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Introduction: The search for evidence of life or its 

processes involves the detection of biosignatures 

suggestive of extinct or extant life, or the determination 

that an environment either has or once had the potential 

to harbor life. In situ elemental imaging is useful in 

either case, since features on the mm to μm scale reveal 

geological processes which may indicate past or present 

habitability. The Mapping X-ray Fluorescence 

Spectrometer (MapX) is an in-situ instrument designed 

to identify these features on planetary surfaces 

(Sarrazin, 2016). Here we present progress on 

instrument development, data analysis methods, and 

element quantification. 

 

 
Figure 1. Left: Schematic representation of MapX. 

Right: Rendering of the arm mounted instrument in a 

flight like configuration. 

Instrument Description: Figure 1 shows a 

schematic of the instrument, which consists of X-ray 

sources, a focusing optic, and a CCD. Either 

radioisotope (e.g., 244Cm) (Radchenko, 2000) or X-ray 

tube sources can be used. The focusing lens is an X-ray 

micro-pore optic (MPO) which focuses X-rays 1:1 onto 

the CCD. The MPO has a large depth of field, allowing 

rough unprepared surfaces to be imaged with minimal 

resolution loss (~1 cm with a nominal lateral resolution 

of 100 µm). The CCD is exposed and read at a rate of 

several frames per second, allowing the x, y position and 

energy of each photon to be recorded.  Summing 

multiple frames yields XRF spectra for each individual 

pixel. 

Data Analysis: The images collected by the CCD 

are binned by energy and combined into an x, y, energy 

data cube, the size of which will make downlinking of 

the raw data infeasible. Obtaining photon energy maps 

at the characteristic energies of different elements from 

the data cube is straight forward. However, these maps 

do not provide precise elemental composition 

information because different characteristic lines can 

overlap and background effects cannot be easily 

subtracted. Using machine learning, regions of similar 

composition can be identified based on the rough element 

maps mentioned above. The XRF spectra for these ROI 

can be summed to generate high signal to noise spectra 

for ground processing.  

 
Figure 2. a) Optical image of a petrologic thin section of 

an ultramafic xenolith imaged with MapX-2 prototype 

(field of view, 15 mm). b) False color image, Fe = red, 

Ca = green, and Cr = blue. c) Correlation between Fe, Ca, 

and Cr as a 3D scatter plot. d) Labels applied to the 2D 

image showing the locations of the different ROI. e) 

Summed spectra from the different ROI with assigned 

mineralogy (cpx: clinopyroxene, slide: glass slide, opx: 

orthopyroxene, spnl: spinel, int. reg.: interfacial regions). 
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