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ABSTRACT

Understanding time is essential to understanding events in the world. Knowing what

has happened, what is happening, and what may happen in the future is critical for

reasoning about those events. It is thus an important natural language processing

(NLP) task to understand time.

This thesis advances the study of time by developing new insights into some aspects

of the problem of reasoning about time in text, new algorithmic and machine learning

approaches, and new datasets that would support continuing work on these problems

by the research community. We also discuss a few research directions suggested by

this work that could further improve our understanding of time in natural language

text.

The thesis specifically addresses three key aspects of the temporal reasoning prob-

lem: time expression understanding, temporal relation extraction, and temporal

common sense acquisition. Time expressions (e.g., yesterday or last month) often

provide absolute time anchors for events. Temporal relations (e.g., event A is before

or after event B) provide relative order information between events, which is comple-

mentary to time expressions. Temporal common sense (e.g., duration and frequency)

is another important component in temporal reasoning, but is usually absent in a

single piece of text because people do not say things that are obvious. The bulk of

this thesis is devoted to the important problem of identifying temporal relations be-

tween events, a problem that has been studied a lot by the research community. The

work in the thesis introduces new machine learning methods and a novel conceptual

view of the problem that together result in an improvement of more than 20% over

the previous state-of-the-art.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Time is an important dimension when we describe the world and has been involved

ubiquitously in many techniques. For instance, a classical framework in signal pro-

cessing is Fourier transform: X(f) ,
∫∞
−∞ x(t)e−2πftdt, where x(t) is transformed

from the time-domain to X(f) in the frequency-domain. We can see the indispens-

able role of time “t” as we need values of x(t) at all time points in the equation

above, which is usually achieved by knowing the closed-form expression of x(t). In

causality analysis, a time-series {xn}Nn=0 is called Granger causal for another time-

series {yn}Nn=0 if {xn}Nn=0 helps predict {yn}Nn=0 at some stage in the future via linear

regression models; again, time is important because the time-series are the values

sampled uniformly from the trajectories of some random processes.

In practice, there are (probably) no closed-form representations of all the events

happening in the world. Instead, natural language is used to describe and reason

about the world, for instance, in news articles, social media, financial reports, and

electronic health records. We probably do not have to be worried about things like

Fourier transform anymore, but time is still a crucial dimension to think about. For

instance, “he won the championship yesterday” is very different from “he will win the

championship tomorrow” in the sense that the first happened in the past and cannot

be changed (if we trust the speaker’s words), while the second will be in the future and

is not guaranteed to be achieved (even if we trust the speaker’s words because we un-

derstand that the speaker is simply making a prediction). When multiple events are
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involved in a story, the temporal order among them also matters, altering which may

result in a different understanding of the same set of events. For instance, let A→B

denote that A is temporally before B. If “people were angry”→“police suppressed

people”, then it leaves the readers an impression that people got angry and perhaps

ended up in a violent confrontation with the police, and then the police wanted to

restore order by suppressing them. Instead, if “police suppressed people”→“people

were angry”, then it means that people got angry because of the suppression. The

tone of the story and the side that should be blamed are different simply because

of a different temporal order. Similarly, “the doctor found a tumor”→“he had a

surgery” tells us that the purpose of the surgery was to remove the tumor (so now

there is probably no tumor anymore), while “he had a surgery”→“the doctor found

a tumor” sounds like a tumor was found unexpectedly during the surgery (so there

is probably still a tumor now). All these examples indicate the important role that

time is playing in natural language processing (NLP).

When people use natural language to describe and reason about the world, it is

assumed that, in most cases, human readers are able to understand these temporal

issues. However, how to make computers understand semantics related to time has

not received enough attention in the NLP community and remains an open challenge.

This leads to the problem statement of this thesis, as we detail below.

1.2 Problem Statement

With ever-growing natural language data available nowadays in the form of news

articles, books, online reviews, and social network posts, it is increasingly important

to make use of these data to understand how things are evolving and, hopefully, to

make decisions based on it. This thesis argues that a key issue here that has been less

studied is to understand the temporal information in these natural language data,

and the core question of it is to know when something happens.

To answer this “when” question requires two very basic components: time ex-

pression (Timex) understanding and temporal relation (TempRel) understanding
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[1, 2, 3]. The first, also known as the Timex component, requires understanding

those explicit time expressions so that these Timex-es can serve as the timestamps

that we are expecting. In Example 1, t1:February 27, 1998 is such a Timex. Note

that in order to allow computers to understand these Timex-es, a conversion to a

standard format is also needed besides simply chunking them out from text, e.g.,

February 27, 1998 needs to be converted to something like “1998-02-27”, and this

step is called Timex normalization; in contrast, identifying the span of February

27, 1998 in the original text is called Timex extraction. Timex extraction and

normalization are the two steps in the Timex component.

Example 1:
A car (e1:exploded) in the middle of a group of men playing volleyball on
(t1:February 27, 1998) and more than 10 people have (e2:died).

The second basic component to answer the “when” question is the TempRel

component, which conceptually aims at determining which event or action happens

earlier in time. While Timex-es often act as absolute time anchors which carry tem-

poral information explicitly, TempRels provide another type of implicit temporal

information, i.e., the relative order of events, which is important especially in ab-

sence of Timex-es. That is, given a pair of events or actions, determine which of

them occurs first (or other temporal relations between them, e.g., simultaneous or

overlapping). In Example 1, there are two events: e1:exploded and e2:died. The text

tells us that e1 was on 1998-02-27 but does not tell us when e2 happened exactly.

In this case, how do we know when e2 happened? It turns out that human readers

do not usually feel ambiguity here because we know that there is a TempRel be-

tween them, i.e., e1:exploded happened before e2:died. The Timex component and

the TempRel component together provide a more complete picture of the tempo-

ral aspect of a story, either explicitly or implicitly, so they are naturally the most

important building blocks for understanding time.

In addition to discussing the two components above, this thesis also notes the

necessity of commonsense knowledge for time, or in other words, temporal common

sense. For instance, the temporal order between some events can often be determined
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purely based on the event verbs, and this is due to the temporal order common

sense (e.g., death should be after (instead of before) explosion). Another example

of temporal common sense is duration, i.e., how long something lasts. Because we

rarely say things that are common sense to others, it is often difficult for a computer

to fill in the blanks when trying to understand such cases.

1.3 Challenges

A key difference in terms of the time dimension between NLU and other techniques is

the availability of gold timestamps: In techniques such as signal processing and time-

series analysis, gold timestamps often naturally come along with the data, while in

natural language text, gold timestamps often do not exist. Next we will specifically

discuss the various challenges in each component of this thesis.

Some types of text, for example tweets or news articles, can come with a machine-

readable timestamp which tells the readers when this tweet or news article was

published. These publication timestamps are of course important, but they are

not accurate enough, because a tweet published on day X is very likely to talk

about things that happen on day Y . Unfortunately, people often do not include the

timestamps explicitly in natural language text, which leaves to readers the problem

of figuring out when something happens. For instance, it does not sound natural

if someone says “people were angry at 2013-01-02T08:00:00; the police suppressed

people at 2013-01-02T08:05:00”. Instead, it is more natural if one says “people were

angry and then the police suppressed people on January 2nd, 2013”, where the speaker

neither reveals the exact timestamp for each event, nor follows the ISO format for

time. Therefore, it is left to the computer to figure out which part of the sentence is

a Timex, which in this case is January 2nd, 2013.

Assuming a computer knows January 2nd, 2013 is the Timex, then to make full

use of it, the computer still needs to convert it into a machine-readable timestamp

such as 2013-01-02. This step is called Timex normalization, which is usually not

so trivial as it seems to be in January 2nd, 2013. For instance, if the Timex was
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January 2nd or Wednesday, we would need to figure out the reference time, and in

this particular case, the year or the week of it; similar cases are “3 days ago”, “next

June”, or even “the Christmas before election.” Therefore, Timex normalization is

another challenge for Timex understanding.

In addition to the challenge in understanding Timex, the TempRel task is even

more difficult. Even the top systems only achieved F1 scores of around 35% in the

TempEval3 workshop [3] which focused on the news domain. The difficulty of it

is two-fold. First, we do not always describe events sequentially in their temporal

order; instead, we may describe things that happened later first and then those that

happened earlier. What makes things worse is when we alter the narrative order of

events, we do not always add an explicit connective (e.g., before, after, or during)

between them. As a result, TempRels often have to be inferred, from lexical cues,

between the lines, and sometimes even purely based on background knowledge. In

Example 2, knowing that people usually become friends before getting married, we

understand that e3 is before e4. For a computer, however, identifying this TempRel

is very difficult, since it is unclear when “they were in college” and there are no

syntactic cues indicating the order; let alone the fact that the narrative order of

the two events can be reversed without changing the meaning of the text (as shown

by e5 and e6). How to acquire and inject human prior knowledge into TempRel

extraction is thus the first challenge.

Example 2:
They (e3:became) friends in college. They got (e4:married) in 2015.
They got (e5:married) in 2015. They (e6:became) friends in college.

Second, collecting enough high-quality TempRel annotations is also very chal-

lenging. On one hand, annotating the TempRels among n events requires O(n2)

individual annotations, which makes it difficult to scale data annotation up to large

datasets. Although existing datasets have tried to annotate only those events that

are close-by in text, the annotation task remains so time consuming that existing

datasets are all relatively small. On the other hand, for each individual TempRel,

the annotation not only requires a TempRel label (e.g., before or after), but also in-
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volves decisions like what the events are and whether the TempRel actually exists.

For instance, in “I wanted to leave this place”, should we consider leave as an event?

In “the police wanted to eliminate the anti-government army but failed”, is there a

TempRel between eliminate and failed? If not, what determines the existence of

a TempRel? These complications have resulted in low inter-annotation agreement

(IAA) in existing datasets, hence another challenge for TempRel understanding.

Finally, the knowledge of human common sense has always been considered as an

important missing piece for computers, and it is also the case for temporal common

sense. Besides temporal order common sense demonstrated in Example 2, there are

other types of temporal common sense such as duration and frequency that are also

missing for existing NLP techniques. Below is an example for duration common

sense: a human can easily tell that the first blank should be “will not” while the

second blank should be “will” because a human knows a break is usually short while

a vacation may last days or even weeks. The difficulty of acquiring temporal common

sense is that this knowledge is not composed by facts (which can be handled by a

look-up table); instead, it is often coarse-grained and fuzzy. For example, we know a

break is relatively short but it could still range from a few seconds to a few hours; if

we say “Dr. Porter is now taking a Christmas break”, then this break can also last

a few days. There has been a lack of supervision signals that are available to guide

machine learning systems to handle these ambiguities.

Example 3: choosing from “will” or “will not”
Dr. Porter is now (e7:taking) a vacation and be able to see you
soon.
Dr. Porter is now (e8:taking) a break outside and be able to
see you soon.

1.4 Thesis Statement

As we are clear about the problems to be addressed in this thesis and their potential

challenges, our thesis statement is as follows. Understanding time from natural
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language text is an important task and it requires us to understand time expressions,

temporal relations, and temporal common sense. The rich structure of time provides

us with temporal cues from unlabeled and noisy data, exploiting which can greatly

benefit the task. To successfully exploit the rich structure of time in a learning-based

approach, we should also develop both theoretical and algorithmic understandings

of incidental supervision.

1.5 Outline

The rest of the thesis is organized as follows. Chapter 2 will provide more background

information of this thesis, specifically on two topics: event understanding (Sec. 2.1)

and structured machine learning (Sec. 2.2).

Chapter 3 describes our approach to Timex understanding. While the Timex task

has been handled well by state-of-the-art systems [4, 5, 6, 7, 8] with end-to-end F1

scores around 80%, the CogCompTime system proposed in this thesis work achieves

performance comparable to that of state-of-the-art Timex systems, but is almost

twice as fast as the second fastest, HeidelTime [4].

Chapter 4 addresses the aforementioned difficulties of the TempRel task, and our

contribution is from three aspects. First, machine learning (Sec. 4.2). TempRels

are inherently structured, i.e., one TempRel may be affected by other TempRels.

We propose to better exploit the structure induced by the transitivity property of

temporal relations in the structured learning framework [9, 10]. Second, injection of

commonsense knowledge (Sec. 4.3). We collect a probabilistic knowledge base called

TemProb to encode humans’ prior knowledge of the typical ordering of events,

which has also proved to be a useful resource for TempRel extraction [11]. Third,

data annotation (Sec. 4.4). We investigate existing TempRel datasets and propose

a multi-axis modeling for the temporal structure of stories [12]. Integrating these

components, our current system significantly improves the state-of-the-art temporal

relation extraction performance by more than 20% in F1 (Sec. 4.5).

In terms of temporal common sense, we systematically study the problem in Chap-
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ter 5 and summarize five types of temporal common sense. We develop a new dataset

dedicated for these phenomena via crowdsourcing, with guidelines designed meticu-

lously to guarantee its quality. Using this new dataset as a testbed, we find that the

best existing techniques are still far behind human performance on temporal common

sense understanding, indicating the need for further research in order to improve the

currently limited capability to capture temporal semantics.

Finally, while studying how to understand time in natural language, we devote

Chapter 6 to an important topic in machine learning: learning from indirect super-

vision signals. From an information theoretic point of view, we show that learning

from partially annotated structural data has its unique advantage over learning from

fully annotated structures, and this advantage is proved empirically on several dif-

ferent NLP tasks including TempRel extraction. Chapter 7 concludes this thesis

and points out to some directions for future research.
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CHAPTER 2

BACKGROUND

One NLP task that is closely related to understanding time in natural language is

event understanding. The reason is two-fold. First, a time point itself is often not very

meaningful until it is associated with something that happens. For instance, February

27, 1998 itself is an ordinary time point, but “a car exploded on Februrary 27,

1998” makes this time point special because of the car explosion. This is why event

understanding is important for the Timex component. Second, event understanding

is also important for the TempRel component because every TempRel is between

two events. Given the close relation between the topic of this thesis and event

understanding, we devote this first section of this chapter to a discussion about

those event understanding works in the literature, and we will see how this thesis

work fits in the more general topic of event understanding.

In terms of the methodology to study time in natural language, we find that time

has a very rich structure, exploiting which can significantly help us in learning and

inference. Therefore, the rest of this chapter aims at providing more background

information about the role of structure in machine learning.

2.1 Event Understanding

Event understanding has long been an active area in NLP and information retrieval.

Generally speaking, an event is defined as an action associated with corresponding

participants involved in this action. Its core question is to understand what is going

on, which involves elements such as agents, patients, actions, location and time.
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Typical tasks on event understanding are event extraction and relation extraction,

which we will describe below.

2.1.1 Event Extraction

Due to the complexity and fundamental difficulties, most existing research in this

area focuses on a limited domain of events. For example, in both ACE 2005 [13] and

TAC KBP [14], only 8 types/33 subtypes of events are considered: Life, Movement,

Business, Conflict, Personnel, Transaction, and Justice. The rich Entities, Relations

and Events (rich ERE) annotation task adds an extra type of Manufacture [15].

Example 4 shows a real Movement event annotation in the ACE 2005 dataset.

Example 4: An event in ACE05/CNN LE 20030504.1200.01
Type: Movement. Subtype: Transport.
In the case of 1991, the task was to go in and get them out of Kuwait,
and they did it, and [Person: they] were properly greeted [Anchor:
coming back] to [Destination: the United States].

Under this definition, event extraction is usually treated as detecting event trig-

gers (e.g., coming back) and determining event types (e.g., Movement) and argu-

ments (e.g., they and the United States). In general, event trigger and argument

detection is a text span detection problem, and event type detection is a multi-

class classification problem. The majority of the early works take a pipelined ap-

proach where triggers are identified first and then arguments [16, 17, 18, 19, 20],

and [21, 22] later propose to extract both triggers and arguments jointly. Finally in

recent years, neural approaches become more and more popular on this task as well

[23, 24, 25, 26, 27, 28, 29, 30].

Another line of event extraction work is via semantic role labeling (SRL) [31, 32,

33]. SRL is to represent the semantic meanings of language and answer questions

like Who did What to Whom and When, Where, How [34]. In Fig. 2.1, we show

an example SRL output from the Illinois Curator package1 [35, 36]. Two semantic

1http://cogcomp.org/page/demo_view/SRL
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frames are extracted: decline.02 and comment.01, where the number following each

verb is the (disambiguated) sense number of that verb. For example, the second

sense of decline has two arguments, argument 0 (or Arg0/A0 in short) is entity

turning down and Arg1 is thing turned down (details of these disambiguated semantic

frames can be found in PropBank [37]), from which we can clearly see the natural

connection between semantic frames and events. Depending on the events of interest,

the SRL results are often a superset of those events of interest under the conventional

definition and thus need to be filtered afterwards [33]. However, perhaps a more

important question is how to understand events that are more general and not only

in the very few predefined types. Existing work on open information extraction

(OpenIE) can be seen as along this line, e.g., [38, 39, 40, 41, 42].

Figure 2.1: The semantic role labeling result of the sentence “A Dow spokeswoman
declined to comment on the estimates” obtained via the Illinois Curator package
[35, 36]. Since a semantic frame generally describes an action and the participants
involved, it is naturally an event (or an event candidate when people are only
interested in events of specific types).

2.1.2 Event Relations

In addition to event extraction, it is important to understand the relationship among

events, e.g., co-reference resolution, causality [43, 44, 45, 46, 47, 48, 49], and event

sequence modeling [50, 51, 52, 53, 54, 55]. One of the topics of this thesis is temporal

relation extraction. Since temporal relations can be seen as a special type of binary

event relations (i.e., a relation between two arguments), here we will describe another

binary relation, event co-reference, to provide some background of event relations.

Example 5: Entity co-references are bold-faced.
I voted for Nader because he was most aligned with my values.
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Co-reference in NLP is the problem of identifying whether two mentions in text

are the same, in which case we say the latter one is referring to the earlier one.

The NLP community have so far focused on entity co-reference (Example 5) and

event co-reference (Example 6). There are multiple scopes for co-reference: sentence-

level, document-level, and multiple-document-level. A bigger scope creates more

difficulty in the task. Since an event involves participants and these participants are

usually entities, event co-reference usually requires entity co-reference decisions and

is thus more difficult. Early works on event co-reference started from scenario-specific

events [56, 57] and from the sentence-level [58, 59] and afterwards have progressed to

more general scenarios and the document-level. As a binary relation, co-reference is

mathematically an equivalent relation, which is reflexive, symmetric and transitive.

As a result, co-reference relation provides a partition of the set of events into disjoint

clusters, and clustering methods can be adopted [60, 61]. There have also been works

that try to exploit other structural information about events and solve co-reference

with other problems jointly, for example, solving entity and event co-reference jointly

[62, 63] and solving event extraction and co-reference jointly [64]. Event co-reference

at the multiple-document-level has been explored (e.g., [65, 66, 67]) but still remains

very challenging and far from solved.

Example 6: Event co-references are bold-faced.
The FAA on Friday announced it will close 149 regional airport control
towers. The FAA had been expected to announce the closure of 189
low- or moderate-volume towers, but before Friday’s announcement, it
said it would consider keeping a tower open if the airport convinces the
agency it is in the “national interest” to do so.

Event co-reference is closely related to the TempRel component of this thesis.

First, if two events are co-references of each other, it means they are the same,

including their temporal aspect, so their temporal relation must be simultaneous.

Second, direct temporal relations are often explicitly provided within a local context

(via syntactic parse structures or discourse relations), so when two events are far

away in text, it is often difficult to infer their relations; event co-reference can provide

long-distance relations among events and bridge events that are distant. Third, as
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we introduced above, the structure induced by co-reference relations has led to much

progress in terms of clustering-based methods and joint methods. We can see in

Chapter 4 that our contributions in TempRel extraction can be seen as another

example of exploiting the structure induced by temporal relations.

2.2 Structured Machine Learning

2.2.1 What Is Structure?

Conventionally in machine learning, one needs to make a prediction y, either discrete

or continuous, based on an input x. In practice, however, one often faces the problem

where the prediction y is complex, in the sense that it has multiple interrelated

components that altogether constitute y. This type of machine learning problem is

called structured prediction. Burton-Roberts (2016) uses an example of a bicycle to

explain what a structure is [68]. In his words, a structure is divisible into parts and

these parts are arranged in a certain way.

“Suppose you gathered together all the components of a bicycle: metal
tubes, hubs, spokes, chain, cable, and so on. Try to imagine the range
of objects you could construct by fixing these components together. Some
of these objects might be bicycles, but others wouldn’t remotely resemble
a bicycle . . . only some of the possible ways of fitting bicycle components
together produce a bicycle. A bicycle consists . . . in the structure that
results from fitting them together in a particular way.”

— Burton-Roberts (2016)

Example 7 shows the part-of-speech (POS) tagging result of a sentence. The

structure here is the entire sequence of POS tags, which can obviously be decomposed

into the POS tag for each single token. In addition, these POS tags must be arranged

in a certain way because not all of them are valid POS sequences in natural language

(e.g., we cannot have a long sentence with all nouns). This leads to the following

formal definition of structure.
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Example 7: Part-of-speech tagging.
A car exploded on Friday .

(DT NN VBD IN NNP .)

Definition 1 A structure of size d is a vector y = [y1, . . . , yd] ∈ C(Ld), where

L = {`1, . . . , `|L|} is the label set for each variable and C(Ld) ⊆ Ld represents the

constraints imposed by this type of structure. Any d-dimensional vector that does not

belong to C(Ld) is an invalid structure.

2.2.2 Why Is Structure Useful?

If the knowledge that y ∈ C(Ld) is correct, then it is generally useful to consider

this constraint in structured prediction. A naive example to show the benefit is

as follows. Assume we have two variables that we want to predict, y(1), y(2) ∈ R,

which are contaminated by two independent and identically distributed and zero-

mean white Gaussian noises. Let x(i) ∈ Rn be the n observations for y(i), i = 1, 2,

stacked as a vector. If y = [y(1), y(2)] is not structured (or we do not use the structure

even if there exists one), then the minimum mean squared error estimate for y is:

ŷ(i) =
1

n

n∑
j=1

x
(i)
j , i = 1, 2.

That is, we simply take the mean of all observations for each y. As a result, the

variance of this estimator is Var(ŷ(1)) = Var(ŷ(2)) = σ2/n, where σ is the standard

deviation of the contaminating Gaussian noise. However, if we know beforehand that

y is structured in the sense that y ∈ C(R2) , {(y1, y2) ∈ R2|y1 = y2}, then the best

estimate for y is

ŷ(1) = ŷ(2) =
1

2n

n∑
j=1

(x
(1)
j + x

(2)
j ),

and the variance is now Var(ŷ(i)) = σ2/2n. From this we can see that by incorporat-

ing knowledge about the structure, we are able to achieve a better prediction for y in
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the sense that the estimation variance is smaller. In this example we assume y1 = y2,

but generally, if the structure dictates that y lies in a subspace, this argument still

holds given the theory of constrained Cramer-Rao bound for parameter estimation

[69].

2.2.3 Inference with Structure

Assume the score of a structured prediction is parametrized by a weight vector w

and a feature vector φ(x,y) as S(y; x,w) = wTφ(x,y). Then the inference problem

is to choose the best structure ŷ that maximizes S(y; x,w) subject to the structural

constraints. That is,

ŷ = arg max
y∈C(Ld)

wTφ(x,y). (2.1)

Due to the large space of the structure and the complication of constraints C(Ld,
this optimization problem generally cannot be solved both exactly and efficiently.

If the output follows some special structure (e.g., linear chain structures), then the

problem can sometimes be solved exactly using dynamic programming (e.g., the

Viterbi algorithm). To solve it efficiently, one has to resort to approximate inference

algorithms, such as Lagrangian relaxation, dual decomposition, or belief propagation

[70, 71, 72, 73]. To solve it exactly, one popular approach is to convert Eq. (2.1) into

an integer linear programming (ILP) problem and solve the resulting ILP instead [74].

ILP is in general an NP hard problem, but there exist off-the-shelf software packages

that can solve ILPs in a reasonable time for small-scale problems. For example,

Gurobi [75] first ignores integrality and then uses a branch and bound algorithm and

cutting planes to tighten the relaxations [76]. There also exists work that can solve

ILPs more efficiently by making use of previously solved ILPs [77, 78, 79].

2.2.4 Learning with Structure

If one has reason to believe that the structural constraint is correct, then enforcing the

constraint in Eq. (2.1) can only be beneficial: if the unconstrained solution does not
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violate this constraint, then the solution still holds in the constrained optimization

problem; if the unconstrained solution violates the constraint, then it must be wrong

and the constraint that we enforce explicitly may potentially correct this mistake.

However, it remains unclear in theory whether enforcing the constraints in learning

is also beneficial.

Therefore, one approach to structured learning is to decouple learning from infer-

ence. That is, the weight vector w is considered as weights for local classifiers that

ignore the structured constraint in the learning phase. Once w is learned, the struc-

ture constraint is applied only in inference. This approach is called the learning plus

inference (L+I) [80]. Another approach to structured learning is to use constraints to

provide feedback to the learning protocol in an iterative inference procedure, which

is termed as inference based learning (IBT) [80]. Punyakanok et al. (2005) [80] show

that when the local classifier is hard to learn and the amount of structured data is

sufficiently large, IBT outperforms L+I.
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CHAPTER 3

TIME EXPRESSION UNDERSTANDING

As we introduced in Chapter 1, the first topic of this thesis is how to understand

time expressions (Timex-es) in natural language. Timex understanding is typically

decomposed into two steps. First, identify the spans of text that correspond to

Timex-es (i.e., Timex extraction); second, convert the Timex-es in natural language

into a machine-readable format (i.e., Timex normalization). This chapter describes

existing work and how we have implemented these two steps. A highlight of this

work is that our system here achieves performance comparable to that of the state-

of-the-art, while using much less time. This system is later incorporated in the

CogCompTime software, which Section 4.5 will explain in detail.

3.1 Existing Work

According to the approach taken, existing work can be categorized as rule-based

and learning-based. Rule-based systems use regular expressions (regex) to detect

trigger words such as “day” and “week”, use deterministic rules to expand the trigger

words into complete Timex phrases, and then normalize them to a machine-readable

format. A typical rule-based system for this task is HeidelTime [4]. First, four types

of Timex-es—Date, Duration, Time, and Set—will be extracted by regex (note

the regex may use POS tagging from a preprocessing step). Then, for Timex-

es like next June, HeidelTime chooses the reference times for each of them to be

either the document creation time (DCT) or the previously mentioned Date Timex,

again using pre-defined rules. Finally, HeidelTime removes those phrases that are
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considered invalid. For instance, if both in March and March are included, then

one of them will be removed depending on the annotation guidelines. SUTime [5] is

very similar to HeidelTime, but one difference is that after regex extraction, SUTime

filters out extracted phrases that are unlikely to be temporal. For instance, if the

POS tag for fall is not a noun, then it must not be a Timex.

Learning-based systems use classification models to chunk out Timex-es in text

and normalize them based on grammar parsing [81, 8]. For example, UWTime [8]

uses a context-dependent semantic parser for both extraction and normalization.

To construct a set of meaning representations, they make use of a hand-engineered

Combinatory Categorial Grammar (CCG) with about 300 hand-crafted entries in its

lexicon, along with auto-generated ones such as numbers and common date formats.

For example, their CCG grammar maps the phrase 2nd Friday of July to the meaning

representation intersect(n-th(2, friday), july). In terms of Timex extraction,

UWTime trains a logistic regression model to detect all phrases that can be parsed by

its CCG grammar. There has also been more progress in learning-based approaches

in the most recent years. The Parsing Time Normalizations shared task in 2018 [82]

proposed a new approach to time normalization based on the Semantically Compo-

sitional Annotation of Time Expressions (SCATE) schema [83], in which times are

annotated as compositional time entities. Laparra et al. (2018) [84] proposed the

first model trained on SCATE, using character-level RNNs. Xu et al. (2019) [85]

pushed the idea even further by incorporating contextualized character embeddings

and achieved significant improvement in Timex normalization.

3.2 Extraction and Normalization

UWTime provides a good balance between hand engineering and learning: the lex-

icon and operations in its grammar are hand-engineered and encode expert do-

main knowledge, based on which the extraction and normalization modules are both

learned in a data-driven fashion. This thesis adopts a mixed strategy: we use machine

learning in Timex extraction and hand engineering in Timex normalization. This
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mixed strategy, while maintaining performance comparable to that of the state-of-

the-art, significantly improves the computational efficiency of the Timex component,

as we show later.

Technically, the Timex extraction step can be formulated as a generic text chunk-

ing problem and the standard B(egin), I(nside), and O(utside) labeling scheme can

be used (see Example 8). This thesis proposes TemporalChunker, by retraining

Illinois-Chunker [86] on top of the Timex chunk annotations provided in the Tem-

pEval3 workshop [3]. Let s = [s1, s2, . . . , sn] be a sentence with n tokens and let

y = [y1, y2, . . . , yn] be the sequence of B/I/O labels for each token in s. The task of

Timex extraction is to learn a mapping from s to y. This is a structured prediction

problem because not all sequences of B/I/O labels are valid. The obvious constraint

here is straightforward: O cannot be followed by I at any time. To cope with this

constraint, the features used in TemporalChunker, in addition to those extracted

from s, also include the B/I/O predictions from previous tokens. Since the con-

straint is relatively weak in this problem (we will discuss the strength of a structure

in Chapter 6), inference can be performed sequentially for each token in practice

without actually violating the constraint, making structural inference methods such

as the Viterbi decoding unnecessary for TemporalChunker.

Example 8: The B/I/O scheme in the proposed TemporalChunker.
A car exploded on Feb 27 , 1998 .
O O O O B I I I O

The benefit of using a learning-based chunker is in its computational efficiency. In

regex matching, one has to check every substring of text against regular expressions

and is often slow. As for CCG parsing, [87] presented the first polynomial-time CCG

parsing algorithm. The runtime complexity of this algorithm is in O(n6), where n is

the length of the input sentence. However, [88] proved that if the size of the grammar

is taken into account, then any parsing algorithm for CCG will take in the worst

case exponential time. Therefore, the proposed TemporalChunker can significantly

improve the computational efficiency of Timex extraction. However, learning-based

extraction handles corner cases less well than rule-based systems because of the

limited training examples, which is a drawback of the proposed extraction method.

19



After Timex-es are extracted, we apply rules to normalize them. Rules are more

natural for normalization: On one hand, the desired formats of various types of

Timex-es are already defined as rules by corresponding annotation guidelines; on the

other hand, the intermediate steps of how one Timex is normalized are not annotated

in any existing datasets (it is inherently hard to do so), so learning-based methods

usually have to introduce latent variables and need more training instances as a

result. Therefore, this thesis adopts a rule-based normalization method. However,

an obvious drawback of the proposed normalization method is that the rule set needs

to be redesigned for every single language.

Specifically, we apply four types of Timex normalization rules for Date, Time,

Set, and Duration, which we will describe non-exhaustively next.

For Date Timex-es, the most straightforward ones are in the canonical format

such as yyyy-MM-dd or MM/dd/yyyy which are very easy to normalize. If the

phrase contains special date words, today, tomorrow, or yesterday, we will add or

subtract 1 (or 0) day from the DCT as their normalized values. For Timex-es like

fourth day of this week, we feed this week to other date rules, and add 4 days to

it. Next, regular expressions are used to detect weekdays, months, special times like

morning and summer, and normalize them to corresponding formats. If words like

previous, last, or following are detected, we also add or subtract 1 unit of time.

For Timex-es that represent a time point of a day (e.g., 8 am), we use a set of

regex to catch numbers connected by “:”, or numbers followed by pm, am, p.m.,

or a.m.. In addition, we also incorporate the JodaTime DateTimeZone package to

detect timezone keywords such as “UTC” (Coordinated Universal Time) or “EST”

(Eastern Standard Time). For Timex-es like 6:00 pm Saturday, after normalizing

6:00 pm to T18:00, we will see that we have missed Saturday. In this case, we

normalize Saturday using the date rules above to get an anchor time, say 2017-05-

06. Combining them we have the final normalization value as 2017-05-06T18:00.

Another type of Timex is called Set, which represents recurrent events (e.g.,

every Monday). If the Timex is a special adverb like weekly or daily, we directly

normalize it and return the normalized values. Let “frequency” be words or phrases

such as once, twice, 3 times, and 3 days ; “quant” be words or phrases such as every,
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each, and per ; and “unit” be day, week, and month, etc. Then Set Timex-es are

detected by extracting words or phrases with the format of “quant unit” (e.g., every

day), “frequency number unit” (e.g., once a day), “quant number unit” (e.g., every

one day), or “frequency quant number unit” (e.g., once every two days).

Finally Duration are Timex-es that represent a period of time (e.g., five days).

There are a few special cases for Duration based on the annotation guidelines.

First, since fractions such as half a week are allowed, we will use a more fine-grained

unit “day” and then convert it to 3 days. This check of fractions is performed

recursively until no fractions are detected. Then we normalize any Duration with

an explicit number that is not fractional (e.g., 3 weeks). For phrases without an

explicit number, we normalize them based on whether they are in plural form or not:

If the time unit is in its singular form, the number is implicitly “1”; otherwise, we

will use “X” as a placeholder for the number which indicates ambiguity (e.g., weeks).

3.3 Experiments

We use three newswire datasets provided in the TempEval3 workshop [3]: TimeBank,

AQUAINT, and Platinum. The statistics of this corpus is given in Table 3.1. We used

the original train/test split in our experiments: TimeBank and AQUAINT were for

training (256 articles), and Platinum was for testing (20 articles). TemporalChunker

took 10% of the train set as the development set.

Table 3.1: Statistics of the datasets provided in the TempEval3 workshop [3].

Corpus # of Tokens # of TIMEX # of Documents

TimeBank 61k 1414 183

AQUAINT 34k 605 73

Platinum 6k 138 20

We adopt the following evaluation metrics for extraction and normalization. For
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Timex extraction, we use precision P and recall R as follows.

P =
|Systimex ∩ Reftimex|

|Systimex|
,

R =
|Systimex ∩ Reftimex|

|Reftimex|
,

where Systimex means the set of all Timex-es predicted by the proposed Timex

extraction system, Reftimex the set of all gold Timex-es in the dataset, and | · | is the

cardinality of the set. As a standard, we also show the harmonic mean of precision

and recall,

F1 =
2

1/P + 1/R
=

2PR

P +R
.

As for Timex normalization, we use two metrics. When directly applied to gold

Timex-es in the dataset, the proposed normalization system is evaluated on the ac-

curacy metric, which is the number of those correct normalizations over the total

number of Timex-es. When evaluating the end-to-end system performance where

system Timex extraction is used, we need to take into account both the extrac-

tion performance and the normalization performance. That leads to the following

modified precision and recall:

P =
|{∀x|x ∈ (Systimex ∩ Reftimex) ∧ Sysnorm(x) == Refnorm(x)}|

|Systimex|
,

R =
|{∀x|x ∈ (Systimex ∩ Reftimex) ∧ Sysnorm(x) == Refnorm(x)}|

|Reftimex|
,

F1 =
2

1/P + 1/R
=

2PR

P +R
,

where Sysnorm(x) and Refnorm(x) are the normalized value of x by the proposed system

and by the data annotation, respectively. Note that if x is not a correct Timex in

Reftimex, then Sysnorm(x) == Refnorm(x) will definitely not be true, thus penalizing

both precision and recall.
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Table 3.2 evaluates the proposed Timex component, comparing with state-of-the-

art systems. The “normalization” and “end-to-end” columns were evaluated based

on gold Timex extraction and system Timex extraction, respectively. The fact

that the proposed method had the best extraction F1 and normalization accuracy

but not the best end-to-end performance is due to our mixed strategy: Timex-es

extracted by our learning-based TemporalChunker sometimes cannot be normalized

correctly by our rule-based normalizer. This phenomenon is more severe in the

proposed method comparing to systems that are consistently rule-based or learning-

based in both extraction and normalization. However, the computational efficiency

is improved significantly by reducing the runtime of the second fastest, HeidelTime,

by more than 50%.

Table 3.2: Performance of the proposed Timex component compared with several
state-of-the-art systems on the Platinum dataset from the TempEval3 workshop [3].
The “extraction” and “normalization” columns are the two intermediate steps.
“Normalization” was evaluated given gold extraction, while “end-to-end” means
system extraction was used. Runtimes were evaluated under the same setup.

Timex Systems
Extraction Normalization End-to-end Runtime

P R F1 Accuracy F1 Seconds

HeidelTime [4] 84.0 79.7 81.8 78.1† 78.1 18
SUTime [5] 80.0 81.1 80.6 69.8† 69.8 16
UWTime [8] 86.7 80.4 83.5 84.4 82.7 400

Proposed 86.5 83.3 84.9 84.7 76.8 7

†HeidelTime and SUTime have no clear-cut between extraction and normalization, so even
if gold Timex chunks are fed in, their extraction step cannot be skipped.
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CHAPTER 4

TEMPORAL RELATION UNDERSTANDING

The second topic of this thesis is temporal relation (TempRel) understanding, which

is complementary to the work on Timex understanding in Chapter 3. The TempRel

task is to determine which event happens temporally earlier or later than the other

(or other more fine-grained temporal relations such as overlapping). It has long

been a challenging problem which previous systems did not do well, and that is why

this thesis work emphasizes TempRel. This chapter will first explain some useful

concepts such as temporal graph, the label space of TempRel, and the evaluation

metrics in Sec. 4.1. At a high level, this thesis work has contributed to TempRel

understanding via exploiting three inherent structures of time, namely: the tran-

sitivity structure of time which leads to a structured learning approach (Sec. 4.2),

the probabilistic structure of time in the format of common sense which leads to a

useful knowledge base (Sec. 4.3), and the sentential structure of time which leads to

a new data annotation scheme (Sec. 4.4). At the end of this chapter, we will also

put all three types of structure into a unified framework and show the combined

improvement (Sec. 4.5).

4.1 Preliminaries

4.1.1 Temporal Graphs

In Sec. 2.1, we have introduced the definition of events. In practice, when we are

given a document or multiple documents, there are multiple events. When all the
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events are considered, we get a graph: where the nodes represent events and the

edges TempRels. We hereafter call such graphs temporal graphs. Figure 4.1 shows

the temporal graph representation of Example 9. The TempRel task can thus be

modeled as a graph extraction problem.

A valid temporal graph needs to satisfy the following two properties:

1. Symmetry. For example, if A is before B, then B must be after A.

2. Transitivity. For example, if A is before B and B is before C, then A must be

before C.

Due to the symmetry property, we can use a single and directed edge to represent the

TempRel between two nodes; as in Example 9, e11:hurt is after e10:ripping, but in

Fig. 4.1, we are safe to use a single “before” relation edge pointing from e10:ripping

to e11:hurt.

Example 9:
. . . tons of earth (e9:cascaded) down a hillside, (e10:ripping) two houses from
their foundations. No one was (e11:hurt), but firefighters (e12:ordered)
the evacuation of nearby homes and said they’ll (e13:monitor) the shifting
ground.. . .

cascaded

hurt

ripping

ordered

monitor

BEFORE INCLUDED

Figure 4.1: The temporal graph of Example 9, where the nodes represent events,
and the edges represent the TempRels among those events.

The transitivity property, however, needs to be treated with caution. Specifically,

it interrelates all the nodes in a graph, so the decision of one individual TempRel
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depends on, or is even dictated by, TempRels among other nodes. The transitivity

property has two further implications. First, the TempRel annotation process is

very challenging even for humans due to this global consideration since it potentially

requires an annotation decision to be based on the entire article. The data annotation

task hence needs to be designed very carefully. For instance, Fig. 4.2 is the actual

annotations provided in the TempEval3 workshop and many TempRels were mis-

takenly left unannotated, which is partly due to the excessive burden on annotators

to make globally coherent annotations. The second implication is that TempRel

systems also need to produce temporal graphs that respect this transitivity property.

There has been much prior work incorporating global considerations in the inference

phase, and we have also investigated ways to incorporate global considerations in the

learning phase in Sec. 4.2.

cascaded

hurt

ripping

ordered

monitor

BEFORE INCLUDED BEFORE NO RELATION

Figure 4.2: The human-annotation for Example 9 provided in the TempEval3 dataset,
where many TempRels are missing due to the annotation difficulty. Solid lines: original
human annotations. Dotted lines: TempRels inferred from solid lines. Dashed lines:
missing relations.

In addition to the two properties, another important issue of temporal graph ex-

traction is the definition of its nodes (or events). Generally speaking, an event is

considered to be an action associated with corresponding participants involved in

this action. However, as we pointed out in Sec. 2.1, the definition of events is often

limited to a set of predefined types. In this thesis work so far, we have been following

the event definition of TempEval3 [3] (which itself followed TimeBank [89]), where

the limitation to predefined types is lifted; instead, all terms for situations that hap-
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pen or occur are considered events, except for generic1 and temporally static events.2

If not stated otherwise, this thesis assumes gold events and only the TempRels need

to be inferred.

4.1.2 Temporal Relation Labels

Figure 4.3: Thirteen possible relations between two events whose timescopes are
[t1start, t

1
end] and [t2start, t

2
end] (from top to bottom): after, immediately after, after and

overlap, ends, included, started by, equal, starts, includes, ended by, before and
overlap, immediately before and before.

The TempRel between two time points is often straightforward: before, after, and

simultaneous. Following Allen (1984) [90], existing works often represent the time

scope of an event by an interval, [tstart, tend] (i.e., the start- and end-point of an event).

1Jews are prohibited from killing one another.
2New York is on the east coast.
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Generally speaking, comparing two time intervals is the same as comparing four time

points, which results in 13 different TempRel labels (see Fig. 4.3). However, existing

works usually use a reduced set of these 13 labels. For instance, in Bethard et al.

(2007) [91] and Do et al. (2012) [92], only 4 specific relations were considered: before,

after, overlap and simultaneous; TimeBank-Dense [93] uses 5 relations: before, after,

includes, is included and simultaneous. We think that people use a reduced set

instead of the original 13 mainly due to the following two reasons.

1. The non-uniform distribution of all the 13 labels makes it difficult to separate

low-frequency ones from the others (see Table 1 in [94]). For example, labels

such as immediately before or immediately after, albeit possible, rarely exist in

practice. As a result, intentionally omitting the rarely existing labels in the

label set of a system often leads to better performances.

2. Due to ambiguity in natural language, the subtask of differentiating between

before and immediately before may be not well-defined [95]. In Example 10, it

is disputable whether e14:locked is before or immediately before due to the am-

biguity between t
′′locked′′

end and t
′′left′′

start . In addition, the granularity that the user

cares about also affects the decision here. As a result, intentionally reducing

these confusing labels often leads to better annotation agreement levels.

Example 10: I (e14:locked) the door and (e15:left) the place.

In my thesis work, we follow the reduced set used by TimeBank-Dense (i.e., before,

after, includes, is included and equal). However, in Sec. 4.4, where we introduce

our newly collected TempRel dataset, we switch to only focus on the TempRel

between the start-points of events, and on that particular dataset, the labels are

changed to before, after, and equal. Additionally, in both the aforementioned [91,

92, 93, 95] and this thesis work, an extra label called vague or none is also included

as another relation type when the TempRel is not clear and no single relations

can be convincingly assigned to it. In Example 11, it is unclear whether e16:ate

or e17:drank happened first. Vagueness has long been an issue for the TempRel
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task: For human annotators, it leads to confusion and lowers the inter-annotator

agreement (IAA) levels; for systems, it is very difficult to tell if a TempRel is vague

or not.

Example 11: I (e16:ate) a burger and (e17:drank) a bottle of juice for lunch
today.

4.1.3 Evaluation Metrics

There are three commonly-used evaluation metrics for the TempRel extraction task.

The first metric is classification accuracy (Acc), which is the ratio of the number of

correct TempRels to the total number of predictions. The second metric is to view

this task as a general relation extraction task, treat the label of vague for TempRel

as no relation, and then compute the precision, recall, and F1 accordingly.

The third metric, the temporal awareness score, came into use since the TempEval3

workshop [3], which involves graph closure and reduction on top of the second metric.

Specifically, let Gsys and Gref be two temporal graphs from the system prediction and

the reference (e.g., the ground truth), respectively. The precision and recall in the

temporal awareness setup are defined as follows.

P =
|G−sys ∩G+

ref|
|G−sys|

, R =
|G−ref ∩G+

sys|
|G−ref|

,

where G+ is the closure of graph G, G− is the reduction of G, “∩” is the intersection

between TempRels in two graphs, and |G| is the number of TempRels in G (note

that vague relations are not counted). The temporal awareness metric better captures

how “useful” a temporal graph is, for example, if system 1 produces ripping is before

hurt and hurt is before monitor, and system 2 adds ripping is before monitor on top

of system 1. Since system 2 is simply a transitive closure of system 1, they would

have the same evaluation scores in the temporal awareness setup.

Take the confusion matrix in Fig. 4.4 for example. The three metrics used in this

thesis are
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1. Accuracy. Acc = (Cb,b + Ca,a + Ce,e + Cv,v)/S.

2. Precision, recall, and F1. P = (Cb,b+Ca,a+Ce,e)/S1, R = (Cb,b+Ca,a+Ce,e)/S2,

and F1 = 2PR/(P +R).

3. Awareness score Faware. Before calculating precision, perform a graph closure

on the gold temporal graph and a graph reduction on the predicted temporal

graph. Similarly, before calculating recall, perform a graph reduction on the

gold temporal graph and a graph closure on the predicted temporal graph.

Finally, compute the F1 score based on this revised precision and recall. Since

graph reduction and closure are involved in computing this metric, the tem-

poral graphs all need to satisfy the global transitivity constraints of temporal

relations (e.g., if A happened before B, and B happened before C, then C cannot

be before A if we want to use this metric).

Gold

b a e v
Predicted

b

a

e

v

Cb,b Cb,a Cb,e Cb,v

Ca,b Ca,a Ca,e Ca,v

Ce,b Ce,a Ce,e Ce,v

Cv,b Cv,a Cv,e Cv,v

S1

S2

S

Figure 4.4: An example confusion matrix, where the four labels are before (b), after
(a), simultaneous (e), and vague (v), respectively. Note this is only for illustration
purpose and the label set can be different in practice. The variables, S, S1, and S2,
are the summation of all the numbers in the corresponding area. This figure is
better viewed in color.

30



4.2 Structured Learning for TempRel Extraction

4.2.1 Related Work

In order to solve the graph extraction problem in the TempRel task, early attempts

[94, 96, 91, 97] studied local methods. That is, look at each pair of nodes and make

decisions irrespective of edges between other pairs, during which both the learning

and inference are local. Some of the state-of-the-art methods, including ClearTK

[98], UTTime [99], and NavyTime [100], use better designed rules or more advanced

features such as syntactic tree paths, but are still local in this context. A disadvantage

is that decisions made locally may be globally inconsistent (i.e., the symmetry and/or

transitivity constraints are not satisfied for the entire temporal graph).

Integer linear programming (ILP) methods, which were introduced to solve in-

ference problems in NLP [74], have been used for the TempRel task in order to

enforce global consistency in several works including [101, 50, 92]. They formulated

temporal graph extraction as an ILP and showed that it improved over local methods

for densely connected graphs. As we mentioned in Sec. 2.2.4, since these methods

perform inference (“I”) on top of pre-trained local classifiers (“L”), they are often

referred to as L+I [80]. In another state-of-the-art method, CAscading EVent Order-

ing (CAEVO) [95], some hand-crafted rules and machine learned classifiers (called

sieves therein) form a pipeline. Global consistency is enforced by inferring all possi-

ble relations before passing the graph to the next sieve. This best-first architecture is

conceptually similar to L+I but the inference is greedy, similar to [102, 97]. In other

words, these methods have all successfully incorporated the transitivity structure in

the inference phase.

While it is clear that the transitivity structure of temporal graphs requires global

considerations when solving the TempRel task, all the aforementioned methods

depend on classifiers that are learned locally without taking structural information

into account. Although L+I methods impose global constraints in the inference

phase, we argue that global considerations are necessary in the learning phase as

well, which falls into the category of structured learning.
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In parallel to the work presented here, [103] also proposed a structured learning

approach to extracting the TempRels. Their work mainly focused on the medi-

cal domain based on the Clinical TempEval workshop [104, 105, 106], so their work

provides additional evidence that structured learning is a suitable choice for the

TempRel task. More importantly, they compared structured learning to local base-

lines, while we find that the comparison between structured learning and L+I is

more interesting and important for understanding the effect of global considerations

in the learning phase. Given the transitivity property that valid temporal graphs

possess, the TempRel extraction problem is a structured prediction problem. In

this section, we explain our approach to both learning and inference.

Another line of work that takes advantage of the structure of time is called tem-

poral dependency structure (Zhang and Xue [107, 108]). The same authors have

also proposed corresponding neural parsers for this structure [109]. This temporal

dependency structure treats a temporal graph as a dependency parsing tree where

each dependency relation corresponds to an instance of temporal anaphora where

the antecedent is the parent and the anaphor is the child. The structure is different

to the transitivity structure exploited here.

4.2.2 Inference via Integer Linear Programming

Since inference is an important step in structured learning schemes, we first introduce

the inference algorithm via ILP. In a temporal graph with n edges, let φi ∈ X ⊆ Rd

be the extracted d-dimensional feature and yi ∈ Y be the TempRel for the i-th

edge, i = 1, 2, . . . , n, where Y = {rj}6j=1 is the label set for the six TempRels we

use, i.e., before, after, includes, is included, simultaneous, and vague. Moreover, let

x = {φ1, . . . , φn} ∈ X n and y = {y1, . . . , yn} ∈ Yn be more compact representations

of all the features and labels in this temporal graph. Given the weight vector wr of

a linear classifier trained for relation r ∈ Y (i.e., using the one-vs-all scheme), the

global inference step is to solve the following constrained optimization problem:

ŷ = arg max
y∈C(Yn)

f(x,y), (4.1)
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where C(Yn) ⊆ Yn constrains the temporal graph to be symmetrically and transi-

tively consistent, and f(x,y) is the soft-max scoring function:

f(x,y) =
n∑
i=1

fyi(φi) =
n∑
i=1

ew
T
yi
φi∑

r∈Y e
wT

r φi
.

Specifically, fyi(φi) is the probability of the i-th edge having relation yi. f(x,y) is

simply the sum of these probabilities over all the edges in a temporal graph, which

we think of as the confidence of assigning y = {y1, ..., yn} to this temporal graph,

and it therefore needs to be maximized in Eq. (4.1).

Note that when C(Yn) = Yn, Eq. (4.1) can be solved for each ŷi independently,

which is what the so-called local methods do. When C(Yn) 6= Yn, Eq. (4.1) cannot

be decoupled for each ŷi and is usually formulated as an ILP problem [74, 50, 92].

Specifically, let Ir(ij) ∈ {0, 1} be the indicator function of relation r for node i

and node j and fr(ij) ∈ [0, 1] be the corresponding soft-max score. Then the ILP

objective for global inference is formulated as follows.

Î = argmax
I

∑
i<j

∑
r∈Y fr(ij)Ir(ij)

s.t. ΣrIr(ij) = 1
(uniqueness)

, (4.2)

Ir1(ij) + Ir2(jk)− ΣN
m=1Irm3 (ik) ≤ 1,

(transitivity)

for all distinct nodes i, j, and k, where N is the number of possible relations for r3

when r1 and r2 are true. The formulation in Eq. (4.2) is different from previous work

[50, 92]. Previously, transitivity constraints were formulated as Ir1(ij) + Ir2(jk) −
Ir3(ik) ≤ 1, which is a special case when N = 1 and can be understood as “r1 and

r2 determine a single r3”. Imagine if both r1 and r2 are true, then the only way to

satisfy this constraint is to have r3 be true as well. However, it was overlooked that,

although some r1 and r2 cannot uniquely determine r3, they can still constrain the

set of labels that r3 can take. For example, as shown in Fig. 4.5, when r1=before and

r2=is included, r3 is not determined but we know that r3 ∈ {before, is included}.
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This information can be easily exploited by allowing N > 1. Note that despite this

difference, this optimization problem (4.2) can still be solved using off-the-shelf ILP

packages such as GUROBI [75].

A B

C1

C2
Time

<

Figure 4.5: When A is before B and B is included in C, A can either be before C1

or is included in C2. We propose to incorporate this via the transitivity constraints
for Eq. (4.2).

Let r3 ∈ Trans(r1, r2) be the set comprised of all the TempRel labels that do not

conflict with r1 and r2. Using this notation, the transitivity constraint in Eq. (4.2)

can be rewritten as

Ir1(ij) + Ir2(jk)−
∑

r3∈Trans(r1,r2)

Ir3(ik) ≤ 1.

Imagine if both r1 and r2 are true, then the only way to satisfy this constraint is to

select r3 from the set of Trans(r1, r2).

The construction of Trans(r1, r2) necessitates a clearer definition of the label set of

TempRels, the importance of which is often overlooked by existing methods. We

have used Y as the label set used here, i.e., before, after, includes, is included, simulta-

neous, and vague. For notation convenience, we denote them as Y = {b, a, i, ii, s, v}.
As we have introduced in Sec. 4.1.2, existing approaches all followed the interval rep-

resentation of events [90], which originally yields 13 TempRel labels (Fig. 4.3; let Ỹ
be the 13 labels plus vague). Many systems used a reduced set, for example, our Y
here. However, there has been limited discussion in the literature on how to interpret

the reduced relation types. For example, is the “before” in Y exactly the same as

the “before” in the original set (Ỹ) (as shown on the left-hand-side of Fig. 4.6), or

is it a combination of multiple relations in Ỹ (the right-hand side of Fig. 4.6)? We

have tried both reduction schemes in Fig. 4.6, where scheme 1 ignores low frequency
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labels directly and scheme 2 absorbs low frequency ones into their temporally closest

labels. The two schemes barely have differences when a system only looks at a single

pair of mentions at a time (this might explain the lack of discussion over this issue in

the literature), but they lead to different Trans(r1, r2) sets and this difference can be

magnified when the problem is solved jointly and when the label distribution changes

across domains. To completely cover the 13 relations, we adopt scheme 2 in Fig. 4.6

in this work.

The resulting transitivity relations are shown in Table 4.1. The top part of Ta-

ble 4.1 is a compact representation of three generic rules; for instance, Line 1 means

that the labels themselves are transitive. Note that during human annotation, if an

annotator looks at a pair of events and decides that multiple well-defined relations

can exist, he/she labels it vague; also, when aggregating the labels from multiple

annotators, a label will be changed to vague if the annotators disagree with each

other. In either case, vague is chosen to be the label when a single well-defined re-

lation cannot be uniquely determined by the contextual information. This explains

why a vague relation (v) is always added in Table 4.1 if more than one label in

Trans(r1, r2) is possible. As for Lines 6, 9-11 in Table 4.1 (where vague appears

in Column r2), Column Trans(r1,r2) was designed in such a way that r2 cannot be

uniquely determined through r1 and Trans(r1,r2). For instance, r1 is after on Line

9, if we further put before into Trans(r1,r2), then r2 would be uniquely determined

to be before, conflicting with r2 being vague, so before should not be in Trans(r1,r2).

4.2.3 Learning via Structured Perceptron

With the inference solver defined above, we propose to use the structured perceptron

[110] as a representative structured learning algorithm for TempRel extraction.

Specifically, let L = {xk,yk}Kk=1 be the labeled training set of K instances (usually

documents). The structured perceptron training algorithm for this problem is shown

in Algorithm 1. The Illinois-SL package [111] was used in our experiments for its

structured perceptron component. In terms of the features used in this work, we

adopt the same set of features designed in Sec. 3.1 of [92].
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Figure 4.6: Two possible interpretations to the label set of
Y = {b, a, i, ii, s, v} for the temporal relations between (A, B). “x” means that the
label is ignored. Brackets represent time intervals along the time axis.

In Algorithm 1, Line 5 is the inference step as in Eq. (4.1) or (4.2). If there was

only one pair of events in each instance (thus no structure to take advantage of), Al-

gorithm 1 would reduce to the conventional perceptron algorithm and Line 5 simply

chooses the top scoring label. With a structured instance instead, Line 5 becomes

slower to solve, but it can provide valuable information so that the perceptron learner

is able to look further at other labels rather than an isolated pair. For example in

Example 9 and Fig. 4.1, the fact that (ripping,ordered)=before is established through

two other relations: 1) ripping is an adverbial participle and thus included in cas-

caded and 2) cascaded is before ordered. If (ripping,ordered)=before is presented to a

local learning algorithm without knowing its predictions on (ripping,cascaded) and

(cascaded,ordered), then the model either cannot support it or overfits it. In struc-

tured perceptron, however, if the classifier was correct in deciding (ripping,cascaded)

and (cascaded,ordered), then (ripping,ordered) would be correct automatically due

to structural constraints, and would not contribute to updating the classifier.
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Table 4.1: Transitivity relations based on the label set reduction scheme 2 in
Fig. 4.6. If (m1,m2) 7→ r1 and (m2,m3) 7→ r2, then the relation of (m1,m3) must
be chosen from Trans(r1, r2), ∀m1, m2, m3 ∈M. The top part of the table uses r
to represent generic rules compactly. Notations: before (b), after (a), includes (i),
is included (ii), simultaneously (s), vague (v), and r̄ represents the reverse relation
of r.

No. r1 r2 Trans(r1, r2)
1 r r r
2 r s r

3 r1 r2 Trans(r̄2, r̄1)

4 b i b, i, v
5 b ii b, ii, v
6 b v b, i, ii, v
7 a i a, i, v
8 a ii a, ii, v
9 a v a, i, ii ,v
10 i v b, a, i, v
11 ii v b, a, ii, v

Algorithm 1: Structured perceptron algorithm for TempRels

Input: Training set L = {xk,yk}Kk=1, learning rate λ
1 Perform graph closure on each yk
2 Initialize wr = 0, ∀r ∈ Y
3 while convergence criteria not satisfied do
4 Shuffle the examples in L
5 foreach (x,y) ∈ L do
6 ŷ = arg maxy∈C f(x,y)
7 if ŷ 6= y then
8 wr = wr + λ(

∑
i:yi=r

φi−
∑

i:ŷi=r
φi), ∀r ∈ Y

9 return {wr}r∈Y
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4.2.4 Learning via CoDL

The scarcity of training data and the difficulty in annotation have long been a bot-

tleneck for temporal processing systems. Given the inherent global constraints in

temporal graphs, we propose to perform semi-supervised structured learning using

the constraint-driven learning (CoDL) algorithm [112, 113], as shown in Algorithm 2,

where the function “Learn” in Lines 2 and 9 represents any standard learning algo-

rithm (e.g., perceptron, SVM, or even structured perceptron; here we used the aver-

aged perceptron [114]) and subscript “r” means selecting the learned weight vector

for relation r ∈ Y . CoDL improves the model learned from a small amount of labeled

data by repeatedly generating feedback through labeling unlabeled examples, which

is in fact a semi-supervised version of IBT. Experiments show that this scheme is

indeed helpful for solving this problem.

Algorithm 2: Constraint-driven learning algorithm

Input: Labeled set L, unlabeled set U , weighting coefficient γ
1 Perform closure on each graph in L
2 Initialize wr = Learn(L)r,∀ r ∈ Y
3 while convergence criteria not satisfied do
4 T = ∅
5 foreach x ∈ U do
6 ŷ = arg maxy∈C f(x,y)
7 Perform graph closure on ŷ
8 T = T ∪ {(x, ŷ)}
9 wr = γwr + (1− γ)Learn(T )r,∀ r ∈ Y

10 return {wr}r∈Y

4.2.5 Missing Annotations

Since even human annotators find it difficult to annotate temporal graphs, many

of the TempRels are left unspecified by annotators (compare Fig. 4.2 to Fig. 4.1).

While some of these missing TempRels can be inferred from existing ones, the vast
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majority still remain unknown as shown in Table 4.2. Despite the existence of denser

annotation schemes (e.g., Cassidy et al. (2014) [93]), the TempRel annotation task

is quadratic in the number of nodes, and it is practically infeasible to annotate

complete graphs. Therefore, the problem of identifying these unknown relations in

training and test is an important issue that dramatically hurts existing methods.

Table 4.2: Categories of Event-Event TempRels in the TE3 Platinum dataset.
Among all pairs of events, 98.2% of them are left unspecified by the annotators.
Graph closure can automatically add 8.7%, but most of the event pairs are still
unknown.

Type #TempRel %
Annotated 582 1.8

Missing
Inferred 2840 8.7

Unknown 29240 89.5
Total 32662 100

We could simply use these unknown pairs (or some filtered version of them) to

design rules or train classifiers to identify whether a TempRel is vague or not.

However, we propose to exclude both the unknown pairs and the vague classifier

from the training process – by changing the structured loss function to ignore the

inference feedback on vague TempRels (see Line 8 in Algorithm 1 and Line 9 in

Algorithm 2). The reasons are discussed below.

First, it is believed that a lot of the unknown pairs are not really vague but rather

pairs that the annotators failed to look at [91, 93, 95]. For example, (cascaded,

monitor) should be annotated as before but is missing in Fig. 4.2. It is hard to exclude

such noise in the data during training. Second, compared to the overwhelmingly

large number of unknown TempRels (89.5% as shown in Table 4.2), the scarcity

of non-vague TempRels makes it hard to learn a good vague classifier. Third,

vague is fundamentally different from the other relation types. For example, if a

before TempRel can be established given a sentence, then it always holds as before

regardless of other events around it, but if a TempRel is vague given a sentence, it

may still change to other types afterwards if a connection can later be established

through other nodes from the context. This distinction emphasizes that vague is a
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consequence of lack of background/contextual information, rather than a concrete

relation type to be trained on. Fourth, without the vague classifier, the predicted

temporal graph tends to become more densely connected, thus the global transitivity

constraints can be more effective in correcting local mistakes [50].

However, excluding the local classifier for vague TempRels would undesirably

assign non-vague TempRels to every pair of events. To handle this, we take a

closer look at the vague TempRels. Note that a vague TempRel could arise in

two situations if the annotators did not fail to look at it. One is that an annotator

looks at this pair of events and decides that multiple relations can exist, and the

other one is that two annotators disagree on the relation (similar arguments were

also made in [93]). In both situations, the annotators first try to assign all possible

relations to a TempRel, and then change the relation to vague if more than one

can be assigned. This human annotation process for vague is different from many

existing methods, which either identify the existence of a TempRel first (using

rules or machine-learned classifiers) and then classify, or directly include vague as a

classification label along with other non-vague relations.

We propose to mimic this mental process by a post-filtering method. Specifically,

we take each TempRel produced by ILP and determine whether it is vague using

its relative entropy (the Kullback-Leibler divergence) to the uniform distribution.

Letting {rm}Mm=1 be the set of relations that the i-th pair of events can take, we filter

the i-th TempRel given by ILP by:

δi =
M∑
m=1

frm(φi) log (Mfrm(φi)),

where frm(φi) is the soft-max score of rm, obtained by the local classifier for rm. We

then compare δi to a fixed threshold τ to determine the vagueness of this TempRel;

we accept its originally predicted label if δi > τ , or change it to vague otherwise.

Using relative entropy here is intuitively appealing and empirically useful as shown

in the experiments section next.
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4.2.6 Experiments

4.2.6.1 Datasets

The TempEval3 (TE3) workshop [3] provided the TimeBank (TB) [89], AQUAINT

(AQ) [115], Silver (TE3-SV), and Platinum (TE3-PT) datasets, where TB and AQ

are usually for training, and TE3-PT is usually for testing. The TE3-SV dataset

is a much larger, machine-annotated and automatically-merged dataset based on

multiple systems, with the intention to see if these “silver” standard data can help

when included in training (although almost all participating systems saw performance

drop with TE3-SV included in training).

Two popular augmentations on TB are the Verb-Clause TempRel dataset (VC)

and Timebank-Dense dataset (TD). The VC dataset has specially annotated event

pairs that follow the so-called Verb-Clause structure [91], which is usually beneficial

to be included in training [3]. The TD dataset contains 36 documents from TB

which were re-annotated using the dense event ordering framework proposed in [93].

The experiments included in this dissertation will involve the TE3 datasets as well

as these augmentations. Therefore, some statistics on them are shown in Table 4.3.

Table 4.3: Facts about the datasets used in this section. Note that the column of
TempRels only counts the non-vague TempRels. The TempRel annotations in
TE3-SV is not used in this dissertation and its number is thus not shown.

Dataset Doc Tokens Event TempRel Note
TB+AQ 256 100K 12K 12K Training
VC 132 - 1.6K 0.9K Training
TD 36 - 1.6K 5.7K Training
TD-Train 22 - 1K 3.8K Training
TD-Dev 5 - 0.2K 0.6K Dev
TD-Test 9 - 0.4K 1.3K Eval
TE3-PT 20 6K 0.7K 0.9K Eval
TE3-SV 2.5K 666K 81K - Unlabeled
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4.2.6.2 Baseline Methods

In addition to the state-of-the-art systems, another two baseline methods were also

implemented for a better understanding of the proposed. The first is the regularized

averaged perceptron (AP) [114] implemented in the LBJava package [116] and is a

local method. On top of the first baseline, we performed global inference in Eq.(4.2),

referred to as the L+I baseline (AP+ILP). Both of them used the same feature

set (i.e., as designed in [92]) as in the proposed structured perceptron (SP) for fair

comparisons. To clarify, SP is a training algorithm and its immediate outputs are

the weight vectors {wr}r∈Y for local classifiers. An ILP inference was performed

on top of it to yield the final output, and we refer to it as “S+I” (i.e., structured

learning+inference) methods.

Table 4.4: Temporal awareness scores on TE3-PT given gold event pairs. Systems
that are significantly better than the previous rows are underlined (per McNemar’s
test with p < 0.0005). The last column shows the relative improvement in F1 score
over AP-1, which identifies the source of improvement: 5.2% from additional
training data, 9.3% (14.5%-5.2%) from constraints, and 10.4% from structured
learning.

System Method P R F1 %
UTTime Local 55.6 57.4 56.5 +5.0
AP-1 Local 56.3 51.5 53.8 0
AP-2 Local 58.0 55.3 56.6 +5.2
AP+ILP L+I 62.2 61.1 61.6 +14.5
SP+ILP S+I 69.1 65.5 67.2 +24.9

4.2.6.3 TE3 Task C - Relation Only

To show the benefit of using structured learning, we tested the scenario where the

gold pairs of events that have a non-vague TempRel were known priori. This setup

was a standard task presented in TE3 (Task C – Relation Only). UTTime [99] was

the top system in this task in TE3. Since UTTime is not available to us, and its

performance was reported in TE3 in terms of both Event-Event (EE) and Event-
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Timex (ET) TempRels together, we also locally trained an ET classifier based on

[92] and included its prediction only for fair comparisons.

UTTime is a local method and was trained on TB+AQ and tested on TE3-PT.

We used the same datasets for our local baseline and its performance is shown in

Table 4.4 under the name “AP-1”. Note that the numbers reported below are the

temporal awareness scores obtained from the official evaluation script provided in

TE3. We can see that UTTime is about 3% better than AP-1 in the absolute value

of F1, which is expected since UTTime included more advanced features derived from

syntactic parse trees. By adding the VC and TD datasets into the training set, we

retrained our local baseline and achieved performance comparable to that of UTTime

(“AP-2” in Table 4.4). On top of AP-2, a global inference step enforcing symmetry

and transitivity constraints (“AP+ILP”) can further improve the F1 score by 9.3%,

which is consistent with previous observations [50, 92]. SP+ILP further improved

the performance in precision, recall, and F1 significantly (per the McNemar’s test

[117, 118] with p <0.0005), reaching an F1 score of 67.2%. This meets our expectation

that structured learning can be better when the local problem is difficult [80].
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Table 4.5: Temporal awareness scores given gold events but with no gold pairs (TempEval3 Task C), which show that the
proposed S+I methods outperformed state-of-the-art systems in various settings. The fourth column indicates the
annotation sources used, with additional unlabeled dataset in the parentheses. The “Filters” column shows if the
proposed post-filtering method (Sec. 4.2.5) was used. The last column is the relative improvement in F1 score compared
to baseline systems on line 1, 7, and 11, respectively. Systems that are significantly better than the “*”-ed systems are
underlined (per McNemar’s test with p < 0.0005).

No. System Method Anno. (Unlabeled) Testset Filters P R F1 %

1 ClearTK Local TB, AQ, VC, TD TE3-PT - 37.2 33.1 35.1 0
2 AP* Local TB, AQ, VC, TD TE3-PT - 35.3 37.1 36.1 +2.8
3 AP+ILP L+I TB, AQ, VC, TD TE3-PT - 35.7 35.0 35.3 +0.6
4 SP+ILP S+I TB, AQ, VC, TD TE3-PT - 32.4 45.2 37.7 +7.4
5 SP+ILP S+I TB, AQ, VC, TD TE3-PT post 33.1 49.2 39.6 +12.8
6 CoDL+ILP S+I TB, AQ, VC, TD (TE3-SV) TE3-PT post 35.5 46.5 40.3 +14.8
7 ClearTK* Local TB, VC TE3-PT - 35.9 38.2 37.0 0
8 SP+ILP S+I TB, VC TE3-PT post 30.7 47.1 37.2 +0.5
9 CoDL+ILP S+I TB, VC (TE3-SV) TE3-PT post 33.9 45.9 39.0 +5.4

10 ClearTK Local TD-Train TD-Test - 46.04 20.90 28.74 -
11 CAEVO* L+I TD-Train TD-Test - 54.17 39.49 45.68 0
12 SP+ILP S+I TD-Train TD-Test post 45.34 48.68 46.95 +3.0
13 CoDL+ILP S+I TD-Train (TE3-SV) TD-Test post 45.57 51.89 48.53 +6.3
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4.2.6.4 TE3 Task C

In the first scenario, we knew in advance which TempRels existed or not, so the

“post-filtering” method was not used when generating the results in Table 4.4. Here

we test a more practical scenario, where we only know the events, but do not know

which ones are related. This setup was Task C in TE3 and the top system was

ClearTK [98]. Again, for fair comparison, we simply added the ET TempRels pre-

dicted by ClearTK. Moreover, 10% of the training data was held out for development.

Corresponding results on the TE3-PT testset are shown in Table 4.5.

From lines 2-4, all systems see significant drops in performance if compared with

the same entries in Table 4.4. It confirms our assertion that how to handle vague

TempRels is a major issue for this TempRel extraction problem. The improvement

of SP+ILP (line 4) over AP (line 2) was small and AP+ILP (line 3) was even worse

than AP, which necessitates the use of a better approach towards vague TempRels.

By applying the post-filtering method proposed in Sec. 4.2.5, we were able to achieve

better performances using SP+ILP (line 5), which shows the effectiveness of this

strategy. Finally, by setting U in Algorithm 2 to be the TE3-SV dataset, CoDL+ILP

(line 6) achieved the best F1 score with a relative improvement over ClearTK being

14.8%. Note that when using TE3-SV in this work, we did not use its annotations

on TempRels.

In [3], we notice that the best performance of ClearTK was achieved when trained

on TB+VC (line 7 is higher than its reported values in TE3 because of later changes

in ClearTK), so we retrained the proposed systems on the same training set and

results are shown in lines 8-9. In this case, the improvement of S+I over Local was

small, which may be due to the lack of training data. Note that line 8 was still

significantly different from line 7 per the McNemar’s test, although there was only

0.2% absolute difference in F1, which can be explained from their large differences

in precision and recall.
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4.2.6.5 Comparison with CAEVO

The proposed structured learning approach was further compared to a recent system,

a CAscading EVent Ordering architecture (CAEVO) proposed in [95] (lines 10-13).

We used the same training set and test set as CAEVO in the S+I systems. Again,

we added the ET TempRels predicted by CAEVO to both S+I systems. In [95],

CAEVO was reported on the straightforward evaluation metric including the vague

TempRels, but the temporal awareness scores were used here, which explains the

difference between line 11 in Table 4.5 and what was reported in [95].

ClearTK was reported to be outperformed by CAEVO on TD-Test [95], but we

observe that ClearTK on line 10 was much worse even than itself on line 7 (trained

on TB+VC) and on line 1 (trained on TB+AQ+VC+TD) due to the annotation

scheme difference between TD and TB/AQ/VC. ClearTK was designed mainly for

TE3, aiming for high precision, which is reflected by its high precision on line 10,

but it does not have enough flexibility to cope with two very different annotation

schemes. Therefore, we have chosen CAEVO as the baseline system to evaluate

the significance of the proposed ones. On the TD-Test dataset, all systems other

than ClearTK had better F1 scores compared to their performances on TE3-PT.

This notable difference (i.e., 48.53 vs 40.3) indicates the better quality of the dense

annotation scheme that was used to create TD [93]. SP+ILP outperformed CAEVO

and if additional unlabeled dataset TE3-SV was used, CoDL+ILP achieved the best

score with a relative improvement in F1 score being 6.3%.

So far, we have shown a structured learning approach to identifying TempRels

in natural language text and show that it captures the global nature of this problem

better than state-of-the-art systems do. In addition, the global nature of this problem

gives rise to a better way of making use of the readily available unlabeled data, which

further improves the proposed method. The improved performance on both TE3-

PT and TD-Test, two differently annotated datasets, clearly shows the advantage of

exploiting “structures” in time.
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4.3 Injection of Human Prior Knowledge

As in many NLP tasks, one of the challenges in TempRel extraction is that it

requires high-level prior knowledge; in this case, we care about the temporal order

that events usually follow. In Example 12, we have deleted events from the original

sentence. Rich temporal information is encoded in the events’ names, and this often

plays an indispensable role in making our decisions. As a result, it is very difficult

even for humans to figure out the TempRels between those events. In the first para-

graph of Example 12, it is difficult to understand what really happened without the

actual event verbs; let alone the TempRels between them. In the second paragraph,

things are even more interesting: if we had e20:dislike and e21:stop, then we would

know easily that “I dislike” occurs after “they stop the column”. However, if we

had e20:ask and e21:help, then the relation between e20 and e21 would be reversed

and e20 is before e21. We are in urgent need of the event names to determine the

TempRels. In Example 13, where we show the complete sentences, the task has

become much easier for humans due to our prior knowledge. Motivated by these

examples (which are in fact very common), we believe in the importance of such a

prior knowledge in determining TempRels.

Example 12: Difficulty in understanding TempRels when event
content is missing. Note that e18 and e19 have the same tense, and
e20 and e21 have the same tense.
More than 10 people have (e18:died), police said. A car (e19:exploded)
on Friday in the middle of a group of men playing volleyball.
The first thing I (e20:ask) is that they (e21:help) writing this column.

However, most existing systems only make use of rather local features of these

events, which cannot represent the prior knowledge humans have about these events

and their “typical” order. As a result, existing systems almost always attempt to

solve the situations shown in Example 12, even when they are actually presented

with input as in Example 13. In this section, we propose such a resource in the form

of a probabilistic knowledge base, constructed from a large New York Times (NYT)

corpus. We hereafter name our resource TempRel PRObabilistic knowledge Base
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(TemProb), which can potentially benefit many time-aware tasks. A few example

entries of TemProb are shown in Table 4.6.

Table 4.6: TemProb is a unique source of information of the temporal
order that events usually follow. The probabilities below do not add up to
100% because less frequent relations are omitted. The word sense numbers are not
shown here for convenience.

Example Pairs Before (%) After (%)
accept determine 42 26

ask help 86 9
attend schedule 1 82
accept propose 10 77

die explode 14 83
. . .

Example 13: The original sentences in Example 12.
More than 10 people have (e2:died), police said. A car (e1:exploded) on
Friday in the middle of a group of men playing volleyball.
The first thing I (e20:ask) is that they (e21:help) writing this column.

4.3.1 Related Work

The TempRel extraction task has a strong dependency on prior knowledge, as shown

in our earlier examples. However, very limited attention has been paid to generating

such a resource and to make use of it; to our knowledge, the TemProb proposed

in this work is completely new. We find that the time-sensitive relations proposed

in [119] is a close one in literature (although it is still very different). Jiang et

al. [119] worked on the knowledge graph completion task. Based on YAGO2 [120]

and Freebase [121], it manually selects a small number of relations that are time-

sensitive (10 relations from YAGO2 and 87 relations from Freebase, respectively).

Exemplar relations are wasBornIn→diedIn→ and graduateFrom→workAt, where →
means temporally before.
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What we are trying to address in this section significantly differs from the time-

sensitive relations in [119] in the following aspects. First, scale difference: [119] can

only extract a small number of relations (<100), but we work on general semantic

frames (tens of thousands) and the relations between any two of them, which we think

has broader applications. Second, granularity difference: the smallest granularity in

[119] is one year,3 i.e., only when two events happened in different years can they

know the temporal order of them, but this work can handle implicit temporal orders

without having to refer to the physical time points of events (i.e., the granularity can

be arbitrarily small). Third, domain difference: while [119] extracts time-sensitive

relations from structured knowledge bases (where events are explicitly anchored to

a time point), we extract relations from unstructured natural language text (where

the physical time points may not even exist in text). Our task is more general and

it allows us to extract much more relations, as reflected by the first difference above.

Another related work is the VerbOcean [122], which extracts TempRels between

pairs of verbs using manually designed lexico-syntactic patterns (there are in total 12

such patterns), in contrast to the automatic extraction method proposed in this work.

In addition, the only temporal relation considered in VerbOceans is before, while we

also consider relations such as after, includes, included, simultaneous, and vague. As

expected, the total numbers of verbs and before relations in VerbOcean are about

3K and 4K, respectively, both of which are much smaller than TemProb, which

contains 51K verb frames (i.e., disambiguated verbs), 9.2M (verb1, verb2, relation)

entries, and up to 80M TempRels altogether.

All these differences necessitate the construction of a new resource for TempRel

extraction, which we explain below.

4.3.2 TemProb: A Probabilistic Resource for TempRels

In the TempRel extraction task, people have usually assumed that events are al-

ready given. However, to construct the desired resource, we need to extract events

3We notice that the smallest granularity in Freebase itself is one day, but [119] only used years.
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(Sec. 4.3.2.1) and extract TempRels (Sec. 4.3.2.2), from a large, unannotated4 cor-

pus (Sec. 4.3.2.3). First, we considered semantic-frame based events, which could

be detected via off-the-shelf semantic role labeling (SRL) tools. Then we applied a

TempRel extractor on top of the events we extracted. We performed this procedure

on more than 1 million NYT articles, spanning 20 years (1987-2007).5 Finally, we

also show some interesting statistics discovered in TemProb that may be useful for

other tasks as well (Sec. 4.3.2.4).

4.3.2.1 Event Extraction

As we have introduced in Sec. 2.1, extracting events and the relations between them

(e.g., coreference, causality, entailment, and temporal) has long been an active area

in the NLP community. Generally speaking, an event is considered to be an action

associated with corresponding participants involved in this action. In this work,

following [123, 31, 32, 33], we consider semantic-frame based events, which can be

directly detected via off-the-shelf semantic role labeling (SRL) tools. Specifically,

we only look at verb semantic frames in this work due to the difficulty of getting

TempRel annotation for nominal events.

When building a knowledge graph of TempRels, a certain level of abstraction

is often preferred to be able to generalize. For example, given two events, “Jack is

arrested because of robbery” and “John is arrested because of robbery”, one question

to ask is “are they the same or different?”. One may think that they are different

due to their difference between arguments (i.e., “Jack” vs. “John”), but an obvious

disadvantage is that there are too many entities of different surface forms to account

for in a limited dataset; more importantly, “rob” leading to “being arrested” is likely

to be a common pattern in which their subjects play a minor role. Based on this

intuition, we decide to start from the assumption that two events are considered to

be in the same category as long as they share the same predicate (in other words,

the knowledge base is built upon disambiguated predicates). As we show later, this

4Unannotated with TempRels.
5https://catalog.ldc.upenn.edu/LDC2008T19
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assumption works reasonably well. We are aware that this level of abstraction may

not be perfect, and future work can either perform clustering on those predicates to

achieve a higher level of abstraction or plug in entity typing to achieve a finer level

of abstraction.

4.3.2.2 TempRel Extraction

Given the events extracted in a given article, we next explain how the TempRels

are extracted using a modified version of our system in Sec. 4.4.1. The TimeBank-

Dense dataset [93] is known to have the best quality in terms of its high density of

TempRels and is a benchmark dataset for the TempRel extraction task. Due to

the slight event annotation difference in TimeBank-Dense, we collect our training

data as follows. We first extracted all the verb semantic frames from the raw text

of TimeBank-Dense using the verb SRL module from the Illinois Curator package

[35, 36]. Then we only kept those semantic frames that were matched to an event

in TimeBank-Dense (about 85% semantic frames were kept in this stage). By doing

so, we could simply use the TempRel annotations provided in TimeBank-Dense.

Hereafter the TimeBank-Dense dataset used in this section refers to this version

unless otherwise specified.

We grouped the TempRels by the sentence distance of the two events of each

relation.6 Then we used the averaged perceptron algorithm [114] implemented in the

Illinois LBJava package [116] to learn from the training data described above. Since

only relations that have sentence distance 0 or 1 are annotated in TimeBank-Dense,

we had two classifiers, one for same-sentence relations, and one for neighboring-

sentence relations, respectively.

When generating TemProb, we need to process a large number of articles, so

we adopted the greedy inference strategy described earlier due to its computational

efficiency [95, 48]. Specifically, we applied the same-sentence relation classifier before

the neighboring-sentence relation classifier; whenever a new relation is added in this

6That is, the difference of the appearance order of the sentence(s) containing the two target
events.
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article, a transitive graph closure is performed immediately. Doing so ensures that,

if an edge is already labeled during the closure phase, it will not be labeled again,

so conflicts are avoided.

4.3.2.3 Corpus

The corpus that we used to construct TemProb was comprised of NYT articles from

20 years (1987-2007).7 It contains more than 1 million documents and we extracted

events and corresponding features from each document using the Illinois Curator

package [36] using the Amazon Web Services (AWS) cloud. In total, we discovered

51K unique verb semantic frames and 80M relations among them in the NYT corpus

(15K of the verb frames had more than 20 relations extracted and 9K had more than

100 relations).

4.3.2.4 Useful Statistics in TemProb

We denote the set of all verb semantic frames by V . Let Di, i = 1, . . . , N be the i-th

document in our corpus, where N is the total number of documents. Let Gi = (Vi, Ei)

be the temporal graph inferred from Di using the approach described above, where

Vi ⊆ V is the set of verbs/events extracted in Di and Ei = {(vm, vn, rmn)}m<n ⊆
Vi×Vi×R is the edge set of Di, which is composed of TempRel triplets; specifically,

a TempRel triplet (vm, vn, rmn) ∈ Ei represents that in document Di, the TempRel

between vm and vn is rmn. Due to the symmetry in TempRels, we only keep the

triplets with m < n in Ei. Assuming that the verbs in Vi are ordered by their

appearance order in text, then m < n means that in the i-th document, vm appears

earlier in text than vn does.

Given the usual confusion between that one event is temporally before another and

that one event is physically appearing before another in text, we will refer to tempo-

rally before as T-Before and physically before as P-Before. Using this language,

for example, Ei only keeps the triplets that vm is P-Before vn in Di.

7https://catalog.ldc.upenn.edu/LDC2008T19
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We first show extreme cases that some events are almost always labeled as T-Before

or T-After in the corpus. Specifically, for each pair of verbs vi, vj ∈ V , we define the

following ratios:

ηb =
C(vi, vj, before)

C(vi, vj, before) + C(vi, vj, after)
, ηa = 1− ηb, (4.3)

where C(vi, vj, r) is the count of vi P-Before vj with TempRel r ∈ R:

C(vi, vj, r) =
N∑
i=1

∑
(vm,vn,rmn)∈Ei

I{vm=vi&vn=vj&rmn=r}, (4.4)

where I{·} is the indicator function.

In Table 4.7, we show some event pairs with either ηb > 0.9 (upper part) or

ηa > 0.9 (lower part). The temporal order of the pairs we show in Table 4.7 are

almost deterministic, i.e., either T-Before or T-After with probability larger than

90%. We understand the remaining 10% (i.e. those #T-After’s in the upper part and

#T-Before’s in the lower part) from two aspects: 1) system imperfection (recall that

each Gi is of relatively low quality), and 2) complications brought by the difference in

frame arguments (e.g., “Jack is arrested” is definitely possible to be T-After “John

is charged”). Note that only pairs of ηb or ηa > 0.9 are shown in Table 4.7. Another

usage of TemProb is that ηb and ηa can serve as a soft-decision and be incorporated

in subsequent systems, which is exactly the kind of prior knowledge that we have

expected.

In addition to the extreme cases shown in Table 4.7, we also show analysis of the

distribution of preceding and following events in this section. For each verb v, we

define the marginal count of v being P-Before to arbitrary verbs with TempRel

r ∈ R as C(v, r) =
∑

vi∈V C(v, vi, r). Then for every other verb v′, we define

P (v T-Before v′|v T-Before) ,
C(v, v′, before)

C(v, before)
, (4.5)

which is the probability of v T-Before v′, conditioned on v T-Before anything. Sim-
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Table 4.7: Several extreme cases from TemProb, where some event is almost
always labeled to be T-Before or T-After throughout the NYT corpus. By
“extreme”, we mean that either the probability of T-Before or T-After is larger
than 90%. The upper part of the table shows the pairs that are both P-Before and
T-Before, while the lower part shows the pairs that are P-Before but T-After. In
TemProb, there are about 7K event pairs being extreme cases.

Example Pairs #T-Before #T-After
chop.01 taste.01 133 8

concern.01 protect.01 110 10
conspire.01 kill.01 113 6
debate.01 vote.01 48 5

dedicate.01 promote.02 67 7
fight.01 overthrow.01 98 8

achieve.01 desire.01 7 104
admire.01 respect.01 7 121
clean.02 contaminate.01 3 82

defend.01 accuse.01 13 160
die.01 crash.01 8 223

overthrow.01 elect.01 3 100

ilarly, we define

P (v T-After v′|v T-After) ,
C(v, v′, after)

C(v, after)
. (4.6)

For a specific verb, e.g., v=investigate, each verb v′ ∈ V is sorted by the two con-

ditional probabilities above. Then the most probable verbs that temporally precede

or follow v are shown in Fig. 4.7, where the y-axes are the corresponding conditional

probabilities. We can see reasonable event sequences like {involve, kill, suspect,

steal}→investigate→{report, prosecute, pay, punish}, which indicates the possibility

of using TemProb for event sequence predictions or story cloze tasks. There are also

suspicious pairs like know in the T-Before list of investigate (Fig. 4.7a), report in the

T-Before list of bomb (Fig. 4.7b), and play in the T-After list of mourn (Fig. 4.7c).

Since the arguments of these verb frames are not considered here, whether these few

seemingly counter-intuitive pairs come from system error or from a special context
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(a) investigate (b) bomb

(c) mourn (d) sentence

Figure 4.7: Top events that most frequently precede or follow “investigate”,
“bomb”, “mourn”, or “sentence” in time, sorted by their conditional probabilities
in h. Word senses have been disambiguated and the “bomb” and “sentence” here
are their verb meanings. There are some possible errors (e.g., report is T-Before
bomb) and some unclear pairs (e.g., know is T-Before investigate and play is
T-After mourn), but overall the event sequences discovered here are reasonable.

needs further investigation.

Now we have seen some interesting examples when we aggregate information from

TemProb. In the next section, we will show quantitative analyses of how Tem-

Prob can help the TempRel task in this thesis.

4.3.3 Experiments

In the above, we have explained the construction of TemProb and shown some

interesting examples from it, which were meant to visualize its correctness. In this

section, we first quantify the correctness of the prior obtained in TemProb, and

then show that TemProb can be used to improve existing TempRel extraction
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systems.

4.3.3.1 Quality Analysis of TemProb

In Table 4.7, we showed examples with either ηb or ηa > 0.9. We argued that they

seem correct. Here we quantify the “correctness” of ηb and ηa based on TimeBank-

Dense. Specifically, we collected all the gold T-Before and T-After pairs. Let τ ∈
[0.5, 1) be a constant threshold. Imagine a naive predictor such that, for each pair

of events vi and vj, if ηb > τ , it predicts that vi is T-Before vj; if ηa > τ , it predicts

that vi is T-After vj; otherwise, it predicts that vi is T-Vague to vj. We expect

that a higher ηb (or ηa) represents a higher confidence for an instance to be labeled

T-Before (or T-After).

Table 4.8: Validating ηb and ηa from TemProb based on the T-Before and T-After
examples in TimeBank-Dense. Performances are decomposed into same sentence
examples (Dist=0) and contiguous sentence examples (Dist=1). A larger threshold
leads to a higher precision, so ηb and ηa indeed represent a notion of confidence.

Threshold τ
Dist=0 Dist=1
P R P R

0.5 65.6 61.3 58.5 53.3
0.6 69.8 44.5 60.5 36.9
0.7 74.6 29.2 63.6 18.7
0.8 81.0 13.9 64.8 6.9
0.9 82.9 5.0 76.9 1.2

Table 4.8 shows the performance of this predictor, which meets our expectation

and thus justifies the validity of TemProb. As we gradually increase the value of τ

in Table 4.8, the precision increases at roughly the same pace as τ , which indicates

that the values of ηb and ηa
8 from TemProb indeed represent the confidence level.

The decrease in recall is also expected because more examples are labeled as T-Vague

when τ is larger.

8Recall the definitions of ηb and ηa in Eq. (4.3).
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To further justify the quality, we also used another dataset that is not in the

TempRel domain. Instead, we downloaded the EventCausality dataset9 [43]. For

each causally related pair e1 and e2, if EventCausality annotates that e1 causes

e2, we changed it to be T-Before; if EventCausality annotates that e1 is caused

by e2, we changed it to be T-after. Therefore, based on the assumption that the

cause event is T-Before the result event, we converted the EventCausality dataset

to be a TempRel dataset and it thus could also be used to evaluate the quality

of TemProb. We adopted the same predictor used in Table 4.8 with τ = 0.5 and

in Table 4.9, we compared it with two baselines: (i) always predicting T-Before

and (ii) always predicting T-After. First, the accuracy (66.2%) in Table 4.9 is rather

consistent with its counterpart in Table 4.8, confirming the stability of statistics from

TemProb. Second, by directly using the prior statistics ηb and ηa from TemProb,

we can improve the precision of both labels with a significant margin relative to the

two baselines (17.0% for “T-Before” and 15.9% for “T-After”). Overall, the accuracy

was improved by 11.5%.

Table 4.9: Further justification of ηb and ηa from TemProb on the EventCausality
dataset. The thresholding predictor from Table 4.8 with τ = 0.5 is used here.
Compared to always predicting the majority label (i.e., T-Before in this case),
τ = 0.5 significantly improved the performance for both labels, with the overall
accuracy improved by 11.5%.

System
T-Before T-After

Acc.
P R P R

T-Before Only 54.7 100.0 0 0 54.7
T-After Only 0 0 45.3 100 45.3

τ = 0.5 71.7 63.3 61.2 69.8 66.2

4.3.3.2 Improving TempRel Extraction

Note that TimeBank-Dense was originally split into Train (22 docs), Dev (5 docs),

and Test (9 docs). In the analysis here, we combined Train and Dev and we performed

9http://cogcomp.org/page/resource_view/27
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3-fold cross validation on the 27 documents (in total about 10K relations) to tune

the parameters in any classifier.

The purpose of TemProb was to improve TempRel extraction. We show it from

two perspectives: How effective the prior distributions obtained from TemProb are

(i) as features in local methods and (ii) as regularization terms in global methods.

The results below were evaluated on the test split of TimeBank-Dense [93].

We first test how well the prior distributions from TemProb can be used as

features in improving local methods for TempRel extraction. In Table 4.10, we used

the original feature set previously used in Sec. 4.2, and added the prior distribution

obtained from TemProb on top of it. Specifically, we added ηb (see Eq. (4.3)) and

{fr}r∈R, respectively, where {fr}r∈R is the prior distributions of all labels, i.e.,

fr(vi, vj) =
C(vi, vj, r)∑

r′∈R C(vi, vj, r′)
, r ∈ R. (4.7)

Recall function C is defined in Eq. (4.4). All comparisons were decomposed to

same-sentence relations (Dist=0) and neighboring-sentence relations (Dist=1) for a

better understanding of the behavior. All classifiers were trained using the averaged

perceptron algorithm [114] and tuned by 3-fold cross validation.

From Table 4.10, we can see that simply adding ηb into the feature set could

improve the original system F1 by 1.8% (Dist=0) and 3.0% (Dist=1). If we further

add as features the full set of prior distributions {fr}r∈R, the improvement comes to

2.7% and 6.5%, respectively. Noticing that the feature is more helpful for Dist=1, we

think that it is because distant pairs usually have less lexical dependency and thus

need more prior information provided by our new feature. With Dist=0 and Dist=1

combined (numbers not shown in the table), the third line improved the “original”

by 4.7% in F1 and by 5.1% in the temporal awareness F-score (another metric used

in the TempEval3 workshop).

As mentioned earlier in Sec. 4.3.1, many systems adopt a global inference method

via integer linear programming (ILP) [74] to enforce transitivity constraints over an

entire temporal graph [101, 50, 124, 92, 9]. In addition to the usage shown above, the

prior distributions from TemProb can also be used to regularize the conventional
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Table 4.10: Using prior distributions derived from TemProb as features in an
example local method. Incorporating ηb to the original feature set already yields
better performance. By using the full set of prior distributions, {fr}r∈R, the final
system improves the original in almost all metrics, and the improvement is
statistically significant with p<0.005 per the McNemar’s test.

Feature Set
Dist=0 Dist=1

P R F1 P R F1

Original 44.5 57.1 50.0 49.0 36.9 42.1
+ηb 46.2 58.9 51.8 55.3 38.1 45.1

+{fr}r∈R 46.9 60.1 52.7 51.3 46.2 48.6

Note The performances here are consistently lower than those in Table 4.8 because
in Table 4.8, only T-Before and T-After examples are considered, but here all labels
are taken into account and the problem is more practical and harder.

ILP formulation. Specifically, in each document, let Ir(ij) ∈ {0, 1} be the indicator

function of relation r for event i and event j; let xr(ij) ∈ [0, 1] be the corresponding

soft-max score obtained from the local classifiers (depending on the sentence distance

between i and j). Then the ILP objective for global inference is formulated as follows.

Î = argmax
I

∑
ij∈E

∑
r∈R

(xr(ij) + λfr(ij))Ir(ij) (4.8)

s.t. ΣrIr(ij) = 1
(uniqueness)

, Ir(ij) = Ir̄(ji),
(symmetry)

Ir1(ij) + Ir2(jk)− ΣM
m=1Irm3 (ik) ≤ 1,

(transitivity)

for all distinct events i, j, and k, where E = {ij | sentence dist(i, j)≤ 1}, λ adjusts

the regularization term and was heuristically set to 0.5 in this work, r̄ is the reverse

relation of r, and M is the number of possible relations for r3 when r1 and r2 are

true. Note our difference from the ILP in [9] is the underlined regularization term

fr(ij) (which itself is defined in Eq. (4.7)) obtained from TemProb.

We present results on the test split of TimeBank-Dense in Table 4.11, which is

an ablation study showing step-by-step improvements in two metrics. In addition to

the straightforward precision, recall, and F1 metric, we also compared the F1 of the

59



Table 4.11: Regularizing global methods by the prior distribution derived from
TemProb. The “+” means adding a component on top of its preceding line.
Faware is the temporal awareness F-score, another evaluation metric used in
TempEval3. The baseline system is to use (unregularized) ILP on top of the
original system in Table 4.10. System 3 is the proposed. Per the McNemar’s test,
System 3 is significantly better than System 1 with p<0.0005.

No. System P R F1 Faware

1 Baseline 48.1 44.4 46.2 42.5
2 +Feature: {fr}r∈R 50.6 52.0 51.3 49.1
3 +Regularization 51.3 53.0 52.1 49.6

temporal awareness metric used in TempEval3 [3]. The awareness metric performs

graph reduction and closure before evaluation so as to better capture how useful a

temporal graph is. Details of this metric can be found in Sec. 4.1.3.

Table 4.12: Label-wise performance improvement of System 3 over System 1 in
Table 4.11. We can see that incorporating TemProb improves the recall of before
and after, and improves the precision of all labels, with a slight drop in the recall of
vague.

Label P R F1

before +0.3 +15 +6
after +4 +4 +4
equal +11 0 +2

includes +17 0 +0.2
included +8 0 +2

vague +3 -4 -1

In Table 4.11, the baseline applied global ILP inference with transitivity con-

straints. Technically, it is to solve Eq. (4.8) with λ = 0 (i.e., unregularized) on

top of the original system in Table 4.10. Apart from some implementation details,

this baseline is also the same as many existing global methods as [50, 92]. System 2,

“+Feature: {fr}r∈R”, is to add prior distributions as features when training the local

classifiers. Technically, the scores xr(ij)’s in Eq. (4.8) used by baseline were changed.

We know from Table 4.10 that adding {fr}r∈R made the local decisions better. Here
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the performance of System 2 shows that this was also the case for the global decisions

made via ILP: both precision and recall got improved, and F1 and awareness were

both improved by a large margin, with 5.1% in F1 and 6.6% in awareness F1. On

top of this, System 3 uses Eq. (4.8) (with λ = 0.5) to add regularizations to the

conventional ILP formulation. The sum of these regularization terms represents a

confidence score of how coherent the predicted temporal graph is to our TemProb,

which we also want to maximize. Even though a considerable amount of informa-

tion from TemProb had already been encoded as features (as shown by the large

improvements by System 2), these regularizations were still able to further improve

the precision, recall and awareness scores. To sum up, the total improvement over

the baseline system brought by TemProb is 5.9% in F1 and 7.1% in awareness F1,

both with a notable margin. Table 4.12 furthermore decomposes this improvement

into each TempRel label.

To compare with state-of-the-art systems, which all used gold event properties

(i.e., Tense, Aspect, Modality, and Polarity), we retrained System 3 in Table 4.11

with these gold properties and show the results in Table 4.13. We reproduced the

results of CAEVO10 [95] and Ning et al. (2017) [9]11 and evaluated them on the par-

tial TimeBank-Dense test split.12 Under both metrics, the proposed system achieved

the best performance. An interesting fact is that even without these gold proper-

ties, our System 3 in Table 4.11 was already better than CAEVO (on Line 1) and

[9] (on Line 2) in both metrics. This is appealing because in practice, those gold

properties may not exist, but our proposed system can still generate state-of-the-art

performance without them.

For readers who are interested in the complete TimeBank-Dense dataset, we also

performed a naive augmentation as follows. Recall that System 3 only makes pre-

dictions to a subset of the complete TimeBank-Dense dataset. We kept this subset

of predictions, and filled the missing predictions by [9]. Performances of this naively

augmented proposed system are compared with CAEVO and [9] on the complete

10https://github.com/nchambers/caevo
11http://cogcomp.org/page/publication_view/822
12There are 731 relations in the partial TimeBank-Dense test split (201 before, 138 after, 39

includes, 31 included, 14 simultaneous, and 308 vague).
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Table 4.13: Comparison of the proposed TempRel extraction method with two
best-so-far systems using two metrics. Per the McNemar’s test, Line 3 is better
than Line 2 with p<0.0005.

No. System P R F1 Faware

Partial TimeBank-Dense*: Focus of this work.
1 CAEVO 52.3 43.7 47.6 46.7
2 Ning et al. (2017) [9] 47.4 56.3 51.5 49.1
3 Proposed 50.0 62.4 55.5 52.8

Complete TimeBank-Dense: Naive augmentation.
4 CAEVO 51.8 32.6 40.0 45.7
5 Ning et al. (2017) [9] 46.2 40.6 43.2 48.5
6 Proposed** 47.2 42.4 44.7 49.2

*Note that TemProb is only available for events extracted by SRL (See Sec. 4.3.2
for details).
**Augment the output of Line 3 with predictions from [9].

TimeBank-Dense dataset. We can see that by replacing with predictions from our

proposed system, [9] got a better precision, recall, F1, and awareness F1, which is

the new state-of-the-art on all reported performances on this dataset. Note that

the awareness F1 scores on Lines 4-5 are consistent with reported values in [9]. To

our knowledge, Table 4.13 is the first in the literature to report performances in

both metrics, and it is promising to see that the proposed method outperformed

state-of-the-art methods in both metrics.

Up to now, we have argued that TempRel extraction is challenging partly due

to its strong dependence on prior knowledge, and a resource of the temporal order

that events usually follow is helpful. To construct such a resource, we automatically

processed a large corpus from NYT with more than 1 million documents using a

modified version of our TempRel extraction system in Sec. 4.2 and obtained Tem-

Prob. TemProb is a good showcase of the capability of such prior knowledge,

and it has shown its power in improving existing TempRel extraction systems on

a benchmark dataset, TimeBank-Dense. Similar to Sec. 4.2, TemProb can also be

viewed as exploiting the structure of time. The difference is that in Sec. 4.2, we

exploited transitivity structures as hard constraints, while in Sec. 4.3, we exploited
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probabilistic structures as soft constraints/regularizations.

4.4 Multi-Axis Temporal Structure

As a continuation of the previous two sections, we propose another inherent structure

in time which leads to a new dataset with improved annotation quality in this section.

When introducing our structured learning approach in Sec. 4.2, we list some of

the TempRel datasets available in this field in Table 4.3. These datasets were

annotated by experts, but still suffered from low inter-annotator agreements (IAA).

For instance, the IAAs of TimeBank-Dense, RED [125] and THYME-TimeML [126]

were only below or near 60% (given that events are already annotated). Since a low

IAA usually indicates that the task is difficult even for humans (see Examples 14-

16), the community has been looking into ways to simplify the task, by reducing the

label set, and by breaking up the overall, complex task into subtasks (e.g., getting

agreement on which event pairs should have a relation, and then what that relation

should be) [47, 125]. In contrast to other existing datasets, [91] achieved an agreement

as high as 90%, but the scope of its annotation was narrowed down to a very special

verb-clause structure.

(e22, e23), (e24, e25), and (e26, e27): TempRels that are diffi-
cult even for humans. Note that only relevant events are high-
lighted here.
Example 14: Serbian police tried to eliminate the pro-independence
Kosovo Liberation Army and (e22:restore) order. At least 51 people
were (e23:killed) in clashes between Serb police and ethnic Albanians in
the troubled region.
Example 15: Service industries (e24:showed) solid job gains, as did
manufacturers, two areas expected to be hardest (e25:hit) when the ef-
fects of the Asian crisis hit the American economy.
Example 16: We will act again if we have evidence he is (e26:rebuilding)
his weapons of mass destruction capabilities, senior officials say. In a bit
of television diplomacy, Iraq’s deputy foreign minister (e27:responded)
from Baghdad in less than one hour, saying that . . .
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Here we propose a new approach to handling these issues in TempRel annotation.

In Sec. 4.4.1 and Sec. 4.4.2, we introduce multi-axis modeling to represent the tem-

poral structure of events, based on which we can anchor events to different semantic

axes; only events from the same axis will then be temporally compared (Sec. 4.2).

As explained later, those event pairs in Examples 14-16 are difficult because they

represent different semantic phenomena and belong to different axes. In addition,

while we have represented an event pair using two time intervals (see Sec. 4.1.2 and

Fig. 4.3), say, [t1start, t
1
end] and [t2start, t

2
end], we find that comparisons involving end-

points (e.g., t1end vs. t2end) are typically more difficult than comparing start-points

(i.e., t1start vs. t2start); we attribute this to the ambiguity of expressing and perceiving

durations of events [127]. As a result, we propose in Sec. 4.4.3 that TempRel anno-

tation should focus on start-points. Using the proposed annotation scheme, a pilot

study done by experts achieved a high IAA of 0.84 (Cohen’s kappa) on a subset of

TimeBank-Dense, in contrast to conventional IAAs in the 60’s.

In addition to the low IAA issue, TempRel annotation is also known to be la-

bor intensive. To address it, we use crowdsourcing to collect a new, high quality

TempRel dataset, for the first time on this topic. This section will explain how

the crowdsourcing quality was controlled and how vague relations were handled in

Sec. 4.4.4, and present some statistics and the quality of the new dataset in Sec. 4.4.5.

A baseline system is also shown to achieve much better performance on the new

dataset, when compared with system performance in the literature (Sec. 4.4.6).

4.4.1 Temporal Structure of Events

Given a set of events, one important question in designing the TempRel annotation

task is: Which pairs of events should have a relation? The answer depends on the

modeling of the overall temporal structure of events.

TimeBank [89] laid the foundation for many subsequent TempRel corpora, e.g.,

Verb-Clause [91], TempEval3 [3], and TimeBank-Dense [95]. In TimeBank, the an-

notators were allowed to label TempRels between any pairs of events. This setup

models the overall structure of events using a general graph, which made annotators
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inadvertently overlook some pairs, resulting in low IAAs and many false negatives.

Example 17: Dense Annotation Scheme.
Serbian police (e28:tried) to (e29:eliminate) the pro-independence
Kosovo Liberation Army and (e22:restore) order. At least 51 people
were (e23:killed) in clashes between Serb police and ethnic Albanians in
the troubled region.
Given 4 Non-Generic events above, the dense scheme presents
6 pairs to annotators one by one: (e28, e29), (e28, e22), (e28,
e23), (e29, e22), (e29, e23), and (e22, e23). Apparently, not
all pairs are well-defined, e.g., (e29, e23) and (e22, e23), but
annotators are forced to label all of them.

To address this issue, [93] proposed a dense annotation scheme, TimeBank-Dense,

which annotates all event pairs within a sliding, two-sentence window (see Exam-

ple 17). It requires all TempRels between Generic13 and Non-Generic events

to be labeled as vague, which in our language here, models the overall temporal

structure by two disjoint time-axes: one for the Non-Generic and the other one

for the Generic.

However, as shown by Examples 14-16 in which the highlighted events are all

Non-Generic, the TempRels may still be ill-defined: In Example 14, Serbian

police tried to restore order but ended up with conflicts. It is reasonable to argue

that the attempt to e22:restore order happened before the conflict where 51 people

were e23:killed ; or, 51 people had been killed but order had not been restored yet, so

e22:restore is after e23:killed. Similarly, in Example 15, service industries and man-

ufacturers were originally expected to be hardest e25:hit but actually e24:showed

gains, so e25:hit is before e24:showed ; however, one can also argue that the two ar-

eas had showed gains but had not been hit, so e25:hit is after e24:showed. Again,

e26:rebuilding is a hypothetical event: “we will act if rebuilding is true”. Readers

do not know for sure if “he is already rebuilding weapons but we have no evidence”,

or “he will be building weapons in the future”, so annotators may disagree on the

relation between e26:rebuilding and e27:responded. As another way to resolve confu-

13For example, lions eat meat is Generic.
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Table 4.14: The interpretation of various event types that are not on the main axis
in the proposed multi-axis modeling. The names are rather straightforward; see
examples for each in Example 18.

Event Type Category
Intention, Opinion On an orthogonal axis
Hypothesis, Generic On a parallel axis

Negation Not on any axis
Static, Recurrent Other

sions, TimeBank-Dense resorted to a 80% confidence rule: annotators were allowed

to choose a label if one is 80% sure that it was the writer’s intent. However, as

pointed out by TimeBank-Dense, annotators are likely to have rather different un-

derstandings of 80% confidence and it will still end up with disagreements. Despite

minimizing missing annotations, the dense scheme forces annotators to label many

such ill-defined pairs, resulting in low IAA.

In contrast to these annotation difficulties, humans can easily grasp the meaning of

news articles, implying a potential gap between the difficulty of the annotation task

and the one of understanding the actual meaning of the text. In Examples 14-16,

the writers did not intend to explain the TempRels between those pairs, and the

original annotators of TimeBank14 did not label relations between those pairs either,

which indicates that both writers and readers did not think the TempRels between

these pairs were crucial. Instead, what is crucial in these examples is that “Serbian

police tried to restore order but killed 51 people”, that “two areas were expected

to be hit but showed gains”, and that “if he rebuilds weapons then we will act.”

To “restore order”, to be “hardest hit”, and “if he was rebuilding” were only the

intention of police, the opinion of economists, and the condition to act, respectively,

and whether or not they actually happen is not the focus of those writers.

This discussion suggests that in TimeBank-Dense, a single axis is too restrictive

to represent the complex structure of Non-Generic events. Instead, we need a

temporal structure which is more restrictive than a general graph (as in TimeBank)

14Recall that they were given the entire article and only salient relations would be annotated.
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so that annotators can focus on relation annotation (rather than looking for pairs

first), but also more flexible than a single axis so that ill-defined relations are not

forcibly annotated. Specifically, we need axes for intentions, opinions, hypotheses,

etc., in addition to the main axis of an article. We propose multi-axis modeling,

as defined in Table 4.14. Following the proposed modeling, Examples 14-16 can be

represented as in Fig. 4.8. This modeling aims at capturing what the author has

explicitly expressed and it only asks annotators to look at comparable pairs, rather

than forcing them to make decisions on often vaguely defined pairs.

tried e2: killed

e1:restore order

Main axis

Intention axis of “tried”

e5:rebuilding have evidence act

e6:responded
saying

officials say
Main axis

Hypothetical axis

crisis hit America

e3:showed

e4:hardest hit

Main axis

Opinion axis of “expected”

expectedAsian crisis

Figure 4.8: A multi-axis view of Examples 14-16. Only events on the same axis are
compared.

The names of those categories in Table 4.14 are straightforward. Here we further

provide examples for each of them in Example 18. Note that most of them are

consistent with the definitions in the literature, with one exception for Intention.

In TimeML [128], there are two types of intentions, I-Action (e.g., attempt, try and

promise) and I-State (e.g., believe, intend and want). But our definition of intention

is the actual intent of these verbs. For example, in Example 18, e30 and e31 are

Intention. This definition is more general so that verbs that are not I-Action or

I-State can still create orthogonal axis of intention, e.g., the verb “allocated” in the
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sentence of e31.

Example 18
[Orthogonal axis] Intention/Opinion
I plan/want to (e30:leave) tomorrow.
The mayor has allocated funds to (e31:build) a museum.
I think he will (e32:win) the race.
[Parallel axis] Hypothesis/Generic
If I’m (e33:elected), I will cut income tax.
If I’m elected, I will (e34:cut) income tax.
Fruit (e35:contains) water.
Lions (e36:hunt) zebras.
[Not on any axis] Negation
The financial assistance from the Wolrd Bank is not (e37:helping).
They don’t (e38:want) to play with us.
He failed to (e39:find) buyers.
[Other] Static/Recurrent
He (e40:is) brave.
New York (e41:is) on the east coast.
The shuttle will be (e42:departing) at 6:30am every day.

In practice, we annotate one axis at a time: we first classify if an event is anchorable

onto a given axis (this is also called the anchorability annotation step); then we

annotate every pair of anchorable events (i.e., the relation annotation step); finally,

we can move to another axis and repeat the two steps above. Note that ruling out

cross-axis relations is only a strategy we adopt in this paper to separate well-defined

relations from ill-defined relations. We are not claiming that cross-axis relations are

unimportant; instead, as shown in Fig. 4.9, we think that cross-axis relations are a

different semantic phenomenon that requires additional investigation.

4.4.2 Comparisons with Existing Work

There have been other proposals of temporal structure modelings [101, 129], but in

general, the semantic phenomena handled in this work are very different and com-

plementary to them. Bramsen et al. (2006) [101] introduces “temporal segments” (a
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fragment of text that does not exhibit abrupt changes) in the medical domain. Simi-

larly, their temporal segments can also be considered as a special temporal structure

modeling. But a key difference is that [101] only annotates inter-segment relations,

ignoring intra-segment ones. Since those segments are usually large chunks of text,

the granularity of the semantics handled in [101] is very coarse (as pointed out by

[101]) and is thus different from that in this thesis work.

Bethard et al. (2012) [129] propose a tree structure for children’s stories, which

“typically have simpler temporal structures”, as they pointed out. Moreover, in their

annotation, an event can only be linked to a single nearby event, even if multiple

nearby events may exist, whereas we do not have such restrictions.

In addition, some of the semantic phenomena in Table 4.14 have been discussed in

existing work. Here we compare with them for a better positioning of the proposed

scheme.

4.4.2.1 Axis Projection

TimeBank-Dense handled the incomparability between main-axis events and Hy-

pothesis/Negation by treating an event as having occurred if the event is Hy-

pothesis/Negation.15 In our multi-axis modeling, the strategy adopted by TimeBank-

Dense falls into a more general approach, “axis projection”. That is, projecting

events across different axes to handle the incomparability between any two axes (not

limited to Hypothesis/Negation). Axis projection works well for certain event

pairs like Asian crisis and e25:hardest hit in Example 15: as in Fig. 4.8, Asian cri-

sis is before expected, which is again before e25:hardest hit, so Asian crisis is before

e25:hardest hit.

Generally, however, since there is no direct evidence that can guide the projection,

annotators may have different projections (imagine projecting e26:rebuilding onto the

main axis: Is it in the past or in the future?). As a result, axis projection requires

many specially designed guidelines or strong external knowledge. Annotators have

15In the case of Example 16, it is to treat rebuilding as actually happened and then link it to
responded.
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to rigidly follow the sometimes counter-intuitive guidelines or “guess” a label instead

of looking for evidence in the text.

When strong external knowledge is involved in axis projection, it becomes a rea-

soning process and the resulting relations are a different type. For example, a reader

may reason that in Example 16, it is well-known that they did “act again”, implying

his e26:rebuilding had happened and is before e27:responded. Another example is in

Fig. 4.9. It is obvious that relations based on these projections are not the same

and are more challenging than those same-axis relations, so in the current stage, we

should focus on same-axis relations only.

worked hard attended

submit a paper

Main axis

Intention axis

Figure 4.9: In I worked hard to submit a paper . . . I attended the conference, the
projection of submit a paper onto the main axis is clearly before attended. However,
this projection requires strong external knowledge that a paper should be submitted
before attending a conference. Again, this projection is only a guess based on our
external knowledge and it is still open whether the paper is submitted or not.

4.4.2.2 Introduction of the Orthogonal Axes

Another prominent difference from earlier work is the introduction of orthogonal

axes, which has not been used in any existing work we know of. A special property

is that the intersection event of two axes can be compared to events from both, which

can sometimes bridge events; e.g., in Fig. 4.8, Asian crisis is seemingly before hardest

hit due to their connections to expected. Since Asian crisis is on the main axis, it

seems that e25:hardest hit is on the main axis as well. However, the “hardest hit” in

“Asian crisis before hardest hit” is only a projection of the original e25:hardest hit

onto the real axis and is valid only when this Opinion is true.
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Nevertheless, Opinions are not always true and Intentions are not always ful-

filled. In Example 19, e43:sponsoring and e44:resolve are the opinions of the West

and the speaker, respectively; whether or not they are true depends on the au-

thors’ implications or the readers’ understandings, which is often beyond the scope

of TempRel annotation.16 Example 20 demonstrates a similar situation for Inten-

tions: when reading the sentence of e45:report, people are inclined to believe that

it is fulfilled. But if we read the sentence of e46:report, we have reason to believe

that it is not. When it comes to e47:tell, it is unclear if everyone told the truth. The

existence of such examples indicates that orthogonal axes are a better modeling for

Intentions and Opinions.

Example 19: Opinion events may not always be true.
He is ostracized by the West for (e43:sponsoring) terrorism.
We need to (e44:resolve) the deep-seated causes that have resulted in
these problems.
Example 20: Intentions may not always be fulfilled.
A passerby called the police to (e45:report) the body.
A passerby called the police to (e46:report) the body. Unfortunately, the
line was busy.
I asked everyone to (e47:tell) the truth.

4.4.2.3 Differences from Factuality

Event modality has been discussed in many existing event annotation schemes, e.g.,

Event Nugget [14], Rich ERE [15], and RED. Generally, an event is classified as

Actual or Non-Actual, a.k.a. factuality [130, 131].

The main-axis events defined in this chapter seem to be very similar to Actual

events, but with several important differences: First, future events are Non-Actual

because they indeed have not happened, but they may be on the main axis. Second,

events that are not on the main axis can also be Actual events, e.g., intentions that

are fulfilled, or opinions that are true. Third, as demonstrated by Examples 19-20,

16For instance, there is undoubtedly a causal link between e43:sponsoring and ostracized.
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identifying anchorability as defined in Table 4.14 is relatively easy, but judging if

an event actually happened is often a high-level understanding task that requires an

understanding of the entire document or external knowledge.

Below is a detailed analysis of the difference between Anchorable (onto the main

axis) and Actual on a subset of RED [125]. We randomly selected 5 documents

from RED, where there are 314 events, 166 of which are verbs (we only handle verb

events). Along with another NLP researcher, we annotated the anchorability of these

166 verb events independently without looking at the original REALIS annotation

from RED, and we achieved a Cohen’s kappa of 0.88 in anchorability annotation,

consistent with their Cohen’s kappa achieved on MATRES. To aggregate the result

from two experts, we marked an event as Anchorable only when both annotators

labeled Anchorable. As for REALIS labeling in RED, we grouped Generic, Hypo-

thetical, and Hedged into a single label of Non-Actual.

Table 4.15: Comparison between anchorability and factuality on a subset of verb
events randomly selected from RED.

Anchorable
Yes No

Actual
Yes 108 21
No 0 37

The comparison between Anchorable and Actual is shown in Table 4.15. On this

subset of 166 events, we did not see Anchorable events that are Non-Actual because

such cases are indeed infrequent in practice; the only difference is that we annotated

21 events as Non-Anchorable, while RED annotated them as Actual. Among the 21

different cases, 11 are Intention, 4 are Opinion, and 6 are Static. Note in total

RED labeled 4 Actual but Negation, and we have treated these 4 cases as Non-

actual in Table 4.15. Typical examples from each category are shown in Example 21.

Note that if we calculate the McNemar’s statistics based on Table 4.15, Anchorable

and Actual are statistically different with p� 0.001.
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Example 21: Typical cases that RED annotated Actual and we an-
notated Non-Anchorable.

Libya has since agreed to (e48:pay) compensation to the families of the Berlin
disco victims as well as the families of the victims of the 1988 Pan Am 103
bombing over Lockerbie, Scotland, which killed 270 people, including 189
Americans. [We think it is Intention]

Gadhafi had long been ostracized by the West for (e49:sponsoring) terrorism,
but in recent years sought to emerge from his pariah status by abandoning
weapons of mass destruction and renouncing terrorism in 2003. [We think
it is Opinion]

We need to resolve the deep-seated causes that have resulted in these prob-
lems, Premier Wen said in an interview with Hong Kong-(e50:based) Phoenix
Television. [We think it is Static]

Fuel prices had been frozen for six years, but the government said it could no
longer afford to (e51:subsidize) them. [We think it is Negation]

4.4.3 Interval Splitting

All existing annotation schemes adopt the interval representation of events [90] and

there are 13 relations between two intervals (for readers who are not familiar with

it, please see Fig. 4.3 in the appendix). To reduce the burden of annotators, existing

schemes often resort to a reduced set of the 13 relations. For instance, [1] merged all

the overlap relations into a single relation, overlap. Bethard et al. (2007) [91], Do et

al. (2012) [92], and O’Gorman et al. (2016) [125] all adopted this strategy. In [93],

they further split overlap into includes, included and equal.

Let [t1start, t
1
end] and [t2start, t

2
end] be the time intervals of two events (with the im-

plicit assumption that tstart ≤ tend). Instead of reducing the relations between two

intervals, we try to explicitly compare the time points (see Fig. 4.10). In this way,

the label set is simply before, after and equal,17 while the expressivity remains the

same. This interval splitting technique has also been used in [132].

In addition to same expressivity, interval splitting can provide even more infor-

mation when the relation between two events is vague. In the conventional setting,

imagine that the annotators find that the relation between two events can be either

before or before and overlap. Then the resulting annotation will have to be vague,

17We will discuss vague in Sec. 4.4.4.

73



[𝑡"#$%#& , 𝑡()*& ] [𝑡"#$%#+ , 𝑡()*+ ]
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Figure 4.10: The comparison of two event time intervals, [t1start, t
1
end] and

[t2start, t
2
end], can be decomposed into four comparisons t1start vs. t2start, t

1
start vs. t2end,

t1end vs. t2start, and t1end vs. t2end, without loss of generality.

although the annotators actually agree on the relation between t1start and t2start. Using

interval splitting, however, such information can be preserved.

An obvious disadvantage of interval splitting is the increased number of annota-

tions needed (4 point comparisons vs. 1 interval comparison). In practice, however,

it is usually much fewer than 4 comparisons. For example, when we see t1end < t2start

(as in Fig. 4.10), the other three can be skipped because they can all be inferred.

Moreover, although the number of annotations is increased, the workload for human

annotators may still be the same, because even in the conventional scheme, they still

need to think of the relations between start- and end-points before they can make a

decision.

During our pilot annotation, the annotation quality dropped significantly when

the annotators needed to reason about relations involving end-points of events. Ta-

ble 4.16 shows four metrics of task difficulty when only t1start vs. t2start or t1end vs. t2end
are annotated. Non-anchorable events were removed for both jobs. The first two

metrics, qualifying pass rate and survival rate, are related to the two quality control

protocols (see Sec. 4.4.4.1 for details). We can see that when annotating the relations

between end-points, only one out of ten crowdsourcers (11%) could successfully pass

our qualifying test; and even if they had passed it, half of them (56%) would have

been kicked out in the middle of the task. The third line is the overall accuracy

on gold set from all crowdsourcers (excluding those who did not pass the qualifying

test), which drops from 67% to 37% when annotating end-end relations. The last

line is the average response time per annotation and we can see that it takes much

longer to label an end-end TempRel (52s) than a start-start TempRel (33s). This

important discovery indicates that the TempRels between end-points is probably
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governed by a different linguistic phenomenon.

Table 4.16: Annotations involving the end-points of events are found to be much
harder than only comparing the start-points.

Metric t1start vs. t2start t1end vs. t2end
Qualification pass rate 50% 11%

Survival rate 74% 56%
Accuracy on gold 67% 37%

Avg. response time 33s 52s

We hypothesize that the difficulty is a mixture of how durative events are expressed

(by authors) and perceived (by readers) in natural language. In cognitive psychology,

[127] discovered that human readers take longer to perceive durative events than

punctual events, e.g., owe 50 bucks vs. lost 50 bucks. From the writer’s standpoint,

durations are usually fuzzy [133], or assumed to be a prior knowledge of readers

(e.g., college takes 4 years and watching an NBA game takes a few hours), and thus

not always written explicitly. Given all these reasons, we ignore the comparison of

end-points in this work, although event duration is indeed another important task.

4.4.4 Annotation Scheme Design

To summarize, with the proposed multi-axis modeling (Sec. 4.4.1) and interval split-

ting (Sec. 4.4.3), our annotation scheme is two-step. First, we mark every event

candidate as being temporally Anchorable or not (based on the time axis we are

working on). Second, we adopt the dense annotation scheme to label TempRels

only between Anchorable events. Note that we only work on verb events in this

paper, so non-verb event candidates are also deleted in a preprocessing step. We

design crowdsourcing tasks for both steps and as we show later, high crowdsourcing

quality was achieved on both tasks. In this section, we will discuss some practical

issues.
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4.4.4.1 Quality Control for Crowdsourcing

We take advantage of the quality control feature in CrowdFlower in our crowdsourc-

ing jobs. For any job, a set of examples are annotated by experts beforehand, which

is considered gold and will serve two purposes. (i) Qualifying test: Any crowdsourcer

who wants to work on this job has to pass with 70% accuracy on 10 questions ran-

domly selected from the gold set. (ii) Surviving test: During the annotation process,

questions from the gold set will be randomly given to crowdsourcers without notice,

and one has to maintain 70% accuracy on the gold set till the end of the annotation;

otherwise, he or she will be forbidden from working on this job anymore and all

his/her annotations will be discarded. At least 5 different annotators are required

for every judgement and by default, the majority vote will be the final decision.

4.4.4.2 Vague Relations

How to handle vague relations is another issue in temporal annotation. In non-dense

schemes, annotators usually skip the annotation of a vague pair. In dense schemes,

a majority agreement rule is applied as a postprocessing step to back off a decision

to vague when annotators cannot pass a majority vote [93], which reminds us that

annotators often label a vague relation as non-vague due to lack of thinking.

We decide to proactively reduce the possibility of such situations. As mentioned

earlier, our label set for t1start vs. t2start is before, after, simultaneous and vague.

We ask two questions: Q1=Is it possible that t1start is before t2start? Q2=Is it pos-

sible that t2start is before t1start? Let the answers be A1 and A2. Then we have

a one-to-one mapping as follows: A1=A2=yes 7→vague, A1=A2=no7→simultaneous,

A1=yes, A2=no7→before, and A1=no, A2=yes 7→after. An advantage is that one will

be prompted to think about all possibilities, thus reducing the chance of overlook.
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4.4.5 Corpus Statistics and Quality

In this section, we first focus on annotations on the main axis, which is usually the

primary storyline and thus has most events. Before launching the crowdsourcing

tasks, we checked the IAA between two experts on a subset of TimeBank-Dense

(about 100 events and 400 relations). A Cohen’s kappa of .85 was achieved in the

first step: anchorability annotation. Only those events that both experts labeled

Anchorable were kept before they moved onto the second step: relation annotation,

for which the Cohen’s kappa was .90 for Q1 and .87 for Q2. Table 4.17 furthermore

shows the distribution, Cohen’s kappa, and F1 of each label. We can see the kappa

and F1 of vague (κ=.75, F1=.81) are generally lower than those of the other labels,

confirming that temporal vagueness is a more difficult semantic phenomenon. Nev-

ertheless, the overall IAA shown in Table 4.17 is a significant improvement compared

to existing datasets.

Table 4.17: IAA of two experts’ annotations in a pilot study on the main axis.
Notations: before, after, equal, and vague.

b a e v Overall
Distribution .49 .23 .02 .26 1

IAA: Cohen’s κ .90 .87 1 .75 .84
IAA: F1 .92 .93 1 .81 .90

With the improved IAA confirmed by experts, we sequentially launched the two-

step crowdsourcing tasks through CrowdFlower on top of the same 36 documents of

TimeBank-Dense. To evaluate how well the crowdsourcers performed on our task, we

calculate two quality metrics: accuracy on the gold set and the Worker Agreement

with Aggregate (WAWA). WAWA indicates the average number of crowdsourcers’

responses agreed with the aggregate answer (we used majority aggregation for each

question). For example, if N individual responses were obtained in total, and n of

them were correct when compared to the aggregate answer, then WAWA is simply

n/N . In the first step, crowdsourcers labeled 28% of the events as Non-Anchorable

to the main axis, with an accuracy on the gold of .86 and a WAWA of .79.

With Non-Anchorable events filtered, the relation annotation step was launched
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as another crowdsourcing task. The label distribution is b=.50, a=.28, e=.03, and

v=.19 (consistent with Table 4.17). In Table 4.18, we show the annotation quality

of this step using accuracy on the gold set and WAWA. We can see that the crowd-

sourcers achieved a very good performance on the gold set, indicating that they

are consistent with the authors who created the gold set; these crowdsourcers also

achieved a high-level agreement under the WAWA metric, indicating that they are

consistent among themselves. These two metrics indicate that the annotation task

is now well-defined and easy to understand even by non-experts.

Table 4.18: Quality analysis of the relation annotation step of MATRES. “Q1” and
“Q2” refer to the two questions crowdsourcers were asked (see Sec. 4.4.4.2 for
details). Line 1 measures the level of consistency between crowdsourcers and the
authors and line 2 measures the level of consistency among the crowdsourcers
themselves.

No. Metric Q1 Q2 All
1 Accuracy on Gold .89 .88 .88
2 WAWA .82 .81 .81

We continued to annotate Intention and Opinion which create orthogonal

branches on the main axis. In the first step, crowdsourcers achieved an accuracy

on gold of .82 and a WAWA of .89. Since only 16% of the events are in this category

and these axes are usually very short (e.g., allocate funds to build a museum.), the

annotation task is relatively small and two experts took the second step and achieved

an agreement of .86 (F1).

We name our new dataset MATRES for Multi-Axis Temporal RElations for Start-

points. Each individual judgement cost us $0.01 and MATRES in total cost about

$400 for 36 documents.

To get another checkpoint of the quality of the new dataset, we compare with the

annotations of TimeBank-Dense. TimeBank-Dense has 1.1K verb events, between

which 3.4K event-event (EE) relations are annotated. In the new dataset, 72% of

the events (0.8K) are anchored onto the main axis, resulting in 1.6K EE relations,

and 16% (0.2K) are anchored onto orthogonal axes, resulting in 0.2K EE relations.

The following comparison is based on the 1.8K EE relations in common. Moreover,
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since TimeBank-Dense annotations are for intervals instead of start-points only, we

converted TimeBank-Dense’s interval relations to start-point relations (e.g., if A

includes B, then tAstart is before tBstart).

Table 4.19: An evaluation of MATRES against TimeBank-Dense. Horizontal:
MATRES. Vertical: TimeBank-Dense (with interval relations mapped to
start-point relations). Please see explanation of these numbers in text.

b a e v All
b 455 11 5 42 513
a 45 309 16 68 438
e 13 7 2 10 32
v 450 138 20 192 800

All 963 465 43 312 1783

The confusion matrix is shown in Table 4.19. A few remarks about how to

understand it: First, when TimeBank-Dense labels before or after, MATRES also

has a high-probability of having the same label (b=455/513=.89, a=309/438=.71);

when MATRES labels vague, TimeBank-Dense is also very likely to label vague

(v=192/312=.62). This indicates the high agreement level between the two datasets

if the interval- or point-based annotation difference is ruled out. Second, many

vague relations in TimeBank-Dense are labeled as before, after or simultaneous in

MATRES. This is expected because TimeBank-Dense annotates relations between

intervals, while MATRES annotates start-points. When durative events are involved,

the problem usually becomes more difficult and interval-based annotation is more

likely to label vague (see earlier discussions in Sec. 4.4.3). Example 22 shows three

typical cases, where e52:became, e55:backed, e56:rose and e57:extending can be con-

sidered durative. If only their start-points are considered, the crowdsourcers were

correct in labeling e52 before e53, e54 after e55, and e56 equal to e57, although

TimeBank-Dense says vague for all of them. Third, simultaneous seems to be the

relation that the two datasets mostly disagree on, which is probably due to crowd-

sourcers’ lack of understanding in time granularity and event coreference. Although

simultaneous relations only constitute a small portion in all relations, they need

further investigation.
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Example 22: Typical cases that TimeBank-Dense annotated
vague but MATRES annotated before, after, and simultaneous,
respectively.
At one point , when it (e52:became) clear controllers could not contact
the plane, someone (e53:said) a prayer.
TimeBank-Dense: vague; MATRES: before
The US is bolstering its military presence in the gulf, as President Clinton
(e54:discussed) the Iraq crisis with the one ally who has (e55:backed) his
threat of force, British prime minister Tony Blair.
TimeBank-Dense: vague; MATRES: after
Average hourly earnings of nonsupervisory employees (e56:rose) to
$12.51. The gain left wages 3.8 percent higher than a year earlier,
(e57:extending) a trend that has given back to workers some of the earn-
ing power they lost to inflation in the last decade.
TimeBank-Dense: vague; MATRES: simultaneous

4.4.6 Experiments

We develop a baseline system for TempRel extraction on MATRES, assuming that

all the events and axes are given. The following commonly-used features for each

event pair are used: (i) The part-of-speech (POS) tags of each individual event and

of its neighboring three words. (ii) The sentence and token distance between the

two events. (iii) The appearance of any modal verb between the two event mentions

in text (i.e., will, would, can, could, may and might). (iv) The appearance of any

temporal connectives between the two event mentions (e.g., before, after and since).

(v) Whether the two verbs have a common synonym from their synsets in WordNet

[134]. (vi) Whether the input event mentions have a common derivational form

derived from WordNet. (vii) The head words of the preposition phrases that cover

each event, respectively. And (viii) event properties such as Aspect, Modality, and

Polarity that come with the TimeBank dataset and are commonly used as features.

The proposed baseline system uses the averaged perceptron algorithm to classify

the relation between each event pair into one of the four relation types. We adopted

the same train/dev/test split of TimeBank-Dense, where there are 22 documents in

train, 5 in dev, and 9 in test. Parameters were tuned on the train-set to maximize its
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F1 on the dev-set, after which the classifier was retrained on the union of train and

dev. A detailed analysis of the baseline system is provided in Table 4.20. The perfor-

mance on simultaneous and vague is lower than on before and after, probably due to

shortage in these labels in the training data and the inherent difficulty in event coref-

erence and temporal vagueness. We can see, though, that the overall performance

on MATRES is much better than those in the literature for TempRel extraction,

which used to be in the low 50’s [95, 9]. The same system was also retrained and

tested on the original annotations of TimeBank-Dense (Line “Original”), which con-

firms the significant improvement if the proposed annotation scheme is used. Note

that we do not mean to say that the proposed baseline system itself is better than

other existing algorithms, but rather that the proposed annotation scheme and the

resulting dataset lead to better defined machine learning tasks. In the future, more

data can be collected and used with advanced techniques such as ILP [92], structured

learning [9] or multi-sieve [95].

Table 4.20: Performance of the proposed baseline system on MATRES. Line
“Original” is the same system retrained on the original TimeBank-Dense and tested
on the same subset of event pairs. Due to the limited number of simultaneous
examples, the system did not make any simultaneous predictions on the testset.

Training Testing
P R F1 P R F1

Before .74 .91 .82 .71 .80 .75
After .73 .77 .75 .55 .64 .59
Equal 1 .05 .09 - - -
Vague .75 .28 .41 .29 .13 .18
Overall .73 .81 .77 .66 .72 .69

Original .44 .67 .53 .40 .60 .48

4.5 CogCompTime: A Combination of Above

In summary, the contribution of this thesis work on TempRel extraction is exploit-

ing multiple forms of structure of time in inference, learning, and data annotation.
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Specifically, we have introduced how to make use of the transitivity structure in

Sec. 4.2, the probabilistic structure as commonsense knowledge in Sec. 4.3, and the

multi-axis structure in Sec. 4.4. In this section, we will show the effectiveness of

these proposals if they are combined (the resulting system is called CogCompTime).

We will first talk about incorporating all of them in a feature-based method, and

then switch to a neural framework to achieve even further improvement. We will see

that the state-of-the-art on TempRel extraction can be improved significantly by

the proposals in this thesis.

4.5.1 Feature-based Method

As we described in earlier sections, TempRel extraction can be seen as a graph ex-

traction problem, where the nodes represent events, and the edges represent TempRels.

With all the nodes extracted, the TempRel component is to make predictions on the

labels of those edges. Here, the label set for TempRels is before, after, simultaneous,

and vague.

For each pair of nodes, the following features are used to predict the labels. (i)

The part-of-speech (POS) tags from each individual verb and from its neighboring

three words. (ii) The distance between them in terms of the number of tokens. (iii)

The modal verbs between the event mention (i.e., will, would, can, could, may and

might). (iv) The temporal connectives between the event mentions (e.g., before, after

and since). (v) Whether the two verbs have a common synonym from their synsets in

WordNet [134]. (vi) Whether the input event mentions have a common derivational

form derived from WordNet. (vii) The head word of the preposition phrase that

covers each verb, respectively.

To incorporate all the proposals in previous sections, first, we add features from

TemProb which encodes prior knowledge of typical temporal orders of events into

the feature set above; with these features, we also adopt the constraint-driven learn-

ing algorithm for TempRel classification; then CogCompTime assigns local predic-

tion scores (i.e., soft-max scores) to each edge and solves an integer linear program-

ming (ILP) problem via GUROBI [75] to achieve globally consistent temporal graphs.
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Finally, MATRES proposed in Sec. 4.4 is selected as the evaluation benchmark.

The performance of TempRel extraction is P=61.6, R=70.9, F1=65.9 when the

gold event extraction is used. As a reference point, the best system in the TempE-

val3 workshop, ClearTK [98], had P=37.32, R=35.25, F1=36.26 (using gold event

extraction). Again, given the dataset difference, these numbers are not directly com-

parable, but it indicates that the proposals made in this chapter are indeed useful

for the TempRel task.

4.5.2 Futher Improvement by Neural Methods

Since TempRel is a specific relation type, it is natural to borrow recent neural

relation extraction approaches [135, 136, 137, 138]. There have indeed been such

attempts, e.g., in clinical narratives [139, 140, 141] and in newswire [142, 143, 144].

However, their improvements over feature-based methods were moderate ([140] even

showed negative results). We think it is important for us to understand: Is it because

we are missing a “magic” neural architecture, because the training dataset is small,

or because the quality of the dataset should be improved?

MATRES is relatively small (14K TempRels), but has a higher annotation quality

from its improved task definition and annotation guideline. Now, we are in the

right position to pursue neural methods for TempRel extraction. This subsection

shows that a long short-term memory (LSTM) [145] system can readily outperform

CogCompTime (feature-based) by a large margin; in contrast, the new system is

called CogCompTime (neural-based). The fact that a standard LSTM system can

significantly improve over a feature-based system on MATRES indicates that neural

approaches have been mainly dwarfed by the quality of annotation, instead of specific

neural architectures or the small size of data.

To gain a better understanding of the standard LSTM method, we extensively

compare the usage of various word embedding techniques, including word2vec [146],

GloVe [147], FastText [148], ELMo [149], and BERT [150], and show their impact on

TempRel extraction. Moreover, we further improve the LSTM system by injecting

knowledge from an updated version of TemProb. Altogether, these components
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improve over CogCompTime (feature-based) by about 10% in F1 and accuracy.

LSTM

t0 <e1> t1 </e1>       tn

(a)LSTM w/ position indicators (or, xml markups)
(previously used for this task)

word 
embeddings

(b)LSTM w/ concatenations of two hidden states
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Figure 4.11: Overview of the neural network structures studied in this paper.
Networks (a) and (b) are two ways to handle event positions in LSTMs
(Sec. 4.5.2.1). (c) The Siamese network used to fit TemProb (Sec. 4.5.2.2). Once
trained on TemProb, the Siamese network is fixed when training other parts of the
system. (d) The FFNN that generates confidence scores for each label. Sizes of
hidden layers are already noted. Embeddings of the same color share the same
matrix.

One major disadvantage of feature-based systems is that errors which occurred

in feature extraction propagate to subsequent modules. Here we study the usage of

LSTM networks18 on the TempRel extraction problem as an end-to-end approach

that only takes a sequence of word embeddings as input (assuming that the position of

events are known). Conceptually, we need to feed those word embeddings to LSTMs

and obtain a vector representation for a particular pair of events, which is followed by

a fully-connected, feed-forward neural network (FFNN) to generate confidence scores

for each output label. Based on the confidence scores, global inference is performed

18We also tried convolutional neural networks but did not observe that CNNs improved perfor-
mance significantly compared to the LSTMs. Comparison between LSTM and CNN is also not the
focus of this paper.
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via integer linear programming (ILP), which is a standard procedure used in many

existing works to enforce the transitivity property of time [50, 92, 9]. An overview

of the proposed network structure and corresponding parameters can be found in

Fig. 4.11. Below we also explain the main components.

4.5.2.1 Handling Event Positions

Each TempRel is associated with two events, and for the same text, different pairs

of events possess different relations, so it is critical to indicate the positions of those

events when we train LSTMs for the task. The most straightforward way is to

concatenate the hidden states from both time steps that correspond to the location

of those events (Fig. 4.11b). Dligach et al. (2017) [139] handled this issue differently,

by adding XML tags immediately before and after each event (Fig. 4.11a). For

example, in the sentence, After eating dinner, he slept comfortably, where the two

events are bold-faced, they will convert the sequence into After <e1> eating </e1>

dinner, he <e2> slept </e2> comfortably. The XML markups, which were initially

proposed under the name of position indicators for relation extraction [137], uniquely

indicate the event positions to LSTM, such that the final output of LSTM can be used

as a representation of those events and their context. We compare both methods

in this paper, and as we show later, the straightforward concatenation method is

already as good as XML tags for this task.

4.5.2.2 Common Sense Encoder (CSE)

In naturally occurring text that expresses TempRels, connective words such as

since, when, or until are often not explicit; nevertheless, humans can still infer the

TempRels using common sense with respect to the events. For example, even with-

out context, we know that die is typically after explode and schedule typically before

attend. Ning et al. (2018) [11] made initial attempt to acquire such knowledge by

aggregating automatically extracted TempRels from a large corpus. The resulting

knowledge base, TemProb, contains observed frequencies of tuples (v1, v2, r) rep-
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resenting the probability of verb 1 and verb 2 having relation r, and it was shown a

useful resource for TempRel extraction.

However, TemProb is a simple counting model and fails (or is unreliable) for

unseen (or rare) tuples. For example, we may see (ambush, die) less frequently

than (attack, die) in a corpus, and the observed frequency of (ambush, die) being

TempRelbefore or TempRelafter is thus less reliable. However, since “ambush” is

semantically similar to “attack”, the statistics of (attack, die) can actually serve as

an auxiliary signal to (ambush, die). Motivated by this idea, we introduce common

sense encoder (CSE): We fit an updated version of TemProb via a Siamese network

[151] that generalizes to unseen tuples through the resulting embeddings for each

verb (Fig. 4.11c). Note that the TemProb we use is reconstructed using the same

method described in [11] with the base method changed to CogCompTime. Once

trained, CSE will remain fixed when training the LSTM part (Fig. 4.11a or b) and

the feedforward neural network part (Fig. 4.11d). We only use CSE for its output. In

the beginning, we tried to directly use the output (i.e., a scalar) and the influence on

performance was negligible. Therefore, here we discretize the CSE output, change

it to categorical embeddings, concatenate them with the LSTM output, and then

produce the confidence scores (Fig. 4.11d).

4.5.3 Experiments

4.5.3.1 Data

Some statistics of the datasets used in this section are shown in Table 4.21. The

MATRES dataset contains 275 news articles from the TempEval3 workshop [3]

with newly annotated events and TempRels. It has 3 sections: TimeBank (TB),

AQUAINT (AQ), and Platinum (PT). We used the standard split (i.e., TB+AQ for

training and PT for testing), and further set aside 20% of the training data as the

development set to tune learning rates and epochs. We also show the performance
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on another test set, TCR19 [49], which contains both temporal and causal relations

and we only need the temporal part. The label set for both datasets is before, after,

simultaneous, and vague.

Table 4.21: TimeBank (TB), AQUAINT (AQ), and Platinum (PT) are from
MATRES [12] and TCR from [49]. Note the numbers of events and TempRels do
not match to those in Table 4.3 because Table 4.3 is for TempEval3 and here it is
for MATRES.

Purpose #Doc #Events #TempRels
TB+AQ Train 255 8K 13K

PT Test 20 537 837
TCR Test 25 1.3K 2.6K

4.5.3.2 Results

We compare CogCompTime (neural-based) with CogCompTime (feature-based), us-

ing three metrics for a more thorough comparison: classification accuracy (acc.),

standard F1, and temporal awareness Faware, where the awareness score is for the

graphs represented by a group of related TempRels (see Sec. 4.1.3). We also report

the average of those three metrics in our experiments.

Table 4.22 compares the two different ways to handle event positions discussed in

Sec. 4.5.2.1: position indicators (P.I.) and simple concatenation (Concat), both of

which are followed by network (d) in Fig. 4.11 (i.e., without using Siamese yet). We

extensively studied the usage of various pretrained word embeddings, including con-

ventional embeddings (i.e., the medium versions of word2vec, GloVe, and FastText

provided in the Magnitude package [152]) and contextualized embeddings (i.e., the

original ELMo and large uncased BERT, respectively); except for the input embed-

dings, we kept all other parameters the same. We used cross-entropy loss and the

StepLR optimizer in PyTorch that decays the learning rate by 0.5 every 10 epochs

(performance not sensitive to it).

19http://cogcomp.org/page/publication_view/835
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Comparing to the previously used P.I. [139], we find that, with only two exceptions

(underlined in Table 4.22), the Concat system saw consistent gains under various

embeddings and metrics. In addition, contextualized embeddings (ELMo and BERT)

expectedly improved over the conventional ones significantly, although no statistically

significant difference was observed between using ELMo or BERT.

Table 4.22: Performances on the MATRES test set (i.e., the PT section).
CogCompTime [153] is the previous state-of-the-art feature-based system. Position
indicator (P.I.) and concatenation (Concat) are two ways to handle event positions
in LSTMs (Sec. 4.5.2.1). Concat+CSE (aka neural-based CogCompTime) achieves
significant improvement over feature-based CogCompTime on MATRES.

System Emb. Acc. F1 Faware Avg.

P.I.

word2vec 63.2 67.6 60.5 63.8
GloVe 64.5 69.0 61.1 64.9

FastText 60.5 64.7 59.5 61.6

ELMo 67.5 73.9 63.0 68.1
BERT 68.8 73.6 61.7 68.0

Concat

word2vec 65.0 69.5 59.4 64.6
GloVe 64.9 69.5 60.9 65.1

FastText 64.0 68.6 60.1 64.2

ELMo 67.7 74.0 63.3 68.3
BERT 69.1 74.4 63.7 69.1

Concat+CSE
ELMo 71.7 76.7 66.0 71.5
BERT 71.3 76.3 66.5 71.4

CogCompTime (feat.) - 61.6 66.6 60.8 63.0

Given the above two observations, we further incorporated our common sense en-

coder (CSE) into “Concat” with ELMo and BERT in Table 4.22. We split TemProb

into train (80%) and validation (20%). The proposed Siamese network (Fig. 4.11c)

was trained by minimizing the cross-entropy loss using Adam [154] (learning rate

1e-4, 20 epochs, and batch size 500). We first see that CSE improved on top of

Concat for both ELMo and BERT under all metrics, confirming the benefit of Tem-

Prob; second, as compared to CogCompTime (feature-based), the proposed Con-
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cat+CSE achieved about 10% absolute gains in accuracy and F1, 5% in awareness

score Faware, and 8% in the three-metric-average metric, with p < 0.001 per the

McNemar’s test. Roughly speaking, the 8% gain is contributed by LSTMs for 2%,

contextualized embeddings for 4%, and CSE for 2%. Again, no statistically signif-

icant difference was observed between using ELMo and BERT. Table 4.23 further-

more applies CogCompTime (feature-based) and the proposed Concat+CSE system

on a different test set called TCR. Both systems achieved better scores (suggesting

that TCR is easier than MATRES), while the proposed system still outperformed

CogCompTime (feature-based) by roughly 8% under the three-metric-average met-

ric, consistent with our improvement on MATRES.

Table 4.23: Further evaluation of the proposed system, i.e., Concat (Sec. 4.5.2.1)
plus CSE (Sec. 4.5.2.2), on the TCR dataset [49].

System Emb. Acc. F1 Faware Avg.

CogCompTime - 68.1 70.7 61.6 66.8

Concat+CSE
ELMo 80.8 78.6 69.9 76.4
BERT 78.4 77.0 69.0 74.9

4.5.3.3 Significance Test for Tables 4.22-4.23

In Table 4.22, we mainly compared the performance of position indicator (P.I.) and

simple concatenation (Concat), using 5 different word embeddings and 3 metrics,

so there were 15 performances for both P.I. and Concat. Under the paired t-test,

Concat is significantly better than P.I. with p < 0.01.

Another observation we made in Table 4.22 was that contextualized embeddings,

i.e., ELMo and BERT, were much better than conventional ones, i.e., word2vec,

GloVe and FastText. For both P.I. and Concat, we found that the difference between

contextualized embeddings and conventional embeddings was significant with p <

0.001 under the McNemar’s test [117, 155]; however, between the two contextualized

embeddings, ELMo and BERT, we did not see a significant difference, although it

has been reported that in many other tasks, that BERT is better than ELMo.
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In Table 4.23, we further improved Concat using the proposed common sense en-

coder (CSE). Under the McNemar’s test, Concat+CSE was significantly better than

Concat with p < 0.001, no matter whether ELMo or BERT was used. Again, no

significant difference was observed between ELMo and BERT. Finally, since Con-

cat+CSE improved over CogCompTime (feature-based) by a large margin either on

MATRES or on TCR, it was not surprising to see that the proposed Concat+CSE

is significantly better than CogCompTime (feature-based) with p < 0.001 as well.
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CHAPTER 5

TEMPORAL COMMONSENSE
UNDERSTANDING

Because people rarely say the obvious, natural language understanding requires the

ability to reason with commonsense knowledge [156, 157], and the last few years

have seen significant work in this direction (e.g., [158, 159, 160]). In terms of various

temporal aspects of events, we have temporal common sense such as duration and

frequency. However, this important problem has so far received limited attention. For

instance, given two events “going on a vacation” and “going for a walk”, most humans

would know that a vacation is typically longer and occurs less often than a walk, but

it is still challenging for computers to understand and reason about temporal common

sense. Therefore, in addition to Timex understanding and TempRel understanding,

this thesis also systematically studies this temporal common sense problem.

Specifically, this thesis defines five classes of temporal common sense: duration

(how long an event takes), temporal ordering (typical order of events), typical time

(when an event happens), frequency (how often an event occurs), and stationarity

(whether a state holds for a very long time or indefinitely). Existing works have

investigated some of these aspects, either explicitly or implicitly (e.g., duration [161,

162] and ordering [122, 11]), but none of them have defined or studied all aspects

of temporal common sense in a unified framework. Kozavera and Hovy (2011) [163]

defined a few temporal aspects to be investigated, but failed to quantify performances

on these phenomena.

Given the lack of evaluation standards and datasets for temporal common sense,

this thesis develops a new dataset dedicated for it, McTaco (short for multiple

choice temporal common sense). McTaco is constructed via crowdsourcing with

guidelines designed meticulously to guarantee its quality. When evaluated on McTaco,
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Figure 5.1: Five types of temporal common sense in McTaco. Note that a
question may have multiple correct answers.

a system receives a sentence providing context information, a question designed to

require temporal common sense knowledge, and multiple candidate answers (see
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Fig. 5.1). Note that in this setup, more than one candidate answer can be plausible,

so the task is in fact a binary classification: determining whether a candidate answer

is plausible according to human common sense. This is aligned with other efforts

that have posed common sense as the choice of plausible alternatives [164]. The high

quality of the resulting dataset (shown in Sec. 5.3) also makes us believe that the

notion of plausibility here is robust.

Another finding is that, using McTaco as a testbed, we study the temporal com-

mon sense understanding of the best existing NLP techniques, including ESIM [165],

BERT [166] and their variants. Results in Sec. 5.3 show that, despite a significant

improvement over random-guess baselines, the best existing techniques are still far

behind human performance on temporal common sense understanding, indicating

the need for further research in order to improve the currently limited capability to

capture temporal semantics.

5.1 Related Work

Common sense has been a very popular topic in recent years and existing NLP

works have mainly investigated the acquisition and evaluation of common sense in

the physical world, including but not limited to, size, weight, and strength [167],

roundness and deliciousness [168], and intensity [169]. In terms of “events” common

sense, [170] investigated the intent and reaction of participants of an event, and

[171] tried to select the most likely subsequent event. No earlier work has focused on

temporal common sense, although it is critical for event understanding. For instance,

[12] argues that resolving ambiguous and implicit mentions of event durations in text

(a specific kind of temporal common sense) is necessary to construct the timeline of

a story.

There have also been many works trying to understand time in natural language

but not necessarily the commonsense understanding of time. Most recent works

include the extraction and normalization of temporal expressions [4, 8], temporal

relation extraction [9, 153], and timeline construction [144]. Among these, some
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Table 5.1: Statistics of McTaco.

Measure Value

# of unique questions 1893
# of unique question-answer pairs 13,225
avg. sentence length 17.8
avg. question length 8.2
avg. answer length 3.3

Category # questions avg # of candidate

event frequency 433 8.5
event duration 440 9.4
event stationarity 279 3.1
event ordering 370 5.4
event typical time 371 6.8

works are implicitly on temporal common sense, such as event durations [162, 172],

typical temporal ordering [122, 49, 11], and script learning (i.e., what happens next

after certain events) [53, 55]. However, existing works have not studied all five types

of temporal common sense in a unified framework as we do here, nor have they

developed datasets for it.

Instead of working on each individual aspect of temporal common sense, this thesis

formulates the problem as a machine reading comprehension task in the format of

selecting plausible responses with respect to natural language queries. This relates

our work to a large body of work on question-answering, an area that has seen

significant progress in the past few years [173, 174, 175]. This area, however, has

mainly focused on general natural language comprehension tasks, while we tailor it

to test a specific reasoning capability, which is temporal common sense.

5.2 McTaco: A Benchmark Dataset

McTaco is comprised of 13K tuples, in the form of (sentence, question, candidate

answer); please see examples in Fig. 5.1 for the five phenomena studied here and
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Table 5.1 for basic statistics of it. The sentences in those tuples are randomly selected

from MultiRC [176] (from each of its 9 domains). For each sentence, crowdsourcing

on Amazon Mechanical Turk was used to collect questions and candidate answers

(both correct and wrong ones). To ensure the quality of the results, we limit the

annotations to native speakers and use qualification tryouts.

5.2.1 Step 1: Question Generation

We first ask crowdsourcers to generate questions, given a sentence. To produce ques-

tions that need temporal common sense to answer, we require that a valid question:

(a) should ask about one of the five temporal phenomena we defined earlier, and (b)

should not be solved simply by a word or phrase from the original sentence. We also

require crowdsourcers to provide a correct answer for each of their questions, which

on one hand gives us a positive candidate answer, and on the other hand ensures

that the questions are answerable at least by themselves.

5.2.2 Step 2: Question Verification

We further ask another two crowdsourcers to check the questions generated in Step 1,

i.e., (a) whether the two requirements are satisfied and (b) whether the question is

grammatically and logically correct. We retain only the questions where the two

annotators unanimously agree with each other and the decision generated in Step 1.

For valid questions, we continue to ask crowdsourcers to give one correct answer and

one incorrect answer, which we treat as a seed set to automatically generate new

candidate answers in the next step.
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5.2.3 Step 3: Candidate Answer Expansion

Until this stage, we have collected a small set of candidate answers (3 positive and 2

negative) for each question.1 We automatically expand this set in three ways. First,

we use a set of rules to extract numbers and quantities (“2”, “once”) and temporal

terms (e.g. “a.m.”, “1990”, “afternoon”, “day”), and then randomly perturb them

based on a list of temporal units (“second”), adjectives (“early”), points ( “a.m.”)

and adverbs (“always”). Examples are “2 a.m.” → “3 p.m.”, “1 day” → “10 days”,

“once a week”→ “twice a month” (more details in the appendix).

Second, we mask each individual token in a candidate answer (one at a time)

and use BERT [166] to predict replacements for each missing term; we rank those

predictions by the confidence level of BERT and keep the top three.

Third, for those candidates that represent events, the previously-mentioned token-

level perturbations rarely lead to interesting and diverse set of candidate answers.

Furthermore, it may lead to invalid phrases (e.g., “he left the house” → “he walked

the house”). Therefore, to perturb such candidates, we create a pool of 60k event

phrases using PropBank [37], and perturb the candidate answers to be the most simi-

lar ones extracted by an information retrieval (IR) system.2 This not only guarantees

that all candidates are properly phrased, it also leads to more diverse perturbations.

We apply the above three techniques on non-“event” candidates sequentially, in

the order they were explained, to expand the candidate answer set to 20 candidates

per question. A perturbation technique is used, as long as the pool of candidates

is still less than 20. Note there are both correct and incorrect answers in those

candidates.

5.2.4 Step 4: Answer Labeling

In this step, each (sentence, question, answer) tuple produced earlier is labeled by 4

crowdsourcers, with three options: “likely”, “unlikely”, or “invalid” (sanity check for

1One positive answer from Step 1; one positive and one negative answer from each of the two
annotators in Step 2.

2www.elastic.co
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valid tuples).3 Different annotators may have different interpretations, yet we ensure

label validity through high agreement. A tuple is kept only if all 4 annotators agree

on “likely” or “unlikely”. The final statistics of McTaco is in Table 5.1.

5.3 Experiments

We assess the quality of our dataset through human annotation, and evaluate a

couple of baseline systems. We create a uniform split of 30%/70% of the data to

dev/test. The rationale behind this split is that a successful system has to bring in

a huge amount of world knowledge and derive commonsense understandings prior to

the current task evaluation. We therefore believe that it is not reasonable to expect

a system to be trained solely on this data, and we think of the development data as

only providing a definition of the task. Indeed, the gains from our development data

are marginal after a certain number of training instances. This intuition is studied

and verified in Sec. 5.4.2.

5.3.1 Evaluation Metrics

Two question-level metrics are adopted in this work: exact match (EM ) and F1. For

a given candidate answer a that belongs to a question q, let f(a; q) ∈ {0, 1} denote

the correctness of the prediction made by a fixed system (1 for correct; 0 otherwise).

Additionally, let D denote the collection of questions in our evaluation set.

EM ,

∑
q∈D

∏
a∈q f(a; q)

| {q ∈ D} |
.

The recall for each question q is:

R(q) =

∑
a∈q [f(a; q) = 1] ∧ [a is “likely” ]

| {a is “likely” ∧ a ∈ q} |
.

3We use the name “(un)likely” because commonsense decisions can be naturally ambiguous and
subjective.
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Similarly, P (q) and F1(q) are defined. The aggregate F1 (across the dataset D) is

the macro average of question-level F1’s:

F1 ,

∑
q∈D F1(q)

| {q ∈ D} |
.

EM measures how many questions for which a system is able to correctly label

all candidate answers, while F1 is more relaxed and measures the average overlap

between one’s predictions and the ground truth.

5.3.2 Human Performance

An expert annotator also worked on McTaco to gain a better understanding of the

human performance on it. The expert answered 100 questions (about 700 (sentence,

question, answer) tuples) randomly sampled from the test set, and could only see a

single answer at a time, with its corresponding question and sentence.

5.3.3 Systems

We use two state-of-the-art systems in machine reading comprehension for this task:

ESIM [165] and BERT [166]. ESIM is an effective neural model on natural lan-

guage inference. We initialize the word embeddings in ESIM via either GloVe [147]

or ELMo [149] to demonstrate the effect of pre-training. BERT is a state-of-the-art

contextualized representation used for a broad range of tasks . We also add unit nor-

malization to BERT , which extracts and converts temporal expressions in candidate

answers to their most proper units. For example, “30 months” will be converted to

“2.5 years”. To the best of our knowledge, there are no other available systems for

the “stationarity”, “typical time”, and “frequency” phenomena studied here. As for

“duration” and “temporal order”, there are existing systems (e.g., [172, 11]), but

they cannot be directly applied to the setting in McTaco where the inputs are

natural languages.
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Table 5.2: Summary of the performances for different baselines. All numbers are
percentages.

System F1 EM

Random 36.2 8.1
Always Positive 49.8 12.1
Always Negative 17.4 17.4

ESIM + GloVe 50.3 20.9
ESIM + ELMo 54.9 26.4

BERT 66.1 39.6
BERT + unit normalization 69.9 42.7

Human 87.1 75.8

5.3.4 Experimental Setting

In both ESIM baselines, we model the process as a sentence-pair classification task,

following the SNLI setting in AllenNLP.4 In both versions of BERT, we use the same

sequence pair classification model and the same parameters as in BERT ’s GLUE

experiments.5 A system receives two elements at a time: (a) the concatenation of

the sentence and question, and (b) the answer. The system makes a binary prediction

on each instance, “likely” or “unlikely”.

5.3.5 Results

Table 5.2 compares native baselines, ESIM, BERT and their variants on the en-

tire test set of McTaco; it also shows human performance on the subset of 100

questions.6 The system performances reported are based on default random seeds,

and we observe a maximum standard error7 of 0.8 from 3 runs on different seeds

4https://github.com/allenai/allennlp
5https://github.com/huggingface/pytorch-pretrained-BERT
6BERT + unit normalization scored F1 = 72, EM = 45 on this subset, which is only slightly

different from the corresponding number on the entire test set.
7https://en.wikipedia.org/wiki/Standard_error
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Figure 5.2: EM scores of BERT + unit normalization per temporal reasoning
category comparing to the random-guess baseline.

across all entries. We can confirm the good quality of this dataset based on the high

performance of human annotators. ELMo and BERT improve naive baselines by a

large margin, indicating that a notable amount of commonsense knowledge has been

acquired via pre-training. However, even BERT still falls far behind human perfor-

mance, indicating the need of further research. For example, RoBERTa [177], a more

recent language model that was released recently, achieves F1 = 72.3, EM = 43.6.

We know that BERT , as a language model, is good at associating surface forms

(e.g. associating “sunrise” with “morning” since they often co-occur), but may be

brittle with respect to variability of temporal mentions.

Consider the following example (the correct answers are indicated with 3and

BERT selections are underlined.) This is an example of BERT correctly associ-

ating a given event with “minute” or “hour”; however, it fails to distinguish between

“1 hour” (a “likely” candidate) and “9 hours” (an “unlikely” candidate).

P: Ratners’s chairman, Gerald Ratner, said the deal remains of ”substantial

benefit to Ratners.”

Q: How long did the chairman speak?

3(a) 30 minutes 3(b) 1 hour

7(c) 9 hours 7(d) twenty seconds

This shows that BERT does not infer a range of true answers; it instead associates

discrete terms and decides individual options, which may not be the best way to

handle temporal units that involve numerical values.

BERT+unit normalization is used to address this issue, but results show that it
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is still poor compared to human. This indicates that the information acquired by

BERT is still far from solving temporal common sense.

Since exact match (EM) is a stricter metric, it is consistently lower than F1 in

Table 5.2. For an ideal system, the gap between EM and F1 should be small (humans

only drop 11.3%.) However, all other systems drop by almost 30% from F1 to EM,

possibly another piece of evidence that they only associate surface forms instead of

using one representation for temporal common sense to classify all candidates.

A curious reader might ask why the human performance on this task as shown in

Table 5.2 is not 100%. This is expected because common sense is what most people

agree on, so any single human could disagree with the gold labels in McTaco.

Therefore, we think the human performance in Table 5.2 from a single evaluator

actually indicates the good quality of McTaco.

The performance of BERT+unit normalization is not uniform across different cat-

egories (Fig. 5.2), which could be due to the different nature or quality of data

for those temporal phenomena. For example, as shown in Table 5.1, “stationarity”

questions have much fewer candidates and a higher random baseline.

5.4 Discussion

5.4.1 Perturbing Candidate Answers

Here we provide a few missing details from Step 3 of our annotations (Sec. 5.2.3).

In particular, we create collections of common temporal expressions (see Table 5.3)

to detect whether the given candidate answer contains a temporal expression or not.

If a match is found within this list, we use the mappings to create perturbations of

the temporal expression.
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Table 5.3: Collections of temporal expressions used in creating perturbation of the
candidate answers. Each mention is grouped with its variations (e.g., “first” and
“last” are in the same set).

Adjectives Frequency Period Typical time Units
early:late always:sometimes:never night:day now:later second:hour:week:year
late:early occasionally:always:never day:night today:yesterday seconds:hours:weeks:years

morning:late night often:rarely tomorrow:yesterday minute:day:month:century
night:early morning usually:rarely tonight:last night minutes:days:months:centuries

evening:morning rarely:always yesterday:tomorrow hour:second:week:year
everlasting:periodic constantly:sometimes am:pm hours:seconds:weeks:years

initial:last never:sometimes:always pm:am day:minute:month:century
first:last regularly:occasionally:never a.m.:p.m. days:minutes:months:centuries
last:first p.m.:a.m. week:second:hour:year

overdue:on time afternoon:morning weeks:seconds:hours:years
belated:punctual morning:evening month:minute:day:century

long-term:short-term night:morning months:minutes:days:centuries
delayed:early after:before year:second:hour:week

punctual:belated before:after years:seconds:hours:weeks
century:minute:day:month

centuries:minutes:days:months

5.4.2 Performance as a Function of Training Size

An intuition that we stated is that the task at hand requires a successful model to

bring in external world knowledge beyond what is observed in the dataset; for a

task like this, it is unlikely to compile a dataset which covers all the possible events

and their attributes. In other words, the “traditional” supervised learning alone

(with no pre-training or external training) is unlikely to succeed. A corollary to this

observation is that tuning a pre-training system (such as BERT [166]) likely requires

very little supervision.

We plot the performance change, as a function of number of instances observed in

the training time (Fig. 5.3). Each point in the figure shares the same parameters and

averages of 5 distinct trials over different random sub-samples of the dataset. As can

be observed, the performance plateaus after about 2.5k question-answer pairs (about

20% of the whole datasets). This verifies the intuition that systems can rely on a rel-

atively small amount of supervision to tune to task, if it models the world knowledge

through pre-training. Moreover, it shows that trying to make improvement through

getting more labeled data is costly and impractical.

In summary, this chapter has focused on temporal common sense. We define five

102



Figure 5.3: Performance of supervised algorithm (BERT; Section 4) as function of
various sizes of observed training data. When no training data is provided to the
systems (left-most side of the figure), the performance measures amount to random
guessing.

categories of questions that require temporal common sense and develop a novel

crowdsourcing scheme to generate McTaco, a high-quality dataset for this task.

We use McTaco to probe the capability of systems on temporal common sense

understanding. We find that systems equipped with state-of-the-art language models

such as ELMo and BERT are still far behind humans, thus motivating future research

in this area. Our analysis sheds light on the capabilities as well as limitations of

current models.
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CHAPTER 6

INVESTIGATION OF INCIDENTAL
SUPERVISION

For many structured learning tasks (including the temporal tasks extensively studied

in this thesis), the data annotation process is complex and costly. Existing anno-

tation schemes usually aim at acquiring completely annotated structures, under the

common perception that partial structures are of low quality and could hurt the

learning process. This chapter questions this common perception, motivated by the

fact that structures consist of interdependent sets of variables. Thus, given a fixed

budget, partly annotating each structure may provide the same level of supervision,

while allowing for more structures to be annotated. We provide an information theo-

retic formulation for this perspective and use it, in the context of both the TempRel

extraction task and another two structured learning tasks, to show that learning from

partial structures can sometimes outperform learning from complete ones. The im-

portant findings here may provide important insights into structured data annotation

schemes and could support progress in learning protocols for structured tasks.

6.1 Motivation

Many machine learning tasks require structured outputs, and the goal is to assign

values to a set of variables coherently. Specifically, the variables in a structure need

to satisfy some global properties required by the task. An important implication

is that once some variables are determined, the values taken by other variables are

constrained. For instance, in the temporal relation extraction problem in Fig. 6.1a,

if met happened before leaving and leaving happened on Thursday, then we know
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met (2) leavingmet (1)

Thursday

Time

I met with him before leaving for Paris 
on Thursday.

(a)

The boy gave a frog to the girl.
Arg0 Arg0 Arg0

PREDICATE(b)

🔴 FOREHEAD
🔴 LEFT_EYE

🔴 TORSO
🔴

(c)

NECK

Before

Be_Included

Figure 6.1: Due to the inherent structural constraints of each task, individual
instances therein put restrictions on others. (a) The temporal relation between met
and Thursday has to be Before (“met (1)”) or Be Included (“met (2)”). (b) The
argument roles of a frog and to the girl cannot be Arg0 anymore. (c) Given the
position of the cat’s FOREHEAD and LEFT EYE, a rough estimate of its NECK
can be the red solid box rather than the blue dashed box.

that met must either be before Thursday (“met (1)”) or has to happen on Thursday,

too (“met (2)”) [49]. Similarly, in the semantic frame of the predicate gave [37] in

Fig. 6.1b, if the boy is Arg0 (short for argument 0), then it rules out the possibility

of a frog or to the girl taking the same role. Figure 6.1c further shows an example of

part-labeling of images [178]; given the position of FOREHEAD and LEFT EYE of

the cat in the picture, we roughly know that its NECK should be somewhere in the
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red solid box, while the blue dashed box is likely to be wrong.

Data annotation for these structured tasks is complex and costly, thus requiring

one to make the most of a given budget. This issue has been investigated for decades

from the perspective of active learning for classification tasks [179, 180, 181] and for

structured tasks [182, 183, 184, 185]. While active learning aims at selecting the

next structure to label, we try to investigate, from a different perspective, whether

we should annotate each structure completely or partially. Conventional annotation

schemes typically require complete structures, under the common perception that

partial annotation could adversely affect the performance of the learning algorithm.

But note that partial annotations will allow for more structures to be annotated (see

Fig. 6.2). Therefore, a fair comparison should be done while maintaining a fixed

annotation budget, which was not done before. Moreover, even if partial annota-

tion leads to comparable learning performance to conventional complete schemes, it

provides more flexibility in data annotation.

Another potential benefit of partial annotation is that it imposes constraints on the

remaining parts of a structure. As illustrated by Fig. 6.1, with partial annotations,

we already have some knowledge about the unannotated parts. Therefore, further

annotations of these variables may use the available budget less efficiently; this effect

was first discussed in [10]. Motivated by the observations in Figs. 6.1-6.2, we think

it is important to study partialness systematically, before we hastily assume that

completeness should always be favored in data collection.

To study whether the above benefits of partialness can offset its weakness for learn-

ing, this thesis proposes the early stopping partial annotation (ESPA) scheme, which

randomly picks up instances to label in the beginning, and stops before a structure is

completed. We do not claim that ESPA should always be preferred; instead, it serves

as an alternative to conventional, complete annotation schemes that we should keep

in mind, because, as we show later, it can be comparable to (and sometimes even

better than) complete annotation schemes. ESPA is straightforward to implement

even in crowdsourcing; instances to annotate can be selected offline and distributed

to crowdsourcers; this can be contrasted with the difficulties of implementing ac-

tive learning protocols in these settings [186, 187]. We think that ESPA is a good
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representative for a systematic study of partialness.

(a) Complete (b) Partial

Figure 6.2: If we need training data for a graph labeling task (assuming the gold
values for the nodes are given) and our annotation budget allows us to annotate,
for instance, 10 edges in total, we could (a) completely annotate one graph (and
then we run out of budget), or (b) partially annotate two graphs.

This thesis also develops an information theoretic formulation to explain the ben-

efit of ESPA (Sec. 6.2), which we further demonstrate via three structured learning

tasks in Sec. 6.4: temporal relation (TempRel) extraction [3], semantic role classifi-

cation (SRC),1 and shallow parsing [188]. These tasks are chosen because they each

represent a wide spectrum of structures that we will detail later. As a byproduct, we

extend CoDL [112] to cope with partially annotated structures (Sec. 6.3); we call the

algorithm Structured Self-learning with Partial ANnotations (SSPAN) to distinguish

it from CoDL.2

We believe in the importance of this chapter. First, partialness is inevitable in

practice, either by mistake or by choice, so our theoretical analysis can provide

unique insight into understanding partialness. Second, it opens up opportunities for

new annotation schemes. Instead of considering partial annotations as a compromise,

we can in fact annotate partial data intentionally, allowing us to design favorable

guidelines and collect more important annotations at a cheaper price. Many recent

datasets that were collected via crowdsourcing are already partial, and this chapter

provides some theoretical foundations for them. Furthermore, the setting described

here addresses natural scenarios where only partial, indirect supervision is available,

1A subtask of semantic role labeling (SRL) [34] that only classifies the role of an argument.
2There have been many works on learning from partial annotations, which we review in Sec. 6.3.

SSPAN is only an experimental choice in demonstrating ESPA. Whether SSPAN is better than
other algorithms is out of the scope here, and a better algorithm for ESPA will only strengthen the
claims in this chapter.

107



as in Incidental Supervision [189], and this chapter begins to provide theoretical

understanding for this paradigm, too. Further discussions can be found in Sec. 6.5.

It is important to clarify that we assume uniform cost over individual annotations

(that is, all edges in Fig. 6.2 cost equally), often the default setting in crowdsourc-

ing. We realize that the annotation difficulty can vary a lot in practice, sometimes

incurring different costs. To address this issue, we randomly select instances to label

so that on average, the cost is uniform. We agree that, even with this randomness,

there could still be situations where the assumption does not hold, but we leave it

for future studies, possibly in the context of active learning schemes.

6.2 Early Stopping Partial Annotation

In this section, we study whether the effect demonstrated by the examples in Fig. 6.1

exists in general. First, recall the definition of structure (Definition 1 in Sec. 4.2); it

is necessary to model a structure as a set of random variables because when it is not

completely annotated, there is still uncertainty in the annotation assignment. Intu-

itively, annotations are essentially reducing this uncertainty by labeling its variables.

To study partial annotations, here we formally define annotation as well.

Definition 2 A k-step annotation (0 ≤ k ≤ d) is a vector of RVs Ak = [Ak,1, . . . , Ak,d] ∈
(L ∪ u)d where u is a special character for null, such that

d∑
i=1

1(Ak,i 6= u) = k, (6.1)

P (Y|Ak = ak) = P (Y|Yj = ak,j, j ∈ J ) , (6.2)

where J is the set of indices that ak,j 6= u.

Equation (6.1) means that, in total, k variables are already annotated at step k.

Obviously, A0 means that no variables are labeled, and Ad means that all variables

in Y are determined. Ak is what we call a k-step ESPA, so hereafter we use k/d to
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represent annotation completeness. Equation (6.2) assumes no annotation mistakes,

so if the i-th variable is labeled, then Yi must be the same as Ak,i.

To measure the theoretical benefit of Ak, we propose the following quantity:

Ik = log |C(Ld)| − E [log f(ak)] (6.3)

for k = 0, . . . , d, where f(ak) = |{y ∈ C(Ld) : P (y|ak) > 0}| is the total number

of structures in C(Ld) that are still valid given Ak = ak. Since we assume that the

labeled variables in Ak are selected uniformly randomly, E [·] is simply the average

of log f(ak). When k = 0, f(ak) ≡ C(Ld) and I0 ≡ 0; as k increases, Ik increases

since the structure has more and more variables labeled; finally, when k = d, the

structure is fully determined and Id ≡ log |C(Ld)|. The first-order finite difference,

Ik − Ik−1, is the benefit brought by annotating an additional variable at step k; if Ik

is concave (i.e., a decaying Ik− Ik−1), the benefit from a new annotation attenuates,

suggesting the potential benefit of the ESPA strategy.

In an extreme case where the structure is so strong that it requires all individual

variables to share the same label, then labeling any variable is sufficient for determin-

ing the entire structure. Intuitively, we do not need to annotate more than one vari-

able. Our Ik quantity can support this intuition: The structural constraint, C(Ld),
contains only |L| elements: {[`i, `i, . . . , `i]}|L|i=1, so I0 = 0, and I1 = · · · = Id = log |L|.
Since Ik does not increase at all when k >= 1, we should adopt first-step annota-

tion A1. Another extreme case is that of a trivial structure that has no constraints

(i.e., C(Yd) = Yd). The annotations of all variables are independent and we gain

no advantage from skipping any variables. This intuition can be supported by our

Ik analysis as well: Since Ik = k log |L|, ∀k = 0, 1, . . . , d, Ik is linear and all steps

contribute equally to improving Ik by log |L|; therefore ESPA is not necessary.

Real-world structures are often not as trivial as the two extreme cases above, but

Ik can still serve as a guideline to help determine whether it is beneficial to use ESPA.

We next discuss three diverse types of structures and how to obtain Ik for them.

Example 23: The ranking problem is an important machine learning task and

often depends on pairwise comparisons, for which the label set is L = {<,>}. For
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Figure 6.3: The mutual information between the chain structure and its k-step
ESPA, Ik, is concave, suggesting possible benefit of using ESPA. In the simulation,
there are n = 10 items in the chain and thus d = 45 pairs, k of which are labeled.
The values of Ik’s, as defined by Eq. (6.3), were obtained through averaging 1000
experiments. We use base-2 logarithm and the unit on y-axis is thus “bit”.

a ranking problem with n items, there are d = n(n − 1)/2 pairwise comparisons in

total. Its structure is a chain following the transitivity constraints, i.e., if A < B

and B < C, then A < C.The ranking problem is an important machine learning task

and often depends on pairwise comparisons, for which the label set is L = {<,>}.
For a ranking problem with n items, there are d = n(n− 1)/2 pairwise comparisons

in total. Its structure is a chain following the transitivity constraints, i.e., if A < B

and B < C, then A < C.

A k-step ESPA Ak for a chain means that only k (out of d) pairs are compared and

labeled, resulting in a directed acyclic graph (DAG). In this case, f(ak) is actually

counting the number of linear extensions of the DAG, which is known to be #P-

complete [190], so we do not have a closed-form solution to Ik. In practice, however,

we can use the Kahn’s algorithm and backtracking to simulate with a relatively

small n, as shown by Fig. 6.3, where n = 10 and Ik was obtained through averaging
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1000 random simulations. Ik is concave, as reflected by the downward shape of

Ik−Ik−1. Therefore, new annotations are less and less efficient for the chain structure,

suggesting the usage of ESPA.

Example 24: The general assignment problem requires assigning d agents to d′

tasks such that the agent nodes and the task nodes form a bipartite graph (without

loss of generality, assume d ≤ d′). That is, an agent can handle exactly one task,

and each task can only be handled by at most one agent. Then from the agents’ point

of view, the label set for each of them is L = {1, 2, . . . , d′}, denoting the task assigned

to the agent. Note that the classic M-ary classification problem is a special case with

d = 1 and d′ = M .

A k-step ESPA Ak for this problem means that k agents are already assigned

with tasks, and f(ak) is to count the valid assignments of the remaining tasks to the

remaining d−k agents, to which we have closed-form solutions: f(ak) = (d′−k)!
(d′−d)! , ∀ak.

According to Eq. (6.3), Ik = log d′!
(d′−k)! regardless of d or the distribution of Ak, and

is concave (Fig. 6.4 shows an example of it when d = 4, d′ = 10).

Example 25: Sequence tagging is an important NLP problem, where the tags of

tokens are interdependent. Take chunking as an example. A basic scheme is for each

token to choose from three labels, B(egin), I(nside), and O(utside), to represent text

chunks in a sentence. That is, L = {B, I,O}. Obviously, O cannot be immediately

followed by I.

Let d be the number of tokens in a sentence. A k-step ESPA Ak for chunking

means that k tokens are already labeled by B/I/O, and f(ak) counts the valid BIO

sequences that do not violate those existing annotations. Again, as far as we know,

there is no closed-form solution to f(ak) and Ik, but in practice, we can use dynamic

programming to obtain f(ak) and then Ik using Eq. (6.3). We set d = 10 and show

Ik−Ik−1 for this task in Fig. 6.4, where we observe the same effect we see in previous

examples: The benefit provided by labeling a new token in the structure attenuates.

Interestingly, based on Fig. 6.4, we find that the slope of Ik − Ik−1 may be a good

measure of the “tightness” or “strength” of a structure. When there is no structure

at all, the curve is flat (black). The BIO structure is intuitively simple, and it indeed

has the flattest slope among the three structured tasks (purple). When the structure
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is a chain, the level of uncertainty goes down rapidly with every single annotation

(think of standard sorting algorithms); the constraint is intuitively strong and in

Fig. 6.4, it indeed has a steep slope (blue).

Finally, we want to emphasize that the definition of Ik in Eq. (6.3) is in fact

backed by information theory. When we do not have prior information about Y, we

can assume that Y follows a uniform distribution over C(Ld). Then, Ik is essentially

the mutual information between structure Y and annotation Ak, I(Y; Ak):

I(Y; Ak) = H(Y)−H(Y|Ak)

= log |C(Ld)| − E [H(Y|Ak = ak)]

= log |C(Ld)| − E [log f(ak)] ,

where H(·) is the entropy function. This is an important discovery, since it points

out a new way to view a structure and its annotations. It may be useful for studying

active learning methods for structured tasks, and other annotation phenomena such

as noisy annotations. The usage of mutual information also aligns well with the

information bottleneck framework [191, 192, 193], although a more recent paper

challenges the interpretation of information bottleneck [194].

6.3 Learning from Partial Structures

So far, we have been advocating the ESPA strategy to maximize the information we

can get from a fixed budget. Since early stopping leads to partial annotations, one

missing component before we can benefit from it is an approach to learning from

partial structures. In this study, we assume the existence of a relatively small but

complete dataset that can provide a good initialization for learning from a partial

dataset, which is very similar to semi-supervised learning (SSL). SSL, in its most

standard form, studies the combined usage of a labeled set T = {(xi, yi)}i and an

unlabeled set U = {xj}j, where the x’s are instances and y’s are the corresponding

labels. SSL gains information about p(x) through U , which may improve the estima-
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Figure 6.4: The Ik − Ik−1 curves from several different structures. The curves are
shifted to almost the same starting point for better visualization, so the Y-Axis
grid is not shown. The curve for “Chain” was obtained via simulations, and the
other curves all have closed-form formulations.

tion of p(y|x). Specific algorithms range from self-training [195, 196], to co-training

[197], generative models [198], transductive SVM [199], etc., among which one of the

most basic algorithms is Expectation-Maximization (EM) [200]. By treating them

as hidden variables, EM “marginalizes” out the missing labels of U via expectation

(i.e., soft EM) or maximization (i.e., hard EM). For structured ML tasks, soft and

hard EMs turn into posterior regularization (PR) [201] and constraint-driven learning

(CoDL) [112], respectively.

Unlike unlabeled data, the partially annotated structures caused by early stopping

urge us to gain information not only about p(x), but also from their labeled parts.

There are many works along this line [202, 203, 204, 205], but in this thesis, we decide

to extend CoDL to cope with partial annotations for two reasons. First, CoDL, which

itself can be viewed as an extension of self-training to structured learning, is a wrapper

algorithm having wide applications. Second, as its name suggests, CoDL learns from

U by guidance of constraints, so partial annotations in U are technically easy to be

added as extra equality constraints.

Algorithm 3 describes our Structured Self-learning with Partial ANnotations (SS-
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PAN) algorithm that learns a model H. The same as CoDL, SSPAN is a wrapper

algorithm requiring two components: Learn and Inference. Learn attempts

to estimate the local decision function for each individual instance regardless of the

global constraints, while Inference takes those local decisions and performs a global

inference. Lines 3-9 are the procedure of self-training, which iteratively completes

the missing annotations in P and learns from both T and the completed version of

P (i.e., P̃).3 Line 6 requires that the inference follows the structural constraints in-

herently in the task, turning the algorithm into CoDL; Line 7 enforces those partial

annotations in ai, further turning it into SSPAN. In practice, Inference can be

realized by the Viterbi or beam search algorithm in sequence tagging, or more gen-

erally, by integer linear programming (ILP) [80]; either way, the partial constraints

of Line 7 can be easily incorporated.

Algorithm 3: Structured Self-learning with Partial Annotations (SSPAN)

Input: T = {(xi,yi)}Ni=1, P = {(xi, ai)}N+M
i=N+1

1 Initialize H = Learn(T )
2 while convergence criteria not satisfied do

3 P̃ = ∅
4 foreach (xi, ai) ∈ P do
5 ŷi = Inference(xi;H), such that
6 � ŷi ∈ C(Yd)
7 � ŷi,j = ai,j, ∀ai,j 6= u
8 P̃ = P̃ ∪ {(xi, ŷi)}
9 H = Learn(T + P̃)

10 return H

3Line 9 can be interpreted in different ways, either as T ∪ P̃ (adopted in this work) or as a
weighted combination of Learn(T ) and Learn(P̃) (adopted by [112]).
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6.4 Experiments

In Sec. 6.2, we argued from an information theoretic view that ESPA is beneficial for

structured tasks if we have a fixed annotation resource. We then proposed SSPAN in

Sec. 6.3 to learn from the resulting partial structures. However, on one hand, there

is still a gap between the Ik analysis and the actual system performance; on the other

hand, whether the benefit can be realized in practice also depends on how effective

the algorithm exploits partial annotations. Therefore, it remains to be seen how

ESPA works in practice. Here we use three NLP tasks: temporal relation (TempRel)

extraction, semantic role classification (SRC), and shallow parsing, analogous to the

chain, assignment, and BIO structures, respectively.

For all tasks, we compare the following two schemes in Fig. 6.5, where we use

graph structures for demonstration. Initially, we have a relatively small but com-

plete dataset T0, an unannotated dataset U0, and some budget to annotate U0. The

conventional scheme I, also our baseline here, is to annotate each structure com-

pletely before randomly picking up the next one. Due to the limited budget, some

U0 remain untouched (denoted by U). The proposed scheme II adopts ESPA so

that all structures at hand are annotated but only partially. For fair comparisons,

we use CoDL to incorporate U into scheme I as well. Finally, the systems trained

on the dataset from I/II via CoDL/SSPAN are evaluated on unseen but complete

testset Ttest. Note that because ESPA is a new annotation scheme, there exists no

dataset collected this way. We use existing complete datasets and randomly throw

out some annotations to mimic ESPA in the following. Due to the randomness in

selecting which structures/instances to keep in scheme I/II, we repeat the whole

process multiple times and report the mean F1. The budget, defined as the total

number of individual instances that can be annotated, ranges from 10% to 100%

with a stepsize of 10%, where x% means x% of all instances in U0 can be annotated.
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Figure 6.5: The two annotation schemes we compare in Sec. 6.4. T , P , and U
denote complete, partial, and empty structures, respectively. Both schemes start
with a complete and relatively small dataset and an unannotated dataset (green).
(I) Conventional complete annotation scheme (blue). (II) The proposed ESPA
scheme (red). Finally, they are tested on an unseen and complete dataset (black).

6.4.1 Temporal Relation Extraction

Temporal relations (TempRel) are a type of important relations representing the

temporal ordering of events described by natural language text. That is to answer

questions like which event happens earlier or later in time (see Fig. 6.1a). Since time

is physically one-dimensional, if A is before B and B is also before C, then A must

be before C. In practice, the label set for TempRels can be more complex, e.g., with

labels such as Simultaneous and Vague, but the structure can still be represented by

transitivity constraints (see Table 1 of [49]), which can be viewed as an analogy of

the chain structure in Example 23.

To avoid missing relations, annotators are required to exhaustively label every pair

of events in a document (i.e., the complete annotation scheme), so it is necessary to

study ESPA in this context. Here we adopt the MATRES dataset [12] for its better
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Figure 6.6: Comparison of the baseline, complete annotation scheme and the
proposed ESPA scheme (See I & II in Fig. 6.5) under three structured learning
tasks (note the scale difference). Each F1 value is the average of 50 experiments,
and each curve is based on corresponding F1 values smoothed by Savitzky-Golay
filters. We can see that scheme II is consistently better than scheme I. Per the
Wilcoxon rank-sum test, the significance levels at each given budget are shown on
the x-axes, where + and ++ mean p < 5% and p < 1%, respectively.

inter-annotator agreement and relatively large size.

Specifically, we use 35 documents as T0 (the TimeBank-Dense section),4 147 docu-

ments as U0 (the TimeBank section minus those documents in T0), and the Platinum

section (a benchmark testset of 20 documents with 1K TempRels) as Ttest. Note

that both schemes I and II are mimicked by downsampling the original annotations

in MATRES, where the budget is defined as the total number of TempRels that

are kept. Following CogCompTime [153], we choose the same features and sparse-

averaged perceptron algorithm as the Learn component and ILP as Inference for

SSPAN.

6.4.2 Semantic Role Classification (SRC)

Semantic role labeling (SRL) is to represent the semantic meanings of language and

answer questions like Who did What to Whom and When, Where, How [34]. Semantic

Role Classification (SRC) is a subtask of SRL, which assumes gold predicates and

4The original TimeBank-Dense section contains 36 documents, but in collecting MATRES, one
of the documents was filtered out because it contained no TempRels between main-axis events.
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argument chunks and only classifies the semantic role of each argument. We use

the Verb SRL dataset provided by the CoNLL-2005 shared task [206], where the

semantic roles include numbered arguments, e.g., Arg0 and Arg1, and argument

modifiers, e.g., location (Am-Loc), temporal (Am-Tmp), and manner (Am-Mnr) (see

PropBank [37]). The structural constraints for SRC are that each argument can be

assigned to exactly one semantic role, and the same role cannot appear twice for a

single verb, so SRC is an assignment problem as in Example 24.

Specifically, we use the Wall Street Journal (WSJ) part of Penn TreeBank III

[207]. We randomly select 700 sentences from the Sec. 24 of WSJ, among which 100

sentences as T0 and 600 sentences as U0. Our Ttest is 5700 sentences (about 40K

arguments) from Secs. 00, 01, 23. The budget here is defined as the total number of

the arguments. We adopt the SRL system in CogCompNLP [208] and use the sparse

averaged perceptron as Learn and ILP as Inference.

6.4.3 Shallow Parsing

Shallow parsing, also referred to as chunking, is a fundamental NLP task to iden-

tify constituents in a sentence, such as noun phrases (NP), verb phrases (VP), and

adjective phrases (ADJP), which can be viewed as extending the standard BIO struc-

ture in Example 25 with different chunk types: B-NP, I-NP, B-VP, I-VP, B-ADJP,

I-ADJP, . . . , O.

We use the chunking dataset provided by the CoNLL-2000 shared task [188].

Specifically, we use 2K tokens’ annotations as T0, 14K tokens as U0, and the bench-

mark testset (25K tokens) as Ttest. The budget here is defined as the total number

of tokens’ BIO labels. The algorithm we use here is the chunker provided in Cog-

CompNLP, where the Learn component is the sparse averaged perceptron and the

Inference is described in [86].
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6.4.4 Results

We compare the F1 performances of all three tasks in Fig. 6.6, averaged over 50

experiments with different randomizations. As the budget increases, the system F1

increases for both schemes I and II in all three tasks, which confirms the capabil-

ity of the proposed SSPAN framework to learn from partial structures. When the

budget is 100% (i.e., the entire U0 is annotated), schemes I and II have negligible

differences; when the budget is not large enough to cover the entire U0, scheme II is

consistently better than I in all tasks, which follows our expectations based on the Ik

analysis. The strict improvement for all budget ratios indicates that the observation

is definitely not by chance.

Figure 6.7 further compares the improvement from I to II across tasks. When

the budget goes down from 100%, the advantage of ESPA is more prominent; but

when the budget is too low, the quality of P̃ degrades and hurts the performance of

SSPAN, leading to roughly hill-shaped curves in Fig. 6.7. We have also conjectured

based on Fig. 6.4 that the structure strength goes up from BIO chunks, to bipartite

graphs, and to chains; interestingly, the improvement brought by ESPA is consistent

with this order.

Admittedly, the improvement, albeit statistically significant, is small, but it does

not diminish the contribution of this thesis: Our goal is to remind people that the

ESPA scheme (or more generally, partialness) is, at the least, comparable to (or

sometimes even better than) complete annotation schemes. Also, the comparison

here is in fact unfair to the partial scheme II, because we assume equal cost for

both schemes, although it often costs less in a partial scheme as a large problem is

decomposed into smaller parts. Therefore, the results shown here imply that the

information theoretical benefit of partialness can possibly offset its disadvantages for

learning.
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Figure 6.7: The improvement of F1 brought by ESPA for each task in Fig. 6.6.
Note that we conjectured earlier in Fig. 6.4 that the BIO structure is the weakest
among the three, which is consistent with the fact that shallow parsing benefits the
least from ESPA.

6.5 Discussion

In this chapter, we investigate a less studied, yet important question for structured

learning: Given a limited annotation budget (either in time or money), which strat-

egy is better, completely annotating each structure until the budget runs out, or

annotating more structures at the cost of leaving some of them partially annotated?

Neubig and Mori (2010) [209] investigated this issue specifically in annotating word

boundaries and pronunciations for Japanese. Instead of annotating full sentences,

they proposed to annotate only some words in a sentence (i.e., partially) that can be

chosen heuristically (e.g., skip those that we have seen or those low frequency words).

Conceptually, [209] is an active learning work, with the understanding that if the or-

der of annotation is deliberately designed, better learning can be achieved. This

thesis addresses the problem from a different angle: Even without active learning,

can we still answer the question above?

The observation driving our questions is that when annotating a particular struc-

ture, the labels of the yet-to-be-labeled variables may already be constrained by

previous annotations and carry less information than those in a totally new struc-

ture. Therefore, we systematically study the ESPA scheme – stop annotating a given

structure before it is completed and continue annotating another new structure.
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An important notion is annotation cost. Throughout the chapter we have an ideal

assumption that the cost is linear in the total number of annotations, but in practice

the case can be more complicated. First, the actual cost of each individual annotation

may vary across different instances. We try to eliminate this issue by enforcing

random selection of annotation instances, rather than allowing the annotators to

select arbitrarily by themselves. This strategy may be useful in practice as well, to

avoid people only annotating easy cases. Second, even if we only require labeling

partial structures, it is likely that the annotator still needs to comprehend the entire

structure, incurring additional cost (usually in terms of time). This issue, however,

is not addressed in this work.

Using this definition of cost, we provide a theoretical analysis for ESPA based

on the mutual information between target structures and annotation processes. We

show that for structures like chains, bipartite graphs, and BIO chunks, the informa-

tion brought by an extra annotation attenuates as the annotation of the structure

is more complete, suggesting to stop early and move to a new structure (although

it still remains unclear when it is optimal to stop). This analysis is further sup-

ported by experiments on temporal relation extraction, semantic role classification,

and shallow parsing, three tasks analogous to the three structures analyzed earlier,

respectively. The ratio of the attenuation curve as in Fig. 6.4 is also shown to be an

actionable metric to quantify the strength of a type of structure, which can be useful

in various analyses, including judging whether ESPA is worthwhile for a particular

task. For example, a more detailed Ik-based analysis for SRC shows that predicates

with more arguments are stronger structures than those with fewer arguments; we

have investigated ESPA on those with more than 6 arguments and indeed observed

much larger improvement in SRC. More details on this analysis are in the appendix.

We think that the findings in this chapter are very important. First, as far as we

know, we are the first to propose the mutual information analysis that provides a

unique view of structured annotation, that of the reduction in the uncertainty of a

target of interest Y by another random variable/process. From this perspective, sig-

nals that have non-zero mutual information with Y can be viewed as “annotations”.

These can be partially labeled structures (studied here), partial labels (restricting
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the possible labels rather than determining a single one as in, e.g., [185]), noisy la-

bels (e.g., generated by crowdsourcing or heuristic rules) or, generally, other indirect

supervision signals that are correlated with Y. As we proposed, these can be studied

within our mutual information framework as well. This chapter thus provides a way

to analyze the benefit of general incidental supervision signals [189] and possibly

even provides guidance in selecting good incidental supervision signals.

Second, the findings here open up opportunities for new annotation schemes for

structured learning. In the past, partially annotated training data have been ei-

ther a compromise when completeness is infeasible (e.g., when ranking entries in

gigantic databases), or collected freely without human annotators (e.g., based on

heuristic rules). If we intentionally ask human annotators for partial annotations,

the annotation tasks can be more flexible and potentially cost even less. This is be-

cause annotating complex structures typically requires certain expertise, and smaller

tasks are often easier [203]. It is very likely that some complex annotation tasks re-

quire people to read dozens of pages of annotation guidelines, but once decomposed

into smaller subtasks, even laymen can handle them. Annotation schemes driven

by crowdsourced question-answering, known to provide only partial coverage, are

successful examples of this idea [210, 211].
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Nowadays, natural language text data exist in enormous amounts and in various

forms: books, social media, electronic health records, human-computer dialogues

etc. This has created unprecedented opportunities for NLU research. Significant

progress has been made in the past two decades, mainly from the token level (e.g.,

tokenization, lemmatization, part-of-speech tagging, and chunking) and the sentence

level (e.g., syntactic parsing, semantic role labeling, and language modeling to some

extent). Nevertheless, we still lack a robust solution to various problems that require

semantic understandings from the event-level, e.g., what is going on, what is the

cause and impact, and how things will unfold. With a good understanding of these

questions, a computer may be able to interact with humans, read and write stories,

predict social, political, or economical trends, and even provide diagnostic guidance

based on patient narratives.

This thesis studies one of the core questions in event-level language understanding:

time. Despite the long-standing philosophical or physical debates over the existence

of time, it is undeniably important to have “time” as a special dimension to distin-

guish things in the past, at present, or in the future, in our everyday life. At the

first glance, time may seem to be an easy type of semantics, but it turns out to be a

very challenging task and remains unsolved after decades of research. This thesis has

contributed to solving this problem in three aspects: time expression understanding,

temporal order relation understanding, and temporal common sense understanding.

Chapter 3 focuses on time expression understanding. Time expressions are the

most straightforward temporal information that a piece of text can provide to us, and

to understand time expressions, we need to chunk them out from text (extraction),
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and convert them to a pre-defined format that machines can parse (normalization).

We propose to use learning-based methods in the extraction step and rule-based

methods in the normalization step. While achieving similar end-to-end performance

to state-of-the-art systems, the proposed is much more computationally efficient.

Chapter 4 focuses on temporal order relation understanding (e.g., to determine

which event happened earlier or later). We dissect the various structures of time and

make use of them in data collection, learning, and inference phases. We investigate

the effectiveness of each of them in individual sections and then combine all of them

in a unified framework. The state-of-the-art is significantly improved in the proposed

method.

Chapter 5 focuses on temporal common sense. Commonsense knowledge is im-

portant for computers, but computers usually do not have it because people rarely

say the obvious. This chapter investigates this problem in the context of time and

proposes five types of temporal common sense. A new dataset is collected via crowd-

sourcing and used as a testbed to show that existing NLP techniques struggle when

it comes to “time.”

The three chapters above break down the task of understanding time into three

subtasks, all from the angle of information retrieval. We have seen improvements

in these subtasks in this thesis. However, the formalism that is used to collect data

and evaluate systems is still very rigid, in the sense that it often results in confusing

annotations and/or misses many interesting phenomena relevant to time. Recent

progress on language modeling (e.g., [149, 166, 177]) has opened up opportunities to

annotate natural language tasks using natural language (see [212] for example), and

it may be a good direction to bring this topic to another level.

Moreover, we need to clarify that understanding time still requires more than

those subtasks. We know that existing machine reading comprehension and textual

entailment (which is also called natural language inference) systems easily fail on

questions related to time, indicating that these existing NLP techniques do not un-

derstand time very well. A more interesting but also more challenging topic is to

do reasoning on top of temporal information. For instance, to answer questions like

“Does Aristotle have a laptop?”, the reasoning process requires an understanding of

124



when Aristotle lived and when the laptop was invented; to make a suggestion to the

inquiry “Where should I go for dinner before the movie tonight?”, we need to know

how long a dinner takes, how long it takes on the road, when the movie starts, and

that the dinner should be before the movie starts. It is an important future direction

to investigate how to improve machine reading comprehension in terms of time, and

on top of that, how to perform temporal reasoning.

In terms of the methodology in NLP, machine learning plays an important role

in resolving ambiguity and understanding variability in natural language, including

when we tackle those problems above. The standard learning paradigm is to take

a specific task, collect data, and train a model for it. The issue is that we will

need to have a dedicated dataset for each single task. Since language has high

ambiguity and variability, even a small change in the task definition will often require

annotating a new dataset. This situation is even more common when we work on

events: For temporal relation extraction alone, there are various datasets available,

but in most of the cases, we cannot learn from all of them in a single system. We

envision that it is crucial for the next generation of machine learning theory to be

able to learn from incidental signals, which may be noisy, partial, or only correlated

with the task at hand. A deeper understanding of these learning problems will

fundamentally transform how we design algorithms and collect data in AI. As an

exploration in this direction, Chapter 6 provides a new way to study the partial

problem using mutual information. We argue therein that due to the structure

of learning problems, only labeling part of a structure also has its benefits: from

information theoretic perspective, a finite budget can provide more information if

we only annotate structures partially; empirically, we show on several different tasks

(including the TempRel extraction task) that partial annotations indeed lead to

better learning performance. Still, we want to clarify that Chapter 6 is still a very

explorative work and points out future directions towards incidental supervision.

Understanding time may also be helpful for many downstream tasks. For instance,

in this information explosion era, it is often important to be able to read and sum-

marize many articles and retrieve the most relevant information. With a timeline,

how can we better summarize text? If Event A is almost always followed by Event
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B, then from the perspective of information theory, we can remove Event B in our

“summary” without distorting the information too much (see a recent work of ours

that offers information theoretical understandings of the summarization process of

human [213]). Another example is to predict how events will unfold. If machines

can really understand temporal information provided in text, then after trawling

gigantic data and getting their timelines, we may get important predictive hints for

applications in the political, medical, and financial domains.
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