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flop_dp_efficiency 
Ratio of achieved to peak double-precision floating-point 

operations 

gld_transactions Number of global memory load transactions 

gst_transactions Number of store memory load transactions  

l2_read_transactions 
Memory read transactions seen at L2 cache for all read requests 

from L1 cache. 

L2_write_transactions 
Memory read transactions seen at L2 cache for all write 

requests from L1 cache. 

Dram_read_transactions Device memory read transactions. 

Dram_write_transactions Device memory write transactions. 

Flop_count_dp 

Number of double-precision floating-point operations executed 
by non-predicated threads (add, multiply and multiply-

accumulate). Each multiply-accumulate operation contributes 2 
to the count. 

L2_write_throughput 
Memory write throughput seen at L2 cache for all write 

requests 

l2_read_throughput Memory write throughput seen at L2 cache for all read requests 

dram_read_throughput Device memory read throughput 

dram_write_throughput Device memory write throughput 
 
Table 3: Description of the metrics used in Table 2, following Ref. [17]. 
 

A complete description of all available metrics is given in Ref. [16]. For 
convenience we provide a subset in Table 3. Further performance improvements were 
obtained via array transpositions and added vectorization in Loop 3, reducing array 
dimensions, and adding vectorization with some other minor modifications. Hoisting 
allocation/deallocation of memory to an outer level, as in the multi-core version was also 
implemented here. This however did not yield any noticeable speed-up. Trying to reduce 
register pressure in Loop 3, by splitting up the loop into several smaller loops by splitting 
the calculation of the sum in Eq. A10 in parts for the two terms containing 

. &*/01 2"$3+4•
( *#"$+'  and 

‘ G*567+

567
. •&*/01 2"$3+'  respectively, actually decreased the 

performance. 

 
4.  Summary 
 
As part of its educational effort with NASA Langley Research Center, the High-End 
Computing CapabilityÕs (HECC) Applications Performance and Productivity (APP) team 
at NASA Advanced Supercomputing (NAS) Division improved the performance of the 
Aladyn miniapp by a factor of 4.7 for multi-core CPU, and a factor of 2.4 for GPU 
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execution. The APP team achieved the CPU speedup on a Skylake 6154 CPU with 40 
threads by: (i) moving allocate/deallocate statements to an outer level, (ii) using Intel 
compiler directives to increase the use of avx512 instructions, and (iii) changing array 
layouts to speed memory accesses. The GPU speedup was achieved by increasing 
vectorization and applying array layout changes. 
 
 
Appendix A 
 
Analytic Force Calculation for ANN Potential 
 
Equations (1) through (9) define the total potential energy of an atomistic system, 
z , - z"" , as expressed through the relative interatomic coordinates ’ X"$' _"$' ` "$' b “ 
between pairs of atoms within the cut-off distance, #"$ Q #K. The components of the force, 
” " , *• Ž"' • –" ' • —"+, acting on atom %i ) are given as spatial derivatives of z , which for the 
x-component is: 
 

• Ž" , [
˜ ™*Ž67'–67';b +

˜Ž 6
, [ -

˜ ™*Ž67'–67';b +

˜Ž 67

˜ Ž67

˜Ž 6
$: " , -

˜ ™*Ž67'–67';b +

˜Ž 67
$: " , - • Ž'"$$: " . (A1a) 

 

Note that due to the definition, X"$ , X$ [ X",   
˜ Ž67

˜Ž 6
, [ >.  

 
Similarly, the other force components are given as 

 

• –" , [
˜ ™*Ž67'–67';b +

˜– 6
, -

˜ ™*Ž67'–67';b +

˜– 67
$: " , - • –'"$$: " ,     (A1b) 

• —", [
˜ ™*Ž67'–67';b +

˜—6
, -

˜ ™*Ž67'–67';b +

˜—67
$: " , - • —'"$$: " .     (A1c) 

 
Using Virial stress formulation [10], the atomic stress can be calculated as: 
 

Sš› ,
U

œ
- Sš›

%")
"• œ ,

U

V„ ž
- Ÿ…"} š

%") } ›
%") [ - ˜ ™

˜š 67
  "$$: " ¡"• œ      (A1d) 

 
where ¢'    stand for X, _, or ̀  Cartesian coordinates, and £  is the system volume. 
 

Since z *X"$' _"$' ;b + is a complex function build of all the functions given by Eqs. 
(1) through (8) as  

 

z *X"$' _"$' ;b + , - z"" , - j %c )%i )" , - j %c ) ¤j %c FU) ¥b Ÿj %U) m! "
%&'( ) *#"$' #"3 ' b +p¡ ¦ §" , 

           (A2) 
its partial derivatives are obtained through the chain rule 
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is no bias term, ² € o

%c ), and the transfer function is a multiplication with a constant, equal to 

the derivative of the transfer function from the respective layer of the non-differentiated 
ANN for atom %i ). In addition, the input for this ANN are the derivatives of the LSPs, with 
respect to the pair distances, *X"$' _"$' ` "$+, which makes a total of • • %• [ >) ?]  different 

ANNs to be computed to get the forces in a system of • atoms, rather than only •  different 
ANNs for the energy calculation. 
 
 
Appendix B 
 
Computational Implementation of Force Calculation 

 
Efficient calculation of forces for a fast MD simulation depends significantly on the way 
calculations for the spatial derivatives, given in Appendix A are organized and performed 
in an HPC code. The following describes how these calculations are implemented in 
Aladyn. 

There are two parts in the force calculation. The first part is to search and identify 
all neighbors of an atom inside the interaction range, #K. This is performed in subroutine 
get_neighbors in aladyn.f source file. The second part is the actual force calculation using 
the equations in Appendix A. These calculations are performed in subroutine 
Frc_ANN_OMP and in Frc_ANN_ACC in the aladyn_ANN.f file. All of the calculations 
are organized in a series of loops, which will be described here.  

 
Nearest neighbor search. 
 
Loop 0: For all atoms (i) identify and store their neighbors, (j), at a distance #"$ Q

#K. The search for neighbors is performed using the link-cell technique, as described 
in Sec. 2. 
 
Calculation of LSPs. 
 
Loop 1: For all (i,j)-pairs, calculate and store 4( *#"$+BC, >'?' DD>?, from Eq. (2). 
 
Loop 2: For all atoms (i) use double loops over their neighbors, (j) and (k), to 

calculate and store the LSPs, ! "
%&'( ) ; %<, ='>'?'@'AB;;C, >'?' DD;;>?), from Eq. (1), using 

the pre-calculated 4( *#"$+ from Loop 1. 
 

Loop 3: For all (i,j)-pairs, calculate and store ¸ Ž';"$
%&'( ) , ¸ –';"$

%&'( ) , and ̧ —';"$
%&'( ) , from Eq. 
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(A10). 
 
Energy calculation. 
 
Loop 4: For all atoms (i) use ANN from Eqs.(A4a) and (A4b) (or Eqs. 6a, 6b) to 

calculate the potential energy of atom (i), z", from Eq. (8). In addition, calculate and store 

the derivative of the transfer function, 4•mn€ o

%c )%i )p (Eq. A8), at each node, … of layer h R

> of the ANN. Get the total potential energy of the system, z ; , - z"" , as a sum of all 
z"TU'DD„  (Eq. 9).   

 
Force calculation. 
 
Loop 5: For all (i,j)-pairs, start the pair ANNs, defined by Eqs. (A14a) and (A14b) 

to calculate and store Wz"$'Ž, Wz"$'– , and Wz"$'—, from Eq. (A13), using the pre-calculated 

¸ Ž';"$
%&'( ) , ̧ – ';"$

%&'( ) , and ̧ —';"$
%&'( )  from Loop 3, and 4•mn€ o

%c )%i )p from ANN 1. 

 
Loop 6: For each atom (i), use a loop over all its neighbors (j) to calculate the pair 

forces, 
˜ ™

˜Ž 67
, 

˜ ™

˜– 67
, 

˜ ™

˜—67
, from Eq. (A12), and get the total force vector *• Ž"' • –" ' • —"+, acting 

on atom (i) from Eqs (A1a-c). If needed, use 
˜ ™

˜Ž 67
, 

˜ ™

˜– 67
, and  

˜ ™

˜—67
, calculated in this loop to 

get the atomic stress components, Sš›
%")B;%¢'   , X' _' ` ), for each atom %i ), and the total 

stress of the system, Sš› . (Eq. (A1d)  
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[17] Nvidia Profiler Users Guide, https://docs.nvidia.com/cuda/profiler-users-
guide/index.html#metrics-reference. 
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execution. The APP team achieved the CPU speedup on a Skylake 6154 CPU with 40 
threads by: (i) moving allocate/deallocate statements to an outer level, (ii) using Intel 
compiler directives to increase the use of avx512 instructions, and (iii) changing array 
layouts to speed memory accesses. The GPU speedup was achieved by increasing 
vectorization and applying array layout changes. 
 
 
Appendix A 
 
Analytic Force Calculation for ANN Potential 
 
Equations (1) through (9) define the total potential energy of an atomistic system, 
z , - z"" , as expressed through the relative interatomic coordinates íX"$' _"$ ' `"$' b ì 
between pairs of atoms within the cut-off distance, #"$ Q #K. The components of the force, 
î" , *ïé"' ïñ"' ïó"+, acting on atom %i) are given as spatial derivatives of z, which for the 
x-component is: 
 

ïé" , [
òô*é67'ñ67';b +

òé6
, [ - òô*é67'ñ67';b +

òé67

òé67

òé6
$:" , - òô*é67'ñ67';b +

òé67
$:" , - ïé'"$$:" . (A1a) 

 
Note that due to the definition, X"$ , X$ [ X",   

òé67

òé6
, [>.  

 
Similarly, the other force components are given as 

 

ïñ" , [
òô*é67'ñ67';b +

òñ6
, - òô*é67'ñ67';b +

òñ67
$:" , - ïñ'"$$:" ,     (A1b) 

ïó" , [
òô*é67'ñ67';b +

òó6
, - òô*é67'ñ67';b +

òó67
$:" , - ïó'"$$:" .     (A1c) 

 
Using Virial stress formulation [10], the atomic stress can be calculated as: 
 

Söõ , U
ú

- Söõ
%")

"ùú , U
VÑû

- üÖ"}ö
%")}õ

%") [ - òô
òö67

 "$$:" ¡"ùú      (A1d) 

 
where ¢'   stand for X, _, or ̀  Cartesian coordinates, and £ is the system volume. 
 

Since z*X"$' _"$ ' ; b + is a complex function build of all the functions given by Eqs. 
(1) through (8) as  

 

z*X"$' _"$' ; b + , - z"" , - j%c)%i)" , - j%c) ¤j%cFU) ¥b üj%U) m!"
%&'()*#"$' #"3' b +p¡¦§" , 

           (A2) 
its partial derivatives are obtained through the chain rule 
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òô*é67'ñ67';b +

òé67
, - òô¨

òé67
3 , - òj%©ªG«)%3)

òé67
3 , - òj%©ªG«)

òj%©ªG«y¬) b òj%¬)

ò­¨

ò­¨
òé67

3 ;,   (A3) 

 
where the summation is over all atoms %Ü), including Ü , i, and Ü , ®.  
 
Solving (A3) would be easier if Eqs. (6a) and (6b) are presented by components: 
 
n¯

%U)%i) , !"
%°)±°'¯

%^'U) Z ²¯
%U)         (A4a) 

n¯
%c)%i) , 4 mn°

%cFU)%i)p ±°'¯
%cFU'c) Z ²¯

%c)B ;;;;h R >,     (A4b) 
  
where the Einstein summation convention over repeated indices is assumed. 
  

Differentiating Eq. (A4b) gives the iteration equation for the derivatives of a neural 
networkÕs layer %h) 
 
ò³´

%o)%3)

òé67
, 4ê mn°

%cFU)%Ü)p ¥
ò³µ

%oy¬)%3)

òé67
¦ ±°'¯

%cFU'c).     (A5) 

 
When enrolled from the n-th layer down to the first layer, one gets:  
 
ò³¶o

%o) %3)

òé67
, 4ê mnÄoy¬

%cFU)%Ü)p 4ê mnÄoyH
%cFV)%Ü)p ¥

ò³¶oyH
%oyH) %3)

òé67
¦ ±ÄoyH'Äoy¬

%cFV'cFU) ±Äoy¬'Äo
%cFU'c)   

É  
ò³¶o

%o) %3)

òé67
,

4ê mnÄoy¬
%cFU)%Ü)p 4ê mnÄoyH

%cFV)%Ü)p b 4ê mnÄ¬
%U)%Ü)p ¥

ò­¨
%¶e)

òé67
¦ ±Äe'Ä¬

%^'U) b ±ÄoyH'Äoy¬
%cFV'cFU) ±Äoy¬'Äo

%cFU'c) .  

           (A6) 
 

Consequently, Eq. (A3) becomes (noting that the last layer has only one element, ò³¬
%o)%3)
òé67

,
òô¨
òé67

): 

 
òô¨
òé67

,

4ê mnÄoy¬
%cFU)%Ü)p 4ê mnÄoyH

%cFV)%Ü)p b 4ê mnÄ¬
%U)%Ü)p ¥

ò­¨
%¶e)

òé67
¦ ±Äe'Ä¬

%^'U) b ±ÄoyH'Äoy¬
%cFV'cFU) ±Äoy¬'U

%cFU'U),  

           (A7) 
where 
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4ê%n) , 4%n)*> [ 4%n)+ , xy·

%UOxy·)H .       (A8)  

 
Differentiating Eqs. (1-5), one gets for a particular Ö^ , %<' C) combination: 
 
ò­¨

%¶e)

òé67
, ò­¨

%©'G)

òé67
, ¸é';3$

%&'() ¹3" [ ¸é';3"
%&'()¹3$,      (A9) 

 
where ¹"$ is the Kronecker delta symbol, ¹"$ , > if i , ®, and 0 otherwise, and 
 
¸é';"$

%&'() , 

? - 4(%#"3) º.&*/01 2"$3+4ê(*#"$+ é67

567
Z

ëG*567+

567
.ê&*/012"$3+ üé6¨

56¨
[

é67

567
/01 2"$3¡»"cK&D;;3T$

3:" ,  

           (A10)  
with 
 
.ê&%X) , ¼%?< Z >)*.& Z X.ê&+ [ <.ê&FU½ %< Z >)] B;;;;.ê^%X) , =B;;;.êU%X) , >.   (A11) 
 
After inserting Eq. (A9) into (A7), the final form for the gradient of the total energy can be 
expressed as a sum of two terms, 
 
òô*é67'ñ67';b +

òé67
, - *Wz"$'é [ Wz$"'é+$:" ,       (A12) 

 
where 
 
Wz"$'é , 

4ê mnÄoy¬
%cFU)%i)p 4ê mnÄoyH

%cFV)%i)p b 4ê mnÄ¬
%U)%i)p ±Äe'Ä¬

%^'U) b ±ÄoyH'Äoy¬
%cFV'cFU) ±Äoy¬'U

%cFU'U)¸é';"$
%&'(). (A13) 

 
The form of Eq. (A12) guarantees that the force, predicted by the neural network will 

satisfy NewtonÕs third law: òô
òé67

, [ òô
òé76

. 

 
Equation (A13) represents another ANN, defined as 

 
¾Ä¬

%U)%i®' X) , ¸é';"$
%Äe)±Äe'Ä¬

%^'U)           (A14a) 

¾Äo
%c)%i®' X) , 4ê mnÄoy¬

%cFU)%i)p ¾Äoy¬
%cFU)%i®' X)±Äoy¬'Äo

%cFU'c) B ;;;;h R >,   (A14b) 
 
in which the weights, ±Äoy¬'Äo

%cFU'c) , are the same as in the non-differentiated ANN, but there 
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is no bias term, ²Äo
%c), and the transfer function is a multiplication with a constant, equal to 

the derivative of the transfer function from the respective layer of the non-differentiated 
ANN for atom %i). In addition, the input for this ANN are the derivatives of the LSPs, with 
respect to the pair distances, *X"$' _"$ ' `"$+, which makes a total of è ç%ç [ >) ?]  different 
ANNs to be computed to get the forces in a system of çatoms, rather than only ç different 
ANNs for the energy calculation. 
 
 
Appendix B 
 
Computational Implementation of Force Calculation 

 
Efficient calculation of forces for a fast MD simulation depends significantly on the way 
calculations for the spatial derivatives, given in Appendix A are organized and performed 
in an HPC code. The following describes how these calculations are implemented in 
Aladyn. 

There are two parts in the force calculation. The first part is to search and identify 
all neighbors of an atom inside the interaction range, #K. This is performed in subroutine 
get_neighbors in aladyn.f source file. The second part is the actual force calculation using 
the equations in Appendix A. These calculations are performed in subroutine 
Frc_ANN_OMP and in Frc_ANN_ACC in the aladyn_ANN.f file. All of the calculations 
are organized in a series of loops, which will be described here.  

 
Nearest neighbor search. 
 
Loop 0: For all atoms (i) identify and store their neighbors, (j), at a distance #"$ Q
#K. The search for neighbors is performed using the link-cell technique, as described 
in Sec. 2. 
 
Calculation of LSPs. 
 
Loop 1: For all (i,j)-pairs, calculate and store 4(*#"$+B C , >'?' D D >?, from Eq. (2). 
 
Loop 2: For all atoms (i) use double loops over their neighbors, (j) and (k), to 

calculate and store the LSPs, !"
%&'(); %< , ='>'?'@'AB ;;C , >'?' D D;;>?), from Eq. (1), using 

the pre-calculated 4(*#"$+ from Loop 1. 
 
Loop 3: For all (i,j)-pairs, calculate and store ̧é';"$

%&'() , ¸ñ';"$
%&'() , and ̧ ó';"$

%&'() , from Eq. 
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(A10). 
 
Energy calculation. 
 
Loop 4: For all atoms (i) use ANN from Eqs.(A4a) and (A4b) (or Eqs. 6a, 6b) to 

calculate the potential energy of atom (i), z", from Eq. (8). In addition, calculate and store 

the derivative of the transfer function, 4ê mnÄo
%c)%i)p (Eq. A8), at each node, Ö of layer h R

> of the ANN. Get the total potential energy of the system, z; , - z"" , as a sum of all 
z"TU'DDÑ (Eq. 9).   

 
Force calculation. 
 
Loop 5: For all (i,j)-pairs, start the pair ANNs, defined by Eqs. (A14a) and (A14b) 

to calculate and store Wz"$'é, Wz"$'ñ, and Wz"$'ó, from Eq. (A13), using the pre-calculated 

¸é';"$
%&'(), ̧ ñ';"$

%&'(), and ̧ ó';"$
%&'() from Loop 3, and 4ê mnÄo

%c)%i)p from ANN 1. 

 
Loop 6: For each atom (i), use a loop over all its neighbors (j) to calculate the pair 

forces, òô
òé67

, òô
òñ67

, òô
òó67

, from Eq. (A12), and get the total force vector *ïé"' ïñ"' ïó"+, acting 

on atom (i) from Eqs (A1a-c). If needed, use òô
òé67

, òô
òñ67

, and  òô
òó67

, calculated in this loop to 

get the atomic stress components, Söõ
%")B ;%¢'   , X' _' `), for each atom %i), and the total 

stress of the system, Söõ. (Eq. (A1d)  
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[17] Nvidia Profiler Users Guide, https://docs.nvidia.com/cuda/profiler-users-
guide/index.html#metrics-reference. 






