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Abstract Unmanned aerial systems (UASs) in urban areas
can pose signi cant safety risks to dynamic ground objects
(DGOs) such as people, pets, and bikes; especially for off-nominal
emergency traverses and landings. This paper will examine a
framework for evaluating the UAS safety bene ts which can be
achieved by classifying DGO hazards, modeling their behavior,
and assigning collision costs. DGOs are assumed to be any ground
objects which are either moving or capable of moving. Safety
bene ts will be assessed by analyzing metrics computed from
UAS and DGO trajectories which take into account intent and
uncertainties. This paper will establish the theoretical relation-
ships mapping these trajectories and DGO classi cations to safety
levels. Sensor capabilities will be mapped to DGO trajectory
uncertainties, so that safety can be directly estimated from the
sensor speci cations for a given UAS trajectory.

I. INTRODUCTION

The overarching goal of this paper is to develop a framework
for mapping Unmanned Aerial Vehicle (UAS) sensor and
vision processing capabilities to Dynamic Ground Obstacle
(DGO) safety. DGOs are assumed to be any ground objects
which are either moving or capable of moving, and UAS are
assumed to be CAT1 recreational, commercial, or emergency
service aerial vehicles. Safety is maintained by ensuring the
expected risk to all possible hazards stays below a maximum
threshold. >

ri < (l)
i
This equation is slightly misleading as written, because it does
not explicitly show the correlation between potential incidents.
For example, if there are two DGOs in the path of the UAS,
and the UAS collides with the rst DGO, then there is no
longer a risk of collision with the second DGO unless it
happens to be in close proximity to the rst DGO. We will
re-examine this equation later in this study after the discussion
on likelihood probabilities.

Hazards are only considered if they can cause harm to
people or property, while harm to the UAS itself is generally
not considered in this study. The expected risk to the general
public caused by hazard i can be computed by multiplying the
consequence cost with the likelihood of that hazard occurring.

ri=ci 2

Likelihoods and consequences will each be considered in
depth in the following sections, and mathematical de nitions
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will be formulated so that they can be combined into an overall
safety measure. Methods for minimizing the likelihoods and
consequences will be discussed, and equations will be derived
to establish the relationships between sensor speci cations
and safety. The effects of uncertainty in the trajectories and
probabilities of the sensed DGO belonging to various classes
will also be considered in this example. A methodology for
analyzing the validity of the risk calculations will also be
discussed.

I1. PREVIOUS WORK

The FAA Extension, Safety, and Security Act of 2016 [10]
called for the Federal Aviation Administration (FAA) to study
the potential use of probabilistic assessments of risks by the
Administration to streamline the integration of unmanned air-
craft systems into the national airspace system. Risk reduction
models for addressing the FAA safety requirements include
[1] and [6], and a comprehensive review of the state-of-
the art in UAS ground risk modeling has been analyzed in
[11]. These risk models consider 5X5 risk matrices such
as [4] developed by the NASA Godard Flight Center. However,
these models do not drill down to the speci ¢ UAS sensor
capability requirements, nor do they directly consider the DGO
trajectories and uncertainties. Our paper complements these
studies by showing how safety can be quantitatively measured
given a speci ed UAS trajectory and a speci ed arrangement
of DGOs. In order to form a mathematically analyzable model,
we consider continuous likelihood and consequence values
instead of the risk matrix referenced described above. For
simplicity, we will only consider consequences of property
damage and human harm, and risk will be assumed to be a
simple product of likelihood and consequence.

I1l. CONSEQUENCES

In the previous section we de ned risk as the product of
likelihood and consequence. Thus, it follows that risk can
be reduced by either reducing the likelihood or reducing the
consequence. In this section we will examine methods for
reducing the consequences, and in the following section we
will examine methods for reducing the likelihoods.

The consequence C; associated with a hazard i can be
estimated from insurance payouts, which are in turn based
on the probabilities of causing serious injury or death. [9]
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under the ROC curve. A value of 1:0 represents a perfect
assignment of collision probabilities, 0:5 representing a pure
random assignment of collision probabilities, 0:0 representing
an inverted classi er with perfect incorrect classi cation. We
can thus demonstrate the effects of changes to our probability
equations from a variety of factors including the ones proposed
in the itemized list at the beginning of this section. This
method permits us to discard irrelevant elements collision
probability while retaining and expanding those elements
which can improve performance.

IX. SUMMARY AND FUTURE WORK

This paper developed the risk models in equations 12 and 13
for ensuring safety to DGOs, and described how these risks
models could be validated and improved given real-world data.
The greatest source of uncertainty is intent of the dynamic
ground objects, however it is dif cult to collect real data
of collisions or near misses because these occurrences are
infrequent and can have privacy sensitivities. For our analysis
we have assumed that the object intent is not affected by
the UAS proximity. This simpli es the risk equations and
permits real data to be collected in future studies, with the
UAS and DGOs completely separated spatially and temporally.
Equation 25 would then be used to scale the results as the UAS
and DGOs are relocated to simulate near misses and collisions.

Our rst order approximation where DGOs do not react
to the UASs will not be valid under all scenarios. In many
cases, collisions and near misses happen so quickly that the
DGOs do not have time to react. This is especially true in
busy urban areas where the UAS may not be heard coming. If
the UAS is noticed, then adults are most likely going to try to
avoid a collision. However, pets and children may be far less
predictable, and may attempt to chase the UAS. These highly
complex interactions are important to model because they
can predict when our UAS and DGO interaction simplifying
assumptions are valid. Studying these interactions can also
help generate intent models that can be used to improve risk
prediction. Statistics on these interactions can help identify
when the predicted DGO motion is too unreliable and a simple
worst case motion model must be used. Real-world data of
collisions and near misses is dif cult to obtain because they
do not occur often and also because there may be privacy or
other sensitivities associated with these occurrences. Future
work could attempt to collect this hard to collect data of near
misses and collisions.

The risk equations have assumed stereo cameras would
be used for range estimation. This work can be readily
augmented to cover a variety of other sensors such as LIDAR
and SONAR, with only the range estimation noise models
given in equation 25 requiring updating. Object tracking could
signi cantly improve the classi cation of DGOs since some
objects are not easily recognizable from certain views.

A simulation environment can be invaluable for testing out
end-to-end work ow for the risk calculations, and isolating the
effects of intent modeling assumptions, and sensor and algo-
rithm selection. A simulation environment was readily setup

using the ROS Gazebo environment as shown in gure 3. This
example simulate the third person view and telemetry from the
stereo cameras and ight control system. For this example, a
3DR Robotics Iris UAS was simulated with a Pixhawk PX4

ight controller, noisy inertial navigation system, and random
wind gusts. The simulation includes buildings, moving cars,

Fig. 3. ROS Gazebo Simulation Environment, combining the Gazebo vehicle
and city simulation environment, and the Pixhawk PX4 Flight controller.

and several dynamic models of people walking, jogging, and
talking with hand gestures. Sun, shadows, and clouds are also
modeled. The simulated UAS is equipped with stereo cameras
which are used to classify DGOs and estimate their position
and velocity relative to the UAS. A GPU based real-time object
classi er [7] is incorporated into this simulation, as shown in

gure 4 to determine the DGO class based on training data

Fig. 4. Example of the You Only Look Once real-time object classi er
running on our simulated UAS camera view.

of the expected classes for the UAS region. A real-time 3D
optical ow object motion estimation algorithm such as [12]
can also been incorporated into the simulation to estimate the
velocity of DGO objects.

This paper is primarily targeted at class | UAVS, however
these results are readily applicable to larger aircraft, since the
main changes would be the trajectory modeler and the addition
of more sophisticated sensors. It is hoped that this paper can
provide a structured framework to build upon for evaluating
the risks UAS pose to DGOs.
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