The pull back ¢ x, c may be depicted in diagram form by

cxyc —

_
f
cC —— a.

If C is concrete (remark[2.5), the pullback looks like the set
cX,c = {(x,x') ccxc:flx)= f’(x')}.

Definition 2.21. Let C be a category. A category A internal to C consists of objects Ay, Ay € Cp

(called the object of objects and object of morphisms, respectively) with source and target morphisms
A %; Ay , unit morphism U : Ag — Aj, and composition morphism

C: Ay xp, Ay — Aq, where the pullback (definition arises from diagram

A] XAOA1 L} A]

bk

A] % Ao.

We require morphisms 8, 7, U, and € to make the following diagrams commute

ld/A
Ay —% A A1 xp, Ay xp, Aq % Ay xpy Aq
id
1. J/u \AO J/g' 2. lidﬂ.\l xC l@
[A] % [AO A] X Ao [A] ¢ A]

P2
A1 xp, Aq
e Ay xp Ay 272t A
1 XA, Aq 1 X, Ao

vni]
\‘ l Ao xp, Ay — P2 3 Ay

A] HAO

P1

Remark 2.12. Commuting of diagram 1 specifies source and target for the unit; similarly 3 spec-
ifies source and target for composition. Condition 2 says that composition of morphisms is as-

sociative, and condition 4 specifies that the unit morphism behaves like an identity. (The other
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ida,op2
pullbacks Ay xp, Ag and Ay xp, Ay are defined by pairs of maps A; xp, Ay i{ Ay, and
Sopy
Top
Ao xp, Ay :2§ Ay.) In fact, these are the conditions which axiomatize categories (defini-
ida,op1

tion[2.1). A small category C (definition[2.5), for example, is a category internal to Set.

Double Categories

Definition 2.22. A (strict) double category A is a category internal to the category CAT of categories
(definition [2.21)).
Remark 2.13. Morphisms in CAT are functors (example , s0 in definition each of §, 7, U,

and C is a functor between categories.

We call Ay the object category and A; the arrow category (c.f. terminology for A; in defini-
tion [2.21). Objects of A; we call i-objects, and morphisms of A; we call i-morphisms, for i =0, 1.
We note that this terminology diverges from others in the literature (e.g. [4]) which calls mor-

phisms in Ay I-morphisms and objects of Ay 1-cells. We will never use the phrase 1-cell.

A modified version of the next example will arise in our development of networks of systems
(section definition [4£.9).
Example 2.5. The arrow category A = Arrow(C) of category C may be interpreted as a double
category A. The object category is Ay = C, the original category. A; is A: 1-objects are morphisms

c 5 dinCand I-morphisms f LN g are commuting squares:

c——d

[« ]

o 2 4q.

In this diagram, c is a 0-object, and ¢ % ca O-morphism, f is a 1-object and (&, ) : f = ' a

1-morphism. Also, §(f) = cand 8(«, ) = . From diagram

e

<«

d
3 v

d

C
&
C/

LQ\

— €
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we have composition C(g, f) = go f and 6’(([5,y), (x, [5)) = (o, y). There is also a vertical composi-

tion (composition in A7, as A is a category): composition of

cﬁd
[« v o
 —2 5 d

o 4]

h
C " > d "

_
c - d

loc’ooc [} B’o[}l

h
c” d”.

Finally, for any 0-object c € Ao, U(c) = id. € A; (a T-object) and for 0-morphism ¢ = ¢/, U(«) is

the 1-morphism

!

C
1dc
! id.s

ig

Observe that for 1-object ¢ L ¢, the identity

|

o <—— Qo

id. ) idd

OO0

},

in A is not the same as the unit U(f) for 0-morphism c I, ¢. While both are I-morphisms, the
latter acts as identity on vertical composition in the category A, and the first acts as identity on

horizontal or C-composition in the double category A.

In our study of hybrid systems, we will define hybrid phase spaces (definition with

discrete double categories.

Definition 2.23. Let A be a double category (definition 2.22). We say that A is discrete if the only

O0-morphisms and 1-morphisms are the identity.

Remark 2.14. Having defined discrete double categories, we may now implicitly define discrete
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(ordinary) categories by saying that a double category is discrete if both categories Ay and A, are

discrete. In other words, a discrete category C is one for which the only morphisms are identity.

Remark 2.15. Let C be a category. We may realize C as a discrete double category C as follows:
the objects of the object category Cy are the objects Cy of C, and the objects of the arrow category
Cy are the morphisms Cy of C. This contrived construction will make sense of functors to Rel

(example2.8), which we turn now to defining.

We make the category of relations (example into a double category.

Definition 2.24. We define the (double) category Rel of relations: Rely is the discrete category (re-
mark [2.14) whose objects are sets, while Rel; has relations as 1-objects and inclusions of relations

as I-morphisms. For example,

X —Y

is a 1-morphism with both X, Y sets, and R, S C X x Y. The 1I-morphism R = S means that R C S.

There is a similar double category RelSet whose 0-morphisms are functions:
Definition 2.25. We define double category RelSet by the following:
1. The object category RelSety = Set is the category of sets and maps of sets.

2. The arrow category RelSety, like Rel;, has relations for 1-objects and inclusions for 1-morphisms:

a 1-morphism
Y
g

Y/

X

g

-

~

is an inclusion

(fx g)(R) CR". (2.23)

In other words, for any pair (x,y) € R of R-related elements, (f(x), g(y)) € R'.

The double category RelSet generalizes for any concrete category.

Example 2.6. Let C be a concrete category (remark[2.5). We define double category RelC by:
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1. The object category RelCy = C is the original category C

2. The arrow category RelC; has relations (between objects of C) as 1-objects and inclusions like

that in (2.23). Precisely, a 1-morphism

]

d

-2

~
~

(@]

in RelC is inclusion (f x g)(R) C R’. Here c I c’andd % d’ are morphisms in C.

Remark 2.16. We require that C is concrete to make sense of relations (set membership and inclu-
sion) in example It should be noted—though we do not belabor the formlism—that secretly

relations live in the underlying sets, and the 1-morphism f x g is the underlying set map.

Example 2.7. Associated to the category Man of manifolds with corners and smooth maps (exam-
ple is the double category RelMan. We will encounter this category in the definition of hybrid
phase space (definition[3.1) as the target of a functor of double categories. We now define functors

of double categories.

Definition 2.26. A strict functor ¥ : A — B of double categories (or: strict double functor) is a pair of

functors Fy : Ag — By and F; : Ay — By such that
1. 80F1 =Fpo08
2. ToF; =907
3. C(F1(),H())=Fo¢C
4. Uy, =F ol

A double functor J is said to be lax (instead of strict) if there is (not necessarily invertible)

morphism
3. C(F1(-),F1(:)) = FroCor
4,. u%(,) :> 351 Ou.

replacing either (or both) conditions 3 or 4 above.
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We say that functor J is covariant if F sends 1-morphism

a *f> b F(a) W F(b)
| e R O]
o —9 b Fla") 29 51,

and otherwise call F contravariant if F maps the first 1-morphism to

T(a) — I(b)
B
Fla') 225 F(v')

Example 2.8. It will be useful for us to consider functors F : C — Rel from an ordinary category C
to Rel (definition 2.24). Recall that C may be thought of as a discrete double category (remark 2.15).
A (double) functor (definition[2.26) F from C to Rel assigns a set F(c) to each object of ¢ € Cy and

a relation F(f) C F(c) x F(c) to each morphism ¢ I ¢ of Cy. Usually these functors will be

lax, as there will be inclusion F(g) o F(f) C F(go f) (a I-morphism in Rel) for composition of

) f
morphisms ¢ — ¢’ NP

Indeed, the composition (c.f. (2.1))

F(g) o F(f) == {(x,2) € F(dom(f)) x F(cod(g)) : (x,y) € F(f), (y,z) € F(g) for some y € F(cod(f))},

and simply F(go f) C F(dom(f)) x F(cod(g)). There is no apriori reason why F(g) o F(f) =

F(gof). In fact, there is no reason why there should be any inclusion relation whatsoever in

either direction. Still, in our examples (e.g. definition(3.18), we will always see the inclusion F(g) o

F(f) € Flgof).

Definition 2.27. Let F,G : A — B be two functors of double categories A and B. A (strict) natural

F
Y

transformation A J¥ B isapair of (ordinary) natural transformations (definition

S

2.10

(vo:

Fo= S0, v1:F1 = 91) compatible with structure functors (“x oy =yox” forx =8, 7T, U, €) of B.

Precisely, for x,y € A:

1. S(Yx) =Ys$(x)/
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2. T(vx) = Ys(x)»
3. Ulvx) = Yu,

4. Clvx, Yy) = Yexy)-

c——d /?\J
We parse this definition. Let la I Bl be a I-morphism in A and A |y B a
¢ ——d S

double natural transformation.

Consider diagram

Fc It Fd
Yc Yd
\ o
Fo Ge EL Gd
G l
Fo! — 9 Fd’ B
Y ‘/ Y4/
9C/ 99 Sd/

in B. Equalities §x o y. =y o Fx and Gp oyq = vq’ © FP hold by naturality of vy : Fo = Go. On
the other hand, (v, v4) : Ff = Gf and (v, var) : Fg = Gg are 1-morphisms, and the diagram

Ff (Ye/Yd) Gf

(?txr'fﬁJH H(S%SB)

9 (Yerrvgr ) 59

commutes by naturality of y; : 77 = Gj.

Category Rel and Category of Elements in Rel
Definition 2.28. Let F : C — Rel be a lax functor, we define the category of related elements by

J F:={(¢,x): ce Cy, x € Fc}.
C
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Morphisms are relations: (c,x) 5 (c’/,x') is a morphism in J Fifc b cisa morphism in C and
C
(x,x') € Ff.

2.2.3 Monoidal Categories

Definition 2.29. [c.f. [20, §VIL.1]] A monoidal category (C, ®c, 1¢) is a category C equipped with bi-
Tc®cl(+)

ST
functor ®¢ : C x C — Cand object 1¢ € Cy, together with three natural isomorphisms C  {a» C,

N~

idc
()®1c ()®c((-)®c(+)

Y SN

C e C and CxCxC ﬂrx C, satisfying coherence conditions

e (®c(N®c(-)

1. xox=(x®1idc)oaxo (idec ® «).
2. (p®idc) oo = idc @A

Pictorially, condition 1 says that for every collection of objects a,b,c,d € C, we have commuting

pentagonal diagram

(a®b)®(c®d) —2* ((a®b)®c)®d

a®(b®(c®d)) a®idc

a®((b®c)®d) —— (a®(b®c))®d

When «, p, and A are all identity, we say that C is strict monoidal.

Let A := Arrow(C) be the arrow category of some category C. We saw A has products when-

ever C has products (proposition [2.5). There is a similar statement for monoidal products.

Proposition 2.8. Let A = Arrow(C) be arrow category of category C, which is also monoidal (C, ®c, 1¢).

Then A is monoidal category (A, ®a, Ta).
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Proof Sketch. First, we define the monoidal product ®a: for a,a’ € A, we set

dom(a) ®c dom(a’)
a®pa = la@ca’
cod(a) ®c cod(a’),

which is well defined since ®¢ : C x C — C is a bifunctor. Let e := T¢ be the monoidal unit of C,

andset 15 :=e e, o We claim that 1 A is monoidal unit of A. For example,

dom(a) ®c e M dom(a)

a®cide la

cod(a) ®ce Peodle), cod(a)

is an isomorphism in A because each Pyom(a) and Pcod(a) is isomorphism in C, and the diagram
commutes since p is a natural transformation (remark [2.10). This defines ps as a morphism (and
therefore isomorphism) in A. Transformations Ap and o are defined similarly. Coherence is a

formal consequence of coherence in C and naturality (in C) of p, A, and «. O

Remark 2.17. At the risk of abusing notation, we may denote the monoidal product ®a of A by
the monoidal product ®c from which it is induced (if, e.g., we wish to emphasize that ®c is a

functor).

Definition 2.30. A monoidal functor F : (C,®c,1c) — (D,®p, 1p) is a functor F : C — D together
F()®pF()

with natural transformations C x C lln D and morphism 1p 5 F(le). Naturality of n

~__
F((@c)
Feop Fd — 4 Flc®cd)
implies, for example, that diagram l}'f@D}'g lf(f@cg) commutes for every pair of

Fc' @p Fd' 25 F(c' @cd)
morphisms ¢ LR c,dd.z

When bothn : F(-)pF(:) = F(- ®c ) and e : 1p — F(1¢) are natural isomorphisms, we say
that F is a strong monoidal functor (c.f. [20, §XI.2]).
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F

S T
Definition 2.31. Let C J« D beanatural transformation (definition2.10) and 7, G : (C, ®c, 1¢) —

~_ 7
(D, ®p, 1p) monoidal funcfors (definition. We say that o is a monoidal transformation if for each
c,c' eC,
Flo) @b F(c') =2 Gle) @p G(c')
lnf o lnf/c/
Flewed) —< 1 Glewcd)
commutes.

Since F and G are monoidal (functors), for every pair of morphisms c I d, c’ L din C, we

have commuting diagram

Fc®p Fc! He®p%e! Gec ®p Gc!
Tlfc/ nfc/
\ - \
FfRpFf! Flc®cc) T G(c®cc)
C ‘CC
o F(f®cf) l
Fd®p Fd — 0% Gd ®p Gd’ G(foce’)
F g
w‘ w
, Xdwcd’ ,
F(d®cd’) G(d®cd’)

where 17 : F(1) @p F(-) = F((-)®c () and 1Y : G(-) ®p G(-) = G((-) ®c (+)) are the natural
transformations of definition This diagram displays various monoidal properties: the left
and right face commute because F and G are monoidal, the top and bottom face commute because

o is monoidal (transformation), and the front and back face commute by naturality of n.

Definition 2.32. Let (C, ®c, 1¢c) be a monoidal category (definition [2.29). We say that monoidal
product ®c is induced-cartesian if C is a subcategory of a category C’ with finite products (defini-

tion[2.15) in which c ®c ¢’ = ¢ x ¢’. If C’ = C, we may also say that C is cartesian monoidal.

Remark 2.18. A terminal object 1 € C’ defines a monoidal unit in C, which we denote as 1c. We
will assume that the monoidal unit of any induced-cartesian monoidal category is a terminal object in the

supercategory, but not necessarily terminal in the submonoidal category.

As an example of where this assumption may fail, consider the cartesian category (Set, x, 1)
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and a subcategory all of whose objects (sets) have cardinality Xy, countable infinity. Since Ny X

Ny = Ny, a monoidal unit—even in induced cartesian category—need not be terminal in the su-
percategory[]

Proposition 2.9. Suppose that (C, ®c, 1¢) is induced-cartesian monoidal category. Then A = Arrow(C)

has monoidal structure and is also induced-cartesian.

Proof. We have already shown that (A, ®a, 1a) is monoidal (proposition . Now let C" D C
be the supercategory with products whose products define the monoidal product in C (defini-
tion[2.32). Then A" := Arrow(C’) has products (proposition 2.5) and is supercategory of A. There-
fore, A is induced-cartesian (definition [2.32). O

The analog of product preservation (definition for monoidal functors strong monoidal
functoriality (definition 2.30). In lemma we showed that product preserving functors extend
naturally to product preserving functors on the arrow categories. However, the universal property
of product was nowhere used in the proof: we only needed functoriality and naturality. We there-
fore state without proof the following analogous statement for strong monoidal functors, which
can be readily obtained by replacing instances of “x” in the proof of lemma with ‘®” where

appropriate.

Proposition 2.10. Suppose that F : (C,®c,1¢c) — (D, ®p, 1p) is a strong monoidal functor (defini-
tion[2.30), and let Ac C Arrow(C) be a subcategory of the arrow category of C, which is monoidal.

Then F extends to a strong monoidal functor
Fi i (Ac, @ac, 1ac) — (Ap, ®ap, 1a,)

as well, where Ap := Arrow(D).

Lemma 2.6. Let (A, ®a,1a) and (B, ®g, 1g) be two monoidal categories. Then there is monoidal

category (A x B, ®axs, 1axs) (c.f. [20, §7.1]).

"To explicitly construct this example, suppose all objects are of the form Xy x - -+ x X, and the only morphism
f:Ng = Ngis f =idx,. In this case, the only nontrivial morphisms are monoidal products of idy, «, p, and A.
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Given objects (a, b), (a’,b’) € A x B, define the monoidal product
(a,b) ®axp (a’,b") ;== (a®aa’,b®gb’), (2.24)

and monoidal unit 1o x 1g = (14, 1g). The definition of product (2.24) ensures that 154p is in-
deed a monoidal unit. Natural isomorphisms xags, Aags, and pags are defined similarly, and

coherence is a formal and straightforward verification.

Category of Lists

Let A be a category. We introduce the category of lists of A-objects. The category of lists is a
categorical way taking an X-indexed set {a,Jxex of A objects. In other words, the category of lists
includes a notion of morphisms between indexed collections. Such morphisms are maps of the
index sets together with collection morphisms in the ambient category. For now A is any monoidal
category, but we use this notation (instead of C) because in chapter [l we will work with an arrow

(sub)category.

Definition 2.33. Let (A, ®a, 1a) be a monoidal category (definition [2.32). We define the category of
lists of A-objects FinSet/A< by the following.

1. An object Ax : X — Ais a functor from finite discrete category X (remark [2.14). We often just
write { Axx}

xeX”

2. A morphism (¢, @) : (.Ax X = A) — (.AY Y — A) is a pair where ¢ : X — Y is a functor

X —2 Y

and @ : Ay o @ = Ay is a natural transformation, as indicated in diagram \/m l Ay.
Ax
A

Remark 2.19. In other words, X is a finite set and .4 assigns an A-object Ax (x)—also denoted by
A,—to each x € X. For morphisms, there is a map of sets @ : X — Y and for each x € X, a
morphism @, : Ay () = Axx in A. Because X is discrete (the only morphisms in X are x 1y, X),

the naturality condition @ : Ay o ¢ = Ay is trivial.
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Since (A, ®a, 1a) is monoidal, from the assignment Ax : X — A, there is object

TM(Ax) = ) Ax) € A. (2.25)

xeX

We are interested in when the map TT defined in (2.25) extends to a functor. Here is one case.

Proposition 2.11. Suppose that monoidal category (A, ®a, 1a) is cartesian (definition [2.32). Then

there is contravariant functor TT: (FinSet/A<)°P — A.

Proof. The assignment on objects is given in (2.25). We now define the assignment on morphisms.
& J & & P

Let (@, @) : Ax — Ay be a morphism in FinSet/A. Since ®4 is cartesian, ® Ax(x) = |_| Ax (x)
xeX xeX
and ® Ay (y) = |_| Ay(y). ThenTI(¢, @) : TI(Ay) — TI(Ax) is uniquely induced by the collection
yey yeY
of maps @,/ : Ay(@(x')) = Ax(x’) (definition[2.14). This is illustrated in the following commuting

diagram:

(2.26)

lpx’ l%(x’)

Ax(x') g Ay(@(x).

x!

Functoriality of IT is a formally identical check as the proof of lemma which says that x

is a bifunctor. O

Remark 2.20. There is also a category (FinSet/ A):>, whose objects are the same as objects of
(FinSet / A) <:, but whose morphisms are pairs (¢, @) : Ax — Ay where still ¢ : X — Y is functor
of discrete categories, and now @ : Ax = Ay o ¢ is morphism in AX which goes in the other
direction (remark 2.19). If A has coproducts and monoidal product ®4 is a coproduct then the as-
signment U : (Set/A)é — A sending (Ax : X — A) ~> U(Ax) := | | Ax(x) extends to a covariant
functor. The argument is nearly identical to the proof of propositi)éeri( using the properties of

coproduct instead.
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2.3 Review of Geometry and Dynamical Systems

2.3.1 Differential Geometry

In this section we recall notions from geometry, and provide categorical proofs for elementary
facts, as a first step toward setting the tone for our categorical investigation into networks of

systems.

First of all, for us manifold will always mean manifold with corner. A manifold in the traditional
sense is a manifold-with-corners which has no corners. Manifolds with corners are much like
manifolds with boundaries. Instead of charts in half space {(x1 Ly, Xn) ERM: X > O}, charts for
manifolds with corners live in R} := {(x1,...,xn) € R": x{ > 0: Vi=1,...,n}. Just as charts
of manifolds with boundary need not be at the boundary {x1 > 0}, charts for corners need not
have corners. Compatibility of charts will be defined after we clarify the notion of smooth maps

on arbitrary sets.

Definition 2.34. Let V. C R™ be an arbitrary subset. A function f : V — R is said to be smooth at
x € V if there is an open neighborhood U C R" of x and smooth function f : U — R for which

flunv = fluny. The collection of smooth functions f : V — R is denoted by C*(V).

Definition 2.35. A second countable Hausdorff space M is said to be a (smooth) manifold with corners
if M is equipped with a maximal atlas: a collection of homeomorphisms A = {@q : Uy = R} } _,
from open subsets U, C M of M to open subsets of R" such that whenever U, NUg # &, the map
@p o oy |(P0((uo(muﬁ) : (p“(u“ NUg) — @p(Uy N Up) is a diffeomorphism. Maximality of A means

that if ¢ : U — R is a diffeomorphism from open U C M onto an open subset of R" compatible

with each (@4, Uy) € A, then(o,U) € A.

Remark 2.21. The notion of sameness for two manifolds with corners is diffeomorphism, a smooth
invertible map whose inverse is also smooth. Smoothness of maps for manifolds with corners is

always smoothness in the sense of definition [2.36]

Definition 2.36. Let M and N be manifolds with corners (definition [2.35). We say that a map f :
M — N is smooth if for every smooth function ¢ € C*(N) (c.f. definition[2.34), f*¢ € C*°(M), in
other words, if f*(C*(N)) C C®(M).
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Remark 2.22. Manifolds with corners and smooth maps between them form a category, which we
denote by Man. Most of the standard notions from the theory of manifolds “without corners”
applies with minimal modification to this category, e.g. the tangent space TyM is still a vector
space of all point derivations of germs of functions passing through x, even if x is a corner or

boundary point, and the tangent bundle TM has the smooth structure of a manifold with corners.

Fact 2.4. A product M x N of smooth manifolds M and N is a smooth manifold.

Proof. See [27, Proposition 5.18]. O

Proposition 2.12. Let M, N be smooth manifolds. The product M x N of manifolds (fact satisfies

the universal property of product (definition [2.14).

Proof. First of all, the projections M x N ™% M and M x N ™ N are smooth maps ([27, Example
6.17]). As sets, M x N satisfy the universal property of product, so pair of smooth maps fy : P —
M and fy : P — N induces a unique map f : P — M x N. What is left to show is that the map f
is smooth. This follows by [27, Ex. 6.18], smoothness on components, together with my; o f = fpy,

T[NOf:fN. O

Now we examine the product of tangent spaces. It is a well-known fact that the product of
tangent spaces is canonically isomorphic to the tangent space of products of manifolds. We prove

this to illustrate the universal property of product in a specific category, the category of manifolds.

Proposition 2.13. Let M, N be manifolds of dimension m and n, respectively. Then for any x €¢ M
and y € N, there is canonical isomorphism of tangent spaces M x TyN = T, ,)M X N, natural

in M and N.

First an elementary fact about the differential of a map.

Lemma 2.7. The differential which assigns the tangent bundle TM to manifold M is functorial. On
maps M LR N, we have TM N,

Proof. See [27, §10.2]. Functoriality on composition (remark is the chain rule, in categorical
dress. O
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Proof of proposition[2.13] There are canonical projections py : M X N = Mand pny : M x N — N
(proposition 2.12). Applying the differential to each map at point (x,y) € M x N, there are maps
TPm,(xy) & Txy)M X N — TuM and Tpy(xy) © Tixy)M X N — TyN of tangent spaces. These maps
induces a unique map P = Tppgxy) X TPN,xy) © TxyyM X N — TuM X TyN (definition

example[2.4).

We define inverse map I: M x TyN — T, ,)M x N as follows. There are maps of manifolds
¥ : M — M x N sending x — (x,y) € M x Nand i* : N - M x N sending y — (x,y), which

induce maps on the tangent spaces:

Tix: TM = TeyMxN and Tij: TN = Ty M x N

(2.27)
v = (TiY)y(v) w = (T)y(w)
Since ppm o Y = idpm and py o i* = idyn, we observe that
Tpm o i¥)x = Tpmxy) © TiY = tdr,m (2.28)

and similarly T(pn 0 i¥)y = idy,N. The first equality in (2.28) follows by lemma IZE that T is a

functor (more directly Tx(idm) = idt,m.) Thus, the composition of maps
TM X TyN 5 T yM x N 5 M x TN

is the identity (proposition2.2). Since dim(TyM x TyN) = m +n = dim(TyM) + dim(TyN), and
each M X TyN and T, ;M X N are linear spaces, we conclude that M x TyN =T, ;M x N.

Naturality is a formal consequence of functoriality (lemma[2.7): diagrams

MxN _—"™ M MxN—" N
lfx g lf and lfx g lg
M’ x N/ —2™M o a7 M/ x N/ —PN o N/

/

commute. Let (x,y) € M x N and set x" := f(x), y’ := g(y). Applying T, to each diagram, we
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have commuting diagrams

Thoy) (M x N) LN V] Tioy) (M x N) _ TN T,N

lT(w 1£xg lTxf and lT(w)fX g lTy :

Toogn (M7 x NY) 80P g Tooy (M7 x N7y 0PN
which by the universal property implies that diagram
TogyM x N WP PN g gy
Tixy) X9 TefxTyg
Tooy 1M’ x N/ Ty P X Ty 1y P ToM! x Ty N/
also commutes. O]

Since we have isomorphism of tangent spaces T, ,yM X N = TuM X TyN, and T : Man — Man
is a functor (lemma [2.7), the bijection as sets Tpp X Tpn @ T(M x N) — TM x TN is smooth and

therefore the tangent bundles are diffeomorphic, as manifolds:

Corollary 2.1. Let M, N be smooth manifolds. Then there is canonical diffeomorphism T(M x
N) PMXIPN g s TN

Proposition 2.14 (Proposition 3.42 (b) [15]). Let {My}xck be a finite collection of smooth manifolds.
Then the coproduct M := |_| My is a smooth manifolds and the canonical injections i : My — M

keK
are open embeddings.

Proof. Fix k € K. We show that iy : My — M is an open embedding. First we define a map
f: M — My, which by the universal property is defined by collection of maps {Mk/ AR Mk}
For any distinguished point xo € My, and k’ # k we define fy/(x) = xo. Otherwise, for k’ ie]li’
we set fi/(x) = x. Clearly, each map fy/ : Mys — My is smooth. This defines f uniquely so that
f o i = fi = idm,, which proves that iy is an embedding. Also a consequence is that f = i, ! or

f~1 = i (on the appropriate restriction) which proves that iy is open as well. O
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Fact 2.5. The canonical projection Ty : TM — M of the tangent bundle is a split epimorphism

(definition 2.3) and natural.

Proof. There is canonical zero section s : M — TM sending x € M to the zero vector 0 € T,M.

Naturality restates that Tf, : M — T ()N for map of manifolds f: M — N. O

Proposition 2.15. Let im : M < M’ and in : N — N’ be open embeddings. Then the induced map

iMm X in: M x N < M’ x N'is an open embedding.

Proof. By definition, iy : M — M’ and in : N < N’ are diffeomorphisms to their images.
Therefore, iy X in : M x N < M’ x N’ is diffeomorphism to its image (proposition [2.2). That

im X iy is open follows immediately from the definition of product topology. O

2.3.2 Continuous-Time Dynamical Systems

Definition 2.37. For us, a continuous-time dynamical system is a pair (M, X) where M is a smooth

manifold and X € X(M) a smooth vector field on M.

Definition 2.38. Let f : M — N be a map of manifolds. We say that vector fields X € X(M) and
Y € X(N) are f-related if Tfo X =Y o f.

Definition 2.39. Let (M, X) and (N,Y) be two continuous-time dynamical systems. A morphism
(M, X) AR (N,Y) of systems is a map M T, N of manifolds such that (X,Y) are f-related (defini-
tion[2.38).

Definition 2.40. Let (M, X) be a continuous-time dynamical system. A solution ¢x of (M, X)—also
called integral curve—is a map @x : (—¢, &€) — M, for some ¢ > 0, such that %(px(t) = X(px(t)) for

allt € (—¢,¢).

A solution may have non-symmetric domain (—9§, ¢), and we say that @x is maximal if the
domain may not be extended, i.e. if there is no (—68',¢’) D (-5, ¢) for which {x : (—d',¢’) = M is
an integral curve.

Remark 2.23. There are systems whose maximal solution has domain all of R. Such solutions are

said to be complete.
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Every dynamical system (M, X) has solutions. Moreover, solutions are usually said to be

unique, with the specification of initial condition @x(0) =xo € M.

Theorem 2.2. Let (M, X) be a dynamical system, and xo € M. Then there is ¢ > 0 for which a
smooth map @xx, : (—¢, &) — M is the solution to (M, X) with initial condition x,. In other words,
Pxx,(0) = 0and %@X/XO (t) = X(pxx,(t)). We say “the solution” because this map is unique: if

smooth map \ : (—¢, ¢) — M satisfies

P(0) =xo and FH(t) =X(W(t)) Vt € (—¢,e),
then \ = @x,-

Proof. See [27, §14.3]. O

An equivalent defintion of integral curves:

Definition 2.41. Let (M, X) be a continuous-time dynamical system. A solution (or integral curve)

of system (M, X) is a map @xx, : ((—¢,€), %) — (M, X) of dynamical systems from the dynamical

system ((—¢, ), %) with constant vector field % € X(R) sending t — 1 € TyR.

Equivalence of definition and definition follows from definition since X o
Pxxo = TOxxo () = S Oxxo-
Definition 2.42. A smooth map p : M’ — M of manifolds is said to be a surjective submersion if
p: M’ — M is surjective, as a map of sets, and the differential Tpy : TM' — ToxyM is surjective

at each point x € M.

Definition 2.43. We define an open system (M’ £5 M, X) as a pair where p : M’ — M is a surjective
submersion of manifolds (definition [2.42) and X : M’ — TM is a smooth map of manifolds such

that T\ o X = p, where 1 : TM — M is the canonical projection of the tangent bundle.

Definition 2.44. Let (M MM, X) and (N/ 2% N, Y) be two open systems (definition . A map

(pm, X) LR (pn, Y) of open systems is a pair of maps (f': M’ — N’,f: M — N) such that

Yof =TfoX. (2.29)
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Whenever two open systems X : M’ — TM and Y : N’ — TN satisfy the equality (2.29), we say

that (X, Y) are f-related (compare with relatedness of vector fields definition [2.38).

We will consolidate this definition. First a few more.

Definition 2.45. Let M/ 22, M and N’ 2%, N be two surjective submersions (definition . We
define a morphism f : pm — pN of surjective submersions to be a pair ' : M — N’ and f: M — N of

manifolds such that py o f/ = f o pp.

Remark 2.24. It is easy to see that surjective submersions and morphisms of surjective submersions
form a category SSub, which is in fact a full subcategory of Arrow(Man). We will henceforth denote
surjective submersions by M := (Mtot m, Mst). The domain My, is called the total space and
codomain My; is the state. A morphism f : M — N consists of maps fiot : Mot — Niot and

fst : Mst — Nst-

Definition 2.46. Let (M, X) and (N,Y) be open systems (definition [2.43). We say that (X,Y) are
f-l’elated lf Tfst oX=Yo ftot-

Remark 2.25. In particular, f : M — N defines a morphism of surjective submersions.

We now redefine morphisms of surjective submersions (definition [2.44):

Definition 2.47. Let (M, X), (N,Y) be two open systems (definition remark [2.24). We define a
morphism (M, X) 5 (N,Y) of open systems to be a morphism f : M — N of surjective submersions

(definition 2.45) such that (X, Y) are f-related (definition 2.46).

Existence and Uniqueness in Category of Elements

Recall existence and uniqueness, which says that every continuous-time dynamical system (M, X)
and choice of initial condition xo € M determines a unique integral curve passing through x, at

time 0.

Definition 2.48. A complete (continuous-time) dynamical system (M, X) is a pair where M is a manifold
and X € X(M) is a smooth vector field on M such that for each initial condition xy € M, there is a

complete integral curve, i.e. a map @x, : R — M satisfying %(Px,xo (t) = X(pxx,(t)) forall t € R.
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Morphisms of complete dynamical systems are the same as maps of dynamical systems: (M, X) 5
(N,Y) is a morphism if f : M — N is a smooth map of manifolds and (X,Y) are f-related, i.e.

TfoX=Yof.

Complete dynamical systems and their morphisms form a category, which we here denote
by DySys. It is a full subcategory of the category of dynamical systems whose objects may not

have complete integral curves.

In the category DySys, existence and uniqueness can be formulated in Yoneda categorical

dress:

Proposition 2.16. The forgetful functor v : DySys — Set—sending continuous-time dynamical sys-

tem (M, X) — {x € M} to the underlying set—is representable.

Proof. We argue that the element ((]R, %),0) € J v is initial in the category of elements.
By assumption, given dynamical system (M, X) a?ly;yselement X0 € v(M), there is morphism
f: (R, %) — (M, X) with f(0) = x (existence). In fact, there is only one (uniqueness) (theorem.
This proves that ((IR, %), O) is initial in the category of elements, and hence that v : DySys — Set

is representable (proposition [2.6). O

2.3.3 Networks of Open Systems

This section is review of [17].

Definition 2.49. We say that morphism M 5 N of surjective submersions (definition re-

mark i is an interconnection if fg : Mgt — Ny is a diffeomorphism of manifolds.

We now discuss networks of systems. We introduced the category of lists in section m

Now we assign content to this category as well as interpret in the context of dynamical systems.

Let {M,}xex be a collection of surjective submersions. We define the product M := |_| My
xeX
as follows: Mot = |_| My tot, and similarly Mg = |_| M, st. The submersion Mot m, Mgt is

xeX xeX
uniquely induced by the universal property (alternatively, since X is a functor (lemma [2.2)).
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Let X be a finite set and Sx : X — SSub assign a surjective submersion Sx (x) to each x € X.

Definition 2.50. A (concrete) network of open systems <8x : X = SSub,t: M — |_| Sx(x)> is a pair,

xeX
where Sx : X — SSub assigns to each object x € X a surjective submersion Sx(x) and t : M —

|_| Sx (x) is an interconnection of surjective submersions (definition [2.49).
xeX

Definition 2.51. Let <5x : X = SSub, ix : M = [ ] Sx(x)> and [ Sy :Y — SSub,ty : N = [ ] Sy(y)
x€X yeY
be two networks of open systems. A morphism

(9, @), 1) : (SX:X—>SSub,LX:a—> [] Sx(x)> — | Sy:Y = SSub,iy :b = [ | Syly)
xeX yeyY

of networks of open systems is a pair where (¢, @) : (X — SSub) — (Y — SSub) is a morphism of lists
of surjective submersions (a map ¢ : X — Y of finite sets with smooth map @, : Sy(¢@(x)) = Sx(x)
of surjective submersions for each x € X definition[2.33) compatible with each interconnection, i.e.

ixof =TI(g, @) oy.

Recall the definition of control ([17, §2]):

Definition 2.52. Let Mot M, M bea surjective submersion. We define
Cri(pm) = {X: Miot = TMt : pPm = T, © X},

where Ty : TM — M is the canonical projection of the tangent bundle.

The main result [17, Theorem 9.3]:

Theorem 2.3. A morphism

(((p,(D),f) : (Sx : X = SSub, 1 1 a — |_| Sx(x)> - (Sy :Y — SSub,ty : b — |_| Sy(y))
xeX yeY
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induces a 1-morphism

[ CrSyly) ——— [ Cr(Sx(x)
yeY xeX

Crl(b) ———— Crl(a)

in SetH.

We will reproduce this statement in a much more general setting in chapter [d] We interpret
it now as saying the following: a pair of collections of open systems which are pairwise related
induce a pair of related open systems. We refer the reader to [17] for more details in the context
of continuous-time systems. At this point, we state the fact for reference, but we will explain the

intuition and details of (a version of) its proof throughout this thesis.

59



Chapter 3

Hybrid Systems

3.1 Introduction

We develop a categorical study of hybrid systems. The reason for doing so is twofold. First,
working in the categorical setting allows us to isolate which concepts are specifically hybrid from
those which are not. For example, many formulations of hybrid systems loosely consider them to
be dynamical systems which exhibit both continuous and discrete (discontinuous) behavior. As
we saw previously, a continuous-time system (M, X) consists of a space and a vector field which
specifies the behavior of dynamics in said space. We will similarly define a hybrid version of

space, in or over which it will make sense to speak of a dynamics-governing object.

Here is a concrete way the category theory arises. After constructing hybrid phase spaces,
we observe that there is additionally a notion of morphism or map between hybrid phase spaces.
The collection of hybrid phase spaces and morphisms forms a category, and there is a functor
from the category of hybrid phase spaces to the category of manifolds. One way of defining a
hybrid system is as a pair (a, X) where a is a hybrid phase space and X is a vector field on the
underlying manifold. According to this definition, the only exclusively “hybrid” aspect of hybrid
systems is the underlying space! At first glance, this framing seems counterintuitive, but it does
not tell the whole story. For maps of hybrid systems are first and foremost maps of hybrid phase
spaces, satisfying other conditions, conditions which specify coherence of dynamics. For example,
in the continuous-time case, integral curves—trajectories of continuous-time systems—are simply
special maps of dynamical systems (namely, ones from an interval (—¢, ¢) with constant vector
field &), or maps of manifolds which preserve the dynamics. We will define an analogous class

of hybrid phase spaces representing hybrid time, and then executions—the hybrid version of in-
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tegral curve—as a map from a hybrid phase space in this class, together with some underlying
dynamics representing the passage of time. In this way, we mirror the theory of dynamical sys-
tems, while minimizing the formal modifications to make this theory hybrid. Hybrid phase space

is the principle distinguishing feature of hybrid concepts, but its consequences are far reaching.

The second benefit of the categorical approach is that once we suitably formalize each hy-
brid notion, we may import results on networks of continuous-time systems to the hybrid setting
without extra ad hoc maneuvering. The value of this approach will be especially apparent when
we develop the abstract theory of systems in chapter 4| To recapitulate, the first benefit of cat-
egory theory is that it helps us clearly define concepts at an appropriate level of generality and
abstractness. Measures of “appropriate” include both how well resulting definitions capture intu-
ition and how much extra work is needed to translate similar results from similar domains. Which
leads to the second benefit: the theory of networks of systems we use is fundamentally categori-
cal. As such, we expect a category-theoretic version of hybrid systems to fit in with this theory of

networks, without requiring us to “reinvent the wheel.”

We enumerate the ideas we need; some are needed merely to make sense of the statement of
theorem[3.1} and some are required to prove this theorem, a task we undertake in a general setting

in chapter

1. We start by defining non-deterministic hybrid notions. Taking our cue from the theory of
continuous-time dynamical systems, we first work out a notion of hybrid phase space as
the basic building block of other hybrid constructions, which are “hybrid spaces with other
data.” In the non-deterministic setting, “other data” will generally be defined—using the
functorial approach—in the category of manifolds.

(a) We develop the notion of hybrid phase space as collection of manifolds and collection of
relations. These data are indexed by nodes and edges of a directed graph, respectively.
Tonodes we associate manifolds and to edges we associate relations between the source
and target node manifolds. An element of a relation is a pair, whose first member we
think of as a point “before” a jump and whose second member is the point “after”

jump. Our formalism is actually carried out in terms of (double) categories (which
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(b)

(©)

(e)

(f)

may be realized as path categories of directed graphs). The abstractness is used both
for packaging (to circumvent enumerating an unwieldy list of data and conditions) as
well as to represent phenomena we intuitively expect hybrid behavior to have; we will

elaborate on these properties momentarily.

We develop a notion of map of hybrid phase space, and show that hybrid phase spaces
with their morphisms form a category. Moreover, there is a way to recover an underly-
ing manifold from a hybrid phase space. We take the coproduct of manifolds indexing

over nodes, and show that this operation—denoted by U—is functorial.

We use the functor U from (the category of) hybrid phase spaces to the category of man-
ifolds to define a hybrid system (a, X) as a pair where a is a hybrid phase space and X is
a vector field on the underlying manifold U(a). We extend the notion of morphism of
hybrid phase spaces to that of hybrid systems, by importing the analogous notion from
continuous-time dynamical systems: a map of hybrid systems is a morphism of hybrid

phase spaces for which the vector fields on underlying manifolds are map-related.

We define a notion of surjective submersion in the hybrid setting. Functoriality of U :
HyPh — Man makes another appearance: we define a hybrid surjective submersion as
a morphism f : a — b of hybrid phase spaces such that U(f) : Ua — Ub is a surjective
submersion in the category of manifolds. We also define maps of hybrid surjective

submersions and observe that these morphisms with their objects form a category.

We show that the category of hybrid phase spaces has products, and use this in two
ways: (1) to show that along with the terminal hybrid phase space, the category HyPh is
cartesian monoidal and (2) to provide nontrivial examples of hybrid surjective submer-
sion: the projection maps pq: a X b — aand pp : a X b — b are both hybrid surjective
submersions. We will see in products a nontrivial consequence of having defined hy-
brid phase spaces categorically. Unit edges at nodes correspond to diagonal relations,
a consequence of which for products corresponds to a decoupling of relations. Con-
cretely, two systems considered together need not have simultaneous (discrete) state

transitions.

We extend the notion of open system to that of hybrid open system: a pair (a, X) such
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that a is a hybrid surjective submersion (which itself is a map dom(p,) P, cod(a) for
which U(p,) is a surjective submersion) such that (U(a), X) is an open system (in the

category of manifolds).

2. We next turn to determinism in hybrid systems. As before, hybrid phase spaces appear in

each notion, along with other data. In the non-deterministic setting, we defined a hybrid

category HyC as some object or morphism in the category of hybrid phase spaces together

with some map—or otherwise satisfying some condition—in the category of manifolds. In

the deterministic setting, we work instead in the category of sets.

()

(b)

The key ingredient which allows us to make sense of determinism is the continuous-
discrete (or c.d.) bundle, defined over hybrid phase space a as Ta := TUa x Ug, the
product of the tangent bundle on the underlying manifold and the underlying mani-
fold itself. On its own, this construction is vacuous. We extract usefulness from it by
taking sections: maps (X, p) : Ua — Ta sending a point x € Ua to a pair of points
X(x) € TkUa and p(x) € U(a). We require that the first component X of this sec-
tion varies smoothly with x € Ua and that (x, p(x)) is an element of relation a(yy) for
some edge dom(yy) RLN cod(yy). As before, X represents continuous-time dynamics;
now p indicates discrete behavior. The requirement that (x, p(x)) € a(yx) expresses
a constraint that relations of the hybrid phase space impose on possible jumps. That
p: Ua — Uais a function illustrates where determinism arises: each point of Ua jumps
to a specified point, even if that point is to itself. The (everywhere) possibility of send-
ing a point to itself is another consequence of our categorical definition of hybrid phase
space (that each object has identity morphism).

We use determinism to define a hybrid analog of integral curve, executions. We first
demarcate a special class of deterministic hybrid systems, as follows. We start by fixing
an increasing set of points tg < t; < t; < --- in R; these will be transition times. We
consider the disjoint union M := U [ti, tir1] x {i} of closed intervals defined by this
sequence as the underlying manifioelnc\i of the hybrid phase space. Essentially we are

cutting R into countably many snippets. On [t;, ti+1] X {i}, we attach constant vector
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(©)

(e)

field &

4t- and we define jump map p: M — M by

: (t, 1) if t € [ty, tipr) x {i}

p(ti) = :

(t,i+1) if t =1ty

At each moment (time), t both flows in the positive direction at constant rate, while
also “jumping” to itself, unless we have hit the endpoint of the interval, at which point
time jumps to the next interval. Having thus defined this special class of deterministic
hybrid systems, we define an execution of deterministic hybrid system (a, X, p) as a

map from one system in the special class to this one. This extension of the notion of

d

integral curve as map (R, 3;) — (M, X) provides a concrete rationale for our notion of

map of deterministic hybrid system.

Much of what follows is variation on a theme. Using hybrid surjective submersions, we
may define a deterministic hybrid open system as a map (X, p) : Uaot — Tag where
Pa © Gt — Ag¢ is @ hybrid surjective submersion. We impose compatibility conditions
on X and p. For X, we ask that tyq,, © X = U(pq), where v : TM — M is the canonical
projection of the tangent bundle. For the jump map p, we ask for each x € Uayo that
there is some edge yx € $%t such that (U(pa)(x), p(x)) € a(yx). This somewhat opaque
condition expresses both the jump constraint from relations of the phase space together

with compatibility of the hybrid surjective submersion.

We next define a deterministic-control sections functor o€t[ : HySSub — Set sending
a hybrid surjective submersion to its collection of deterministic hybrid open systems.
There are two ways to define this functor on morphisms. In one direction, for mor-
phism a 5 b of hybrid surjective submersions, we define 0€t(f) as a relation, pairs of
deterministic control on a and on b which are f-related. Relatedness of deterministic
control is analogous to relatedness of vector fields. This functor is lax and maps into the
category Rel. In another direction, we consider the sub-collection of morphisms a Lo
of hybrid surjective submersions which are isomorphisms on state (fs; : as; — bst), and

define 0€tI(f) : 0€rl(b) — dCtl(a) as a pullback. This assignment is (strictly) functorial.

We present a slew of examples demonstrating how deterministic control interacts with
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interconnection. These examples are networks, in a sense similar to that defined for the
continuous-time open system case: an indexed collection of hybrid surjective submer-

sions together with an interconnection map to the product.

(f) This construction is justified in part by the result of applying deterministic control:
a collection of control on each hybrid surjective submersion induces a deterministic

control on the product.

(g) We also show that the functor U : HyPh — Man is compatible with taking products. In
other words, U(a x b) = Ua x U, natural in a and b. This is a technical fact required for
proving theorem which we prove in chapter 4| as a corollary from a more abstract

version of the same theorem.

3. These are the main ingredients we need for our main theorem (theorem [3.1), which says
that a morphism of networks of deterministic hybrid open systems induces 1-morphism in
Set. This theorem encodes the idea that a collection of morphisms of subsystems induces a

morphism of the interconnected (networked) systems.

3.2 Hybrid Phase Spaces and Hybrid Systems

We start with hybrid phase spaces. They will arise in each version of hybrid system we use.

As we develop these notions, it may be worthwhile to keep in mind a few classic examples
of hybrid systems. We will discuss the example of a room whose temperature is regulated by a
thermostat, which is driven up by a heater when on and falls due to a lower ambient temperature
when off. We will also consider a bouncing ball, whose position and velocity are continuous,
except at the moment of impact, at which point the height remains the same, but velocity jumps
discontinuously. We will discuss these examples, and isolate which aspects from the standard

theory of hybrid systems correspond with the notions we are abstractly formalizing.
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3.2.1 Hybrid Phase Spaces

Definition 3.1. We define a hybrid phase space a : 3¢ — RelMan to be a functor from discrete dou-
ble category $¢ (definition [2.22) to double category RelMan (example 2.7). We call $¢ the source

category of a.

Thus, for each 0-object s € 3§, a(s) is a manifold with corners, and for each 1-object s Ys'e
¢, a(y) C a(s) x a(s’) is a relation. Recall that we think of elements of relations as jump points

before and after.

For all intents and purposes, we may think of a hybrid phase space as a directed graph, to
whose nodes we assign manifolds, and to whose edges we assign relations between source and
target manifolds. We will need some additional properties, such as unit relations at each node,
which follows automatically when we define hybrid phase spaces as functors. We may refer to
objects of the object category 3§ as 0-objects or nodes and objects of the 1-category 3{ as 1-objects or

edges.

Example 3.1. Imagine a bouncing ball, whose state is represented by height h and velocity v. Veloc-
ity is unconstrained, but height is constrained to be above the ground, i.e. h > 0. We will describe
the dynamics portion of this hybrid system in example but for now we describe the phase
space. Let ¢ : $¢ — RelMan have source category $¢ given by ¢ 0 assigning c(0) := R=° x R
(with coordinates (h,v)) and relation c(e) := {(h,v,h/,v') € c(0)*: h' = h =0, v/-v < 0}.
Following the idea that relations constrain jumps, we see that at the ground, the jump velocity v’
and velocity v have opposite signs (excluding the unit jump (0,v) — (0,v)). Everywhere else, the

only possible jump is (h,v) — (h,v).

Remark 3.1. We say that relations constrain jumps and not that they determine them. Thus in exam-
ple[3.1, we did not specify what v’ is, except that it may not have the same sign as v. In the context
of determinism (definition definition [3.15), we will see clearly where jumps arise and how

relations play a role in constraining them.

Example 3.2. We consider another common example, a room whose temperature is regulated by a

thermostat which discretely turns a heater on and off. Let hybrid phase space c : $¢ — RelMan
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€1,0
have source $¢ given by 0 C 1 to whose nodes i we assign manifold c(i) := R x {i} and to
€0,1

whose edges e;;_; we assign relation c(eji 1) = {(t,i—1,t,1) : (=1)"""t > 1}. We will interpret
this relation in example 3.9 as saying “turn heater on or off” when the temperature is beyond a

threshold, which thresholds here are set at —1 and 1, respectively.

There are also maps between hybrid phase spaces.

Definition 3.2. We define a morphism (@, §) : a — b of hybrid phase spaces with the following data:
1. a functor ¢ : $¢ — $P, as defined in definition[2.26]

2. anatural transformation f : $¢ = $° o @, as defined in definition [2.27]
We may write such a morphism as

Qa P $b

N

RelMan

or condense the functor and natural transformation into one letter as f = (¢, f) when we do not
explicitly work with both pieces of data. Expanding on condition 2 in definition we require a
smooth map of manifolds fs : a(s) — b(¢(s)) for each node s € $§ such that there is inclusion of

relations

(s < 1) (a(y)) S blo(¥)
for each edges » s’ € 3.

Having defined a objects (definition [3.1) and morphisms (definition [3.2), we observe the cat-
egory of hybrid phase spaces.
Lemma 3.1. Hybrid phase spaces and their morphisms form a category HyPh.
Remark 3.2. Though the formalism is straightforward, we outline the details for lemma For
future concepts where we introduce a notion of object and morphism, we will state without ex-

plicit argument that they form a category (e.g. hybrid systems (definition [3.3), hybrid surjective
submersions (definition [3.9), etc.).
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Proof. We must show that each object has an identity morphism and that composition of mor-

phisms is associative. For hybrid phase space a : $¢ — RelMan, the identity morphism id, :
(idge, 14) consists of the identity functor idg« : $¢ — $¢ and natural transformation 1, : a =

defined for each node s € 3§ by 1,5 = idg). It is easy to verify that (o, a) = («, a) o idq

idy o («, a) for every morphism (o, a) : a — b.
We now check that composition is associative. For a sequence of morphisms

(o)

(B,b) (v.g)
Cc

b d,
since composition of functors is associative
o
g0 T, gp P ge ¥, g
Yop

we see that (yoB)oax=vyo (B o«).

Composition of maps of manifolds is also associative, so for each node s € $§,

p(als)) © (bafs) ©0s) = (8p(a(s)) © bux(s)) © G-

This shows that

(v,g) o ((B,b) o (x,a)) = ((v,8)0(B,b))o(x,a),

and hence that HyPh is a category.

3.2.2 Hybrid Closed Systems

Now we turn to dynamics on hybrid systems. Here is where category theory begins to make an

operative appearance. We have constructed the category of hybrid phase spaces in section

We will now construct a functor to the category of manifolds and interpret dynamics on a hybrid

phase space as dynamics on the underlying manifold.
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We start with the functor.

Proposition 3.1. There is forgetful functor U : HyPh — Man defined on objects by Ua := | | a(s).

seS§

Remark 3.3. Let a be a hybrid phase space. Since Ua is a coproduct, there are canonical inclusions

inge : als’) — Ua (definition [2.16).

Proof of proposition We must define U on morphisms, and show that U preserves identity and
composition. Let f = (¢, f) : @ — b be a morphism of hybrid phase spaces. A map f: Ua — Ub
from a coproduct Ua = | | a(s) is uniquely defined by collection of maps {a(s) Iy Ub}

7
i
selg 0

which satisfy f, = fo ing(s). Since Ub is itself a coproduct, it is equipped with canonical inclusions
Ny : b(t) — Ub (remark . For's € 3§, we define fs := iny(y(s) © fs : als) — Ub, where
fs s a(s) — b(@(s)) (definition ; this uniquely defines Uf := (1?: Ua — Ub).

Functoriality on the identity (remark —namely U(idq) = idys—follows from the univer-
sal property of coproduct (definition 2.16)), since both maps U(id,) and idyq make the diagram

U(ida)
|_| afs) ————°- e |_| a(s)
se5§ tdua seb§
ma(s’)] ing

commute for every s € $§.

Functoriality on composition U(g o f) = U(g) o U(f) follows similarly, for morphisms a LR

b % ¢ of hybrid phase spaces. The diagram

is easily seen to commute. Since there is unique map Ua % Ue satisfying x o ing ) = ing(p(u(s'))) ©

ba(s) © as for each s’ € $§, we conclude that x = U(g o f) = Ug o Uf. O
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Remark 3.4. The definition of functor U is secretly subsuming the composition of two functors. On
the one hand, we forget edges and relations HyPh — (Set/Ma n) = sending (a : $¢ — RelMan) —
(a [sg: B3 — Man), and then we take the coproduct in Man over set 3§, both of which operations

are functorial (remark [2.20).

Remark 3.5. Since U : HyPh — Man is a functor (proposition , an isomorphism i : a — b of
hybrid phase spaces becomes a diffeomorphism Ui : Ua — Ub in Man.

As we previously foreshadowed, the functor U may be used to define various hybrid con-
cepts as a hybrid phase space with some data in the category of manifolds. Our first instance of

this idea is the notion of hybrid dynamical system.

Definition 3.3. We define a hybrid dynamical system (a, X) to be a pair where a is a hybrid phase

space and X € X(Ua) is a vector field on the underlying manifold of hybrid phase space a.

Example 3.3. Recall the bouncing ball phase space from example with ¢ : 3¢ — RelMan.
The hybrid system (c,Z) is standard in literature (c.f. [19], [10, §1.2]). Dynamics Z € X (UC) =
X(R=° x R) are defined by Z(h,v) = v& — 2, where we normalized the acceleration of gravity

(coefficient of a—av). Notice that at boundary {h = 0}, Z(h, v) is an outward pointing vector.

We remark that jumps do not explicitly appear in the notion of hybrid dynamical systems.
We have not yet said what happens when (h,v) = (0,v), other than having defined a relation in

the phase space c(e). We will address this point after we have acquired the notion of execution

(definition example3.11).

Example 3.4. Recall the room-with-thermostat from example (3.2} with hybrid phase space c : $¢ —
RelMan which assigns space R x {i} to node i. We define Z € X(Uc) by Z(x,1) := (—=1)""%. We
interpret i = 0 as “heater off,” and i = 1 as “heater on.” There is supposed to be some intuition
lurking in the background that the heater turns off when x > 1, but hybrid dynamical systems do

not specify the mechanism for enacting this switch. Again, we introduce the fix in section 3.3}

We turn to maps of hybrid systems.

Definition 3.4. We define a map (a, X) 5 (b,Y) of hybrid systems to be a map a 5 b of hybrid
phase spaces (definition such that (Ua,X) =5 (Ub,Y) isa map of dynamical systems (defini-
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tion[2.39)).

Remark 3.6. Recall that a map f: (M, X) — (N, Y) of continuous-time dynamical systems is a map
f: M — N of manifolds such that the respective vector fields (X, Y) are f-related. Thus according
to definition (X,Y) are Uf-related. However, in the context of hybrid dynamical systems, we will
simply say that (X, Y) are f-related, which we take to mean that (X,Y) (as vector fields on Ua and
Ub) are Uf-related.

Remark 3.7. It is easy to verify that hybrid systems (definition and their morphisms (defini-
tion[3.4) form a category HySys.

Remark 3.8. As previously hinted, the concept of hybrid system seems suspiciously non-hybrid
since discrete behavior makes no overt appearance in the definition. Jumps for hybrid systems
arise in executions. We define executions in definition for deterministic hybrid systems as
a map from a (deterministic) hybrid version of time system. Determinism is not essential for
defining executions, but our primary focus is determinism, so we delay development of this idea

until section 3.3

3.2.3 Hybrid Open Systems

We now discuss hybrid open systems. Open systems are like ordinary systems which can take
external input. In control theory, external input is often user-defined. External input could also be
an external disturbance or noise. In the context of networks, external input may be interpreted as

states of other (sub)systems.

Recall that a continuous-time open system is a pair (aot Pa, ast, X), where pq @ Aot — Qst
is a surjective submersion (definition , and X : ait — Tag is a smooth map compatible with
po—namely, pq = Tq,, © X, where 14, : Tq,, — ast is the canonical projection of the tangent bundle.
To define hybrid systems (definition 3.3), we needed a hybrid space a and dynamics-governing
vector field X on the underlying space Ua. To define hybrid open systems, we need a hybrid
version of surjective submersion p, and dynamics-governing object X on the underlying surjec-
tive submersion, compatible with the surjective submersion p,. We start with hybrid surjective

submersions.
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Definition 3.5. We define a hybrid surjective submersion pq : atot — ast to be a morphism of hybrid
phase spaces (definition such that Up, : Uair — Uag is a surjective submersion (defini-
tion[2.42). We call the domain ayo the total (hybrid phase) space and as; the state space.

Notation 3.1. We will generally notate a hybrid surjective submersion a;o1 ~% ag by a or by
Pa when we want to emphasize the map. When needed, we will usually let 7ty : %ot — F9st
denote the functor on source categories and pq : Aot = as¢ © 7 denote the natural transformation.
When we have fixed the hybrid surjective submersion a, and there is no ambiguity, we may drop

subscripts and simply write p = (7, p).

Remark 3.9. We unwrap definition For each node t € $3*°* in the source category of the total
phase space, there is a map of manifolds p : aio(t) — age(7m(t)) (notation. For each fixed node
s € 35 in the source category of the state phase space, the collection of maps { Aot (1) 25 agi(s) } ‘)
ten (s

uniquely induces a map

Pr1(s) - |_| Aot (t) — ast(s)

tem1(s)

so that the diagram

commutes for every t’ € 7171 (s). Surjectivity of Up, implies both surjectivity of each

Pri(s) - |_| Aot (t) — ast(s)
tem1(s)
as a map of manifolds (indexing over s € $**), and surjectivity on objects of functor 7 : $7** —
$5°. These conditions are equivalent: surjectivity of each p,-1() and of 7 imply that Up, is sur-
jective as well. This observation provides an operational way to check thata map p : a’ — a of

hybrid phase spaces is a hybrid surjective submersion.

Example 3.5. Let a : 3¢ — RelMan be an arbitrary hybrid phase space, and id, : a — a the identity
morphism. Since idga : $¢ — $¢ is surjective and id,) : a(s) — a(s) is surjective for each s € ),

we readily observe that the identity map is a hybrid surjective submersion.
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Example 3.6. Let a : 3¢ — RelMan be a hybrid phase space and suppose for each node s € 3§, we
have a surjective submersion a’(s) LN a(s) for some indexed collection of manifolds {a’ (s)}sesg-
We define hybrid phase space a’ : $* — RelMan (with the same source category as a) by the

following. The assignment on nodes is given already by s +— a’(s). For edge s - s’ € $¢, we set
a'(y):= (ps x pg")(alv)) C a'(s) x a/(s").

It follows that (ps X ps/)(a/(y)) C a(y) for every edge, so pq = (idge,p) : @’ — ais a map of

hybrid phase spaces. Therefore, p, is also a hybrid surjective submersion (remark [3.9).

Recall that the projection of a product of manifolds M x N 22 M is a surjective submersion.
We present a similar fact for the category of hybrid phase spaces, which will gives us a method

for generating hybrid surjective submersions from hybrid phase spaces.

Proposition 3.2. The category HyPh of hybrid phase spaces has binary products, and the projection

maps pq:a X b — a,py:axb—barehybrid surjective submersions.

Notation 3.2. Recall from notation 2.1| that p. : ¢ x ¢/ — ¢ denotes the canonical projection of
product in category C. So for C = HyPh, py : a X b — a denotes the projection. Since—as we
will show—the projection is a morphism in HyPh, p, = (7, po) consists of two maps: a functor

T, : $9%P — $% and a natural transformation p, : @ X b = a o 7, (c.f. notation 3.1).

Proof. Let a,b be two hybrid phase spaces. To define the product a x b : $%** — RelMan, we
must define a source category $%%?, a functor a x b : $9*® — RelMan, projection morphisms
Pa=(Mpla:axb - aandppy = (M, p)p:axb — bEI and finally show that a x b is terminal
with respect to pairs of maps of hybrid phase spaces to a and to b.

We define the source category by $9*° := $% x $° as a product in Cat and for each node

t=(s,s') € $‘01Xb, we define manifold by (a X b) (t) :== a(s) x b(s’) as product in Man. For each

n=(y,vy') e S?Xb, there is canonical isomorphism of manifolds

a(dom(y)) x a(cod(y)) x b(dom(y")) x blcod(y’)) £ a(dom(y)) x b(dom(y’)) x alcod(y)) x b(cod(y'))  (3.1)

n this proof, we explicitly only construct projection to a, as the construction for b is identical.
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sending (x,x’,y,y’) — (x,y,x’,y’), from which we define

(axb)(n) = pn(aly) x b(y")) C (a x b)(dom(n)) x (a x b)(cod(n)). (3.2)

Now we construct projection morphism p, : a X b — a. The functor 7y : $9*° — $¢ is the
projection of product in Cat mapping t = (s,s’) + s. Similarly for each node t = (s,s’) € $%*°,
the projection pgy : (a X b) (t) — a(mq(t)) is the projection (x,y) — x in Man, where (x,y) €

a(s) x b(s'). Foredgen = (y,vy’') € $¢*°, it is readily apparent that

(pa,dom(n] X pa,cod(n)) ((Cl X b) (ﬂ)) = (.1('}/) - a(ﬂa(n))/

so these data indeed define morphism in HyPh. We observe both that 7ty : $9*? — $¢ is surjective

on objects and that p ansl(s) |_| (a X b) (t) — a(s) is surjective for each s € $§. Therefore
tem1(s)
Pa = (7,p)a : @ X b — ais a hybrid surjective submersion (remark 3.9).

It remains to check that a x b satisfies the universal property of product in HyPh, i.e. that

given any pair of morphisms of hybrid phase spaces z, : ¢ — a and z, : ¢ — b, there is unique

morphism z : ¢ --+ a X b so that the diagram a commutes. Let ((,3)e

denote the functor and natural transformation components of hybrid phase space morphism z,,

axb i

for ¢ = a,b. Since $*" is a categorical product, there is unique functor ¢ : ¢ — $%*?. Similarly,

since each manifold (a X b) (t) = a(ma(t)) x b(mp(t)) is a categorical product, for each s € 3 there

. . . 3s=3a,s X3b,
is unique map of manifolds c(s) =5

(a x b)(¢(s)) defined by pair (34,5, 3v,s) of manifold

maps. We verify that ((,3) : ¢ = a x b is a morphism of hybrid phase spaces, namely that

3dom(x) X dcod(x)) (€(K)) € (a x k)) for every edge k € 3. By assumption that z, and z, are
) X 3eodtg) (€(K)) b) (2(K)) for every edge « € $5. By assumption th d

maps of hybrid phase spaces,

(3a,dom(x) X 3a,cod(x)) (€(K)) € a(Ca(k)) and

(5b,dom(K) X 3b,cod(K))(C(K)) - b(Cb(K))-
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Therefore

(<5a,dom(K) X 5a,cod(K))(C(K)) X (Z’b,dom(K) X 3b,cod(K))(C(K))) C a(Ca(K)) X b(Cb(K))-

Applying the the canonical isomorphism i, (c.f. (3.1), eq.(3.2)) to both sides produces inclusion

(5a,dom(|<) X 3b,dom(K))(C(K)) X (3a,cod(|<) X 3b,cod(K))(C(K)) - (a X b) (C(K))/

the left-hand side of which is (zq,26) = (3dom(x) X 3cod(x)) (k). Hence z : ¢ — a x b is a map of
hybrid phase spaces, uniquely defined by the pair ((C, 3a (G 3)b). We conclude that the product
a X b is terminal with respect to pairs of maps of hybrid phase spaces to a and to b, proving that

a X b is categorical product. O

Remark 3.10. We collect ingredients used in the proof of proposition [3.2| for future reference. For

two hybrid phase spaces a and b, the product a x b is defined with source category
gaxb . ga o gb (3.3)
and for each node (c,d) € SSSXb, the assignment of manifolds is
(a x b)(c,d) := a(c) x b(d). (3.4)
For edgen = (y,v’) € S?Xb, the assignment of relations is
(axb)M) = py(aly), b(y"), (3.5)

where L, is canonical isomorphism in (3.1)).
ul

The projection maps

Pa:axb—a and pp:axb—b (3.6)

are pq = (7q, pa) and py := (7p, Po).
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Remark 3.11. We observe again that the projections p, and py in (3.6) are hybrid surjective sub-
mersions. We thus have a way of generating hybrid surjective submersions from hybrid phase

spaces.

Example 3.7. Consider hybrid phase space a : $¢ — RelMan with source category $° given by

€1,0
0 C 1. We describe the product a x a. The source category $¢* is given (remark3.10} (3.3)))
€o,1
by
(== o7
(0/ 0) — (1/ O)/

and has manifold assignments (a x a)(i,j) = a(i) x a(j) for i,j = 0,1 (c.f. (34)). Horizontal and
vertical arrows appear in this diagram because $ is a category, so there are unit arrows id; for i =

0, 1. For example, along the bottom of diagram (3.7), the left-to-right arrow is (0, 0) {eroido), (1,0).

We present a more concrete example which illustrates why we wanted Man to have manifolds

with corners as objects (remark [2.22).

Example 3.8. Recall phase space ¢ : 3 — RelMan from example assigning c(0) = R=° x R. This
manifold is a manifold with boundary, or a manifold with corners that has no corners. Suppose,
now, that we take two bouncing balls, which we represent in the product of phase space ¢ X c,

with source category $¢:

Observe that (¢ x ¢)(0,0) = (RZ° x R) x (R=° x R) = (]Rzo)2 x R?, is a manifold with corners.

A product of manifolds may have corners, even if the component manifolds do not.

Remark 3.12. Let a := (atot Pa, as) and b := (byot Po, bst) be hybrid surjective submersions.

Then the product a X b := (aiot X biot PaXPo, as¢ X bgt) is a hybrid surjective submersion.
p y 1]

Remark 3.13. Notice that we denote a hybrid surjective submersion a = (atot Pa, ast) by pa (no-
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tation and projection of hybrid surjective submersions a x b *% a by p,. Since the projection
of products of hybrid phase spaces is a surjective submersion, this notation is not inconsistent.
On the other hand, not every surjective submersion arises from the projection of product. For the
most part, our examples will be projection of products, and there will be little confusion caused

by conflating these notations.

Now we define maps of hybrid surjective submersions.

Definition 3.6. Let pq : atot — gt and pyp @ bor — bt be two hybrid surjective submersions. We
define a morphism f : a — b of hybrid surjective submersion to be a pair of morphisms fio¢ : Qtor —

biot, fst : ast — bg of hybrid phase spaces (definition 3.2) such that py, o for = fst © pa.

Remark 3.14. Definition unpacks as follows. Let fo = (@, f)s (for ¢ = tot, st) and recall our

convention that pe = (71, p)e (for ¢ = a, b). First, there is prism diagram

Satot Ptot $btot

ﬂal GQtot btot lﬂb
G ast Pst Gbst (3.8)

RelMan,

where the back square face is a commuting diagram of functors, and each triangle face is mor-

phism of hybrid phase spaces:

G atot Ta s Qast Qbrot o y Gbst Qatot *”Pmt Qbst Hast —>(pSt $ost
/;a e A 7
st b frot |1, fst |p
Qtot biot st Qtot tot st st
RelMan RelMan RelMan RelMan.

Requiring that py o fior = fst © pa amounts to requiring both that @ 0 14 = 71, © @1o¢ (an equality

of functors), and for each node t € $7*°*, an equality of maps of manifolds

fst,ﬂa(t) OPat = pb,(ptot(t] o ftot,t- (39)
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In summary, we require that

Ufst o Upq = U(fst o pa) = U(pb o ftot) = Upyp o Ufior. (3.10)

Definition 3.7. We define the category HySSub whose objects are hybrid surjective submersions
(definition and whose morphisms are morphisms of hybrid surjective submersions (defini-
tion [3.6).

Remark 3.15. We see that HySSub is a subcategory of Arrow(HyPh) (definition. In fact, HySSub
is a full subcategory since the only condition defining morphisms of hybrid surjective submersions
is that a square diagram commutes, same as the arrow category of HyPh. We thus could have
alternatively defined the category HyPh as the full subcategory of Arrow(HyPh) whose objects are

hybrid surjective submersions (definition (3.5).

We showed that HyPh has binary products in order to provide nontrivial examples of hybrid
surjective submersions. There is an alternative reason: product is one piece of the mechanism we
use in networks to piece a bunch of spaces together into one. Formally, we would like HyPh to be

a monoidal category.

To this end, we observe that the product x : HyPh x HyPh — HyPh defined in proposition3.2]
will be the monoidal product (lemma[2.2). We now observe the monoidal unit. The category HyPh

of hybrid phase spaces has a terminal object.
Fact 3.1. There is terminal hybrid phase space Typn defined by
1. 8'wPh is a one object discrete category (a terminal object in the category Cat).

2. Thyph : $'weh — RelMan assigns the one point discrete manifold (a terminal object in the

category Man) to the unique node in $'H#h.

It is easy to verify that this data defines a terminal object in HyPh.

We collect results to conclude that HyPh is a monoidal category. The monoidal product is
cartesian, and the monoidal unit is a terminal object (definition 2.32):
Definition 3.8. Hybrid phase spaces (HyPh, ®pyph, 1Hypn) form a cartesian monoidal category, with

®Hyph = X (proposition[3.2) and 1yyph the monoidal unit (fact[3.1).
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Monoidality of category HyPh extends naturally to HySSub.

Fact 3.2. The category (HySSu b, ®Hyssub, THyssub) is cartesian monoidal, with monoidal product

®Hyssub = X (remark [3.12) and monoidal unit the terminal object 1y ssup (coming from Thypp in
fact[3.1] lemmal[2.4).

Remark 3.16. Since Cis cartesian, Cis trivially induced-cartesian and A is therefore induced-cartesian
as well (proposition[2.9). An arbitrary subcategory of the arrow category of a cartesian category is
not necessarily cartesian. For example, let C be cartesian and A C Arrow(C) have as objects all mor-
phisms c Ty ¢/ of C for which morphisms f M g are isomorphisms &gom : dom(f) — dom(g),

Xcod : cod(f) — cod(g) on domain and codomain. Then A is not cartesian because projection and

the induced unique map to the product are not in A.

We now define hybrid open systems and their morphisms.

Definition 3.9. We define a hybrid open system to be a pair (a,X) where a is a hybrid surjective

submersion pq : Ator — At and X : Uayey — TUag is a smooth map such that
Upq = Ta,, © X, (3.11)

where 14, : TUast — Uag is the canonical projection of the tangent bundle.

A more compact definition of hybrid open system is: a pair (a, X) where a € HySSub and
(Ua, X) is an open system (definition 2.43). There are also maps of hybrid open systems.
Definition 3.10. We define a map (a, X) 5 m,Y) of hybrid open systems as a map a L bof hybrid
surjective submersions such that (X, Y) are Uf-related (definition , namely (Ua, X) T, (Ub,Y)
is a map of continuous-time open systems (definition [2.44). For hybrid open systems, we also say
that (X, Y) are f-related (dropping ‘U’).

While we may develop a theory of networks for hybrid open systems—and indeed we actu-
ally do so in [18]—we prefer to modify this notion, in a way that makes sense to speak of unique

executions (or unique hybrid integral curves). To this end, we now turn.
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3.3 Determinism in Hybrid Systems

We now build a theory of deterministic hybrid systems. What makes systems deterministic, for us,
is that we specify a jump point to each point of the underlying manifold. By way of comparison,
consider that a vector field X € X(M) on a manifold M assigns to each point x € M a tangent
vector X(x) € TyM, or—loosely speaking—a direction to flow. We have already incorporated
vector fields into our hybrid apparatus with the notion of a hybrid system (definition . The
vector field of a hybrid system is supposed to depict continuous behavior. We vaguely alluded
to the hybrid aspect or discrete-jump behavior by pointing to the relations which a hybrid phase
space assigns to edges of the source manifold. Now we repackage this idea as follows: for each
point x € Ua in the underlying manifold of a hybrid phase space, we will specify both a tangent
vector X(x) € TyUa and a jump point p(x) € Ua. The only constraint we place on p is that for

each x € Uaq, there is some edge v, € 3{ for which the pair of points (x, p(x)) € a(y(x)).

Ultimately, this construction is used to interpret an analogous notion of integral curve for
hybrid systems, which also has some uniqueness property (theorem[2.2). Without a jump map p, a
hybrid system (in the sense of definition 3.3) really is like an ordinary continuous-time dynamical
system. On the other hand, a notion of executions for such systems allows discrete jumps, but
without determinism those jumps may “occur anywhere” there is a relation (c.f. [18, §4]). By
including a jump map, we enforce that a hybrid integral curve jumps everywhere, even if that
point is to itself (a selfjump, as we will see in deﬁnition allows for continuous flow). More
importantly, by specifying the jumps, we eliminate the indeterminism of executions inherent in
the non-deterministic version of hybrid system (definition [3.3). While initially counterintuitive
to assign both a jump and a tangent vector, we do so for two reasons: (1) the possibility of self-
jumps does not impose irregular or erratic “everywhere discontinuous” behavior which the notion
may otherwise suggest, and (2) having globally defined maps makes the formalism work cleanly.
An alternative is to choose a vector or a jump, but this turns out to be problematic when taking

products.

We now reinterpret two examples from section the thermostat and the bouncing ball—

to concretize these ideas, before diving deep into the formalism. In the bouncing ball example (ex-

80



ample , we have relation {(h,v,h/,v') € (R=° x R)*: h=h' =0, v'-v < 0}. This represents
the possibility of a discontinuous change in velocity at the moment of impact with the ground.
On the other hand, there is also identity relation, so even at the ground the state (0, v) may “jump”
to (0,v) instead of (0,v’). While this is mathematically permissible, any hybrid interpretation of
integral curve would end here, because the state is not defined for h < 0. By contrast, jumping to
(0,v") both makes physical sense and allows us to have a piecewise continuous curve defined for

all time.

Again, imagine the thermostat (example with relations {(x, L,x,1—1):x- (=1 > 1}.
When x > 1, say, we may turn the heater off by sending i = 1 +— i = 0. Unlike the bouncing ball,
it is permissible (if not ecologically sound) to let the heater run indefinitely. The relation by itself
does not require the jump to happen as soon as temperature enters the region {x > 1}. To enforce

said transition, we define the following map p: R x {0,1} = R x {0, 1} by
p(X,i) = (X,i) . ]lx,(_])lfi<] + (X,] —l) . ]lx,(_1)17i2].

Roughly speaking, this translates as: temperature always jumps to itself and the heater remains on

or off unless it enters into or is initialized beyond a threshold region. Now we discuss the details.

3.3.1 Deterministic Hybrid Closed Systems

We introduce determinism first for closed systems and then move to open systems. We need a

technical fact which we use to connect the constraints imposed by relations.

Remark 3.17. Recall that a hybrid phase a : $¢ — RelMan space assigns a relation a(y) C a(s) x

a(s’) to edge s 5 s’ € $¢ (definition . Alternatively, we view this inclusion as a map

ty 1 a(y) — a(dom(y)) x a(cod(y))
of sets. Additionally, there are canonical inclusions

iyraly)—= || alv’) and Lsos1) : ls0) X alsy) = | ] als) xa(s)
eS¢ (ss)esg™
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into the coproducts. Altogether, these inclusions define a unique map A, in commuting diagram

LY]\ / }\idom(y) xcod(y)

aly) ———— a(dom(y)) x a(cod(y)).

There is also a canonical map (proposition [2.3)

Qa: || als)xals) --» ( | ] a(s)) X ( L] a(s)) = Ua x Ua. (3.12)

(ss)eSg seS§

Composing the dashed-line maps, we obtain a unique map

Aa: | ] aly) --» UaxUg, (3.13)
veESS

defined by Aq := Qg 0A,.

We are ready now to formally define deterministic hybrid systems. We recall and piggyback
on material from section in order to minimize redundant enumeration of extra data. Instead
of template “hybrid phase space with extra data,” our template will now be “hybrid system with
extra data.” Later, we will define the continuous-discrete bundle Ta (definition [3.17), at which
point we will revert to the template of “hybrid phase space with data.”

Definition 3.11. We define a deterministic hybrid system to be a triple (a, X, p) where (a, X) is hybrid

system (definition[3.3) and p : Ua — Ua is a set map (a morphism in the category Set)—which we

call the jump map—satisfying

graph(p) C Aq ( | ] a(v)) , (3.14)

YESY

where Ag : |_| a(y) --» Ua x Ua (remark (3.17} eq. (3.13)).
YEST

Remark 3.18. Condition (3.14) parses as saying: for each x € Ua, there is an edge vyx € 3 for

which the ordered pair (x, p(x)) € a(yx). In fact, we verify condition (3.14) in practice by finding
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such yy.

Remark 3.19. Because $¢ is a category, there is identity arrow ids € 3{ for each node s € 3§, and
therefore identity relation a(ids) := A(a(s)) = {(x,y) € a(s)? : x = y}. Thus, for x € Uaq, it is
possible that p(x) = x. We refer to the points J, = {x € Ua: p(x) # x} as the jump set. We have

imposed no smoothness or continuity condition on the jump map p: Ua — UaEI

We review in detail and reinterpret the two running examples of thermostat and bouncing

ball as deterministic hybrid systems.

Example 3.9. Recall the thermostat hybrid system (c, Z) from example[3.4, We turn this system into

deterministic hybrid system (c : 3¢ — RelMan, Z, v). The source category 3¢ is generated by graph

e1,0
0 C 1 and the phase space assigns manifolds c(i) := R x {i}toi = 0, 1. The relations are

€0,1
cleiri) = {(x,] —i,x",1) € (R x{0, 1})2 DX = x/} )
We define the vector field Z and jump map v by

Z: Rx{0,1} —=T@Rx{0,1})) and v: Rx{0,1} — R x{0,1}

) { (T,1—1) if (=)' 1T >1 (3.15)
(Ti) =
(T,1) else.

(T, i) = ((=1)""%0)

To be a deterministic hybrid system, we require the inclusion

graph(v) C A | | ] c(v)

YEST

Either v(T,1) = (T,1) in which case ((T,1),v(T,1)) € A(IR X {i}) = c¢(idy), or v(T,i) = (T,1—1)
and ((T,1),v(T,1)) € c(ej—ii). Both cases establish that condition (3.14) holds (remark [3.18) and

therefore that (c, Z, v) is a deterministic hybrid system.

Remark 3.20. We now may see how a deterministic hybrid system models the behavior of a ther-

2If we were to be pedantic, we would write p : {x € Ua} — {x € U}, where {x € (-)} denotes the forgetful functor to
the category of sets. Because we understand maps to be maps-in-a-category, it is important to draw this distinction: p
is not a map of manifolds and therefore not smooth or even continuous. However, we prefer a possible ambiguity in
notation to over-specification and unnecessary convolutedness.
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mostat. As before, the first factor R of R X {0, 1} represents the current temperature, whereas
the second factor {0, 1} represents whether a heater is on or off. The vector field X governs the
continuous dynamics, with positive-direction vectors for “heat on” and negative otherwise. The
jump map represents digital control (a switched system), which discretely turns heat on or off

depending on whether some threshold in the temperature has been surpassed.

Now we reinterpret the bouncing ball. A ball falls through space with state variables h and
v representing position (height) and velocity. Velocity is unconstrained, but height is nonnegative
(initializing the ground as zero, and up as positive). When the ball hits the ground, there is a
sudden change in state: the height remains the same, but velocity spikes from negative to positive.
Supposing loss of energy at impact, velocity jumps from v(t; ) to v(tj) = —1v(ty) at to the time of
impact, where r € (0, 1) denotes the coefficient of restitution. We realize this example in terms of

definition

Example 3.10. We define deterministic hybrid system (c : 3¢ — RelMan, Z, ). Hybrid phase space
¢ has source category $¢ given by e 0 (c.f. example . This phase space assigns manifold
¢(0) :== R=° x R and relation c(e) := {(h,v,h,v') : h =h’ =0,v-v/ < 0}. Fixr € (0,1). We
define control and jump maps by:

Z: RROxR —TR®xR) and p: RZ°xR — RZ°xR

(0,—mv) ifh=0v<0 (3.16)
(h,v) +—
(h,v) else.

(h,v) — v% — %
It is clear that graph(n) C A ( |_| c(y)) since (0,v,0,—rv) € c(e) whenh = 0and v < 0, as
yeEST

—1v? < 0 (remark 3.18).

There is also a notion of map of deterministic hybrid systems:

Definition 3.12. Let (a, X, p) and (b,Y, o) be two deterministic hybrid systems. We define a map
(a,X,p) AR (b,Y, 0) of deterministic hybrid systems to be a map (a, X) 5 (b,Y) of hybrid systems
(definition [3.4) such that (p, o) are f-related, namely Uf o p = 0 o Uf (compare with remark [3.6).

Remark 3.21. Relatedness of jump maps is the hybrid analog of relatedness of vector fields and
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control. Both conditions appear in the definition of maps of deterministic hybrid system:

TUfoX=YoUf and Ufop=ocoUf. (3.17)

In practice, checking relatedness of jump maps amounts to the same diagram chasing as checking

relatedness of vector fields (consider diagrams in (3.27), for example).

Remark 3.22. Given two deterministic hybrid open systems (a, X, p) and (b, Y, o), there is product
system (a X b,X x Y, p x o) defined as follows. The hybrid phase space a x b is the product of

hybrid phase spaces (proposition[3.2). Vector field X x Y and jump map p x ¢ are defined by

(XxY)(xy) = (X(x),Y(y)) € KUa x yUb and (p x 0)(x,y) := (p(x),0(y)) € Ua x Ub.
(3.18)
We will see in lemma 3.4 that Ua x Ub = U(a x b). Thus

T\Ua x yUb =T, (Ua x Ub) (proposition[2.13)

lle

Ty
Ty Ulaxb)  (lemma[3.4)

so X x Y € X(U(a x b)). Similarly, let x € Ua, y € Ub, and suppose edges yx € S}, ny €
$? are such that (x,p(x)) € a(yx) and (y,0(y)) € b(ny) (remark 3.18). Then we conclude that
((X/y)/ (p(x), U(U))) € (ax b)(yx,my) (cf. eq. (3.5)), and hence that

graph(p x o) C Aqxp ( | ] (ax b)(%n)) .

b
(ym)es™

It is an easy verification that the projection maps pq : a x b — aand py : a x b — b (c.f. (3.6))
of hybrid phase spaces define maps of deterministic hybrid systems. Relatedness of vector fields
TUpa o X XY = X o Up, follows immediately from (3.18) and (3.4). Relatedness of jump maps

follows similarly. If

graph(p X 0) € Aaxp ( ] (ax b)(%n)) ,

b
(ym)es™

then ((x,y),(p(x),cr(y))) € (a X b)(yx vy) for each (x,y) € Ula x b) (c.f. (3.18)), some Nixy) =
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(Vx, vy) € $7*P. In this case, ((x, p(x)), (y,0(y))) € alyx) x b(yy) (c.f. 3:5)), and in particular

(x,p(x)) € a(yyx). Moreover

(pa,dom(n(xly)) X pa,cod(n(xly))((xly)/ (p(x), G(U))) = (X, p(x)) € a(Yx)/

which shows that Up, o (p X 0) = p o Up, (recall notation pq = (7q, pa)). We conclude that
(a x b,X xY,p x o) is a deterministic hybrid system, and that the projection maps induce maps

of deterministic hybrid systems.

Remark 3.23. A mantra we will repeatedly use is “by functoriality of T and U.” The differential of
a map of manifolds is a functor ([27, §10]) and U : HyPh — Man is as well (proposition [3.1). The
proof of lemma [3.2|illustrates application of this phrase, and in future such applications we may

circumvent detailed calculation by citing this phrase.

Lemma 3.2. Deterministic hybrid systems (definition 3.11) and their morphisms (definition [3.12)

form a category, dHySys.

Proof. We must show that objects have an identity morphism and that composition of maps is
associative. Let (a, X, p) be a deterministic hybrid system. The identity map is the identity id, of
hybrid phase space a, which induces a map (a, X, p) i, (a, X, p) of deterministic hybrid systems

since the diagrams

Ua 28 11 Ua 2 g
lx lx and lp lp
TU(idg) U(ida)
TUa —— TUa Ua —— Ua

both commute, showing that (X, X) and (p, p) are both id,-related. The diagrams commute be-
cause Uid, = idyq and TUid, = Tidya = idtwa by functoriality of U (“functoriality on identity”
(remark2.3)).

For associativity of composition, let (a, X, p) AR b,Y,0) 5 (¢, Z,7) I, (d, W,v) be a string
of composable morphisms of deterministic hybrid systems. We must show that (hog) of =
ho (gof). This equality holds as morphisms of hybrid phase spaces (lemma 3.1). So it suffices to
check that the composition of morphisms of deterministic hybrid systems is itself a morphism of

deterministic hybrid systems.
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Each subdiagram of diagram

U(gof)

Ua —Y" s ub —7% 5 Ue

I I |2

TUa ———— TUb ———— TUc

T T

TU(gof)

commutes by functoriality of T and U. Therefore, the outer diagram

U(gof)

Ua Uc
[~ |
TUa TUc
TU(gof)
commutes. A similar commuting diagram
U(gof)
Ua — U —2 Uc
Je I I
Ua w Uc
U(gof)

shows that U(g o f) op =ToU(gof), and hence that g o f is a morphism of deterministic hybrid

systems. ]

We now realize determinism in hybrid systems through executions, the deterministic hybrid
version of integral curves. They are defined as a special class of maps of deterministic hybrid
systems (compare with definition [2.41)). To define executions, we first need to separate a special

class of deterministic hybrid systems.

Definition 3.13. Let T = {to < t; < ...} C R be an increasing sequence of real numbers; we define

a T-universal deterministic hybrid system (w : 3 — RelMan, T, 1) as follows:
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1. Hybrid phase space w with source category $¢ = N:
€1,0 €21 . €415 .
0—=1——2—.---=j—>j+1---

To eachnode j € $§ we assign manifold w(j) := [tj, tj11] X {j}. To edge ej41; € $§° we assign

the one-element relation w(ejy1;) = {((tj+1,5), (41,7 + 1)) }-

2. Vector field T € X (U [tj, tj] x {j}) is defined by the constant vector field T(ty,j) =
jEN
i{ )
atl(to,j) *
. . . (t,3) if telt, )
3. Jump map 7: Uw — Uw is defined by (t,j) =
(tj1,j+1) if t =t

Notice that ( (t1,3), (g10,7 + 1)) € w(ejt1) so (w, T, ) is indeed a deterministic hybrid system
(remark 3.18). When the sequence 7 = {top < t; < -- -} is clear or fixed ahead of time, we drop 7
in the subscript and simply write (w, T, T).
Remark 3.24. An increasing sequence 7 = {to,t;,...} of real numbers uniquely defines a 7-

universal system.

When 7 = {ty < ... < tx41}is a finite set, we write ny instead of w, $™* is the finite category

0% 1 5. k-1 0y,

and Uny = O[tj, tj11] X {j}. In the case that t; 1 = oo, the last interval in this union is [ty, co) x {k}.
We abuse nggtion and continue to write [ty, ty 1] when t, = co.

Having demarcated our special class of deterministic hybrid systems, we may now define
executions—by analogy with definition[2.41}—as maps of deterministic hybrid systems.
Definition 3.14. Let T = {to < t1 < ...} C R. A T-execution (e,¢) : (w,T,T)7 — (a,X, p) of deter-
ministic hybrid system (a, X, p) is a map of deterministic hybrid dynamical systems (definition[3.12)
from 7T -universal deterministic hybrid system (w, T, T)s (definition . We may notate an exe-

cution (¢,¢) by e: (w, T,T)7 — (a, X, p).

Let us see how executions are the hybrid version of integral curve. On each interval [t;, tj,1],
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the map ¢; : w(j) — a(e(j)) is an integral curve for X (c.f. definition [2.41). This is the continuous-
time part. At endpoint (tj11,j) € [tj,tj41] x {j}, we send point ¢;(tj11,j) — ¢11(tj41,j +1). The
condition that p o Ue = Ue o T requires at point (tj11,j) € [tj, tj+1] x {j}, that ¢j11(tj1,j +1) =

¢j+1(t(tj+1,3)) = p(ej(tj41,7). This is the hybrid jump.

A motivation for calling these systems deterministic comes from the following.

Proposition 3.3. Let (a, X, p) be a deterministic hybrid system and let p be idempotent, i.e. p? = p.
Suppose that for each xo € Ua\Jq = {x € U : p(x) = x} (remark [3.19) the maximal solution

®xx, (t) of continuous-time system (Ua, X) starting at xo (definition [2.40) is either
1. complete @xy, : [0,00) — Ua\ J, or
2. bounded @x, : [0,tx,) = Ua\ Jq and @xx,(tx,) € da-

Then (a, X, p) has unique executions.

Proof. We construct the execution directly. If @x , is complete, there is nothing to do: let ty = 0 and
t; = oco. An execution starting at X, is a solution of (Ua, X) in the ordinary sense of continuous-
time systems (definition[2.40). Otherwise, let @x x, : [0, tx,] = U(a) be the maximal integral curve
starting at xo. We define 7 = {t; : 1 € N} recursively: set t = 0 and t; = t,,. By assumption,
Pxx, (t1) € Ja. We set x1 := p(@xx,(tx;)) and t; = t1 + ty, where @xy, : [0,ty,] — U(a) is the
maximal integral curve starting at x;. In general, we define xj1 := p(@xx; (tx;)) where t; denotes
the endpoint of the maximal integral curve Oxx; [0, txj] — U(a) with initial condition x;, and set

H =4+ txj-

Having thus defined set 7 = {to, t1, ...}, we obtain 7 -universal deterministic hybrid system
(w, T, T)7 (remark [3.24). We define execution (€,¢) : (w, T,T)7 — (a,X, p) as follows. On nodes
this map is defined €(j) := s(x;), where s : Ua — 3§ picks out the node s(x) of which point x is an

element (lemma and ¢(t,j) := @x; (t —tj). By construction,
Ple(tir1, k) = pl@xx (tx)) = X541 = exp1 (e, K+ 1) = e (T(tisr, k),

so this is indeed a map of deterministic hybrid systems (remark|3.18) and hence an execution. [
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Remark 3.25. We will by default suppose that all deterministic hybrid systems (a, X, p) € dHySys
have unique executions. In other words, dHySys is the category whose objects are deterministic

hybrid systems with unique executions.

Example 3.11. We return to the bouncing ball from example and consider trajectories in our
formalism (c.f. [19, §1.2.2]). It is not difficult to verify that the conditions of propositionare here
satisfied, so that this system has unique executions. We build them explicitly. At ty = 0, suppose
that h(0) = 0, v(0) = 1/2, and let r € (0, 1) denote the coefficient of restitution (loss of energy at

h =v
bounce). Solving the differential equation gives
v =-—1

v(t) = —(t—to) +v(to) = —t+1/2

and

h(t) = —(t—t9)2/2 4+ v(ty) (t — tg) = —t2/2+1/2t.

To find the next bounce time, we set h(t) = 0 or —t?/2 + 1/2t = 0 which occurs at t = 0 and
t = 1. Thus the first bounce time is t; = 1, with downward velocity v(t;) = —1/2, and after-
bounce velocity v(t]) = —r- (—1/2) = r/2. Letting t; play the role of t; above, for t > t;, we have
v(t) = —(t—t;)+r/2and h(t) = —(t—t;)2/2+71/2- (t—1t7). Again solving for h(t) = 0 gives

t =t and t = 1 4+ r. We claim that the k-th bounce time is

The zeroth jump time is ty = 0. Arguing by induction, we have v(t, ) = —rk=1/2, v(t{) =1%/2,
v(t) = —(t—ty) +v(tz), and h(t) = —%(t —t )2+ %(t —ty). Setting h(t) = 0, we see that h(t) =0

att =t and at
k—1 k
t=t+rk= ZT] +rk = Zr],
=0 =0

the latter of which is the (k + 1)th jump time.
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k
Setting 7 = {to, t1,...} C R where ty := Z v, this data entirely defines an execution
=0

(el 2) : (wl T, T)T - (C/ Z, }‘L)/
where (c, Z, 1) is the deterministic hybrid system representing the bouncing ball in example

The map e : $ — 5§ of source categories sends each node (j € S3) — (0 € $§). For (t, k) €

[tk, tg1] X {k}, we have

and we set ¢y (t, k) := (h(t),v(t)). Then

(0,—7-v(t)) ifh=0andv<0
wlek(t, k) =
(h(t),v(t)) else.

The condition that h = 0 and v < 0 is realized at t = tx; 1. On the other hand,

tk ift € [t t
(LK) = (t, k) K tir1)

(t,k+1) ift =t

from which we see that
ex(T(t, k) = ex(t, k) = (h(t), v(t)) = u(h(t),v(t)) = ulex(t k),

when t € [ty, ty1) X {k} and

k

et (Fltan, ) = st k1) = (0,375 ) = (020 T ) = w0, v(11)) = wlealtuer ),

when t = ty,1. Therefore U(e,¢) ot = po Ule, e), and we conclude that (g,¢) : (w,T,T)7 —

(c,Z,u) is a deterministic execution.
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3.3.2 Deterministic Hybrid Open Systems

Now we discuss open deterministic dynamics. The extra piece of data we introduced in sec-
tion was a jump map, somehow compatible with relations of the underlying phase space.
In the case of open systems, we also have a jump map this time from the underlying total space
Uayot to the state space Uas; (compare with the open control X : Uaiot — TUas). We simply need

to reinterpret compatibility-with-relations, as now there are two spaces of constraints to consider.
Definition 3.15. We define a deterministic hybrid open system to be a triple (a, X, p) where (ator +%

agt, X) is a hybrid open system (definition[3.9) and p : Uayey — Uag is a set map (morphism in

the category Set), which we call the jump map, satisfying the following inclusion:

(Upa x id) (graph(p)) C Ao, | || ast(y) |, (3.19)
yeS?“

where Aq : |_| a(y) — Ua x Ua is defined in remark|3.17}, (3.13).
YESY

Remark 3.26. For future reference, we denote map

UanidUast
Uatot X U(lst e U(lst X Agt. (320)
on the left-hand side of (3.19) by
Oq = Upq X idyqy,- (3.21)

Analogous to remark we have an operational way of checking condition (3.19): for each

x € Uayo, there is an edge vy € $7** such that (Upa(x), p(x)) € ast(yx)-

Definition 3.16. We define a map f : (a,X,p) — (b,Y, o) of deterministic hybrid open systems to be
amap f : (a,X) — (b,Y) of hybrid open systems (definition [3.10) such that (p, o) are f-related,

namely Ufs 0 p = 00 Ufyey.

Remark 3.27. Deterministic hybrid open systems and morphisms form a category, which we denote

by dHyOS.

Remark 3.28. Deterministic Hybrid Open Systems have products (a, X, p) and (b, Y, 0): the product

(axb,X xY,px o) is also a deterministic hybrid open system. Compare with a similar fact for
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deterministic hybrid closed systems (remark 3.22).

We introduce the notion of an augmented tangent bundle, which helps us package data for

deterministic in hybrid systems.

Definition 3.17. Let a : 3§ — RelMan be a hybrid phase space. We define the continuous-discrete
bundle Ta (also: c.d. bundle) by
Ta:=TUa x {x € Ua}, (3.22)

the product of the tangent bundle of the underlying manifold Ua (proposition[3.T) and the under-
lying manifold as a set. The appellation “bundle” is not accidental: T'a comes equipped with a

canonical projection @, : Ta — Ua defined by
Wq = Tya © P1, (323)

where p; : TUa X {x € Ua} — TUa is the canonical projection onto the first factor, and Ty, :

TUa — Ua is the canonical projection of the tangent bundle of the underlying manifold Ua.

Remark 3.29. A deterministic hybrid system (a, (X, p)) is a pair where a is a hybrid phase space
and (X, p) is a section of the c.d. bundle satisfying some extra conditions, namely that X is smooth
and p satisfies . Compare this with continuous-time dynamical systems (M, X), where M is
a manifold and X € X(M) is a smooth section of the tangent bundle. We will encounter a general
notion of object and section of bundle in chapter |4, section Similarly, a deterministic hybrid
open system (a, (X, p)) is a pair where a = ayot Pa, ag is a hybrid surjective submersion, and

(X, p) : Uator — Tag is a map to the c.d. bundle of the state space such that

1. X: Uatot — TUag is smooth and Up, = tag o X, and

2. Oq(graph(p)) € Aa,, | || ast(g) | , where @ is as defined in (3.21).

yeS st
Proposition 3.4. The assignment Ta = TUa x {x € Ua} in (3.22) extends to a (covariant) functor
T : HyPh — Set.

Proof Sketch. First, we have defined Ta on objects in (3.22). Observe that forgetting the smooth

and topological structure of a manifold M — {x € M} is functorial. We let {-} denote this functor.
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Leta 5 bbea morphism of hybrid phase spaces. We define
Tf :=TUf x {Uf}. (3.24)
This map is functorial since T, U, {-}, and x are functorial. O

We now define deterministic control.

Definition 3.18. Let a := (atot Pa, ast) be a hybrid surjective submersion. We define

o¢tl(a) := {(X, p): Uator — Tast

Ta,, © X =Upqand Bq(graph(p)) C Aq,, ( |_| ast(Y)) }r

yES] St

as the collection of pairs (X, p) for which (a, X, p) is a deterministic hybrid open system. Here
Ta,, © TUast — Uag is the canonical projection of the tangent bundle, ©, : Uatet X Uag —

Uast x Uagt is the map in 3.21), and Aq,, : |_| ast(y) — Uas x Uag is the canonical map
yeS?St

defined in remark[3.17

Having thus defined o€tl on objects, we now define 9¢€tl on morphisms as a relation. For

morphism a L5 b we define
a¢tl(f) = {((X, p), (Y, 0)) € d€xl(a) x d€x((b)| (X,Y) and (p, o) are f-related } . (3.25)
Alternatively,
oCH(f) = {((x, 0), (Y, 0)) € d€tl(a) x d€xi(b) : (a,X,p) 5 (b, Y, o) is map in dHyOS (deﬁnition} .

Proposition 3.5. Deterministic control (definition [3.18) extends to a lax functor 9€tl : HySSub — Rel

(definition . Specifically, let a L cbe morphisms of hybrid surjective submersions. Then

2¢tl(g) 0 0€tI(f) C dCrl(gof). (3.26)

Proof. We have defined 2€tl on objects and morphisms (definition and (3.25)).
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Lax functoriality (3.26) follows immediately from the following two commutative diagrams:

U(gof)tot U(gof)tot
Uatot 4>Uftot Ubyot —>Ugtot Uctot Uatot 4>Uftot Ubtot 4>Ugtot Uctot
Jx JY lz and Jp Jc Jr (3.27)
S TU S S S
TUaer —25 TUbgy ——25Y TUcy, Uds —25t 4 Ubgy —2 4 Ucyy.
TU(gof) U(gof),,

Each square commutes by assumption, and the outer diagrams by functoriality. Thus, if (X, Y) are
f-related and (Y, Z) are g-related then (X, Z) are g o f-related. A similar implication shows that
(p, ) are g o f-related. This proves that 9€tl((g) o d€rl(f) C 2€tl(g o f). Thus, for ((Y,0),(Z, 1)) €
o¢tl(g) and ((X, p), (Y,0)) € d€rI(f) we have that ((X,p),(Z,7)) € d€tl(gof). O

Remark 3.30. Laxness comes from unidirectionality of this implication: that (X, Z) are g o f-related
does not imply that both (X, Y) are f-related and (Y, Z) are g-related. Similarly (p, T) may be g o f-
related without both (p, o) being f-related and (o, T) being g-related. In general, the commuting

of outer diagram
X] —> X — X3

I

YI — > Y2 — Y3

does not imply that both of the inner diagrams commute.

t

Example 3.12. Consider the string of inclusions R - R2 <2, R3 , where 11 maps x —

(x,0) and 1, maps (x,y) — (x,y,0). On the one hand, (g o f)-relatedness of (p,T) means that
T(x,0,0) = (p(x),0,0) for x € R. On the other hand, g-relatedness of (o, T) requires that t(x,y,0) =
(o(x,y),0) = (01(x,y),02(x,y),0). Then (g o f)-relatedness of (p, T) imposes no condition on the
second factor of o(x,y), and hence fails to ensure the equality t(x,y,0) = (o(x,y),0) ify # 0 (a

similar example for related vector fields is given in [17, example 2.25]).

We consolidate terminology:

Definition 3.19. We say that (X, p) € 9€tl(a) and (Y, o) € 2€t((b) are f-related for morphism a LN
of hybrid surjective submersions if both (X, Y) are f-related (definition[3.10) and (p, o) are f-related
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(definition [3.16).

3.3.3 Hybrid Interconnection and Deterministic Control

Recall that a morphism of hybrid surjective submersions is a pair of morphisms of hybrid phase

spaces making a certain diagram commute (definition 3.6).

Definition 3.20. Let a := (aot Pa, ast) , b == (bot Po, bst) be hybrid surjective submersions
(definition [3.5). We define a hybrid interconnection i : a — b to be a morphism of hybrid surjective
submersions (definition for which the map i : asy — bt on state is an isomorphism of hybrid

phase spaces.

It is easy to verify that hybrid surjective submersions with interconnection morphisms form

a category.

Definition 3.21. We define the category HySSubjn whose objects are hybrid surjective submersions
(definition [3.5) and whose morphisms are hybrid interconnections (definition 3.20). HySSubjy, is a

subcategory of HySSub with the same objects.

Remark 3.31. It will be useful for us to spell out the definition of an isomorphism of hybrid phase
spaces. An isomorphism in any category is an invertible morphism. In the category of hybrid
phase spaces, specifically, an isomorphism i = (1,i) : @ — b consists of an isomorphism t : ¢ — $°
of categories and a diffeomorphism is : a(s) — b(i(s)) for each node s € $§. Consequently, one

may easily check that the inverse is given by (t, D7 =0,

Remark 3.32. The lax functor d€tl in definition does not in general map deterministic controls
to deterministic control. As we saw, the best we can hope for from an arbitrary map of hybrid
surjective submersions a L b is a relation of control. However, d€tl applied to interconnection

does map control to control.
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3.3.4 Deterministic Control as a Map

Proposition 3.6. Let a := (aiot Pa, agt) and b := (biot LLN bst) be two hybrid surjective submer-
P y )

sions, i: a — b a hybrid interconnection (definition 3.20), and (Y, o) € o€tl(b). Let
X:=TU(ig) ' 0 Yo Ul(iter) and p:=Ulig)” 0 00 Ulitor). (3.28)

Then (X, p) € 0Ctl(a).

Consequently, for interconnection morphism i = (1,i) : a — b there is a well-defined map
oCtl(i) : o€rl(b) — dCrl(a) given by (Y, o) — oCtl(i)(Y,0) = (X, p), where (X, p) is defined in
(.28). Proposition [3.6] guarantees that 9¢tl lands in the target. We collect this fact in a definition:

Definition 3.22. Let i = (1,i) : a — b be an interconnection of hybrid surjective submersions

(definition [3.20). We define the map ?¢tl(i) : 9¢tl(b) — d€r((a) by

(Y, 0) = d€el(i)(Y, 0) == (TU(is) ' © Y 0 Ulitot), Ulist) ' © 00 Ulitot)). (3.29)

We need a lemma for the proof of proposition 3.6}

Lemma 3.3. Let (1,i) : a — b be an isomorphism of hybrid phase spaces. Then for every arrow

s’ Xy's € 89, there is equality of relations

Moreover

(Ui x Ui) (Aa ( |_|a G(Y))) = Nv ( L b(n)) ,

where A, : |_| a(y) = Ua x Ua (remark|3.17)).
YEST

Proof. Since (1,i) : @ — b is a morphism of hybrid phase spaces, for edge s’ 5 s € $¢, we have

inclusion
(i xis) (a(y)) € b(u(y)).
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We must show the opposite inclusion b(t(y)) C (is X is) (a(v)).
The inverse (i)~ is also a morphism of hybrid phase spaces equal to (v~',i~") (remark[3.31).

Letn := ((y). Then we have inclusion

(ig;/) X i&l)) (b(m)) C a(L_1 M) = aly).

Applying iy X is to both sides:

b(n) = ((igr 0ily) x (is0iyl)) (b)) = ((is/ X is) o (il X i:[;))) (bm)) € (i x is) (alv)),

which proves that (is' X is) (a(y)) = b(1(y)).

We introduce notation: let iy 1= icoq(y) X idom(y) Where dom(y) Yy cod(y) is edge in 3. Then

iy(a(y)) = b(L(y)) for every y € $¢ and the isomorphism  : $¢ — S imply that |_| aly) =
YEST
| | b(n) by the universal property of coproduct (definition [2.16). This can be verified by the
nesh
following diagram:

/’///’ id \\\\‘\
o -
L] aty) s [ bm) s | afy)
YESS nesy vesy
Ulv’] int(v’)] 1“7’]
=1
/ )
aly') ——— by")) ——— a(t’'(L(¥")),
gy

where the maps in, and in,, /) are the canonical inclusions. Thus, &4 ( |_| a(y)) = |_| b(n)

YEST nesy

and &, = Ef.

Let {q == Ui x Ui, ¢ := Ui~" x Ui"!. We then conclude from the universal property of
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coproduct (this time for Ua) and commuting diagram

/\
&a &
L] aly) —=— || b)) —=— | ] aly)
yeST nes? yest
ya Pb ya
Uax Ua %5 Ubx Ub -2 Ua x Ua
S T
T tdyaxidyg -~ -
that (Ui x Ui) [ Aa | || aly) =Ap | | ] bM) |- O

yess nesb

Proof of proposition Let (X, p) := 0C€¢l(y,i)(Y,0) asin proposition and (3.28). We must show

that (a,X, p) is a deterministic hybrid system: namely that U(p,) = Tq,, © X and that
Oq (graph(p)) - Aast I_I ast(v) |,
yeS st

where 14, : TUag — Uas; is the canonical projection of the tangent bundle, and ©, is defined in

(3.21)).

To demonstrate the equality U(pq) = Tq,, © X, we refer to the diagram:

U (ito
Uatot (o) Ubtot
X Y
U |
15
TUast —— TUbg: Ulpy) (3.30)
TU(ist)
N N
Ulig
Uaet fet) Ubst,

where each subdiagram—except the left triangle—is already known to commute. Equality

U(ist) o U(pa) = Ulpp) o Ulitot) (3.31)
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holds because 1 is a map of hybrid surjective submersions. Equality
T, © Y = U(py) (3.32)
follows by assumption that (b, Y) is a hybrid open system. Equality
X =TU(ig) ' 0 Y 0o Ulitor) (3.33)
follows by definition of X (c.f. (3.28)). Finally, equality
Ulist) 0 Tay, © TU(ist) ' = 7o, (3.34)

follows from the fact that T is natural (fact[2.5) and that U(is) is a diffeomorphism (remark3.5).

Starting from U(p,), we thus have a string of equalities

U(pa) = Ulist) " o Ulpy) 0 Ulitot) (c.f. 331))
= U(ist) ! 0 Tp,, © Y 0 Ulitot) (c.f. (3:32))
= U(ist) ™' 0 To,, TU(ist) o TU(ist) ' 0 Yo U(iyor) (T is functorial)
= Tq, 0 X (c.f. and (3.34)),

thus proving that (a, X) is a hybrid open system (definition 3.9).

To show that (a, X, p) is deterministic hybrid open system, we must show that ©, (graph( p)) C
Aa,, ( |_| ast(v) |, where O := U(pq) X idyaq,, (c.f. (3.21)). Alternatively, we show that for

vES(ast)
each x € Uayy, thereisyy € $7°* such that (Upa(x), p(x)) € ast(yy) (remark . For verification
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of this relation, we refer to the (not entirely commuting!) diagram

Ulitot)
Uatot - Ubtot
U(pa) U(pw)
p \ Ui ° \
Ugy — Uby
U( 1.'d‘Uast l id‘Ubst (3'35)
lst
Uast Ubygt idue
idUas\ J \
Uay — et Ubst.
Equality
Ulist) o p = 00 Ulitot) (3.36)
follows by definition of p := U(ist) ™' 0 00 Uliter) (c.f. (3.28)). Equality
U(py) o Ulitot) = U(ist) o U(pa) (3.37)

holds because Ui : a — b is a map of surjective submersions (definition 3.6) and U is a functor

(proposition3.1)).

Now let x € Uayot, sety := Uiot(x), and letny, € SB:’“ such that
(Upsv(y), o(y)) € bst(ny). (3.38)

Let vy := i, (Ny). Applying (igolm (ny) % 1;01 4 (T]y))s . to both sides of (3.38), we observe (c.f. lemma
that

(id_o]m(ny) (Upy (y))’ic_o]d(ny) (G(U))> € asi(yx). (3.39)
Now
Upal(x) = Ui;t] o Upp 0 Ultor(x)
= Uiy o Upp(y)

= i;Jdom(ny) (Upb (y )) ’
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Similarly
p(x) = Uiy o0 o Ul(x)
=Ug' ooly)
= i o (1Y),
In other words, together with (3.39), we conclude that (Upq(x),p(x)) € as(yx), proving that
oC¢tI(1) : 0€tl(b) — o€rl(a) is well defined. O

Remark 3.33. We can also prove condition (3.19) abstractly. Since (b, Y, o) is a deterministic hybrid

open system (definition 3.15)), we have inclusion

Oy (graph(0)) € Av,, | || bstm) |,
TleS‘]’st
where Oy := U(py) x idyy,, (c.f. (3.21)). Since i1 by = ag isan isomorphism of hybrid phase
spaces, (igolmm) X i;}d(n]) (bst(m)) = ase (v (M) (lemma for arrow (dom(d) 3 cod(d’)) € S?St.

Therefore

|_| (ic_o]d(n) X ig;m(n))(bst(n)) = |_| ast(L_] (ﬂ)) = |_| aSt(Y)/

nestst nes;y st vesy

which we write (also by lemma[3.3) as

(U(ist)_] X U(ist)_]) /\bst |_| bst(n) = /\ast ( |_| ast('Y)) . (3-40)
nGSB?St yeS] st
We notate
Ny, := Upy 0 Ulror (3.41)
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for reference and compute:

Oalgraph(p)) = {(Upa(x),p(x)): x € Uatot } since (f x g)(a,b) = (f(a), g(b))
= {(Upa(x), Ulist) ' 000 Uitot(x)) : x € Uatot } (c.f. 3:28))
= {(U(ist) ' o Xy (x), Ulist) ' 0 00 Uitot(x)) : x € Uaror} (B37), BAD))
= {(U(ist) " o Upp(y), Ulist) ' o 0(y)) : y € im(Uitor) } (definition of im(U(t,1)tot))
= (Ulis) ™" x Ulis) ") {(Upb(y), 0(y)) : y € im(Uitor)}  since (f x g)(a,b) = (f(a), g(b))
= (Ulist)™" x Uist) ™) 0Oy (graph (o hm(w,nm))) (definition of graph.)

By assumption
©y (graph (0)) C Av,, [ || bst(n)
nGS']:’st

Therefore we conclude (c.f. (3.40)) that

©algraph(p)) C (Ulist) ' x Ulist) ') (Op (graph (0))) € Aq,, ( || ast(vJ) ,

VGS?“

as desired.

Examples of Deterministic Control on Interconnection

Now we provide a few examples of interconnection and control. Example models a ther-
mostat, example a bouncing ball, while example and example are general switched
systems. The examples are constructed to illustrate that a deterministic hybrid system may be
realized as an interconnection of deterministic hybrid open systems, analogous to the way that
a vector field (X : R™ — TR"™) € X(R") may be obtained as the interconnection of n open sys-
tems {X; : R™ — TRi}i=1,.n ([17, example 3.2]). We recover the digital control hybrid system

(c,Z,v) from example in example and the bouncing ball (¢, Z, i) from example in
example

Remark 3.34. Because each example follows an identical template, we preface them with an outline.
We present two hybrid phase spaces a : $¢ — RelMan and b : $° — RelMan. From their product,
we form hybrid surjective submersions p, : a X b — aand py : a X b — b (remark 3.11). Out of

these two hybrid surjective submersions, we build deterministic hybrid open systems (a x b —
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a,X,p)and (a x b — b,Y, o), which amounts to defining pairs (X, p) € 0€tl(a x b Payq),(Y,0) €

oCtl(laxb Po, b) (definition , or sections of the c.d. bundle @, : Ta — Ua satisfying some
conditions (definition remark (3.29).

We then construct—with the product—a deterministic hybrid open system (remark (3.28))
( PaXPb

axbxaxb—=axbXxY,pxo),

and an interconnection morphism

axXb ——axbxaxb

ltot
J/idaxb \L’Pa XPb

i
axb 4‘4‘4‘4‘534444444> a X l),

where 1st := idq«p (definition . The interconnection map io¢ sends point
((x,y) € (axb)(sq,50)) — ((x,y,x,y) € (axbxax b)(sa,sb,sa,sb))ﬂ
while the projection map p, X pp sends point
(6 y,x,y") € (ax b x axb)(saseshsy)) = ((xy') € (axb)(sq,sp)) [l
The deterministic hybrid control is defined as follows (remark [3.28): we have
XXY:Ulaxbxaxb)—TU(axb)
sending (x,y,x’,y’) — (X(x,y), Y(x’,y")) and
pxo:Ulaxbxaxb)— Ulaxb)

sending (x,y,x,y’) = (p(x,y), o(x’,y")).

SImplicit in this assignment is the map on nodes ((sq,sp) € $%*®) = ((sa,Sp,Sa,5p) € FAXLXAXP),
4 And maps node (sa,sb,Sa,st) — (sa,sp)-
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Finally, we apply proposition to obtain a deterministic hybrid system (in the sense of

definition 3.3):

(axb,0€tl(,i) (X xY,pxo0)),

which, putting everything together, maps

Ului)tot
(X/y) — (X/y/X/y)

0Ctl(L,i)(XXY,px0)

(XXY,px0)

((X(X'y)/ Y(X/U))/ (P(X/y), G(X,y))) .

Remark 3.35. For now, we acknowledge—but bracket addressing—the implicit isomorphism U(a x

b) = Ua x Ub which we used in this outline. We will prove in lemma [3.4] that U((-) x (-)) =

U(+) x U(+), natural in each factor (see also proposition , so the examples are well defined.

Example 3.13. We model the thermostat introduced in example 3.9 as an interconnection of two

deterministic hybrid open systems. We start by defining hybrid phase spaces a and b. In the

following table, the first line is the source category $ and $°, the second is the assignment of

manifolds, and the third is assignment of relations. We only display nontrivial relations, but every

node s, € $¢ has trivial relation a(ids,) := A(a(sq)), and similarly for each s, € $°.

€1,0
S {sq} gb - C 1
€0,1
a(sa) =R b(G) ={} i=0,1

bler ;) ={G,1-j)}, i=0,1

Phase space a represents temperature and phase space b represents digital control.

Now we consider the hybrid surjective submersions arising from the products a x b 2% a

and a x b 2% b, and define two hybrid deterministic open systems. In the following table, the first

three lines depict the surjective submersions (1. the map source and target, 2. assignment on nodes,

3. assignment of points in manifold), the next two lines show the maps X : U(a x b) — TUa and

Y :U(a x b) — TUD for vectors, and the last two lines depict the jump maps p : U(a x b) — Ua
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and 0 : U(a x b) — Ub:

Pa: axb— a Py : axb— b
(Sa,j) = sa (sa/ i) = §’
(Tj)— T (T3 = '
X: Rx{0,1}1— TR Y: Rx{0,1} = T{0,1}
(T,j) = (=) (T"j') = 0
p: Rx{0,1}— R o: Rx{0,1}— {0,1}
(i) T Ty | N =
i’ else

These define a deterministic open system since (T, p(T,j)) = (T, T) € A(R) = a(ids,) and (j, o(T,j)) =
(3, 1—j) € blej_1;) or (j, o(T,j)) = (3,j) € A({j}) = b(id;) forj =0, 1 (remark|3.26).

We combine both open systems to form the deterministic hybrid open system with hy-
brid surjective submersion (a x b x a X b) Pa¥Po, ¢ x b which on nodes maps (sa,j,s0,j’) —
(sa,j’) and on manifolds maps points (T,j, T',j’) — (T,j’). Deterministic control (X X Y, p X 0) €

oCtl(a x b x axb— axb)isdefined by

X X Y(T/j/T,/j,) = (X(T/J)/ Y(T//]/))

p X G(T/j/T//j/) = (p(TI])I O—(T//j/))~

axb e bxaxb

We take hybrid interconnection lidaxb lpa xpy (remark(3.34), and this induces

idaxb
axXb —axb

a map on control 0€tl(,i) : o€l (a xbxaxb PP g% b) — 0Ctl (a X b L“Xb ax b> de-
fined by:
¢, 1) (X x Y)(T,j) := (X(T,j),Y(T,j)) = ((_])Fi,())

and

(T,1—j) if (=)IT >1
oCel(1,1)(p x 0)(T,j) =
(T,j) else.
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We thus recover the thermostat from example 3.9|and (3.16), and conclude that
(axb,0€tl(,i)(XxY,px0))=(c,ZV).

Example 3.14. We now consider the bouncing ball as interconnection of two deterministic hybrid
open systems. This example decomposes a “high dimensional” hybrid system into components,
by contrast with the thermostat which decomposes the hybrid system into continuous state with

digital control (the distinction, however, is purely heuristic).

Here the hybrid phase space a will correspond to position (height) and b to velocity:

J: {sq} gb: 5 De
a(sq) =R b(sp) =R
b(e) ={v,v)eR?:v-v/ <0}

Fix a coefficient of restitution r € (0,1). Then deterministic hybrid open systems on projection of

products are given as:

Pa: axb— a Py : axb— b
(Sa,Sb) —  Sa (sa,sp) — sy,
(h,v)— h (h/,v) — v/

X: RZO9xR— TR=°| Y: RxR2°—> TR

(hv) = v (W V)= —5%

p: RZ°xR— RO o: RxR=2°— R

(h,v)—= h
v/ else.

—v/ ifh/=0andv/ <0
(h/,v') —

These are valid open systems (c.f. remark i because (h,p(h,v)) = (h,h) = A(R=°) = a(ids,)

and

) . (v/,—rv') € ble)
(v,o(h’,v")) =
v, v € b(ids, ).
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From these we obtain deterministic hybrid open systems (a X b x a X b, X XY, p X ¢) where

0 0
X X Y(h,v,h/,vl) = Vﬁ — 67\)’

and

(hv, h' V') (h,—rv') ifv/ <0and h/ =0
pXO- ,V, ,V =

(h,v') else.
Interconnection (t,i): a X b — a x b x ax b, sends (h,v) — (h,v,h,v). The map
0Ctl(1,1) : 9Ct(pq X Pp) — 0Ctl(idgxp)

on control gives us

(L, )(X x Y)(hv) =v2 —2
(0,—1v) ifh=0,andv <0

o¢tl(,i)(p x 0)(h,v)] =p xo(h,v,h,v)=
(h,v) else,

exactly the deterministic hybrid system (c, Z, 1) in example

Example 3.15. Now we consider state dependent switched systems
X = f&(x) (x) € TuM, (3.42)

for x € M, switch signal & : M — {1,...,k}, and each f; € X(M). We decompose such a system
as an interconnection of two deterministic hybrid open systems. We will define two hybrid phase
spaces a and b representing the state x € M and switching signal &6(x) € {1,...,k}, respectively.

Consider complete graph G ={i € {1,...,k}: dle;; Vi,j € {1,..., k}}E] Let source category of b be

5The node setis Go ={1,...,k}and edgesetis Gy ={e;;: 1,j € Go}. When i =], e; ; is the identity arrow.
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the path category on this graph, denoted S(G). Then:

S {sq} gb - S(G)
a(sa) =M | b(G) ={j}
blei) ={(ij)}

And on the projection of products we have deterministic hybrid open systems

Pa: axXxb— a Pb: axXxb— b
(Sa/j) = Sq (Sa/j/) = jl
(x,j) = x (x',j') = 3§’

X: Mx{l,....,k}—= ™ | Y: Mx{l,..., k}— T{1,...,k}

(X/j)'_) f](X) (X/,j/) = 0

p: Mx{l,....k}—= R o: Mx{1,...,.x}— {1,...,k}

(x,j) = x (x',j") = &),

which are valid deterministic open systems since (x,x) € A(M) and (j/, o(x’,j’)) = (§/,5(x')) €
b(es(x),;) (remark[3.26).

Taking product results in hybrid deterministic open system
(axbxaxb—=axbXxV,pxo),

defined as
XxY(x,j,x,i") = (X(xj), Y(x,i)) = (fj(x),0),

pxo(xj,x"j") = (p(xj), o(x,i") = (x,&(x").

There is induced map on control
(Z,7) ==0€tl(1)(X X Y,p x 0), (3.43)

sending (x,j) to Z(x,j) = (fj(x),0) and t(x,j) = (x, &(x)).

This determined hybrid system (c, Z, T) is the switched system in (3.42): in this representation
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we notationally decouple switching and continuous-time dynamics. More accurately: they are still
coupled, but we have isolated continuous time dynamics and switching into separate components
of a deterministic hybrid system.

Proposition 3.7. Let x = fs(x) be a state-dependent switched system, with x € M, & : M —
{1,...,k},and f; € X(M) fori =1,...,k. This system arises as interconnection d€t[(i)(X X Y, p X o)

of deterministic hybrid open systems

(axb—aX0p)
(axb—=1b,Y,0)

as defined in example (3.43).

Now we consider time-dependent switching, which turns out to be a special case of state-
dependent switching.
Example 3.16. Consider system x = f5)(x) with & : R — {1,...,k}. Here we keep b the same

hybrid phase spaces as in example but this time a(sq) = M x R. Then open systems are
defined

X: MxRx{l,...,.k}—» ™ xR Y: MxRx{1,...,k}— T{1,...,k}

(x,t,3) — fj(x) (x',t',i")— 0

and functions p, o as

p: MxRx{l,...,k}— MxR o: MxRx{1,....,k}— {1,...,k}

(x,t,3) — (x1) (x',t',j")— &(t)

As in the previous example, we obtain time-dependent switched system as interconnection.

Remark 3.36. We observe how example is a special case of example It is well known
([19) §3.3.1]) that a time-dependent continuous-time dynamical system X € X(M) of dimension
n is secretly a time-independent dynamical system X € X(M) in disguise, of dimension n + 1.
Indeed, the state manifold may be given by M = M x R and the (n + 1)th variable given constant

dynamics X471 = 1.
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3.3.5 Monoidal Structure of Hybrid Phase Spaces

We show in this section that products in hybrid phase spaces behave well with forgetful functor
U : HyPh — Man, namely that U is a strong monoidal functor. Concretely ITo U = U o T1. First we

develop some facts about d¢tl.

Deterministic Control as a Functor

Deterministic control is only lax functorial on arbitrary maps of hybrid surjective submersion

(proposition [3.5), but functorial on interconnection:

Proposition 3.8. The map d¢tl defined on interconnection in proposition[3.6|extends to a contravari-
ant functor

¢l : (HySSubint)°? — Set.

Proof. Leta 5 b % cbe hybrid interconnections. We must show that 9€tl(id,) = idyer(q) and that
D@t[(g ) f) = 0€tl(f) 0 0CxI(g). Fix (X, p) € 0€rl(a). Deterministic control 0C€t[ in definitionm
(3.29) defines the left vertical arrow in each diagram

Uidatot Uidatot
Uatot — Udtot Uatot — Udtot
| e amd s [
TUaSt ﬁ TUast TUast <—_] Uast.
v Ast t Ast

Since U and T are functors, TUidg:t = idryq,, and Uid,,, = idyq,,, which implies that 9€tl(id,) (X, p) =

(X, p). Now let (Z, ) € 2€tl(c), and consider the following diagrams

U(9°7) o, C
Uftot Ugtot Ufiot Ugtot
Uatot Ubtot —— Uctot Uatot — Ubtot ———— Uctot
| | [z ] | [
TUast TUF) TUbst TUG) TUCSt Uagt %] Ubgt %] Ucsy,
st Yst fst Ist
-1 —1
TIU(gof))SL U(gof)st

111



where left and center vertical arrows defined by (3.29). Each subdiagram commutes by functori-
ality of T and U (remark 3.23), so 2€tl(g) (9¢x((f)(Z, 1)) = 2€xl(g o f)(Z, 1), and 0€tl(g) 0 d€rI(f) =
o¢tl(gof). O

Monoidality of functor U

We turn to what will be a key component for networks of deterministic hybrid systems: the for-
getful functor U : HyPh — Man is a monoidal functor. We have already defined the monoidal
structure of HyPh (definition 3.8). That of Man is similarly constructed: we define the monoidal
product ®man of Man to be the cartesian product of manifolds, and the monoidal unit 1y, to be a

terminal object, a one point discrete manifold.

First a lemma.

Lemma 3.4. There is an isomorphism v (41 : U(a x b) — Ua x Ub, natural in a and b.

In other words, there is natural isomorphism

U(()%())

S N

HyPh x HyPh ﬂv HyPh

~_ 7

U)xU()

between bifunctors U((-) x (-)), U(-) x U(-) : HyPh x HyPh — HyPh. Thus, for pair of maps

aba, b b of hybrid phase spaces, we have commuting diagram

U(a x b) Yet) Ua x Ub
U(fxg)l rfoUg
Ya'b!

U(a’ x b") 7o) Ua’ x Ub’.

Proof. Recall that U(a) := | | a(c)is a coproduct in the category of manifolds. We define the map
cese
Y(ap) : Ula x b) — Ua x Ub as the canonical map Q in proposition As a map of sets, y(qp) is

a bijection (proposition 2.4). Therefore, we must show that this map is smooth.
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Recall the variant construction of v := v (4 ) in (2.11): the map (drop subscript (a, b))

v |_| (a x b)(c,d) — |_| a(c) | x |_| b(d)

(c,d)esg P €8s desg

is uniquely defined by collection of maps

{a(c’) x b(d’) 2L <|_| a(c)) x (|_| b(d))} .
ce8g desig /eSS, d/esy

And each map y(c 4/ is uniquely defined by maps

Vlc/ / / ’
a(c’) x b(d) =% | | alc) and a(c’) x b(d) =5 | ] b(d
ce®g des§
These maps are defined by ygc,/d,) = i opy and y%c,/d,) := igr o p2 where i : a(c’) — Ua is

the canonical injection and p; : a(c’) x b(d’) — a(c’) is the canonical projection. They induce
map V(¢ 41y = i X igr. Since both i/ : a(c’) < Ua and iy : b(d’) < Ub are open embeddings
(proposition 2.14), the induced map y /4y : a(c’) x b(d’) < Ua x Ub is also an open embedding

(proposition 2.15). Consequently, the map v in diagram

U(a x b) ----- Y- Ua x Ub

‘l./d/
]\ A

a(c’) x

is also an open embedding. Indeed, every x € U(a x b) is contained in an open set Oy which is
wholly contained in the image of i/ 4/. Thus vy : U(a x b) — Ua x Ub is a local diffeomorphism

(e.g. [14) Proposition 5.1] and inverse function theorem), and therefore a diffeomorphism.

For naturality, let a 5 a’and b % b/ be two maps of hybrid phase spaces. We must show

that the diagram

Ula x b) —“*_, Ua x Ub

U(fxg)l lfoIUg

U(a’ x b') T Ual x Ub
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commutes.

The diagram

axb —* g

e I

Pa’
a’' xb' —— a’

in HyPh commutes. Therefore, the diagram

U(a x b) % Ua

U(fxg)l lUf

U /
U(a’ x b’) & Ua’

commutes as well, since U is a functor (lemma proposition 3.1). There is an analogous com-

muting diagram, where b, b’, g replace a, a’, and f, respectively.

Therefore, in diagram

. /
Ua’ x Ub’ 22 Up’

lpUa’

Ud’,

where
vy =U(py)oU(fxg), vy :=UgoU(py)

G =U(pg)oU(fxg), G =UfoU(pd),

the canonically induced maps x1 = 2 are equal since vi = v; and {; = (;. In other words,

X1 =Yy oU(fxg) and x, = (Uf x Ug) oY(qu),

proving naturality. O

We restate lemma in a way which will be directly useful to us later.
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Proposition 3.9. The forgetful functor U : (HyPh, x, Th,pn) — (Man, X, 1man) is a strong monoidal

functor (definition [2.30). We denote the isomorphism 14, : U(a) x U(b) S U(axb),n=vy"
(fact2.2).

Proof. This follows immediately from definition fact[2.2] and lemma O

We will additionally need the following fact:

Remark 3.37. There is a map Pqp : 9€tl(a) x d€tl(b) — d€tl(a x b). Recall that there is natural

isomorphism :U(a x b) = Ua x Ub (lemma3.4). Let
p Y(ab)

((X,p),(Y,0)) € 0€tl(a) x d€tl(b),
z € U(a x b), and set (x,Y) := ¥ (g b),o, (2) € Uaior X Ubyor. We define

Pab ((X’ p)’ (Y' G)) (z) = (Ty(_a],b)st © (X X Y) Oy(a,b)tot(z)’ ’Y(_cg,b)st °© (p X G) OY(azb)tot(Z))

(3.44)
= (W) XOLYW), Yy, (PX), o)) ) -

Compare this definition with (3:28). The verification that Pq ((X, p), (Y,0)) € 2€tl(a x b)—that
DU (axb), © Ty(_;b)lst ((X(x),Y(y)) = U(pa X pv) and a similar check for the jump map—is formally
identical to (the proof of) proposition 3.6, considering this time diagram

Ula x btot Yeor Udtot X btot
P VXW
UpaxUpyp
Tnst
Upaxb T((l X b)st Tast X Tbst (345)
Tyst
% %

U((l X b)st U(lst X Ubst

where v = (X,p), w = (Y,0), P = Pap(v,w), ve : Ula x b), b, ae X Ub,, M. its inverse, and

Ty =Ty xv.

We extend lemma [3.4]and remark 3.37]to arbitrary finite products. The arguments are essen-

tially the same, and therefore omitted.
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Proposition 3.10. Let X be a finite set and a, a hybrid phase space for each x € X. Then there is
isomorphism
vx : U (l—l ax> = |_|Uax
xeX xeX

natural in ay.

Proposition 3.11. Let X be a finite set and ay a hybrid phase space for each x € X. Then there is

map Px : |_| oCtl(ay) — octl (l—l ax>. Consider collection (vy, px)xex € |_| oCtl(ay), and let
xeX xeX xeX

(Zx)xex == Yxtot(z) forz € U (I_I ax> (proposition (3.10). The the map is defined thus:

xeX

xeX xeX

TX ((er px)xEX) (Z) = (TY)_(,]St © (I_l Vx) © YX,tot(z)/ Y)_(,]st © (I—l px) O Y¥YX,tot (Z)>
(3.46)

_ (w;;t Motz i, (H (2

xeX xeX

Monoidality of Deterministic Control

Before stating the main theorem, we conclude this subsection by showing that 9¢€t[ on intercon-
nection is monoidal. We already showed in proposition that o€l is a functor. We show the
functor also preserves monoidal unit and that the map Py : 0€tl(a) x d€tl(b) — doCrl(a x b) is

natural in a and b (c.f. [20, §11.2]).

Proposition 3.12. The functor 9€tl : (HySSubins, X, 1)°P — (Set, X, 1set) from proposition is
monoidal (definition 2.29).

Remark 3.38. We note that f x g is an interconnection when both f and g are. This follows directly

from proposition

Proof. We start by verifying that 9€tl(Thyssub) = Tset: the tangent space TU(1) is the zero space,
and hence the space of maps {X : U(1) — TU(1)} is the zero space also. Similarly, U(1) terminal
implies thatamap p : U(1) — U(1) can only be the identity; there is thus only one map p : U(1) —

U(1). Hence o€tl(Thyssup) = {(0, 1)}, with only one element.

We now show that there is map Pyp : 0Ctl(a) x d€tl(b) — dCtl(a x b) natural in a,b €
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HySSub. Naturality means that the diagram

:P i i
o¢tl(a’) x d€tl(b’) -2 derl(a’ x b’)

la&[(fx 9)

OQtI(f)XDQt[(g)l
Pa
o¢tl(a) x o¢tl(b) — d€tl(a x b)

1. . f
commutes, for hybrid interconnections a — a’and b % b’

We have already defined the map P, for hybrid surjective submersions a and b in re-
mark [3.37] as:

Pap(s) =Ty 0 (() X (1)) 0 V(@oper- (3.47)

Naturality of P follows from naturality of y. Let a 5 a’and b % b’ be interconnections of

hybrid surjective submersions (definition 3.20), and let (X', p’) € d€rl(a’), (Y/,0’) € d€tl(b’). Set

(X, p) :=0Ctl(f) (X, p") and (Y, o) :=0Ctl(g)(Y', o) (c.f. definitionB.22). (3.48)
We must show that
oCtl(f % g) (Parp (X', 01, (Y, 07)) = Pap (X, 0),(Y,0)). (3.49)

Indeed, consider the following diagram, which we claim commutes:

Ua’ x b)tot & Ual,, x Ubl,,
€2 U(a X b)tot ! Uatot X Ubtot
&7 | &7 J,
TU(a’ x b')st - TUd, x TUb/, £
w 9 &)
TU(a X b)st TUagt X TUbgy,

&12
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where

E.] =Y(a’,b" 1ot 65 = (X/, p/) X (Y/’ 0-/) £9 = T’Y(_a]',b’)st
-1
E:Z = :Pa’,b/ ((X// p/)/ (Y// U/)) &6 = ]U(ftot) X U(gtot) E]O = TU(f X g)st
?
&3 =U(fx9)o, &7 =& g1 =TU(fst)"' x Ulyse) ™!
E4 =Y(ab) &8 =(X,p) x(Y,0) 12 = TY(_Q],b)St-

We want to show &; = £§, where &7 = left-hand side of and £§ = right-hand side of
(3.49). We argue that each square face in the diagram commutes. First, &7 = &1p0 & 0 &3 by
definition of d€tl(f x g) (definition remark . Equalities &, = & o&50&; and &) =
&12 0 Eg 0 &4 follow from definition of P .y (c.f. 3.44)). Equality &; 0 &3 = & o &4 follows by
naturality of yio (c.f. lemma . Similarly, &1p 0 &9 = &12 0 &17 follows by naturality of ys_t1 and
functoriality of T (proposition . Finally, &g = &11 0 &5 0 & follows by definition of (X, p) and
(Y, o) (cf. ). Since each face in the diagram commutes, this proves that &; = E;, and hence

that P,y is natural in a and b. O

3.4 Networks of Deterministic Hybrid Open Systems

We now have the ingredients to both define networks of deterministic hybrid open systems, and
state the main theorem (theorem which says that a collection of morphisms of deterministic

open systems induces a morphism of deterministic open systems.

Definition 3.23. We define a network ({'Hx,x}x exslaxta s |_| Hx,x> of hybrid open systems to be

xeX
a pair where Hyx : X — HySSub is a list of hybrid surjective submersions (definition defini-

tion3.5) and iy x : a — Hx x is a hybrid interconnection (definition [3.20)).
, , y

xeX

And morphisms:

Definition 3.24. Let ({HX,X}X@(, fax @< |_| Hx,x> and {’Hy,y}yev, iy :b— |_| Hvy, | be
xeX yeY
two networks of hybrid open systems, denoted by (Hx, iqx) and (Hy, ip,y). We define a morphism

. (¢,@)z )
(Hx,iax) u (Hv,iby)
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of networks to be a pair where (@, ®) : Hx — Hy is a morphism of lists of hybrid surjective sub-
mersions (definition[2.33) and z : b — a is a morphism of surjective submersions (definition [3.6)

compatible with (@, ®). Namely, the diagram

[ vy M(e,®) [ 17

yeY xeX
ib,Y]\ ﬂ ia,xI
b——=>— 5 a

commutes, where TT(¢, @) is as in proposition[2.11]

Theorem 3.1. Let

<{HX,x}xexria,X fa |_| Hx,x> and ({’Hy,y}er,ib,y :b— |—| Hy,y)

xeX yeY

be two networks of deterministic hybrid open systems (example4.9). A morphism

(HX/ (L/ i)(1,)() M (HYI (L/ i)b,Y)

of networks of deterministic hybrid open systems (definition|3.24) induces a 1-morphism

[]o€el(Hyy) ——— [ | 0€el(FHxy)

octl(D)
yey xeX
aer[(ib,yjo?{ ﬂ Jwt[(ia,x)oﬂ’x
Cel
acel(b) — = serl(a),

where

oCtl(D) = {((Wy)yey, (Vx)xex) € |_| 0Ctl(Hy,y) X 0€el(Hx x) 1 (We(x), Vx) € 0L D) V x € X} .
yey

Thus

(a€tl(ivy) (Py ((Wylyey)) , o€l (iax) (Px ((Vx)xex)))

are T1(z)-related (definition 3.12) whenever (w ), Vx) are ®,-related for all x € X.
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We prove this theorem in chapter[d] For now, we interpret this result in the example of a map
of networks. As we may understand invariance of a subsystem as a map of systems, so too, we

see how to realize invariance in a network as a map of networks.

3.4.1 Networked Thermostats Example

We give an example of theorem 3.1 to show the invariance of networked thermostats. We con-
sider two rooms with heat flow between each of them, and their own thermostats. We define a
morphism of lists (definition [2.33), then the networks, then the morphism of networks.

Example 3.17. Let c be the hybrid phase space in example ci)=Rx{i}fori=0,1,clej14) =
{(x,1 —i,x,i) € (Rx{0,1})%: x = x’ } and define lists of hybrid surjective submersions as fol-
lows. Let X ={1,2}, Y = {x} and define Hx : X — HySSub, Hy : Y — HySSub by Hx (i) = Hy(*) =

(exc 2, c), where p; : HyPh — HyPh is the projection onto the first factor (proposition .

X —2 v
We define morphism of lists NZ/@ lHY by ¢(i) = xfori = 1,2 and ®@; : Hx(i) —
X

HySSub
’Hy(*) by
ANy @1 ot . / ./ AN D30t ARy
(X/]/X/] ) — (X‘I]l_x’l]_] ) (XIJIX' /) ) — (_X/]_]/X/] )
IP] IIN and Im IP]
. (Dl,st . . (DZ,st .
(X/J) — (XI]) (xl]) — (_xl1_J)

This defines the morphism of lists. The functorial extension by IT to a morphism of hybrid surjec-

tive submersions (¢, @) : TI(Hy) — TTI(Hx) (proposition 2.11} (2.26)) is defined by

(@, D)o . . . .
(X/j/X//j/) }% (XI]I_X’/I] _]//_X/] _]/X//]/)

! !

. ﬂ( /(D)st . .
(X,)) f i (X,],-X,] _])

We now define networks. As we have a list of hybrid surjective submersions Hx and Hy, we

need interconnections a — TT(Hy) and b — TT(Hx). Observe that TT(Hy) = Hy(x) = c X ¢ LAY
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.. . id ey
We define interconnection (¢ — ¢) —> (¢ X ¢ LN c) by

(%,§) —% (x,,%,§)

Iidc Im

(x,5)

.. . id lexex X
Similarly, we define (c x ¢ —% ¢ x ¢) =% (¢ x ¢ x ¢ x ¢ 22PL ¢ x ¢) = TI(Hx) by

. . i X, tot . . . .
/ / cXxXC,A, / / / /
(x,3,x",i") ——— (x,3,x",3",x",i',%,j)

! !

. . iC><C, ,S . .
(X,),XI,)/) '% (X,),XI,)/).

. . . . i c 'dc><c
Finally, to define morphism of networks, we must definea map z : (c Ade, ) = (¢ x ¢ ==&

¢ x c¢) of hybrid surjective submersions compatible with each network, i.e. so that

ﬂ((p,(D) o ic,Y = (Lri)cxc,x S

We definez : ¢ — ¢ X c by (x,j) — (x,j,—x, 1 —]j) (on both state and total space). For notational
ease, we denote

z:=(G3), iy ==1icy, ix = lexex- (3.50)
It is easy to verify that these data define a morphism

(0, @),z
(Hx,ix) (@—)) (Hy,iy)

of networks. Indeed

(le) : Ztot (X,j,-X,] _J)
I'lY/tot Iix/tot
(X’Ijlxlj) f ”(‘Pfq’)tot (X’Ijl_xl] _jl_xl] _j/X/j)/

so indeed TT(¢, @) o iy = ix o z. The map z embeds a state into the “antidiagonal.”
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We now define (X, p) € d€tl(Hy (x)), (Xi, pi) € 0€tl(Hx (1)) fori=1,2so that ((Xi, pi), (X, p))

are ®@j-related. Define deterministic control by

(x.ix! i 1— / P T—j if (1)1 x> 1
X(x,3,x",3") == (=1)"7) +f(x,x") and p(x,j,x’,i") =

j else,
1 rost 1—j ! . ] s/ 1_j if (_])1_]X21
X1(x,3,x",i") = (=)' +1f(x,—x") and pq(x,j,x,j'):= (3.51)
j else,

1—j if (=11 Ix > 1

X2(x,3,x",j") = (1)1 —f(—x,x") and pa(x,j,x,j') =
j else.

Here f : R* — R is any smooth map. The first term (—1)"7 of each vector field represents

the heater, and the second term f(x, x’) represents heat flow from the outside environment.
That the relevant maps are related is a computation. We check ®,-relatedness of (X, X3):

(DZ,tot

(X/j/X//j/) (_X/] _jlx/lj/)

lx Ixz (3.52)
(1)1 4+ f(x,x") 02et —((=1)1 T +f(x,x") = ()T 03 —f(—(—x),x"),

since (—1)) = (=1)7 forj = 0,1. ®,-relatedness of (p, p;) is similar:

I : j if (=1)1 7% > 1
1— p(X,],—X/,1 _J/) =
1—j else

and

pZ(_X/1 _jrx//j/) =

which are equal, so @5 0 p = p2 0 Dot

Since each ((X, p), (Xi, pi)) is ®i-related, theorem 3.1|says that
(o€rl(iy) (X, p), 0€rl(ix) (X1, 1) x (X2, 02)))
are z-related. Thus the antidiagonal is invariant under the dynamics of 0€t[(ix) ((X1 ,01) X (X2, 02 )) .
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We verify relatedness directly. On the one hand,

e o _ 1T—j if (1) Ix>1
oCel(iy) (X, 0) (x,§) = (X, p)(x,§) = [ (=1)" 7 +f(x,x), : (3.53)
j else,
Pushing forward by TTI(¢, ®)s¢ (proposition 3.4, (3.24)), we obtain

. ) . T—j if (=)' Ix>1,
T (g, ®)sedCrl(iy) (X, p)(x,§) = | (=)' +f(x,x),
j else

_ (3.54)
. { i (=) x> 1 )
(—1) —f(x,x), .
1—j else

On the other hand,

OQ:t[(lx)(X1 X XZ/ p] X pZ)Z(X/j) = (X] (X/j/ *X/‘I 7))/ p] (X/j/ *X/‘I 7]')/X2(7X/1 7j/X/j)/ pz(—x,1 7j/X/j)) .

Reference to (3.51)) and (3.52) shows that (3.53) equals (3.54).
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Chapter 4

Abstract Networks of Systems

4.1 Introduction

In this chapter we develop a categorical framework for understanding network of systems. We
generalize the notion of system as a pair (object and section of a bundle) in section and then
build upon this version of system by generalizing the notions of network from [17] and from chap-
ter |3} section [3.4]in section Running examples include manifolds, continuous-time dynamical
systems, open systems, and networks of open systems, as defined and worked out in [17], and
hybrid phase spaces, hybrid systems, hybrid open systems and networks of hybrid open systems,
as defined and worked out in chapter 3}

Assumption 4.1. Throughout this chapter, all categories are concrete (remark [2.5) and locally small
(definition 2.5).

Our goal is to prove a generalized version of theorem [3.1] and theorem which crudely

says that a morphism of networks induces a 1-morphism

[]Ty) — [T

yey xeX

L

rb) — I'(a)

in the double category Set”. More concretely, a collection of relations holding between pairs
(Y,X) € T(y') x I'(x") induces a relation in I'(b) x I'(a). Alternatively, a collection of pairs of
related systems induces a pair of related systems. The vertical arrows take a collection of systems,

by interconnection, to a single system. This succinct result is meant to convey the idea of building
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a map of systems from a collection of maps of subsystems.

We have not yet assigned content to the symbol I'. In this chapter, we will define I" as abstract
sections of some natural transformation, and prove the main theorem (theorem in two parts.
After constructing I' which assigns sections to some split epimorphisms—namely, epimorphisms
coming from a natural transformation—in section we introduce the notion of interconnection,
formally a class of morphisms in an arrow category which are isomorphisms on state. We show

that a certain commuting square

in Set™. This is the first half of the main theorem.

In sectionf4.3| we introduce and work with a monoidal structure on the category. This is a key
component of networks, used for putting many (separate) systems together into one. Interconnec-
tion is then used to relate them together, or to interconnect them. This is the networks piece of the
puzzle. We show that a collection of relations induce a relation on the product, diagrammatically
indicated by 1-morphism

[Ty —— [T

yeY xeX

[

r (®y€Y y) — r( ®XEX X)

in Set”, which gives the second half of the main theorem. We combine results and interpret them
for systems by proving concrete results about morphisms of networks of continuous-time open
systems, networks of hybrid open systems, and finally networks of deterministic hybrid open

systems.
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Before working out a pure category theory for networks, we develop an abstract notion of
system as object and section of some split epimorphism. Recall, for reference, that a continuous-
time dynamical system is a pair (M, X) where M is a manifold and X € X(M) is a vector field
on the manifold (definition 2.37). In this case, the manifold is the object and X is a section of the
tangent bundle TM 4 M. More generally, we consider a natural transformation t : 7 = U
between two functors which is split epimorphism, and take a system to be an object c and section of
the epimorphism 1. : 7c¢ — Uc. In the case of manifolds, both 7 and U/ are endofunctors on Man,

where the source functor 7 is the tangent endofunctor and the target functor ¢/ is the identity.

So far, this formalism appears unnecessarily abstract. We make use of the extra generality
when considering hybrid systems, which we have defined as a hybrid phase space together with
a vector field on a manifold. In this case, our source category is HyPh, target category Man, U is
the forgetful functor U : HyPh — Man from proposition and 7 is the tangent endofunctor on
Man composed with U. We thus pin down a way of describing different kinds of systems by using
functors, natural transformations, and typical categorical nonsense to make sense of dynamics in
one category via another proxy category (HyPh and Man, respectively, in our example of hybrid
systems). Secondly, we isolate what appears to us as particular to the very notion of dynamical

system, itself.

We motivate the latter endeavor. We contrast our perspective of dynamical system as space
and vector field, as opposed to trajectory or flow. This distinction is like the difference between a
differential equation and its solution. At the end of the day, we care about flows, but we find it
convenient to work with vector fields and related vector fields; in much the same way as solving
a differential equation is usually harder than merely having one. Additionally, the focus on vector
field makes it very easy to abstract: a smooth section of the tangent bundle is a section of a map in
the relevant category. By extension, an abstract system is an object with a section. The downside

of this abstract definition is interpreting dynamics in time, or “solutions” to the system.

Our optimism that there is a categorical interpretation of time comes from the Yoneda ver-
sion of existence and uniqueness (proposition 2.16): the forgetful functor v : DySys — Set from

the category of complete dynamical systems which forgets dynamics and smooth structure is rep-
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resentable. This formulation is unique to complete systems, but the notion of completeness is not
essential to a theory of continuous-time dynamical systems: integral curves y : (—¢, ¢) — M from
a bounded domain are perfectly fine. Representability translates to initiality of an object in the
category of elements J v, but the similar forgetful functor from the category of (possibly in-
complete) continuous—’cDiL?\ileS dynamical systems is not representable. Lack of completeness means
there may not be any map from (IR, &) to the desired dynamical system; at best there is at most

one. We therefore interpret solution of a system as a map from some “quasi-initial” object in the

category of elements: a map from an object which is unique when it exists.

4.2 Fibered Transformations

We begin with the notion of fibered transformation.

Definition 4.1. Let C, D be locally small concrete categories, 7,4 : C — D functors,and 1: 7 = U
a natural transformation. We say that T is D-fibered (or simply fibered) if for each object ¢ € Co,
Tc & Uc is a split epimorphism (definition . For a D-fibered transformation, we define -

sections by the set of right inverses of T.:
X .
Me(c) = {(uc X Tc) €Dyt TeoX = lduc} . 4.1)

Remark 4.1. Since tc : Tc — Uc is split epi, T-sections I;(c) are guaranteed to be nonempty (defi-

nition[2.3).

We make sure this definition passes a few sanity tests.

Example 4.1. Let C = D = Man, U = idman, and 7 : Man — Man assign the tangent bundle TM to
each manifold M. This assignment is functorial (lemma [2.7). Moreover, the canonical projection
of the tangent bundle Ty : TM — M assembles into a natural transformation (fact. Finally, the
projection Ty : TM — M is a split epimorphism (fact[2.5). Therefore the natural transformation t

is Man-fibered, or in this case, simply fibered.

The next example pertains to and is used in our development of hybrid systems.
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Example 4.2. Let C = HyPh, D = Man, and let i/ : C — D be the forgetful functor U : HyPH — Man
(proposition [3.1). Finally, let 7 : C — D be the composition 7 = T o U, where T is the tangent
endofunctor in example Similarly, let T : 7 = U be defined on components as the canonical

projection of the (underlying) tangent bundle 1, : TUa — Ua, which is again a split epimorphism

(fact[2.5). We conclude that T is Man-fibered.

Definition 4.2. Let T,U : C — D be functors, and T : 7 = U a D-fibered transformation (defini-
tion . We define a Tt-system to be a pair (c, X) where ¢ € Cy is an object in C and X € T(c) is a
t-section. We also define a morphism (c, X) AR (d, Y) of T-sections to be a morphism c Iy din Csuch
that (X, Y) are f-related, i.e. 7f o X = Y oUf. The collection of T-systems and morphisms make up

a category, which we denote by T-Sys.

Example 4.3. A discrete (time) dynamical system (f : X — X, xo) may be thought of as an endo-
morphism f with a choice of base point xg € X ([22, §2.1]). We will recover the base point in
example For now, we think of such a system only as an endomorphism X L X and interpret
in the lens of definition

Let Cbe a concrete category with productsand D = C. Let 7 = () x (-) and U = idcﬂ Finally,
let T = p; be the projection onto the first factor. For object X € C, we have projection X x X L X
onto the first factor. An abstract T-system (X, f) is an object X € C with section f : X — X x X
(satisfying py o f = idx). Generally, it is more convenient to ignore the “section” part and treat f

simply as a (any) morphism X 5 X (precisely, as p; o f).

Example 44. Let C = D = Man, U = idman, 7 = T the tangent functor, and T : 7 = U the
canonical projection of the tangent bundle (example [4.I). Then a t-system (M, X) is a continuous-

time dynamical system (definition [2.37).

T
VY

Example 45. For C  {t D asinexamplei4.2) with C = HyPh, a T-system is a hybrid system
~_ "

u
(a, X) (definition [3.3).

The notion of open system (definition [2.43) generalizes as well. In the setting of continuous-

time systems, we considered the subcategory SSub C Arrow(Man) whose objects are surjective

1Formally, T = () x (-) is the composition of functors C AcxecSh e sending ¢ — (c,c) — cxc
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submersions. The motivation there comes from control theory, where typical control systems map
f: M x U — TM satisfying Tv o f = py. At this moment, we only ask for a subcategory of the

arrow category (later we will ask it to also be cartesian (assumption definition 4.10)!).
T

TN
Definition 4.3. Let A C Arrow(C) be a subcategory of the arrow category of Cand C Jt D a

~_
u

D-fibered transformation of functors 7,4 : C — D (definition4.T). We define an A-open T-system to
be a pair (a Pa, a’,X) where p, € A and X is a morphism X : /a — 7T a’ in D such that Up, = 1,0 X

(we say that X is py-compatible). We define the set
Te(pa) =={X:Ua— Ta': Up, =Ta0X},

and call X € I':(pa) an open t-section, open section of T, or abstract t-control. Also, we may refer to X

itself as an (abstract) open T-system.

Remark 4.2. For any object a P2 2% in A, I't(pa) is guaranteed to be nonempty. First, I(a’) # @
as (ordinary) t-sections since T : 7 = U is D-fibered (definition eq. (4.1)). Thus, for section

X" € T¢(a’), we define X := X’ o Up, which is an open T-section because
Up, = idya oUps = Tar 0 X olUp, = Ta 0 X.

Notation 4.1. For p, € A, we will generally denote the domain dom(p,) of p, by atot (fotal space)
and the codomain cod(p,) by ag (state space), consistent with convention in [17, definition 2.14].
By extension, we denote objects p, € A by a, open T-sections of atot LN by I:(a), and open

systems by (a, X).
-
T
Example 4.6. Let C J = D beany D-fibered natural transformation (definition4.1), and A C

~_ 7
u

Arrow(C) the arrow subcategory of only identity morphisms:
A= {idc: c € Co}.
Then A-open T-systems (definition [4.3) are t-systems (definition [4.2).
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T

Example4.7. Let C |t C be asin example 4.3|for discrete-time dynamical systems and let

~_ "
u

A C Arrow(C) be the collection of surjections: an arrow (X’ PX, X) € Aas long as px : X’ — Xisa
surjective map of sets. Then an A-open t-system (px, f) is a pair where px : X’ — X is a surjective
map and f : X’ — X is any map. Compatibility of f and px in definition 4.3|is vacuous because

properly speaking, an open system f is required to make the diagram commute

We treat f as the map to the second factor. In other words, maps px : X’ — Xand f : X’ — Xinduce

amap X’ — X x X, which by abuse of notation we have written in the diagram above simply as f

itself.
-
R
Example 4.8. Let C Jtv D be asin example 4.4/ (C = Man, etc.) and let A C Arrow(C) be
\E/l
A = SSub. Then A-open T-systems (a, X) are open systems (definition 2.43).
T
TN
Example 49. Let C Jt D be asin example 4.2{(C = HyPh etc.) and A = HySSub (defini-
A

u
tion[3.7). An A-open T-system (a, X) is a hybrid open system (definition 3.9).

We now consider a modified version of example 4.9 which accounts for determinism.

Example 4.10. Let C = HySSub, D = Set, Ta = Ta the c.d. bundle (definition proposi-
tion , and Ua := {x € Ua}, the set of points in the underlying manifold Ua. Define projection
@ : Ta = Ua on objects @, : Ta — {x € Ua} by @ = {Tyq o p1} where p; is projection onto
the first factor, Ty : TM — M is the canonical projection of the tangent bundle (c.f. eq. (3.23)), and
{-} is the forgetful functor which returns the underlying set. This map is natural in a since @ is

defined as the composition of canonical maps, and easily seen to be a split epimorphism. There-
T

TN
fore C J@ D is D-fibered. For A = HySSub, a deterministic hybrid open system (a, X, p)

~_ "
U

(definition [3.15) is an abstract A-open @-system. However, not all A-open @-systems are deter-
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ministic hybrid open systems: since the ambient category D = Set, sections in general need not
satisfy the smoothness condition for X and jump-compatibility condition for p (definition {3.11).
We call attention to this asymmetry, as we will need to be careful when proving theorem [3.1}in

section

Definition 4.4. Let f : a — a’ be a morphism in A (definition [2.17), so that diagram

frot /
atot ” atot

J a [p (4.2)

fst ’
dst 7 Agt

commutes. Let X € T(a), X' € T;(a’) be A-open t-systems (definition notation [4.1). We say

Ufio
Z/latot L} L[a{ot
that (X, X’) are f-related if T fs; 0 X = X' 0 Uf oy, i.€. if the diagram JX le commutes.
Tfst ’

Tage —— Tal,
Definition 4.5. Let (a,X) and (a’, X’) be two open systems (definition . We define a morphism
f:(a,X) = (a’, X’) of A-open t-systems to be a morphism f : a — a’ in A (c.f. #.2)) such that (X, X’)
are f-related (definition [4.4).
Remark 4.3. In addition to f-relatedness, a map f : (a, X) — (b, Y) of A-open T-systems consists of

numerous commutating diagrams, namely each subdiagram in the following:

Uftot

Uaiot Ubiot
X Y
Up, Upy
THfs
Tast ! Tbst
\St)‘ “
U
Uast ! Z/{bst.

Equalities t,,, o X = Up, and T, © Y = Upp hold by assumption X € Tr(a), Y € T(b).
Equality Ufs o Up, = Upp o Ufior holds since f : a — b is a morphism in A and ¥/ is a functor.
Equality Ufs o Ta,, = Tb,, © T fst follows by naturality of t. Finally, 7fs o X = Y o Ufe is -
relatedness of (X, Y) (definition .

Remark 4.4. There is a category T-Sys of T-(open)-systems (definition definition and their
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morphisms (definition [£.5). Since C is concrete, there is also forgetful functor v : T-Sys — Set

sending (¢, X) — {x € C}EI

Still missing from the theory of continuous-time systems in our abstraction is the notion
of “solution”. Taking a hint from proposition we may trying defining a solution for ab-
stract systems as a morphism from an initial object in the relevant category of elements. Unfor-
tunately, the notion of execution of hybrid systems (definition 3.14)—our deterministic hybrid
version of solution—is not representable as “morphism from initial object” since the domain of
executions are not initial in the relevant category of elements for deterministic hybrid systems.
The problem is that a morphism may not always exist. For example, when the set of jump times
is T =1{0,1,2,3,4,...}, there is no morphism from (w, T, T)7 to the bouncing ball system (c, Z, o)
in example It turns out that this is not so unfortunate, as the same “problem” exists in
the category of (possibly incomplete) dynamical systems. For example, there is no morphism

(R,x=1) = (R, % = x?) (such systems exhibit finite escape).

Definition 4.6. Let C be a category and c € Cy an object. We say that c is quasi-initial if for any object
¢’ € Cy, there is at most one morphism c L incC Furthermore, if there is morphism ¢’ 9y ¢, then

we require that g be a monomorphism (definition [2.4).

Unlike initial objects (definition [2.13), quasi-initial objects need not be unique up to unique

isomorphism, nor even isomorphic.

We are now ready to introduce a notion of solution.

Definition 4.7. Let (c,X) € 71-Sys be an abstract 1-system. We define a solution of (c,X) to be a
morphism ((i,I),0) — ((c, X),xo) from quasi-initial object ((i,I),0) € J v in the category of

T-Sys
elements of forgetful functor v : T-Sys — Set (remark [4.4).

Example 4.11. This example comes from [22, §2.2]. Let f : X — X be a discrete dynamical system
(example and suppose that the natural numbers N € C. Consider successor map o : N — N

defined by o(n) := n + 1. This map defines a discrete dynamical system as well, and a map

2To be precise, we are composing two functors T-Sys — C — Set, where the first drops the T-section and the second
is faithful functor U : C — Set (remark. The assignment, properly speaking, is (c, X) — U(c).
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(N,0) %5 (X, f) of systems satisfies

xoo="Ffoa. (4.3)

Choosing initial point x¢ as the image of 0 under «, we have entirely determined the map «: for
o-relatedness in (4.3) implies that «(1) = a(o(1)) = f(xo) and in general, x(n) = fo---of(xp).

n-times
Therefore, the map

((N,0),0) = ((X,£),x)

in J v is a solution of (X, f) in the sense of definition
dSys

Example 4.12. Let (M, X) be a continuous-time dynamical system (example[4.4). An integral curve
Y :(—¢,€) = Mof (M, X) sends time 0 — y(0) = x¢ to initial condition in M. Consequently there
is morphism

(200 55),0) B ((.%),%)
in the category J v where DySys denotes the category of continuous-time dynamical systems
and v : (M, X) '_D)yS{y; € M} is the forgetful functor. By existence and uniqueness, this map is a

solution in the sense of definition 4.7

Example 4.13. Similarly, T-universal systems induce abstract solutions (proposition[3.3} remark3.25)

in J v, where dHySys is the category of deterministic hybrid systems (lemma and v :
dHySys

(a,X,p) — {x € Ua}.

We now interpret T-systems as an element in category of related elements. Recall the category
Rel (definition [2.24), whose objects are sets and morphisms are relations. First we observe that

open T-sections It (-) extend to a lax functor.

-
VY
Proposition 4.1. Let C Uyt D be D-fibered natural transformation (definition 4.1) and A C

~_ "
u

Arrow(C) an arrow subcategory of C. Then the assignment of I'; on objects to A-open Tt-sections
(definition [4.3) extends to a lax functor I'; : A — Rel. In particular (example 2.8), for morphisms

f . .. .
a5 a’ L a”in A, there is inclusion

Ie(g) o Tk(f) C Te(gof). (4.4)
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Proof Sketch. We have defined T on objects (definition [4.3). Leta,a’ € Aand f:a — a’ bea

morphism in A. We define relation

Ce(f) := {(X,X") € Tx(a) x Te(a’) = (X, X') are f-related }. (4.5)

To show inclusion (4.4), suppose that (X, X"”) € T¢(g) and (X,X’) € T¢(f) for morphisms

f .
a — a’ 2 a”. Then each sub-diagram of

U(gtotoftot)

a
JX lx’ lx " (4.6)

commutes: e.g. T fg 0 X = X' o Ufyot since (X, X') are f-related, and U (giot © frot) = Ugiot © UT ot

since U is a functor. Therefore, the outer diagram

U(grotofto
uatot (gtotofiot) ua{gt
lx lx”
T (gstofs
Tast (gstofst) Taﬁ
also commutes, and hence (X, X") € T';(g o f). O

See the proof of proposition 3.5 for a similar argument.

Remark 4.5. We now formally observe that open systems (definition and their morphisms
(definition form a category AOS, A-open (t)-systems, the category of related elements J [
(definition [2.28] proposition [4.1): objects are pairs (a, X) where a € Ag and X € Ti(a). MorphisAms
(a,X) — (b,Y) are morphisms a T, bin A such that (X,Y) € Te(f) (cf. @5)).

We switch gears and turn to interconnection. We have seen used for connecting disparate

open systems together. Abstractly, interconnection is a special morphism of arrows.
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TN
Definition 4.8. Let C v D a D-fibered transformation and A C Arrow(C) a subcategory of

~_
u

the arrow category of C. We say that a morphism (a’ 5 a) € A is an A-interconnection (or simply

interconnection) if fo : al, — agt is an isomorphism in C.

Remark 4.6. There is subcategory Ain; whose objects are the same as A but whose morphisms are

A-interconnections (definition 4.8).

We saw that I : A — Rel is a lax functor (proposition 4.1). We can define I'; on interconnec-

tions differently, so that I’; is strictly (contravariantly) functorial.

Proposition 4.2. There is contravariant functor I'; : (A;nt)Op — Set.

Temporarily, we use the same symbol I'; for both the strict (contravariant) functor in propo-
sition 4.2 and for the lax functor of proposition In proposition we will tie both usages

together into a double functor.

Proof Sketch. The definition of I': on objects remains the same (definition 4.3). We now define TI'; on
interconnection morphisms. Let f : a’ — a be an A-interconnection (definition , and X € I;(a)

an open Tt-section (definition [4.3). We define

T ()X == T, o X o Ufior. (4.7)

That X := T¢(f)X € Tr(a’) follows a diagram chase identical to that of diagram (3.30) (the ana-
log of (3.34) follows by naturality of T). Functoriality of I'; on interconnection is a straightforward
generalization of proposition[3.8) where { = U and 7 = TU. O

Remark 4.7. Modify example where A = HySSub, and let a %4 b be an interconnection of hybrid
surjective submersions. Then the map I'; (i) (4.7) is the map d€tl(i) in definition (3.29).

A cautionary note: ?Ctl is defined identically to I'ny on morphisms, but not on objects. In
general, 0Ctl(a) C Ip(a) (example 4.10). Deterministic control are sections of @ satisfying some

extra conditions (definition 3.18).
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For a subcategory A C Arrow(C) of the arrow category of C, recall that A may be interpreted
as a double category (example 2.5). We next consider an augmented version of A with intercon-

nection, as a double category.

Definition 4.9. Let A C Arrow(C) be a subcategory of the arrow category of category C. We define
double category A" by the following: the object category is A§ = Ain (remark . 1-objects are

morphisms in A, and 1-morphisms are commuting squares:

C—— d
IERE ] (4.8)
o 25 d.

In C, diagram (4.8) amounts to the commuting of diagram

frot

Ctot dtot
XCJ T m‘
f
Ktot Cst t dst
I Btot (4.9)
/ Jtot /
Ctot diot Bst
Pe/ Kst Pa’
! Jst /
Cst dstl

with the extra condition that o : ¢/, — cst and Bt : df; — dgt are both isomorphisms.

Example 4.14. When A = HySSub, O-morphisms of A™ are hybrid interconnections (definition 3.20)
and 1-objects are morphisms of hybrid surjective submersions. 1-morphisms are commuting

diagrams.

Proposition 4.3. Abstract open sections I'; (deﬁnition extend to a double functor I : AP — Set™.

See [17, Lemma 8.12]. The diagram chase is identical.

Proof. We apply T to diagram @.8). Let (X € T(c),Y € Tk(d)) be f-related (proposition 4.1 (4.5))
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and consider diagram

In diagram (4.10), X’ :

Uciot Ultor Udot

Test Tist Tdgt

Uaiot UBtot
U Toig TR (410
Z/{C‘:ot ot ud{ot
X« N
T9s
Tcl, 9ot Td.,.

= ()X and Y’ = T(B)Y (c.f. (7). We must show that (X’,Y’) are g-

related, i.e. that 7 gst o X' =Y’ o U gior. We compute:

TgstoX' =TgaoToay oXolaue (by @E7))
= TR oTfuoXolUe (by and functoriality of 7)
=T B oYolUfiroUaror (since (Y, X) € T(f))
=TBs oYolUProt oUGtor (by and functoriality of i)
=Y olUgtot (by &.7))
proving that (X', Y’) are g-related. O

4.3 Monoidally Fibered Transformations and Networks

In section we worked out the notion of abstract section, open system, and interconnection.

Interconnection—a class of morphisms of arrows which is isomorphism on state—Dby itself is an

apparently unmotivated notion. For us, interconnection is the way we interconnect a collection

of subsystems into one, and hence build networks. There are two steps to this process. We start

with a collection of spaces and combine them with some sort of product. Then we interconnect, by

defining some interconnection map to the product. Both steps together comprise our formalism

of networks.

Having established the requisite theory for abstract systems and interconnection, we now
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turn to working out what we need for products. We assume all material from section 4.2 and

briefly identify relevant notions from section Start with D-fibered natural transformation
T

C Ut D (definition 4.1). We assume that both C and D are monoidal categories (defini-

~_
u

tion 2.29), and that D is cartesian (definition [2.32). Let A C Arrow(C) be a subcategory of the
arrow category of C, and A" the double category in definition Consider X-indexed collection

{AX}X cx Of A-objects and recall (c.f. (2.25)) the product assignment

TT(Ax) = ) Ax. (4.11)

xeX

Suppose, moreover, that TT : (FinSet/A<)" — A is functorial. When A is cartesian, for example,
this assignment is functorial (proposition [2.11). Finally, for the arrow category Ap := Arrow(D) of

D, functors 7, U : C — D extend to functors 7., U, : A — Ap which are also strong monoidal

(proposition [2.10).

Notation 4.2. For X-indexed A-objects Ax : X — A or {AX} we denote A, = (Ax,tot P Ax,st).

xeX’

Therefore,

M Ax) = (n(Ax,tot) LN n(Ax,so) .

Example 4.15. Recall example [4.1and example £.§ where C = D = Man are the category of man-
ifolds, 7 = T is the tangent endofunctor, i/ = idman is the identity functor, T : 7 = U is the
canonical projection of the tangent bundle, and A = SSub is the category of surjective submer-
sions. The category of manifolds is cartesian (fact[2.4} proposition [2.12), as is SSub ([17, §4]), and

the tangent functor 7 is strong monoidal (proposition [2.13).

We now restate and isolate our assumptions for later reference:

Assumption 4.2. Categories (A, ®a,1a) and (D, ®p, 1p) are monoidal and cartesian monoidal, re-
spectively (definition , and the product assignment TT : (FinSet/A<) — A s functorial.

Remark 4.8. We will show functoriality of IT in our examples by observing that (A, ®a, 1a) is itself
cartesian. Cartesianality of A is used only for functoriality while we need cartesianality of D in
order to ensure that agreement of “dynamics on components” is sufficient for network coherence

(proposition[4.5).
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Assumption 4.3. Monoidal functors U, T : (C,®c,1¢c) — (D, ®p, 1p) are strong monoidal (defini-

tion [2.30).

We require one more condition on the natural transformation v : 7 = U, that T respects

monoidal products with both monoidal functors 7 and U:

Assumption 4.4. The D-fibered (definition |4.1) natural transformation C Jt D is monoidal

(definition [2.31)).

We recall monoidality of natural transformation T : 7 = U means that for natural trans-
formations (in this case, isomorphisms) N X()®p (1) = X((-) ®c (-)) of monoidal functors

X = T,U (definition[2.30), and for every pair of objects c,c’ € Cy, we have commuting diagram

TIZ-C/
Tc®pTc ——— T(c®cc)

lTC ®Tc’ lﬂrctx‘c/
u

ni.r
UcRp U —= U(c®c ).

Remark 4.9. We observe that monoidality of transformation T : 7 = U is a consequence of carte-

sianality of monoidal category D and strong monoidality of functors 7,U : C — D. Indeed, let

yfc, : X(cxc') = Xcx Xc' denote the natural inverse of né‘fc, for X = T,U. The following

diagrams commute:

id,

(exc’)

Tlexc Tex T Texc) —— Tex T ——— T(ecxc)

Vclc/ T]C,C/
chXC/ l’rCXTC/ and Texe! TeX T/ Tewe!

u u
Ulexe') —— Uex U Ulcxch = Uex U —= U(cxch.

idy,

exc’)

The first diagram commutes by the universal property of product (definition [2.14) and naturality
of T (applied to projection maps p. : ¢ x ¢ — c and pos : ¢ X ¢’ — ¢’). This diagram appears as
the left-hand square in the diagram on the right, and the outer diagram obviously commutes. We

readily conclude that the inner diagram on the right does as well.
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Remark 4.10. Very loosely speaking, we may unify monoidal assumptions and [4.4 as fol-
lows: the categories are cartesian monoidal, the functors are (strong) monoidal, and the natural
transformation is monoidal. We noted in remark that A need not be cartesian, though it is in

the examples we consider.

Having stated a slew of assumptions, we reflect on where we are going. We want to build
a theory of abstract networks of open systems. As in our previous examples, an abstract notion
of network is something like “product + interconnection’. The product is over a collection of A-
objects, and interconnection is a map into this product. Use of a category A C Arrow(C) is the
“open” part (e.g. definition and functoriality of IT ensures that we can make networks into a

category. Now for the precise definition.

Definition 4.10. Fix cartesian subcategory A C Arrow(C). We define an abstract network of A-open

T-systems (or simply: network of open systems) to be a pair

((4duoesca = T4).

xeX

where Ax : X — A is a finite indexed collection of A-objects (definition [2.33) and tx : a — TT(Ax)
is an interconnection morphism (definition eq. (4.11)). We will write (Ax, 1x : a — TI(Ax)) or
just (Ax, tx) as shorthand for such a network (and dom(t) for the source of morphism tx if it is not

otherwise specified).

Remark 4.11. We previously defined A-open system to be a pair (a, X) where a := (ago; + agt) €
A C Arrow(C) and X € I';(a) (definition , while no sections appear in the definition of networks
of open systems. We will see that the “systems” part of definition[4.10|comes from applying open

sections functor I'; to some 1-morphism in AP involving the interconnection tx : a — TT(Ax).

There is also a notion of morphisms of networks.

Definition 4.11. Let (Ax, ix : a = TT(Ax)) and (Ay, vy : a’ — TT(Ay)) be two abstract networks of A-

open T-systems (definition4.10). We define a morphism ((@, @), f) : (Ax, x) — (Ay, ty) of networks
X —2 Y
to be a morphism %) l A, of X-indexed A-objects (i.e. in the category (FinSet/A)< (defi-
Ax

A
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nition[2.33)) and a morphism f : a’ — a in A such that ]Y " LXT is a 1-morphisms

f
a’—>a

in A=,
Remark 4.12. It is easy to see that networks of A-open t-systems (definition4.10) and morphisms of

networks (definition 4.11) form a category. The verification is formally very similar to lemma

The next result partly explains the motivation behind the name system (remark 4.11). A

morphism of networks induces a 1-morphism in Set™ (proposition :

Proposition 44. Let ((¢, @), f) : (Ax, ix : a = TI(Ax)) — (Ay, v : a’ = TI(Ay)) be a morphism of

abstract networks. Then there is 1-morphism in Set"

me) ) mtx)l (4.12)
e (f)
(a’) I(a)
Proof. This follows directly from definition[4.1T|and proposition 4.3] O

Proposition [£.4] brings to light the significance of interconnection in our notion of network.
Notice that the interconnection induces a map of open t-sections on a product to open T-sections
of another space. We still need some way to take a collection of open Tt-sections of a collection of

spaces to an open t-section of the product. The next result gives us exactly that.

Lemma 4.1. Suppose assumption [4.3] and assumption 4.4 hold, namely that D-fibered (defini-

T
VY

tion4.1)) transformation C Jt© D ismonoidal (definition[2.31) and both 7 and U/ are strong

\a/r
monoidal (definition[2.30). Let A C Arrow(C) and Ax : X — A be a list of A-objects. Then there is a

map Px : [ ]| Fe(Ax) — T (TT(Ax)).

xeX
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Proof. Let

T()@pT (") u((@cl))
SN SN
CxC [Jn D and CxC [v D (4.13)
~_ ~_
T(()oc) U )@pU ()

be the natural isomorphisms of definition [2.30] (also recall fact 2.2). These extend naturally to

transformations

Y U(®uex() = Buex () and nx: @eex T() = T ®yex(+)) (4.14)

for functors CX — D. Let (vy)yex € |_| It (Ay) be an X-indexed collection of open sections. By

xeX
assumption, there is isomorphism

u <® Ax,tot) m ® Z/[(«Ax,tot)-

xeX xeX

Since ®p is a functor, there is also map

Qv

Vii= | QU(Agtot) “Z @ T (Axst) | - (4.15)

xeX xeX

Finally, again there is isomorphism

R T (Axst) 225 T (@ Ax,st> .

xeX xeX

We thus define the map

Px ((Vx)xeX) U (H(Ax,tot)) - T (”(Ax,st))

Px ((Vx)xex) =MNX,st © Vx o YX, tot- (4.16)

For notational convenience, set vp := ?X((VX)XGX)' Verification that vp € T; (U(Ax))—i.e.
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that Try(4,),, © Vo = UPn (4, —uses the following diagram:

u <® Ax(x)tot> Rk R UAx ot
xeX

xeX

\V'J: Rxex Vx
Rxex UPx

Z/{PH(AX) T <® Ax/st) et ® T.Ax,st

—1
xeX Tx,st xeX

T
A'St) %ﬁr“t

Uu <® Ax,st) Yil ® Z/{AX,S’(/
X,st

xeX xeX

where

Tx,st + TAx,st — Z/{Ax,st

is the epimorphism from natural transformation t: 7 = U at object Ay st, and

Px: Ax,tot — Ax,st

is the object A, of A (notation[4.2).

The following subdiagrams commute:

Vo =Mx,st © Vx 0 Yxtot (definition of P, (4.16))

Qyex UPx = @yex Txst © Vx (vx € T (Ax(x)) Vx, (#.15), and ® is a functor)
Yx,st © UPTT(Ay) = Qyex UPx ©Yxtot (U is strong monoidal, and vy is natural)

Y;(,]s £ © Quex Tust = Tri(Ay) © X st (Tis monoidal transformation,

c.f. definition and assumption4.4)).

Thus, the final triangle diagram commutes: Upr(a,) = Tri(ay)., © Px ((VX)XEX)/ and hence proves

that

P [ | Te(A) = T (@ Ax>

xeX

is well defined. O
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The next proposition is the last piece in our puzzle, the “second half of our main theorem”,

which says that individually related open T-sections assemble to an open T-section on the product.

Proposition 4.5. Let (¢, ®): (Ax : X = A) — (Ay : Y — A) be a morphism of lists (definition 2.33)

and suppose that (wy)yey € |_| I(Avy(y)) and (vy)xex € |_| I:(Ax(x)) are two collections of
yey xeX
open sections (notation with the following property: (wg(x), Vx) are ®Oy-related for each x € X

(definition[#.4). Suppose, further, that assumptions and 4.4 hold. Then

(iPY ((Wy)yEY)/ Px ((VX)XEX) )
are TT( @, @)-related.

We express proposition 4.5|differently. First a definition.

Definition 4.12. Let (@, ®) : (Ax : X = A) — (Ay : Y — A) be a morphism of lists. We define the
relation Te(¢, @) C [ | Tx(Ay) x [ ] Te(Ax) by

yeyY xeX

FT((p,(D) = {((Wy)er/ (VX)XEX) € |_| rT(Ay) X |_| rT(AX) : (W(p(x)/\)x) € r’r(q)x) Vxe X} .

yey xeX
Recall that (W), vx) € Tt(®x) means that the pair of T-open sections (W), Vx) are @,-related

(definition . Contrast I'; (@, @) with I (TT(¢, @)), the latter of which is the relation

(M, @) = {(W,V) € Te(TT(Ay)) x T(TI(Ax)) : (W, V)areTl(¢p, ®)-related } .

Then proposition 4.5|says there is 1-morphism
JTY | ?{ (4.17)

in Set™.
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We introduce notation. For indexed collection of Ax : X — A of A-objects and functor i/ : C —
D, there is indexed collection of Arrow(D)-objects AY : X — Arrow(D) defined by post-composition
AY = U, Ax (cf. 222)). Thus, for morphism (@, @) : (A¥ : X — Arrow(D)) — (AY¥ : X —
Arrow(D)) of indexed Arrow(D)-objects (definition , there is morphism I/ (@, @) : H(Ag) —

W(Azg(’) since (D, ®p, 1p) is cartesian (c.f. proposition[2.11). Here W(A%) = |_| L{(AX).

xeX

Proof. We must show that 'T(ﬂ((p, q))st) OWp = Vp O U(ﬂ((p, CD)tot), where vp 1= Px ((Vx)xex),
wyp =Py ((wy)yey) (lemma . We consider the following diagram

U(TT(Ay)1ot) o U (TT(Ax)tot)
&3 &s
\ &a \
& TI(AY) o1 & TT(AY ) tot
. (4.18)
T (M(AY)st) 2 T (M(Ax)s) b
&10 &12
H(A$)st il H(A;)st/

where—recalling that y and 1 are the natural isomorphisms from (4.14) of strong monoidal func-

tors 7 and U/—we have

& =UN(Q, D)ot | &4 =vVp & =Tyle, Pltot | E10 =Ty st
&2 =wyp &5 =VYxtot | &8 =[] & =T7(e, ®)st
xeX
€3 =7YYtot L =[]wy| & =T @) |&12 =nxst-
yeY
Equalities
2=&po0&o&and & = &ppo&gods (4.19)

follow by definition of Py and Px (lemma[4.T). Equalities

Eroéz3=E&o0& and &go & o =E&p0& (4.20)
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follow by naturality of y and n (definition (4.13). Finally,

Enno&g=¢&g0é&7 (4.21)

follows by assumption that (wg(x), Vx) are ®Oy-related and that ®p is cartesian. In more detalil,

consider diagram

C
|_| UAy tot ----------=--Tmmmmmmmes ’ I_l UAx ot
yeY xeX
\3) &
Ca
&7
G2 Z’{Aq)(x’),tot J{ Z’LAX’,’:ot
¢ s
I_l TAy,st ”””” GRS ke |_| TAx(x)st s
yeY xeX
Cio 1
G2
TA(p(x’) st T-Ax’,st/
where
G =Tyle, Dot(=&7) | G4 =[lexvx | &7 =UDy 1ot C10 = PTA, 0t
G2 =[leywy (5 =PuUd, o | 8 =Vx Q1 =P74,
G5 = PUAY ) o Ce =Weox) |Co =Tlr(e,@)(=&11) | G2 =Ty

Then ®,-relatedness of (W), Vx') for every x’ € X means that (;; o (s = (g o (7. Cartesianality of

®p implies that the back face also commutes: in other words (90 (; = (40 (1,01 E11 086 =Eg0 &y

(eq. (@.21)).

We have thus shown that every face of diagram (4.18) commutes, and in particular that
oy =8&0¢&.
We conclude that (Py ((wy)yev), Px ((vx)xex)) are TT( ¢, @)-related (definition . O

We collect results and state the main theorem.
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T

- M
Theorem 4.1. Let C Ut D be a D-fibered (definition |4.1) monoidal transformation (defini-

~_ "

u
tion assumption between strong monoidal functors 7 and U (assumption 4.3). Sup-

pose that monoidal product ®p is cartesian, and let A C Arrow(C) be a category for which

TT: (FinSet/AT)°” — A is functorial (assumption[4.2). Let

(@, @), 1) : (Ax,1x :a = TTI(Ax)) = (Ay, iy :a’ = TI(Ay))

be a morphism of networks of A-open t-systems (definition4.11). Then there is induced 1-morphism

|—| FT(AY,y) W |_| Te(Axx)

yeyY xeX

in Set"™, where (definition 4.12)

FT((P/(D) = {((Wy)er/ (VX)XEX) € |_| FT(Ay) X |_| rT(AX) : (W(p(x)/vx) S FT((DX) VxeX

yeY xeX

Proof. By proposition[4.5)(c.f. (4.17)), we have 1-morphism

|_| FT(AY,y) W |_| FT(AX,X)

yey xeX

[ j

e (T(Av)) =05 T (T(Ax),
and by proposition 4.4, we have 1-morphism

R (M(AY)) o T (T(AX))

lmw) ) mtx)J
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Applying vertical composition in Set}’, the result follows immediately. O

4.4 Examples of Networks of Open Systems

This section generates a slew of concrete instances of theorem [4.1]

Remark 4.13. An outline for these examples is as follows. We define categories C, D, subarrow
category A C Arrow(C), functors 7,U : C — D, and natural transformation T : 7 = U. Then we

verify that assumptions and .4 hold. We conclude by citing theorem

4.4.1 Networks of Open Systems

Example 4.16. A special case of theorem [4.1| was stated in theorem 2.3/ from [17, Theorem 9.3] for
networks of Man-open systems (definition 4.10). We must show that a morphism

(((p,(D),f) : (Sx : X — SSub, 1 1 a — |_| Sx(x)> - (SY 1Y — SSub,ty : b — |_| Sy(y))
xeX yeY

of networks of open systems (definition 4.1} definition2.42) induces a 1-morphism (theorem [4.1)

[] Crl(Sy(y)) <o) [] Cri(Sx(x)
yeyY xeX

ﬂ (4.23)
JCrI(Ly)ofPY Crl(tx)oPx

crh) Crl(a)

Crl(b)

in Set". In this context, Crl is the open sections functor I'; ([17, c.f. (2.7)]).

Proof of theorem[2.3] We follow the outline in remark Let C = D = Man be the category of
smooth manifolds, 7 = T the tangent endofunctor, I = idman the identity functor,and t: 7 = U
the canonical projection of the tangent bundle. Let A C Arrow(Man) be A := SSub and observe
that Crl as defined in definition is It (definition . The category Man of manifolds has

products (fact[2.4), and this defines cartesian monoidal structure, which A also inherits ([17, §4],
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assumption [4.2). Naturality of isomorphism T(M x N) = TM x TN (corollary [2.1) follows from

commutative diagram

M P Mx NN N

b e

VUPLLLE VNS NS XL
functoriality of T (lemma [2.7), and universal property of product (c.f. proposition[2.13). This im-
plies that 7 is strong monoidal (assumption [4.3). Finally, the projection Ty : TM — M is split
epimorphism (fact and T is easily seen to be monoidal (assumption [4.4), e.g. now from natu-
rality of T (fact[2.5) and commuting diagram

™ <P T(M x N) PN,

TN
lTM \LTMXN JTN
N.

MM M x N PN

We thus obtain 1-morphism in (4.23). O

4.4.2 Networks of Hybrid Open Systems

Example 4.17. We extend example for (non-deterministic) hybrid open systems. This result

was proven directly in [18, Theorem 6.19]. Here we prove as a corollary of theorem

Theorem 4.2. Let

<{%X/X}X€X’ lgx:a <= |_| Hx/x> and ({%Y,}'}ygwib,\/ b — |_| 'Hy,y)

xeX yeyY

be two networks of hybrid open systems (example[4.9). A morphism

(¢, @),z
(Hx,iqx) M (Hv,ibx)

of networks of hybrid open systems (definition[3.9} definition [4.11)) induces a 1-morphism
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|—| Cr|U(’HY/y) W |_| CrlU(%X,x)

yeyY xeX

CrIU(ib’Y)O?YJ/ ﬂ lCrIU(ia,X)oﬂ’x

Crly (b) Criy(z) Criv(a)

where (c.f. definition[4.3)
Crly(a) == {X tUatot = TUAst : Pa = Tay, © X}’
and Crly (@, @) is as in definition[4.12}

Proof. Here C = HyPh, D = Man, A = HySSub, i/ = U : C — D is the forgetful functor (propo-

sition [3.1), and 7 := T ol is the tangent endofunctor composed with U. The transformation
ToU

TN

HyPh UT Man is the canonical projection T, : TUa — Ua of the tangent bundle of the un-

~_

U
derlying manifold Ua, and is D-fibered. We have seen that HyPh is a cartesian monoidal category

(proposition definition and that HySSub is cartesian as well (fact [3.2), which shows that
assumption [4.2)is satisfied.

The forgetful functor U : HyPh — Man is strong monoidal (proposition and since the
endofunctor T : Man — Man is strong monoidal, so is T o U (assumption [4.3). Finally, the natural
transformation is monoidal—satisfying assumption [#.4—again, by naturality and the universal

property. Therefore, the result follows as a direct application of theorem O

4.4.3 Networks of Deterministic Hybrid Open Systems

We now restate and finally prove theorem While we cite theorem the proof is not as

immediate a consequence as the preceding two examples.
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Theorem 4.3. Let

({%X’X}XEX’ lgx:a < |_| Hx/x> and {%y,y}er,ibly :b— |_| 'Hy,y

xeX yeyY

be two networks of deterministic hybrid open systems (example#.9). A morphism

(¢, @),z
(Hx,iqx) u (Hy,ibx)

of networks of deterministic hybrid open systems (definition definition {4.11) induces a 1-

morphism
y[la@,a(ﬂy,y) el Xexowmx,x)
ae‘rrib,yo?{ Jl Jbﬁt[iq,xo?x
aee(b) — M derl(a).
Thus

(el (in,y) (Py((wylyev)) o€t (iax) (Px ((ve)ex)))

are T1(z)-related (definition b whenever (W), Vx) are O -related for all x € X.

Remark 4.14. Observe that the first half of theorem [4.3| (theorem is identical to the first half
of theorem In other words, networks of hybrid open systems are the same as networks of
deterministic hybrid open systems. The difference appears in open sections (remark [£.11). In
theorem [4.2] T. = Crlyy while in theorem 4.3 we will see that 0¢tl C T.. Moreover, in theorem [4.2]
the target category D was Man, while in theorem [4.3|(theorem 3.1)), the target category is Set.

Proof. Let C = HyPh, D = Set, A = HySSub, as in example We immediately observe that
assumption [4.2)is satisfied. Let functor &/ : HyPh — Set be defined by {a := {x € Ua}, the set of
points in the underlying manifold of a; in other words, as the composition of forgetful functors
HyPh Ly Man — Set, where the second functor forgets the smooth structure. We define functor

T : HyPh — Set on objects by

Ta:={veTUa}x{s € Ua}={(v,s): ve€ TUaands € Ua}.
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It is a quick check to verify that 7 is a functor. For morphism a L b of hybrid phase spaces,
Tt = TUf x Uf. We define natural transformation v : 7 = U on objects by v, : Ta — Ua by
Vg = Tyq © P1, Where py : X X Y — Xis canonical projection to first factor, and Ty, is the canonical

projection of tangent bundle. Since both T and p; are split epimorphisms, the composition v is as

7.
/_\

well. The definition of v on objects assembles into a natural transformation HyPh ﬁv Set

~_ 7

u
which is Set-fibered. We know that I/ is strong monoidal since U is (proposition , and to see

that 7 is strong monoidal, we compute:

TaxTb ={uecTUa}x{r € Ua}x{veTUb}x{s c Ub}
={u € TUa} x {v e TUb} x {r € Ua} x {s € Ub}
={(u,v) € TUa x TUb} x {(r,s) € Ua x Ub}

={w € T(Ua x Ub)} x {t € U(a x b)} (by lemma 3.4)
={weTU(axb)}x{t € U(axb)} (also by lemma3.4)
=T(axb),

verifying that assumption 4.3/ holds. Finally, it is not difficult to see that v : 7 = U is monoidal
(assumption [4.4). Therefore, theorem [4.T)implies a morphism of networks of deterministic hybrid

systems induces 1-morphism

|_| (Hy,y) W |_| T (Hx )

yeY xeX
r (ib,y)oﬂwl | lrv (iax)oPx
(2)
Iy (

b)) — " ria)

To complete the proof, we must check that 9€tl(a) C T}, (a), that there is well defined map

Px : |_| 0Ctl(Hx x) — oCtl |—| %x,x), and that ?€t((i) : 9€tl(b) — dCrl(a) for hybrid intercon-
xeX xeX
nection a - b. The inclusion oC¢tl(a) C I, (a) follows by definition of 9€t(, since we have defined

o¢tl(a) = {X € Iy (a) : satisfying some conditions}. That Py : |_| oCtl(Hx x) — ol <|_| %X,x>

xeX xEX
is the statement of proposition and the map 0€r((t,i) : 9€tl(b) — dCtl(a) for interconnection
comes from proposition [3.6] (definition 3.22). O
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4.4.4 Networks of Discrete Open Systems

We conclude with a statement of our main result for discrete-time systems. We have lightly
touched upon the notion of discrete-time systems: recall example and example 4.7, where
Cis a concrete category, and A is the subcategory of Arrow(C) whose objects are surjections. Echo-
ing the example of a vector field X € X(IR?) as interconnection of open systems (c.f. section ,
we may view a discrete-time system f : X X Y — X X Y on a product as the interconnection of two
discrete-time open systems f1 : X x Y — Xand f; : X X Y — Y. We do not develop this particular
viewpoint, but all the ingredients are at our disposal to do so. A direct application of theorem

gives us a discrete-time networks theorem:

Theorem 4.4. A morphism

(@, @) f
({DY,y}er’ ly : b— |_| DY,}/) u) <{DX’X}XEX, Ix :a— |—| DX,X)

yeY xeX

of networks of discrete-time open system induces a T-morphism

|_| FT(DY,y) W |_| FT(DX,X)

yeyY xeX

LY O?Yl U’ \LFT x )oPx

(b) ————— Tx(a).
Notationally, we merely replaced A in theorem §.T| with D in theorem [4.4] to represent the

indexed assignment of discrete-time open systems. The power of a developed categorical theory:

in appearances we did almost nothing, but the array of application is vast.
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Chapter 5

Conclusion: Why Morphisms of
Systems?

5.1 Introduction

We emphasized category theory as a primary motivation for studying maps of networks of dy-
namical systems: the Yoneda embedding justifies investigating mathematical objects through
their (collection of) morphisms. Irrespective of networks or even hybrid systems, a reasonable
question is whether ordinary continuous-time dynamical systems can in practice be better under-
stood through morphisms. We saw, for example, that existence and uniqueness for complete
continuous-time systems can even be given a wholly categorical formulation (proposition [2.16),
but this observation does not properly extend the theory of dynamical systems. Aside from con-
necting two apparently disparate mathematical fields, the categorical formulation tells us little we
did not already know about the theory of dynamical systems. Still, we argue that a map-centric
perspective can yield new insight into systems themselves. We consider, in particular, the no-
tion of Lyapunov stability which describes a property of equilibria points: solutions starting close
enough remain close enough for all time. We show that under certain hypotheses, stable points are
sent to stable points under maps of dynamical systems. This is reminiscent of Lyapunov stability
theorem, which makes an assertion in the reverse direction: a point (in the domain of some map)
sent to a stable point is in fact stable. Our result provides a practitioner with the analogous ability

to determine stability when explicit solutions cannot be found.

Working with the notion of continuous-time dynamical system as manifold and vector field
pair (M, X), we introduce the solution map which sends a point xo € M to the solution of X passing
through xo at time 0. We then review Lyapunov stability and interpret it as continuity of the

solution map, with respect to the appropriate topology. While this abstraction is not new, little
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use of its generality has, as far as we know, been used in the dynamical systems literature. An
immediate upshot, for example, is that it allows for a natural (useful) description of arbitrary and
even unbounded trajectories as stable. In control theory, where one often cares about driving a
system to some desired—not necessarily equilibrium—trajectory, error (deviation of state from
desired trajectory) may be used as proxy for the underlying system. In this setting, what is sought
is that the dynamical system representing error has solutions which go to zero, and moreover,
that zero is a stable equilibrium, thus guaranteeing that a control algorithm is robust with respect
to uncertainty, noise, or disturbances. From this perspective, not much is gained from the added

generality.

However, we are now able to consider stability in the context of maps of systems. It makes
sense to speak of composition as preserving continuity, as long as we are careful about working in
the right topology. We detail a topology in the space of maps of dynamical systems, and use this to
prove theorem[5.Twhich says that an open map between dynamical systems sends bounded stable
points to stable points. We end with an example illustrating the usefulness of this result, by map-
ping a linear system (whose stability properties are entirely known by eigenvalues of the matrix
representing its dynamics) to a nonlinear system. Though the nonlinear system can be explicitly
solved for (in particular, simply by pushing the linear solution forward), and therefore stability
determined through other means, linearization still fails to detect stability. Even though continuity
is a local concept, local-in-a-topology-on-M or -TM is different than local-in-the-space-of-maps-of-
systems, which explains why theorem [5.1| can answer stability questions which linearization of a

vector field cannot.

5.1.1 Review of Complete Dynamical Systems

Recall the notion of complete dynamical systems (definition 2.48), those for which a solution ex-
istence through each point at all time, in this chapter let DySys denote the category of complete

dynamical systems.

155



Definition 5.1. A complete dynamical system (M, X) € DySys defines map

d
@x.) - M > DySys <(1R, &, (M,X))

by sending xo — @x, (), the integral curve of (M, X) passing through xo € M at times t = 0. We
call @ (.) the solution map of (M, X), and @x x, (-)—the solution map evaluated at point xo € M—

the solution of (M, X) with initial condition x.

When the system (M, X) is fixed, we drop the dependence of @x on vector field X and simply

write .
Definition 5.2. A point x, € M is said to be an equilibrium point of (M, X) if X(xe¢) =0 € Ty, M.

Remark 5.1. The name comes from the fact that solutions starting at equilibria go nowhere: @x 4, (t) =

xe for all t € R when X(x¢) = 0.

5.1.2 Lyapunov Stability

Fact 5.1. Any second countable smooth manifold is metrizable. We will by default let dp : M X

M — R=° denote a metric on manifold M.

Notation 5.1. Let (M, X) be a dynamical system. It will be convenient to consolidate notation for

the set of integral curves, i.e. the set of maps of dynamical systems from (R, & ): we let

My := DySys ((R,i), M, x)> .

(Script M is for “morphism.”) Because X € X(M), specifying the vector field alone is sufficient for

disambiguation. Leaving the choice of system open, M,) = DySys ((R, &), ).

Lemma 5.1. A metric dy : M x M — R=° induces a metric x : Mx x Mx — R=° on the collection

of integral curves for (M, X).
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Proof. Let @y, @y € Mx be two integral curves of (M, X). We define

dx(@x, @y) = sup dm(@x(t), @y(t)).
t>0

Then
sup dx(@x(t), @z(t)) < sup (dm(@x(t), @y(t)) + dm(@y(t), (1))
t>0 t>0
< sup dm(@x(t), Oy (t)+ sup dM((Py (1), @.(1))
>0 >0

= Ox(®x, Py) + dx(@y, ©2).
It is immediate that dx(@x, @y) = dx(@y, x) > 0, with—by existence and uniqueness—equality

when and only when x =y. O

Remark 5.2. The metric dx induces a topology on Mx generated by base open sets

Be(@x) == {@y € Mx : dx(@x, @y) < e},

fore >0and x € M.

Definition 5.3. Let xe € M be an equilibrium point (definition [5.2). The point x. is said to be
Lyapunov stable if the solution map @y () : M — My is continuous at x., w.r.t. the topology on Mx

defined in remark

Remark 5.3. This definition captures the notion that a solution which starts close to a stable equilib-
rium will remain nearby for all (positive) time. A more standard but equivalent definition of Lya-
punov stability uses the 8-¢ criterion: for any € > 0 thereis a 8, > 0 such that 5x (@xx., Pxx,) < €

whenever dm (xe, xo) < 0.

In fact, there is nothing sacrosanct about equilibria points in this definition:

Definition 5.4. We say that a point x, € M is stable if the solution map @x () : M — My is continu-

ous at x,.

Remark 5.4. There are two advantages of this definition. First, it may apply to any arbitrary point
(and therefore integral curve) of a dynamical system (M, X). For example, every point of dynam-

ical system (IR, % = —x] is stable in the sense of definition Secondly, stability is not restricted
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to bounded solutions. For example, every point of (R, x = 1) is stable, even though the solution
Pxx, () = X0+t is unbounded. Yet, in both cases, stability still captures the notion we want:

solutions which start close to each other remain close.

5.2 Open Maps Preserving Stability

Recall that the maps of dynamical systems preserve integral curves (definition 2.41). They also
preserver equilibria. Let f : (M, X) — (N, X) be a map of dynamical systems and xe € M an

equilibrium. Then linearity of the differential implies that
0 =TF0) = TfX(xe) = Y(f(xe)),

which further implies that that f(x.) is an equilibrium of (N,Y). Alternatively, since maps of

dynamical systems send integral curves to integral curves, f,@x, is a constant curve, so 0 =

%f* OX xe (t) = Y((PY,f(xe) (t))
Under some conditions on the map of systems, stability is also preserved.

First a definition:

Definition 5.5. Let (M, X) be a dynamical system and xp € M a point. We say that x, is bounded if
its solution @x , is bounded, i.e. if 5(@x,,x) < oo for any constant map x : R — M defined by
x(t) =x, forx € M.

Remark 5.5. We defined the metric dx in lemma on My, so technically 8x(@xx,, ) may only
take @x/ as an argument, for x’ € M. We can extend the induced metric between solutions to a

pseudometric on curves of M—the space C(R, M )—in the obvious way:

(¢, ) := sup dm(p(t), W(t)).

t>0

This definition is a pseudometric because two distinct continuous curves may agree on R=°.
Theorem 5.1. Let (M, X) AR (N,Y) be a map of dynamical systems for which f is open: f(O) is an

open set in N whenever O is open in M. Suppose, further, that xo € M is stable and bounded.
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Then f(xg) is stable.

The proof of this theorem requires a lemma, interesting in its own right.

Lemma 5.2. Let f: (M, X) — (N,Y) be a map of systems. Then the pushforward

fe: Mx — My

Oxx — FoOxx = Qv

is continuous at bounded curves.

We need a secondary lemma to prove lemma

Lemma 5.3. Let f : M — N be a continuous map between manifolds and fix ¢ > 0. Then there is

continuous function 8, : M — R>? such that du (x,x’) < 8:(x) implies that dn (f(x), f(x')) < e.

We call attention to our dual use of § as both a metric on My and a function M — R=°. In

this proof, 6 and all its variants only refer to the latter function.

Proof. Since f is continuous, there is a function
§:M - R (5.1)

not necessarily continuous) such that dym(x,x") < 5(x) implies that N(f(x), f(x < ¢/2. Let
( ily i ) such that dm(x,x") < 8(x) implies that dn (f(x), f(x')) /2. L
B = {B6 172(x0) = x0 € Mo} be a locally finite open cover of M and {pyx, : M — [0, 1] : xo € Mo}

be a partition of unity subordinate to B, where My C M.

We define function &, : M — R>° by

N \

Z S XO pxo / (52)
EMy

which is smooth, and therefore continuous, as long since each py, (-) is. We must verify that this 5,

satisfies the delta-epsilon constraint, namely that dn (f(x), f(x)) < e whenever dm(x, x’) < 8¢(x).
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Let x € M and set

X = argxroré?\ifo {8(x0) : pxo(x) #0},
5 =5(x) = Jmax {8(x0) = pxo(x) #0}.

Observe that 6. (x) < %5 (c.f. (5.2)), and suppose that dam(x,x") < d¢(x). Since dpm is a metric,
dm(x,x") < dm(x,X) +dm(x x") < dm(x, %) + (dm(X, %) + dm(x, x")). (5.3)

Since px(x) # 0 and supp(px) € Bg,,(X), we see that dym (x, %) < 78 = 18(%) < 3(x) which implies

(c.f. (5.1)) that
dn(f(x), f(x)) < e/2 (5.4)

Similarly, (dM (x,x) + dm(x, x’ )) < %3 + 123 = & = 5(x) which implies (c.f. second inequality of eq.

(5.3)) that
dn(f(X), f(x") < e/2. (5.5)

Inequalities eq. and eq. together imply that
dn(f(x), f(x) < dn(f(x), f(X) + dn(f(X), f(x") < e/2+e/2=F¢,
and hence 5 (x) satisfies the delta-epsilon constraint. O

Proof of lemmal[5.2} Fix € > 0 and let ¢ € Mx be bounded, so that sup dm(¢(t),x) < oo for any

t>0
x € M. We must show that there is & > 0 for which f, (Bg((p)) C Bi(f ). Let 3¢ : M — R>°be a

continuous function satisfying delta-epsilon condition for € (lemma5.3), so that

whenever
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The closure £, :={@(t) : t > 0}is compact and 6;(-) is continuous, so the minimum
d(p(t*)) = min{ég(x) PXE E(p}

is achieved for some t* > 0; call it
Then we readily conclude that

as required O

Proof of theorem Suppose that xo € M is stable and bounded. To show that f(xy) € M is stable,
we must show that the solution map @y : N — My is continuous at f(xo). Let O C My be open

containing @y ¢(y,) and consider the commutative diagram

since @y o f = f, o @x, we have that f ! o (p\_(] (0) = (9;1 o f;1(©) and therefore
07" (0) 21 (' (07'(0))) = (o' (17(0))),

which is open because f, is continuous (lemma5.2), @x is continuous at xg by assumption (defini-

tion[5.4), and f is open by assumption. O

Example 5.1. Consider the nonlinear dynamical system (R, % = —x>) and map of systems
R —— R

|- |-

TR — TR,
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where
1

f(x) = .
log(x]—z) +1

As observed previously, (R, % = —x) is stable and f is open at x = 1. Therefore theorem

implies that f(1) = 1 is stable in (R, x = —x3).

Contrast with a traditional method: linearization at (x,t) = (1,0) does not (cannot) prove

stability of system

—x3—t if x>0
X = (5.6)

x*—t  else.
This system is more appropriately represented in R? with variables (t,x), t = 1, and % given in
(5.6), and no map R — R? can be open.

Example 5.2. Consider constant-time system x = 1, whose solution is given by x(t) = xo +t. While

obviously stable, we observe this fact as a result of theorem Consider map of systems

R>0 —log(x) R

=]

TR — TR,

which is an open map. Since X = —x is stable, we conclude that x = 1 is as well.
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