
September 2019

NASA/TM—2019-������������

High-Performance Computing Optimization for
Aladyn — Adaptive Neural Network Molecular
Dynamics Mini-Application

Vesselin I. Yamakov
National Institute of Aerospace, Hampton, Virginia

Gabriele Jost
NASA Ames Research Center, Moffett Field, California

Daniel Kokron
Redline Performance Solutions, Moffett Field, California

Yuri Mishin
George mason University, Fairfax, Virginia

Edward H. Glaessgen
Langley Research Center, Hampton, Virginia

17

flop_dp_efficiency
Ratio of achieved to peak double-precision floating-point

operations

gld_transactions Number of global memory load transactions

gst_transactions Number of store memory load transactions

l2_read_transactions
Memory read transactions seen at L2 cache for all read requests

from L1 cache.

L2_write_transactions
Memory read transactions seen at L2 cache for all write

requests from L1 cache.

Dram_read_transactions Device memory read transactions.

Dram_write_transactions Device memory write transactions.

Flop_count_dp

Number of double-precision floating-point operations executed
by non-predicated threads (add, multiply and multiply-

accumulate). Each multiply-accumulate operation contributes 2
to the count.

L2_write_throughput
Memory write throughput seen at L2 cache for all write

requests

l2_read_throughput Memory write throughput seen at L2 cache for all read requests

dram_read_throughput Device memory read throughput

dram_write_throughput Device memory write throughput

Table 3: Description of the metrics used in Table 2, following Ref. [17].

A complete description of all available metrics is given in Ref. [16]. For
convenience we provide a subset in Table 3. Further performance improvements were
obtained via array transpositions and added vectorization in Loop 3, reducing array
dimensions, and adding vectorization with some other minor modifications. Hoisting
allocation/deallocation of memory to an outer level, as in the multi-core version was also
implemented here. This however did not yield any noticeable speed-up. Trying to reduce
register pressure in Loop 3, by splitting up the loop into several smaller loops by splitting
the calculation of the sum in Eq. A10 in parts for the two terms containing

. &*/01 2"$3+4•
(*#"$+' and

‘ G*567+

567
. •&*/01 2"$3+' respectively, actually decreased the

performance.

4. Summary

As part of its educational effort with NASA Langley Research Center, the High-End
Computing CapabilityÕs (HECC) Applications Performance and Productivity (APP) team
at NASA Advanced Supercomputing (NAS) Division improved the performance of the
Aladyn miniapp by a factor of 4.7 for multi-core CPU, and a factor of 2.4 for GPU

18

execution. The APP team achieved the CPU speedup on a Skylake 6154 CPU with 40
threads by: (i) moving allocate/deallocate statements to an outer level, (ii) using Intel
compiler directives to increase the use of avx512 instructions, and (iii) changing array
layouts to speed memory accesses. The GPU speedup was achieved by increasing
vectorization and applying array layout changes.

Appendix A

Analytic Force Calculation for ANN Potential

Equations (1) through (9) define the total potential energy of an atomistic system,
z , - z"" , as expressed through the relative interatomic coordinates ’ X"$' _"$' ` "$' b “
between pairs of atoms within the cut-off distance, #"$ Q #K. The components of the force,
” " , *• Ž"' • –" ' • —"+, acting on atom %i) are given as spatial derivatives of z , which for the
x-component is:

• Ž" , [
˜ ™*Ž67'–67';b +

˜Ž 6
, [-

˜ ™*Ž67'–67';b +

˜Ž 67

˜ Ž67

˜Ž 6
$: " , -

˜ ™*Ž67'–67';b +

˜Ž 67
$: " , - • Ž'"$$: " . (A1a)

Note that due to the definition, X"$, X$ [X",
˜ Ž67

˜Ž 6
, [>.

Similarly, the other force components are given as

• –" , [
˜ ™*Ž67'–67';b +

˜– 6
, -

˜ ™*Ž67'–67';b +

˜– 67
$: " , - • –'"$$: " , (A1b)

• —", [
˜ ™*Ž67'–67';b +

˜—6
, -

˜ ™*Ž67'–67';b +

˜—67
$: " , - • —'"$$: " . (A1c)

Using Virial stress formulation [10], the atomic stress can be calculated as:

Sš› ,
U

œ
- Sš›

%")
"• œ ,

U

V„ ž
- Ÿ…"} š

%") } ›
%") [- ˜ ™

˜š 67
 "$$: " ¡"• œ (A1d)

where ¢' stand for X, _, or ̀ Cartesian coordinates, and £ is the system volume.

Since z *X"$' _"$' ;b + is a complex function build of all the functions given by Eqs.
(1) through (8) as

z *X"$' _"$' ;b + , - z"" , - j %c)%i)" , - j %c) ¤j %c FU) ¥b Ÿj %U) m! "
%&'() *#"$' #"3 ' b +p¡ ¦ §" ,

 (A2)
its partial derivatives are obtained through the chain rule

21

is no bias term, ² € o

%c), and the transfer function is a multiplication with a constant, equal to

the derivative of the transfer function from the respective layer of the non-differentiated
ANN for atom %i). In addition, the input for this ANN are the derivatives of the LSPs, with
respect to the pair distances, *X"$' _"$' ` "$+, which makes a total of • • %• [>) ?] different

ANNs to be computed to get the forces in a system of • atoms, rather than only • different
ANNs for the energy calculation.

Appendix B

Computational Implementation of Force Calculation

Efficient calculation of forces for a fast MD simulation depends significantly on the way
calculations for the spatial derivatives, given in Appendix A are organized and performed
in an HPC code. The following describes how these calculations are implemented in
Aladyn.

There are two parts in the force calculation. The first part is to search and identify
all neighbors of an atom inside the interaction range, #K. This is performed in subroutine
get_neighbors in aladyn.f source file. The second part is the actual force calculation using
the equations in Appendix A. These calculations are performed in subroutine
Frc_ANN_OMP and in Frc_ANN_ACC in the aladyn_ANN.f file. All of the calculations
are organized in a series of loops, which will be described here.

Nearest neighbor search.

Loop 0: For all atoms (i) identify and store their neighbors, (j), at a distance #"$ Q

#K. The search for neighbors is performed using the link-cell technique, as described
in Sec. 2.

Calculation of LSPs.

Loop 1: For all (i,j)-pairs, calculate and store 4(*#"$+BC, >'?' DD>?, from Eq. (2).

Loop 2: For all atoms (i) use double loops over their neighbors, (j) and (k), to

calculate and store the LSPs, ! "
%&'() ; %<, ='>'?'@'AB;;C, >'?' DD;;>?), from Eq. (1), using

the pre-calculated 4(*#"$+ from Loop 1.

Loop 3: For all (i,j)-pairs, calculate and store ¸ Ž';"$
%&'() , ¸ –';"$

%&'() , and ̧ —';"$
%&'() , from Eq.

22

(A10).

Energy calculation.

Loop 4: For all atoms (i) use ANN from Eqs.(A4a) and (A4b) (or Eqs. 6a, 6b) to

calculate the potential energy of atom (i), z", from Eq. (8). In addition, calculate and store

the derivative of the transfer function, 4•mn€ o

%c)%i)p (Eq. A8), at each node, … of layer h R

> of the ANN. Get the total potential energy of the system, z ; , - z"" , as a sum of all
z"TU'DD„ (Eq. 9).

Force calculation.

Loop 5: For all (i,j)-pairs, start the pair ANNs, defined by Eqs. (A14a) and (A14b)

to calculate and store Wz"$'Ž, Wz"$'– , and Wz"$'—, from Eq. (A13), using the pre-calculated

¸ Ž';"$
%&'() , ̧ – ';"$

%&'() , and ̧ —';"$
%&'() from Loop 3, and 4•mn€ o

%c)%i)p from ANN 1.

Loop 6: For each atom (i), use a loop over all its neighbors (j) to calculate the pair

forces,
˜ ™

˜Ž 67
,

˜ ™

˜– 67
,

˜ ™

˜—67
, from Eq. (A12), and get the total force vector *• Ž"' • –" ' • —"+, acting

on atom (i) from Eqs (A1a-c). If needed, use
˜ ™

˜Ž 67
,

˜ ™

˜– 67
, and

˜ ™

˜—67
, calculated in this loop to

get the atomic stress components, Sš›
%")B;%¢' , X' _' `), for each atom %i), and the total

stress of the system, Sš› . (Eq. (A1d)

24

[17] Nvidia Profiler Users Guide, https://docs.nvidia.com/cuda/profiler-users-
guide/index.html#metrics-reference.

18

execution. The APP team achieved the CPU speedup on a Skylake 6154 CPU with 40
threads by: (i) moving allocate/deallocate statements to an outer level, (ii) using Intel
compiler directives to increase the use of avx512 instructions, and (iii) changing array
layouts to speed memory accesses. The GPU speedup was achieved by increasing
vectorization and applying array layout changes.

Appendix A

Analytic Force Calculation for ANN Potential

Equations (1) through (9) define the total potential energy of an atomistic system,
z , - z"" , as expressed through the relative interatomic coordinates íX"$' _"$ ' `"$' b ì
between pairs of atoms within the cut-off distance, #"$ Q #K. The components of the force,
î" , *ïé"' ïñ"' ïó"+, acting on atom %i) are given as spatial derivatives of z, which for the
x-component is:

ïé" , [
òô*é67'ñ67';b +

òé6
, [- òô*é67'ñ67';b +

òé67

òé67

òé6
$:" , - òô*é67'ñ67';b +

òé67
$:" , - ïé'"$$:" . (A1a)

Note that due to the definition, X"$, X$ [X",

òé67

òé6
, [>.

Similarly, the other force components are given as

ïñ" , [
òô*é67'ñ67';b +

òñ6
, - òô*é67'ñ67';b +

òñ67
$:" , - ïñ'"$$:" , (A1b)

ïó" , [
òô*é67'ñ67';b +

òó6
, - òô*é67'ñ67';b +

òó67
$:" , - ïó'"$$:" . (A1c)

Using Virial stress formulation [10], the atomic stress can be calculated as:

Söõ , U
ú

- Söõ
%")

"ùú , U
VÑû

- üÖ"}ö
%")}õ

%") [- òô
òö67

 "$$:" ¡"ùú (A1d)

where ¢' stand for X, _, or ̀ Cartesian coordinates, and £ is the system volume.

Since z*X"$' _"$ ' ; b + is a complex function build of all the functions given by Eqs.
(1) through (8) as

z*X"$' _"$' ; b + , - z"" , - j%c)%i)" , - j%c) ¤j%cFU) ¥b üj%U) m!"
%&'()*#"$' #"3' b +p¡¦§" ,

 (A2)
its partial derivatives are obtained through the chain rule

19

òô*é67'ñ67';b +

òé67
, - òô¨

òé67
3 , - òj%©ªG«)%3)

òé67
3 , - òj%©ªG«)

òj%©ªG«y¬) b òj%¬)

ò­¨

ò­¨
òé67

3 ;, (A3)

where the summation is over all atoms %Ü), including Ü , i, and Ü , ®.

Solving (A3) would be easier if Eqs. (6a) and (6b) are presented by components:

n¯

%U)%i) , !"
%°)±°'¯

%^'U) Z ²¯
%U) (A4a)

n¯
%c)%i) , 4 mn°

%cFU)%i)p ±°'¯
%cFU'c) Z ²¯

%c)B ;;;;h R >, (A4b)

where the Einstein summation convention over repeated indices is assumed.

Differentiating Eq. (A4b) gives the iteration equation for the derivatives of a neural
networkÕs layer %h)

ò³´

%o)%3)

òé67
, 4ê mn°

%cFU)%Ü)p ¥
ò³µ

%oy¬)%3)

òé67
¦ ±°'¯

%cFU'c). (A5)

When enrolled from the n-th layer down to the first layer, one gets:

ò³¶o

%o) %3)

òé67
, 4ê mnÄoy¬

%cFU)%Ü)p 4ê mnÄoyH
%cFV)%Ü)p ¥

ò³¶oyH
%oyH) %3)

òé67
¦ ±ÄoyH'Äoy¬

%cFV'cFU) ±Äoy¬'Äo
%cFU'c)

É
ò³¶o

%o) %3)

òé67
,

4ê mnÄoy¬
%cFU)%Ü)p 4ê mnÄoyH

%cFV)%Ü)p b 4ê mnÄ¬
%U)%Ü)p ¥

ò­¨
%¶e)

òé67
¦ ±Äe'Ä¬

%^'U) b ±ÄoyH'Äoy¬
%cFV'cFU) ±Äoy¬'Äo

%cFU'c) .

 (A6)

Consequently, Eq. (A3) becomes (noting that the last layer has only one element, ò³¬
%o)%3)
òé67

,
òô¨
òé67

):

òô¨
òé67

,

4ê mnÄoy¬
%cFU)%Ü)p 4ê mnÄoyH

%cFV)%Ü)p b 4ê mnÄ¬
%U)%Ü)p ¥

ò­¨
%¶e)

òé67
¦ ±Äe'Ä¬

%^'U) b ±ÄoyH'Äoy¬
%cFV'cFU) ±Äoy¬'U

%cFU'U),

 (A7)
where

20

4ê%n) , 4%n)*> [4%n)+ , xy·

%UOxy·)H . (A8)

Differentiating Eqs. (1-5), one gets for a particular Ö^ , %<' C) combination:

ò­¨

%¶e)

òé67
, ò­¨

%©'G)

òé67
, ¸é';3$

%&'() ¹3" [¸é';3"
%&'()¹3$, (A9)

where ¹"$ is the Kronecker delta symbol, ¹"$, > if i , ®, and 0 otherwise, and

¸é';"$

%&'() ,

? - 4(%#"3) º.&*/01 2"$3+4ê(*#"$+ é67

567
Z

ëG*567+

567
.ê&*/012"$3+ üé6¨

56¨
[

é67

567
/01 2"$3¡»"cK&D;;3T$

3:" ,

 (A10)
with

.ê&%X) , ¼%?< Z >)*.& Z X.ê&+ [<.ê&FU½ %< Z >)] B;;;;.ê^%X) , =B;;;.êU%X) , >. (A11)

After inserting Eq. (A9) into (A7), the final form for the gradient of the total energy can be
expressed as a sum of two terms,

òô*é67'ñ67';b +

òé67
, - *Wz"$'é [Wz$"'é+$:" , (A12)

where

Wz"$'é ,

4ê mnÄoy¬
%cFU)%i)p 4ê mnÄoyH

%cFV)%i)p b 4ê mnÄ¬
%U)%i)p ±Äe'Ä¬

%^'U) b ±ÄoyH'Äoy¬
%cFV'cFU) ±Äoy¬'U

%cFU'U)¸é';"$
%&'(). (A13)

The form of Eq. (A12) guarantees that the force, predicted by the neural network will

satisfy NewtonÕs third law: òô
òé67

, [òô
òé76

.

Equation (A13) represents another ANN, defined as

¾Ä¬

%U)%i®' X) , ¸é';"$
%Äe)±Äe'Ä¬

%^'U) (A14a)

¾Äo
%c)%i®' X) , 4ê mnÄoy¬

%cFU)%i)p ¾Äoy¬
%cFU)%i®' X)±Äoy¬'Äo

%cFU'c) B ;;;;h R >, (A14b)

in which the weights, ±Äoy¬'Äo

%cFU'c) , are the same as in the non-differentiated ANN, but there

21

is no bias term, ²Äo
%c), and the transfer function is a multiplication with a constant, equal to

the derivative of the transfer function from the respective layer of the non-differentiated
ANN for atom %i). In addition, the input for this ANN are the derivatives of the LSPs, with
respect to the pair distances, *X"$' _"$ ' `"$+, which makes a total of è ç%ç [>) ?] different
ANNs to be computed to get the forces in a system of çatoms, rather than only ç different
ANNs for the energy calculation.

Appendix B

Computational Implementation of Force Calculation

Efficient calculation of forces for a fast MD simulation depends significantly on the way
calculations for the spatial derivatives, given in Appendix A are organized and performed
in an HPC code. The following describes how these calculations are implemented in
Aladyn.

There are two parts in the force calculation. The first part is to search and identify
all neighbors of an atom inside the interaction range, #K. This is performed in subroutine
get_neighbors in aladyn.f source file. The second part is the actual force calculation using
the equations in Appendix A. These calculations are performed in subroutine
Frc_ANN_OMP and in Frc_ANN_ACC in the aladyn_ANN.f file. All of the calculations
are organized in a series of loops, which will be described here.

Nearest neighbor search.

Loop 0: For all atoms (i) identify and store their neighbors, (j), at a distance #"$ Q
#K. The search for neighbors is performed using the link-cell technique, as described
in Sec. 2.

Calculation of LSPs.

Loop 1: For all (i,j)-pairs, calculate and store 4(*#"$+B C , >'?' D D >?, from Eq. (2).

Loop 2: For all atoms (i) use double loops over their neighbors, (j) and (k), to

calculate and store the LSPs, !"
%&'(); %< , ='>'?'@'AB ;;C , >'?' D D;;>?), from Eq. (1), using

the pre-calculated 4(*#"$+ from Loop 1.

Loop 3: For all (i,j)-pairs, calculate and store ̧é';"$

%&'() , ¸ñ';"$
%&'() , and ̧ ó';"$

%&'() , from Eq.

22

(A10).

Energy calculation.

Loop 4: For all atoms (i) use ANN from Eqs.(A4a) and (A4b) (or Eqs. 6a, 6b) to

calculate the potential energy of atom (i), z", from Eq. (8). In addition, calculate and store

the derivative of the transfer function, 4ê mnÄo
%c)%i)p (Eq. A8), at each node, Ö of layer h R

> of the ANN. Get the total potential energy of the system, z; , - z"" , as a sum of all
z"TU'DDÑ (Eq. 9).

Force calculation.

Loop 5: For all (i,j)-pairs, start the pair ANNs, defined by Eqs. (A14a) and (A14b)

to calculate and store Wz"$'é, Wz"$'ñ, and Wz"$'ó, from Eq. (A13), using the pre-calculated

¸é';"$
%&'(), ̧ ñ';"$

%&'(), and ̧ ó';"$
%&'() from Loop 3, and 4ê mnÄo

%c)%i)p from ANN 1.

Loop 6: For each atom (i), use a loop over all its neighbors (j) to calculate the pair

forces, òô
òé67

, òô
òñ67

, òô
òó67

, from Eq. (A12), and get the total force vector *ïé"' ïñ"' ïó"+, acting

on atom (i) from Eqs (A1a-c). If needed, use òô
òé67

, òô
òñ67

, and òô
òó67

, calculated in this loop to

get the atomic stress components, Söõ
%")B ;%¢' , X' _' `), for each atom %i), and the total

stress of the system, Söõ. (Eq. (A1d)

24

[17] Nvidia Profiler Users Guide, https://docs.nvidia.com/cuda/profiler-users-
guide/index.html#metrics-reference.

