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Abstract

3DHZETRN-v2 includes a detailed three dimensional (3D) treatment of neutron/light-ion
transport based on a quasi-elastic/multiple-production assumption allowing improved agree-
ment of the neutron/light-ion 
uence compared with results of three Monte Carlo (MC) codes
in the sense that the variance with respect to the individual MC results is less than the variance
among the MC code results. The current numerical methods are no longer the main limita-
tion to HZETRN code development and further changes in the nuclear model are required.
In a prior study, an improved quasi-elastic spectrum based on a solution of the transport ap-
proximation to nuclear media e�ects showed promise, but the remaining multiple-production
spectrum was based on a database derived from the Ranft model that used Bertini multiplic-
ities. In the present paper, we will implement a more complete Serber �rst step into the
3DHZETRN-v2 code, but we retain the Bertini-Ranft branching ratios and evaporation multi-
plicities. It is shown that the new Serber model in the 3HZETRN-v2 code reduces the variance
with individual MC codes, which are largely due to nuclear cross section model di�erences.

1. Introduction

Space radiation transport codes, such as the deterministic HZETRN code developed by NASA, require
accurate nuclear cross section databases as input. But these databases did not exist during the �rst
decade in which HZETRN was being developed. Even the perturbative approach developed for transport
solutions to the Boltzmann equation within the straight-ahead approximation was based on simple nuclear
data sets for 1 GeV protons interacting with tissue (Wilson and Lamkin, 1974). In that study, a straight-
ahead Monte Carlo (MC) result utilizing the same data set (Wright et al., 1969) provided motivation for
the development of more useful methods based on numerical procedures. A more complete study based
on coupling of the neutron and proton �eld solutions (Lamkin, 1974; Wilson and Lamkin, 1975) resulted
in a more computationally e�cient solution to nucleon transport in extended materials than the more
relatively ine�cient MC methods. In addition to the use of numerical perturbation theory in nuclear
transport algorithms, an even more e�cient numerical marching procedure was derived for the transport
of heavy-ions (Wilson, 1977).

In the mid-1970s, nuclear multiple scattering theory emerged as a theoretical basis for generating
a database for heavy-ion interactions (Wilson, 1975; Wilson and Costner, 1975). An analytic solution
of the heavy-ion perturbation transport theory was derived by employing a Rudstam related formalism
(Silberberg et al., 1976) which was used to analyze high-energy/heavy-ion (HZE) experiments in extended
targets (Wilson et al., 1984). Despite these developments, a more complete interaction database for
nucleons and light-ions was needed to complete the description of HZE transport, apart from the e�ects
of mesons. Moreover, a nucleonic transport marching algorithm that was more compatible with the HZE
marching code was highly desirable, but such developments needed a more complete nucleon interaction
database.

The work of Ranft (1980) that was used in early versions of FLUKA was an important functional set for
developing nucleon transport marching procedures. In search of an improved nucleon interaction database,
the Ranft spectral distributions were used with the direct (cascade) and evaporation multiplicities taken
from Bertini (Anon., 1968; Bertini et al., 1969, 1972). A study of the transport procedure convergence that
used a realistic interaction cross section (Wilson et al., 1988a) provided some con�dence in the marching
procedure (accuracy to < 1 percent di�erence for space boundary conditions compared with an analytic
solution using realistic interaction). This veri�ed marching procedure was then employed with the newly
derived modi�ed Ranft cross sections (Wilson et al., 1987a). However, these cross sections were not found
to be in good agreement with MC results from the newly developed High Energy Transport Code (HETC)
(Alsmiller, 1967). It was surmised that the Ranft formalism did give an adequate representation of the
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evaporated and the constituent recoil nucleons but lacked an adequate representation of the quasi-elastic
scattered nucleons. Hence, a crude approximation of the quasi-elastic contribution was added, which
yielded improved agreement with the MC evaluations (Wilson et al., 1987a). This early work is recounted
in Wilson et al. (1987a, 1988a,b, 1991), where this preliminary database was used for numerical algorithm
studies. It further proved to be adequate for application to space systems design, where uncertainty was
mainly associated with solution procedures that used the straight{ahead approximation rather than the
nuclear database.

A progression of practical solutions for nucleon transport{from the simple straight-ahead approxima-
tion to increasingly complex formalisms{allowed for early implementation of high-performance computa-
tional procedures based on marching algorithms (Wilson et al., 1974, 1977, 1986, 1988a,b, 1991, 1994,
2006). The next step in transport code development was to represent the backward propagating compo-
nents in a lowest order approximation (Clowdsley et al., 2000, 2001). This was accomplished by isolating
the isotropic component of the modi�ed Ranft cross sections into forward and backward propagating
components. It was found that this code generally produced results for dosimetric quantities that agreed
with MC codes to the extent that the MC codes agreed among themselves (Heinbockel et al., 2003, 2009;
Slaba et al., 2010). This treatment represents the �rst step in a full three-dimensional (3D) code.

Subsequent development toward a 3D solution was accomplished by solving the isotropic distribu-
tion along a number of N-rays using the forward/backward propagator along each ray (Wilson et al.,
2014a-c). This forward/isotropic solution showed increased accuracy as compared with MC codes. These
codes produce particle �eld distributions that agreed with three MC codes (Geant4, FLUKA, PHITS)
to the degree that the three MC codes agree among themselves (Wilson et al., 2014a-c). Clearly, the
expanded treatment of the interaction cross sections (from straight-ahead to forward/backward to for-
ward/isotropic) and a more complete treatment of the angular dependence would further improve the
results.

The next progression was to maintain the quasi{elastic term as the only straight{ahead component
and treat the constituent recoil term with the Ranft angular factor while maintaining the evaporation
products as isotropic. There were large di�erences in comparison with MC, and it was surmised that the
quasi{elastic component contributed to the discrepancy and needs improvement (Wilson et al., 2017a).
This last step prompted a reexamination of the quasi-elastic term and a new approach was identi�ed. An
intra-nuclear transport theory (Wilson et al., 1986) was introduced to provide an independent formalism
for the quasi-elastic scattering (Wilson et al., 2017b). It was clear that the older ad hoc approach to
the quasi-elastic term provided a less than ideal version of nucleon quasi-elastic scattering and provided
motivation to develop an even more complete and accurate formalism.

In the present report, we will extend the neutron/light-ion 3D transport beyond the Bertini/Ranft
approximation by improving the Serber �rst step (Serber, 1947) in which a more complete treatment of
3D e�ects in the 3DHZETRN-v2.1 code is incorporated. Development of the improved Serber is achieved
while facilitating convergence studies of di�ering shield geometries and materials (Wilson et al., 2016;
Slaba et al., 2016). In addition to functional changes within the nuclear model, the 3D code has a
selectable angular convergence parameter for the lower energy neutrons and light-ions that need broader
angular extension. Furthermore, the quasi-elastic/multiple-production model of the quasi-elastic and
multiple production terms will be expanded by replacing the Bertini/Ranft multiple-production terms
with values from the Serber �rst step. These advances will use available MC codes, Geant4 (Agostinelli
et al., 2003; Geant4 Collaboration, 2012a,b), FLUKA (Fasso et al., 2005; Battistoni et al., 2007), and
PHITS (Sato et al., 2006, 2013; Niita et al., 2006), to judge the accuracy of these developments, especially
with regard to their 3D aspects. The options in MC usage are discussed in Wilson et al. (2014a,b). Upon
completion, the 3DHZETRN-v2.1 code will be validated against space
ight data, as used in spacecraft
design (Verhage et al., 2002), and integrated into the web-based OLTARIS software system (Singleterry
et al., 2011) for general testing.

2



2. Status of 3DHZETRN-v2 Code

The relevant transport equations are the coupled linear Boltzmann equations derived on the basis of
conservation principles (Wilson et al., 1977, 1991) for the di�erential 
uence density, �j(x;
; E) in units
of 1/(MeV-cm2) of type j particles at position x (g/cm2), angle 
 in steradians (sr), and kinetic energy,
E (MeV/n),

B[�j(x;
; E)] =
X

k

Z
�jk(
;
0; E;E0)�k(x;
0; E0)d
0dE0 � �j(E)�j(x;
; E); (1)

where B[�j(x;
; E)] is the Boltzmann transport operator (Wilson et al., 1991, 2005) given as

B[�j(x;
; E)] = 
 � r�j(x;
; E)�A�1
j

@
@E

[Sj(E)�j(x;
; E)];

where �j(E) is the total macroscopic cross section, �jk(
;
0; E;E0) is the macroscopic double di�erential
cross section evaluated in the medium, and Sj(E) is the stopping power ( Sn(E) vanishes for neutrons
j = n) for particle j of mass Aj . The macroscopic cross section is found by multiplying the microscopic
cross section (cm2) by the number of atoms per gram of the target; �macro(E) = �micro(E)�targ, where
�targ = NA=mw; mw is the molecular weight of the target expressed in units of (g/mol), and NA is
Avogadro’s number (atoms/mol). Therefore, the macroscopic cross section has units of cm2/g, which
is consistent with the standard use of the areal density of g/cm2 for a position vector, x, employed
in radiation transport calculations. The double di�erential cross section, �jk(
;
0; E;E0) in units of
cm2/(g-MeV-sr), describes reactions for which a particle of type k with kinetic energy E0 and direction

0 yields a particle of type j with kinetic energy E in direction 
.

Equation (1) is subject to a boundary condition over the enclosure of the solution domain. At the
present level of development, the double di�erential interaction cross-sections are approximated by a for-
ward directed quasi-elastic (qe) component, an angular dependent multiple-production (mp) component
(Wilson et al., 2017b), and additional evaporative de-excitation and elastic scattering term, which is
referred to as remainder (rem):

�jk(
;
0; E;E0) =�jk;qe(
;
0; E;E0) + �jk;mp(
;
0; E;E0) + �jk;rem(
;
0; E;E0)
=�abs

k (E0)[Fjk;qe(E;E0)�(
�
0) + Fjk;mp(E;E0)gR(�;E;AT )] (2)
+ �jk;rem(
;
0; E;E0);

where �abs
k (E0) is the total absorption cross section, and gR(�;E;AT ) is the Ranft (1980) angular factor.

The �rst term of equation (2) represents the quasi-elastic multiply scattered component (to be de�ned
in the next section) that is assumed to travel straight forward with spectrum Fjk;qe(E;E0). The second
term is for those nucleons and other light-ions that result from intra-nuclear collisions of the quasi-elastic
scattered primary particles with the target nuclear material and are associated with broadly dispersed
lower energy particles produced with spectral distributions Fjk;mp(E;E0)gR(�;E;AT ). The third term
includes target fragments from de-excitation processes and elastic scattering as represented by Chew’s
impulse approximation (Chew, 1951), a phenomenological S-wave for neutrons that provides an adequate
representation of the neutron KERMA (Wilson, 1973; Wilson et al., 1991). (Future improvements are
being planned (Werneth et al., 2017). The angular dispersion in the multiple-production term at each
energy is taken from the Ranft (1980) angular factor used in early versions of FLUKA:

gR(�; E;AT ) =

(
NRe��

2=�R ; 0 � � � �=2
NRe��

2=4�R ; �=2 < � � �:
(3)
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NR is an energy dependent normalization factor, AT is the target nuclear mass number, and the Ranft
width factor is

�R = (0:12 + 0:00036AT )=E; (4)

where cos � = 
 �
0. Note that the normalization is
R
gR(�;E;AT )d
 = 1.

In recent work (Wilson et al., 2017b), the Bertini/Ranft quasi-elastic (qe component of equation (2))
term was replaced with results from a Serber nuclear transport model (Serber, 1947) yielding improved
results. The nucleonic quasi-elastic di�erential cross section was found from

�jk;qe(E;E0) =
2�
�R2�

abs
k (E0)fjk;qe

Z
�ms[z(b); E;E0]bdb; (5)

where z(b) is the target chord at impact parameter b 3 f0; Rg, fjk;qe = Njk;qe=
P
lNlk;qe is the Bertini/Ranft

branching ratio for the quasi-elastic component (Wilson et al., 1988a), and �ms(z; E;E0) is the spectrum
of the multiply-scattered primary nucleon of initial energy E0 solution from nuclear transport theory
(Wilson et al., 1988a, 2017b).

The second term for multiple-production (mp) in equation (2) represents highly spectrally dispersed
particles of lower energy (Wilson, 1977; Wilson et al., 1988a) with energy spectral components given as
modi�cations of Ranft (1980) in the current version of 3DHZETRN-v2 (Wilson et al., 2017a,b) as

�jk;mp(E;E0) = �absk (E0)
3X

i=2

Njk;i

 
��1
i e�E=�i

1� eE0=�i

!

; (6)

where i is related to the Ranft spectral components with spectral parameter �i (Wilson et al., 1991).
A more fundamental formulation of multiple production will be the focus of the present study. The de-
excitation spectrum, where Njk;1 is the evaporation multiplicity with parameters from the Bertini/Ranft
model (Wilson et al., 1988a, 1991), and elastic scattering contributions are included in �jk;rem:

�jk;rem(
;
0; E;E0) = �absk (E0)
Njk;1

4�

 
��1

1 e�E=�1

1� eE0=�1

!

+ �jk;el(
;
0; E;E0): (7)

Wilson et al., 2017b found the Bertini/Ranft quasi-elastic term from reference (Wilson et al., 1988a) to
be overly simpli�ed and implemented a transport based nuclear interaction model (Wilson et al., 1986)
to give a direct estimate of the quasi-elastic spectrum (equation (5)). However, the Bertini cascade
multiplicities, branching ratios, and Ranft parameters for the multiple-production term were maintained
(Wilson et al., 2016). The resulting improvements in that study encouraged the authors to replace the
multiple-production cross-sections in equation (6) with a more fundamental evaluation using the transport
nuclear model.

In recent work, the forward and isotropic fractions were arranged into a bi-directional forward/backward
transport algorithm with the �rst order isotropic term treated as a directional dependent perturbation
(Wilson et al., 2014a, 2015), which showed improvement over prior bi-directional methods (Clowdsley et
al., 2000, 2001; Heinbockel et al., 2003, 2009). In a more recent study, the authors used a straight-ahead
approximation for a Serber quasi-elastic term and the Bertini/Ranft multiple-production term of equation
(6) as an angular dependent perturbation using equation (3). In the present study, the Bertini/Ranft
multiple-production term is replaced with an evaluation of the corresponding multiple-production (target
constituent recoil) term using a transport nuclear model (Wilson et al., 1986, 2017b) based on the Serber
proposal (Serber, 1947).
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3. A Dynamical Theory of the Serber Model

The Serber model has been used to develop stochastic models of nuclear reactions to generate nuclear
data for nucleon transport codes (Goldberger, 1948; Metropolis et al., 1958; Bertini, 1969). The Serber
model is implemented herein as a linear Boltzmann equation (Wilson et al., 1986, 2017b) derived on
the basis of conservation principles for the 
uence density of nucleons,� (z; E; E0) (nucleons/fm2-MeV),
moving through nuclear matter with initial energy E0 at depth z = 0 fm to energy E (MeV) given at
lowest order as a one dimensional approximation by (Wilson et al., 1986, 2017b)

@z � (z; E; E0) + �� m (E )� (z; E; E0) =

1Z

E

�� (E 0)f m (E; E 0)� (z; E0; E0)dE0: (8)

� is the nucleon density within nuclear matter (� = 0.1222 fm� 3), � m (E ) is the media modi�ed total
two-nucleon cross-section,� (E 0) is the free two-body total cross section, andf m (E; E 0) represents the
media modi�ed spectrum resulting from processes by which a nucleon with energyE 0 interacts with
nuclear matter and two nucleons emerge from the interaction site with a spectral distribution of energy
E (Wilson et al., 2017b). The resulting transport is modi�ed within the region of nuclear media in which
the target nucleus is represented by a liquid drop of density� (Joos, 1958) with a potential well depth, V0

(32 MeV). The interior nucleons are distributed in kinetic energy according to the Fermi-Dirac function
in phase space up to the Fermi maximum energy of� F (24.5 MeV), which is the top level of the Fermi
sea. The Fermi energy distribution is given as

D(� ) =
3

2� F

r
�

� F
: (9)

Hence, the nucleons of the nuclear media are in states of various kinetic energies, 0< � < � F , below the
binding energy of the least bound nucleonVB (7.5 MeV). Note that the lowest energy transfers, �, given
by � F � � are blocked by the Pauli exclusion principle and that collisions on the range of� F � � < � < V0

contribute to nuclear excitation. The solution domain in equation (8) is over f � F ; E0g where E0 is the
initial energy of the nucleon at z = 0. The spectral distribution of the resulting nucleonic �eld at various
locations is evaluated by solving equation (8).

3.1. The Interaction Parameters

The di�erential cross section of free nucleons for producing a nucleon of energyE from the interaction
by a nucleon of energyE 0 is further discussed in Wilson et al. (1986, 1991) and approximated by the free
space isotopic averaged two-nucleon cross sections� = 1

2 (� pp + � pn ) as

� (E; E 0) = � (E 0)

h
B (E 0)e� B (E 0)( E 0� E ) + B (E 0)e� B (E 0)E

i

1 � e� B (E 0)E 0

= � (E 0)f (E; E 0)

= � e(E; E 0) + � r (E; E 0)

= � (E 0)[f e(E; E 0) + f r (E; E 0)] = � e(E; E 0) + � r (E; E 0) (10)

where� (E 0) is the total free two nucleon cross section,f e(E; E 0) is the spectrum of the scattered nucleon,
and f r (E; E 0) is the spectrum of the nucleon recoiling from its \resting" position. The slope parameter
B (E 0) is nearly energy independent above 400 MeV and is approximated by (Wilson et al., 1991)

B (E 0) � 2mc2 10� 6[3:5 + 40e� E 0=200]; (11)

5



Figure 14: Aluminum shielded tissue cube exposed to Webber 1956 Solar Particle Event, 
0. The depth
in tissue is represented byz, wherez = 0 g/cm 2 is the near interface located at the top of the tissue slab,
and z = 30 g/cm 2 is the distal interface located at the bottom of the tissue slab.

PHITS and FLUKA), 3DHZETRN-v2.1 (Bertini/Ranft), and 3DHZETRN-v2.1 (Serber), with the results
at 0 and 30 g/cm2 depths in the tissue shown in Fig. 16 for the �nite slab geometry (cube) and Fig. 17
for the shielded spherical geometry. The proton 
uence among the four codes is in reasonable agreement
considering the di�erent nuclear cross section sources. The larger discrepancy lies with the neutron
spectra, especially at the bottom of the tissue cube (z = 30 g/cm 2) that is a�ected both by the penetration
of the aluminum shield and overlying tissue. The results of the codes in a shielded tissue sphere in Fig.
17 are similar to that in the shielded tissue cube. The more dependable nuclear transport model of
3DHZETRN-v2.1 (Serber) is in better agreement with the MC codes, where improvements are signi�cant
at the bottom of the tissue (z = 30 g/cm 2).

The proton 
uence predictions of the codes are in reasonable agreement above 1 MeV, but there
are very large MC statistical uncertainties below 1 MeV (large error bars are not shown for protons
below 1 MeV). The larger discrepancy lies with the neutron spectra, where disagreement among the MC
results is on the same order as for 3DHZETRN-v2.1 (Serber). To further quantify di�erences among the
codes, the neutron spectra is converted into e�ective dose using conversion factors for isotropic neutrons
evaluated by Pelliccioni (2000) with FLUKA. The e�ective dose on the top and bottom of the tissue cube
is given for neutrons in Table 2, and dose equivalent for protons is given in Table 3. The 3DHZETRN-
v2.1 (Serber) model (N=30) compares reasonably well (about ten to �fteen percent) with the three MC
codes. The 3DHZETRN-v2.1 (Serber) code (N=1) corresponds to the older HZETRN code and provides
a conservative over-estimate, as expected. An additional measure of agreement is to evaluate the root
mean square (RMS) relative di�erences in the neutron 
uence from the four codes, as given in Table 4
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Tissue (30gm/cm2)

Aluminum (20 g/cm2)

Aluminum (20 g/cm2)

�80

Near 
Interface

Distal
Interface

Webber SPE February 1956 Boundary Condition 

z = 0 g/cm2

z = 30 g/cm2











Table 5: Proton 
uence (E > 1 MeV) root mean square relative di�erences (dimensionless) of
3DHZETRN-v2.1 (Serber) and MC codes at top (z = 0 g/cm2) and bottom (z = 30 g/cm 2) of ICRU
tissue layer in cube geometry.

z (g/cm2) vs Geant4 vs FLUKA vs PHITS MC spread
0 0.133 N/A 0.212 0.322
30 0.250 N/A 0.217 0.314

Table 6: Computer power requirements for current results (CPU seconds).

Code/Test case 3DHZETRN-v2.1 Geant4 PHITS FLUKA
Webber SPE 69 2 � 108 1 � 108 1:8 � 108

5. Conclusions

The further development of improved transport procedures required advances in the nuclear model
for nucleon-induced reactions in nuclei. An analytical treatment of the Serber model is shown to improve
3DHZETRN-v2.1 in the sense that the variance of the 3DHZETRN-v2.1 output for the Webber proton
event model when compared to the results of three MC codes (Geant4, PHITS, and FLUKA) is signif-
icantly reduced, thereby facilitating focus on numerical algorithms for nucleon transport. This recent
development of the Serber model may now be employed in future e�orts that aim to improve the HZE
interaction database that is generated by the NUCFRG code. Spectral improvements in a HZE Serber
�rst step will be added in future transport developments.

6. Appendix: Solution to the Nuclear Transport Equation

The analytic solution of the transport equation used in the text depended on several assumptions:

a. � m � � m (E0) � � m (E ) for E < E 0

b. � � � (E0) � � (E ) for E < E 0

c. B � B (E0) � B (E) for E < E 0

d. N (E0) � 1 � e� BE 0 � 1 � e� B (E )E � N (E) for E < E 0

In this Appendix, the e�ects of these assumptions will be examined.
The transport is described by a Volterra equation given as

� (z; E; E0) = e� �� m (E )z +

zZ

0

e� �� m (E )( z� z0)

1Z

E

�� m (E; E 0)� (z0; E 0; E0)dE0dz0; (55)

where the leading term is related to the boundary condition and describes the transport of the uncollided
primary particles. The �rst estimate of the 
uence is

� 0(z; E; E0) = e� �� m (E )z � (E � E0): (56)

Higher order corrections can be found by iterating the successive terms resulting from the Neumann series
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Figure 18: Numerical perturbation series and analytic approximation for nucleon transport in nuclear
matter.
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Figure 19: Numerical perturbation series and analytic approximation for nucleon recoils in nuclear matter.
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Figure 17: Webber SPE benchmark in spherical geometry with N=30 compared with GEANT4, FLUKA,
and PHITS at the near and distal interfaces.

Table 3: Proton dose equivalent rates in cube geometry at top (z = 0 g/cm2) and bottom (z = 30 g/cm2)
of ICRU tissue layer (mSv/event). Propagated MC statistical errors in proton dose equivalent values
were all less than 10%. 3DHZETRN refers to the 3DHZETRN-v2.1 (Serber) model developed in the
present work.

z (g/cm2) 3DHZETRN (N=1) 3DHZETRN (N=30) Geant4 FLUKA PHITS
0 8.75 8.56 10.15 N/A 8.36
30 0.84 0.56 0.65 N/A 0.51

Table 4: Neutron 
uence root mean square relative di�erences (dimensionless) of 3DHZETRN-v2.1 (Ser-
ber)and the MC codes at top (z = 0 g/cm2) and bottom (z = 30 g/cm2) of ICRU tissue layer in cube
geometry.

z (g/cm2) vs Geant4 vs FLUKA vs PHITS MC spread
0 0.520 0.446 0.445 0.646
30 0.441 0.418 0.370 0.705
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Table 5: Proton 
uence (E > 1 MeV) root mean square relative di�erences (dimensionless) of
3DHZETRN-v2.1 (Serber) and MC codes at top (z = 0 g/cm2) and bottom (z = 30 g/cm2) of ICRU
tissue layer in cube geometry.

z (g/cm2) vs Geant4 vs FLUKA vs PHITS MC spread
0 0.133 N/A 0.212 0.322
30 0.250 N/A 0.217 0.314

Table 6: Computer power requirements for current results (CPU seconds).

Code/Test case 3DHZETRN-v2.1 Geant4 PHITS FLUKA
Webber SPE 69 2� 108 1� 108 1:8� 108

5. Conclusions

The further development of improved transport procedures required advances in the nuclear model
for nucleon-induced reactions in nuclei. An analytical treatment of the Serber model is shown to improve
3DHZETRN-v2.1 in the sense that the variance of the 3DHZETRN-v2.1 output for the Webber proton
event model when compared to the results of three MC codes (Geant4, PHITS, and FLUKA) is signif-
icantly reduced, thereby facilitating focus on numerical algorithms for nucleon transport. This recent
development of the Serber model may now be employed in future e�orts that aim to improve the HZE
interaction database that is generated by the NUCFRG code. Spectral improvements in a HZE Serber
�rst step will be added in future transport developments.

6. Appendix: Solution to the Nuclear Transport Equation

The analytic solution of the transport equation used in the text depended on several assumptions:

a. �m � �m(E0) � �m(E) for E < E0

b. � � �(E0) � �(E) for E < E0

c. B � B(E0) � B(E) for E < E0

d. N(E0) � 1� e�BE0 � 1� e�B(E)E � N(E) for E < E0

In this Appendix, the e�ects of these assumptions will be examined.
The transport is described by a Volterra equation given as

�(z; E;E0) = e���m(E)z +
zZ

0

e���m(E)(z�z0)

1Z

E

��m(E;E0)�(z0; E0; E0)dE0dz0; (55)

where the leading term is related to the boundary condition and describes the transport of the uncollided
primary particles. The �rst estimate of the 
uence is

�0(z; E;E0) = e���m(E)z�(E � E0): (56)

Higher order corrections can be found by iterating the successive terms resulting from the Neumann series
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solution of equation (55) as

�n(z; E;E0) =
zZ

0

e���m(E)(z�z0)
Z E0�(�F��a)

�F
��(E0)fm(E;E0)�n�1(z0; E0; E0)dE0dz0; (57)

where the spatial integral z0 extends over 0 to z and the energy integral E0 extends over E to E0�(�F ��);
the subscript m denotes Pauli blocking e�ects (in this Appendix we assume that the constituent nucleons
are replaced by nucleons of the average energy �a). The �rst correction to the uncollided primary beam
term of equation (56) is found by substituting �0(z; E;E0) into the integral term on the right side of
equation (57), resulting in

�1(z; E;E0) =
zZ

0

e���m(E)(z�z0)
Z E0�(�F��a)

�F
��m(E;E0)�0(z0; E0; E0)dE0dz0

= ze���m(E0)z��(E0)fm(E;E0): (58)

The �rst scattered nucleons from equation (58) are then given by the �e(E;E0) term as

�s1(z; E;E0) = ze���m(E0)z��(E0)B(E0)
�
e�B(E0)(E0�E)

1� e�B(E0)E0

�
; (59)

for E on the interval f�F ; E0 � (�f � �a)g, while the recoiling nuclear constituent produced by the �rst
scattering is given by the �r(E;E0) term of equation (58) as

�r1(z; E;E0) = ze���m(E0)z��(E0)B(E0)
e�B(E0)E

1� e�B(E0)E0
: (60)

Note, these results in equations (59) and (60) were found under assumptions (a){(d). Furthermore,

Z E0�(�F��a)

�F
�s1(z; E;E0)dE = ze���m(E0)z��(E0)FP (E0); (61)

which is a functional form required for particle conservation. Clearly there are higher order terms for
both the subsequent scattering of the incident nucleon as it moves through the target nuclear material
with added recoiling nuclear constituents being produced. We now consider e�ects of various levels of
approximations on the development of these additional multiple interaction terms resulting from the �rst
interaction, as we have done before (Wilson et al., 1986, 2017b).

6.1. Multiple Scattering Series
To understand the scattering properties of the media, we only evaluate the �e(E;E0) terms in equa-

tions (58) and (59). We now follow the interactions of the multiple scattering that generally have further
interactions prior to exit through the nuclear boundary. The next scattering term of the multiple scat-
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tering series represents the second scattered term as

�s2(z; E;E0) =
zZ

0

e���m(E)(z�z0)
Z E0�(�F��a)

�F
��(E0)fme(E;E0)�s1(z0; E0; E0)dE0dz0

=
Z E0�(�F��a)

�F

��(E0)fme(E;E0)��(E0)fme(E0; E0)
��m(E0)� ��m(E)

�

" 
1� e���m(E0)z���m(E)z

��m(E0)� ��m(E)

!

�

 
1� e��m(E0)z���m(E0)z

��m(E0)� ��m(E)

!#

dE0: (62)

Equation (62) can be evaluated numerically as a test on possible assumptions. Assumption (a), �m �
�m(E0) � �(E), leads to

�s2(z; E;E0) =
zZ

0

e���m(z�z0)

E0�(�F��a)Z

E

��(E0)fme(E;E0)z0e���mz
0
��(E0)fme(E0; E0)dE0dz0

=
z2

2
e���mz

E0�(�F��a)Z

E

��(E0)fme(E;E0)z0e���mz
0
��(E0)fme(E0; E0)dE0: (63)

Additionally, assumptions (b) � � �(E0) � �(E) and (c) B � B(E0) � B(E) simplify equation (63) to

�s2(z; E;E0) =
(��z)2

2
e���mz

E0�(�F��a)Z

E

Be�B(E0�E)Be�B(E0�E0)

N(E0)N(E0)
dE0; (64)

while assumption (d) N(E0) � 1� e�BE0 � 1� e�B(E)E � N(E) allows for a complete analytic solution
of equation (57) as

�sn(z; E;E0) =
zZ

0

e���mz
E0�(�F��a)Z

E

��0(E;E0)�sn�1(z0; E0; E0)dE0dz0

=
[��Bz]n

n!(n� 1)! [1� e�BE0 ]n
e�B(E0�E) [E0 � (�F � �a)� E]n�1 e��mz: (65)

To evaluate the assumptions used in deriving the analytic result, we will compare the analytic solution
with a numerical evaluation of the multiple scattering terms of equation (57). It is expected that the
assumptions are most inappropriate at low energy. The multiple scattering solution is compared with
the numerical evaluations (no assumptions) in Fig. 16 for 100 MeV initial energy. The adequacy of
assumptions (a){(d) are borne out even at very large penetration depths (especially at the higher energies)
in the results in Fig. 16. Note the �s1(z; E;E0) term is always the analytic solution given by (60) and
never evaluated by a numerical procedure. This is the problem solved by Wilson et al. (1986) and is
helpful in verifying the numerical codes (in this case the numerical evaluation of the perturbation terms).
Similar results can be obtained for the initial recoiling particles (i.e., recoils from the collisions of the
multiply scattered primary particle) as well.
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Figure 18: Numerical perturbation series and analytic approximation for nucleon transport in nuclear
matter.
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6.2. Multiple Recoil Series
We now consider the recoiling nucleons produced by collisions of the incident particle given by the

�r(E;E0) term. Note, an additional subsequent recoil collision from the 
uence of recoiling nucleons is
inferior to the �rst recoil collision from the multiple scattering terms. The corresponding iterative terms
are given by

�rn(z; E;E0) =
zZ

0

e���m(E)(z�z0)

1Z

E

frm(E;E0)�sn�1(z0; E0; E0)dE0dz0: (66)

Hence, the recoil source consists only of recoils produced by the transport of the incident nucleon in its
multitude of collisions under assumptions (a){(d) as

�rn =
zZ

0

e���m(z�z0)

1Z

E

��r(E;E0)�sn(z0; E0; E0)dE0dz0; (67)

where the �sn�1(z; E;E0) is the solution of the multiple scattering series in equation (65) above. The
�rst production term results from the collisions of the uncollided incident particle, given as

�r1(z; E;E0) = ��ze���mz
�

e�BE

1� e�BE0

�
; (68)

and the higher order terms can be evaluated analytically. The result is

�rn(z; E;E0) = B [��z]n e���mze�B[E+(�F��a)] ân�2fB [E0 � (�F � �a)� E]g
n!(n� 2)! [1� e�BE0 ]n

; (69)

where ân(t) are special functions used in the nucleon-nucleus model by Wilson et al. (1986) with recur-
rence relations given by equations (37) and (38).

A graphical display for �a = 15.7 MeV of the initial recoil series is given in Fig. 17 in comparison
to the numerical implementation of the perturbation solution from equation (68). It is clear from the
�gure that the numerical implementation of the multiple recoil series is quite accurate and that use of
the numerical perturbation series solutions are adequate for solving the more general equation (7) with
energy independent interactions, as used in this Appendix. We now look to evaluation of the complete
solution with energy independent interaction parameters using marching procedures and verify with the
numerical perturbation series resulting in Fig. 17. In the text, we will implement a small correction for
the N(E) assumption and add a small correction for N(E) 6= N(E0).
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Figure 19: Numerical perturbation series and analytic approximation for nucleon recoils in nuclear matter.
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