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ABSTRACT

This thesis presents flight test results for a new neuroadaptive architecture:

Deep Neural Network based Model Reference Adaptive Control (DMRAC).

This architecture utilizes the power of deep neural network representations for

modeling significant nonlinearities while marrying it with the boundedness

guarantees that characterize MRAC based controllers. Through experiments

on a real quadcopter platform, it is shown that DMRAC can outperform

state of the art controllers in different flight regimes while having long-term

learning abilities. This makes DMRAC a highly powerful architecture for

high-performance control of nonlinear systems.
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CHAPTER 1

INTRODUCTION

Creating adaptive controllers for mobile robots that can learn online to han-

dle a large variety of disturbances and operating environments while ensuring

stability has been challenging problem. The key challenge is that robot dy-

namics can significantly change during operation due to different operating

conditions, degradation, or failures. When such changes happen, heuristic,

hand-crafted, or model-based controllers can fail. Even controllers that learn

from experience, such as reinforcement learning (RL) can fail when the robot

dynamics changes beyond what the RL agent was trained on.

Adaptive controllers that can learn online and in real-time to adapt to such

changes have long been part of classical controls [1, 2, 3]. More recently,

Model Reference Adaptive Controllers (MRAC) using shallow networks as

the learning element have become a leading method for adaptive flight con-

trol, including for highly unstable rotorcraft [4, 5, 6, 7, 8, 9]. Methods such as

Gaussian Process Model Reference Adaptive Control [10, 6], L1 adaptive con-

trol [11], and single hidden layer neural network based adaptive control [4, 12]

have demonstrated quite a bit of success in adapting to disturbances during

flight. However, a key drawback of these existing methods has been the lack

of long-term learning: The shallow networks in these methods updated with

Lyapunov theory derived gradient based rules can instantaneously adapt to

mitigate the disturbance, but do not generalize to similar disturbances or

operating conditions [12, 5]. Deep Neural Networks (DNNs) trained with

dropouts and batch updates could certainly help alleviate these short-term

learning issues [13, 14], but it has been difficult to train and update these

networks in real-time on aerial robots with limited onboard computing while

guaranteeing stability.
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1.1 Motivation

Recently, a new neuroadaptive control architecture [13, 14] called Deep Model

Reference Adaptive Control (DMRAC) has been shown theoretically as a

possible way of integrating DNN’s with MRAC to ensure long term learning

while guaranteeing boundedness. In this thesis, flight evaluation of DM-

RAC is performed on a quadcopter platform in different flight regimes and

comparison is shown with other existing algorithms such as PID and MRAC.

Moreover, experiments have been conducted to demonstrate long term learn-

ing properties and generalisability of the above controller.

1.2 Parrot Mambo Mini Drone

Figure 1.1: Parrot mambo mini drone fitted with vicon markers

In order to perform flight tests, parrot mambo mini drone was chosen due

to its small size, low cost, and relative ease of implementing and testing

of algorithms. The algorithms were implemented using Simulink in an on-

board, off-board architecture which will be discussed later. The above drone

platform contains sensors such as IMU (3 axis accelerometer and 3 axis gy-

roscope), ultrasound, camera etc. The weight of the drone is about 63 grams

and it has a 550mAh LiPo battery which can give about 9 minutes of flight

time. The cross section dimensions of the drone are 18 x 18 cm.

2



1.3 Test Facility

Figure 1.2: Vicon Arena

The experiments for conducting flight evaluation of different controllers

was conducted in CSL Studio VICON facility at the University of Illinois

at Urbana Champaign. The vicon arena is equipped with a motion capture

system that gives millimeter accuracy. The system is used for tracking and

position feedback in an indoor facility where GPS is unavailable.

1.4 Overview

This thesis is organised as follows: In chapter 2, a brief overview of the

equations of motion and dynamics of quadcopter are discussed. Chapter

3 focuses on state estimation using different onboard sensors and position

information provided by Vicon system, which are subsequently used to build

state feedback control laws. Chapter 4 contains experimental results where a

comparison is shown between different controller’s performance on a variety

of tasks with varying disturbances. Also, experimental results pertaining to

the notion of generalisability of DMRAC is shown along with performance

improvement via Transfer Learning.

3



CHAPTER 2

KINEMATICS AND DYNAMICS OF
QUADCOPTER

2.1 Introduction

In this chapter, a brief summary of the equations of motion of quadcopter are

presented [1]. The convention followed here is in accordance with standard

aeronautics literature. The inertial frame and the body frame are oriented in

NED (North-East-Down) position with the frames’ x axis pointing towards

north, y axis points towards east and z axis pointing downward. The inertial

frame is denoted as F i, body frame as F b.

Figure 2.1: Representation of inertial and body frame. Both the frames are
related via a rotation matrix which can be found if Euler angles are known
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2.2 Quadrotor state representation and Equations of

motion

The state of a quadcopter is defined as a vector comprising of 12 components

as shown below:

X,Y Z = Position components pointing along NED directions in F i

u,v,w = Body frame velocity components along NED directions

φ, θ, ψ = Euler angles (roll,pitch and yaw respectively) relating F b and F i

p,q,r = Body frame angular velocity components along NED directions

The derivation of equations of motion can be found in detail in [15]. Here,

the final summary of equations is presented:ẊẎ
Ż

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


uv
w

 (2.1)

 u̇v̇
ẇ

 =

rv − qwpw − ru
qu− pv

 +
1

m

fxfy
fz

 (2.2)

φ̇θ̇
ψ̇

 =

1 sinφtanθ cosφtanθ

0 cosφ −sinφ
0 sinφ

cosθ
cosφ
cosθ

 +

pq
r

 (2.3)

ṗq̇
ṙ

 =


Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jz−Jy
Jz

pq

 +


τφ
Jx
τθ
Jy
τψ
Jz

 (2.4)

In equation (2.1), ”sin” and ”cos” are represented as ”s” and ”c” respec-

tively. In equation (2.2), fx, fy, fz represent body forces acting at center of

mass. The thrust force and gravity are both incorporated in fz. In equa-

tion (2.4), τφ, τθ, τψ represent rotational torques generated by the propellers

whereas Jx, Jy, Jz represent moments of inertia along x,y and z axes of the

attached body frame.
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CHAPTER 3

STATE ESTIMATION

3.1 Introduction

State estimation is vitally important for developing state feedback control

laws. This is achieved in the case of quadrotor by fusing data from different

onboard sensors and the Vicon system. In the first half of this chapter, a

brief discussion about interfacing with Vicon to get position information and

designing of estimator is done. In the latter half of the chapter, a detailed

analysis is presented on how control laws were developed for the quadrotor.

3.2 Interfacing with Vicon System

Figure 3.1: Vicon to drone communication system

The block labelled as ”Data Parser” is an S function which interfaces

Vicon with Simulink. There is a SDK (Software Development Kit) provided

by Vicon [16] which is used in this block to access position and orientation
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information of the drone inside the Vicon arena in real time. However, in

this particular case, only position information is used in the estimator for

correcting position and velocity estimates. The information is sent to the

drone as a datapacket via UDP protocol.

3.3 State estimator architecture

Figure 3.2: Overall estimator architecture for quadrotor system

The estimator can be divided into 5 main sub systems. The “UDP Re-

ceive” block receives position data of the quadrotor from the Vicon system.

The “Vicondata” block is responsible for converting data into proper NED

representation. The “SensorPreprocessing” block is used for filtering IMU

data to remove noise. The “Complementary Filter” block houses a com-

plementary filter which uses filtered IMU data to estimate the Euler angles

and different angular velocity components. The “EstimatorPositionVelocity”

block has a Kalman filter where filtered IMU accelerometer data is used as the

prediction step and the data from the Vicon system is used as the correction

step. The output from this system is position and velocity of the quadrotor

in the inertial frame. (Note[17]: The above filter was derived from the work

done by Sertak Karaman and Fabian Riether on parrot mini drones). In the

subsequent subsections, each block is explained in more detail.
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Figure 3.3: Sensor Preprocessing subsystem

3.3.1 Sensor Preprocessing block

The sensor preprocessing subsystem involves a calibration step where acceler-

ation due to gravity term is subtracted from the z component of accelerometer

reading. This is essential as accelerometers only measure proper acceleration

values. The sensor data after the calibration step is passed through a FIR

(Finite Impulse Response) and an IIR (Infinite Impulse Response) filter to

remove noise from it. The FIR filter used here is a fifth order filter of the

form:

y[n] =
5∑
i=0

bix[n− i] (3.1)

In the above equation, y[n] denotes the output signal at nth time instance,

x[n] denotes the input signal and bi denote the coefficients. The IIR filter

used here is of direct form II and is of fifth order. The equation for it is given

below:

v[n] = x(n)−
5∑
i=1

aiv[n− i] (3.2)

y[n] =
5∑
j=0

bjv[n− j] (3.3)

Here, y[n] and x[n] denote the same meanings as was seen in FIR filter.
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3.3.2 Vicon data block

Figure 3.4: Vicon data conversion to NED inertial frame

The Vicon data block is responsible for converting the position information

sent by the Vicon system to the correct NED inertial frame.

3.3.3 Complementary filter

Figure 3.5: Complementary filter

The complementary filter’s main role is to give correct estimates of roll and

pitch angles from filtered IMU data. It works on the principle of combining

fast changing data like angular velocity which is measured by gyroscopes

with the slow changing accelerometer data. The way it works is as follows: if
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| u |< (1− ε)g or | u |> (1 + ε)g where u denotes the accelerometer reading,

ε is a constant greater than 0 and g denotes the acceleration due to gravity,

the angular velocity is integrated to get Euler angle readings. As soon as | u |
comes within the above range, it implies that the drone is relatively static

and the absolute value of acceleration is around g. This is used to correct the

values of Euler angles that are just based on simple integration of angular

velocities . The current pitch reading, θ is changed to (1− γ)θ+ (γ)asin(ax
g

)

and the current roll reading, φ is changed to (1 − γ)φ + (γ)atan(ay
az

). Here,

γ is a constant.

3.3.4 Kalman Filter

Figure 3.6: Kalman filtering for determining position and velocity

In order to determine position and velocity of the drone inside the Vicon

Arena, position information provided by Vicon system and IMU accelerome-

ter measurements are combined together using Kalman filters. Kalman filters

used in this model are of discrete type that are already provided in Simulink

as ready to use blocks. Since acceleration readings are in body frame whereas

Vicon readings are in inertial frame, before fusing them together, accelera-

tion readings are converted to inertial frame readings by multiplying it with

a rotation matrix that relates body frame with the inertial frame.
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CHAPTER 4

CONTROL OF QUADROTOR

4.1 Introduction

In this chapter, different control techniques are discussed which are used

to make Quadrotor fly autonomously to follow a given reference trajectory.

This chapter starts with the basic architecture of controller and subsequently

details about implementation of different controllers are discussed in more

detail.

4.2 Control System Architecture

Figure 4.1: Overall control architecture diagram

The entire controller logic can be divided into 4 main categories as shown

above.The reference trajectory module is where the trajectory that the drone

is required to follow is specified. Position control/Outer loop control mod-

ule is responsible for generating thrust force,reference roll and pitch angles

by using reference trajectory, position and velocity of the drone as inputs.

The third module is the inner loop/attitude controller which generates ap-
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propriate roll,pitch and yaw torques to ensure roll,pitch and yaw reference

angles are tracked as closely as possible. Finally, the thrust force and output

torques generated by outer and inner loop controller respectively are con-

verted to motor RPMs using a mixer model, which are then fed to the drone.

The internal onboard sensors and Vicon system send state information in

real time to each controller and the entire loop is complete.

4.2.1 Position Control-Outerloop Controller

In outerloop control, reference roll and pitch angles are calculated approxi-

mately by linearising equations of motion about the hover state. The accel-

eration in north and east direction in inertial frame can be rewritten as:

Ẍ = −θcosψ − φsinψ (4.1)

Ÿ = −θsinψ + φcosψ (4.2)

The main goal of the outerloop controller is to make [X,Y] follow [Xref ,Yref ]

as closely as possible. This is done by using a PID controller whose input is

the current [X,Y] position and reference signal is [Xref ,Yref ]. After, solving

the above equations for reference roll and pitch angles:

θref = −PID(X,Xref )cosψ − PID(Y, Yref )sinψ (4.3)

φref = −PID(X,Xref )sinψ + PID(Y, Yref )cosψ (4.4)

where PID function is expressed in the following form:

PID(a, aref ) = KP (aref − a) +KI(

t∫
0

(aref − a)dt) +KD(
d

dt
(aref − a)) (4.5)

In the above equation, KP ,KI and KD denote proportional, integral and

derivative constants.
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4.3 Inner Loop Control Algorithm

The inner loop controller/attitude controller is responsible for generating

appropriate torques so that the quadrotor follows the reference roll,pitch and

yaw angles as closely as possible. This can be done in various ways. However,

for these experiments,three main control algorithms were considered: PID,

MRAC and DMRAC.

4.3.1 PID

In PID control, the three torque inputs to the system namely yaw, pitch

and roll torques are calculated based on the attitude angles found by the

estimator and reference angles which are calculated by outer loop controller.

The algorithm is given as follows:

τin(x, xref ) = KP (xref − x) +KI(

t∫
0

(xref − x)dt) +KD(
d

dt
(xref − x)) (4.6)

Here, x={φ, θ, ψ}, xref={φref , θref , ψref} and τin={τφ, τθ, τψ}

4.3.2 Model Reference Adaptive Control

In Model Reference Adaptive Control and Deep Model Reference Adaptive

Control which will be discussed in the subsequent section, the control system

architecture is modified slightly.

Figure 4.2: Overall Control System Architecture for MRAC and DMRAC

The red block as shown in the above figure is a reference model. Here, the
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goal of the attitude controller is to follow the output of the reference model as

closely as possible. The reference model is a system which has some desired

characteristics and for these experiments, it is modeled as a second order

system. The reference model’s equations are as follows:

˙Xrm = ArmXrm +Brmr(t) (4.7)

Xrm =



φrm
˙φrm

θrm
˙θrm

ψrm
˙ψrm


Brm =



0 0 0

w2
n 0 0

0 0 0

0 w2
n 0

0 0 0

0 0 w2
n


r(t) =

φrefθref

ψref

 (4.8)

Arm =



0 1 0 0 0 0

−w2
n −2γwn 0 0 0 0

0 0 0 1 0 0

0 0 −w2
n −2γwn 0 0

0 0 0 0 0 1

0 0 0 0 −w2
n −2γwn


(4.9)

Here, r(t) is the reference signal whose first two values, that is reference roll

and pitch angles are outputs from outer loop controller and the third value,

reference yaw, is output from reference trajectory module. The natural fre-

quency wn and damping γ are chosen according to the desired characteristics.

In order to build MRAC for the quadrotor, following dynamics model is

considered:

Ẋ = AX +B(u(t) + ∆(x)) (4.10)

A =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


X =



φ

φ̇

θ

θ̇

ψ

ψ̇


B =



0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1


u(t) =

τφτθ
τψ

 (4.11)
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Here ∆(x) captures uncertainity which could be unmodeled dynamics such

as disturbances etc. This term is not known apriori. The control effort u(t)

can be split into 3 main parts:

u(t) = upid(t)− vad(t) (4.12)

upid(t) is responsible for ensuring the current states match the reference states

when there are no uncertainities inside the system. This is achieved through

standard PID control in this case. The adaptive control effort’s main ob-

jective is to negate the uncertainity inside the system. If the uncertainity

was known perfectly well apriori, then vad(t) = ∆(x). However, realistically,

since it is not known, vad(t) = ∆̂(x). Using equation (4.7) and (4.10), the

error dynamics can be computed as follows:

e(t) = Xrm(t)−X(t) (4.13)

˙e(t) = Arme(t) +B(vad −∆(x)) (4.14)

Here, uncertainty, ∆(x), is modeled as an unstructured uncertainity which

is defined as a continuous function over a compact set as follows:

∆(x) = W *Tφ(x) + ε1(x),∀x(t) ∈ Dx ⊂ Rn (4.15)

φ(x) is basis function of a Neural Network adaptive element [18], or Gaussian

Basis Function Network [19]. W * is a set of ideal weights corresponding

to that basis function. The modelling error ε1(x) is upper bounded, s.t,

ε̃1 = supx∈Dx||ε1(x)|| can be made arbitratily small given a large number

of basis functions. In this work for implementing MRAC on the quadrotor,

Gaussian radial basis functions are used. The Gaussian radial basis functions

are expressed as :

φ(x) = e−(
x−µ
σ

)2 (4.16)

where µ is center,σ is the standard deviation which are assumed apriori.

The adaptive control elements is given as :

vad(x) = W Tφ(x) (4.17)
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Using Lyapunov theory and Barabalet’s lemma, one can show that for the

given weight update law:

Ẇ = −γφ(x)eTPB (4.18)

where γ > 0 is the adaptive gain, P>0 is a solution to the Lyapunov equation:

ATrmP+PArm+Q = 0 for any Q>0, all signals in the closed loop are bounded

for the above type of uncertainity.

4.3.3 Deep Model Reference Adaptive Control

DMRAC is a new neuroadaptive based controller that incorporates deep

learning within the MRAC framework. It is a learning based controller that

combines advantages of deep nets at representing complex non linearities

with stability guarantees associated with MRAC. Details regarding stability

proof and uniform ultimate boundedness of DMRAC under unstructured un-

certainity is provided in [13, 14]. The general architecture for this controller

Figure 4.3: Architecture of DMRAC
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is given in figure 4.3. The entire controller can be split into 3 main modules:

the DNN (Fast Learning Outer Loop) module, replay buffer module and DNN

(Slower feature learning) module. DNN(Fast Learning Outer Loop) module

is where a standard MRAC control algorithm is used with basis function

φ(x). Its output ∆′(X) (the estimated uncertainity) is stored together with

the state at that time inside a replay buffer as a datapoint. This buffer is

of a fixed size and a kernel independence test is done to ensure only those

datapoints are retained that give a sufficiently rich representation of oper-

ating domain, once buffer’s capacity is reached. Random batches of data

are drawn from this replay buffer to train a neural network using stochastic

gradient descent method, which maps state to estimated uncertainity values.

The basis function φ(x) is computed as the output of the second last layer

of this trained neural network by doing a forward pass using state value at

current time and the information is then passed onto DNN(Fast Learning

Outer Loop) module which completes the loop.

Concisely, DMRAC algorithm can be stated as follows:

Algorithm 1 DMRAC Controller Training

1: Input: γ, η, ζtol, pmax {γ=Adaptive gain,η=SGD learning rate,
ζtol=Kernel independence test coefficient[20], pmax=Max buffer size }

2: while New measurements are available do
3: Update the DMRAC weights W using Eq:(4.18)
4: Compute yτ+1 = Ŵ TΦ(xτ+1)
5: Given xτ+1 compute γτ+1 [20].
6: if γτ+1 ≥ ζtol then
7: Update B : Z(:) = {xτ+1, yτ+1} and X : Φ(xτ+1)
8: if |B| > pmax then
9: Delete element in B by SVD maximization [20]

10: end if
11: end if
12: if |B| ≥M then
13: Sample a mini-batch of data ZM ⊂ B
14: Train the DNN network over mini-batch data using SGD
15: Update the feature vector Φ for D-MRGeN network
16: end if
17: end while

In DMRAC, the key idea is that training of neural network is based on

the output labels generated by MRAC. This is essential since apriori, there
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is no information about the actual disturbance values. Hence, MRAC which

is operating in the fast learning outer loop module is acting as a generative

network. It produces estimates of uncertainities which are samples from the

same distribution as of actual disturbance[21]. Another important aspect is

that the time scales of neural network training and weight learning using

MRAC weight update rule are different. The weight updates are performed

in real time whereas the neural network training is done after collecting some

samples of state-estimated uncertainity data. During successive training it-

erations of the neural network, the basis φ(x) provided by the neural network

is used as the fixed feature vector for the MRAC weight update rule.

Figure 4.4: On-board - Off-board Implementation of Deep Model reference
Adaptive controller for Quadrotor control.

On the quadrotor, implementation of DMRAC was done in an oflline-online

manner as shown in Figure 4.4. This was necessary as the onboard compu-

tational memory was limited and hence, running entire controller onboard

was not possible. The offline part was run on a computer whereas the online

part was run completely on the drone. The offline part comprised of replay

buffer and DNN (slower feature learning) module whereas the online part had

DNN(Fast Learning of outer loop) module. The communication between the

drone and the computer was done using UDP protocol. The information sent

by the drone is labelled state-adaptive torque data which is used for training

of the neural network. After training is completed on the computer and a

new basis φ(x) is evaluated, this information is sent back to the drone by the

computer.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Introduction

In this section, flight test results compiled by running different control al-

gorithms on a quadrotor inside Vicon arena are presented. The results are

divided into 3 main sections namely a) Performance comparison between

PID, MRAC and DMRAC, b) Generalisability of DMRAC and c) Evaluat-

ing Transfer Learning with DMRAC.

5.2 Performance comparison between PID, MRAC and

DMRAC

In this section, results are presented that compare and contrast the perfor-

mance of the DMRAC algorithm over control algorithms such as MRAC and

PID in a variety of different flight operating conditions. The experiments

were done under different amounts of wind bias, when rotor chipping occurs

during mid flight etc.

5.2.1 Flight test results on a figure of 8 trajectory (Base Case)

In this experiment, each controller’s performance is evaluated on tracking

a figure of 8 reference trajectory without any disturbance. The feedback,

feedforward gains, learning rates etc are tuned on this case to ensure each

controller performs equally well. The parameters obtained from this exper-

iment are kept fixed throughout the remainder of the other experiments.

Fig-5.1 and Fig-5.2 show the comparison between each controllers’ perfor-

mance on the nominal baseline task with no external disturbance or faults.
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Since each controller is tuned to achieve best performance over the given task,

the difference between the controller is negligible, and all three controllers

perform equally well.

Figure 5.1: Tracking performance on a simple figure of 8 trajectory

Figure 5.2: Tracking of reference model’s roll and pitch signal for a figure of
8 trajectory

5.2.2 Reference trajectory tracking with wind bias

The second task used to evaluate the controllers’ performance is reference

tracking on a figure of 8 trajectory with wind bias. This task is designed

to assess the performance of all three controllers in the case of external dis-

turbance. A wind bias disturbance is simulated, using a fan placed near the

drone’s initial position, and oriented to cause the disturbance along the X-

axis. Fig-5.3 and Fig-5.4 show a comparison of each controllers’ performance

on this task. It can be seen that DMRAC is more robust and achieves much

better tracking compared to other two algorithms. The tracking error for the

DMRAC controller for the inner loop reference roll and pitch states is also

much lower compared to MRAC or PID refer Figure-5.4. The results also
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clearly demonstrate that the proposed controller can handle abrupt changes

in reference commands. At around 5 secs mark, the reference signal changes

from step input for height control in the z-axis to figure of 8 trajectory

command in the x-y plane. The PID controller experiences high oscillation,

whereas MRAC and DMRAC handle the switch much more smoothly. Fur-

ther the above experiment is repeated with medium and high wind bias. The

following results on a tracking task under external disturbance demonstrates

that DMRAC outperforms MRAC and PID refer Figure-5.5-5.8.

Figure 5.3: Tracking performance under low wind bias

Figure 5.4: Tracking of reference model’s roll and pitch signal under low
wind bias

Figure 5.5: Tracking performance under medium wind bias

21



Figure 5.6: Tracking of reference model’s roll and pitch signal under
medium wind bias

Figure 5.7: Tracking performance under high wind bias

Figure 5.8: Tracking of reference model’s roll and pitch signal under high
wind bias

5.2.3 Reference trajectory tracking under a highly nonlinear
disturbance

In this experiment, to simulate a highly nonlinear and unpredictable distur-

bance, a piece of cloth is attached underneath the frame of the quadrotor

and the entire setup is subjected to high wind bias. This causes an erratic

flapping of the cloth which produces unpredictable disturbance torques and

forces. The experiment was designed to push each controller to its limits

and was repeated three times to demonstrate repeatability. It was observed

that PID failed in all the three experiments, whereas both MRAC and DM-
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RAC gave a stable performance. However, the tracking error observed for

MRAC was relatively higher compared to DMRAC. Below, results for the

best case tracking performance observed for all the three controllers is pre-

sented. Figures-5.9 and Fig-5.10 clearly show that PID fails at around the

end of the flight with high oscillations, whereas we observe DMRAC tracking

under severe disturbance forces appears to be the best followed by MRAC.

Similar results are provided for circular reference trajectory with high wind

bias. We observe the PID fails very early in the flight. However adaptive

controllers are successful in completing the task, we observe DMRAC out-

performs the MRAC with much tighter tracking. Refer Fig:5.11-5.12. The

Fig-5.13 plots the control torques generated in Roll and pitch to achieve the

trajectory tracking.

Figure 5.9: Tracking performance under high wind bias with cloth attached
underneath the quadcopter

Figure 5.10: Tracking of reference model’s roll and pitch signal under high
wind bias with cloth attached underneath
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Figure 5.11: Tracking performance for a circular trajectory under high wind
bias with cloth attached on drone

Figure 5.12: Tracking of reference model’s roll and pitch signal under high
wind bias

Figure 5.13: Linear and adaptive control torque for PID, MRAC and
DMRAC

5.2.4 Fault tolerance: Rotor blade chipping in mid-flight

In these experiments, fault-tolerance capability of the controllers is tested in

case of rotor chipping during mid-flight. One of the rotor blades is cut in

half and is attached back using tape, as shown in Fig-1.1. The quadrotor

is commanded to hover at 1m above the ground. Due to centrifugal forces,

the chipped blade breaks off and causes the fault into the system at an

undertermined time. Since this is not a controlled fault,in order to ensure

the reliability of the results, each controller is made to perform on the above
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task over multiple runs. The results presented in Fig- 5.15 clearly shows that

DMRAC outperforms PID and MRAC. In the case of PID, only two runs

were carried out, since in both cases, the drone underwent severe oscillation

and crashed. Tests conclusively demonstrated that PID is not capable of

handling sever faults in the system even with extensive tuning. In the case

of MRAC and DMRAC, eight flight tests are carried out. Out of eight test

runs, failures were seen twice for MRAC, whereas no failure were observed

in the case of DMRAC. Also, on comparing flights where no crash occurs,

one can see that MRAC produces poor reference tracking when compared to

DMRAC. Refer Figure-5.14 and 5.15 for more detailed results. The figures

show mean and variance plots for reference tracking in the x-y-z position for

each algorithm.

Figure 5.14: MRAC Trajectory tracking performance in X-Y-Z under
system fault for eight flight test. Out of eight flights we observe four times
the quadrotor either crashed or produced bad tracking (Red dot: Time at
which Fault occurred)
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Figure 5.15: DMRAC Trajectory tracking performance in X-Y-Z under
system fault for Eight flight test (Red dot: Time at which Fault occurred)

5.3 Generalisability of DMRAC

In this section, results related to learning retention due to Deep architec-

ture in model reference adaptive controller are presented. This experiment

aims to test the memory associated with deep neural networks in the context

of an adaptive controller, i.e, generalizing capability of DMRAC. Initially,

DMRAC is trained on the labeled pair of input and output data generated

using model reference generative network. The trained network is then used

as a feed-forward function approximator to estimate the adaptive control for

reference tracking in a new but similar task. In this experiment, training

of the DMRAC neural network is performed on flight data collected from

the quadrotor going in circles both clockwise and anti-clockwise with and

without wind bias. The test case is that the quadrotor is made to fly in a

figure of 8 with and without wind disturbance which is an unseen task and

has not been used in the training process. Further, in order to test this con-

troller’s performance, comparison is made against a tuned PID controller on

the same test case. The main hypothesis is that since the DMRAC controller
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is trained over clockwise(cw) and anti-clockwise(ccw) trajectories, this con-

troller should be able to generalize to any trajectory formed combining the

cw and ccw turns. Since the DMRAC neural network weights are trained

off-line before the test flight, the entire controller is hardcoded onto the on-

board computer. The parameters, such as PID gains, learning rate etc are

kept unchanged from previous experiments.

Figure 5.16: DMRAC generalizing without active learning: Tracking
performance on a figure of 8 trajectory

Figure 5.17: DMRAC generalizing without active learning: Tracking of
reference model’s roll and pitch for a figure of 8 reference trajectory

In Figure:5.16-5.17, one can observe that DMRAC controller generalizes

well to a previously unseen reference signal. On comparing to the PID con-

troller’s performance on the same task, one can see that the tracking is much

better as well as the oscillation in roll is much lower than PID. Thereby, DM-

RAC not only generalizes well but also proves to be robust. In Figure:5.18-

5.19, generalization of DMRAC is tested in the windy case. Here, one can

see that the oscillation observed for the generalized controller in tracking is

far lower than PID, and it gives much better tracking overall. These experi-

ments demonstrate clearly that DMRAC retains the memory of both windy

and non-windy cases in form of deep features, and can counter both wind

and no wind cases reasonably well even without active online adaptation
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Figure 5.18: DMRAC generalizing without active learning: Controller
performance for clockwise tracking of figure of 8 trajectory under wind bias

Figure 5.19: DMRAC generalizing without active learning: Tracking of
reference model’s roll and pitch for clockwise tracking of figure of 8 under
wind bias

5.4 Evaluating Transfer Learning with DMRAC

Lately, Transfer learning (TL) has been a much-researched topic in machine

learning and reinforcement learning. In similar lines in these experiments, the

aim is to test the advantages of representation transfer in an adaptive control

setting. Here, transfer learning is tested through sharing network parameters

between tasks. TL is performed by first running DMRAC on related tasks

and learning the network weights, which incorporate some feature knowledge.

These learned weights are then used to initialize a fresh DMRAC network

executing a new unseen task. In these experiments, flight test of a drone

executing a basic figure of 8 trajectory is used as a source task for represen-

tation transfer through the warm-start of the networks. The target task is an

unseen but related task for which an initialized network is used for the drone

executing figure of 8 trajectories under high wind bias, refer Fig-5.20. A clear

improvement of controller performance in achieving smaller transients and

better steady state tracking is observed with warm-started DMRAC. The

deep network weights learnt over the quadrotor executing figure of 8 trajec-
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tories encodes the feature knowledge about modeling uncertainties. When

this learning is transferred to a new drone executing figure of 8 with wind

bias, it is able to adapt faster and also quickly learn features corresponding

to wind bias.

Figure 5.20: Figure of 8 Trajectory tracking under wind bias with random
initialization vs. Feature transfer in DMRAC

5.5 Simulation to Real-World Transfer Learning

The following experiments are similar to one in the previous section. Here,

network representation transfer from simulation to the real world is investi-

gated. In this experiment, DMRAC is run in a simulation environment, where

the network is trained over data collected through the simulated drone fol-

low a figure of 8 trajectory without any disturbance. These trained network

weights are then used as initialization weights for the case where DMRAC is

experimented on the actual physical quadrotor. The controller performance

is compared between the randomly initialized DMRAC vs. DMRAC initial-

ized with network weights from the simulated quadrotor. The two controllers
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Figure 5.21: Figure of 8 Trajectory tracking under wind bias with random
initialization vs. Feature transfer from simulation to Real in DMRAC

are tested on performing a figure of 8 trajectory maneuver under high wind

bias. Figure-5.21 shows the improvement in DMRAC’s performance when

the initial weights are from simulation rather than being initialized entirely

randomly.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, successful implementation of DMRAC adaptive controller us-

ing model reference generative network architecture was shown on an actual

quadrotor. It was demonstrated that the fast-slow architecture utilizing asyn-

chronous onboard and off-board processing can be used to incorporate deep

learning in the closed-loop for high-bandwidth flight control of unstable air-

craft in the presence of significant disturbances. The results clearly show

that when utilized in the closed loop in this manner DMRAC can provide

significant performance and generalization benefits over shallow MRAC and

PIDs. The results obtained are significant, not only for flight control, but

for other robotic control applications involving deep learning as well. This

is because this approach of separating the learning in asynchronous manner

can be adopted to other learning based controllers, including learning based

MPC and reinforcement learning.

As far as possible directions of future work are concerned, testing of this

adaptive controller on bigger quadrotors outside the Vicon arena could be

a good step in further validating it’s real world performance. Moreover, a

different test platform like fixed wing aircrafts with significant wing dam-

age could be used to show how this controller would perform in different

type of safety critical application. This, in fact, would be a good test to

prove whether DMRAC is ready to be put on-board an actual aircraft for

autonomous flights. Further, notion of transfer learning from quadrotor ex-

periences to fixed wing aircraft could be explored. Another area of improving

DMRAC could be using contextual information along with the system states

to extract relevant features. This contextual information could be relevant

model information not captured in system states. An example of this in

aircrafts could be parameters like angle of attack, engine thrust etc. These

states can extract features which can help in decision making in case of faults.
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APPENDIX A

PID CODE FOR QUADCOPTER
CONTROL

The PID quadrotor control class is given as follows:

1 # -*- coding: utf -8 -*-

2 """

3 Created on Mon Mar 30 00:48:05 2020

4

5 @author: Jasvir

6 """

7 import math

8

9 class PID_Control ():

10 def __init__(self):

11 # state_vec is (X,Y,Z,yaw ,pitch ,roll ,dx,dy,dz,p,q,r)

12 # (x,y,z,yaw ,pitch ,roll ,dx,dy,dz) in earth frame

13 # (p,q,r) in body frame

14 self.delt = 0.005 # time step

15 self.mass = 0.063

16 self.g = 9.81

17

18 self.P_yaw = 0.004 # Parrot Mambo

19 self.D_yaw = 0.3*0.004;

20

21 self.P_pitch = 0.013

22 self.I_pitch = 0.01

23 self.D_pitch = 0.002

24

25 self.P_roll = 0.01

26 self.I_roll = 0.01

27 self.D_roll = 0.0028

28

29 self.P_x = -0.44

30 self.I_x = 0

31 self.D_x = -0.35

32
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33 self.P_y = -0.44 # when P_y at -0.9, PID does not

work , unstable (fig_8)

34 self.I_y = 0 # MRAC gives stable results with

tracking which

35 self.D_y = -0.35 # improves over time , gain =0.005

36

37 self.P_z = 0.8

38 self.D_z = 0.3

39

40 self.integration_val_pitch = 0

41 self.integration_val_roll = 0

42 self.integration_val_x = 0

43 self.integration_val_y = 0

44

45

46 def assign_states(self ,state):

47 self.X, self.Y, self.Z = state[0], state[1], state [2]

48 self.yaw , self.pitch , self.roll = state[3], state[4],

state [5]

49 self.dx, self.dy , self.dz = state[6], state[7], state

[8]

50 self.p, self.q, self.r = state[9], state [10], state

[11]

51

52

53 def integral(self ,prev_integral_value ,error):

54 # 0.001 is antiwindup gain

55 # if prev_integral_value >=2: # For modeling saturation

56 # prev_integral_value =2

57 # elif prev_integral_value <=-2:

58 # prev_integral_value =(-2)

59 error_anti_windup = error -0.001* prev_integral_value

60 integral_new = prev_integral_value +

error_anti_windup*self.delt

61 return integral_new

62

63 def PID_control(self , Kp , Ki , Kd , error , int_error ,

d_error):

64 PID_control_value = Kp*error + Ki*int_error - Kd*

d_error

65 return PID_control_value

66

67 def outer_loop_control(self ,ref_traj):
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68 # ref_traj is (Xref , Yref , Zref , Yaw_ref)

69 Xref , Yref , Yaw_ref = ref_traj [0], ref_traj [1],

ref_traj [3]

70

71 error_x = Xref -self.X

72 self.integration_val_x = self.integral(self.

integration_val_x ,error_x)

73

74 error_y = Yref -self.Y

75 self.integration_val_y = self.integral(self.

integration_val_y ,error_y)

76

77 PID_x = self.PID_control(self.P_x , self.I_x , self.D_x

, error_x , self.integration_val_x , self.dx)

78 PID_y = self.PID_control(self.P_y , self.I_y , self.D_y

, error_y , self.integration_val_y , self.dy)

79

80 pitch_ref = PID_x*math.cos(self.yaw)+PID_y*math.sin(

self.yaw) # Approx Model Inversion

81

82 roll_ref = PID_x*math.sin(self.yaw)-PID_y*math.cos(

self.yaw) # Approx Model Inversion

83

84 return [Yaw_ref , pitch_ref , roll_ref]

85

86

87 def Thrust_force(self ,ref_traj):

88

89 Zref= ref_traj [2]

90 error_z = Zref -self.Z

91

92 Thrust_force_PID = self.PID_control(self.P_z , 0, self

.D_z , error_z , 0, self.dz)

93 #Thrust_force_total = (-self.mass*self.g +

Thrust_force_PID)/(math.cos(self.pitch)*math.cos(self.roll

))

94

95 return Thrust_force_PID

96

97

98 def inner_loop_control(self ,yaw_pitch_roll_ref):

99

100 error_yaw = yaw_pitch_roll_ref [0]-self.yaw
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101

102 error_pitch = yaw_pitch_roll_ref [1]-self.pitch

103 self.integration_val_pitch = self.integral(self.

integration_val_pitch ,error_pitch)

104

105 error_roll = yaw_pitch_roll_ref [2]-self.roll

106 self.integration_val_roll = self.integral(self.

integration_val_roll ,error_roll)

107

108 torque_yaw = self.PID_control(self.P_yaw , 0, self.

D_yaw , error_yaw , 0, self.r)

109 torque_pitch = self.PID_control(self.P_pitch , self.

I_pitch , self.D_pitch , error_pitch , self.

integration_val_pitch , self.q)

110 torque_roll = self.PID_control(self.P_roll , self.

I_roll , self.D_roll , error_roll , self.integration_val_roll

, self.p)

111

112 return [torque_roll , torque_pitch , torque_yaw]

In order to test the above code, following test script can be used:

1 # -*- coding: utf -8 -*-

2 """

3 Created on Tue Mar 31 15:57:34 2020

4

5 @author: me112

6

7 Test Script

8 """

9 from PID_control import PID_Control

10 import matplotlib.pyplot as plt

11 import numpy as np

12 import math

13

14 def drone_dynamics_with_control ():

15 A = PID_Control ()

16 A.assign_states ([0,0,0,0,0,0,0,0,0,0,0,0])

17 time_step=A.delt

18 u,v,w = 0,0,0

19 Jx = 0.0000582857

20 Jy = 0.0000716914

21 Jz = 0.0001

22
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23 X_vals =[]

24 Y_vals =[]

25 Z_vals =[]

26 ref_traj_x =[]

27 ref_traj_y =[]

28

29 T_fig_8 = 20

30

31 for time in range (1 ,5000): #Number of time steps

32

33 ref_traj = [math.cos(2* math.pi*time *0.005/ T_fig_8),

math.sin (4* math.pi*time *0.005/ T_fig_8) ,-2,0] # Xref(t),

Yref(t),Zref(t),Yawref(t)

34

35 [Yaw_ref , pitch_ref , roll_ref] = A.outer_loop_control

(ref_traj)

36

37 Thrust = A.Thrust_force(ref_traj)

38

39 [torque_roll , torque_pitch , torque_yaw] = A.

inner_loop_control ([Yaw_ref , pitch_ref , roll_ref ])

40

41 theta = A.pitch

42 psi = A.yaw

43 phi = A.roll

44

45 first_row = [math.cos(theta)*math.cos(psi), \

46 math.sin(phi)*math.sin(theta)*math.cos(

psi)-math.cos(phi)*math.sin(psi),\

47 math.cos(phi)*math.sin(theta)*math.cos(

psi)+math.sin(phi)*math.sin(psi)]

48

49 second_row = [math.cos(theta)*math.sin(psi), \

50 math.sin(phi)*math.sin(theta)*math.sin(

psi)+math.cos(phi)*math.cos(psi),\

51 math.cos(phi)*math.sin(theta)*math.sin(

psi)-math.sin(phi)*math.cos(psi)]

52

53 third_row = [-math.sin(theta), \

54 math.sin(phi)*math.cos(theta),\

55 math.cos(phi)*math.cos(theta)]

56
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57 R_body_to_veh = np.array ([first_row ,second_row ,

third_row ])

58

59

60 ## x_(t+1)=f(x_t ,u_t)

61 [X_next] = np.array(A.X) + time_step *(np.dot(

first_row ,[[u],[v],[w]]))

62 [Y_next] = np.array(A.Y) + time_step *(np.dot(

second_row ,[[u],[v],[w]]))

63 [Z_next] = np.array(A.Z) + time_step *(np.dot(

third_row ,[[u],[v],[w]]))

64

65 u_next = u + time_step *(A.r*v-A.q*w - 9.81* math.sin(

theta))

66 v_next = v + time_step *(A.p*w-A.r*u + 9.81* math.cos(

theta)*math.sin(phi))

67 w_next = w + time_step *(A.q*u-A.p*v + 9.81* math.cos(

theta)*math.cos(phi) + Thrust/A.mass)

68

69 phi_next = phi + time_step *(A.p + A.q*math.sin(phi)*

math.tan(theta) + A.r*math.cos(phi)*math.tan(theta))

70 theta_next = theta + time_step *(A.q*math.cos(phi) - A

.r*math.sin(phi))

71 psi_next = psi + time_step *((A.q*math.sin(phi) + A.r*

math.cos(phi))/math.cos(theta))

72

73 p_next = A.p + time_step *(((Jy -Jz)/Jx)*A.q*A.r +

torque_roll/Jx)

74 q_next = A.q + time_step *(((Jz -Jx)/Jy)*A.p*A.r +

torque_pitch/Jy)

75 r_next = A.r + time_step *(((Jx -Jy)/Jz)*A.p*A.q +

torque_yaw/Jz)

76

77

78 [dx_next],[dy_next],[dz_next] = np.dot(R_body_to_veh

,[[ u_next],[v_next],[w_next ]])

79

80 u,v,w = u_next ,v_next , w_next

81 A.assign_states ([X_next , Y_next , Z_next , psi_next ,

theta_next , phi_next , dx_next , dy_next ,dz_next ,p_next ,

q_next , r_next ])

82

83 X_vals.append(A.X)
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84 Y_vals.append(A.Y)

85 Z_vals.append(A.Z)

86 ref_traj_x.append(ref_traj [0])

87 ref_traj_y.append(ref_traj [1])

88

89 plt.plot(Y_vals ,X_vals)

90 plt.plot(ref_traj_y ,ref_traj_x ,’k’)

91

92

93 drone_dynamics_with_control ()
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APPENDIX B

MRAC CODE FOR QUADCOPTER
CONTROL

Note MRAC controller incorporates the above PID control class:

1 # -*- coding: utf -8 -*-

2 """

3 Created on Mon Mar 30 00:48:05 2020

4

5 @author: Jasvir

6 """

7 import numpy as np

8 from PID_control import PID_Control

9

10 class MRAC_Control(PID_Control):

11 def __init__(self):

12 PID_Control.__init__(self)

13 self.ref_model_states = np.array

([[0] ,[0] ,[0] ,[0] ,[0] ,[0]])

14 self.BW = 2

15 self.number_centers = 25

16 self.adaptive_gain = 0.01 # 0.01 best for the given

distrubance , after that failure

17

18 equal_spacing = np.linspace(-2,2,self.number_centers)

19

20 self.centers = equal_spacing*np.ones((6,self.

number_centers))

21 self.basis = np.zeros((self.number_centers ,1));

22 self.output_weight = np.zeros((self.number_centers ,3)

)

23

24 def reference_model(self ,yaw_pitch_roll_ref_OL):

25 yaw_OL , pitch_OL , roll_OL = yaw_pitch_roll_ref_OL [0],

yaw_pitch_roll_ref_OL [1], yaw_pitch_roll_ref_OL [2]

26 wn = 20

27 damping = 0.1
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28 Arm = np.array ([[0,1,0,0,0,0],[-wn**2,-2* damping*wn

,0,0,0,0],\

29 [0,0,0,1,0,0],[0,0,-wn**2,-2* damping*

wn ,0,0],\

30 [0,0,0,0,0,1],[0,0,0,0,-wn**2, -2*

damping*wn]])

31

32 Brm = np.array ([[0,0,0],[wn**2,0,0],[0,0,0],\

33 [0,wn**2,0],[0,0,0],[0,0,wn **2]])

34

35 ref = np.array ([[ roll_OL],[pitch_OL],[yaw_OL ]])

36

37 Bm_rt_pdt = np.dot(Brm ,ref)

38

39 k1 = np.dot(Arm , self.ref_model_states) + Bm_rt_pdt

40 k2 = np.dot(Arm ,(self.ref_model_states + k1*self.delt

/2)) + Bm_rt_pdt

41 k3 = np.dot(Arm , (self.ref_model_states + k2*self.

delt /2)) + Bm_rt_pdt

42 k4 = np.dot(Arm , (self.ref_model_states + k3*self.

delt)) + Bm_rt_pdt

43

44 self.ref_model_states = self.ref_model_states + (self

.delt /6)*(k1+2*k2+2*k3+k4) # roll ,d_roll ,pitch ,d_pitch ,yaw

,d_yaw

45

46 def mrac_weight_update(self ,ref_model_states):

47 current_rpy_state = np.array ([[ self.roll],[self.

D_roll],[self.pitch],[self.D_pitch],[self.yaw],[self.D_yaw

]])

48

49 for i in range(0,self.number_centers):

50 expression_1 = self.centers[:,i]. reshape (-1,1)-

current_rpy_state

51

52 expression = (-(np.linalg.norm(expression_1)**2))

/(2* self.BW)

53

54 self.basis[i] = np.exp(expression)

55

56

57 self.basis [0] = 1

58
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59 error = ref_model_states -current_rpy_state

60 P = np.array

([[50.13 ,0.0013 ,0 ,0 ,0 ,0] ,[0.0013 ,0.1253 ,0 ,0 ,0 ,0] ,\

61

[0 ,0 ,50.13 ,0.0013 ,0 ,0] ,[0 ,0 ,0.0013 ,0.1253 ,0 ,0] ,\

62

[0 ,0 ,0 ,0 ,50.13 ,0.0013] ,[0 ,0 ,0 ,0 ,0.0013 ,0.1253]])

63

64 B = np.array ([[0,0,0],[1,0,0],[0,0,0],\

65 [0,1,0],[0,0,0],[0,0,1]])

66

67 self.output_weight = self.output_weight + (-self.delt

)*(self.adaptive_gain)*np.dot(self.basis ,np.dot(error.T,np

.dot(P,B)))

68

69

70 def mrac_torque(self):

71 vad = np.dot(self.output_weight.T, self.basis)

72

73 u_net = -vad

74

75 return u_net

MRAC controller can be tested in a similar way as PID controller:

1 # -*- coding: utf -8 -*-

2 """

3 Created on Tue Mar 31 15:57:34 2020

4

5 @author: me112

6

7 Test Script

8 """

9 from MRAC_control import MRAC_Control

10 import matplotlib.pyplot as plt

11 import numpy as np

12 import math

13

14 def drone_dynamics_with_control ():

15 A = MRAC_Control ()

16 A.assign_states ([0,0,0,0,0,0,0,0,0,0,0,0])

17 time_step=A.delt

18 u,v,w = 0,0,0

19 Jx = 0.0000582857
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20 Jy = 0.0000716914

21 Jz = 0.0001

22

23 X_vals =[]

24 Y_vals =[]

25 Z_vals =[]

26 ref_traj_x =[]

27 ref_traj_y =[]

28

29 roll_vals =[]

30 roll_refm_list =[]

31 roll_OL_list =[]

32

33 T_fig_8 = 20

34

35 for time in range (1 ,5000): #Number of time steps

36 # [math.cos(2* math.pi*time *0.005/ T_fig_8),math.sin(4*

math.pi*time *0.005/ T_fig_8) ,-2,0] (fig 8 trajectory)

37

38

39 ref_traj = [math.cos(2* math.pi*time *0.005/ T_fig_8),

math.sin (4* math.pi*time *0.005/ T_fig_8) ,-2,0] # Xref(t),

Yref(t),Zref(t),Yawref(t)

40

41

42

43 [yaw_ref_OL , pitch_ref_OL , roll_ref_OL] = A.

outer_loop_control(ref_traj)

44

45 Thrust = A.Thrust_force(ref_traj)

46

47 #A.reference_model ([yaw_ref_OL , pitch_ref_OL ,

roll_ref_OL ])

48

49 [refm_roll], [refm_pitch], [refm_yaw] = A.

ref_model_states [0], A.ref_model_states [2], A.

ref_model_states [4]

50

51 [torque_roll_pid , torque_pitch_pid , torque_yaw_pid] =

A.inner_loop_control ([refm_yaw , refm_pitch , refm_roll ])

52

53 [torque_roll_ad], [torque_pitch_ad], [torque_yaw_ad]

= A.mrac_torque ()

45



54

55

56 torque_roll = torque_roll_pid + torque_roll_ad

57 torque_pitch = torque_pitch_pid + torque_pitch_ad

58 torque_yaw = torque_yaw_pid + torque_yaw_ad

59

60 theta = A.pitch

61 psi = A.yaw

62 phi = A.roll

63

64 first_row = [math.cos(theta)*math.cos(psi), \

65 math.sin(phi)*math.sin(theta)*math.cos(

psi)-math.cos(phi)*math.sin(psi),\

66 math.cos(phi)*math.sin(theta)*math.cos(

psi)+math.sin(phi)*math.sin(psi)]

67

68 second_row = [math.cos(theta)*math.sin(psi), \

69 math.sin(phi)*math.sin(theta)*math.sin(

psi)+math.cos(phi)*math.cos(psi),\

70 math.cos(phi)*math.sin(theta)*math.sin(

psi)-math.sin(phi)*math.cos(psi)]

71

72 third_row = [-math.sin(theta), \

73 math.sin(phi)*math.cos(theta),\

74 math.cos(phi)*math.cos(theta)]

75

76 R_body_to_veh = np.array ([first_row ,second_row ,

third_row ])

77

78

79 ## x_(t+1)=f(x_t ,u_t)

80 [X_next] = np.array(A.X) + time_step *(np.dot(

first_row ,[[u],[v],[w]]))

81 [Y_next] = np.array(A.Y) + time_step *(np.dot(

second_row ,[[u],[v],[w]]))

82 [Z_next] = np.array(A.Z) + time_step *(np.dot(

third_row ,[[u],[v],[w]]))

83

84 u_next = u + time_step *(A.r*v-A.q*w - 9.81* math.sin(

theta))

85 v_next = v + time_step *(A.p*w-A.r*u + 9.81* math.cos(

theta)*math.sin(phi))
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86 w_next = w + time_step *(A.q*u-A.p*v + 9.81* math.cos(

theta)*math.cos(phi) + Thrust/A.mass)

87

88 phi_next = phi + time_step *(A.p + A.q*math.sin(phi)*

math.tan(theta) + A.r*math.cos(phi)*math.tan(theta))

89 theta_next = theta + time_step *(A.q*math.cos(phi) - A

.r*math.sin(phi))

90 psi_next = psi + time_step *((A.q*math.sin(phi) + A.r*

math.cos(phi))/math.cos(theta))

91

92 if A.X>0: # Disturbance model

93 wind_x = 0#0.5*50*(1.5**2+ math.sin(time))

94 wind_y = 0

95 else:

96 wind_x = 0

97 wind_y = 0#0.5*50*(1.5**2+ math.sin(time))

98

99 p_next = A.p + time_step *(((Jy -Jz)/Jx)*A.q*A.r +

torque_roll/Jx) + time_step*wind_x

100 q_next = A.q + time_step *(((Jz -Jx)/Jy)*A.p*A.r +

torque_pitch/Jy) + time_step*wind_y

101 r_next = A.r + time_step *(((Jx -Jy)/Jz)*A.p*A.q +

torque_yaw/Jz)

102

103

104 [dx_next],[dy_next],[dz_next] = np.dot(R_body_to_veh

,[[ u_next],[v_next],[w_next ]])

105

106 u,v,w = u_next ,v_next , w_next

107

108 # (t+1) steps

109 A.assign_states ([X_next , Y_next , Z_next , psi_next ,

theta_next , phi_next , dx_next , dy_next ,dz_next ,p_next ,

q_next , r_next ])

110

111 A.reference_model ([yaw_ref_OL , pitch_ref_OL ,

roll_ref_OL ])

112

113 A.mrac_weight_update(A.ref_model_states)

114

115

116

117
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118

119

120

121 X_vals.append(A.X)

122 Y_vals.append(A.Y)

123 Z_vals.append(A.Z)

124

125 roll_OL_list.append(roll_ref_OL)

126 roll_vals.append(A.roll)

127 roll_refm_list.append(refm_roll)

128

129 ref_traj_x.append(ref_traj [0])

130 ref_traj_y.append(ref_traj [1])

131

132

133 #print(np.linalg.norm(np.array(roll_vals)-np.array(

roll_refm_list)))

134 #print(np.linalg.norm(np.array(ref_traj_x)-np.array(

ref_traj_y)))

135 #plt.plot(X_vals)

136 #plt.plot(ref_traj_x ,’k’,linewidth =2)

137 plt.plot(Y_vals ,X_vals)

138 plt.plot(ref_traj_y ,ref_traj_x ,’k’)

139 #plt.plot(ref_traj_y ,ref_traj_x ,’k ’)

140 #plt.plot(roll_OL_list ,’r’,linewidth =4)

141

142 #plt.plot(roll_refm_list)

143 #plt.plot(roll_vals ,’m ’)

144

145

146

147

148 drone_dynamics_with_control ()
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APPENDIX C

DMRAC CODE FOR QUADCOPTER
CONTROL

Note, DMRAC controller incorporates the above PID control class. Here,

when the entire buffer gets filled, the oldest entry gets replaced by the newest

datapoint (FIFO). There is another way of choosing datapoints for the buffer

using SVD maximisation highlighted in [20]. Although, it can improve DM-

RAC’s performance even further, it wasn’t considered here due to limited

onboard computational power.

1 # -*- coding: utf -8 -*-

2 """

3 Created on Mon Mar 30 00:48:05 2020

4

5 @author: Jasvir

6 """

7

8 import numpy as np

9 import torch

10 import torch.nn as nn

11 import torch.nn.functional as F

12 import torch.optim as optim

13 from PID_control import PID_Control

14 import time

15

16 class Net(nn.Module):

17

18 def __init__(self):

19 super(Net , self).__init__ ()

20

21 self.HL1 = nn.Linear (6,20)

22 self.HL2 = nn.Linear (20 ,10)

23 self.OL = nn.Linear (10 ,3)

24

25 self.optimizer = optim.Adam(self.parameters (), lr

=0.0005 , weight_decay =0)
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26

27

28 self.optimizer.zero_grad ()

29

30 self.loss_fn = nn.MSELoss ()

31

32 def forward(self , x):

33 OL_1 = torch.tanh(self.HL1(x))

34 OL_2 = torch.tanh(self.HL2(OL_1))

35 OL_3 = self.OL(OL_2)

36 return (OL_2 ,OL_3)

37

38

39

40 class Deep_MRAC_Control(PID_Control):

41 def __init__(self):

42 PID_Control.__init__(self)

43

44 self.dev = "cpu"#torch.device ("cuda" if torch.cuda.

is_available () else "cpu")

45 self.network = Net().to(self.dev)

46

47

48

49 self.ref_model_states = np.array

([[0] ,[0] ,[0] ,[0] ,[0] ,[0]])

50

51 self.adaptive_gain = 0.4 # PID - make this 0 and lr=0,

MRAC with nn , make this like whatever for dist case

52 # for DMRAC , make this 0.4 for dist case and lr =0.001

53 # Note: MRAC with gaussian RBFs won’t perform as well

as the neural network MRAC case

54 # Best MRAC with NN performance with gain =0.9, after

that high oscillation

55 # DMRAC with 0.4 adaptive gain and lr =0.001

outperforms

56 # PID (put 0 inboth lr and adaptive gain)

57

58 self.last_layer_weight = np.zeros ((10 ,3))

59

60 self.vad = np.zeros ((3 ,1))

61

62 self.buffer_size = 250
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63

64 self.input_training_data = np.zeros((6,self.

buffer_size))

65

66 self.output_training_data = np.zeros((3,self.

buffer_size))

67

68 def reference_model(self ,yaw_pitch_roll_ref_OL):

69 yaw_OL , pitch_OL , roll_OL = yaw_pitch_roll_ref_OL [0],

yaw_pitch_roll_ref_OL [1], yaw_pitch_roll_ref_OL [2]

70 wn = 20

71 damping = 0.1

72 Arm = np.array ([[0,1,0,0,0,0],[-wn**2,-2* damping*wn

,0,0,0,0],\

73 [0,0,0,1,0,0],[0,0,-wn**2,-2* damping*

wn ,0,0],\

74 [0,0,0,0,0,1],[0,0,0,0,-wn**2, -2*

damping*wn]])

75

76 Brm = np.array ([[0,0,0],[wn**2,0,0],[0,0,0],\

77 [0,wn**2,0],[0,0,0],[0,0,wn **2]])

78

79 ref = np.array ([[ roll_OL],[pitch_OL],[yaw_OL ]])

80

81 Bm_rt_pdt = np.dot(Brm ,ref)

82

83 k1 = np.dot(Arm , self.ref_model_states) + Bm_rt_pdt

84 k2 = np.dot(Arm ,(self.ref_model_states + k1*self.delt

/2)) + Bm_rt_pdt

85 k3 = np.dot(Arm , (self.ref_model_states + k2*self.

delt /2)) + Bm_rt_pdt

86 k4 = np.dot(Arm , (self.ref_model_states + k3*self.

delt)) + Bm_rt_pdt

87

88 self.ref_model_states = self.ref_model_states + (self

.delt /6)*(k1+2*k2+2*k3+k4) # roll ,d_roll ,pitch ,d_pitch ,yaw

,d_yaw

89

90

91

92

93 def DMRAC_last_layer_weight_update(self ,ref_model_states ,

second_last_layer_output_basis):
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94

95 current_rpy_state = np.array ([[ self.roll],[self.

D_roll],[self.pitch],[self.D_pitch],[self.yaw],[self.D_yaw

]])

96

97

98 error = ref_model_states -current_rpy_state

99 P = np.array

([[50.13 ,0.0013 ,0 ,0 ,0 ,0] ,[0.0013 ,0.1253 ,0 ,0 ,0 ,0] ,\

100

[0 ,0 ,50.13 ,0.0013 ,0 ,0] ,[0 ,0 ,0.0013 ,0.1253 ,0 ,0] ,\

101

[0 ,0 ,0 ,0 ,50.13 ,0.0013] ,[0 ,0 ,0 ,0 ,0.0013 ,0.1253]])

102

103 B = np.array ([[0,0,0],[1,0,0],[0,0,0],\

104 [0,1,0],[0,0,0],[0,0,1]])

105

106

107

108 self.last_layer_weight = self.last_layer_weight + (-

self.delt)*(self.adaptive_gain)*np.dot(

second_last_layer_output_basis ,np.dot(error.T,np.dot(P,B))

)# (8x3)

109

110

111

112 def deep_mrac_torque(self ,second_last_layer_output_basis)

:

113 self.vad = np.dot(self.last_layer_weight.T,

second_last_layer_output_basis) #(3x8) ,(8x1)

114

115 u_net = self.vad

116

117 return u_net

118

119 def buffer_fill_simple(self ,current_iter):

120 iter_number = current_iter %(self.buffer_size -1)

121 self.input_training_data [:, iter_number] = np.array([

self.roll ,self.D_roll ,\

122

self.pitch ,self.D_pitch ,\

123

self.yaw ,self.D_yaw])
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124

125 self.output_training_data [:, iter_number] = self.vad

[:,0]

126

127

128

129 def DMRAC_training(self ,current_iter):

130

131

132 if current_iter > self.buffer_size:

133

134 random_numbers = np.random.randint(0,self.

buffer_size ,100)

135 random_input_data_for_training = self.

input_training_data.T[random_numbers]

136

137 random_output_data_for_training = self.

output_training_data.T[random_numbers]

138 start = time.time()

139 for epoch in range (10):

140

141 pred = self.network.forward(torch.Tensor(

random_input_data_for_training).to(self.dev))[1]

142

143 loss_vals = self.network.loss_fn(pred ,torch.

Tensor(random_output_data_for_training).to(self.dev))

144

145 loss_vals.backward ()

146 self.network.optimizer.step()

147 self.network.optimizer.zero_grad ()

148 print(current_iter ,loss_vals) # For printing

loss in each epochs

149

150 end = time.time()

151 print(end - start)

DMRAC controller can be tested in a similar way as PID controller:

1 # -*- coding: utf -8 -*-

2 """

3 Created on Tue Mar 31 15:57:34 2020

4

5 @author: me112

6
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7 Test Script

8 """

9 from DMRAC_control_gpu import Deep_MRAC_Control

10 import matplotlib.pyplot as plt

11 import numpy as np

12 import math

13 import torch

14

15

16

17 def drone_dynamics_with_control ():

18 torch.manual_seed (0) # For getting repeatable results

19 A = Deep_MRAC_Control ()

20 device = "cpu"#torch.device ("cuda" if torch.cuda.

is_available () else "cpu")

21

22 A.assign_states ([0,0,0,0,0,0,0,0,0,0,0,0])

23 time_step=A.delt

24 u,v,w = 0,0,0

25 Jx = 0.0000582857

26 Jy = 0.0000716914

27 Jz = 0.0001

28

29 X_vals =[]

30 Y_vals =[]

31 Z_vals =[]

32 ref_traj_x =[]

33 ref_traj_y =[]

34

35 roll_vals =[]

36 roll_refm_list =[]

37 roll_OL_list =[]

38 T_fig_8 =20

39

40 for time in range (1 ,10000): #Number of time steps

41

42 ref_traj = [math.cos(2* math.pi*time *0.005/ T_fig_8),

math.sin (4* math.pi*time *0.005/ T_fig_8) ,-2,0] # Xref(t),

Yref(t),Zref(t),Yawref(t)

43

44

45
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46 [yaw_ref_OL , pitch_ref_OL , roll_ref_OL] = A.

outer_loop_control(ref_traj)

47

48 Thrust = A.Thrust_force(ref_traj)

49

50 #A.reference_model ([yaw_ref_OL , pitch_ref_OL ,

roll_ref_OL ])

51

52 [refm_roll], [refm_pitch], [refm_yaw] = A.

ref_model_states [0], A.ref_model_states [2], A.

ref_model_states [4]

53

54 [torque_roll_pid , torque_pitch_pid , torque_yaw_pid] =

A.inner_loop_control ([refm_yaw , refm_pitch , refm_roll ])

55

56 second_last_layer_output = A.network.forward(torch.

Tensor ([A.roll ,A.D_roll ,\

57 A.

pitch ,A.D_pitch ,\

58 A.yaw ,

A.D_yaw]).to(device))[0]

59

60 second_lat_layer_output_cpu = torch.Tensor.cpu(

second_last_layer_output)

61

62 second_lat_layer_output_detached =

second_lat_layer_output_cpu.detach ().numpy ().T

63

64 second_last_layer_output_final_form = np.reshape(

second_lat_layer_output_detached ,(10 ,1))

65

66 [[ torque_roll_ad], [torque_pitch_ad], [torque_yaw_ad

]] = A.deep_mrac_torque(

second_last_layer_output_final_form)

67

68 A.buffer_fill_simple(time)

69

70

71 torque_roll = torque_roll_pid - torque_roll_ad

72 torque_pitch = torque_pitch_pid - torque_pitch_ad

73 torque_yaw = torque_yaw_pid - torque_yaw_ad

74

75
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76

77 theta = A.pitch

78 psi = A.yaw

79 phi = A.roll

80

81 first_row = [math.cos(theta)*math.cos(psi), \

82 math.sin(phi)*math.sin(theta)*math.cos(

psi)-math.cos(phi)*math.sin(psi),\

83 math.cos(phi)*math.sin(theta)*math.cos(

psi)+math.sin(phi)*math.sin(psi)]

84

85 second_row = [math.cos(theta)*math.sin(psi), \

86 math.sin(phi)*math.sin(theta)*math.sin(

psi)+math.cos(phi)*math.cos(psi),\

87 math.cos(phi)*math.sin(theta)*math.sin(

psi)-math.sin(phi)*math.cos(psi)]

88

89 third_row = [-math.sin(theta), \

90 math.sin(phi)*math.cos(theta),\

91 math.cos(phi)*math.cos(theta)]

92

93 R_body_to_veh = np.array ([first_row ,second_row ,

third_row ])

94

95

96 ## x_(t+1)=f(x_t ,u_t)

97 [X_next] = np.array(A.X) + time_step *(np.dot(

first_row ,[[u],[v],[w]]))

98 [Y_next] = np.array(A.Y) + time_step *(np.dot(

second_row ,[[u],[v],[w]]))

99 [Z_next] = np.array(A.Z) + time_step *(np.dot(

third_row ,[[u],[v],[w]]))

100

101 if A.X>0: # Disturbance model

102 wind_x = 0.5*50*(1.5**2+ math.sin(time))

103 wind_y = 0

104 else:

105 wind_x = 0

106 wind_y = 0.5*50*(1.5**2+ math.sin(time))

107

108 u_next = u + time_step *(A.r*v-A.q*w - 9.81* math.sin(

theta))
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109 v_next = v + time_step *(A.p*w-A.r*u + 9.81* math.cos(

theta)*math.sin(phi))

110 w_next = w + time_step *(A.q*u-A.p*v + 9.81* math.cos(

theta)*math.cos(phi) + Thrust/A.mass)

111

112 phi_next = phi + time_step *(A.p + A.q*math.sin(phi)*

math.tan(theta) + A.r*math.cos(phi)*math.tan(theta))

113 theta_next = theta + time_step *(A.q*math.cos(phi) - A

.r*math.sin(phi))

114 psi_next = psi + time_step *((A.q*math.sin(phi) + A.r*

math.cos(phi))/math.cos(theta))

115

116 p_next = A.p + time_step *(((Jy -Jz)/Jx)*A.q*A.r +

torque_roll/Jx) + time_step*wind_x

117 q_next = A.q + time_step *(((Jz -Jx)/Jy)*A.p*A.r +

torque_pitch/Jy) + time_step*wind_y

118 r_next = A.r + time_step *(((Jx -Jy)/Jz)*A.p*A.q +

torque_yaw/Jz)

119

120

121 [dx_next],[dy_next],[dz_next] = np.dot(R_body_to_veh

,[[ u_next],[v_next],[w_next ]])

122

123 # (t+1) steps

124 u,v,w = u_next ,v_next , w_next

125

126 A.DMRAC_last_layer_weight_update(A.ref_model_states ,

second_last_layer_output_final_form)

127

128 A.assign_states ([X_next , Y_next , Z_next , psi_next ,

theta_next , phi_next , dx_next , dy_next ,dz_next ,p_next ,

q_next , r_next ])

129

130 A.reference_model ([yaw_ref_OL , pitch_ref_OL ,

roll_ref_OL ])

131

132

133

134 # DMRAC training (need to uncomment this , whenever

running DMRAC)

135

136 if time %200 == 0:

137 A.DMRAC_training(time)
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138

139

140

141

142

143 # For making graphs

144

145 X_vals.append(A.X)

146 Y_vals.append(A.Y)

147 Z_vals.append(A.Z)

148

149 roll_OL_list.append(roll_ref_OL)

150 roll_vals.append(A.pitch)

151 roll_refm_list.append(refm_pitch)

152

153 ref_traj_x.append(ref_traj [0]) # Put ref_traj [0] here

for graph plotting

154 ref_traj_y.append(ref_traj [1]) # Put ref_traj [1] here

for graph plotting

155

156

157 #print(np.linalg.norm(np.array(roll_vals)-np.array(

roll_refm_list)))

158 #print(np.linalg.norm(np.array(ref_traj_x)-np.array(

ref_traj_y)))

159

160

161 plt.plot(Y_vals ,X_vals)

162

163 plt.plot(ref_traj_y ,ref_traj_x ,’k’,linewidth =2)

164

165 #plt.plot(ref_traj_y ,ref_traj_x ,’k ’)

166 #plt.plot(roll_OL_list ,’r’,linewidth =4)

167

168 #plt.plot(roll_refm_list)

169 #plt.plot(roll_vals ,’m ’)

170

171

172

173

174 drone_dynamics_with_control ()
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