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tainty, and finally extends the analysis to obtain algebraic
expressions for the attitude, gyro bias, and rate estimate
uncertainty as a function of attitude sensor outage time.

2 Rate Output Gyro (ROG)

This section focuses on the case of a single-axis Rate Out-
put Gyro (ROG). A ROG model is presented in Section
2.1. The ROG is then used in a single-axis attitude es-
timation filter 2.2 that estimates spacecraft attitude and
gyro bias. Farrenkopf’s famous analysis is reviewed in
Section 2.3; additionally, a simple rate estimate is pre-
sented and an analytic expression for its uncertainty is
developed. Section 2.4 formulates expressions for atti-
tude, rate, and gyro bias estimates during an attitude
sensor outage following steady-state operation. Finally,
the analytic results are compared with numerical simula-
tion in Section 2.5.

This system is of frequent interest as it is a single-
axis analog to the full three-axis Multiplicative Extended
Kalman Filter (MEKF) of [5, 6] commonly used on space-
craft. The analytic results from a single-axis analog allow
for rapid evaluation of estimation performance for given
hardware specifications and to provide data for validation
of MEKF implementations in flight software.

2.1 Rate Output Gyro (ROG) Model

Farrenkopf [7, 8] considered the Rate Output Gyro
(ROG) model

Ly(D) = 1O +b(D) + vny(t) ()
where I4(t) is the gyro measurement at time t, I(t) is
the true angular rate, and the angle random walk noise

vy (+) is a zero mean Gaussian white noise process with
variance 2 such that

E[ vnv(t) vnv( )]= 3 (t_ )

where E[:] is the expectation operator and (:) is the
Dirac delta function. The gyro measurement is further
corrupted by a bias b(t) which drifts according to the
model

b(t) = unu(t) 2

where the bias drift noise (ny(-) is a zero mean Gaussian
white noise process with variance 2 such that
E[ unu(®) unu( )= & (t— )

The angle random walk noise is assumed to be indepen-
dent of the bias drift noise, implying

E[ vnv(®) unu()]=0
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2.2 Single-Axis Attitude Filter for ROG

The rotational motion of a single-axis spacecraft is given
by the trivial kinematic model

() =1(1) ©)

which relates the spacecraft attitude (t) to its angular
rate !(t). The dynamics of spacecraft motion, namely the
di [erential equation for ! (t), may be di Ccult to charac-
terize as they may depend on fuel slosh, structural flex,
air drag, solar radiation pressure, gravity gradients, elec-
trical dipole torques, and other sources. It is common to
algebraically substitute the true angular rate in Equation
3 with the content of Equation 1, a modeling technique
known as “dynamic model replacement” [4, 5, 6, 7, 8, 11].
Performing this substitution leads to the satellite kine-
matic model

() = 14() —b() — vnv(D)

Combining the satellite kinematic model with the gyro
bias drift relation of Equation 2 one can model the system
with the state

(t)
b(t)

Assuming the gyro measurement ! is available with pe-

x(t) = 4)

riod tthe system dynamics have the discrete time model
[12, 13]
X(tee1) = ( Ox(t) + ( Hlg(t) +n(t)  (5)

where for time step t = tx+; — tx the state transition

matrix is )
(=17 "
the gyro input matrix is
(=
and
“e #

Y= W)= (e — ) unu()1d

no= st R T
W— t V'V

Taking the expectation of the process noise term n(ty)
with itself yields the process noise covariance

Q( H=E n(t)n’ (t)
2 t+2% 52 3 —12
2 ¢ t

(6)

N[=

A single-axis attitude estimation filter for a ROG with
a state given by Equation 4 will have a state covariance
matrix of

P (t) = E[(x(tk) — R(t)) (x(t) — R(t)) "]
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where X(tx) is the filter’s estimate of the true state X(tx)
at time tx. The state estimate may be propagated from
its value X(t;) just after the most recent attitude mea-
surement update to its value R(t, ;) just before the next
attitude measurement update by using the expectation of
Equation 5:

R(te) = ( DRE) + (DIt

where the gyro measurement !4(ty) is used to propa-
gate the system state estimate between attitude measure-
ments. The state covariance matrix is propagated from
its value of P (t;) just after the most recent attitude mea-
surement update to its value P (t,_,_ ;) just before the next
attitude measurement update using

Pt = ( DP(E) "( D+Q( 9 ™

Attitude measurements, from a star tracker or some
other sensor, are modeled as

y(tx) = HX(t) + nnn(tk)

(tk) + nnn(tk)

®)

where y(ty) is the attitude measurement at time ty, the
measurement matrix H = [1 0], and the attitude mea-
surement noise nnNn(-) is a zero mean Gaussian white
noise process with variance 2. The attitude measure-
ment noise is assumed independent of all gyro measure-
ment noise. The attitude measurement noise covariance
matrix is simply

R=E[ fnaM®]= 3

Given an attitude measurement y(tx) at time ty, the
state covariance is updated from P (t,) to P(t;) by ap-
plying the measurement information using the Kalman
gain:

K(t) = P(t)HT HP(@E)HT +R

P (t) = P (t) — K(t)HP ()

©)
(10)

The system state estimate is also updated by the mea-
surement information using the Kalman gain:

R(t) = R(t) + K(t) y(t) — HR(L,)

2.3 Analytic Steady State Filter Uncer-
tainty

Given that the process noise covariance matrix Q, the
measurement noise covariance matrix R, and the state
transition matrix  are all independent of the state, the
dynamics of the filter’s state covariance matrix P () may
be studied exclusively via Equations 7, 9, and 10. As
the system is observable, the state covariance matrix will
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converge asymptotically to a steady state limit. In other
words, there is a time index j such that

P (1) =P (&) (11)
P (t.1) =P () (12)

for all k > j. Denote the limiting covariance matrices as

2 (_ 2 (—
PE)=POI= o) 20
+y = = 2 AM)

P (tk) =P (+) - Zb(+) 52(4_) (13)

Farrenkopf showed [7] that Equations 7, 9, 10, 11, and
12 reduce to the single quartic equation

1
x* +382x3 + §2 655—53—2 x2+Six+St=0
where
t3:2
Sy=—~+—
VA
t
S, = Y
n
2
_ (=)t
X= 5 (14)
n
and tis the time between attitude measurements.

Farrenkopf later [8] found a unique analytic solution to
the quartic equation by discarding non-physical solutions.
Farrenkopf found

= 2
X
—) = _ -1 15
= 5, (15)
2
()= 0 1- 2 (16)
s
1 1
(—) = —  S3 sty X an
s
1 1
bb("‘):% S& x 2 X% (18)
where
r
S4
= SRU+SH+ o
2 s 3
2 2 2
X:—}4 i.'_ + i+ _4555

2 2 2

Trivial algebraic manipulation of Equation 14 vyields
the solution for 2, (-)

5 2
—) = nX
(7)) = —
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Using the solution for all elements of P (—) and algebraic
substitution into Equations 9 and 10 further yield

2 2
_Sun

™ (19)

%0(+) =

An estimate of the angular rate at time t,_ can be com-

puted by subtracting the filter’s bias estimate from the
gyro measurement

() = o0 = B(5) (20)
The rate estimate uncertainty at time t,_ is then
h i
WEO=E 1m0
2
=E - b)) —Bt) — vnu(t)
—E bt -t +E 2n3(to)
h i
+2E  b(t) —B(t)  vnu(t)
= 5O+ ¢ (1)

where the fact that b(tk) —B(t;) is independent of

ny(tx) was used. Similarly, the uncertainty in this rate
estimate just after a bias estimate update (at time ty;) is
h i

2P =E 1m)-*rg)° = 2

2
p(+) + ¢

2.4 Analytic Estimate Uncertainty after
Propagation

Now consider the case when the filter has reached steady
state and then the attitude measurements suddendly be-
come unavailable. Denote the time of the most recent
attitude measurement as tss. After processing this atti-
tude measurement, the state covariance matrix has value

2(+) 3
) &)

where 2 (+), 2(+),and 2,(+) are given by Equations
16, 19, and 18 of the previous section.

After the attitude measurements become unavailable,
the only thing the filter can do is to propagate its solution
using gyro measurements. The remainder of this section
will develop analytic expressions for the attitude estimate
uncertainty, gyro bias estimate uncertainty, and angular
rate estimate uncertainty as a function of the time elapsed
since the filter was at steady state.

Consider the time t, > tss. At this time the filter has
propagated its state estimates t, = t, — tss seconds
since the most recent attitude update at tss. The state
covariance matrix P (t;) at propagation time t; is found

P(t) =P(+) =
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by propagating P (t3,) according to the usual equation

- 2 () ()
P(t)) = P p.P
©)= 2wy )
= (P "( ) +Q( ty) (22)
where
( tp)_ 0 1
and
Q( tp) = v tp1+2% Lzé t _%23 t
T2 u tp a tp

Evaluating the covariance propagation of Equation 22
yields

()= 2 (H) -2 tp BN+ R+
1
+ v 6 (23)
_ 1
2b(tp): (H) = 1 gb("‘)—iﬁ trza
BE) = G+ 4 b (24)
The rate estimate uncertainty at time t; is
h i
— N 2 —
W) =E () —2t) " = Jt)+ 7 (25)
2.5 Numerical Simulation of ROG

Single-Axis Filter
Consider a ROG with

, =436 Af%d = 9:00 ﬂf? = 0:150 3%
-

o = 0:0404 22 = 0:00833 25 = 0:500 VoL
sd s3 hr3
which is characteristic of a high-end MEMS gyro pop-
ular in CubeSats and SmallSats. Suppose star tracker
measurements are available every 0:5 sec and have mea-
surement noise

n =24:2 rad =5:00 arcsec = 0:00139 deg

which is characteristic of high-end star trackers for Cube-
Sats and SmallSats.

Assume a single axis spacecraft uses an attitude filter
as described in Section 2.2 and has reached steady state
operation. The filter’s estimate uncertainty has been as-
sessed in Section 2.3. Then assume the attitude mea-
surements from the star tracker are suddenly unavailable,
but the ROG is still used to propagate the filter’s state
estimates. The analysis of Section 2.4 provides analytic
expressions for the filter uncertainty as a function of prop-
agation time.
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A Monte-Carlo simulation analysis was performed to
demonstrate the predictive accuracy of the analytic re-
sults. The simulation analysis consists of 100 disctinct
simulation realizations of the system with initial condi-
tion specified by the steady-state filter covariance matrix
of Equation 13. In each realization the filter then uses a
gyro only to propagate its estimates as star tracker mea-
surements are assumed to be unavailable. The attitude
estimate uncertainty growth is shown in Figure 1 where
the grey trajectories are filter attitude estimate error real-
izations and the blue curves are £3  (t;) from Equation
23. Gyro bias estimate errors are shown in Figure 2. Rate
estimates from Equation 20 have errors shown in Figure
3.

400 Attitude Estimate Error Growth during Propagation
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Figure 1: ROG filter attitude estimate error; grey
trajectories are from 100 distinct simulation realizations,
blue curves are £3  (t;) analytic estimates from
Equation 23.

3 Rate-Integrating Gyro (RIG)

This section focuses on the case of a single-axis Rate-
Integrating Gyro (RIG). A RIG model is presented in
Section 3.1. The RIG is then used in a single-axis atti-
tude estimation filter 3.2 that estimates spacecraft atti-
tude and gyro bias. Markley’s and Reynolds’ analysis is
reviewed in Section 3.3; additionally, a simple rate esti-
mate is presented and an analytic expression for its uncer-
tainty is developed. Section 3.4 formulates expressions for
attitude, rate, and gyro bias estimates during an attitude
sensor outage following steady-state operation. Finally,
the analytic results are compared with numerical simula-
tion in Section 3.5.

This system is of frequent interest as it is a single-
axis analog to the full three-axis Multiplicative Extended
Kalman Filter (MEKF) extension for RIGs of [10]. As in

IAC-19-C1.6.2

Gyro Bias Estimate Error Growth during Propagation
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Figure 2: ROG filter gyro bias estimate error; grey
trajectories are from 100 distinct simulation realizations,
blue curves are £3 pp(t;) analytic estimates from
Equation 24.

the ROG case, the analytic results from a single-axis ana-
log allow for rapid evaluation of estimation performance
for given hardware specifications and to provide data for
validation of MEKF implementations in flight software.

3.1 Rate-Integrating Gyro (RIG) Model

Markley and Reynolds [9] considered the following model
for a Rate-Integrating Gyro (RIG)

-(0) = 1) +b(t) + yny(D)

where (t) is a dynamical state internal to the RIG.
Assuming no bias b(-) and no angle random walk noise

vhy(?), the RIG internal angle state (:) would inte-
grate the true spacecraft angular rate !(t) to perfectly
track change in the spacecraft attitude (t). RIGs typ-
ically do have angle random walk noise n,(-) , which
is modeled as a zero mean Gaussian white noise process
with variance 2 such that

E[ vnv(®) viv( )= 2 (t— )

just as in the ROG case. Similarly, the RIG is corrupted
by a bias b(t) which is assumed to drift according to the
model

(26)

b(t) = unu(t) @7

where the bias drift noise ny(:) is a zero mean Gaussian
white noise process with variance 2 such that

E[ unu(® wnu( )= 2 (t— )

The RIG output angle at time tx is modeled as

(k) = () + ene(ti) (28)
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50 Rate Estimate Error Growth during Propagation
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Figure 3: ROG filter rate estimate error; grey
trajectories are from 100 distinct simulation realizations,
blue curves are £3 11 (t;) analytic estimates from
Equation 25.

where the angle output noise ¢ne(:) is a zero mean Gaus-
sian white noise process with variance 2 such that

E[ ene(t) ene( )] = 62: (t—)

Angle output noise is also known as readout noise and
electronic noise.

The angle output noise, angle random walk noise, and
bias drift noise are assumed to be independent of each
other.

3.2 Single-Axis Attitude Filter for RIG

Combining the single-axis spacecraft kinematics model of
Equation 3 with the RIG model of Equations 26 and 27
lead to the combined dynamics

2 3 23 2 3
000 1 0
x({©) =40 0 05x(t)+4051(t) +4 unu()5 (29)
010 1 vhy (1)
for the system state
2 3
®
x(t) = 4b(t)5 (30)
®

The combined continuous time dynamics of Equation
29 can be discretized [9] allowing for the propagation of
the state from time ti to time ty+1 =t + tyvia

2 3 23 2 3
1 0 0 1 0

X(ter1) =40 1 09 x(t)+409ups1+4 1D (31)
0 t 1 1 K+1
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where
tk+1
Uy = 1()d
tk
Z i+
k+1 = unu( )d
t
Tk+1 Tk+1
k+1 = vhy()d + (tees — ) wnu( )d
L% t

Just as in Section 2.2, the “dynamic model replace-
ment” technique is used to algebraically substitute the
integral of the true angular rate in Equation 31 with the
RIG measurement model of Equation 28. This substitu-
tion leads to the system dynamics model

213

X(ter1) = ( OX(te) + 400 g(tirr) + N(tis1) (32)
1

where for t=tg+1 —tx
2 3
1 -t -1
(=4 1 05 (33)
0 0 0
2 3
— k+1— eNe(tks1)
N(t+1) = 4 k+1 S
— eNe(tk+1)

Taking the expectation of the process noise term n(ty)
with itself yields the process noise covariance

Q( H= E n(t)n’ (t)

2 t_'_l

\"

_f
2

3 2 _1
t+ 2 -1

2 23
u e

2 12 2t 05
2 2
e e

(34)
whose upper left 2x2 block partition matches the ROG fil-
ter’s process noise covariance matrix of Equation 6 when
e = 0.
A single-axis attitude estimation filter for a RIG with

a state given by Equation 30 will have a state covariance
matrix of

P (t) = E[(x(tk) — R(t)) (X(t) = R(t))"]

where X(tx) is the filter’s estimate of the true state x(tx)
at time tx. The state estimate may be propagated from
its value X(t;) just after the most recent attitude mea-
surement update to its value X(t, ;) just before the next
attitude measurement update by using the expectation of
Equation 32:
23
1
X(ter) = ( DR + 405 g(tira)
1

where the gyro measurement 4(tx+1) is used to propa-
gate the system state estimate between attitude measure-
ments. The state covariance matrix is propagated from
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its value of P (t;) just after the most recent attitude mea-
surement update to its value P (t,_,_ ;) just before the next
attitude measurement update using

P(te)= ( DP(E) "( H+Q( )  (39)

which of course has exactly the same form as Equation
7; but note in the RIG case of Equation 35 the state
covariance matrix P () has dimension 3x3, the 3x3 state
transition matrix is given by Equation 33, and the 3x3
process noise covariance matrix is given by Equation 34.

Attitude measurements are modeled similarly to Equa-
tion 8 as

y(tk) = Hx(tk) + nnn(ty)
= (tk) + nnn(tk) (36)

where now in the RIG case H = [1 0 0]. As before, the
attitude measurement noise covariance matrix is

R=E[ 2naM®)]= 3

Given an attitude measurement y(tx) at time ty, the
state covariance is updated from P (t,) to P(t;) by ap-
plying the measurement information using the Kalman
gain:

K(t) = P(t)HT HP@E)HT +R

P (t) = P (t) — K(t)HP ()

(87
(38)

The system state estimate is also updated by the mea-
surement information using the Kalman gain:

R(t) = R(t) + K(t) y(t) — HR(Y)

3.3 Analytic Steady State Filter Uncer-
tainty

As in section 2.3, since the process noise covariance ma-
trix Q, the measurement noise covariance matrix R, and
the state transition matrix are all independent of the
state for the RIG case, the dynamics of the RIG filter’s
state covariance matrix P () may be studied exclusively
via Equations 35, 37, and 38. The observable system dy-
namics again guarantee the state covariance matrix will
converge asymptotically to a steady state limit; meaning
there is a time index j such that

P(t1) =P (1)
P (t 1) =P ()

for all k > j. Denote the limiting covariance matrices as

(39)
(40)

22y ) 2()°
Pt)=P()=4 2() &) 25 (1)
20y 2 ()
oy g 2
P =P() =4 2(+) A 2(H5 42
2(+) Z(+) 2 (+)
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Markley and Reynolds [9] showed that Equations 35,
37, 38, 39, and 40 reduce to the single quartic equation

1
2-2 +ZS” +1+S?2
1
x 242 — 2 Su +1+S2 =0
where
t3=2
SU — ui
\/Lt
Sy =~
n
Se - _&
) n v__
b(=)=—un t
and tis the time between attitude measurements.

Markley and Reynolds were able to analytically solve
the quartic by discarding non-physical solutions. They
found

2(=)= 2%-1 2 (43)
2 ()= 1- —2 % - (44)
1 v 1
gb(_):+§ tL21+ u 2 tun"' \2/+§ tza
(45)
r
1 v 1
B =—3 ti+ v 2 tun+ §+3 €37
v (46)
2b(_) =" un t 47)
where
d 1 1
= 1+S§+ng+ﬁsg

1 1 1
= +ZS”+§ 2 su+53+§sg

Note that Markley’s and Reynolds’ solution of Equations
43, 44, 45, and 46 for the RIG case only diled from Far-
renkopf’s solution of Equations 15, 16, 17, and 18 for the
ROG case by the S¢ term and notation. For ¢ = 0 the
solutions are equivalent.

Solving for the remaining terms in the steady state co-
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variance matrices, one can find

2(0)= 13

5 (=0

2 (_y—= 2

=<

2b("‘):—iun t
2

2(H)=%

v__
2= ve !
2(+): 2 _ g

e 2 2

n

An estimate of the angular rate at time t,_ can be for-
mulated by back-di [erencing gyro measurement and sub-
tracting the gyro bias estimate

_ tx) — t— _
!(tk) — g( ) tg( l) _B(tk_l)
The error of this estimate is defined by *(t ) = I'(tk) —

2(t,). To compute the error, first note that substitution
of Equation 31 into 28 yields

(48)

Zy,
g(tk) = th(tk—1) + (tk—1) + '()d + ene(ty)
t—1
Zy, Zy,
+ vhv()d + (tk — ) unu( )d
t—1 tk—1

Combining the above with Equation 28 again and writing
the bias estimation error as B(t,_;) = b(tx—1) —ﬁ(t;_l)
results inc;che estimate error

R 1( )d
t

1) = @u(t,) — =2 A —n(t_,)

(te = ) unu( )d

t—1

1
- 7t ene(tk) + 7t ene(tk—l)

where the first term vanishes for spacecraft angular rates
that are constant over the dilerencing interval t. As-
suming the spacecraft angular rate is constant over the
di Lerencing interval, the rate estimate uncertainty at time
t, is then
() =E *¥(t)
1 t
- 2(_y4 = 2, -
w()+— v+
Similarly, the uncertainty in this rate estimate just after
a bias estimate update (at time t;;) is

(P =E ()

2
2 2
u+7te

1 2
- 2 2 2 2
= bb(+)+7t vt ut— e

t
3
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3.4 Analytic Estimate Uncertainty after
Propagation

Now consider the case when the filter has reached steady
state and then the attitude measurements suddendly be-
come unavailable. Denote the time of the most recent
attitude measurement as tss. After processing this atti-
tude measurement, the state covariance matrix has value

oy ) 2(#)°
P =P(+) =4 2(+)  A(+) £ (+)5
2(+) B ()

whose entries were given in Section 3.3.

As in Section 2.4 for the ROG case, this section will de-
velop analytic expressions for the attitude estimate uncer-
tainty, gyro bias estimate uncertainty, and angular rate
estimate uncertainty as a function of the time elapsed
since the filter was at steady state for a RIG.

Consider the time t, > tss. At this time the filter has
propagated its state estimates t, = t; — tss seconds
since the most recent attitude update at tss. The state
covariance matrix P (t;) at propagation time t; is found
by propagating P (tg;) according to the usual equation

2 3
() B ()
P(ty) =4 3(t) &) § )
2() f®) ()
= ( HP(ts) "( ) +Q( ty) (49)
where 2 3
1 -t -1
(t)=40 1 05
0 0 0
and
2 3
Phriigel 3t ol
Q( tp)=4 2 u tp u tp 05
2 0 2
e e

Evaluating the covariance propagation of Equation 49
yields

2()= 2 () + L)+ 2 (+)
-2 tp () =22 (#F)+2 tp 5 (+)
1

t Uty Gat e (50)
4= A=t A= § -y 2
2 ()= 2
)= H(H)+ t ] (51)
2 () =0
2 ()= 3
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The spacecraft angular rate can be estimated similar to
Equation 48, where the gyro bias estimate ﬁ(tg) is used
to correct successive gyro measurements in

_ g(t'_) - g(t,;)

t—t, bt

(52)
where t; > t, > tss. Let
estimate is then

0] R 1

Ur()d
H(t) = @1 () — A N(L)

tj = t; —t,. The error in this

1 1
- T ene(tk) + T ene(tk—l)
) )

where B(t;) = b(tp) — (t;). Assuming the spacecraft
angular rate is constant over the diLerencing interval t, <
t < tj, the rate estimate uncertainty at time tj is

() =E ¥()

1

_ 2
= Eb(tp)+T :
J

2
s+

2
vt t. ©
il

. (53)

3.5 Numerical Simulation of RIG Single-
AXxis Filter

Consider a RIG with

, =145 A“%d = 0:300 icgﬂ = 0:00500 3%
-

d
L = 0:000404 JJI% — 0:000083 ﬂ@ = 0:00500 %
S S r

e = 0:484814 rad = 0:100 arcsec = 0:000028 deg

which is characteristic of a Ring Laser Gyro common in
large science satellites. Suppose star tracker measure-
ments are available every 0:2 sec and have measurement
noise

n =15:0 rad = 3:09 arcsec = 0:000859deg
which is characteristic of the navigation suite for these
types of satellites.

As before, assume a single axis spacecraft uses an at-
titude filter as described in Section 3.2 and has reached
steady state operation. The filter’s estimate uncertainty
has been assessed in Section 3.3. Then assume the at-
titude measurements from the star tracker are suddenly
unavailable, but the RIG is still used to propagate the
filter’s state estimates. The analysis of Section 3.4 pro-
vides analytic expressions for the filter uncertainty as a
function of propagation time.

IAC-19-C1.6.2

A Monte-Carlo simulation analysis was performed to
demonstrate the predictive accuracy of the analytic re-
sults. The simulation analysis consists of 100 disctinct
simulation realizations of the system with initial condi-
tion specified by the steady-state filter covariance matrix
of Equation 42. In each realization the filter then uses a
gyro only to propagate its estimates as star tracker mea-
surements are assumed to be unavailable. The attitude
estimate uncertainty growth is shown in Figure 4 where
the grey trajectories are filter attitude estimate error real-
izations and the blue curves are £3  (t;) from Equation
50. Gyro bias estimate errors are shown in Figure 5. Rate
estimates from Equation 52 have errors shown in Figure
6.

Attitude Estimate Error Growth during Propagation

Figure 4: RIG filter attitude estimate error; grey
trajectories are from 100 distinct simulation realizations,

blue curves are £3  (t;) analytic estimates from

Equation 50.

4 Conclusion

Standard models for single-axis Rate Output Gyros
(ROGs) and Rate-Integrating Gyros (RIGs) were pre-
sented. Single-axis attitue estimation filters were devel-
oped. The classic analysis of a single-axis spacecraft atti-
tude estimator was presented; Farrenkopf’s analysis [7, 8]
for the ROG case and Markley’s and Reynolds’ [9] for the
RIG case. This paper showed how these classic analyses
may be used to find an analytic expression for uncertainty
in a simple rate estimate. Finally, the analytic expressions
for the uncertainty in attitude, gyro bias, and rate esti-
mates as a function of propagation time were found for
the situation when the spacecraft attitude estimator has
reached steady-state operation and subsequently loses at-
titude measurements. Validity of the analytic results was
demonstrated via Monte Carlo simulation.
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Figure 5: RIG filter gyro bias estimate error; grey

trajectories are from 100 distinct simulation realizations,

blue curves are £3 pp(t;) analytic estimates from
Equation 51.
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